General Equilibrium of an Economy    Model: GENEQ1

MODEL:

! General Equilibrium Model of an economy;

! Data based on Kehoe, Math Prog, Study 23(1985);

! Find clearing prices for commodities/goods and

 equilibrium production levels for processes in

 an economy;

SETS:

GOOD/1..4/: PRICE, H;

SECTOR/1..4/;

GXS( GOOD, SECTOR): ALPHA, W;

PROCESS/1..2/: LEVEL;

GXP( GOOD, PROCESS): MAKE;

ENDSETS

DATA:

! Demand curve parameter for each good and SECTOR;

ALPHA =

  .5200  .8600  .5000  .0600

  .4000  .1     .2     .25

  .04    .02    .2975  .0025

  .04    .02    .0025  .6875;

! Initial wealth of Good I by Market J;

 W =

  50     0      0      0

   0    50      0      0

   0     0    400      0

   0     0      0    400;

! Amount produced of good I by process J;

 MAKE =

     6   -1

    -1    3

    -4   -1

    -1   -1;

! Weights for price normalization constraint;

 H = .25 .25 .25 .25;

ENDDATA

!--------------------------------------------------------;

! Model based on Stone, Tech. Rep. Stanford OR(1988);

! Minimize the artificial variable;

MIN = V;

! Supply is >= demand;

@FOR( GOOD( G):

@SUM( SECTOR( M): W( G, M))

 + @SUM( PROCESS( P): MAKE( G, P) * LEVEL( P))

  - @SUM( SECTOR( S):

   ALPHA( G, S) * @SUM( GOOD( I): PRICE( I) *

    W( I, S))/ PRICE( G)) + H( G) * V >= 0;

);

! Each process at best breaks even;

@FOR( PROCESS( P):

@SUM( GOOD( G): - MAKE( G, P) * PRICE( G)) >= 0;

);

! Prices scale to 1;

@SUM( GOOD( G): - H( G) * PRICE( G)) = -1;

END

Model: GENEQ1