Bayes Rule; Conditional Probabilities Model: Bayes
MODEL:
SETS: ! Computing probabilities using Bayes rule;
ACTUAL/1..3/: MPA; !Marginal probability of actual;
FCAST/1..3/ : MPF; !Marginal probability of forecast;
FXA( FCAST, ACTUAL):
CAGF, !Conditional prob of actual given forecast;
CFGA, !Conditional prob of forecast given actual;
JP; ! Joint probability of both;
ENDSETS
DATA:
! Conditional probability of forecast, given actual;
CFGA = .80 .15 .20
.10 .70 .20
.10 .15 .60;
! Marginal probabilities of actual;
MPA = .5 .3 .2;
ENDDATA
! The calculations;
! Marginal probabilities are the sum of
joint probabilities;
@FOR( ACTUAL( J):
MPA( J) = @SUM( FCAST( I): JP( I, J))
);
@FOR( FCAST( I):
MPF( I) = @SUM( ACTUAL( J): JP( I, J))
);
! Bayes rule relating joint to conditional
probabilities;
@FOR( FXA( I, J):
JP( I, J) = MPF( I) * CAGF( I, J);
JP( I, J) = MPA( J) * CFGA( I, J)
);
END
Model: BAYES