General Equilibrium of an Economy Model: GENEQ1
MODEL:
! General Equilibrium Model of an economy;
! Data based on Kehoe, Math Prog, Study 23(1985);
! Find clearing prices for commodities/goods and
equilibrium production levels for processes in
an economy;
SETS:
GOOD/1..4/: PRICE, H;
SECTOR/1..4/;
GXS( GOOD, SECTOR): ALPHA, W;
PROCESS/1..2/: LEVEL;
GXP( GOOD, PROCESS): MAKE;
ENDSETS
DATA:
! Demand curve parameter for each good and SECTOR;
ALPHA =
.5200 .8600 .5000 .0600
.4000 .1 .2 .25
.04 .02 .2975 .0025
.04 .02 .0025 .6875;
! Initial wealth of Good I by Market J;
W =
50 0 0 0
0 50 0 0
0 0 400 0
0 0 0 400;
! Amount produced of good I by process J;
MAKE =
6 -1
-1 3
-4 -1
-1 -1;
! Weights for price normalization constraint;
H = .25 .25 .25 .25;
ENDDATA
!--------------------------------------------------------;
! Model based on Stone, Tech. Rep. Stanford OR(1988);
! Minimize the artificial variable;
MIN = V;
! Supply is >= demand;
@FOR( GOOD( G):
@SUM( SECTOR( M): W( G, M))
+ @SUM( PROCESS( P): MAKE( G, P) * LEVEL( P))
- @SUM( SECTOR( S):
ALPHA( G, S) * @SUM( GOOD( I): PRICE( I) *
W( I, S))/ PRICE( G)) + H( G) * V >= 0;
);
! Each process at best breaks even;
@FOR( PROCESS( P):
@SUM( GOOD( G): - MAKE( G, P) * PRICE( G)) >= 0;
);
! Prices scale to 1;
@SUM( GOOD( G): - H( G) * PRICE( G)) = -1;
END
Model: GENEQ1