Stratified Sampling Design    Model: SAMPLE2

In this model, we want to come up with a sampling strategy that yields a variance within a specified target at minimal cost. We have four strata of a population we will be querying on two topics. There is a maximum variance limit on each of the two questions. We know the variance in responses for each stratum on each question. How many respondents must you select from each stratum to meet your maximal variance requirements at minimal cost?

MODEL:

! Stratified sampling plan design, taken from

 Bracken and McCormick. Minimize the cost of

 sampling from 4 strata, subject to constraints on

 the variances of the sample based estimates of two

 categories;

SETS:

 STRATUM/1..4/: SIZE, POP, COST, WEIGHT;

 CATEGORY/1..2/: VARMAX, K2;

 SXC( STRATUM, CATEGORY): VAR, K1;

ENDSETS

! POP = population of each stratum.

 COST = cost of sampling in each.

 VARMAX = variance limits.

 VAR = variance for each category in each stratum.

 CFIX = a fixed cost;

DATA:

 POP = 400000, 300000, 200000, 100000;

 COST =     1,      1,      1,      1;

 VARMAX = .043, .014;

 VAR  =    25    1

           25    4

           25    16

           25    64;

 CFIX = 1;

ENDDATA

[OBJ] MIN = CFIX + @SUM( STRATUM: SIZE * COST);

! Compute some parameters;

TOTP =  @SUM( STRATUM( I): POP( I));

@FOR( STRATUM( I):

! Weight given each stratum;

 WEIGHT( I) = POP( I)/TOTP;

 @GIN( SIZE( I));

);

@FOR( CATEGORY( J):

 K2( J) =

  @SUM( STRATUM(I): VAR( I, J)^2 *

   WEIGHT( I)/ POP( I));

);

@FOR( SXC( I, J):

 K1( I, J) =  VAR( I, J)^2* WEIGHT( I)^2;

);

@FOR( CATEGORY( J):

 @SUM( STRATUM( I): K1( I, J) / SIZE( I))

  - K2( J) <= VARMAX( J)

);

@FOR( STRATUM( I):

 @BND( 0.0001, SIZE(I), POP( I) -1);

);

 

END

Model: SAMPLE2