
! A one machine sequencing problem,
also known as the walking + biking problem.
Given one bicycle, and N persons,
and a distance they all must cover,
starting at the same time,
how much time should each person spend walking
and biking so they all cover the distance in minimum time;
!Ref: Chvatal, V.(1983), "On the Bicycle Problem,"
Discrete Applied Mathematics, North-Holland Publishing Company, 5 165-173
! Keywords: Bicycle, Biking, Chvatal, LINGO, One machine, Scheduling, Sequencing, Walking;
SETS:
 PERSON: W, B, X, U, Y, Z, Sorder;
ENDSETS
DATA:
! Case 1. From Chvatal. The lower bound (of 55)
 is tight for this data set.
! Input parameters;
! Distance to be covered;
!Case01; D = 100;
! Walking speeds;
!Case01; W = 1 2 1;
! Bicycling speeds;
!Case01; B = 6 8 6;

! Case 2. From Chvatal. The lower bound (of 10)
 is not tight for this data set. We cannot
 generate a feasible Walk->Bike->Walk schedule
 that achieves the LP bound;
!Input parameters;
! Distance to be covered;
!Case02 D = 90;
! Walking speeds;
!Case02 W = 13 13 3 3;
! Bicycling speeds;
!Case02 B = 27 27 18 18;

!Case 3;
! Input parameters;
! Distance to be covered;
!Case03 D = 100;
! Walking speeds;
!Case03 W = 1 2 3;
! Bicycling speeds;
!Case03 B = 6 8 9;

!Case 4;
! Input parameters;
! Distance to be covered;
!Case04 D = 100;
! Walking speeds;
!Case04 W = 1 1 1;
! Bicycling speeds;
!Case04 B = 3 3 3;

ENDDATA
! Variables for each person i:
 X(i) = total time walking forward,
 U(i) = total time walking backward,
 Y(i) = total time biking forward,
 Z(i) = total time biking backward,
;
SUBMODEL BikeWalk:
! This model contains constraints on an aggregate version
 of the bike & walk problem. Any complete detailed solution to the problem
 must satisfy at least these aggregate constraints,
 so the solution to this problem provides a lower bound;
MIN = T;

@FOR(PERSON(i):
 ! Total travel time of person i <= T;
 X(i) + U(i) + Y(i) + Z(i) <= T;
 ! Net distance of person i = D. Must get to destination;
 W(i)* X(i) - W(i) * U(i) + B(i) * Y(i) - B(i) * Z(i) = D;
);

 ! Cannot use the bicycle more that total time T;
 @SUM(PERSON(i): Y(i) + Z(i)) <= T;

 ! In net the bicycle goes no further than D;
 @SUM(PERSON(i): B(i) * Y(i) - B(i) * Z(i)) <= D;
ENDSUBMODEL

CALC:
! Solve the aggregate, relaxed problem;
! @GEN(BikeWalk); ! Generate the scalar version of model;
 @SOLVE(BikeWalk);
 @WRITE(' Total time= ', T, @NEWLINE(1));
 @WRITE(' Distances', @NEWLINE(1));
 @WRITE(' Person Walk+ Walk- Bike+ Bike-', @NEWLINE(1));
 @FOR(PERSON(i):
 @WRITE(' ', i, ' ', @FORMAT(W(i)* X(i),'9.3F'), ' ', @FORMAT(W(i) * U(
i),'9.3f'),
 ' ', @FORMAT(B(i) * Y(i),'9.3f'), ' ', @FORMAT(B(i) * Z(i), '9.3f'),
@NEWLINE(1));
);

 @WRITE(@NEWLINE(1),' Times', @NEWLINE(1));
 @WRITE(' Person Walk+ Walk- Bike+ Bike-', @NEWLINE(1));
 @FOR(PERSON(i):
 @WRITE(' ', i, ' ', @FORMAT(X(i),'9.3F'), ' ', @FORMAT(U(i),'9.3f'),
 ' ', @FORMAT(Y(i),'9.3f'), ' ', @FORMAT(Z(i), '9.3f'), @NEWLINE(1));
);

! Do postprocessing to (hopefully) get a feasible detailed solution
 that achieves the lower bound, and is thus optimal;
! We restrict ourselves to Walk->Bike->Walk schedules, i.e., each person
 first walks to the bike, then bikes for awhile(perhaps backwards), and
 then walks the remaining distance.
 The detailed schedule is feasible if the person i-1 finishes its use of the bike
 before the person i, who needs the bike, arrives at the bike position;
 @WRITE(@NEWLINE(1), ' The detailed schedule:', @NEWLINE(1));
! Choose a sort order. Put fast cyclists first;
 Sorder = @SORT(- B);
! But if fast cyclist goes backwards, do not put first;
 @IFC(Z(sorder(1)) #GT# 0:
 temp = Sorder(2); ! Swap with #2;
 Sorder(2) = Sorder(1);
 Sorder(1) = temp;
);
 BikeAt = 0; ! Initial position of Bike;
 BFtimePrv = 0; ! Time available of Bike;
! Loop over the persons, computing their
 Walk, Bike, Walk positions and times;
 @FOR(PERSON(i):
 si = Sorder(i); ! Use sort order;
! Arrive at Bike time after first walk;
 ATime = BikeAt/ W(si);
! Calculate bike ride incremental distance;
 Bdist = B(si) * Y(si) - B(si) * Z(si);
! Calculate bike ride incremental time;
 Btime = Y(si) + Z(si) ;
! Ending position of bike for person i;
 Bend = BikeAt + Bdist;
! Ending time of bike for person i;
 BFtime = Atime + Btime;
 @WRITE(' Person ', PERSON(si),

 ' walk to ', @FORMAT(BikeAt,'12.4f'),' Time= ', @FORMAT(Atime,
'12.4f'),
 ' Bike to ', @FORMAT(Bend,'12.4f'), ' Time= ', @FORMAT(BFtime,
'12.4f'),
 ' Walk to ', @FORMAT(D,'12.4f'), , @NEWLINE(1));
! Check if feasible, i.e., person i-1 finishes bike use before i needs it;
 @IFC(BFtime #LT# BFtimePrv:
 @WRITE('Schedule not feasible', @NEWLINE(1));
);
 BFtimePrv = BFtime; ! Get ready for next i;
! And we leave the bike for next person at;
 BikeAt = Bend;
);
ENDCALC

