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Formulating and Solving 
Integer Programs 

 

“To be or not to be” is true. 

-G. Boole 

11.1 Introduction 
In many applications of optimization, one would really like the decision variables to be restricted to 

integer values. One is likely to tolerate a solution recommending GM produce 1,524,328.37 Chevrolets. 

No one will mind if this recommendation is rounded up or down. If, however, a different study 

recommends the optimum number of aircraft carriers to build is 1.37, then a lot of people around the 

world will be very interested in how this number is rounded. It is clear the validity and value of many 

optimization models could be improved markedly if one could restrict selected decision variables to 

integer values. 

 All good commercial optimization modeling systems are augmented with a capability that allows 

the user to restrict certain decision variables to integer values. The manner in which the user informs the 

program of this requirement varies from program to program. In LINGO, for example, one way of 

indicating variable X is to be restricted to integer values is to put it in the model the declaration as: 

@GIN(X). The important point is it is straightforward to specify this restriction. We shall see later that, 

even though easy to specify, sometimes it may be difficult to solve problems with this restriction. The 

methods for formulating and solving problems with integrality requirements are called integer 

programming. 

11.1.1 Types of Variables 
One general classification is according to types of variables: 

Pure vs. mixed. In a pure integer program, all variables are restricted to integer values. In a 

mixed formulation, only certain of the variables are integer; whereas, the rest are allowed 

to be continuous. 

0/1 vs. general. In many applications, the only integer values allowed are 0/1. Therefore, some 

integer programming codes assume integer variables are restricted to the values 0 or 1. 

 The integrality enforcing capability is perhaps more powerful than the reader at first realizes. A 

frequent use of integer variables in a model is as a zero/one variable to represent a go/no-go decision. It 

is probably true that the majority of real-world integer programs are of the zero/one variety. 
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11.2 Exploiting the IP Capability: Standard Applications 
You will frequently encounter LP problems with the exception of just a few combinatorial 

complications. Many of these complications are fairly standard. The next several sections describe many 

of the standard complications along with the methods for incorporating them into an IP formulation. 

Most of these complications only require the 0/1 capability rather than the general integer capability. 

Binary variables can be used to represent a wide variety of go/no-go, or make-or-buy decisions. In the 

latter use, they are sometimes referred to as “Hamlet” variables as in: “To buy or not to buy, that is the 

question”. Binary variables are sometimes also called Boolean variables in honor of the logician George 

Boole. He developed the rules of the special algebra, now known as Boolean algebra, for manipulating 

variables that can take on only two values. In Boole’s case, the values were “True” and “False”. 

However, it is a minor conceptual leap to represent “True” by the value 1 and “False” by the value 0. 

The power of these methods developed by Boole is undoubtedly the genesis of the modern compliment: 

“Strong, like Boole.” 

11.2.1 Binary Representation of General Integer Variables 
Some algorithms apply to problems with only 0/1 integer variables. Conceptually, this is no limitation, 

as any general integer variable with a finite range can be represented by a set of 0/1 variables. For 

example, suppose X is restricted to the set [0, 1, 2,...,15]. Introduce the four 0/1 variables: y1, y2, y3, and 

y4. Replace every occurrence of X by y1 + 2  y2 + 4  y3 + 8  y4. Note every possible integer in [0, 1, 

2, ..., 15] can be represented by some setting of the values of y1, y2, y3, and y4. Verify that, if the maximum 

value X can take on is 31, you will need 5 0/1 variables. If the maximum value is 63, you will need 6 0/1 

variables. In fact, if you use k 0/1 variables, the maximum value that can be represented is 2k-1. You can 

write: VMAX = 2k-1. Taking logs, you can observe that the number of 0/1 variables required in this 

so-called binary expansion is approximately proportional to the log of the maximum value X can take 

on. 

 Although this substitution is valid, it should be avoided if possible. Most integer programming 

algorithms are not very efficient when applied to models containing this substitution. 

11.2.2 Minimum Batch Size Constraints 
When there are substantial economies of scale in undertaking an activity regardless of its level, many 

decision makers will specify a minimum “batch” size for the activity. For example, a large brokerage 

firm may require that, if you buy any bonds from the firm, you must buy at least 100. A zero/one variable 

can enforce this restriction as follows. Let: 

x  = activity level to be determined (e.g., no. of bonds purchased), 

y = a zero/one variable = 1, if and only if x > 0, 

B = minimum batch size for x (e.g., 100), and 

U = known upper limit on the value of x. 

The following two constraints enforce the minimum batch size condition: 

x  Uy 

By  x. 

 If y = 0, then the first constraint forces x = 0. While, if y = 1, the second constraint forces x to be at 

least B. Thus, y acts as a switch, which forces x to be either 0 or greater than B. The constant U should 

be chosen with care. For reasons of computational efficiency, it should be as small as validly possible. 
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 Some IP packages allow the user to directly represent minimum batch size requirements by way of 

so-called semi-continuous variables. A variable x is semi-continuous if it is either 0 or in the range 

B  x  . No binary variable need be explicitly introduced. 

11.2.3 Fixed Charge Problems 
A situation closely related to the minimum batch size situation is one where the cost function for an 

activity is of the fixed plus linear type indicated in Figure 11.1: 

Figure 11.1 A Fixed Plus Linear Cost Curve 

 
 Define x, y, and U as before, and let K be the fixed cost incurred if x > 0. Then, the following 

components should appear in the formulation: 

Minimize     Ky + cx + . . . 

subject to 

      x  Uy 
          . 

          . 

          . 

 The constraint and the term Ky in the objective imply x cannot be greater than 0 unless a cost K is 

incurred. Again, for computational efficiency, U should be as small as validly possible. 

11.2.4 The Simple Plant Location Problem 
The Simple Plant Location Problem (SPL) is a commonly encountered form of fixed charge problem. It 

is specified as follows: 

n  = the number of sites at which a plant may be located or opened, 

m = the number of customer or demand points, each of which must be assigned to a plant, 

k  = the number of plants which may be opened, 

fi = the fixed cost (e.g., per year) of having a plant at site i, for i = 1, 2, . . . , n, 

cij = cost (e.g., per year) of assigning customer j to a plant at site i, for i = 1, 2, . . . , n and 

j = 1, 2, ..., m. 

Figure  11.1  A FIxed Plus Linear Cost Curve

Slope  c

x
U

K

0
0

Cost



274     Chapter 11  Formulating & Solving Integer Programs 

 

 The goal is to determine the set of sites at which plants should be located and which site should 

service each customer. 

 A situation giving rise to the SPL problem is the lockbox location problem encountered by a firm 

with customers scattered over a wide area. The plant sites, in this case, correspond to sites at which the 

firm might locate a postal lockbox that is managed by a bank at the site. The customer points would 

correspond to the, 100 say, largest metropolitan areas in the firm’s market. A customer would mail his 

or her monthly payments to the closest lockbox. The reason for resorting to multiple lockboxes rather 

than having all payments mailed to a single site is several days of mail time may be saved. Suppose a 

firm receives $60 million per year through the mail. The yearly cost of capital to the firm is 10% per 

year, and it could reduce the mail time by two days. This reduction has a yearly value of about $30,000. 

 The fi for a particular site would equal the yearly cost of having a lockbox at site i regardless of the 

volume processed through the site. The cost term cij would approximately equal the product: (daily cost 

of capital)  (mail time in days between i and j)  (yearly dollar volume mailed from area j). 

 Define the decision variables: 

 yi = 1 if a plant is located at site i, else 0, 

xij = 1 if the customer j is assigned to a plant site i, else 0. 

A compact formulation of this problem as an IP is: 

Minimize fi yi + cij xij 
(1) 

subject to xij = 1 for j = 1 to m, (2) 

 xij  myi 
for i = 1 to n, (3) 

 yi = k,  (4) 

  yi = 0 or 1 for i = 1 to n, (5) 

 xij = 0 or 1 for i = 1 to n, j = 1 to m. (6) 

 The constraints in (2) force each customer j to be assigned to exactly one site. The constraints in (3) 

force a plant to be located at site i if any customer is assigned to site i. 

 The reader should be cautioned against trying to solve a problem formulated in this fashion because 

the solution process may require embarrassingly much computer time for all, but the smallest problem. 

The difficulty arises because, when the problem is solved as an LP (i.e., with the conditions in (5) and 

(6) deleted), the solution tends to be highly fractional and with little similarity to the optimal IP solution. 

 A “tighter” formulation, which frequently produces an integer solution naturally when solved as an 

LP, is obtained by replacing (3) by the formula: 

xij  yi for i = 1 to n, j = 1 to m.    (3') 

 At first glance, replacing (3) by (3') may seem counterproductive. If there are 20 possible plant sites 

and 60 customers, then the set (3) would contain 20 constraints, whereas set (3') would contain 

20  60 = 1,200 constraints. Empirically, however, it appears to be the rule rather than the exception 

that, when the problem is solved as an LP with (3') rather than (3), the solution is naturally integer. 
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11.2.5 The Capacitated Plant Location Problem (CPL) 
The CPL problem arises from the SPL problem if the volume of demand processed through a particular 

plant is an important consideration. In particular, the CPL problem assumes each customer has a known 

volume and each plant site has a known volume limit on total volume assigned to it. The additional 

parameters to be defined are: 

Dj  = volume or demand associated with customer j, 

Ki  = capacity of a plant located at i 

The IP formulation is: 

Minimize fi yi + cij xij 
(7) 

subject to xij = 1 for j = 1 to m (8) 

 Djxij  Kiyi 
for i = 1 to n (9) 

 xij  yi for i = 1 to n, j = 1 to m. (10) 

 yi = 0 or 1 for i = 1 to n (11) 

 xij = 0 or 1 for i = 1 to n, j = 1 to m. (12) 

 This is the “single-sourcing” version of the problem. Because the variables xi j  are restricted to 0 or 

1, each customer must have all of its volume assigned to a single plant. If “split-sourcing” is allowed, 

then the variables xi j  are allowed to be fractional with the interpretation that xi j  is the fraction of customer 

j’s volume assigned to plant site i. In this case, condition (12) is dropped. Split sourcing, considered 

alone, is usually undesirable. An example is the assignment of elementary schools to high schools. 

Students who went to the same elementary school prefer to be assigned to the same high school. 

Example: Capacitated Plant Location 

Some of the points just mentioned will be illustrated with the following example. 

 The Zzyzx Company of Zzyzx, California currently has a warehouse in each of the following cities: 

(A) Baltimore, (B) Cheyenne, (C) Salt Lake City, (D) Memphis, and (E) Wichita. These warehouses 

supply customer regions throughout the U.S. It is convenient to aggregate customer areas and consider 

the customers to be located in the following cities: (1) Atlanta, (2) Boston, (3) Chicago, (4) Denver, (5) 

Omaha, and (6) Portland, Oregon. There is some feeling that Zzyzx is “overwarehoused”. That is, it may 

be able to save substantial fixed costs by closing some warehouses without unduly increasing 

transportation and service costs. Relevant data has been collected and assembled on a “per month” basis 

and is displayed below: 

Cost per Ton-Month Matrix 

 
 
 
Warehouse 

Demand City Monthly 
Supply 

Capacity 
in Tons 

Monthly 
Fixed 
Cost 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

A $1675 $400 $685 $1630 $1160 $2800 18 $7,650 
B 1460 1940 970 100 495 1200 24 3,500 
C 1925 2400 1425 500 950 800 27 3,500 
D 380 1355 543 1045 665 2321 22 4,100 
E 922 1646 700 508 311 1797 31 2,200 

Monthly Demand in Tons 10 8 12 6 7 11   
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 For example, closing the warehouse at A (Baltimore) would result in a monthly fixed cost saving of 

$7,650. If 5 (Omaha) gets all of its monthly demand from E (Wichita), then the associated transportation 

cost for supplying Omaha is 7  311 = $2,177 per month. A customer need not get all of its supply from 

a single source. Such “multiple sourcing” may result from the limited capacity of each warehouse 

(e.g., Cheyenne can only process 24 tons per month. Should Zzyzx close any warehouses and, if so, 

which ones?) 

 We will compare the performance of four different methods for solving, or approximately solving, 

this problem: 

1) Loose formulation of the IP. 

2) Tight formulation of the IP. 

3) Greedy open heuristic: start with no plants open and sequentially open the plant giving the 

greatest reduction in cost until it is worthless to open further plants. 

4) Greedy close heuristic: start with all plants open and sequentially close the plant saving the 

most money until it is worthless to close further plants. 

 The advantage of heuristics 3 and 4 is they are easy to apply. The performance of the four methods 

is as follows: 

 
 

Method 

Objective 
value: Best 

Solution 

Computing 
Time in 

Seconds 

 
Plants 
Open 

Objective 
value: LP 
Solution 

Loose IP 46,031 3.38 A,B,D 35,662 

Tight IP 46,031 1.67 A,B,D 46,031 

Greedy Open Heuristic 46,943 nil A,B,D,E — 

Greedy Close Heuristic 46,443 nil A,C,D,E — 

 Notice, even though the loose IP finds the same optimum as the tight formulation (as it must), it 

takes about twice as much computing time. For large problems, the difference becomes much more 

dramatic. Notice for the tight formulation, however, the objective function value for the LP solution is 

the same as for the IP solution. When the tight formulation was solved as an LP, the solution was 

naturally integer. 

 The single product dynamic lotsizing problem is described by the following parameters: 

n  = number of periods for which production is to be planned for a product; 

Dj  = predicted demand in period j, for j = 1, 2, . . . , n; 

fi  = fixed cost of making a production run in period i; 

hi  = cost per unit of product carried from period i to i + 1. 

This problem can be cast as a simple plant location problem if we define: 

ci j = Dj t i

j

=

−


1

ht. 

 That is, cij is the cost of supplying period j’s demand from period i production. Each period can be 

thought of as both a potential plant site (period for a production run) and a customer. 

 If, further, there is a finite production capacity, Ki, in period i, then this capacitated dynamic lotsizing 

problem is a special case of the capacitated plant location problem. 
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Dual Prices and Reduced Costs in Integer Programs 

Dual prices and reduced costs in solution reports for integer programs have a restricted interpretation. 

For first time users of IP, it is best to simply disregard the reduced cost and dual price column in the 

solution report. For the more curious, the dual prices and reduced costs in a solution report are obtained 

from the linear program that remains after all integer variables have been fixed at their optimal values 

and removed from the model. Thus, for a pure integer program (i.e., all variables are required to be 

integer), you will generally find:  

• all dual prices are zero, and  

• the reduced cost of a variable is simply its objective function coefficient (with sign reversed 

if the objective is MAX). 

 For mixed integer programs, the dual prices may be of interest. For example, for a plant location 

problem where the location variables are required to be integer, but the quantity-shipped variables are 

continuous, the dual prices reported are those from the continuous problem where the locations of plants 

have been specified beforehand (at the optimal locations). 

11.2.6 Modeling Alternatives with the Scenario Approach 
We may be confronted by alternatives in two different ways: a) we have to choose among two or more 

alternatives and we want to figure out which is best, or b) nature or the market place will choose one of 

two or more alternatives,  and we are not sure which alternative nature will choose,  so we want to 

analyze all alternatives so we will be prepared to react optimally once we learn which alternative was 

chosen by nature.  Here we consider only situation (a).  We call the approach the scenario approach or 

the disjunctive formulation,  see for example Balas(1979) or section 16.2.3 of Martin(1999). 

Suppose that if we disregard the alternatives, our variables are simply called  x1,  x2, …, xn.  We call 

the conditions that must hold if alternative s is chosen, scenario  s.  Without too much loss of generality,  

we assume all variables are non-negative.  The scenario/disjunctive approach to formulating a discrete 

decision problem proceeds as follows: 

 

    For each scenario s: 

          1) Write all the constraints that must hold if scenario s is chosen. 

          2) For all variables in these constraints add a subscript s,  to distinguish them from  

               equivalent variables in other scenarios.  So xj in scenario s becomes xsj. 

          3) Add a 0/1 variable, ys, to the model with the interpretation that ys = 1 if scenario 

                s is chosen,  else 0.  

          4) Multiply the RHS constant term of each constraint in scenario s by ys. 

          5) For each variable xsj that appears in any of the scenario s constraints,  

               add the constraint: 

                        xsj  M* ys  ,  where M is a large positive constant.  The purpose of this  

               step is to force all variables in scenario s to be 0 if scenario s is not chosen. 

 

    Finally,  we tie all the scenarios together with: 

                        s ys   = 1,   i.e.,  we must choose one scenario; 

         For each variable xj, add the constraint: 

                           xj = s xsj ,  so xj takes on the value appropriate to which scenario was 

                                              chosen. 

 

For example, if just after step 1 we had a constraint of the form: 
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           j asj*xj  as0, 

then steps 2-4 would convert it to:  

           j asj*xsj  as0*ys,  

 

The forcing constraints in step 5 are not needed if ys = 0 implies xsj = 0, e.g., if all the asj are nonnegative 

and the xj are constrained to be nonnegative. 

 

A somewhat similar approach to the disjunctive/scenario approach is the RLT approach developed by 

Adams and Sherali(2005).  The next section illustrates the scenario approach for representing a decision 

problem. 

 

11.2.7 Linearizing a Piecewise Linear Function, Discontinuous Case 
If you ask a vendor to provide a quote for selling you some quantity of material,  the vendor will typically 

offer a quantity discount function that looks something like that shown in Figure 11.2 

 

Figure 11.2 Quantity Discount Piecewise Linear Discontinuous Cost Curve 

 
                h1                  h2                                                          h3                                                                            h4  

                                                         quantity 

 
Define:  

        cs = slope of  piecewise linear segment s, 

   hs, vs = horizontal and vertical coordinates of the rightmost point of segment s.  

v2 

v1 

v3 

v4 
c4 

c3 

c2 
cost 
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Note that segment 1 is the degenerate segment of buying nothing.  This example illustrates that we do 

not require that a piecewise linear function be continuous. 

 

Let us consider the following situation:  

      We pay $50 if we buy anything in a period,  plus 

                      $2.00/unit if quantity < 100, 

                      $1.90/unit if quantity  100 but < 1000, 

                      $1.80/unit if 1000 but  5000.  

We assume hs, vs, cs are constants,  and  hs  hs+1  .  It then follows that: 

          h          v        c = 

          0          0        0 

      100      250        2 

    1000    1950        1.90 

    5000    9050        1.80;  

 

We will describe two ways of representing picecewise linear functions: first the disjunctive method, and 

then the convex weighting or lambda method. Let x denote the amount we decide to purchase.  Using 

step 1 of the scenario or disjunctive formulation approach, 

   if segment/scenario 1 is chosen, then 

              cost = 0; 

                   x = 0; 

    If segment/scenario 2 is chosen, then 

              cost = v2 – c2*( h2 - x);     [or 250 – 2*(100 - x)],  

         x  h2;            [or x  100], 

         x  h1;                     [or x  0], 
 

Similar constraints apply for scenario/segments 3 and 4.  We assume that fractional values, such as x = 

99.44 are allowed,  else we would write x  99 rather than x  100 above. 

 

If we apply steps 2-4 of the scenario formulation method, then we get:  

   For segment/scenario 1 is chosen, then 

              cost1 = 0; 

                   x1 = 0; 

    If segment/scenario 2 is chosen, then 

              cost2 = v2*y2 – c2*h2*y2 + c2*x2; [ or cost2 = 50*y2 + 2*x2], 

                   x2  h2*y2;                                [ or x2  100*y2], 

                   x2  h1*y2;                                [ or x2  0*y2 ], 

 

    If segment/scenario 3 is chosen, then 

              cost3 = v3*y3 – c3*h3*y3 + c3*x3; [ or cost3 = 50*y3 + 1.9*x3], 

       x3  h3*y3;                                 [ or  x3  1000*y3], 

       x3  h2*y3;                                [ or  x3     100*y3], 

 

    If segment/scenario 4 is chosen, then 
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              cost4 = v4*y4 – c4*h4*y4 + c4*x4; [or cost4 = 50*y3 + 1.8*x4 ] 

          x4  h4*y4;                    [ or x3  5000*y4], 

          x4  h3*y4;                [ or x3   1000*y4], 

   We must choose one of the four segments, so: 

       y1 + y2 + y3 + y4 = 1;  

       y1, y2, y3, y4 = 0 or 1; 

 

   and the true quantity and cost are found with:  

         x1+ x2+ x3+ x4  = x; 

   cost1 + cost2 +cost3 + cost4 = cost;  
 

11.2.8 Linearizing a Piecewise Linear Function, Continuous Case  
The previous quantity discount example illustrated what is called an “all units discount”.  Sometimes, a 

vendor will instead quote an incremental units discount, in which the discount applies only to the units 

above a threshold.  The following example illustrates. The first 1,000 liters of the product can be 

purchased for $2 per liter. The price drops to $1.90 per liter for units beyond 1000, $1.80 for units above 

3500, and $1.75 for units beyond 5000.  At most 7000 liters can be purchased.  

 

Figure 11.3 Continuous Piecewise Linear Cost Curve 

 
                    h0                  h1                                                         h2                                              h3                                            h4  

                                                quantity 
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Verify that the corresponding values for the hi and vi are: 

   i          h            v        

   0          0            0     

   1    1000      2000     

   2    3500      6750 

   3    5000      9450 

   4    7000    12950 

 

Such continuous piecewise linear functions are found not only in purchasing but also are frequently used 

in the modeling of energy conversion processes such as the generation of electricity. The amount of 

electrical energy produced by a hydro-electric or fossil fuel burning generator may be a nonlinear 

function of the input volume of water or fuel. 

 

Define the variables: 

        wi = nonnegative weight to be applied to point i, for i  = 0, 1, 2, 3, 4. 

        x = amount purchased,   

        cost = total cost of the purchase. 

 

   We can cause x and cost to almost be calculated correctly by writing the constraints: 

           x = w0h0 + w1h1 + w2h2 + w3h3 + w4h4; 

      cost = w0v0 + w1v1 + w2v2  + w3v3 + w4v4;  

          1 = w0     + w1     + w2      + w3      + w4v4; 

 

Any point on the line segment connecting the two points (hi, vi) and (hi+1, vi+1) can be represented by 

choosing appropriate values for wi and wi+1 so that  wi + wi+1 = 1, and wi, wi+1 ≥ 0. This method is 

sometimes called the lambda method because the Greek symbol lambda was used originally to represent 

the weights. To ensure that the point corresponding to a particular set of values for the wi lies on the 

curve, we need to require that if two or more of the wi are > 0, they must be adjacent.  We said “almost” 

in the earlier sentence because there is nothing in the three constraints above that enforce this adjacency 

condition. There are two ways of enforcing this adjacency condition:  a) declare the wi to be members of 

an SOS2 set in LINGO, or b) add a number of binary variables to enforce the condition. 

  The following code fragment illustrates how to use the SOS2 feature in LINGO. 
   

  ! Representing a continuous piecewise linear 

     function in LINGO using the SOS2 feature; 

            

           x = w0*0 + w1*1000 + w2*3500 + w3*5000 + w4* 7000; 

        cost = w0*0 + w1*2000 + w2*6750 + w3*9450 + w4*12950;  

           1 = w0   + w1      + w2      + w3      + w4; 

   ! The ordering/adjacency of the variables in the SOS2 set 

     is determined by the order of declarations. The SOS2 feature  

     restricts the number of nonzero values in the set to be at 

     most 2, and if 2, they must be adjacent; 

      @SOS2('MySOS2',w0); @SOS2('MySOS2',w1); @SOS2('MySOS2',w2); 

      @SOS2('MySOS2',w3); @SOS2('MySOS2',w4); 

 



282     Chapter 11  Formulating & Solving Integer Programs 

 

If you arbitrarily add the constraint, X = 6000, and solve, you get the solution: 
 

                  Variable           Value 

                         X        6000.000 

                        W0        0.000000 

                        W1        0.000000 

                        W2        0.000000 

                        W3       0.5000000 

                        W4       0.5000000 

                      COST        11200.00 

 

If for some reason you do not want to use the SOS2 feature, you can introduce 4 binary variables: 

      yi = 1 if x is in the interval with endpoints hi-1 and hi, for i = 1, 2, 3, 4.  We would replace the SOS2 

declarations by the constraints: 
 
    ! The y's must be binary; 

        @BIN(y1); @BIN(y2); @BIN(y3); @BIN(y4); 

    ! Some interval must be chosen; 

                y1 + y2 + y3 + y4 = 1; 

    ! If point i has any weight, then one of the adjacent 

       intervals must be chosen; 

            w0 <= y1; 

            w1 <= y1 + y2; 

            w2 <= y2 + y3; 

            w3 <= y3 + y4; 

            w4 <= y4; 

 

11.2.9 An n Interval Piecewise Linear Function Using Log(n) Binaries 
 
   The previous example used n binary variables to enforce the choosing of one alternative out of n. With 

a little ingenuity this “choose one out of n” requirement can be enforced with only order of log2(n) binary 

variables. We illustrate for the case of eight intervals, for which we need three binary variables, y1, y2, 

y3. Denote the 8 intervals by 0, 1, …,7, with point vi being the left boundary of interval i.  We will assign 

binary variables to intervals thus: 

       If the interval is one of  4, 5, 6, 7, then y3 = 1 , else 0,  

       If the interval is one of  2, 3, 4, 5, then y2 = 1 , else 0,  

       If the interval is one of  1, 2, 5, 6, then y1 = 1 , else 0; 

 

Thus, we also need the constraints: 

             w0+w1+w2+w3 ≤ 1- y3; 

             w5+w6+w7+w8 ≤  y3;  

             w0+w1+w7+w8 ≤ 1- y2; 

                   w3+w4+w5 ≤  y2; 

                   w0+w4+w8 ≤ 1- y1;  

                        w2+ w6 ≤  y1; 

                       y1, y2, y3 = 0 or 1; 
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Notice that if: 

       y1 = y2 = y3= 0,  then  w2 + w3 + w4 + w5 + w6 + w7 + w8 = 0, i.e., the interval is 0,  

       y1 = 1, y2 = y3 = 0, then  w0 + w3 + w4 + w5 + w6 + w7 + w8 = 0, i.e., the interval is 1, etc.  

It may be of interest to note that this is a “Gray” binary coding of 0, 1, …,7, in that exactly 1 “bit” of y1, 

y2, y3 changes in the binary representation as one moves from i to i+1. 

 

Piecewise Linear Approximations to Multivariate Functions 
   Suppose we have a function of two variables: 

          cost = f (x,y). 

 We can construct a  piecewise linear approximation to this function if we  

          choose n points, (xbari,ybari) for i = 1, 2, …, n,  

                e.g., corner points of the triangles in Figure 11.4, and, 

          introduce the n nonnegative variables, wi, and 

          add the constraints: 

                Σi wi  = 1,  

                cost = Σi wi f (xbari,ybari),  

                x = Σi wi xbari,  

                y = Σi wi ybari, 

 

    If we are lucky, e.g., f (x,y) is convex in the appropriate way then: a) at most three of the wi will be 

nonzero, and b) the nonzero wi will correspond to adjacent points, that is, corner points of a triangle 

containing no other points. 

 

Figure 11.4 Triangulation of x,y Space 

 

 

 

 

                 y 

 

 

 

                                                         x 
 

    If we are unlucky,  then we have to introduce 0/1 variables.  If we are lazy and are willing to restrict 

the solution to one of the n sampled points, then all we have to do is declare the wi  variables to be 0/1. 

   If we want to allow any possible combination of x and y, then we have to make sure the n points 

describe a triangulation of the x,y space, as in Figure 11.4, introduce a 0/1 variable zj for each triangle, 

and then force exactly one triangle to be chosen with the constraint: 

      Σi zi  = 1; 

We must also add constraints that say that if any weight is applied to point i,  then the chosen (x,y) must 

be in one of the triangles for which point i is a corner.  More formally: 

      wi ≤ Σj in T(i) zj , for each point i,  where T(i)  is the  

               set of triangles(there should be at most 6) for which point i is a corner point. 
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11.2.10 Converting Multivariate Functions to Separable Functions 
The previous methods are applicable only to piecewise linear functions. There are some standard 

methods available for transforming certain functions of several variables, so a function is obtained that 

is additively separable in the transformed variables. The most common such transformation is for 

converting a product of two variables into separable form. For example, given the function: 

x1 * x2 , 

add the linear constraints: 

y1 = (x1 + x2)/2 

y2 = (x1 − x2)/2. 

Then, replace every instance of x1 * x2 by the term y1
2 − y2

2. That is, the claim is: 

x1 * x2 = y1
2 − y2

2. 

The justification is observed by noting: 

y1
2 − y2

2 = (x1
2+ 2 * x1 * x2 + x2

2)/4 

− (x1
2 − 2 * x1 * x2 + x2

2)/4 

= 4 * x1 * x2 /4 = x1 * x2 

 This example suggests that, any time you have a product of two variables, you can add two new 

variables to the model and replace the product term by a sum of two squared variables. If you have n 

original variables, you could have up to n(n−1)/2 cross product terms. This suggests that you might need 

up to n(n−1) new variables to get rid of all cross product terms. In fact, the above ideas can be 

generalized, using various factorization techniques such as Cholesky and others, so only n new variables 

are needed. 

11.3 Outline of Integer Programming Methods 
The time a computer requires to solve an IP may depend dramatically on how you formulated it. It is, 

therefore, worthwhile to know a little about how IPs are solved. There are two general approaches for 

solving IPs: “cutting plane” methods and “branch-and-bound” (B & B) method. For a comprehensive 

introduction to integer programming solution methods, see Nemhauser and Wolsey (1988), and Wolsey 

(1998). Most commercial IP programs use the B & B method, but aided by some cutting plane features. 

We will first describe the B & B method. In most general terms, B & B is a form of intelligent 

enumeration. 

 More specifically, B & B first solves the problem as an LP. If the LP solution is integer valued in 

the integer variables, then no more work is required. Otherwise, B & B resorts to an intelligent search 

of all possible ways of rounding the fractional variables. 

 We shall illustrate the application of the branch-and-bound method with the following problem: 

 MAX= 75 * X1  + 6 * X2   + 3 * X3 + 33 * X4; 

     774 * X1 + 76 * X2  + 22 * X3 + 42 * X4 <= 875; 

      67 * X1 + 27 * X2 + 794 * X3 + 53 * X4 <= 875; 

     @BIN( X1); @BIN( X2); @BIN( X3); @BIN( X4); 
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 The search process a computer might follow in finding an integer optimum is illustrated in 

Figure 11.5. First, the problem is solved as an LP with the constraints X1, X2, X3, X4  1. This solution 

is summarized in the box labeled 1. The solution has fractional values for X2 and X3 and is, therefore, 

unacceptable. At this point, X2 is arbitrarily selected and the following reasoning is applied. At the 

integer optimum, X2 must equal either 0 or 1. 

Figure 11.5 Branch-and-Bound Search Tree 

 

 Therefore, replace the original problem by two new subproblems. One with X2 constrained to equal 

1 (box or node 2) and the other with X2 constrained to equal 0 (node 8). If we solve both of these new 

IPs, then the better solution must be the best solution to the original problem. This reasoning is the 

motivation for using the term “branch”. Each subproblem created corresponds to a branch in an 

enumeration tree. 

 The numbers to the upper left of each node indicate the order in which the nodes (or equivalently, 

subproblems) are examined. The variable Z is the objective function value. When the subproblem with 

X2 constrained to 1 (node 2) is solved as an LP, we find X1 and X3 take fractional values. If we argue 

as before, but now with variable X1, two new subproblems are created:  

Node 7) one with X1 constrained to 0 , and  

Node 3) one with X1 constrained to 1. 

 This process is repeated with X4 and X3 until node 5. At this point, an integer solution with Z = 81 

is found. We do not know this is the optimum integer solution, however, because we must still look at 

subproblems 6 through 10. Subproblem 6 need not be pursued further because there are no feasible 

solutions having all of X2, X1, and X4 equal to 1. Subproblem 7 need not be pursued further because it 

has a Z of 42, which is worse than an integer solution already in hand. 
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 At node 9, a new and better integer solution with Z = 108 is found when X3 is set to 0. Node 10 

illustrates the source for the “bound” part of “branch-and-bound”. The solution is fractional. However, 

it is not examined further because the Z-value of 86.72 is less than the 108 associated with an integer 

solution already in hand. The Z-value at any node is a bound on the Z-value at any offspring node. This 

is true because an offspring node or subproblem is obtained by appending a constraint to the parent 

problem. Appending a constraint can only hurt. Interpreted in another light, this means the Z-values 

cannot improve as one moves down the tree. The tree presented in the preceding figure was only one 

illustration of how the tree might be searched. Other trees could be developed for the same problem by 

playing with the following two degrees of freedom: 

(a) Choice of next node to examine, and 

(b) Choice of how the chosen node is split into two or more subnodes. 

 For example, if nodes 8 and then 9 were examined immediately after node 1, then the solution with 

Z = 108 would have been found quickly. Further, nodes 4, 5, and 6 could then have been skipped because 

the Z-value at node 3 (100.64) is worse than a known integer solution (108), and, therefore, no offspring 

of node 3 would need examination. 

 In the example tree, the first node is split by branching on the possible values for X2. One could 

have just as well chosen X3 or even X1 as the first branching variable. 

 The efficiency of the search is closely related to how wisely the choices are made in (a) and (b) 

above. Typically, in (b) the split is made by branching on a single variable. For example, if, in the 

continuous solution, x = 1.6, then the obvious split is to create two subproblems. One with the constraint 

x  1, and the other with the constraint x  2. The split need not be made on a single variable. It could 

be based on an arbitrary constraint. For example, the first subproblem might be based on the constraint 

x1 + x2 + x3  0, while the second is obtained by appending the constraint x1 + x2 + x3  1. Also, the split 

need not be binary. For example, if the model contains the constraint y1 + y2 + y3 = 1, then one could 

create three subproblems corresponding to either y1 = 1, or y2 = 1, or y3 = 1. 

 If the split is based on a single variable, then one wants to choose variables that are “decisive.” In 

general, the computer will make intelligent choices and the user need not be aware of the details of the 

search process. The user should, however, keep the general B & B process in mind when formulating a 

model. If the user has a priori knowledge that an integer variable x is decisive, then for the LINGO 

program it is useful to place x early in the formulation to indicate its importance. This general 

understanding should drive home the importance of a “tight” LP formulation. A tight LP formulation is 

one which, when solved, has an objective function value close to the IP optimum. The LP solutions at 

the subproblems are used as bounds to curtail the search. If the bounds are poor, many early nodes in 

the tree may be explicitly examined because their bounds look good even though, in fact, these nodes 

have no good offspring. 

 Cutting planes are very important for solving certain classes of IP’s. Some of these difficult IP’s 

would take prohibitively long to solve with just B&B, without the use of cutting planes.  A cutting plane 

is an additional constraint that is added to the formulation to remove fractional points from the LP 

relaxation. Thus, if some good cuts have been added, the chance is much higher that when the LP 

relaxation is solved, a much higher fraction of the integer variables will take on naturally integer values. 

 There is a wide variety of cuts that are implemented in commercial IP solvers, an even wider variety 

of cuts that have been described in the optimization literature. One of the most general types of cuts is 

the Mixed Integer Rounding, or MIR, cut. A very similar cut described in the literature is the Gomory 

Mixed Integer cut. We will illustrate the MIR cut with a little example.  Suppose we want to solve the 

little mixed integer program: 
           MIN = 5*y + 3*u + 4*v; 
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           8*y + u - v = 13; 

       @GIN( y) 

 

As usual, by default, all variables are restricted to be ≥ 0. If you delete the requirement that y be integer 

and solve the resulting LP, you get the fractional solution  y = 1.625, u = v = 0. Now we reason that in 

any feasible integer solution, either : 

          Case 1:  y ≤ 1 and u ≥ 5, or 

          Case 2:  y ≥ 2 and v ≥ 3. 

So, in any integer feasible solution, we must have either: 

          u ≥ 5, or 

          v ≥ 3. 

Multiplying by either 3 or 5, we must have either:  

          3*u ≥ 3*5, or 

          5*v ≥ 3*5. 

Because v, u  ≥ 0, we can add 5*v to the first constraint, and 3*u to the second constraint without 

destroying their validity, so we must have either:  

          3*u + 5*v ≥ 3*5, or 

          3*u + 5*v ≥ 3*5, 

so the single constraint or cut is justified: 

          3*u + 5*v ≥ 3*5. 

Notice that this cut cuts off the fractional solution y = 1.625, u = v = 0.  With this cut added, when we 

solve the LP: 
           MIN = 5*y + 3*u + 4*v; 
           8*y + u - v = 13; 

           3*u + 5*v ≥ 15; 

 

We get the naturally integer solution;  
 

    Global optimal solution found. 

      Objective value:          20.000000 

 

                 Variable           Value 

                        Y        1.000000 

                        U        5.000000 

                        V        0.000000 

 

With a little bit of imagination, e.g., by replacing y by a sum of integer variables with integer coefficients, 

and replacing u and v by positive weighted sums of nonnegative variables, a wide variety of MIR type 

cuts are possible. 

11.4 Computational Difficulty of Integer Programs 
Integer programs can be very difficult to solve. This is in marked contrast to LP problems. The solution 

time for an LP is fairly predictable. For an LP, the time increases approximately proportionally with the 

number of variables and approximately with the square of the number of constraints. For a given IP 

problem, the time may in fact decrease as the number of constraints is increased. As the number of 

integer variables is increased, the solution time may increase dramatically. Some small IPs (e.g., 6 

constraints, 60 variables) are extremely difficult to solve. 
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 Just as with LPs, there may be alternate IP formulations of a given problem. With IPs, however, the 

solution time generally depends critically upon the formulation. Producing a good IP formulation 

requires skill. For many of the problems in the remainder of this chapter, the difference between a good 

formulation and a poor formulation may be the difference between whether the problem is solvable or 

not. 

11.4.1 NP-Complete Problems 
Integer programs belong to a class of problems known as NP-hard. We may somewhat loosely think of 

NP as meaning "not polynomial". This means that there is no known algorithm of solving these problems 

such that the computational effort at worst increases as a polynomial in the problem size. For our 

purposes, we will say that the computational complexity of an algorithm is polynomial if there is a 

positive constant k, such that the time to solve a problem of size n is proportional to nk. For example, 

sorting a set of n numbers can easily be done in (polynomial) time proportional to n2,(n log(n) if one is 

careful), whereas solving an integer program in n zero/one variables may, in the worst case, take 

(exponential) time proportional to 2n. There may be a faster way, but no one has published an algorithm 

for integer programs that is guaranteed to take polynomial time on every problem presented to it. The 

terms NP-complete and P-complete apply to problems that can be stated as "yes/no" or feasibility 

problems. The yes/no variation of an optimization problem would be a problem of the form: Is there a 

feasible solution to this problem with cost less-than-or-equal-to 1250. In an optimization problem, we 

want a feasible solution with minimum cost. Khachian (1979) showed that the feasibility version of LP 

is solvable in polynomial time. So, we say LP is in P. Integer programming stated in feasibility form, 

and a wide range of similar problems, belong to a class of problems called NP-complete. These problems 

have the feature that it is possible to convert any one of these problems into any other NP-complete 

problem in time that is polynomial in the problem size. Thus, if we can convert problem A into problem 

B in polynomial time, then solve B in polynomial time, and then convert the solution to B to a valid 

solution to A in polynomial time, we then have a way of solving A in polynomial time.  

 The notable thing about NP-complete problems is that, if someone develops a guaranteed fast 

(e.g., polynomial worst case) time method for solving one of these problems, then that someone also has 

a polynomial time algorithm for every other NP-complete problem. An important point to remember is 

that the NP-completeness classification is defined in terms of worst-case behavior, not average case 

behavior. For practical purposes, one is interested mainly in average case behavior. The current situation 

is that the average time to solve many important practical integer programming problems is quite short. 

The fact that someone may occasionally present us with an extremely difficult integer programming 

problem does not prevent us from profiting from the fact that a large number of practical integer 

programs can be solved rapidly. Perhaps the biggest open problem in modern mathematics is whether 

the problems in the NP-complete class are inherently difficult. This question is cryptically phrased as is: 

P = NP? Are these problems really difficult, or is it that we are just not smart enough to discover the 

universally fast algorithm? In fact, a “Millenium prize” of $1,000,000 is offered by the Clay Mathematics 

Institute, www.claymath.org, for an answer to this question. For a more comprehensive discussion of 

the NP-complete classification, see Martin (1999). 

11.5 Problems with Naturally Integer Solutions and the Prayer 
Algorithm 

The solution algorithms for IP are generally based on first solving the IP as an LP by disregarding the 

integrality requirements and praying the solution is naturally integer. For example, if x is required to be 

0 or 1, the problem is first solved by replacing this requirement by the requirement that simply 0  x  1. 
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When initiating the analysis of a problem in which integer answers are important, it is useful to know 

beforehand whether the resulting IP will be easy to solve. After the fact, one generally observes the IP 

was easy to solve if the objective function values for the LP optimum and the IP optimum were close. 

About the only way we can predict beforehand the objective function values of the LP and IP will be 

close is if we know beforehand the LP solution will be almost completely integer valued. Thus, we are 

interested in knowing what kinds of LPs have naturally integer solutions. 

 The classes of LP problems for which we know beforehand there is a naturally integer optimum 

have integer right-hand sides and are in one of the classes: 

(a) Network LPs, 

(b) MRP or Integral Leontief LPs, 

(c) Problems that can be transformed to (a) or (b) by either row operations or taking the dual. 

We first review the distinguishing features of network and MRP LPs. 

11.5.1 Network LPs Revisited 
A LP is said to be a network LP if: 1) disregarding simple upper and lower bound constraints (such as 

x  3), each variable appears in at most two constraints, and 2) if each variable appears in two constraints, 

its coefficients in the two are +1 and -1. If the variable appears in one constraint, its coefficient is either 

+1 or -1. 

 Result: If the right-hand side is integer, then there is an integer optimum. If the objective coefficients 

are all integer, then there is an optimum with integral dual prices. 

11.5.2 Integral Leontief Constraints 
A constraint set is said to be integral Leontief or MRP (for Material Requirements Planning) if (see 

Jeroslow, Martin, et al. (1992)): 

• Each constraint is an equality, 

• Every column has exactly one positive coefficient and it is a +1, 

• Each column has 0 or more negative coefficients, every one of which is integer, 

• Each RHS coefficient is a nonnegative integer. 

 Result: An LP whose complete constraint set is an MRP set has an optimal solution that is integer. 

Further, if the objective coefficients are all integer, then there is an optimal solution with integral dual 

prices. 
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11.5.3 Example: A One-Period MRP Problem 
The Schwindle Cycle Company makes three products: Unicycles (U), Regular Bicycles (R), and 

Twinbikes (T). Each product is assembled from a variety of components including: seats (S), wheels 

(W), hubs (H), spokes (P), chains (C), and links (L). The full bills of materials for each product are 

shown below. The numbers in parentheses specify how many units of the child are required per parent: 

Figure 11.6 MRP Structure for Bicycles 

U

  
 

 

 Current inventories are zero. Schwindle needs to supply 100 Unicycles, 500 Regular bicycles, and 

200 Twinbikes. Finished products and complete sub-assemblies can be either manufactured or bought 

at the following prices: 

Item: U R T S W C H P L 

Bought Price: 2.60 5.2 3.10 0.25 1.40 0.96 0.19 0.07 0.05 

Assembly Cost: 1.04 1.16 1.90 0.20 0.22 0.26 0.16 0.04 0.03 

 Note the assembly cost is the immediate cost at the level of assembly. It does not include the cost 

of the components going into the assembly. How many units of each item should be made or bought to 

satisfy demand at minimum price? 
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 An LP formulation is: 

MODEL: 

SETS: 

TYPES/U, R, T/:M, B, MP, BP, NEED; 

MATERIALS/S, W, C/:MM, MB, MMP, MBP; 

SUBMATS/H, P, L/:SMM, SMB, SMP, SBP; 

REQ(TYPES, MATERIALS): MATREQ; 

MREQ(MATERIALS, SUBMATS): SMATREQ; 

ENDSETS 

DATA: 

NEED    =  100  500  200; 

MP      = 1.04 1.16  1.9; 

BP      =  2.6  5.2  3.1; 

MMP     =   .2  .22  .26; 

MBP     =  .25  1.4  .96; 

SMP     =  .16  .04  .03; 

SBP     =  .19  .07  .05; 

MATREQ  =    1    1    0  

             1    2    1  

             2    2    2; 

SMATREQ =    0    0    0 

             1   36    0 

             0    0   84; 

ENDDATA 

MIN = @SUM(TYPES : M * MP + B * BP)  

     + @SUM(MATERIALS : MM * MMP + MB * MBP) 

     + @SUM(SUBMATS: SMM * SMP + SMB * SBP); 

@FOR(TYPES: M + B = NEED); 

@FOR(MATERIALS(I): MM(I) + MB(I) = 

    @SUM(TYPES(J): M(J) * MATREQ(J, I))); 

@FOR(SUBMATS(I): SMM(I) + SMB(I) = 

    @SUM(MATERIALS(J): MM(J) * SMATREQ(J, I))); 

END 

 In the PICTURE of the formulation below, notice it has the MRP structure: 

          U U R R T T S S W W C C H H P P L L 

          M B M B M B M B M B M B M B M B M B 

       1: A A A A A A T T T A T T T T U U U U MIN 

UNICYCLE: 1 1   '     '     '     '     '     = B 

 REGULAR: '  '1 1  '  '  '  '  '  '  '  '  '  = C 

TWINBIKE:       ' 1 1 '     '                 = C 

   SEATS:-1  -1 '-2   1 1   '     '     '     = 

  WHEELS:-1  -2 '-2'  '  '1 1  '  '  '  '  '  = 

  CHAINS:    -1 '-2   '     ' 1 1 '     '     = 

    HUBS:       '     '  -1 '     1 1   '     = 

  SPOKES: '  '  '  '  '  -B '  '  '  '1 1  '  = 

   LINKS:       '     '     '-B   '     ' 1 1 = 
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The solution is: 

Optimal solution found at step:         0 

Objective value:                 3440.000 

Variable           Value        Reduced Cost 

   M( R)        500.0000           0.0000000 

   B( U)        100.0000           0.0000000 

   B( T)        200.0000           0.0000000 

  MM( S)        500.0000           0.0000000 

  MB( W)        1000.000           0.0000000 

  MB( C)        500.0000           0.0000000 

 Notice it is naturally integer. Thus, we should buy all the unicycles and twin bikes (and paste our 

own brand name on them). We assemble our own regular bicycles. They are assembled from 

manufactured seats and bought wheels and chains. 

 If we put an upper limit of 300 on the number of links manufactured by adding the constraint 

LM  300, we will get a fractional solution because this constraint violates the MRP structure. 

11.5.4 Transformations to Naturally Integer Formulations 
A row operation consists of either of the following: 

• multiplication through an equation by some non-zero constant, 

• adding a finite multiple of one equation to another. 

 A row operation changes neither the feasible region nor the set of optimal solutions to a problem. 

Thus, if we can show a model can be transformed to either a network LP or an MRP LP by row 

operations, then we know there is an integer optimum. We do not actually need to do the transformation 

to get the solution. 

 Similarly, if we have a model with an integer right-hand side and we can show it is the dual of either 

a network LP or an MRP LP, then we know the model has an integer optimum. 

Example 

Consider the following LP that arose in planning how much to produce in each of four periods: 

    P P P P P P P P P P 

    1 1 1 1 2 2 2 3 3 4 

    4 3 2 1 4 3 2 4 3 4 

1:  9 6 4 3 6 4 3 4 3 3 MIN 

2:  1 1 1 1             = 1 

3:  1 1 1   1 1 1       = 1 

4:  1 1     1 1   1 1   = 1 

5:  1       1     1   1 = 1 

When solved as an LP, we obtained the following naturally integer solution: 

P12 = P34 = 1; all others 0. 
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 Could we have predicted a naturally integer solution beforehand? If we perform the row operations: 

(5') = (5) − (4); (4') = (4) − (3); (3') = (3) − (2), we obtain the equivalent LP: 

    P P P P P P P P P P 

    1 1 1 1 2 2 2 3 3 4 

    4 3 2 1 4 3 2 4 3 4 

 1: 9 6 4 3 6 4 3 4 3 3 MIN 

 2: 1 1 1 1             = 1 

3':      -1 1 1 1       = 0 

4':    -1      -1 1 1   = 0 

5':  -1      -1    -1 1 = 0 

This is a network LP, so it has a naturally integer solution. 

Example 

In trying to find the minimum elapsed time for a certain project composed of seven activities, the 

following LP was constructed (in PICTURE form): 

    A B C D E F 

 1:-1     '   1 MIN 

AB:-1 1   '     >= 3 

AC:-1  '1 '  '  >= 2 

BD:  -1   1     >= 5 

BE:  -1   ' 1   >= 6 

CF: '  -1 '  '1 >= 4 

DF:      -1   1 >= 7 

EF:       '-1 1 >= 6 

 This is neither a network LP (e.g., consider columns A, B, or F) nor an MRP LP (e.g., consider 

columns A or F). Nevertheless, when solved, we get the naturally integer solution: 

Optimal solution found at step:         0 

Objective value:                 15.00000 

Variable           Value        Reduced Cost 

       A       0.0000000           0.0000000 

       B        3.000000           0.0000000 

       C        2.000000           0.0000000 

       D        8.000000           0.0000000 

       E        9.000000           0.0000000 

       F        15.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        15.00000            1.000000 

      AB       0.0000000           -1.000000 

      AC       0.0000000           0.0000000 

      BD       0.0000000           -1.000000 

      BE       0.0000000           0.0000000 

      CF        9.000000           0.0000000 

      DF       0.0000000           -1.000000 

      EF       0.0000000           0.0000000 

 Could we have predicted a naturally integer solution beforehand? If we look at the PICTURE of the 

model, we see each constraint has exactly one +1 and one −1. Thus, its dual model is a network LP and 

expectation of integer answers is justified. 
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11.6 The Assignment Problem and Related Sequencing and 
Routing Problems 

The assignment problem is a simple LP problem, which is frequently encountered as a major component 

in more complicated practical problems. 

 The assignment problem is: 

Given a matrix of costs: 

cij = cost of assigning object i to person j, 

and variables: 

xij = 1 if object i is assigned to person j. 

Then, we want to: 

Minimize   cijxij 

subject to 

i xij = 1  for each object i, 

j xij = 1  for each person i, 

xij > 0. 

This problem is easy to solve as an LP and the xij will be naturally integer. 

 There are a number of problems in routing and sequencing that are closely related to the assignment 

problem. 

11.6.1 Example: The Assignment Problem 
Large airlines tend to base their route structure around the hub concept. An airline will try to have a large 

number of flights arrive at the hub airport during a certain short interval of time (e.g., 9 A.M. to 10 A.M.) 

and then have a large number of flights depart the hub shortly thereafter (e.g., 10 A.M. to 11 A.M.). This 

allows customers of that airline to travel between a large combination of origin/destination cities with 

one stop and at most one change of planes. For example, United Airlines uses Chicago as a hub, Delta 

Airlines uses Atlanta, and American uses Dallas/Fort Worth. 

 A desirable goal in using a hub structure is to minimize the amount of changing of planes (and the 

resulting moving of baggage) at the hub. The following little example illustrates how the assignment 

model applies to this problem. 

 A certain airline has six flights arriving at O’Hare airport between 9:00 and 9:30 A.M. The same six 

airplanes depart on different flights between 9:40 and 10:20 A.M. The average numbers of people 

transferring between incoming and leaving flights appear below: 

 L01 L02 L03 L04 L05 L06  

I01 20 15 16 5 4 7  

I02 17 15 33 12 8 6  

I03 9 12 18 16 30 13  

I04 12 8 11 27 19 14 Flight I05 arrives too late to 

I05 0 7 10 21 10 32 connect with L01. Similarly I06 is 

I06 0 0 0 6 11 13 too late for flights L01, L02, and L03. 

ji
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 All the planes are identical. A decision problem is which incoming flight should be assigned to 

which outgoing flight. For example, if incoming flight I02 is assigned to leaving flight L03, then 33 

people (and their baggage) will be able to remain on their plane at the stop at O’Hare. How should 

incoming flights be assigned to leaving flights, so a minimum number of people need to change planes 

at the O’Hare stop? 

 This problem can be formulated as an assignment problem if we define: 

xij = 1 if incoming flight i is assigned to outgoing flight j, 

 0 otherwise. 

The objective is to maximize the number of people not having to change planes. A formulation is: 

MODEL:   !  Assignment model(ASSIGNMX); 

SETS: 

 FLIGHT; 

 ASSIGN( FLIGHT, FLIGHT): X, CHANGE; 

ENDSETS 

DATA: 

 FLIGHT = 1..6; 

! The value of assigning i to j; 

 CHANGE = 20   15   16   5   4   7 

          17   15   33  12   8   6 

           9   12   18  16  30  13 

          12    8   11  27  19  14 

        -999    7   10  21  10  32 

        -999 -999 -999   6  11  13; 

ENDDATA 

!---------------------------------; 

! Maximize value of assignments; 

MAX = @SUM(ASSIGN: X * CHANGE); 

@FOR( FLIGHT( I): 

!  Each I must be assigned to some J; 

    @SUM( FLIGHT( J): X( I, J)) = 1; 

!  Each I must receive an assignment;  

    @SUM( FLIGHT( J): X( J, I)) = 1;  

     ); 

END 

Notice, we have made the connections that are impossible prohibitively unattractive. A solution is: 

Optimal solution found at step:         9 

Objective value:                 135.0000 

Variable           Value        Reduced Cost 

X( 1, 1)        1.000000           0.0000000 

X( 2, 3)        1.000000           0.0000000 

X( 3, 2)        1.000000           0.0000000 

X( 4, 4)        1.000000           0.0000000 

X( 5, 6)        1.000000           0.0000000 

X( 6, 5)        1.000000           0.0000000 

 Notice, each incoming flight except I03 is able to be assigned to its most attractive outgoing flight. 

The solution is naturally integer even though we did not declare any of the variables to be integer. 
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11.6.2 The Traveling Salesperson Problem 
One of the more famous optimization problems is the traveling salesperson problem (TSP). It is an 

assignment problem with the additional condition that the assignments chosen must constitute a tour. 

The objective is to minimize the total distance traveled. Lawler et al. (1985) presents a tour-de-force on 

this fascinating problem. One example of a TSP occurs in the manufacture of electronic circuit boards. 

Danusaputro, Lee, and Martin-Vega (1990) discuss the problem of how to optimally sequence the 

drilling of holes in a circuit board, so the total time spent moving the drill head between holes is 

minimized. A similar TSP occurs in circuit board manufacturing in determining the sequence in which 

components should be inserted onto the board by an automatic insertion machine. Another example is 

the sequencing of cars on a production line for painting: each time there is a change in color, a setup cost 

and time is incurred.  

 A TSP is described by the data: 

            cij = cost of traveling directly from city i to city j, e.g., the distance. 

A solution is described by the variables: 

            yij = 1 if we travel directly from i to j, else 0. 

The objective is: 

             Min ij cij yij ; 

 

We will describe several different ways of specifying the constraints. 

 

Subtour Elimination Formulation:   
(1) We must enter each city j exactly once: 

  i j
n
 yij = 1        for j = 1 to n, 

(2) We must exit each city i  exactly once: 

                        
yij = 1       for i = 1 to n,  

               (3)      yij    = 0 or 1,  for i = 1, 2, …, n,   j = 1, 2, …, n,   i j: 

               (4)   No subtours are allowed for any subset of cities S not including city 1: 

  

yij < |S| − 1     for every subset S, 

            where |S| is the size of S.  

The above formulation is usually attributed to Dantzig, Fulkerson, and Johnson(1954). An unattractive 

feature of the Subtour Elimination formulation is that if there are n cities, then there are approximately 

2n constraints. 

 

Cumulative Load Formulation: 

   We can reduce the number of constraints substantially if we define: uj = the sequence number of 

city j on the trip.  Equivalently, if each city requires one unit of something to be picked up(or delivered), 

then uj = cumulative number of units picked up(or delivered) after the stop at j. We replace constraint 

set (4) by: 

j i
n


i j S, 


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(5) uj > ui + 1 − (1 − yij)n   for i = 1, 2, ...,  j = 2, 3, 4, . . . ; j  i. 

 

 The approach of constraint set (5) is due to Miller, Tucker, and Zemlin(1960).  There are only 

approximately n2 constraints of type (5),  however, constraint set (4) is much tighter than (5). Large 

problems may be computationally intractable if (4) is not used. Even though there are a huge number of 

constraints in (4), only a few of them may be binding at the optimum. Thus, an iterative approach that 

adds violated constraints of type (4) as needed works surprisingly well. Padberg and Rinaldi (1987) used 

essentially this iterative approach and were able to solve to optimality problems with over 2000 cities. 

The solution time was several hours on a large computer. 

 

Multi-commodity Flow Formulation: 

 Similar to the previous formulation, imagine that each city needs one unit of some commodity 

distinct to that city.  Define:   

           xijk = units of commodity carried from i to j, destined for ultimate delivery to k. 

If we assume that we start at city 1 and there are n cities, then we replace constraint set (4) by: 

           For k = 1, 2, 3, …, n: 

                   j >1 x1jk = 1;   ( Each unit must be shipped out of the origin.)    

                   i k xikk = 1;    ( Each city k must get its unit.) 

           For j = 2, 3, …, n,  k =1, 2, 3, …, n,  j  k: 

                   i xijk = t j xjtk
  ( Units entering j, but not destined for j, must depart j to some city t.)  

           A unit cannot return to 1, except if its final destination is 1: 

                   i k > 1 xi1k   = 0, 

           For i = 1, 2, …, n,   j = 1, 2, …, n,  k = 1, 2,  …, n,  i j: 

                     xijk   yij     ( If anything shipped from i to j, then turn on yij.) 

The drawback of this formulation is that it has approximately n3 constraints and variables.  A remarkable 

feature of the multicommodity flow formulation is that it is just as tight as the Subtour Elimination 

formulation.  The multi-commodity formulation is due to Claus(1984). 

Heuristics 
 For practical problems, it may be important to get good, but not necessarily optimal, answers in just 

a few seconds or minutes rather than hours. The most commonly used heuristic for the TSP is due to Lin 

and Kernighan (1973). This heuristic tries to improve a given solution by clever re-orderings of cities in 

the tour. For practical problems (e.g., in operation sequencing on computer controlled machines), the 

heuristic seems always to find solutions no more than 2% more costly than the optimum. Bland and 

Shallcross (1989) describe problems with up to 14,464 “cities” arising from the sequencing of operations 

on a computer-controlled machine. In no case was the Lin-Kernighan heuristic more than 1.7% from the 

optimal for these problems. 
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Example of a Traveling Salesperson Problem 
P. Rose, currently unemployed, has hit upon the following scheme for making some money. He will 

guide a group of 18 people on a tour of all the baseball parks in the National League. He is betting his 

life savings on this scheme, so he wants to keep the cost of the tour as low as possible. The tour will start 

and end in Cincinnati. The following distance matrix has been constructed: 

 Atl Chi Cin Hou Lax Mon NYk Phi Pit StL SnD SnF 

Atlanta 0 702 454 842 2396 1196 864 772 714 554 2363 2679 

Chicago 702 0 324 1093 2136 764 845 764 459 294 2184 2187 

Cinci. 454 324 0 1137 2180 798 664 572 284 338 2228 2463 

Houston 842 1093 1137 0 1616 1857 1706 1614 1421 799 1521 2021 

L.A. 2396 2136 2180 1616 0 2900 2844 2752 2464 1842 95 405 

Montreal 1196 764 798 1857 2900 0 396 424 514 1058 2948 2951 

New York 864 845 664 1706 2844 396 0 92 386 1002 2892 3032 

Phildpha. 772 764 572 1614 2752 424 92 0 305 910 2800 2951 

Pittsbrg. 714 459 284 1421 2464 514 386 305 0 622 2512 2646 

St. Louis 554 294 338 799 1842 1058 1002 910 622 0 1890 2125 

San Diego 2363 2184 2228 1521 95 2948 2892 2800 2512 1890 0 500 

San Fran. 2679 2187 2463 2021 405 2951 3032 2951 2646 2125 500 0 

Solution 

We will illustrate the subtour elimination approach, exploiting the fact that the distance matrix is 

symmetric. Define the decision variables: 

Yij = 1 if the link between cities i and j is used, regardless of the direction of travel; 0 

otherwise. 

 Thus, Y(CHI, ATL) = 1 if the link between Chicago and Atlanta is used. Each city or node must be 

connected to two links. In words, the formulation is: 

Minimize     the cost of links selected 

subject to: 

For each city, the number of links connected to it that are selected = 2 

Each link can be selected at most once. 
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The LINGO formulation is shown below: 

MODEL: 

SETS: 

CITY; 

ROUTE(CITY, CITY)|&1 #GT# &2:COST, Y; 

ENDSETS 

DATA: 

 CITY= 

  ATL  CHI  CIN HOU   LA  MON   NY  PHI  PIT  STL  SD  SF; 

COST= 

  702 

  454  324 

  842 1093 1137  

 2396 2136 2180 1617 

 1196  764  798 1857 2900 

  864  845  664 1706 2844  396 

  772  764  572 1614 2752  424   92 

  714  459  284 1421 2464  514  386  305 

  554  294  338  799 1842 1058 1002  910  622 

 2363 2184 2228 1521   95 2948 2892 2800 2512 1890 

 2679 2187 2463 2021  405 2951 3032 2951 2646 2125 500; 

ENDDATA 

MIN = @SUM( ROUTE: Y * COST); 

@SUM( CITY( I)|I #GE# 2: Y(I, 1)) = 2; 

@FOR( CITY( J)|J #GE# 2: @SUM(CITY(I)| I #GT# J: 

  Y(I, J)) + @SUM(CITY(K)|K #LT# J: Y(J, K))=2); 

@FOR( ROUTE: Y <= 1); 

        END 

When this model is solved as an LP, we get the solution: 

Optimal solution found at step:       105 

Objective value:                 5020.000 

    Variable           Value       

Y( CIN, ATL)        1.000000       

Y( CIN, CHI)        1.000000       

Y( HOU, ATL)        1.000000       

Y( NYK, MON)        1.000000       

Y( PHI, NYK)        1.000000       

Y( PIT, MON)        1.000000       

Y( PIT, PHI)        1.000000       

Y( STL, CHI)        1.000000       

Y( STL, HOU)        1.000000       

Y( SND, LAX)        1.000000       

Y( SNF, LAX)        1.000000       

Y( SNF, SND)        1.000000       

This has a cost of 5020 miles. Graphically, it corresponds to Figure 11.7. 
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Figure 11.7 
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 Unfortunately, the solution has three subtours. We would like to cut off the smallest subtour by 

adding the constraint that looks like: 

!SUBTOUR ELIMINATION;  

      Y( SNF, LAX) + Y( SND, LAX) + Y( SNF, SND) <= 2;  

 

LINGO, however,  works only with numeric subscripts, so if we want to use subscripts like SNF and 

LAX, we have to first tell LINGO their index values.  The follow statements in the LINGO model 

equations will do this. 
 

   ! A Trick: To make it easier to add problem specific cuts, give ourselves   

     some constants equal to index number of city with same name; 

       ATL=1; CHI=2; CIN=3; HOU=4;  LAX=5;  MON=6;  

       NYK=7; PHI=8; PIT=9; STL=10; SND=11; SNF=12;  

   ! A longer, less clever approach uses the @INDEX() function. 

     E.g., LAX = @INDEX(LAX) would achieve the same effect. 

      Now we can add cuts, using names directly.; 
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Now, when we solve it as an LP, we get a solution with cost 6975, corresponding to Figure 11.8: 

Figure 11.8 
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We cut off the subtour in the southwest by appending the constraint that says at most 3 arcs can be used 

involving the cities HOU, LAX, SND, and SNF: 

       Y(LAX, HOU) + Y(SND, HOU) + Y(SNF, HOU)  

     + Y(SND, LAX) + Y(SNF, LAX) + Y(SNF, SND)<= 3; 

 

We continue in this fashion appending subtour elimination cuts: 

       Y(NYK, MON) + Y(PHI, MON) + Y(PIT, MON) +  

       Y(PHI, NYK) + Y(PIT, NYK) + Y(PIT, PHI) <= 3; 

       Y(NYK, MON) + Y(PHI, MON) + Y(PHI, NYK) <= 2; 
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 After the above are all appended, we get the solution shown in Figure 11.9. It is a complete tour 

with cost $7,577. 

Figure 11.9 
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Note only LPs were solved. No branch-and-bound was required, although in general branching may be 

required. 

 Could P. Rose have done as well by trial and error? The most obvious heuristic is the “closest 

unvisited city” heuristic. If one starts in Cincinnati and next goes to the closest unvisited city at each 

step and finally returns to Cincinnati, the total distance is 8015 miles, about 6% worse than the optimum. 

The Optional Stop TSP 

If we drop the requirement that every stop must be visited, we then get the optional stop TSP. This might 

correspond to a job sequencing problem where vj is the profit from job j if we do it and cij is the cost of 

switching from job i to job j. Let: 

yj = 1 if city j is visited, 0 otherwise. 

If vj is the value of visiting city j, then the objective is: 

Minimize  
i


j
 cij xij − vj yj . 

The constraint sets are: 

(1) Each city j can be visited at most once 

i j
 xij = yj 
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(2) If we enter city j, then we must exit it: 

k j
 xjk = yj 

(3) No subtours allowed for each subset, S, of cities not including the home base 1. 

i j S, 
 xij < |S| − 1, where |S| is the size of S. 

For example, if there are n cities, including the home base, then there are 

(n − 1) (n − 2)/(3  2) subsets of size 3. 

(4) Alternatively, (3) may be replaced by 

uj > ui + 1 − (1 − xij)n     for j = 2, 3, . . . , n. 

 Effectively, uj is the sequence number of city j in its tour. Constraint set (3) is much tighter than (4). 

11.6.3 Capacitated Multiple TSP/Vehicle Routing Problems 
An important practical problem is the routing of vehicles from a central depot, the so-called Vehicle 

Routing Problem (VRP). An example is the routing of delivery trucks for a parcel delivery service. You 

can think of this as a multiple traveling salesperson problem with finite capacity for each salesperson. 

This problem is sometimes called the LTL(Less than TruckLoad) routing problem because a typical 

recipient receives less than a truck load of goods. A formulation is: 

 Given: 

V = capacity of a vehicle 

dj = demand of city or stop j 

Each city, j, must be visited once for j > 1: 

j
 xij = 1 

Each city i > 1, must be exited once: 

i
 xij = 1 

No subtours: 

i j s, 
 xij < |S| − 1, 

No overloads: For each set of cities T, including 1, which constitute more than a truckload: 

i j T, 
 xij < |T| −k,  

where k = minimum number of cities that must be dropped from T to reduce it to one load. 

 This formulation can solve to optimality modest-sized problems of say, 25 cities. For larger or more 

complicated practical problems, the heuristic method of Clarke and Wright (1964) is a standard starting 

point for quickly finding good, but not necessarily optimal, solutions. 

 The following is a generic LINGO model for vehicle routing problems: 

MODEL:   ! (VROUTE); 
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! The Vehicle Routing Problem (VRP) occurs in many service  

systems such as delivery, customer pick-up, repair and  

maintenance. A fleet of vehicles, each with fixed  

capacity, starts at a common depot and returns to the  

depot after visiting locations where service is demanded. 

Problems with more than a dozen cities can take lots of 

time. 

This instance involves delivering the required amount of 

goods to 9 cities from a depot at city 1; 

SETS: 

CITY/ Chi Den Frsn Hous KC LA Oakl Anah Peor Phnx/: Q, U; 

! Q(I) = amount required at city I(given), 

must be delivered by just 1 vehicle. 

U(I) = accumulated deliveries at city I ; 

CXC( CITY, CITY): DIST, X; 

! DIST(I,J) = distance from city I to city J 

X(I,J) is 0-1 variable,  

= 1 if some vehicle travels from city I to J, 

else 0 ; 

ENDSETS 

DATA: 

! city 1 represents the common depot, i.e. Q( 1) = 0; 

Q= 0    6    3    7    7   18    4    5    2    6; 

! distance from city I to city J is same from J to I, 

distance from city I to the depot is 0, 

because vehicle need not return to the depot ; 

DIST=  ! To City; 

!Chi  Den Frsn Hous   KC  LA Oakl Anah  Peor Phnx  From; 

0  996 2162 1067  499 2054 2134 2050  151 1713!  Chicago; 

0    0 1167 1019  596 1059 1227 1055  904  792!  Denver; 

0 1167    0 1747 1723  214  168  250 2070  598!  Fresno; 

0 1019 1747    0  710 1538 1904 1528  948 1149!  Houston; 

0  596 1723  710    0 1589 1827 1579  354 1214!  K. City; 

0 1059  214 1538 1589    0  371   36 1943  389!  L. A.; 

0 1227  168 1904 1827  371    0  407 2043  755!  Oakland; 

0 1055  250 1528 1579   36  407    0 1933  379!  Anaheim; 

0  904 2070  948  354 1943 2043 1933    0 1568!  Peoria; 

0  792  598 1149 1214  389  755  379 1568    0;! Phoenix; 

! VCAP is the capacity of a vehicle ; 

VCAP = 18; 

ENDDATA 

!----------------------------------------------------------; 

! The objective is to minimize total travel distance; 

MIN = @SUM( CXC: DIST * X); 

! for each city, except depot....; 

@FOR( CITY( K)| K #GT# 1: 

! a vehicle does not travel inside itself,...; 

X( K, K) = 0; 

! a vehicle must enter it,... ; 

@SUM( CITY( I)| I #NE# K #AND# ( I #EQ# 1 #OR# 

Q( I) + Q( K) #LE# VCAP): X( I, K)) = 1; 
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! a vehicle must leave it after service ; 

@SUM( CITY( J)| J #NE# K #AND# ( J #EQ# 1 #OR# 

Q( J) + Q( K) #LE# VCAP): X( K, J)) = 1; 

! U( K) = amount delivered on trip up to city K 

>= amount needed at K but <= vehicle capacity; 

@BND( Q( K), U( K), VCAP); 

! If K follows I, then can bound U( K) - U( I); 

@FOR( CITY( I)| I #NE# K #AND# I #NE# 1: U( K) >= 

U( I) + Q( K) - VCAP + VCAP*( X( K, I) + X( I, K)) 

- ( Q( K) + Q( I)) * X( K, I); 

); 

! If K is 1st stop, then U( K) = Q( K); 

U( K) <= VCAP - ( VCAP - Q( K)) * X( 1, K); 

! If K is not 1st stop...; 

U( K) >=  

Q( K)+ @SUM( CITY( I)| I #GT# 1: Q( I) * X( I, K)); 

); 

! Make the X's binary; 

@FOR( CXC( I, J): @BIN( X( I, J)) ;); 

! Must send enough vehicles out of depot; 

@SUM( CITY( J)| J #GT# 1: X( 1, J)) >=  

@FLOOR((@SUM( CITY( I)| I #GT# 1: Q( I))/ VCAP) + .999); 

END 

 Optimal solution found at step:       973 

 Objective value:                 6732.000 

                 Variable           Value      

            X( CHI, HOUS)        1.000000        

              X( CHI, LA)        1.000000          

            X( CHI, PEOR)        1.000000          

            X( CHI, PHNX)        1.000000        

             X( DEN, CHI)        1.000000          

           X( FRSN, OAKL)        1.000000          

            X( HOUS, CHI)        1.000000          

              X( KC, DEN)        1.000000          

              X( LA, CHI)        1.000000         

            X( OAKL, CHI)        1.000000        

           X( ANAH, FRSN)        1.000000     

             X( PEOR, KC)        1.000000          

           X( PHNX, ANAH)        1.000000        

By following the links, you can observe that the trips are: 

Chicago - Houston; 

Chicago - LA; 

Chicago - Peoria - KC - Denver; 

Chicago - Phoenix - Anaheim - Fresno - Oakland. 
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The solvability of  practical VRP’s depends upon a variety of typical complications: a) average 

number of stops per vehicle: 2 or 3 stops/vehicle is easily solved. Unlimited stops is essentially the 

Traveling Sales Person problem, which is moderately easy to solve; b) number of vehicle types and 

limits on the number of each. All identical vehicles is the easier; c) number of dimensions to capacity. 

Just 1, e.g., just a weight limit, is easier, but in practice there may also be constraints on volume 

(cube), total drive time, etc.; d) time windows. If there are limits on when each customer can be 

visited, then the problem may be a lot more difficult; e) sparsity of the distance matrix. If many of the 

possible arcs are prohibited, this tends to make the problem easier; f) static distance matrix.  If the 

travel time on an arc depends upon the time of day, this makes the problem more difficult; g) split 

deliveries. If the demand at a customer is greater than vehicle capacity, then a split delivery is 

unavoidable. If split deliveries are optional, then this may reduce the total distance in some instances; 

h) symmetric distance matrix. If it is symmetric, this may make the problem slightly easier; i) 

geometry of the region. VRP's in Chile are much easier to solve than VRP's  in the U.S.; j) number of 

depots. It is typically 1, but if there is additionally the choice of which depot serves which customer, 

that may make the problem harder. 

Combined DC Location/Vehicle Routing 

Frequently, there is a vehicle routing problem associated with opening a new plant or distribution center 

(DC). Specifically, given the customers to be served from the DC, what trips are made, so as to serve 

the customers at minimum cost. A “complete” solution to the problem would solve the location and 

routing problems simultaneously. The following IP formulation illustrates one approach: 

Parameters 

Fi  = fixed cost of having a DC at location i, 

Cj = cost of using route j, 

aijk = 1 if route j originates at DC i and serves customer k. There is exactly one DC associated 

with each route. 

Decision variables 

yi = 1 if we use DC i, else 0, 

xj = 1 if we use route j, else 0 

The Model 

Minimize 
i
 Fi yi + 

j
 cj xj 

subject to 

(Demand constraints)  

For each customer k: 

ji
 aijk xj = 1 

(Forcing constraints)  

For each DC i and customer k: 

j
 aijk xj  yi 

11.6.4 Minimum Spanning Tree  
A spanning tree of n nodes is a collection of n − 1 arcs, so there is exactly one path between every pair 

of nodes. A minimum cost spanning tree might be of interest, for example, in designing a 

communications network. 
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 Assume node 1 is the root of the tree. Let xij = 1 if the path from 1 to j goes through node i 

immediately before node j, else xij = 0. 

 A formulation is: 

Minimize    
i


j
 cijxij 

subject to 

 

(1)
ji
 xij = n − 1, 

(2) 
i j S, 
 xij < |S| − 1 for every strict subset S of {1, 2,…,n}, 

xij = 0 or 1. 

 An alternative to (1) and (2) is the following set of constraints based on assigning a unique sequence 

number uj to each node: 

              1,ij

i j

x


=  for j = 2, 3, 4,…,n, 

uj > ui + xij − (n –2) (1 − xij)+(n-3)xji,   for j = 2, 3, 4, . . . , n. 

uj > 0. 

 In this case, uj is the number of arcs between node j and node 1. A numeric example of the sequence 

numbering formulation is in section 8.9.8. 

 If one has a pure spanning tree problem, then the “greedy” algorithm of Kruskal (1956) is a fast way 

of finding optimal solutions.  

11.6.5 The Linear Ordering Problem 
A problem superficially similar to the TSP is the linear ordering problem. One wants to find a strict 

ordering of n objects. Applications are to ranking in sports tournaments, product preference ordering in 

marketing, job sequencing on one machine, ordering of industries in an input-output matrix, ordering of 

historical objects in archeology, and others. See Grötschel et al. (1985) for a further discussion. The linear 

ordering problem is similar to the approach of conjoint analysis sometimes used in marketing. The 

crucial input data are cost entries cij. If object i appears anywhere before object j in the proposed ordering, 

then cij is the resulting cost. The decision variables are: 

xij = 1 if object i precedes object j, either directly or indirectly for all i  j. 

The problem is: 

Minimize  
ji
 cij xij 

subject to 

(1) xij + xji = 1 for all i  j 

 If i precedes j and j precedes k, then we want to imply that i precedes k. This is enforced with the 

constraints: 

(2) xij + xjk + xki < 2 for all i, j, k with i  j, i  k, j  k. 
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 The size of the formulation can be cut in two by noting that xji = 1 − xij. Thus, we substitute out xji 

for j > i. Constraint set (1) becomes simply 0 < xij < 1. Constraint set (2) becomes: 

(2') xij + xjk − xik + sijk = 1 for all i < j < k 

0 < sijk < 1 

 There are n!/((n − 3)! 3!) = n  (n − 1)  (n − 2)/6 ways of choosing 3 objects from n, so the number 

of constraints is approximately n3/6. 

Example 

Ten Czech, German, and North American beverages were subject to taste tests by unbiased German 

testers. Each of the 10  9/2 = 45 possible pairs was subject to a taste test by six judges. The element C( 

I, J) in the C matrix in the model below is the number of times out of six beverage I was preferred to 

beverage J. If we want to have a complete ranking for the beverages, a reasonable objective is to 

maximize the number of pairwise comparisons for which our ranking agrees with the pairwise ranking 

of the judges: 

MODEL: 

! Linear ordering of objects or products, 

   based on pairwise comparisons(LINERORD);  

SETS: 

 PROD: RANK; ! Each product will get a rank; 

 PXP( PROD, PROD): C; 

ENDSETS 

DATA: 

 PROD = KONIG, FURST, PILSURQ, GUNZB, RIEGELE, 

        PAULA, JEVER, BECKS,   WARST, BUD; 

! Some data on German beverages; 

 C= ! Times that object I was preferred over J; 

0    2    2    3    3    5    5    5    4    4 

4    0    3    3    4    3    2    3    2    2 

4    3    0    3    5    4    3    2    4    4 

3    3    3    0    5    6    3    4    4    3 

3    2    1    1    0    1    4    4    5    3 

1    3    2    0    5    0    5    4    1    4 

1    4    3    3    2    1    0    2    1    3 

1    3    4    2    2    2    4    0    4    2 

2    4    2    2    1    5    5    2    0    4 

2    4    2    3    3    2    3    4    2    0; 

ENDDATA 

!---------------------------------------------; 

SETS: 

PIP( PROD, PROD)| &1 #LT# &2: 

   X; ! X(I,J) = 1 if I precedes J in our ranking;  

PIPIP( PROD, PROD, PROD) 

            | &1 #LT# &2 #AND# &2 #LT# &3: S; 

ENDSETS 

! Maximize the number of times our pairwise 

  ordering matches that of our testers; 

MAX = 

@SUM( PIP( I, J): C( I, J) * X( I, J) 

      + C( J, I) *(1 - X( I, J))); 
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! The rankings must be transitive, that is, 

  If I->J and J->K, then I->K; 

@FOR( PIPIP( I, J, K):  

!   Note N*(N-1)*(N-2)/6 of these!; 

X( I, J) + X ( J, K) - X( I, K)  

                     + S( I, J, K) = 1; 

    @BND( 0, S( I, J, K), 1); 

   ); 

@FOR( PIP: @BIN( X);); ! Make X's 0 or 1; 

 

! Count number products before product I( + 1); 

@FOR( PROD( I): 

 RANK( I) = 1 + @SUM( PIP( K, I): X( K, I)) 

              + @SUM( PIP( I, K): 1 - X( I, K)); 

   );  

END 

 When solved, we get an optimal objective value of 168. This means out of the (10 * 9/2)* 6 = 270 

pairwise comparisons, the pairwise rankings agreed with LINGO's complete ranking 168 times: 

Optimal solution found at step:        50 

Objective value:                 168.0000 

Branch count:                           0 

      Variable           Value        Reduced Cost 

  RANK( KONIG)        3.000000           0.0000000 

  RANK( FURST)        10.00000           0.0000000 

RANK( PILSURQ)        2.000000           0.0000000 

  RANK( GUNZB)        1.000000           0.0000000 

RANK( RIEGELE)        7.000000           0.0000000 

  RANK( PAULA)        5.000000           0.0000000 

  RANK( JEVER)        9.000000           0.0000000 

  RANK( BECKS)        8.000000           0.0000000 

  RANK( WARST)        4.000000           0.0000000 

    RANK( BUD)        6.000000           0.0000000 

 According to this ranking, GUNZB comes out number 1 (most preferred), while FURST comes out 

tenth (least preferred). It is important to note that there may be alternate optima. This means there may 

be alternate orderings, all of which match the input pairings 168 times out of 270. In fact, you can show 

that there is another ordering with a value of 168 in which PILSURQ is ranked first.  



310     Chapter 11  Formulating & Solving Integer Programs 

 

11.6.6 Quadratic Assignment Problem 
The quadratic assignment problem has the same constraint set as the linear assignment problem. 

However, the objective function contains products of two variables. Notationally, it is: 

Min     
lkji
 ci j k l xi j xk l 

subject to: 

For each j: 

i
 xi j = 1 

For each i: 

j
 xi j = 1 

Some examples of this problem are: 

(a) Facility layout. If djl is the physical distance between room j and room l; sik is the 

communication traffic between department i and k; and xij = 1 if department i is assigned 

to room j, then we want to minimize: 

lkji
 xij xkl djl sik 

(b) Vehicle to gate assignment at a terminal. If djl is the distance between gate j and gate l at an 

airline terminal, passenger train station, or at a truck terminal; sik is the number of passengers 

or tons of cargo that needs to be transferred between vehicle i and vehicle k; and xij = 1 if 

vehicle i (incoming or outgoing) is assigned to gate j, then we again want to minimize: 

lkji
 xij xkl djl sik 

(c) Radio frequency assignment. If dij is the physical distance between transmitters i and j; skl 

is the distance in frequency between k and l; and pi is the power of transmitter i, then we 

want cijkl = max{pi, pj} (1/dij)(1/skl) to be small if transmitter i is assigned frequency k and 

transmitter j is assigned frequency l. 

(d) VLSI chip layout. The initial step in the design of a VLSI (very large scale integrated) chip 

is typically to assign various required components to various areas on the chip. See 

Sarrafzadeh and Wong (1996) for additional details. Steinberg (1961) describes the case of 

assigning electronic components to a circuit board, so as to minimize the total interconnection 

wire length. For the chip design case, typically the chip area is partitioned into 2 to 6 areas. If 

djl is the physical distance between area j and area l; sik is the number of connections 

required between components i and k; and xij = 1 if component i is assigned to area j, then 

we again want to minimize: 

lkji
 xij xkl djl sik 

 (e) Disk file allocation. If wij is the interference if files i and j are assigned to the same disk, 

we want to assign files to disks, so total interference is minimized.  

(f) Type wheel design. Arrange letters and numbers on a type wheel, so (a) most frequently 

used ones appear together and (b) characters that tend to get typed together (e.g., q u) 

appear close together on the wheel. 
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 The quadratic assignment problem is a notoriously difficult problem. If someone asks you to solve 

such a problem, you should make every effort to show the problem is not really a quadratic assignment 

problem. One indication of its difficulty is the solution is not naturally integer. 

 One of the first descriptions of quadratic assignment problems was by Koopmans and Beckmann 

(1957). For this reason, this problem is sometimes known as the Koopmans-Beckmann problem. They 

illustrated the use of this model to locate interacting facilities in a large country. Elshafei (1977) 

illustrates the use of this model to lay out a hospital. Specifically, 19 departments are assigned to 19 

different physical regions in the hospital. The objective of Elshafei was to minimize the total distance 

patients had to walk between departments. The original assignment used in the hospital required a 

distance of 13,973,298 meters per year. An optimal assignment required a total distance of 8,606,274 

meters. This is a reduction in patient travel of over 38%. 

 Small quadratic assignment problems can be converted to linear integer programs by the 

transformation: 

 Replace the product xij xkl by the single variable zijkl. The objective is then: 

Min     
lkji
 ci j k l zi jk l 

 Notice if there are N departments and N locations, then there are NN variables of type xij, and 

NNNN variables of type zijkl variables. This formulation can get large quickly. Several reductions are 

possible: 

1) The terms cijkl xij xkl and c klij xkl xij can be combined into the term: 

(cijkl + c klij ) xkl xij  

to reduce the number of z variables and associated constraints needed by a factor of 2. 

2) Certain assignments can be eliminated beforehand (e.g., a large facility to a small location). 

Many of the cross terms, cijkl , are zero (e.g., if there is no traffic between facility i and facility 

k), so the associated z variables need not be introduced. 

 The non-obvious thing to do now is to ensure that zijkl = 1 if and only if both xij and xkl = 1. Sherali 

and Adams(1999) point out that constraints of the following type will enforce this requirement: 

 For a given i, k, l: 

      

,

kl ijkl

j j l

x z


=   

 In words, if object k is assigned to location l, then for any other object i, i  k, there must be some 

other location j, j  l, to which i is assigned. 
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 The following is a LINGO implementation of the above for deciding which planes should be 

assigned to which gates at an airport, so that the distance weighted cost of changing planes for the 

passengers is minimized: 

MODEL: 

! Quadratic assignment problem(QAP006); 

!  Given number of transfers between flights,  

   distance between gates, 

   assign flights to gates to minimize total transfer cost; 

 SETS:   

  FLIGHT/1..6/; 

  GATE/ E3 E4 E5 F3 F4 F5/;! Gates at terminal 2 of O'Hare; 

  GXG( GATE, GATE)| &1 #LT# &2: T; ! Inter gate times(symmetric); 

  FXF( FLIGHT, FLIGHT)| &1 #LT# &2: N; ! Transfers between flights; 

  FXG( FLIGHT, GATE):   X; ! Flight to gate assignment variable; 

 ENDSETS 

 DATA: 

  T =  70  40  60  90  90  ! Time between gates; 

           50 100  80 110 

              100  90 130 

                   60  40 

                        30; 

  N =  12   0  12   0   5 

           30  35  20  13  ! No. units between flights; 

               40  20  10 

                     0  6 

                       14; 

 ENDDATA 

!--------------------------------------------------------; 

! Warning: may be very slow for no. objects > 7; 

  SETS:  ! Warning: this set gets big fast!; 

   TGTG( FLIGHT, GATE, FLIGHT, GATE)| &1 #LT# &3: Z; 

  ENDSETS 

! Min the cost of transfers * distance; 

   MIN = @SUM( TGTG( B, J, C, K)| J #LT# K: 

            Z( B, J, C, K) * N( B, C) * T( J, K)) 

       + @SUM( TGTG( B, J, C, K)| J #GT# K: 

            Z( B, J, C, K) * N( B, C) * T( K, J)); 

! Each flight, B, must be assigned to a gate; 

    @FOR( FLIGHT( B): 

      @SUM( GATE( J): X( B, J)) = 1;  

         ); 

! Each gate, J, must receive one flight; 

    @FOR( GATE( J): 

      @SUM( FLIGHT( B): X( B, J)) = 1;  

         ); 

! Make the X's binary; 

    @FOR( FXG: @BIN( X); 

        ); 
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! Force the Z() to take the correct value relative to the X(); 

  @FOR( FXG( C, K): 

    @FOR( GATE( J)| J #NE# K: 

! If C is assigned to K,  some B must be assigned to J...; 

     X( C, K) = @SUM( TGTG( B, J, C, K)| B #NE# C : Z( B, J, C, K)) 

              + @SUM( TGTG( C, K, B, J)| B #NE# C : Z( C, K, B, J)); 

        ); 

    @FOR( FLIGHT( B)| B #NE# C: 

!  and B must be assigned to some J; 

     X( C, K) = @SUM( TGTG( B, J, C, K)| J #NE# K : Z( B, J, C, K)) 

              + @SUM( TGTG( C, K, B, J)| J #NE# K : Z( C, K, B, J)); 

        ); 

      ); 

 END 

The solution is: 

 Global optimal solution found at step:          1258 

 Objective value:                            13490.00 

 Branch count:                                      0 

                Variable           Value     

               X( 1, E4)        1.000000          

               X( 2, F4)        1.000000          

               X( 3, F3)        1.000000          

               X( 4, F5)        1.000000          

               X( 5, E3)        1.000000          

               X( 6, E5)        1.000000          

 Thus, flight 1 should be assigned to gate E4, flight 2 to gate F4, etc. The total passenger travel time 

in making the connections will be 13,490. Notice that this formulation was fairly tight. No branches 

were required to get an integer solution from the LP solution. 

11.7 Problems of Grouping, Matching, Covering, Partitioning, and 
Packing 

 

There is a class of problems that have the following essential structure: 

1) There is a set of m objects, and 

2) They are to be grouped into subsets, so some criterion is optimized. 
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Some example situations are: 

  Objects  Group  Criteria for a Group 

(a)  Dormitory 

inhabitants 

 Roommates  At most two to a room; no smokers with nonsmokers. 

(b)  Deliveries to 

customers 

 Trip  Total weight assigned to trip is less-than-or-equal-to 

vehicle capacity. Customers in same trip are close 

together. 

(c)  Sessions at a 

scientific 

meeting 

 Sessions scheduled 

for same time slot 

 No two sessions on same general topic. Enough 

rooms of sufficient size. 

(d)  Exams to be 

scheduled 

 Exams scheduled  

for same time slot 

 No student has more than one exam in a given time 

slot. 

(e)  Sportsmen  Foursome (e.g., in 

golf or tennis 

doubles). 

 Members are of comparable ability, appropriate 

combination of sexes as in tennis mixed doubles. 

(f)  States on 

map to be 

colored. 

 All states of a given 

color 

 States in same group/color cannot be adjacent. 

(g)  Finished 

good widths 

needed in a 

paper plant 

 Widths cut from a 

single raw paper 

roll. 

 Sum of finished good widths must not exceed raw 

material width. 

  (h)  Pairs of 

points to 

connect on a 

circuit board 

 

 Connection layers 

underneath the 

circuit board 

 Connection paths in a layer should not intersect. 

Total lengths of paths are small. 

  (i)  Financial 

instruments, 

e.g., 

mortgages 

 Package of 

instruments, e.g., 

mortgage backed 

securities 

 Package must be approximately of a target size, 

target credit worthiness, target interest rate. 

If each object can belong to at most one group, it is called a packing problem. For example, in a delivery 

problem, as in (ii) above, it may be acceptable that a low priority customer not be included in any trip 

today if we are confident the customer could be almost as well served by a delivery tomorrow. If each 

object must belong to exactly one group, it is called a partitioning problem. For example, in circuit board 

routing as in (vii) above, if a certain pair of points must be connected, then that pair of points must be 

assigned to exactly one connection layer underneath the board. If each object must belong to at least one 

group, it is called a covering problem. A packing or partitioning problem with group sizes limited to two 

or less is called a matching problem. Specialized and fast algorithms exist for matching problems. A 

problem closely related to covering problems is the cutting stock problem. It arises in paper, printing, 

textile, and steel industries. In this problem, we want to determine cutting patterns to be used in cutting 

up large pieces of raw material into finished-good-size pieces. 

 Although grouping problems may be very easy to state, it may be very difficult to find a provably 

optimal solution if we take an inappropriate approach.  There are two common approaches to formulating 
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grouping problems: (1) assignment style, or (2) the partition method. The former is convenient for small 

problems, but it quickly becomes useless as the number of objects gets large. 

11.7.1 Formulation as an Assignment Problem 
The most obvious formulation for the general grouping problem is based around the following definition 

0/1 decision variables: 

Xij = 1 if object j is assigned to group i, 0 otherwise. 

 A drawback of this formulation is that it has a lot of symmetry. There are many alternate optimal 

solutions. All of which essentially are identical. For example, assigning golfers A, B, C, and D to group 

1 and golfers E, F, G, and H to group 2 is essentially the same as assigning golfers E, F, G, and H to 

group 1 and golfers A, B, C and D to group 2. These alternate optima make the typical integer 

programming algorithm take much longer than necessary. 

 We can eliminate this symmetry and the associated alternate optima with no loss of optimality if we 

agree to the following restrictions: (a) object 1 can only be assigned to group 1; (b) object 2 can only be 

assigned to groups 1 or 2 and only to 1 if object 1 is also assigned to 1; (c) and in general, object j can 

be assigned to group i < j, only if object i is also assigned to group i. This implies in particular that: 

Xii = 1, if and only if object i is the lowest indexed object in its group, and 

Xij is defined only for i  j.  

Now we will look at several examples of grouping problems and show how to solve them. 

11.7.2 Matching Problems, Groups of Size Two 
The roommate assignment problem is a simple example of a grouping problem where the group size is 

two.  An example of this is a problem solved at many universities at the start of the school year before 

the first-year or freshman students arrive.  The rooms in a freshman dormitory typically take exactly two 

students.  How should new incoming students be paired up?  One approach that has been used is that for 

every possible pair of students,  a score is calculated which is a measure of how well the school thinks 

this particular pair of students would fare as roommates.  Considerations that enter into a score are things 

such as:  a smoker should not be matched with a nonsmoker,  a person who likes to study late at night 

should not be paired with a student who likes to get up early and study in the morning.  Let us suppose 

we have computed the scores for all possible pairs of the six students: Joe, Bob, Chuck, Ed, Evan, and 

Sean.  A scaler model for this problem might be: 

! Maximize total score of pairs selected; 

 MAX= 9*X_JOE_BOB  + 7*X_JOE_CHUCK  + 4*X_JOE_ED 

    + 6*X_JOE_EVAN + 3*X_JOE_SEAN   + 2*X_BOB_CHUCK 

    + 8*X_BOB_ED     + X_BOB_EVAN   + 7*X_BOB_SEAN 

    + 3*X_CHUCK_ED + 4*X_CHUCK_EVAN + 9*X_CHUCK_SEAN 

    + 5*X_ED_EVAN  + 5*X_ED_SEAN    + 6*X_EVAN_SEAN; 

  

 ! Each student must be in exactly one pair; 

 [JOE]  X_JOE_BOB  + X_JOE_CHUCK + X_JOE_ED  

      + X_JOE_EVAN + X_JOE_SEAN = 1; 

 [BOB]  X_JOE_BOB + X_BOB_CHUCK + X_BOB_ED  

      + X_BOB_EVAN+ X_BOB_SEAN = 1; 

 [CHUCK]  X_JOE_CHUCK + X_BOB_CHUCK + X_CHUCK_ED  
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        + X_CHUCK_EVAN+ X_CHUCK_SEAN = 1; 

 [ED]  X_JOE_ED + X_BOB_ED + X_CHUCK_ED + X_ED_EVAN 

      + X_ED_SEAN =    1; 

 [EVAN]  X_JOE_EVAN + X_BOB_EVAN + X_CHUCK_EVAN + X_ED_EVAN 

      + X_EVAN_SEAN =    1; 

 [SEAN]  X_JOE_SEAN + X_BOB_SEAN + X_CHUCK_SEAN  

       + X_ED_SEAN + X_EVAN_SEAN =    1; 

 

 ! Assignments must be binary, not fractional; 

  @BIN( X_JOE_BOB);   @BIN( X_JOE_CHUCK);   @BIN( X_JOE_ED); 

  @BIN( X_JOE_EVAN);  @BIN( X_JOE_SEAN);    @BIN( X_BOB_CHUCK); 

  @BIN( X_BOB_ED);   @BIN( X_BOB_EVAN);    @BIN( X_BOB_SEAN); 

  @BIN( X_CHUCK_ED); @BIN( X_CHUCK_EVAN); @BIN( X_CHUCK_SEAN); 

  @BIN( X_ED_EVAN);  @BIN( X_ED_SEAN);    @BIN( X_EVAN_SEAN); 

 

Notice that there is a variable X_JOE_BOB,  but not a variable X_BOB_JOE.  This is because we do not 

care whose name is listed first on the door.  We only care about which two are paired together.  We say 

we are interested in unordered pairs. 

 

A typical dormitory may have 60,  or 600,  rather than 6 students,  so a general, set based formulation 

would be useful.  The following formulation shows how to do this in LINGO.  One thing we want to do 

in the model is to tell LINGO that we do not care about the order of persons in a pair.  LINGO 

conveniently allows us to put conditions on which of all possible members (pairs in this case) of a set 

are to be used in a specific model.  The key statement in the model is: 
 

  PXP( PERSON, PERSON)| &1 #LT# &2: VALUE, X; 

 

The fragment, PXP( PERSON, PERSON), by itself, tells LINGO that the set PXP should consist of  

all possible combinations, 6*6 for this example, of two persons.  The conditional phrase, | &1 #LT# 

&2 , however,  tells LINGO to restrict the combinations to those in which the index number, &1, of the 

first person in a pair should be strictly less than the index number,  &2,  of the second person. 

 

MODEL: ! (roomates.lng); 

 SETS: 

  PERSON; 

! Joe rooms with Bob means the same as 

  Bob rooms with Joe, so we need only the 

   upper triangle; 

  PXP( PERSON, PERSON)| &1 #LT# &2: VALUE, X; 

 ENDSETS 

 DATA: 

  PERSON = Joe  Bob  Chuck  Ed  Evan Sean; 

   Value =       9     7    4     6    3   ! Joe; 

                       2    8     1    7   ! Bob; 

                            3     4    9   ! Chuck; 

                                  5    5   ! Ed; 

                                       6 ; ! Evan; 
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  ENDDATA 

 

! Maximize the value of the matchings; 

  MAX = @SUM( PXP(I,J): Value(i,j)* X(I,J)); 

 

! Each person appears in exactly one match; 

   @FOR( PERSON( K):  

       @SUM( PXP(K,J): X(K,J)) + @SUM( PXP(I,K): X(I,K)) = 1; 

       ); 

! No timesharing; 

  @FOR( PXP(I,J): @BIN(X(I,J))); 

END 

 

The constraint, @SUM( PXP(K,J): X(K,J)) + @SUM( PXP(I,K): X(I,K))= 1   has two 

terms,  the first where student K is the first person in the pair,  the second summation is over the 

variables where student K is the second person in the pair.  For example, in the scaler formulation,  

notice that ED is the first person in two of the pairs,  and the second person of three of the pairs. 

 

The following solution, with value 23, is found. 
 

                       Variable           Value 

                  X( JOE, EVAN)        1.000000 

                    X( BOB, ED)        1.000000 

                X( CHUCK, SEAN)        1.000000 

 

So Joe is to be paired with Evan,  Bob with Ed,  and Chuck with Sean.  This model scales up well in that 

it can be easily solved for large numbers of objects,  e.g., many hundreds. 

 For a different perspective on matching, see the later section on “stable matching”. 

 

11.7.3 Groups with More Than Two Members 
 The following example illustrates a problem recently encountered by an electricity generating firm 

and its coal supplier.  You are a coal supplier and you have a nonexclusive contract with a consumer 

owned and managed electric utility, Power to the People (PTTP). You supply PTTP by barge. Your 

contract with PTTP stipulates that the coal you deliver must have at least 13000 BTU’s per ton, no more 

than 0.63% sulfur, no more than 6.5% ash, and no more than 7% moisture. Historically, PTTP would 

not accept a barge if it did not meet the above requirements.  



318     Chapter 11  Formulating & Solving Integer Programs 

 

 You currently have the following barge loads available.  

Barge BTU/ton Sulfur% Ash% Moisture% 

1 13029 0.57 5.56 6.2 

2 14201 0.88 6.76 5.1 

3 10630 0.11 4.36 4.6 

4 13200 0.71 6.66 7.6 

5 13029 0.57 5.56 6.2 

6 14201 0.88 6.76 5.1 

7 13200 0.71 6.66 7.6 

8 10630 0.11 4.36 4.6 

9 14201 0.88 6.76 5.1 

10 13029 0.57 5.56 6.2 

11 13200 0.71 6.66 7.6 

12 14201 0.88 6.76 5.1 

 

This does not look good. Only barges 1, 5,  and 10 satisfy PTTP’s requirement.  What can we do? 

Suppose that after reading the fine print of your PTTP contract carefully, you initiate some discussions 

with PTTP about how to interpret the above requirements.  There might be some benefits if you could 

get PTTP to reinterpret the wording of the contract so that the above requirements apply to collections 

of up to three barges. That is, if the average quality taken over a set of N barges, N less than four, meets 

the above quality requirements, then that set of N barges is acceptable. You may specify how the sets of 

barges are assembled. Each barge can be in at most one set. All the barges in a set must be in the same 

shipment. 

  

Looking at the original data, we see, even though there are twelve barges, there are only four distinct 

barge types represented by the original first four barges. In reality, you would expect this: each barge 

type corresponding to a specific mine with associated coal type. 
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 Modeling the barge grouping problem as an assignment problem is relatively straightforward. The 

essential decision variable is defined as X (I, J) = number of barges of type I assigned to group J. Note 

we have retained the convention of not distinguishing between barges of the same type. Knowing there 

are twelve barges, we can restrict ourselves to at most six groups without looking further at the data. The 

reasoning is: Suppose there are seven nonempty groups. Then, at least two of the groups must be 

singletons. If two singletons are feasible, then so is the group obtained by combining them. Thus, we 

can write the following LINGO model: 

MODEL: 

SETS: 

  MINE: BAVAIL; 

  GROUP; 

  QUALITY: QTARG; 

!  Composition of each type of MINE load; 

  MXQ( MINE, QUALITY): QACT; 

!assignment of which MINE to which group; 

!no distinction between types; 

  MXG( MINE, GROUP):X; 

ENDSETS 

DATA: 

  MINE =   1..4;  

      ! Barges available of each type(or mine); 

  BAVAIL = 3 4 2 3; 

  QUALITY =  BTU,  SULF, ASH, MOIST; 

      ! Quality targets as upper limits; 

  QTARG = - 13000  0.63  6.5   7; 

      ! Actual qualities of each mine; 

  QACT =   -13029  0.57  5.56 6.2  

           -14201  0.88  6.76 5.1 

           -10630  0.11  4.36 4.6 

           -13200  0.71  6.66 7.6; 

! We need at most six groups; 

  GROUP = 1..6; 

  GRPSIZ = 3; 

ENDDATA 

! Maximize no. of barges assigned; 

MAX = @SUM( MXG: X); 

! Upper limit on group size; 

 @FOR( GROUP(J): @SUM( MINE( I): X(I, J)) 

      <= GRPSIZ;); 

! Assign no more of a type than are available; 

 @FOR( MINE(I): @SUM( GROUP( J): X( I, J)) 

      <= BAVAIL( I)); 

! The blending constraints for each group; 

 @FOR( GROUP(J): 

  @FOR( QUALITY ( H): 

   @SUM( MINE( I): X( I, J) * QACT( I, H)) <= 

   @SUM( MINE( I): X( I, J) * QTARG( H)); 

      )); 

! barges must be integers; 

@FOR( MXG: @GIN( X)); 

END 
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 The following solution shows that you can now sell ten barges,  rather than three, to PTTP. 

Objective value:                 10.00000 

Variable           Value        

X( 1, 1)        1.000000           

X( 2, 2)        2.000000           

X( 3, 2)        1.000000           

X( 1, 4)        2.000000           

X( 4, 4)        1.000000           

X( 2, 5)        2.000000           

X( 3, 5)        1.000000           

For example, group 1 is simply one barge of type 1.  Group 2 consists two barges of type 2 and one 

barge of type 3.  The above formulation may not scale well.  The actual application typically had about 

60 barges in a candidate set.  The above formulation may be slow to solve problems of that size.  The 

next section discusses how the partitioning approach can be efficiently used for such problems. 

 

Solving with a Partitioning Formulation 

Modest-sized integer programs can nevertheless be very difficult to solve. There are a number of rules 

that are useful when facing such problems. Two useful rules for difficult integer programs are: 

 1) Do Not Distinguish the Indistinguishable; 

 2) Presolve subproblems. 

 The barge matching example can be solved almost “by hand” with the matching or grouping (as 

opposed to the assignment) approach. Applying the rule “Presolve subproblems,” we can enumerate all 

feasible combinations of three or less barges selected from the four types. Applying the “Don’t 

distinguish” rule again, we do not have to consider combinations such as (1,1) and (2,2,2), because such 

sets are feasible if and only if the singleton sets (e.g., (1) and (2)) are also feasible. Thus, disregarding 

quality, there are four singleton sets, six doubleton sets, four distinct triplets (e.g., (1,2,3)) and twelve 

paired triplets (e.g., (1,1,2)) for a total of 26 combinations. It is not hard to show, even manually, that 

the only feasible combinations are (1), (1,1,4), and (2,2,3). Thus, the matching-like IP we want to solve 

to maximize the number of barges sold is: 

Max = S001 + 3 * S114 + 3 * S223; 

 S001 + 2 * S114        <= 3 ; 

      !(No. of type 1 barges); 

                2 * S223  <= 4 ; 

      !(No. of type 2 barges); 

                    S223  <= 2 ; 

      !(No. of type 3 barges); 

              S114        <= 3 ; 

      !(No. of type 4 barges); 

This is easily solved to give S001 = 1, S114 = 1, and S223 = 2, with an objective value of 10. 
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 For the given data, we can ship at most ten barges. One such way of matching them, so each set 

satisfies the quality requirements is as follows: 

 Average Quality of the Set 

Barges in set BTU% Sulfur% Ash% Moisture% 

1 13029 0.57 5.56 6.2 

4, 5, 10 13086 0.6167 5.927 6.667 

2, 3, 6 13010 0.6233 5.96 4.933 

8, 9, 12 13010 0.6233 5.96 4.933 

This matches our LINGO derived solution. 

11.7.4 Groups with a Variable Number of Members, Assignment Version 
In many applications of the grouping idea,  the group size may be variable.  The following example from 

the financial industry illustrates.  A financial services firm has financial objects (e.g., mortgages) it wants 

to “package” and sell. One of the features of a package is that it must contain a combination of objects 

whose values total at least one million dollars. For our purposes, we will assume this is the only 

qualification in synthesizing a package. We want to maximize the number of packages we form.  We 

first give an assignment formulation.  The key declaration in this formulation is:  

    OXO( OBJECT, OBJECT)| &1 #LE# &2: X; 

This implies there will be a variable of the form X(I,J) with always the index I  J.  Our 

interpretation of this variable will be: 

     X(I,J) = 1 means object J is assigned to the same group as object I, and further, 

     X(I,I) = 1 means object I is the lowest indexed object in that group. 

 

MODEL: 

! Object bundling model. (OBJBUNDL); 

!A broker has a number of loans of size from $55,000 to $946,000.  

 The broker would like to group the loans into packages  

 so that each package has at least $1M in it,  

 and the number of packages is maximized; 

! Keywords: bundling, financial, set packing; 

 SETS:   OBJECT: VALUE, OVER; 

   OXO( OBJECT, OBJECT)| &1 #LE# &2: X; 

 ENDSETS 

 DATA: 

  OBJECT= A   B   C   D   E   F   G  H   I   J   K  L   M   N   P   Q   R; 

   VALUE=910 870 810 640 550 250 120 95 55 200 321 492 567 837 193 364 946; 

! The value in each bundle must be >= PKSIZE; 

    PKSIZE = 1000; 

 ENDDATA 

!----------------------------------------------; 

! Definition of variables; 

!  X( I, I) = 1 if object I is lowest numbered 

              object in its package; 

!  X( I, J) = 1 if object j is assigned to package I; 

! Maximize number of packages assembled; 

  MAX = @SUM( OBJECT( I): X( I, I)); 
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  @FOR( OBJECT( K): 

! Each object can be assigned to at most one package; 

    @SUM( OXO( I, K): X( I, K)) <= 1; 

! A package must be at least PSIZE in size; 

    @SUM( OXO( K, J): VALUE( J) * X( K, J))  

         - OVER( K) = PKSIZE * X( K, K); 

      ); 

! The X( I, J) must = 0 or 1; 

  @FOR( OXO( I, J): @BIN( X( I, J));); 

END 

A solution is: 

Variable           Value 

X( A, A)        1.000000 

X( A, H)        1.000000 

X( B, B)        1.000000 

X( B, F)        1.000000 

X( C, C)        1.000000 

X( C, J)        1.000000 

X( D, D)        1.000000 

X( D, Q)        1.000000 

X( E, E)        1.000000 

X( E, L)        1.000000 

X( G, G)        1.000000 

X( G, K)        1.000000 

X( G, M)        1.000000 

X( I, I)        1.000000 

X( I, R)        1.000000 

X( N, N)        1.000000 

X( N, P)        1.000000 

 Thus, eight packages are constructed. Namely: AH, BF, CJ, DQ, EL, IR, JN, GKM, and NP. It 

happens that every object appears in some package.  There are alternate packings of all the objects into 

eight groups. Thus, one may wish to consider secondary criteria for choosing one alternate optimum 

over another (e.g., the largest package should be as close as possible to one million in size).  The worst 

package in the fairness sense in the above solution is BF.  It is over the target of 1,000,000 by 120,000. 

 

11.7.5 Groups with A Variable Number of Members, Packing Version 
An alternative approach is first to enumerate either all possible or all interesting feasible groups and then 

solve an optimization problem of the form: 

Maximize value of the groups selected 

subject to: 

Each object is in at most one of the selected groups. 

 The advantage of this formulation is, when it can be used, it typically can be solved more easily 

than the assignment formulation. The disadvantages are it may have a huge number of decision variables, 

especially if the typical group size is more than three.  If there are n distinct objects,  and all groups are 

of size k, then there are n!/(k! (n-k)!) distinct groups.  For example, if n = 50 and k = 3, then there are 

19,600 candidate groups. 
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 This formulation uses the idea of composite variables. This is frequently a useful approach for a 

problem for which the original or “natural” formulation is difficult to solve. Setting a particular 

composite variable to 1 represents setting a particular combination of the original variables to 1. We 

generate only those composite variables that correspond to feasible combinations of the original 

variables. This effectively eliminates many of the fractional solutions that would appear if one solved 

the LP relaxation of the original formulation. The composite variable idea is a form of what is sometimes 

called column generation. The path formulation in network models is also an example of the use of 

composite variables. 

 

Example: Packing Financial Instruments, revisited. 

The packing approach to formulating a model for this problem constructs all possible packages or groups 

that just satisfy the one million minimum. The general form of the LP/IP is: 

Maximize value of packages selected 

subject to: 

Each object appears in at most one selected package. 

 In the formulation below, we will use sparse sets to represent our packages. We assume that we 

need not consider packages of more than four objects. An attractive feature of the packing/partitioning 

formulation is that we can easily attach an essentially arbitrary score to each possible group.  In 

particular,  the following formulation applies a squared penalty to the extent to which a package of loans 

exceeds the target of $1M. 

MODEL: 

! Object bundling model.  (OBJBUNDH); 

! A broker has a number of loans of size from $55,000 to 

$946,000.  

 The broker would like to group the loans into packages  

 so that each package has at least $1M in it, preferably 

 not much more,  

 and the number of packages is maximized; 

! Keywords: bundling, financial, set packing; 

 SETS:   

 OBJECT: VALUE; 

 ENDSETS 

 DATA: 
   OBJECT =  A   B   C   D   E   F   G   H   I   J   K  L   M   N   P   Q   R; 

    VALUE = 910 870 810 640 550 250 120  95 55 200 321 492 567 837 193 364 

946; 

! The value in each bundle must be >= PKSIZE; 

    PKSIZE = 1000; 

 ENDDATA 

 SETS: 

 !Enumerate all 2,3, and 4 object unordered sets  package 
size;  

  BNDL2( OBJECT, OBJECT) | &1 #LT# &2  

      #AND# (VALUE(&1) + VALUE(&2)) #GE# PKSIZE:  X2, OVER2; 

  BNDL3( OBJECT, OBJECT, OBJECT) | &1 #LT# &2 #AND#  &2 #LT# 

&3 
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    #AND# ( VALUE(&1) + VALUE(&2) + VALUE(&3) #GE# PKSIZE): 

      X3, OVER3; 

  BNDL4( OBJECT, OBJECT, OBJECT, OBJECT) | &1 #LT# &2  

    #AND#  &2 #LT# &3 #AND# &3 #LT# &4 #AND# (( VALUE(&1) +  

    VALUE(&2) + VALUE(&3) + VALUE( &4)) #GE# PKSIZE):  X4, 

OVER4; 

 ENDSETS 

!----------------------------------------------; 

!Compute the overage of each bundle; 

  @FOR( BNDL2( I,J): 

    OVER2(I,J) = VALUE(I) + VALUE(J) - PKSIZE; 

      ); 

  @FOR( BNDL3( I,J,K):  

    OVER3(I,J,K) = VALUE(I)+VALUE(J)+VALUE(K) - PKSIZE 

      ); 

  @FOR( BNDL4( I,J,K,L):  

    OVER4(I,J,K,L) = VALUE(I)+VALUE(J)+VALUE(K)+VALUE(L)- 

PKSIZE; 

      ); 

 

! Maximize score of packages assembled. Penalize a package 

that 

  is over the minimum package size; 

  MAX= @SUM( BNDL2( I,J): X2(I,J) * (1-(OVER2(I,J)/PKSIZE)^2)) 

      +@SUM( BNDL3( I,J,K): 

                     X3(I, J,K) * (1-(OVER3(I,J,K)/PKSIZE)^2)) 

     + @SUM( BNDL4( I,J,K,L): 

                  X4(I,J,K,L) * (1-

(OVER4(I,J,K,L)/PKSIZE)^2)); 

 

  @FOR( OBJECT( M): 

! Each object M can be in at most one of the selected bundles; 

    @SUM( BNDL2( I, J)| I #EQ# M #OR# J #EQ# M: X2( I, J)) 

  + @SUM( BNDL3( I, J, K)| I #EQ# M #OR# J #EQ# M #OR# K #EQ# 

M: 

         X3( I, J, K)) 

  + @SUM( BNDL4( I, J, K, L)| 

       I #EQ# M #OR# J #EQ# M #OR# K #EQ# M #OR# L #EQ# M: 

         X4( I, J, K, L)) <= 1; 

       ); 

 

! The X's must = 0 or 1; 

  @FOR( BNDL2( I, J): @BIN( X2( I, J));); 

  @FOR( BNDL3( I, J, K): @BIN( X3( I, J, K));); 

  @FOR( BNDL4( I, J, K, L): @BIN( X4( I, J, K, L));); 

END 
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  Global optimal solution found at iteration:            19 

  Objective value:                7.989192 

                  Variable           Value 

                 X2( A, H)        1.000000 

              OVER2( A, H)        5.000000 

                 X2( B, P)        1.000000 

              OVER2( B, P)        63.00000 

                 X2( C, F)        1.000000 

              OVER2( C, F)        60.00000 

                 X2( D, Q)        1.000000 

              OVER2( D, Q)        4.000000 

                 X2( E, L)        1.000000 

              OVER2( E, L)        42.00000 

                 X2( I, R)        1.000000 

              OVER2( I, R)        1.000000 

                 X2( J, N)        1.000000 

              OVER2( J, N)        37.00000 

              X3( G, K, M)        1.000000 

           OVER3( G, K, M)        8.000000 

 

 Notice that this allocation is slightly more balanced than the previous solution based on the 

assignment formulation.  The largest “overage” is 63,000 rather than 120,000.  This is because the 

grouping formulation provided an easy way to penalize large packages. 

11.7.6 Groups with A Variable Number of Members, Cutting Stock Problem 
Another application in which the partitioning or packing approach has worked well is the cutting stock 

problem in the paper and steel industry.  We revisit the example introduced in chapter 7.  There we 

manually enumerated all possible patterns or packings drawn from 8 different finished good widths into 

each of three different raw material widths.  The formulation below automatically enumerates all 

possible patterns.  For each raw material width, the formulation automatically enumerates all possible 

groupings of 1, 2, …,7  finished good widths so that the sum of the finished good widths is less than or 

equal to the raw material width. 

 One notable feature of this formulation is that it introduces a shortcut that may be important in 

keeping computation time low when there are many,  e.g., more than 20, objects.  To illustrate the 

shortcut,  consider the three declarations: 
 

! Enumerate all possible cutting patterns with 1 fg; 

  rxf(rm,fg)| lenf(&2) #le# lenr(&1): x1; 

! Enumerate all possible patterns with 2 fg; 

  rxf2( rxf, fg) |  

     &2 #le# &3 #and# (lenf(&2) + lenf(&3) #le# lenr(&1)): x2; 

! Enumerate all possible patterns with 3 fg; 

  rxf3( rxf2, fg)| &3 #le# &4  

      #and# (lenf(&2) + lenf(&3)+ lenf(&4) #le# lenr(&1)): x3; 

 

 The declaration rxf(rm,fg), by itself, tells LINGO to generate all combinations of one raw 

material and one finished good.  The condition  | lenf(&2) #le# lenr(&1) , however, tells 
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LINGO to not generate a combination of a raw material(the index &1) and finished good(index &2) for 

which the length(or width depending upon your orientation) of the finished good is greater than that of 

the raw material.  So, for example,  the combination  (R36, F38) will not be a member of rxf.  There 

will be four elements in rxf for which the first item of the pair is R36, namely ( R36, F34),  (R36, 

F24),  ( R36, F15),  and ( R36, F10). 

 Now consider how to generate all feasible combinations containing two finished good widths.  

The obvious declaration would be: rxf2( rm, fg, fg) | &2 #le# &3 #and# 
(lenf(&2) + lenf(&3) #le# lenr(&1)) 

The condition  &2 #le# &3 says we do not care about the order of the finished goods in the 

pattern, so we might as well restrict ourselves to listing the finished goods in the pattern in sorted 

order.   The condition lenf(&2) + lenf(&3) #le# lenr(&1)  restricts the elements of set 

rxf2 to feasible ones.  This declaration would be valid,  but we did not do it.  Why?  Instead we used 

the declaration  rxf2( rxf, fg).  The latter was used mainly for computational reasons.  With the 

latter, LINGO considers every combination of the elements of the set rxf and each finished good.  

Consider the case when the raw material is r36.  If the declaration rxf2( rm, fg, fg) is used, 

then  LINGO would look at 8 * 8 = 64 combinations of two finished goods and keep only the four 

combinations (r36, f24, f10 ), (r36, f15, f15 ),  (r36, f15, f10 ),  and (r36, f10, 

f10 ).  If on the other hand,  the declaration rxf2( rxf, fg)  is used,  then when the raw material 

is R36,  LINGO will only consider 4*8 = 32 combinations.  The 4 arises because set rxf contains 

only 4 elements for which the first member of the pair is R36.  For sets rxf3, and higher, the 

computational savings can be even higher. 

 
! Cutting stock solver(cutgent); 

! Keywords: cutting stock; 

SETS: 

! Each raw material has a size(length) and quantity; 

  rm: lenr, qr; 

! Ditto for each finished good; 

  fg: lenf, qf; 

ENDSETS 

DATA: 

! Describe the raw materials available; 

  rm, lenr, qr = 

  R72  72   9999 

  R45  48   9999 

  R36  36   9999; 

! Describe the finished goods needed; 

  fg, lenf, qf = 

  F60  60   500 

  F56  56   400 

  F42  42   300 

  F38  38   450 

  F34  34   350 

  F24  24   100 

  F15  15   800 

  F10  10  1000; 

ENDDATA 
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SETS: 

! Enumerate all possible cutting patterns with 1 fg; 

  rxf(rm,fg)| lenf(&2) #le# lenr(&1): x1; 

! Enumerate all possible patterns with 2 fg; 

  rxf2( rxf, fg) | 

        &2 #le# &3 #and# (lenf(&2) + lenf(&3) #le# lenr(&1)): 

x2; 

! Enumerate all possible patterns with 3 fg; 

  rxf3( rxf2, fg)| &3 #le# &4 #and#  

               (lenf(&2) + lenf(&3)+ lenf(&4) #le# lenr(&1)): 

x3; 

! Enumerate all possible patterns with 4 fg; 

  rxf4( rxf3, fg)| &4 #le# &5 #and#  

     (lenf(&2) + lenf(&3) + lenf(&4)+lenf(&5) #le# lenr(&1)): 

x4; 

! Enumerate all possible patterns with 5 fg; 

  rxf5( rxf4, fg)| &5 #le# &6 #and# (lenf(&2) + lenf(&3)+ 

lenf(&4)+lenf(&5)+lenf(&6) 

          #le# lenr(&1)): x5; 

! Enumerate all possible patterns with 6 fg; 

  rxf6( rxf5, fg)| &6 #le# &7 #and# (lenf(&2) + lenf(&3)+ 

lenf(&4)+lenf(&5) 

      +lenf(&6)+lenf(&7) #le# lenr(&1)): x6; 

 

ENDSETS 

! Minimize length of material used; 

 

  MIN = @SUM( rxf(r,f1): lenr(r)*x1(r,f1)) 

      + @SUM( rxf2(r,f1,f2): lenr(r)*x2(r,f1,f2)) 

      + @SUM( rxf3(r,f1,f2,f3): lenr(r)*x3(r,f1,f2,f3)) 

      + @SUM( rxf4(r,f1,f2,f3,f4): lenr(r)*x4(r,f1,f2,f3,f4)) 

      + @SUM( rxf5(r,f1,f2,f3,f4,f5): 

lenr(r)*x5(r,f1,f2,f3,f4,f5)) 

      + @SUM( rxf6(r,f1,f2,f3,f4,f5,f6): 

lenr(r)*x6(r,f1,f2,f3,f4,f5,f6)); 

 

! We have to satisfy each finished good demand; 

  @FOR( fg(f): 

     @SUM(rxf(r,f): x1(r,f)) 

   + @SUM(rxf2(r,f1,f2)| f #eq# f1: x2(r,f1,f2)) 

   + @SUM(rxf2(r,f1,f2)| f #eq# f2: x2(r,f1,f2)) 

   + @SUM(rxf3(r,f1,f2,f3)| f #eq# f1: x3(r,f1,f2,f3)) 

   + @SUM(rxf3(r,f1,f2,f3)| f #eq# f2: x3(r,f1,f2,f3)) 

   + @SUM(rxf3(r,f1,f2,f3)| f #eq# f3: x3(r,f1,f2,f3)) 

   + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f1: x4(r,f1,f2,f3,f4)) 

   + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f2: x4(r,f1,f2,f3,f4)) 

   + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f3: x4(r,f1,f2,f3,f4)) 



328     Chapter 11  Formulating & Solving Integer Programs 

 

   + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f4: x4(r,f1,f2,f3,f4)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f1: 

x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f2: 

x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f3: 

x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f4: 

x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f5: 

x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f1:            

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f2:  

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f3:  

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f4:  

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f5:  

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f6: 

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

    >= qf(f); 

      ); 

 

! We cannot use more raw material than is available; 

  @FOR( rm( r): 

     @SUM(rxf(r,f): x1(r,f)) 

   + @SUM(rxf2(r,f1,f2): x2(r,f1,f2)) 

   + @SUM(rxf3(r,f1,f2,f3): x3(r,f1,f2,f3)) 

   + @SUM(rxf4(r,f1,f2,f3,f4): x4(r,f1,f2,f3,f4)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5): x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6): x6(r,f1,f2,f3,f4,f5,f6)) 

        <= qr(r); 

      ); 

 

 ! Can only run integer quantities of each pattern; 

     @FOR(rxf:  @GIN(x1)); 

     @FOR(rxf2: @GIN(x2)); 

     @FOR(rxf3: @GIN(x3)); 

     @FOR(rxf4: @GIN(x4)); 

     @FOR(rxf5: @GIN(x5)); 

     @FOR(rxf6: @GIN(x6)); 

 

If you click on  LINGO | Generate  menu item,  to display the scaler version of the model, you can see 

that the constraint for the 56 inch width is(hopefully reassuringly): 
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   X2_R72_F56_F15 + X2_R72_F56_F10 + X1_R72_F56 >= 400 ; 

 

When we click on the Solve icon we get the solution: 

  
Global optimal solution found at iteration:      31 

   Objective value:                          119832.0 

 

                                Variable           Value 

                      X2( R72, F60, F10)        500.0000 

                      X2( R72, F56, F15)        400.0000 

                      X2( R72, F38, F34)        350.0000 

                 X3( R72, F42, F15, F15)        186.0000 

                 X3( R72, F38, F24, F10)        100.0000 

            X4( R72, F42, F10, F10, F10)        114.0000 

            X4( R45, F15, F10, F10, F10)        2.000000 

  X6( R72, F15, F15, F10, F10, F10, F10)        13.00000 

11.7.7 Groups with A Variable Number of Members, Vehicle Routing 
The following vehicle routing example demonstrates that you can in fact perform a little optimization 

computation as part of the column or group generation.  The example we use is a variation of the vehicle 

routing problem considered in section  11.6.3.   The first and major part of this model is devoted to 

enumerating all minimal feasible trips with at most seven stops.  By feasible trip, we mean that the 

amount of material to be delivered to the stops in the trip does not exceed the vehicle capacity of 18 

pallets.  By minimal we mean that for a trip that visits a given set of stops,  the trip visits the stops in a 

sequence that minimizes the distance traveled.   

 Given that all minimal feasible trips have been generated,  the following simple integer program is 

solved: 

          Minimize  Cost of trips selected; 

              Subject to: 

             For each stop: 

                       Exactly one trip includes this stop. 

This little example has 15 stops,  so the integer program has 15 constraints, and a large number of 0/1 

variables(about 7300 in fact) ,  equal in number to the number of minimal feasible trips. 

The tricky part is how we generate the sets of minimal feasible trips, PSET2, PSET3, etc. and 

the assocated minimal distances,  D2( ), D3( ), etc.  To start understanding ideas, consider the variable  

D4(I,J,K,L).  It has the following definition. 

D4(I,J,K,L) = minimum distance required to start at the depot,  visit stops I, J, and K in 

any order and then visit stop L.  If DIST(I,J) is the distance matrix,  then Held and Karp(1962) 

observed that if D3 is defined in similar fashion,  then D4 can be computed by the dynamic 

programming recursion: 
    D4(I,J,K,L) = min[D3(I,J,K)+DIST(K,L), 

                      D3(I,K,J)+DIST(J,L), 

                      D3(J,K,I)+DIST(I,L)]       

The complete formulation follows. 

 
MODEL:   ! (vrgenext); 
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! The Vehicle Routing Problem (VRP) occurs in many service  

systems such as delivery, customer pick-up, repair and  

maintenance. A fleet of vehicles, each with fixed  

capacity, starts at a common depot and returns to the  

depot after visiting locations where service is demanded. 

This LINGO model generates all feasible one vehicle routes 

and then chooses the least cost feasible multi-vehicle 

combination; 

SETS: 

 CITY: Q; 

 ! Q(I) = amount required at city I(given), 

       must be delivered by just 1 vehicle; 

 CXC( CITY, CITY): DIST; 

 ! DIST(I,J) = distance from city I to city J; 

ENDSETS 

DATA:  
CITY= Chi Den Frsn Hous  KC  LA Oakl Anah Peor Phnx Prtl Rvrs Sacr SLC Sntn SBrn; 

! Amount to be delivered to each customer; 

    Q= 0    6    3    7   7  18    4    5    2    6    7    2   4   3    3    2 ; 

! city 1 represents the common depot, i.e. Q( 1) = 0; 

! Distance from city I to city J is same(but need not be) from J to I; 

DIST=  ! To City; 

!Chi  Den Frsn Hous   KC   LA Oakl Anah Peor Phnx Prtl Rvrs Sacr  SLC Sntn SBrn From; 

   0  996 2162 1067  499 2054 2134 2050  151 1713 2083 2005 2049 1390 1187 1996 ! Chcago; 

 996    0 1167 1019  596 1059 1227 1055  904  792 1238 1010 1142  504  939 1001 ! Denver; 

2162 1167    0 1747 1723  214  168  250 2070  598  745  268  162  814 1572  265 ! Fresno; 

1067 1019 1747    0  710 1538 1904 1528  948 1149 2205 1484 1909 1438  197 1533 ! Huston; 

 499  596 1723  710    0 1589 1827 1579  354 1214 1809 1535 1742 1086  759 1482 ! K-City; 

2054 1059  214 1538 1589    0  371   36 1943  389  959   54  376  715 1363   59 ! L. A.; 

2134 1227  168 1904 1827  371    0  407 2043  755  628  425   85  744 1729  422 ! Oaklnd; 

2050 1055  250 1528 1579   36  407    0 1933  379  995   45  412  711 1353   55 ! Anahm; 

 151  904 2070  948  354 1943 2043 1933    0 1568 2022 1889 1958 1299 1066 1887 ! Peoria; 

1713  792  598 1149 1214  389  755  379 1568    0 1266  335  760  648  974  333 ! Phnix; 

2083 1238  745 2205 1809  959  628  995 2022 1266    0 1001  583  767 2086  992 ! Prtlnd; 

2005 1010  268 1484 1535   54  425   45 1889  335 1001    0  430  666 1309   10 ! Rvrsde; 

2049 1142  162 1909 1742  376   85  412 1958  760  583  430    0  659 1734  427 ! Scrmto; 

1390  504  814 1438 1086  715  744  711 1299  648  767  666  659    0 1319  657 ! SLC; 

1187  939 1572  197  759 1363 1729 1353 1066  974 2086 1309 1734 1319    0 1307 ! SAnt; 

1996 1001  265 1482 1533   59  422   55 1887  333  992   10  427  657 1307    0 ! SBrn;; 

! VCAP is the capacity of a vehicle in 40”x48” pallets; 

VCAP = 18; 

ENDDATA 

SETS: 

! Enumerate all sets of various sizes of cities that are load 

feasible; 

 SET2(CITY,CITY)|&1 #GT# 1  #AND# &1 #LT# &2  

              #AND# (Q(&1)+Q(&2)#LE# VCAP):; 

 SET3(SET2,CITY)|&2 #LT# &3  

              #AND# (Q(&1)+Q(&2)+Q(&3)#LE# VCAP):; 

 SET4(SET3,CITY)|&3 #LT# &4  

              #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)#LE# VCAP):; 

 SET5(SET4,CITY)|&4 #LT# &5  

              #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)#LE# VCAP):; 

 SET6(SET5,CITY)|&5 #LT# &6 

              #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)#LE# VCAP):; 

 SET7(SET6,CITY)|&6 #LT# &7  

        #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)+Q(&7)#LE# VCAP):; 
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! Enumerate all partially ordered sets with a  

       specific city as the last one; 

 PSET2(CITY,CITY)| &1 #GT# 1 #AND# &1#NE#&2 

                     #AND# (Q(&1)+Q(&2)#LE# VCAP): D2,X2;     

 PSET3(SET2,CITY)| &1#NE#&3 #AND# &2#NE#&3 

                     #AND# (Q(&1)+Q(&2)+Q(&3)#LE# VCAP): D3,X3;    

 PSET4(SET3,CITY)| &1#NE#&4 #AND# &2#NE#&4 #AND# &3 #NE# &4 

                  #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)#LE# VCAP): D4,X4;   

 PSET5(SET4,CITY)| &1#NE#&5 #AND# &2#NE#&5 #AND# &3 #NE# &5  

              #AND# &4 #NE# &5 

            #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)#LE# VCAP): D5,X5;   

 PSET6(SET5,CITY)| &1#NE#&6 #AND# 

        &2#NE#&6 #AND# &3 #NE# &6 #AND# &4 #NE# &6 #AND# &5 #NE# &6 

        #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)#LE# VCAP): D6,X6; 

 PSET7(SET6,CITY)| &1#NE#&7 #AND# &2#NE#&7 #AND# &3#NE#&7 #AND#  

     &4#NE#&7 #AND# &5#NE#&7 #AND# &6#NE#&7  

  #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)+Q(&7)#LE# VCAP): D7,X7;   

ENDSETS 

 

! Compute shortest distance to visit all cities in PSET, and 

   ending up at last city in each 

   partially ordered set, using Held&Karp DP. 

 Essential idea: 

   DS( S,t) = minimum distance to visit all cities in 

    S and then end up at t.  The recursion is: 

   DS( S, t) = min{k in S: DS(S-k,k) + DIST(k,t)}; 

@FOR(PSET2(I,J): 

  D2(I,J) = DIST(1,I) + DIST(I,J); 

  @BIN(X2); 

    ); 

@FOR(PSET3(I,J,K): 

 ! @SMIN is the min of a list of scalers. D3(I,J,K) = min cost of 

  starting at 1, visiting I and J in some order, and then K; 

  D3(I,J,K) = @SMIN( D2(I,J) + DIST(J,K), D2(J,I) + DIST(I,K)); 

  @BIN(X3); 

    ); 

@FOR(PSET4(I,J,K,L): 

 !D4(I,J,K,L) = min cost of starting at 1, visiting I, J, & K  

  in some order, and then L; 

  D4(I,J,K,L) =  

    @SMIN( D3(I,J,K)+DIST(K,L), 

           D3(I,K,J)+DIST(J,L), 

           D3(J,K,I)+DIST(I,L)); 

   @BIN( X4); 

    ); 

 

@FOR(PSET5(I,J,K,L,M): 

  D5(I,J,K,L,M) =  

   @SMIN( D4(I,J,K,L)+DIST(L,M), 

          D4(I,J,L,K)+DIST(K,M), 

          D4(I,K,L,J)+DIST(J,M), 

          D4(J,K,L,I)+DIST(I,M)); 
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    @BIN(X5); 

    ); 

 

@FOR(PSET6(I,J,K,L,M,N): 

  D6(I,J,K,L,M,N) =  

    @SMIN( D5(I,J,K,L,M)+DIST(M,N), 

           D5(I,J,K,M,L)+DIST(L,N), 

           D5(I,J,L,M,K)+DIST(K,N), 

           D5(I,K,L,M,J)+DIST(J,N), 

           D5(J,K,L,M,I)+DIST(I,N)); 

  @BIN(X6); 

    ); 

 

@FOR(PSET7(I,J,K,L,M,N,P): 

  D7(I,J,K,L,M,N,P) =  

     @SMIN( D6(I,J,K,L,M,N)+DIST(N,P), 

            D6(I,J,K,L,N,M)+DIST(M,P), 

            D6(I,J,K,M,N,L)+DIST(L,P), 

            D6(I,J,L,M,N,K)+DIST(K,P), 

            D6(I,K,L,M,N,J)+DIST(J,P), 

            D6(J,K,L,M,N,I)+DIST(I,P)); 

  @BIN(X7); 

    ); 

 

! and finally, the optimization model... 

 Min cost of routes chosen, over complete routes ending back at 1; 

   Min = 

    + @SUM( PSET2(I,J)| J #EQ# 1: D2(I,J)*X2(I,J)) 

    + @SUM( PSET3(I,J,K)| K #EQ# 1: D3(I,J,K)*X3(I,J,K)) 

    + @SUM( PSET4(I,J,K,L)| L #EQ# 1: D4(I,J,K,L)*X4(I,J,K,L)) 

    + @SUM( PSET5(I,J,K,L,M)| M #EQ# 1: D5(I,J,K,L,M)*X5(I,J,K,L,M)) 

    + @SUM( PSET6(I,J,K,L,M,N)| N #EQ# 1:  

                               D6(I,J,K,L,M,N)*X6(I,J,K,L,M,N)) 

    + @SUM( PSET7(I,J,K,L,M,N,P)| P #EQ# 1:        

                               D7(I,J,K,L,M,N,P)*X7(I,J,K,L,M,N,P)); 

 

! Each city must be on exactly one complete route; 

 @FOR( CITY(I1)| I1 #GT# 1: 

   + @SUM( PSET2(I,J) | J #EQ# 1 #AND# ( I #EQ# I1): X2(I,J)) 

   + @SUM( PSET3(I,J,K) |K #EQ# 1 #AND# (I#EQ#I1 #OR# J#EQ# I1):  

             X3(I,J,K)) 

    + @SUM( PSET4(I,J,K,L) |L #EQ# 1 #AND#  

         (I#EQ#I1 #OR# J#EQ# I1 #OR# K#EQ# I1): X4(I,J,K,L)) 

    + @SUM( PSET5(I,J,K,L,M) |M #EQ# 1 #AND#  

         (I#EQ#I1 #OR# J#EQ# I1 #OR# K#EQ# I1 #OR# L#EQ#I1): 

              X5(I,J,K,L,M)) 

    + @SUM( PSET6(I,J,K,L,M,N) |N #EQ# 1 #AND#  

         (I#EQ#I1 #OR# J#EQ# I1 #OR# K#EQ# I1 #OR# L#EQ#I1  

         #OR# M#EQ#I1): X6(I,J,K,L,M,N)) 

    + @SUM( PSET7(I,J,K,L,M,N,P) |P #EQ# 1 #AND#  

         (I#EQ#I1 #OR# J#EQ#I1 #OR# K#EQ#I1 #OR# L#EQ#I1  

         #OR# M#EQ#I1 #OR# N#EQ#I1) 

       :  X7(I,J,K,L,M,N,P))  = 1; 
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      ); 

 

 It takes about 4 seconds to get the following solution 

 
Global optimal solution found at iteration:           134 

   Objective value:                                 17586.00 

                                            

                                    Variable           Value 

                                X2( LA, CHI)        1.000000 

                          X3( KC, PEOR, CHI)        1.000000 

                   X4( DEN, HOUS, SNTN, CHI)        1.000000 

            X5( FRSN, OAKL, PRTL, SACR, CHI)        1.000000 

       X6( ANAH, PHNX, RVRS, SLC, SBRN, CHI)        1.000000 

 

 

The obvious question is, how well does this formulation scale up?  The final set partitioning integer 

program is not too challenging.  The big challenge is generating and storing the possibly huge number 

of trips.  A crucial consideration is the number of stops per trip.  If this is small,  e.g., three,  then the 

number of trips will be manageable.  A typical vehicle routing problem may have around 100 stops.  

The number of possible minimal distance trips, each of which visit three out of 100 stops,  is 

100!/[3!97!] = 161,700.  This is a manageable number of variables for an efficient IP solver.   

11.8 Linearizing Products of Variables 
We have previously seen products of 0/1 variables, such as y1  y2 and y1

2 can be represented by linear 

expressions by means of a simple transformation. This transformation generalizes to the case of the 

product of a 0/1 variable and a continuous variable. 

 To illustrate, suppose the product x  y appears in a model, where y is 0/1 while x is nonnegative 

continuous. We want to replace this nonlinear component by a (somewhat bigger) linear component. If 

we have an upper bound (Mx) on the value of x, an upper bound (My) on the product x  y, and we define 

P = x  y, then the following linear constraints will cause P to take on the correct value: 

P  x 

P  My  y 

P  x − Mx  (1 − y) 

 Hanson and Martin (1990) show how this approach is useful in setting prices for products when we 

allow bundling of products. Bundle pricing is a form of quantity discounting. Examples of products that 

might be bundled are (a) airfare, hotel, rental car, tours, and meals or (b) computer, monitor, printer, and 

hard disk. Stigler (1963) showed how a movie distributor might improve profits by leasing bundles of 

movies rather than leasing individual movies. Bundling assumes it is easy for the seller to assemble the 

bundle and difficult for a buyer to unbundle. Otherwise, a reseller could buy the bundle at a discount 

and then sell the individual components at a markup. 
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11.8.1 Example: Bundling of Products 
Microland Software has recently acquired an excellent word processing product to complement its own 

recently developed spreadsheet product. Microland is contemplating offering the combination of the two 

products for a discount. After demonstrating the products at a number of diverse professional meetings, 

Microland developed the following characterization of the market: 

  Maximum Price Market Segment is Willing  
To Pay for Various Bundles 

Market 
Segment 

Size in 
10,000 

Spreadsheet 
Only 

Wordprocessor 
Only 

 
Both 

Business/ 

Scientific 

7 450 110 530 

Legal/ 

Administrative 

5 75 430 480 

Educational 6 290 250 410 

Home 4.5 220 380 390 

 We will refer to each market segment as simply a “customer”. Economic theory suggests a customer 

will buy the product that gives the greatest consumer surplus, where consumer surplus is defined as the 

price the customer is willing to pay for the product (the “reservation price”) minus the market price for 

the product. For example, if the prices for the three bundles, spreadsheet only, word processor only, and 

both together, were set respectively at 400, 150, and 500, then the business/scientific market would buy 

the spreadsheet alone because the consumer surplus is 50 vs. −40 and 30 for the other two bundles. 

 To give a general model of this situation, define: 

Rij = reservation price of customer i for bundle j, 

Ni  = “size of customer” i (i.e., number of individual customers in segment i), 

si  = consumer surplus achieved by customer i, 

yij = 1 if customer i buys bundle j, 0 otherwise, 

xj  = price of bundle j set by the seller. 

 We will treat the empty bundle as just another bundle, so we can say every customer buys exactly 

one bundle. 

 The seller, Microland, would like to choose the xj to: 

Maximize   
ji
 Ni yij xj 

The fact that each customer will buy exactly one bundle is enforced with: 

For each customer i: 

j
 yij = 1 

For each customer i, its achieved consumer surplus is: 

si = 
j
 (Rij − xj)yij 
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 Customer i will buy only the bundle j for which its consumer surplus, si, is the maximum. This is 

enforced by the constraints: 

For each customer i and bundle j: 

si  Rij − xj 

 A difficulty with the objective function and the consumer surplus constraints is they involve the 

product yijxj. Let us follow our previous little example and replace the product yijxj by Pij. If Mj is an 

upper bound on xj, then, proceeding as before, to enforce the definition Pij = yijxj, we need the constraints: 

Pij  xj 

Pij  Rij yij 

Pij  xj − (1 − yij)Mj. 

Making these adjustments to the model, we get: 

Maximize   
ji
 Ni Pij 

subject to: 

For each customer i 

j
 yij = 1; 

For each customer i, bundle j: 

si  Rij − xj; 

For each customer i: 

si = 
j
 (Rij yij − Pij); 

To enforce the nonlinear condition Pij = yij xj, we have for each i and j: 

Pij  xj 

Pij  Rij yij 

Pij  xj − (1 − yij)Mj. 

For all i and j: 

yij = 0 or 1 

In explicit form, the LINGO model is: 

MODEL: 

SETS: 

 MARKET/B, L, E, H/:S, N; 

 ITEM/NONE, SO, WO, BOTH/:X; 

 MXI(MARKET, ITEM):R, Y, P; 

ENDSETS 

DATA: 

 N = 7, 5, 6, 4.5;   ! Market size;   

 R =   0 450 110 530 ! Reservation; 

       0  75 430 480 !   prices; 

       0 290 250 410 

       0 220 380 390; 

 M = 600; !Max price of any bundle; 

ENDDATA 
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! Maximize our total revenue = price * market size. 

  P(i,j) = price customer i pays for product or item j, 

           if i buys j, else = 0; 

 MAX = @SUM(MXI(I, J): P(I, J) * N(I)); 

!Make the pick variables 0/1; 

 @FOR(MXI:@BIN(Y)); 

!Each customer or market i picks or buys exactly one bundle; 

 @FOR(MARKET(I): @SUM(ITEM(J): Y(I, J)) = 1); 

! Each customer i's  achieved surplus, S(i), must be at 

 least as good as from every possible bundle; 

 @FOR(ITEM(I): @FOR(MARKET(J): 

      S(I) >= R(I,J) - X(J))); 

!Customer i's achieved surplus = reservations price 

  of item purchased - its price; 

 @FOR(MARKET(I): 

   S(I) =  @SUM(ITEM(J): R(I, J) * Y(I, J)- P(I, J)) 

    ) ; 

! Each price variable Pij must be.. ; 

!   <= Xj , (the published price); 

!   <= Rij * Yij (less than reservation price if bought); 

!   >= Xj - M + M * Yij ; 

 @FOR(MXI(I, J): P(I, J) <= X(J); 

            P(I, J) <= Y(I, J) * R(I, J); 

            R(I, J) >= X(J) - M + M * Y(I, J);); 

! Price of bundle should be <= sum of component prices; 

 X( @INDEX(BOTH)) <= X(@INDEX(SO)) + X(@INDEX(WO)); 

! Price of bundle should be >= any one component; 

 X(@INDEX(BOTH)) >= X(@INDEX(SO)); X(@INDEX(BOTH)) >= X(@INDEX(WO)); 

END   

 

For the Microland problem, the solution is to set the following prices: 

 Spreadsheet Only Word Processing Only Both 

Bundle Price: 410 380 410 

 Thus, the business, legal and educational markets will buy the bundle of both products. The home 

market will buy only the word processor. Total revenues obtained by Microland are 90,900,000. The 

interested reader may show that, if bundling is not possible, then the highest revenue that Microland can 

achieve is only 67,150,000. 

11.9 Representing Logical Conditions 
For some applications, it may be convenient, perhaps even logical, to state requirements using logical 

expressions. A logical variable can take on only the values TRUE or FALSE. Likewise, a logical 

expression involving logical variables can take on only the values TRUE or FALSE. There are two major 

logical operators, #AND# and #OR#, that are useful in logical expressions. 

 The logical expression: 

A #AND# B  

is TRUE if and only if both A and B are true. 
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 The logical expression: 

A #OR# B  

is TRUE if and only if at least one of A and B is true. 

 It is sometimes useful also to have the logical operator implication () written as follows: 

A  B  

with the meaning that if A is true, then B must be true. 

 Logical variables are trivially representable by binary variables with: 

TRUE being represented by 1, and 

FALSE being represented by 0. 

 If A, B, and C are 0/1 variables, then the following constraint combinations can be used to represent 

the various fundamental logical expressions: 

Logical Expression Mathematical Constraints 

C = A #AND# B C  A 

C  B 

C  A + B − 1 

C = A #OR# B C  A 

C  B 

C  A + B 

A  C A  C 

11.10 Problems 
1. The following problem is known as a segregated storage problem. A feed processor has various 

amounts of four different commodities, which must be stored in seven different silos. Each silo can 

contain at most one commodity. Associated with each commodity and silo combination is a loading 

cost. Each silo has a finite capacity, so some commodities may have to be split over several silos. 

For a similar problem arising in the loading of fuel tank trucks at Mobil Oil Company, see Brown, 

Ellis, Graves, and Ronen (1987). The following table contains the data for this problem. 

Loading Cost per Ton 

  
Silo 

Amount of 
Commodity 

 
Commodity 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

To Be 
Stored 

A $1 $2 $2 $3 $4 $5 $5 75 tons 

B 2 3 3 3 1 5 5 50 tons 

C 4 4 3 2 1 5 5 25 tons 

D 1 1 2 2 3 5 5 80 tons 

Silo Capacity 

in Tons 
 

25 

 

25 

 

40 

 

60 

 

80 

 

100 

 

100 
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a) Present a formulation for solving this class of problems. 

b) Find the minimum cost solution for this particular example. 

c) How would your formulation change if additionally there was a fixed cost associated with 

each silo that is incurred if anything is stored in the silo? 

2. You are the scheduling coordinator for a small, growing airline. You must schedule exactly one 

flight out of Chicago to each of the following cities: Atlanta, Los Angeles, New York, and Peoria. 

The available departure slots are 8 A.M., 10 A.M., and 12 noon. Your airline has only two departure 

lounges, so at most two flights can be scheduled per slot. Demand data suggest the following 

expected profit contribution per flight as a function of departure time: 

Expected Profit Contribution in $1000’s 
 Time 

Destination 8 10 12 

Atlanta 10 9 8.5 

Los Angeles 11 10.5 9.5 

New York 17 16 15 

Peoria 6.4 2.5 −1 

Formulate a model for solving this problem. 

3. A problem faced by an electrical utility each day is that of deciding which generators to start up at 

which hour based on the forecast demand for electricity each hour. This problem is also known as 

the unit commitment problem. The utility in question has three generators with the following 

characteristics: 

 
 
Generator 

Fixed 
Startup 

Cost 

Fixed Cost 
per Period 

of Operation 

Cost per Period 
per Megawatt 

Used 

Maximum Capacity 
in Megawatts Each 

Period 

A 3000 700 5 2100 

B 2000 800 4 1800 

C 1000 900 7 3000 

 There are two periods in a day and the number of megawatts needed in the first period is 2900. 

The second period requires 3900 megawatts. A generator started in the first period may be used in 

the second period without incurring an additional startup cost. All major generators (e.g., A, B, and 

C above) are turned off at the end of each day. 

a) First, assume fixed costs are zero and thus can be disregarded. What are the decision 

variables? 

b) Give the LP formulation for the case where fixed costs are zero. 

c) Now, take into account the fixed costs. What are the additional (zero/one) variables to 

define? 

d) What additional terms should be added to the objective function? What additional 

constraints should be added? 
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4. Crude Integer Programming. Recently, the U.S. Government began to sell crude oil from its Naval 

Petroleum Reserve in sealed bid auctions. There are typically six commodities or products to be 

sold in the auction, corresponding to the crude oil at the six major production and shipping points. 

A “bid package” from a potential buyer consists of (a) a number indicating an upper limit on how 

many barrels (bbl.) the buyer is willing to buy overall in this auction and (b) any number of “product 

bids”. Each product bid consists of a product name and three numbers representing, respectively, 

the bid price per barrel of this product, the minimum acceptable quantity of this product at this price, 

and the maximum acceptable quantity of this product at this price. Not all product bids of a buyer 

need be successful. The government usually places an arbitrary upper limit (e.g., 20%) on the 

percentage of the total number of barrels over all six products one firm is allowed to purchase. 

 To illustrate the principal ideas, let us simplify slightly and suppose there are only two supply 

sources/products, which are denoted by A and B. There are 17,000 bbls. available at A while B has 

13,000. Also, there are only two bidders, the Mobon and the Exxil companies. The government 

arbitrarily decides either one can purchase at most 65% of the total available crude. The two bid 

packages are as follows: 

Mobon:     
Maximum desired = 16,000 bbls. total.  

  
 

Product 

 
Bid per 
Barrel 

Minimum 
Barrels 

Accepted 

Maximum 
Barrels 
Wanted 

 A 43 9000 16,000 

 B 51 6000 12,000 

Exxil:     
Maximum desired = No limit.  

  
 

Product 

 
Bid per 
Barrel 

Minimum 
Barrels 

Accepted 

Maximum 
Barrels 
Wanted 

 A 47 5000 10,000 

 B 50 5000 10,000 

Formulate and solve an appropriate IP for the seller. 
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5. A certain state allows a restricted form of branch banking. Specifically, a bank can do business in 

county i if the bank has a “principal place of business” in county i or in a county sharing a 

nonzero-length border with county i. Figure 11.10 is a map of the state in question: 

Figure 11.10 Districts in a State 

 

 Formulate the problem of locating a minimum number of principal places of business in the 

state, so a bank can do business in every county in the state. If the problem is formulated as a 

covering problem, how many rows and columns will it have? What is an optimal solution? Which 

formulation is tighter: set covering or simple plant location? 

6. Data Set Allocation Problem. There are 10 datasets or files, each of which is to be allocated to 1 of 

3 identical disk storage devices. A disk storage device has 885 cylinders of capacity. Within a 

storage device, a dataset will be assigned to a contiguous set of cylinders. Dataset sizes and 

interactions between datasets are shown in the table below. Two datasets with high interaction rates 

should not be assigned to the same device. For example, if datasets C and E are assigned to the same 

disk, then an interaction cost of 46 is incurred. If they are assigned to different disks, there is no 

interaction cost between C and E. 
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Dataset for Interaction (Seek Transition) Rates 
  

 
A 

 
 

B 

 
 

C 

 
 

D 

 
 

E 

 
 

F 

 
 

G 

 
 

H 

 
 
I 

 
 

J 

Dataset 
Size in 

Cylinders 

A           110 

B 43          238 

C 120 10         425 

D 57 111 188        338 

E 96 78 46 88       55 

F 83 58 421 60 63      391 

G 77 198 207 109 73 74     267 

H 31 50 43 47 51 21 88    105 

I 38 69 55 21 36 391 47 96   256 

J 212 91 84 53 71 40 37 35 221  64 

           2249 

 Find an assignment of datasets to disks, so total interaction cost is minimized and no disk 

capacity is exceeded. 

7. The game or puzzle of mastermind pits two players, a “coder” and a “decoder”, against each other. 

The game is played with a pegboard and a large number of colored pegs. The pegboard has an array 

of 4  12 holes. For our purposes, we assume there are only six colors: red, blue, clear, purple, gold, 

and green. Each peg has only one color. The coder starts the game by selecting four pegs and 

arranging them in a fixed order, all out of sight of the decoder. This ordering remains fixed 

throughout the game and is appropriately called the code. At each play of the game, the decoder 

tries to match the coder’s ordering by placing four pegs in a row on the board. The coder then 

provides two pieces of information about how close the decoder’s latest guess is to the coder’s order: 

1) The number of pegs in the correct position (i.e., color matching the coder’s peg in that 

position), and 

2) The maximum number of pegs that would be in correct position if the decoder were 

allowed to permute the ordering of the decoder’s latest guess. 

 Call these two numbers m and n. The object of the decoder is to discover the code in a minimum 

number of plays. 



342     Chapter 11  Formulating & Solving Integer Programs 

 

The decoder may find the following IP of interest. 

MAX  = XRED1; 

  XRED1 + XBLUE1 + XCLEAR1 + XPURP1 + XGOLD1 

      + XGREEN1 = 1; 

  XRED2 + XBLUE2 + XCLEAR2 + XPURP2 + XGOLD2 

      + XGREEN2 = 1; 

  XRED3 + XBLUE3 + XCLEAR3 + XPURP3 + XGOLD3 

      + XGREEN3 = 1; 

  XRED4 + XBLUE4 + XCLEAR4 + XPURP4 + XGOLD4 

      + XGREEN4 = 1; 

 XRED1 + XRED2  + XRED3 + XRED4 - RED = 0; 

 XBLUE1 + XBLUE2  + XBLUE3 + XBLUE4 - BLUE = 0;   

 XCLEAR1 + XCLEAR2 + XCLEAR3 + XCLEAR4 - CLEAR = 0; 

 XPURP1 + XPURP2 + XPURP3 + XPURP4 - PURP = 0; 

 XGOLD1 + XGOLD2 + XGOLD3 + XGOLD4 - GOLD = 0; 

 XGREEN1 + XGREEN2 + XGREEN3 + XGREEN4 - GREEN = 0; 

END 

 All variables are required to be integer. The interpretation of the variables is as follows. 

XRED1 = 1 if a red peg is in position 1, otherwise 0, etc.; XGREEN4 = 1 if a green peg is in position 

4, otherwise 0. Rows 2 through 5 enforce the requirement that exactly one peg be placed in each 

position. Rows 6 through 11 are simply accounting constraints, which count the number of pegs of 

each color. For example, RED = the number of red pegs in any position 1 through 4. The objective 

is unimportant. All variables are (implicitly) required to be nonnegative. 

 At each play of the game, the decoder can add new constraints to this IP to record the 

information gained. Any feasible solution to the current formulation is a reasonable guess for the 

next play. An interesting question is what constraints can be added at each play. 

 To illustrate, suppose the decoder guesses the solution 

XBLUE1 = XBLUE2 = XBLUE3 = XRED4 = 1, and the coder responds with the information that 

m = 1 and m − n = 1. That is, one peg is in the correct position and, if permutations were allowed, 

at most two pegs would be in the correct position. What constraints can be added to the IP to 

incorporate the new information? 

8. The Mathematical Football League (MFL) is composed of M teams (M is even). In a season of 2(M 

− 1) consecutive Sundays, each team will play (2M − 1) games. Each team must play each other 

team twice, once at home and once at the other team’s home stadium. Each Sunday, k games from 

the MFL are televised. We are given a matrix {vij} where vij is the viewing audience on a given 

Sunday if a game between teams i and j playing at team j’s stadium is televised. 

a) Formulate a model for generating a schedule for the MFL that maximizes the viewing 

audience over the entire season. Assume viewing audiences are additive. 

b) Are some values of k easier to accommodate than others? How? 
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9. The typical automobile has close to two dozen electric motors. However, if you examine these 

motors, you will see that only about a half dozen distinct motor types are used. For inventory and 

maintenance reasons, the automobile manufacturer would like to use as few distinct types as 

possible. For cost, quality, and weight reasons, one would like to use as many distinct motor types 

as possible, so the most appropriate motor can be applied to each application. The table below 

describes the design possibilities for a certain automobile: 

24-Month Failure Probability 

 Number 
Required 

Motor type 

Application  A B C D E 

Head lamps 2 0.002 0.01  0.01 0.007 

Radiator fan 2  0.01 0.002  0.004 

Wipers 2    0.007  

Seat 4 0.003   0.006 0.008 

Mirrors 2   0.004 0.001  

Heater fan 1  0.006 0.001   

Sun roof 1 0.002   0.003 0.009 

Windows 4 0.004 0.008 0.005   

Antenna 1 0.003  0.003 0.002  

 Weight 2 3 1.5 1 4 

 Cost per 

Motor 
24 20 36 28 39 

 For example, two motors are required to operate the headlamps. If type D motors are used for 

headlamps, then the estimated probability of a headlamp motor failure in two years is about 0.01. If 

no entry appears for a particular combination of motor type and application, it means the motor type 

is inappropriate for that application (e.g., because of size). 

 Formulate a solvable linear integer program for deciding which motor type to use for each 

application, so at most 3 motor types are used, the total weight of the motors used is at most 36, 

total cost of motors used is at most 585, and probability of any failure in two years is approximately 

minimized. 

10. We have a rectangular three-dimensional container that is 30  50  50. We want to pack in it 

rectangular three-dimensional boxes of the three different sizes: (a) 5  5  10, (b) 5  10  10, and 

(c) 5  15  25. 

 A particular packing of boxes into the container is undominated if there is no other packing that 

contains at least as many of each of the three box types and strictly more of one of the box types. 

Show there are no more than 3101 undominated packings. 
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11. Given the following: 

Checkerboard and domino 

               
              
              
              
              
              
              
              

 If two opposite corners of the checkerboard are made unavailable, prove there is no way of 

exactly covering the remaining grid with 31 dominoes. 

12. Which of the following requirements could be represented exactly with linear constraints? (You are 

allowed to use transformations if you wish.) 

(a)  (3  x + 4  y)/(2  x + 3  y)  12; 

(b) MAX (x, y) < 8; 

(c) 3  x + 4  y  y  11;     where y is 0 or 1; 

(d) ABS (10 − x)  7 (Note ABS means absolute value); 

(e) MIN (x, y) < 12. 

13. A common way of controlling access in many systems, such as information systems or the military, 

is with priority levels. Each user i is assigned a clearance level Ui. Each object j is assigned a security 

level Lj. A user i does not have access to object j if the security level of j is higher than the clearance 

level of i. Given a set of users; and, for each user, a list of objects to which that user does not to 

have access; and a list of objects to which the user should have access, can we assign Ui’s and Lj’s, 

so these access rights and denials are satisfied? Formulate as an integer program. 

14. One of the big consumption items in the U.S. is automotive fuel. Any petroleum distributor who 

can deliver this fuel reliably and efficiently to the hundreds of filling stations in a typical distribution 

region has a competitive advantage. This distribution problem is complicated by the fact that a 

typical customer (i.e., filling station) requires three major products: premium gasoline, an 

intermediate octane grade (e.g., “Silver”), and regular gasoline. A typical situation is described 

below. A delivery tank truck has four compartments with capacities in liters of 13,600, 11,200, 

10,800, and 4400. We would like to load the truck according to the following limits:  

 Liters of 

 Premium Intermediate Regular 

At least: 8,800 12,000 12,800 

At most: 13,200 17,200 16,400 

 Only one gasoline type can be stored per compartment in the delivery vehicle. Subject to the 

previous considerations, we would like to maximize the amount of fuel loaded on the truck. 

(a) Define the decision variables you would use in formulating this problem as an IP. 

(b) Give a formulation of this problem. 

(c) What allocation do you recommend? 
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15. Most lotteries are of the form:  

Choose n numbers (e.g., n = 6) from the set of numbers {1, 2, ..., m} (e.g., m = 54). 

 You win the grand prize if you buy a ticket and choose a set of n numbers identical to the n 

numbers eventually chosen by lottery management. Smaller prizes are awarded to people who match 

k of the n numbers. For n = 6, typical values for k are 4 and 5. Consider a modest little lottery with 

m = 7, n = 3, and k = 2. How many tickets would you have to buy to guarantee winning a prize? 

Can you set this up as a grouping/covering problem? 

16. A recent marketing phenomenon is the apparent oxymoron, “mass customization”. The basic idea 

is to allow each customer to design his/her own product, and yet do it on an efficient, high-volume 

scale. A crucial component of the process is to automate the final design step involving the 

customer. As an example, IBM and Blockbuster recently announced a plan to offer “on-demand” 

production of customized music products at retail stores. Each store would carry an electronic 

“master” for every music piece a customer might want. The physical copy for the customer would 

then be produced for the customer while they wait. This opens up all manners of opportunities for 

highly customized musical products. Each customer might provide a list of songs to be placed on 

an audiocassette. A design issue when placing songs on a two-sided medium such as a cassette is 

how to allocate songs to sides. A reasonable rule is to distribute the songs, so the playing times on 

the two sides are as close to equal as possible. For an automatic tape player, this will minimize the 

“dead time” when switching from one side to another. As an example, we mention that Willie 

Nelson has recorded the following ten songs in duets with other performers: 

Song Time (min:secs) Other Performer 

1) Pancho and Lefty 4:45 Merle Haggard 

2) Slow Movin Outlaw  3:35 Lacy J. Dalton 

3) Are There any More Real 

Cowboys 

3:03 Neil Young 

4) I Told a Lie to My Heart 2:52 Hank Williams 

5) Texas on a Saturday Night 2:42 Mel Tillis 

6) Seven Spanish Angels 3:50 Ray Charles 

7) To All the Girls I’ve Loved 

Before 

3:30 Julio Iglesias 

8) They All Went to Mexico 4:45 Carlos Santana 

9) Honky Tonk Women 3:30 Leon Russell 

10) Half a Man 3:02 George Jones 

You want to collect these songs on a two-sided tape cassette album to be called “Half Nelson.”  

(a) Formulate and solve an integer program for minimizing the dead time on the shorter side.  

(b) What are some of the marketing issues of allowing the customer to decide which song goes 

on which side? 
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17. Bill Bolt is hosting a party for his daughter Lydia on the occasion of her becoming of college age. 

He has reserved a banquet room with 18 tables at the Racquet Club on Saturday night. Each table 

can accommodate at most 8 people. A total of 140 young people are coming, 76 young men and 64 

young ladies. Lydia and her mother, Jane, would like to have the sexes as evenly distributed as 

possible at the tables. They want to have at least 4 men and at least 3 women at each table. 

(a) Is it possible to have an allocation satisfying the above as well as the restriction there be at 

most 4 men at each table? 

(b) Provide a good allocation of the sexes to the tables. 

18. The game or puzzle of Clue is played with a deck of 21 cards. At the beginning of a game, three of 

the cards are randomly selected and placed face down in the center of the table. The remaining cards 

are distributed face down as evenly as possible to the players. Each player may look at his or her 

own cards. The object of the game is to correctly guess the three cards in the center. At each player’s 

turn, the player is allowed to either guess the identity of the three cards in the center or ask any other 

player a question of the form: “Do you have any of the following three cards?” (The asking player 

then publicly lists the three cards.) If the asked player has one of the three identified cards, then the 

asked player must show one of the cards to the asking player (and only to the asking player). 

Otherwise, the asked player simply responds “No”. If a player correctly guesses the three cards in 

the center, then that player wins. If a player incorrectly guesses the three cards in the center, the 

player is out of the game.  

Deductions about the identity of various cards can be made if we define: 

X (i, j) = 1 if player i has card j, else 0. 

 Arbitrarily define the three cards in the center as player 1. Thus, we can initially start with the 

constraints: 

X j
j

( , )1
1

21

=
  = 3. 

For each card, j = 1, 2, …, 21: 

X i j
i

( , )  = 1. 

(a) Suppose player 3 is asked: “Do you have either card 4, 8, or 17?” and player 3 responds 

“No.” What constraint can be added? 

(b) Suppose in response to your question in (a), player 3 shows you card 17. What constraint 

can be added? 

(c) What LP would you solve in order to determine whether card 4 must be one of the cards 

in the center? 

 Note, in the “implementation” of the game marketed in North America, the 21 cards are actually 

divided into three types: (i) six suspect cards with names like “Miss Scarlet,” (ii) six weapons cards 

with names like “Revolver,” and (c) nine room cards with names like “Kitchen.” This has essentially 

no effect on our analysis above. 
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