LINDO
API 10.0

User Manual

LINDO Systems, Inc.

1415 North Dayton Street, Chicago, lllinois 60642
Phone: (312)988-7422 Fax: (312)988-9065
E-mail: info@lindo.com

COPYRIGHT

LINDO API and its related documentation are copyrighted. You may not copy the LINDO API
software or related documentation except in the manner authorized in the related documentation or
with the written permission of LINDO Systems, Inc.

TRADEMARKS

LINDO is a registered trademark of LINDO Systems, Inc. Other product and company names
mentioned herein are the property of their respective owners.

DISCLAIMER

LINDO Systems, Inc. warrants that on the date of receipt of your payment, the disk enclosed in the
disk envelope contains an accurate reproduction of LINDO API and that the copy of the related
documentation is accurately reproduced. Due to the inherent complexity of computer programs and
computer models, the LINDO API software may not be completely free of errors. You are advised to
verify your answers before basing decisions on them. NEITHER LINDO SYSTEMS INC. NOR
ANYONE ELSE ASSOCIATED IN THE CREATION, PRODUCTION, OR DISTRIBUTION OF
THE LINDO SOFTWARE MAKES ANY OTHER EXPRESSED WARRANTIES REGARDING
THE DISKS OR DOCUMENTATION AND MAKES NO WARRANTIES AT ALL, EITHER
EXPRESSED OR IMPLIED, REGARDING THE LINDO API SOFTWARE, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR OTHERWISE. Further, LINDO Systems, Inc. reserves the right to revise this software and related
documentation and make changes to the content hereof without obligation to notify any person of such
revisions or changes.

Copyright ©2016 by LINDO Systems, Inc. All rights reserved.
Printing 1

Published by

LINDO SHSTEMS INC.

1415 North Dayton Street
Chicago, Illinois 60642
Technical Support: (312) 988-9421
E-mail: tech@lindo.com
http://www.lindo.com

http://www.lindo.com/

TABLE OF CONTENTS

TABLE OF CONTENTS ..ottt ettt e e estae e e e st ae e e e st e e e e enbeeaeeanteeaeesnnaeeeeennees iii
g 1= = Lo SR iX
L7 0T T o] (=) it SR 1
1o [T 1o T o SO 1
What IS LINDO API? ...ttt et e e e st e e e s bae e e e st e e e e sntaeaeeennneaeeannees 1
LINEAI SOIVETSeeiieieeie ettt et e e et e e e et e e e e st e e e e enbae e e ennsaeeeeannees 2
MiXEA-INTEGEI SOIVETo e e e e e e e e e e e e e e ananes 2
oo T == TR To] 1Y PRSP 3

L€ (o) o= RS T] 1V7= SRR 3
STOChASTIC SOIVET ...t e e e ennes 3

[oIS =1 1= 14T o PR 3
WiINAOWS PlatfOrmSoooieiiiieece et e e e e e e e e e s aeeeeeee s 4
UnNiX-LiKe PlatfOrms. ... e e e e e e s e e e e e e e e annes 4
UpPdating LICENSE KEYS.......viiiiiiiiiie ettt e et e e bt e e sbeeeeeeae 7
Solving Models from a File using RUNIINAOooiiiiiiiii e 8
Sample APPLICALIONSeoiiii e 11
Array Representation of MOEIS..........cooiiiiiiiiiii e 11
Sparse Matrix Representationoeoiiiiiiiiiiiie e 12
Simple Programming EXamPIe ... 15

(01 0F=T o] (=) o OO UURTRR PP 19
FUNCHON DEfINItIONSeiiiiiiiiie et e e e snbae e e e ennee e e e ennes 19
Common Parameter Macro DefinitionNScooviiiiiiiiiiiie e 20
Structure Creation and Deletion ROULINES..........cceviiiiiiei e 24
License and Version Information ROULINEScooiviiiiiiiiiei e 26
INPUE-OULPUE ROULINES ..ot e 28
Parameter Setting and Retrieving ROUtINESccooiiiiiiiiiiii e, 46
Available Parameters............ooo 61
Available INFOrMAtioNooiiii i e e e e e e e 133
Model Loading ROULINES.....ccooiiiiiiieiie et e e e e e e e 153
Solver Initialization ROULINESoooiieie e 181
Optimization ROULINESuiiiiiiiiiiiiieiieeiee ettt eeeeeeeeeeseessesssssesssssssssssssssssssessssrnnes 186
Solution QUErY ROULINEScoiiiiiiiiiii e 195
Model QUETY ROULINES.........eiiiiiiiiiie i 215
Model Modification ROULINESuuiiiiiiiiie e 256
Model and Solution Analysis ROULINESccoiiiiiiiiiii e 277
Error Handling ROULINEScooiiiiiiiiee et 288
Advanced ROULINES ..o, 290
MatriX OPEratiONSeeiiiiiiiie ittt et e ettt e e e et e e e st e e e e sbbeeeesneeeaeanns 299
Callback Management ROULINESc.ooiiiiiiiiiiiiiie e 312
Memory Management ROULINEScooiiiiiiiiiiiii e 325
Random Number Generation ROULINESoooiiiiiiiiie e 328
SamPling ROULINES ...t e e e e e e e e e e 334
Date and Time ROULINES......coooi i e e e e e e 349

L0 0F=1 o (=T U PP PPPPPPPPPPPRt 353

iv. TABLE OF CONTENTS

A Programming EXample iN C........oooiiiiiiiiiiice ettt 353
A Programming Example in Visual BasiC............cccco oo 363
VB and Delphi SPECIfiC ISSUESceiiiiiiiiiieiiie e e 371
Solving Large Linear Programs using SPrint..........ccooiiiiiiiiiiiiiiiee e 372
Solving Linear Programs using the —fileLP option in Runlindocccccoiiiiinninen. 373
A Programming EXample i C ... 374
Multiobjective Linear Programs and Alternative Optimaccccoceviiiiiiniiei e, 380
Chapter 4: Solving Mixed-Integer Programs ... e 385
Staffing Example Using Visual CH+ ... 386
Staffing Example Using ViSual BaSiCccccoiiiiiiiiiiiii e 393
Solving MIPS USING BNPeeiiiiiie et e et e e e e 400
Solving MIPs using the —bnp option in RUNIINAO............cooiiiiiiiiieeiieeeee e 400
A Programming EXample iN Coooiiiiiiiiiee e e 402
Chapter 5: Solving Quadratic Programsccueeieiiiiie i 405
Setting up QUAAratiC Programsoocuiiiiiiiiiie it sttee et e e snaeeeeeenes 406
Loading Quadratic Data via Extended MPS Format Files.............ccccoiiiiiiiiiieeens 406
Loading Quadratic Data via APl FUNCHIONSc..coiiiiiiiii e 407
Sample Portfolio Selection Problems...........ocioiiiiiii e 410
Example 1. The Markowitz Model: ... 410
Example 2. Portfolio Selection with Restrictions on the Number of Assets Invested:.. 414
Chapter 6: Solving CONIC Programs..........ocuuiii ittt e et e e sneeee e 421
Second-Order CONE ProgramsS.........cc.uueiiieiieiiiciiieeeee e e e e e e e e e et e e e e e e e eraareeeaae e s 421
Setting up Second-Order Cone ProgramsSeeeeiiieiiiiiiiieiee e 424
Loading Cones via Extended MPS Format Files...........cccccceiiiiiiiiiiiiii e, 424
Loading Cones via APl FUNCHONSc.oooiiiiiiiiiiee et 426
Example 3: Minimization of NOImMS:cooiiiiiiiii e 426
Converting Models 10 SOCP FOIMuiiiiiiii e 431
Example 4: Ratios as SOCP Constraints:ccccciiiiiiiiiiieeiieee e 433
Quadratic Programs @s SOCPooo it 437
Semi-Definite Programsot 438
Loading SDP via SDPA Format FileSc..eiiiiiiiiiiiiiie e 439
Loading SDPs via APl FUNCHONS..........oiiiiiiiii e 443
Chapter 7: Solving Nonlinear Programs.............cooii oo 451
Instruction-List/MPI Style Interface ... 452
Postfix Notation in Representing EXpressions ... 452
Supported Operators and FUNCHONSuviiiiiiiiiiiiiiiiiiieieee e eeeeeeeersreaeeanes 454
Inputting SDP/POSD Constraints via MPI File/Instruction List............cocccoiiininii. 471
Inputting SDP/POSD Constraints via @ C Program.........ccccooiiiiiiiieiiiiiiieeeee e 474
Black-Box Style INterfaceooueiiiiii e 483
Loading Model Data...........coeiiiiiiiiiiiie e 484
Evaluating Nonlinear Terms via Callback FUNCtionscccocieiiiiiiniiniec e, 486
Grey-Box Style INterfaceoooiiiiiii e 490
Instruction Format...........oooi i, 492
EXample 1. 492
EXaMPIE 2. 492
EXample 3 ... 493
DIffErentiationt e e e e e e e e anes 493
Solving Non-convex and Non-smooth models ..., 494
I ToT= = (o o SRR 494

Multistart Scatter Search for Difficult Nonlinear Modelscooooveiiiieieeiiiiiieeeeeee. 496

TABLE OF CONTENTS v

Global Optimization of Difficult Nonlinear Modelsccccceveeeiiiiiiiiieeeee e 498
Sample Nonlinear Programming Problems.............ccccoo oo 499
Example 1: Black-Box Style Interface:ccocueeeviieiiiciiiee e 499
Example 2: Instruction-List Style Interfacecccoiiii 505
Example 3: Multistart Solver for Non-Convex Models.........ccccooiiiiiiiiiiieiiiieeeeeeen 515
Example 4: Global Solver with MPI Input Format.............cccciiiiiiiieeeee e 519
Example 5: Grey-Box Style Interface ... 525
Example 6: Nonlinear Least-Square Fitting........cccccove i 532

L0 aF= T (=] S 537
Stochastic Programmingooiiiiiiiiie ettt e e e e e e e e e e e e e e e e e e e seanranees 537
Multistage Decision Making Under Uncertainty...........ccccccooiiiii, 537
Multistage Recourse Models ..o 539

S ToT=TgE- T To T I (Y= NP RPRRR 540
Setting UP SP MOGEIS: ... e e e a e e 542
Loading Core MOELuiieiieie e e e e e e e eaa e e 542
Loading the Time StruCtUIe:oii i 545
Loading the Stochastic StruCtUre:..........cooiiiii e 547
Decision Making under Chance-ConstraintS...........coocueiiiiiiie e 554
Individual and Joint Chance-Constraints:ccccove i 554
Monte Carlo SAMPIINGouueeiiiiiei e e 557
Automatic Sampling of Scenario Trees ..o 561
Limiting Sampling to Continuous Parameterscccccvveeiiiiiiiiciiieeeee e 561
Using Nested Benders Decomposition Method...............ccc 562
Sample Multistage SP Problems.............cooiiiiiiiiiiiii e 564
An Investment Model to Fund College Education:ccooocuiiieeiiiiiiiiiieeeee e 564

An American Put-Options MOEL:ccocuiiiiiiiii e 566
Sample Chance-Constrainted Problems............coooiii e 568

A Production Planning Problem:..........cooi e 568
Models with User-defined Distribution:c..oooiiiiiiiiii e 569

A Farming Problem: e 571
About alternative formulations:oooi i 574
Appendix 8a: Correlation Specification............ccccoiiiiiiiiii e 574
Appendix 8b: Random Number Generationccc 578
Appendix 8c: Variance Reductionc 579
Appendix 8d: The Costs of Uncertainty: EVPI and EVMUcccccoiiiiiiis 579
Appendix 8e: Introducing Dependencies between Stages..........ccccccoviiiiis 583

L0 0F=1 o1 (=T S PP PPPPPPPPPPPPPRt 585
Using Callback FUNCHONS ..ot e e e 585
Specifying a Callback FUNCHON ..o 585

A Callback Example USING Coooiiiiiiieiiiee et 588

A Callback Example Using Visual BasiCcc.coiiiiiiiiiiiiiiieiiiiee e 593
Integer SolUtIoN CallDACKS.........c.uuiiiiiiiie et 595
Chapter 10: Analyzing Models and SOIULIONSocuiiiiiiiiiie e 599
Sensitivity and Range Analysis of an LP ... 599
Diagnosis of Infeasible or Unbounded Models............ccuuiiiiiiiiiiiii e 601
INfeasible MOAEIS......... .ot e e e e 601
Workings of the IS FINAEr: ... 603
Unbounded Linear Programsccooiioo i e et e e e e e e eeea e 604
Infeasible Integer Programs ... 604

Infeasible NONINEAr Programscuoi it 604

vi TABLE OF CONTENTS

An Example for Debugging an Infeasible Linear Program...........cccccccoecviviiieeeeececcnnnnen, 605
Block Structured MOUEIScocueiiiiiiiie e 611
Determining Total Decomposition StruCtUrescooecvvieiiii i 613
Determining ANGQUIar STIUCIUMESeiiiiiiiiii e 614
Techniques Used in Determining Block Structurescccoocieiiiii e 615
Generalized Assignment Problem ... 615

L7 0T T] (=) St I S 617
Parallel Optimization ... e e e e e 617
Thread Parametersot e e e e e e e e e e e e e as 617
Concurrent vs. Parallel Parametersocoviiiiiiiii i 618
SoIVINg MIPS CONCUITENTIYvveiiiiee it e e e e 619
Solvers with built-in Parallel AIgorithms ... 622
ReproduCibilitycceeeeeeeeeee 623
APPENIX A: EFTOr COUES ...ttt e e e e e et e e e e e e e e aeeeaaaee s 625
APPENAIX B .. ————————————————————— 637
MPS File FOrMAL ... e e et e e e e e e e ee e e e e e e e e e nneenees 637
INtEGEr VAri@DIES ... e 639
Semi-contiNUOUS Variables.cooiii i a e e 640
SO SIS 1Y £ RSP UROTRP 641
SOS2 EXAMPIE ...t e e e e s e e e e e 642
QUAAIAtIC ODJECHVE ...ttt e et e e e st e e e et e e e ennraeaeans 643
QuAadratic CONSIAINES........cuiiiiiiccie et e st e e erae e ebee e snneeans 644
Second-Order Cone CONSIrAINTSccuuiieiiiiiiee e e e e 645
AMDbIgUItieS IN IMPS FlES......cc e e 648

PN o] 01T oo [O ST OPOU PR 649
[T 1@ B 1 1= o)y 4= | USRS 649
[1Y o @7 1 o SO PRRE 649
FOrMAtiNgG ... e e 649
Optional Modeling Statementsooceiiiiiiii e 651

L Ry S = (=T 0 =Y o | SRR 652

L] VS =1 =T 41T o | SRR 652

N IS =1 (= o 1= o | OSSR 652

SUB and SLB Statementsoooiiiiiiii e 653
TITLE Statement........oooi e e e e 654
APPENAIX D s 655
MPIFIlE FOrMAL.... ettt e e e e e e e e e e e e e nnreeeeas 655
APPENAIX B oo aan 657
SMPS File FOIMALt e e e st e e e e e e e nee s 657
CORE File... ettt et e et e e et e e e e e e e eats e e e e ansbeeesanseeeas 657
TIME Fl© oottt et e et e e e et e e e et e e e et e e e e eaareeeeannes 657
STOCH FllE vttt et e e e e e e e e e eab e e e e aabee e e snneeeas 659

F Y o] 01T e Lo [l PO PP PP T OPPPPPPP 665
1Y o I 1 L=] 3 = SRR 665
Appendix G: MXLINDO 669
A MATLAB INTEIACE....ceiei et e e e e e e e e e e e e e aeeeeaee s 669
a0 T [T 4o o [OO UURRR 669
Setting up MATLAB to Interface with LINDO ... 669
Using the MXLINDO INterfaceoooiiiiiiiiieii e 670
Calling CONVENTIONS ...t e e e e e e e e e e e e e e e e ennneeeeaaaeeas 672

MXLINDO ROULINES ..ottt et e e e e e et e e e et e e e e eeeeereeeeeenaaeaes 672

TABLE OF CONTENTS vii

Structure Creation and Deletion ROULINESoccuiiiiiiiiiiiii e 672
License Information ROULINEScooiiiiiiiiiiii e 675
INPUE-OULPUL ROULINES....coiiiiiiiiee et e e e e e e e e enaes 676
Error Handling ROULINEScooiiiiiii et 684
Parameter Setting and Retrieving ROUtINES ..o 686
Model Loading ROULINEScoooiiiiiiiiiiie e 693
Solver Initialization ROULINES ..o 706
Optimization ROULINES..........eiiiiiii et e e e e e e 710
Solution QUErY ROULINES........eiiiiiiiii e 711
Model QUETY ROULINESveiiiiiiiiie ettt et e e st e e e snee e e e sneeeeeanes 718
Model Modification ROULINESccoiiiiiiiiiiiii e 737
Model and Solution Analysis ROULINEScc.ueeiiiiiiiiiiieeeeee e 754
AdVaNCed ROULINES........eiiiiii e e e 761
Callback Management ROULINES............coiiiiiiiiiiiiiice e 766
Auxiliary ROULINES ... 772
Sample MATLAB FUNCHONScooiiiiiiie ettt e e 774
M-functions using MXLINDOccoiiiiiiiiiie e 774

Y o] o= g e 1)l o o PP PRR 777
F N TN (=5 =Tt TR (o T)R 777
10T [T3 o) o O URE 777
Setting UP OX INTEITACE......coi i 777
Calling CONVENLIONS ...ttt e e e e e e et e e e e e e e earrreeeaaaeeas 778
Example. Portfolio Selection with Restrictions on the Number of Assets Invested...... 780
APPENAIX | e ———————— 785
List of Abbreviations in Progress LOGS..........uuviiiiiiiiiiiiiieee et 785
APPENAIX Ui 787
N T 1 =T = Lo S 787
INTrOAUCHION ... 787
INStallation ... 787
Calling CONVENLIONSeiiiiiiiiie ettt e e e e et e e e enbee e e e ennes 787
Example. Least Absolution Deviation Estimationccccccoiiiiiiiiiee 787
APPENAIX K ettt e e e e e et e e e e e e e e e 791
A PYNON INEEITACE ... e e 791
INEFOAUCTION ...ttt e e e e et e e e e e e e e e snnbre e e e e e e eaannes 791
113 =1 1= 11T o PSP PPURRP 791
Calling CONVENTIONS ...t e e e e e e e e e e e e eeeeeeaeaeas 791
Example. Solving an LP model with pyLIiNdOcoooiiiiiii e 792
REFEIENCES ...t e et e e e e e e et e e e e e e e e s nnneeeeeas 795
ACKNOWIEAGEMENTS ... e e e e e e e e 797

IN D X ettt ettt e e e e e et e e e e e e e e e e e e e e e e e as 799

iX

Preface

LINDO Systems is proud to introduce LINDO API 10.0. The general features include a) stochastic
optimization b) global and multistart solvers for global optimization, ¢) nonlinear solvers for general
nonlinear optimization, d) simplex solvers for linear optimization e) barrier solvers for linear,
quadratic and second-order-cone optimization f) mixed-integer solvers for linear-integer and
nonlinear-integer optimization, g) tools for analysis of infeasible linear, integer and nonlinear models,
h) features to exploit parallel processing on multi-core computers, i) interfaces to other systems such as
MATLAB, Ox, Java and .NET and j) support of more platforms

(see below). The primary solvers in LINDO API 10.0 are:

O Global Solver:
The global solver combines a series of range bounding (e.g., interval analysis and convex
analysis) and range reduction techniques (e.g., linear programming and constraint
propagation) within a branch-and-bound framework to find proven global solutions to non-
convex NLPs. Traditional nonlinear solvers can get stuck at suboptimal, local solutions.
Version 10.0 incorporates substantial improvements in a) finding good feasible solutions
quickly and b) constructing bounds on both convex and nonconvex functions so optimality
can be proven more quickly.

O Mixed Integer Solver:
The mixed integer solver of LINDO API 10.0 solves linear, quadratic, and general nonlinear
integer models. It contains advanced techniques such as a) cut generation b) tree reordering
to reduce tree growth dynamically, and c) advanced heuristic and presolve strategies.
Substantial improvements in 10.0 include: a) heuristics for finding good solutions quickly,
and b) identifying certain model structures and exploiting for much faster solution.

O General Nonlinear Solver:
LINDO API is the first full-featured solver callable library to offer general nonlinear and
nonlinear/integer capabilities. This unique feature allows developers to use a single general
purpose solver into custom applications. As with its linear and integer capabilities, LINDO
API provides the user with a comprehensive set of routines for formulating, solving, and
modifying nonlinear models. Version 10.0 supports several dozen additional nonlinear
functions, mainly in the area of probability distributions, pdf’s, cdf’s, and their inverses.

O Multistart Nonlinear Solver:
The multistart solver intelligently generates a sequence of candidate starting points in the
solution space of NLP and mixed integer NLPs. A traditional NLP solver is called with each
starting point to find a local optimum. For non-convex NLP models, the quality of the best
solution found by the multistart solver tends to be superior to that of a single solution from a
traditional nonlinear solver. A user adjustable parameter controls the maximum number of
multistarts to be performed. See Chapter 7, Solving Nonlinear Models, for more information.

X

PREFACE

O Simplex Solvers:

LINDO API 10.0 offers two advanced implementations of the primal and dual simplex
methods as the primary means for solving linear programming problems. Its flexible design
allows the users to fine tune each method by altering several of the algorithmic parameters.
The Sprint method uses the standard simplex solvers efficiently to handle “skinny” LP’s,
those having millions of variables, but a modest number of constraints.

Barrier (Interior-Point) Solver:

Barrier solver is an alternative way for solving linear and quadratic programming problems.
LINDO API’s state-of-the-art barrier solver offers great speed advantages for large scale
sparse models. LINDO API 10.0 also includes a special variant of the barrier solver
specifically designed to solve Second-Order-Cone (SOC) problems, including Semi-Definite
Programs (SDP). See Chapter 6, Solving Second-Order-Cone Models, for more information.
Version 10.0 includes improved techniques for automatically identifying models than can be
solved as SOC.

Stochastic Solver, Multistage and Chance Constrained:

LINDO API 10.0 supports decision making under uncertainty. Its powerful stochastic solver
offers the ability to solve:

a) chance-constrained models,

b) multistage stochastic models with recourse.

For both types, the user expresses the uncertainty by providing distribution functions, either
built-in or user-defined. In multistage models, the stochastic solver optimizes the model to
minimize the cost of the initial stage plus the expected value of recourse over all future
stages. In chance-constrained models, the solver finds the best solution that satisfies
constraints with a specified probability.

Parallel Extensions:

LINDO API 10.0 includes multi-cpu optimization extensions to its solvers to take advantage
of computers with multicore processors. The multicore extensions are of two types:
concurrent optimizers and parallel optimizers (using built-in parallel algorithms). Parallel
versions of random number generators and sampling features are also provided.

Statistical Sampling Tools:

LINDO API 10.0 offers extensive set of API functions for sampling from various statistical
distributions. Sampling error can be reduced by using variance reduction methods such as
Latin-Hyper-Square sampling and Antithetic variates. Generation of correlated (dependent)
samples based on Pearson, Spearman or Kendall’s correlation measures is provided. A
pseudo-random number generation API offers advanced generators with long cycles.

Model and Solution Analysis Tools:

LINDO API 10.0 includes a comprehensive set of analysis tools for a) debugging of
infeasible linear, integer and nonlinear programs using series of advanced techniques to
isolate the source of infeasibilities to smaller subset of the original constraints, b) performing
sensitivity analysis to determine the sensitivity of the optimal basis to changes in certain data
components (e.g. objective vector, right-hand-size values etc..).

Quadratic Recognition Tools:

The QP recognition tool is a useful algebraic pre-processor that automatically determines if
an arbitrary NLP is actually a quadratic or SOC model. These models may then be passed to
the faster quadratic solver, which is available as part of the barrier solver option.

PREFACE xi

O Linearization Tools:
Linearization is a comprehensive reformulation tool that automatically converts many non-
smooth functions and operators (e.g., max and absolute value) to a series of linear,
mathematically equivalent expressions. Many non-smooth models may be entirely linearized.
This allows the linear solver to quickly find a global solution to what would have otherwise
been an intractable nonlinear problem.

O Decomposition Solvers and Tools:
Many large scale linear and mixed integer problems have constraint matrices that are
decomposable into certain forms that could offer computational advantage when solving. For
instance, some models decompose into a series of totally independent subproblems. A user
adjustable parameter can be set, so the solver checks if a model possesses such a structure. If
total decomposition is possible, it will solve the independent problems sequentially to reach a
solution for the original model. This may result in dramatic speed improvements. In other
cases, the model could have dual-angular structure with few linking columns, in which case
Benders decomposition solver may be useful. Models with primal-angular structure with a
few linking row can exploit the BNP solver. BNP solver can also be helpful in determining
very tight bounds to MIP problems using the built-in Lagrangean relaxation procedure. To
help identify different decomposition structures, special tools are provided to determine lower
triangular, dual-angular and primal-angular structures. Refer to the Block Structured Models
section in Chapter 10, Analyzing Models and Solutions, for more information.

Q Java Native Interface:
LINDO API includes Java Native Interface (JNI) support for Windows, Solaris, and Linux
platforms. This new feature allows users to call LINDO API from Java applications, such as
applets running from a browser.

O MATLAB Interface:
The Matlab interface allows using LINDO API functions from within MATLAB. Using
MATLAB’s modeling and programming environment, you can build and solve linear,
nonlinear, quadratic, and integer models and create custom algorithms based upon LINDO
API’s routines and solvers.

O .NET Interface:
LINDO API includes C# and VB.NET interfaces that allow it to be used from within .NET's
distributed computing environment (including Windows Forms, ADO.NET, and ASP.NET).
The interfaces are in the form of classes that allow managed .NET code to interact with
unmanaged LINDO API code via the "System.Runtime.InteropServices" namespace.

O Ox Interface:
This interface provides users of the Ox statistical package, the ability to call LINDO API’s
functions the same way they call native Ox functions. This offers greater flexibility in
developing higher-level Ox routines that can set up and solve different kinds of large-scale
optimization problems, testing new algorithmic ideas or expressing new solution techniques.

QO Python Interface:
The Python interface allows using LINDO API from within applications written in Python
language. Using Python’s extensive programming environment, you can build and solve all
model types supported by the C API. The Python interface is particularly suited for fast
development and testing of algorithmic ideas.

Xii

PREFACE

Q R Interface:

The R interface allows using LINDO API from within applications written in R-language.
Coupled with R’s extensive statistical and data-mining tools, the LINDO API's R interface
offers seamless possibilities in statistical analysis and optimization. All model types

supported by the C API are available in the R interface.
O Platforms:

LINDO API 10.0 is currently available on Windows 32/64 bit, Linux 32/64-bit, OSX 64-bit
platforms. For availability of LINDO API 10.0 on all other platforms, you may wish to

contact LINDO Systems, Inc.

LINDO Systems, Inc
1415 N. Dayton
Chicago, Illinois
(312) 988 9421

info@lindo.com
http://www.lindo.com

February 2016

Chapter 1:
Introduction

What Is LINDO API?

The LINDO Application Programming Interface (API) provides a means for software developers to
incorporate optimization into their own application programs. LINDO API is designed to solve a wide
range of optimization problems, including linear programs, mixed integer programs, quadratic
programs, and general nonlinear non-convex programs. These problems arise in areas of business,
industry, research, and government. Specific application areas where LINDO API has proven to be of
great use include product distribution, ingredient blending, production and personnel scheduling,
inventory management... The list could easily occupy the rest of this chapter.

Optimization helps you find the answer that yields the best result; attains the highest profits, output, or
happiness; or achieves the lowest cost, waste, or discomfort. Often these problems involve making the
most efficient use of your resources—including money, time, machinery, staff, inventory, and more.
Optimization problems are often classified as linear or nonlinear, depending on whether the
relationships in the problem are linear with respect to the variables.

The most fundamental type of optimization problems is the linear program (LP) of the form:

Minimize (or maximize) cix; + ¢ + ... + ¢,

Such that

Apxy + Ay + o+ Ayx, 7 by

Apx; + Ay + o+ Ayx, 2 by

Amlxl +Am2x2 + .. +Amrrxn ? bm
Ll S)C] < U1
Lz < X2 < U2
L,<x,<U,

where 4, ¢, b, L;, U; are known real numbers; ? is one of the relational operators ‘<’, ‘=, or ‘2’; and

X1,X, ...,X, are the decision variables (unknowns) for which optimal values are sought.

The expression being optimized is called the objective function and ¢y,c5, ...,c, are the objective
coefficients. The relationships whose senses are expressed with ? are the constraints; A;, 4y, ...,4;, are
the coefficients; and b; is the right-hand side value for the i" constraint. L; and U, represent lower and

upper bounds for the /" decision variable and can be finite or infinite.

2 CHAPTER 1

At the core of LINDO API’s optimizers are the linear solvers, which solve problems of this form. On
top of the linear solvers are other solver types. These can be used to solve generalizations of LPs, such
as problems containing integer variables or quadratic or nonlinear expressions.

The problem of mixed-integer linear programs (MILP) is an extension of LPs where some of the
decision variables are required to take integer (whole number) values. Another extension of LPs is
when the expressions in the objective function or the constraints are nonlinear functions of decision
variables, such as logarithms or products of variables. Such problems are called nonlinear programs
(NLPs). A special case of NLPs is quadratic programs (QPs) where the only nonlinear relationships
among variables are products of two variables. NLPs and QPs with integrality restrictions on some
variables are called mixed-integer nonlinear programs (MINLP) and mixed-integer quadratic
programs (MIQP), respectively.

Linear Solvers

There are three linear solvers—the Primal Simplex, Dual Simplex, and the Barrier Methods. The
simplex method (primal or dual) solves the LP by moving along the edges of the feasible region
defined by the constraint set. By contrast, the barrier method walks through the interior of the feasible
region while searching an optimal solution. All three methods either terminate with an optimal solution
or return a flag indicating that the LP is infeasible or unbounded.

In general, it is difficult to say which algorithm will be fastest for a particular model. A rough
guideline is Primal Simplex tends to do better on sparse models with fewer rows than columns. Dual
Simplex tends to do well on sparse models with fewer columns than rows or models that are primal
and/or dual degenerate, while Barrier works best on structured models or very large models. The
simplex methods use a state-of-the-art implementation of the revised simplex method with product
form inverse. The barrier solver uses a homogeneous self-dual algorithm. All three use extensive
preprocessing to help reduce the complexity of the LP and improve its numerical properties. See
Chapter 3, Solving Linear Programs, for examples of solving linear programs with the LINDO API.

Mixed-Integer Solver

LINDO API solves the mixed-integer models with the branch-and-cut method. It is an iterative method
that uses either the linear or nonlinear solver as a subsolver, depending on the nature of the problem.
The mixed-integer solver is equipped with advanced preprocessing, heuristic and cut generation tools.
Preprocessing generally reduces the problem size to a manageable size and offers great computational
savings, especially for large problems. Addition of “cuts” helps eliminate the noninteger feasible
regions quickly and provides improved bounds during the branch-and-bound. For many classes of
MILP problems, heuristic algorithms quickly find good integer solutions and lead to improved bounds.
All these techniques lead to improved solution times for most integer programming models. See
Chapter 2, Function Definitions, for more information of optimization functions and related
parameters. See Chapter 4, Solving Mixed-integer Programs, for examples of solving mixed integer
programs with LINDO API.

INTRODUCTION 3

Nonlinear Solver

LINDO APTI’s nonlinear solver employs both successive linear programming (SLP) and generalized
reduced gradient (GRG) methods. Under certain conditions, QPs, which are special cases of NLPs, can
be solved more efficiently via the barrier method.

The nonlinear solver returns a local optimal solution to the underlying problem. If local optimality
cannot be achieved, then a feasible solution is reported if one had been found. In case no feasible
solutions were found or the problem was determined to be unbounded or numerical problems have
been encountered, then an appropriate flag is returned.

LINDO API can automatically linearize a number of nonlinear relationships through the addition of
constraints and integer variables, so the transformed linear model is mathematically equivalent to the
original nonlinear model. Keep in mind, however, that each of these strategies will require additional
computation time. Thus, formulating models, so they are convex and contain a single extremum, is
desirable.

Global Solver

The standard nonlinear solver returns a local optimal solution to the NLP. However, many practical
nonlinear models are non-convex and have more than one local optimal solution. In some applications,
the user may want to find a global optimal solution.

The optional global solver available in LINDO API employs branch-and-cut methods to break an NLP
model down into many convex sub-regions and returns a provably global optimal solution. See
Chapter 7, Solving Nonlinear Programs, for examples of solving nonlinear programs with LINDO
API.

LINDO API also has a multistart feature that restarts the standard (non-global) nonlinear solver from a
number of intelligently generated points. This allows the solver to find a number of locally optimal
points and report the best one found. This alternative could be used when global optimization is costly.

Stochastic Solver

LINDO APTI’s stochastic solver can solve multistage linear, nonlinear and integer models where some
of the model parameters are not known with certainty but can be expressed probabilistically. Integer
and nonlinear stochastic models are solved by transforming the model into the so-called deterministic-
equivalent model. Linear models can be solved either with the nested Benders method or through the
deterministic equivalent. For models with parametric distributions, Monte-Carlo sampling is available
for finite approximations. Standard variance reduction strategies like Latin-hypersquare sampling and
antithetic control variates are also available during sampling. Advanced tools, like inducing a
correlation structure among random parameters based on various measures, are also provided. See
Chapter 8, Stochastic Programming, for a detailed coverage of the topic and illustrative examples.

Installation

Installing the LINDO API software is relatively straightforward. To run LINDO API, we recommend a
computer running Linux, Solaris, or a 32-bit or 64-bit version of Windows. In general, you will need
at least 32Mb of RAM and 20Mb of free disk space. A faster processor and additional memory may
allow LINDO API to solve tougher problems and/or improve performance. It should be noted that
these are minimums. Solving big models may require more resources.

4 CHAPTER 1

Windows Platforms

To install a Windows version (95/98/NT/XP/Vista/7), simply insert the LINDO API installation CD,
double-click on the LINDO API folder to open the directory, and then double-click on the setup icon
to run the LINDO API setup program. For a downloaded version of LINDO API, simply extract the
executable file (.exe) from the (.zip) archive and run it (double-click the setup icon) to launch the
installation process. Setup will do all the required work to install LINDO API on your system and will
prompt you for any required information.

After the installation process is complete, the following directory structure will be available.

LINDOAPTI\ ' Installation directory
LINDOAPI\BIN\WIN32 ' Executables, dynamic libraries
LINDOAPI\LIB ' Import library, Java class library
LINDOAPI\MATLAB ' Matlab scripts, functions, etc..
LINDOAPI\OX ' OX library

LINDOAPI\INCLUDE ' Header files

LINDOAPI\LICENSE ' License files

LINDOAPI\DOC ' User manual in PDF format
LINDOAPI\SAMPLES ' Samples directory
LINDOAPI\SAMPLES\C\ ' C/C++ samples
LINDOAPI\SAMPLES\DELPHI\ ' Delphi samples
LINDOAPI\SAMPLES\JAVA\ ' Java samples (J2SDK and J++)
LINDOAPI\SAMPLES\VB\ ' Visual Basic samples (Windows only)

LINDOAPI\SAMPLES\DOTNET\VB' Visual Basic .NET samples
LINDOAPI\SAMPLES\DOTNET\CS' C# .NET samples
LINDOAPI\SAMPLES\FORT\ ' F90 samples (Windows only)
LINDOAPI\SAMPLES\MPS\ ' Test problems in MPS format

Note: The binaries in your installation are located under ‘lindoapi\bin\<platform>’ directory, where
<platform> refers to the platform (or operating system) you are working on. For instance, on
x86 platform running 32-bit Windows, the binaries are located at ‘lindoapi\bin\win32’, similarly
on x64 platform running 64-bit Linux, the binaries are at ‘lindoapi\bin\linux64’.

Unix-Like Platforms

Follow the steps below to complete the installation on Unix-like platforms. It is assumed that the
Linux 32-bit version of LINDO API is being installed. For Solaris and other platforms, these steps
would be identical except for the installation file name.

Step 1. Locate the LAPI-LINUX-IA32-10.0.tar.gz file on your CD.

Step 2. Copy this file into an installation directory of your choice (e.g. /opt):

%> cp LAPI-LINUX-IA32-10.0.tar.gz /opt

Step 3. Change working directory to '/opt' and uncompress the file using ‘gzip —d’ command as
below. This operation creates LAPI-LINUX-1A32-10.0.tar.

%> gzip -d LAPI-LINUX-IA32-10.0.tar.gz

INTRODUCTION

5

Step 4. Uncompress that file using ‘tar —xvf* command as below. This will create the LINDO API
directory ‘lindoapi/’.

%> tar —-xvf LAPI-LINUX-IA32-10.0.tar

Step 5. Set SLINDOAPI_HOME environment variable to point to the installation directory.

LINDOAPI HOME=/opt/lindoapi
export LINDOAPI HOME

Step 6. Change file permissions and create symbolic links as needed.

Change working directory to ‘SLINDOAPI_HOME/bin/linux32’ and check if LINDO

API’s shared libraries (.so files) and the driver program ‘runlindo’ are all in executable mode. If not,
either run the script 'Isymlink.sh' or change the mode manually by typing the following commands:

o

chmod 755 liblindo.*
chmod 755 liblindojni.*
chmod 755 libmosek.so.*
chmod 755 runlindo

o©°

o
vV V V V

o©°

Create symbolic links to the following library files — symbolic links are required for makefiles in
samples directory.

For Unix-like systems,

%> 1In -sf liblindo.s0.10.0 liblindo.so
%> 1n -sf liblindojni.so0.10.0 liblindojni.so
%> 1In -sf libmosek.so.7.0 libmosek.so

For Mac-OSX

%> 1ln -sf 1liblindo.10.0.dylib liblindo.dylib
%> 1n -sf libmosek.7.0.dylib libmosek.dylib

These steps can be performed using the script ‘SLINDOAPI_HOME/bin/<platform>/lsymlink.sh’.

Step 7. (Optional) You can update your library path environment variable although it is not the
recommended way to specify search directories. LINDO API already have the run-time search paths
(RPATH) hardcoded into its libraries. LD_LIBRARY PATH might only be appropriate as a short
term solution during testing or development. For example, a developer might use it to point to

older versions (prior to v8) of the LINDO API library. Older versions of LINDO API rely on this
environment variable.

LD LIBRARY PATH=$SLINDOAPI HOME/bin/<platform>:$LD LIBRARY PATH
export LD LIBRARY PATH

Note: Mac-OSX, AIX and HP-UX do not use LD _LIBRARY PATH. Users of these systems
should apply the following equivalent changes.

6 CHAPTER 1

Mac-OSX:
DYLD LIBRARY PATH=$LINDOAPI HOME/bin/<platform>:$DYLD LIBRARY PATH
export DYLD_LIBRARY_PATH

AIX:
LIBPATH:$LINDOAPI_HOME/bin/<platform>:$LIBPATH
export LIBPATH

HP-UX:

SHLIB_PATH=SLINDOAPI HOME/bin/<platform>:$SHLIB_ PATH
export SHLIB PATH

Step 8. (Optional) You can set SLINDOAPI LICENSE FILE environment variable to refer to
the license file in your installation.

LINDOAPI LICENSE FILE = “SLINDOAPI HOME/license/lndapil0O0.lic”
export LINDOAPI LICENSE FILE

Alternatively, you can execute the shell script ‘lindoapivars.sh’ to perform the required updates in
these environment variables.

To execute this script manually, enter the following at command line:
source $LINDOAPI HOME/bin/<platform>/lindoapivars.sh

To execute this script automatically at logon, append this line to the end of your startup script
(-bashrc or .bash_profile for bash shell).

Step 8. 1f you received a license file (Indapil00.lic) with your installation CD, copy this file into the
‘SLINDOAPI_HOME/license’ directory.

Step 9. You can test your installation by changing directory to SLINDOAPI_HOME/bin/<platform>
and type the following. This should display the version info on your LINDO API installation.

%> ./runlindo -v

Optionally, you can add ““./” to your $SPATH variable to avoid having to type "./" in front of program
runlindo from the current working directory.

INTRODUCTION 7

Updating License Keys
In a default installation, the license file (Indapil00.lic) is located under LINDOAPI\LICENSE

directory. The license file initially contains a demo license, which allows full access to LINDO API
with limited problem capacity.

The contents of Indapil00.lic are as follows:

LINDO API Demo 10.00

1

None

Nonlinear Global Barrier
Educational

All platforms

Eval Use Only

>

** place your license key here **
>

Modify this file by placing the license key you received with your copy of the software between the
“>” characters. Be sure to preserve capitalization and include all hyphens. For instance, suppose your
license key is: AT3x-5*mX-6d9J-vSpG-TzAU-D2%. Then, modify Indapil00.lic, so it appears
exactly as follows:

LINDO API Demo 10.00

1

None

Nonlinear Global Barrier
Educational

All platforms

Eval Use Only

>
AT3x-5*mX-6d9J-vSpG-TzAU-D2%
>

Note: If you purchased a license, you should update the license file with the license key you obtained
from your sales representative.

If you were e-mailed your license key, simply cut the license key from the e-mail that contains
it and paste it into the Indapil00.lic file replacing the existing demo license key.

Your license key is unique to your installation and contains information regarding your version's serial
number, size, and supported options. The license key is case sensitive, so be sure to enter it exactly as
listed, including all hyphens. Given that your license key is unique to your installation, you can not
share it with any user not licensed to use your copy of the LINDO API.

8 CHAPTER 1

Solving Models from a File using Runlindo

LINDO API distribution contains a simple program, runlindo.exe that allows you to solve models from
a file after installation. In a 32-bit Windows installation, runlindo.exe is in the \lindoapi\bin\win32
directory. Runlindo is intended to be run from a command line prompt. To see command line options,
type at the command line prompt:

runlindo -help

in which case the following command line options will be listed:

Usage: RUNLINDO filename [options]

General options:

-max { Solve the problem as a maximization problem }
-min { Solve the problem as a minimization problem }
-print [n] { Set print level to [n] }

{

—decomp [n]
LP/MIPs (2)}

Set decomposition type to 'n' when solving

-iisfind [n] { Find IIS with search level 'n'

—iisnorm [n] { Set infeasibility norm to 'n' in IIS search
(1) .

—-iismeth [n] { Use method 'n' with IIS finder (1).

—iusfind [n] { Find IUS with search level 'n'

—-iusmeth [n] { Use method 'n' with IUS finder (1).

-nblocks [n] { Set number of blocks in a decomposed model to
nt (1)

-bnd, -b [n] { Truncate infinite bounds with le+n (15)

-linfo { Display license information }

-uinfo { Display user information }

-licfile { Read license file }

-tlim [n] { Set time limit to 'n' secs. }

-ilim [n] { Set iter limit to 'n'. }

{

-pftol [eps] Set primal feasibility tolerance to 'eps'.}

Defaults for LP: le-7, NLP: le-6

-dftol [eps] { Set dual feasibility tolerance to 'eps'.}
Defaults for LP: le-7, NLP: le-7.

—aoptol [eps] { Set absolute optimality tolerance to 'eps'.}
Defaults for MILP: 0.0, GOP:le-6, SP:le-7

-roptol [eps] { Set relative optimality tolerance to 'eps'.}
Defaults for MILP:le-6, GOP:le-6, SP:le-7

-poptol [eps] { Set percent optimality tolerance to 'eps'.}

Defaults for MILP:le-5

Display version and build date }

Help }

Set number of parallel threads. }

Set concurrent strategy to n. }

Enable external LP solver #n. }
Multithread mode for supported solvers. }

-ver,-v
-help, -h
-nthreads [n]
—-ccstrategy [n]
-xsolver [n]
—-threadmode [n]

{
{
{
{
{
{

INTRODUCTION

9

Linear optimization options:

-1p
-psim
-dsim
-bar
-noscale
—-dual
-tpos
-novertex
-iusol

-pre_1lp [n]
(126)}

-filelLP

-refact [n]

Mixed integer
-mip
-pri
-pre_root [n]
-pre leaf [n]
(174) .}
-cut root [n]
-cut leaf [n]
-ord tree [n]
-heuris [n]
1
1
1

-strongb [n

-kbest [k

-bnp [n
n}

-fblock [n]

-colmt [n]

-hsearch [n]
method/mode [n]}

-fp [n]

-rootlp [n]
(0 to 4)}

-nodelp [n]
(0 to 4)}

{

e T T e e T

{
{

{

{
{
{

e T T e

Solve the problem as an LP problem }

Use the primal simplex method for LP problems }
Use the dual simplex method for LP problems }
Use the barrier method for LP problems }

Set scaling off }

Solve the dual model implicitly }

Solve the dual model explicitly }

No crossover with barrier method }

Force the solver to return some solution
when the model is infeasible or unbounded. }
Set presolve level to 'n' for LP problems

Solve specified LP model with sprint }
Refactor frequency (250) }

optimization options:

Solve the problem as a MIP problem }
Read the priority file 'filename.ord' }

Set presolve level to 'n' for root node (510).}
Set presolve level to 'n' for leaf nodes

Set cut level to 'n' for root node (22526) .}
Set cut level to 'n' for leaf nodes (20478).}
Set tree reorder level to 'n' (10).}

Set heuristic level to 'n' (3).}

Set strongbranch level to 'n' (10).}

Find k best MIP solutions }
Solve MIP with branch and price method of level

Find block for bnp with level n (1 to 3)}
Limit for colums generated in bnp solver

Solve MIP using heuristic-search using

Set feasibility pump level (-1 to 2)}
Set the method for solving root LP relaxation

Set the method for solving node LP relaxation

Nonlinear optimization options:

-nlp
-multis [n]
problems}
—conopt [n]
-1lnz [n]
(0)}
-pre nlp [n]
-derv [n]
—ap
-hessian
—-lcrash [n]

-filtmode[n]
—-prepmode [n]

{
{

{

{
{
{
{
{
{
{

Use the nonlinear solver for QP problems}
Set number of multistarts to [n] for NLP

Use Conopt version 'n' for NLP problems (3)}
Set linearization level for NLP problems to 'n'
Set presolve level to 'n'
Set derivative type 'n'
Solve QP problem}

for NLP problems (0)}
for NLP problems (0)}

Enable usage of Hessian (2nd order) matrix}
Set advanced NLP crash mode to n (1)}

Set multistart filter mode (0) }

Set multistart prep mode (0) }

Global optimization options:

10 CHAPTER 1

-gop { Solve the problem as a GOP problem }

I/0 options:

-par <parfile> { Read parameters from <parfile>}

-ini <inifile> { Read initial solution from <inifile> or
'filename.sol'}

-sol { Write solution to file 'filename.sol' }
-sol ipm { Write IPM solution to file 'filename.sol' }
—-fmps { Read formatted MPS files (old MPS format) }
-cmps { Read MPS compatible mode files (can combine
with -fmps) }
—wmps { Export the input model in MPS format }
—wmpi { Export the input model in MPI format }
-wltx { Export the input model in LINDO format }
-wlng { Export the input model in LINGO format }
-wiis { Export the IIS in LINDO format }
-wset { Export the input model with sets/sc in MPS
format}

-wbas { Export the final basis into 'filename.bas'}

—-smps { Read SMPS/SMPI formatted SP model. }

-rtim { Read time/block structure from 'filename.tim'}

-wtim { Export time/block structure to 'filename.tim'}

-wpar <parfile> { Write parameters to <parfile>}

—-ccpar <base> { Read parameters for concurrent solve from
file-chain <base>}

For example, to solve a linear program in MPS format in a file called “mymodel.mps”, you might type:

runlindo mymodel.mps -sol

The option “-sol” causes a solution report to be written to the file “mymodel.sol”. To learn more about
the file formats recognized, see the appendices.

The ability to set parameters is not limited to command line arguments. Before initializing each
optimization session, runlindo reads optionally specified parameters from a file named “lindo.par”.

All LINDO API parameters can be set through this simple interface. Parameter values set through
command line arguments have precedence over those set through “lindo.par”. An example “lindo.par”
can be found in:

lindoapi/bin/$PLATFORM

where SPLATFORM refers to one of the following

win32 for 32-bit MS Windows on x86,

wino64 for 64-bit MS Windows on x64,
0sx32x86 for 32-bit Macintosh 0SX on x86
osx32ppc for 32-bit Macintosh OSX on PowerPC
linux32 for 32-bit Linux on x86

linuxo64 for 64-bit Linux on x64

solaris32 for 32-bit Sun Solaris

solaris64 for 64-bit Sun Solaris

For details, on available parameters in LINDO API and their usage through API calls and parameter-
files, see "Parameter Setting and Retrieving Routines" in Chapter 2."

INTRODUCTION 11

Sample Applications

The distribution package contains several sample application programs that illustrate the use of
LINDO API using a high level programming language. The majority of the examples provided are in
C/C++. Sample applications in other languages, such as Visual Basic, C#, Delphi, Fortran 90, and
Java/J++ are also given.

Note: The header files required by each programming language are located in LINDOAPNNCLUDE
directory. These headers contain macro definitions and function prototypes (calling sequences)
for each programming language. For a detailed description of available LINDO API functions,
please refer to Chapter 2, Function Definitions.

Each sample is located in a separate directory along with a MAKEFILE and/or an IDE Project (for
Windows only) to build the application. Depending on your platform, use MAKEFILE.UNX (for
Solaris and Linux) or MAKEFILE.WIN (for Windows).

Now, let’s illustrate how to get started using LINDO API by setting up and solving a small LP using a
programming language.

Array Representation of Models

From within a programming environment, models can be entered into LINDO API in either of two
ways: 1) characterize the model using data structures (array representation) and pass the associated
data objects to LINDO API via model loading routines in LINDO API, or 2) read the model from a file
directly into LINDO API via input/output routines available. Supported file formats are MPS, LINDO,
MPI, SMPS, and SMPI formats, which are described in Appendices B, C, D, E, and F respectively.
Here, we focus on the first alternative, which we have referred to as array representation, and describe
how to characterize an LP model within a programming environment. In our discussion, the terms
‘array’ and ‘vector’ are used interchangeably.

We will use a small LP with four decision variables x;, x5, x3, x;, (n=4) and four constraints (m=4) for
our example. The lower and upper bounds are specified for each variable explicitly. If neither bounds
are given, it would be assumed the variable is continuous, bounded below by zero and bounded from
above by infinity. The model appears as follows:

Minimize X, + X, + X3 + x4
S.t.
3x1 + 2x, = 20
66X, + 9%y > 20
4x, + 5x, + 8x; = 40
Tx, + 1x3 > 10
2 < X1 < 5
1 < X < +00
-0 < X3 < 10

|
8
A
Xz
A
.
8

12 CHAPTER 1

The diagram below shows how each component of LP data, except the coefficients of the constraint
matrix, can be trivially represented by vectors (arrays). The circled elements labeled 4,B,C,D, and E in
the following figure symbolize these components and refer to objective coefficients, constraint senses,
right-hand sides, lower-bounds, and upper-bounds, respectively.

Use ‘L, ‘E’, ‘G, or ‘N’

for less-than, equal-to,

A greater-than, or neutral.
aininize -'
S.t.
3x: + 2%, 20
6x, + 9%, 20| C
4x; + 5X; + 8X; 40
7%, + 1xa B 10
D
< X <
< Xz =
= X3 < E
= X4 <

In this small example, these vectors translate to the following:

A=1[11 1 1 11.

B=[E G E G]].

c=1[20 20 40 10].

D=[2 1 -LS INFINITY -LS INFINITY].
E =[5 LS INFINITY 10 LS INFINITY].

Each of these vectors can be represented with an array of appropriate type and passed to LINDO API
via model loading routines. Although it is also possible to represent the coefficients of the constraint
matrix with a single vector, a different representation, called the sparse matrix representation, has
been adopted. This is discussed in more detail below.

Sparse Matrix Representation

LINDO API uses a sparse matrix representation to store the coefficient matrix of your model. It
represents the matrix using three (or optionally four) vectors. This scheme is utilized, so it is
unnecessary to store zero coefficients. Given that most matrix coefficients in real world math
programming models are zero, this storage scheme proves to be very efficient and can drastically
reduce storage requirements. Below is a brief explanation of the representation scheme.

We will use the coefficients of the constraint matrix in our sample LP from above. These are as
follows:

X1 Xy X3 Xy

300

2
9
0
0

o s O
~ 01 O
= o O

INTRODUCTION 13

Three Vector Representation

Three vectors can represent a sparse matrix in the following way. One vector will contain all of the
nonzero entries from the matrix, ordered by column. This is referred to as the Value vector. In our
example, this vector has 9 entries and looks like:

Valve = [3 4 6 5 7 8 1 2 9 1].

Note that all of the entries from the first column appear first, then the entries from the second column,
and so on. All of the zeros have been stripped out.

In the second vector, which we call the Column-start vector, we record which points in the Value
vector represent the start of a new column from the original matrix. The n™ entry in the Column-start
vector tells us where in the Value vector to find the beginning of the n™ column. For instance, the
column starts for the Value vector of our small example are underlined in the following diagram. Note
that LINDO API uses zero-based counting, so the Column-start vector is as follows:

01234561728
Value = [3 4657812891.

Column-start = [0 2 5 7 9].

Note that the Column-start vector has one more entry than there are columns in our matrix. The extra
entry tells LINDO where the last column ends. It will always be equal to the length of the Value
vector.

From the Column-start vector, we can deduce which column is associated with each entry in our Value
vector. The only additional information that we need is the row numbers of the entries. We store this
information in a third vector, the Row-index vector. This vector is the same length as the Value vector.
Each entry in the Row-index vector tells which row the corresponding entry from the Value vector
belongs to. In our example, the number 3 belongs to the first row, which we call row 0, so the first
entry in the Row-index vector is 0. Similarly, the second entry in the Value vector (4), belongs to the
third row (row 2 when starting from zero), so the second entry of the Row-index vector is 2.
Continuing in this way through the rest of the entries of the Value vector, the resulting Row-index
vector appears as follows:
0 1 2 3 4 5 6 7 8
Row-index = [0 2 1 2 3 2 3 0 1

1.

In summary, our transformation from a matrix into 3 vectors is:

Column-starts: [02579]
= Value: [346578129]
Row-index: [021232301]

S O W
~N L N O
—_ 00 O O
S O O

14 CHAPTER 1

Four Vector Representation

The four vector representation allows more flexibility than the three vector representation. Use it when
you expect to add rows to your original matrix (i.e., if you will be adding additional constraints to your
model).

The four vector representation uses the same three vectors as above. However, it allows you to have
“blanks” in your Value vector. Because of this, you must also pass a vector of column lengths, since
the solver doesn’t know how many blanks there will be.

For example, suppose we wish to leave room for one additional row. Then, our Value vector becomes:

Valve = [3 4 X 6 5 7 X 8 1 X 2 9 X]

where the X’s represent the blanks. The blanks may be nulls or any other value, since they will be
ignored for the time being.

Our Column-start vector becomes:

i

Column-start = [0 3 7 10 13].

o 1 2

4 5 6 7 8 9 10 11 12
Value = [3 4 X 5 7 X 8 1 X 2

9 X 1.

Our new vector is the Column-length vector. It will contain the length of each column (i.e., the number
of nonzeros in each column). This allows the solver to skip the blanks (X’s) in the Value vector. In our
small example, since the first column contains two nonzero and nonblank entries, the first element of
the Column-length vector will be 2. Continuing through the remaining columns, the Column-length
vector and its corresponding entries from the Value vector are as follows:

Column-length = [2 3 2 2].
Value = [3 4 X 6 5 7 X 8 1 X 2 9 X].

Our Row-index vector is as before, except we add a blank for each blank in the Value vector. As with
the Value vector, these blanks will be ignored, so they can contain any value. Thus, the Row-index
vector becomes:

0 1 2 3 4 5 6 7 8 9 10 11 12

0 2 X 1 2 3 X 2 3 X 1

Row-index = [2 X 1.

In summary, the four vector transformation is:

300 2 Column lengths: [2 3 2 2]

06 09 Column starts: [0 3 7 1013]

4 580 Values: [34X657X81X29X]
0710 Row indexes: [02X123X23X01X]

INTRODUCTION 15

Simple Programming Example

Up to this point, we have seen that the objective function coefficients, right-hand side values,
constraint senses, and variable bounds can be stored in vectors of appropriate dimensions and the
constraint matrix can be stored in three or four vectors using the sparse matrix representation. In this
section, we show how these objects should be declared, assigned values, and passed to LINDO API to
complete the model setup phase and invoke optimization.

Recall the small LP example model from the array representation section above:

Minimize X+ X, + x3 + x4
S.t.
3x, + 2x, = 20
6x, + 9%, 2 20
dx, + 5x, + 8x3 = 40
7%, + 1x3 > 10
2 < X1 < 5
1 < X5 < +00
-0 < X3 < 10
-0 < X4 < +00

It is easy to verify that the model has 4 variables, 4 constraints, and 7 nonzeros. As determined in the
previous section, its constraint matrix has the following (three-vector) sparse representation:

Column-start = [0 2 5 7 9]
Values = [3.0 4.0 6.0 5.0 7.0 8.0 1.0 2.0 9.0]
Row-index = o 2 1 2 3 2 3 0 11

Other components of the LP data, as described above, are:

Right-hand side values = [20 20 40 10].
Objective coefficients = [1 1 1 1].

Constraint senses = [E G E G].

Lower bounds = [2 1 —LS_INFINITY —LS_INFINITY 1.
Upper bounds = [5 LS INFINITY 10 LS INFINITY].

Create an Environment and Model

Before any data can be input to LINDO API, it is necessary to request LINDO API to initialize the
internal solvers by checking the license this user has and to get handles of the required resources

(e.g., pointers to internal memory areas). This is achieved by creating a LINDO environment object
and creating a model object within the environment. These reside at the highest level of LINDO API’s
internal object oriented data structure. In this structure, a model object belongs to exactly one
environment object. An environment object may contain zero or more model objects.

The following code segment does this:

/* declare an environment variable */
pLSenv pEnv;

/* declare a model variable */
pLSmodel pModel;

/* Create the environment */
pEnv = LScreateEnv (&nErrorCode, MY LICENSE KEY);

/* Create the model */
pModel = LScreateModel (pEnv, &nErrorCode);

16~ CHAPTER 1

The environment data type, pLSenv, and the model data type, pLSmodel, are both defined in the /indo.h
header file. A call to LScreateEnv() creates the LINDO environment. Finally, the model object is
created with a call to LScreateModel(). For languages other than C/C++ pLSenv and pLSmodel objects
refer to integer types. The associated header files are located in the ‘lindoapi/include’ directory.

Load the Model
The next step is to set up the LP data and load it to LINDO API. This is generally the most involved of
the steps.

Objective

The following code segment is used to enter the direction of the objective. The possible values for the
direction of the objective are LS MAX and LS MIN, which are predefined macros that stand for
maximize or minimize. For our sample problem, the objective direction is given as maximization with
the following code:

int nDir = LS MIN;

The constant terms in the objective function are stored in a double scalar with the following:
double dObjConst = 0.0;

Finally, the objective coefficients are placed into an array with the following:
double adC[4] = { 1., 1., 1., 1.};

Constraints
The following code segment is used to enter the number of constraints:

int nM = 4;

The constraint right-hand sides are place into an array with the following:
double adB[4] = { 20., 20., 40., 10. };

The constraint types are placed into an array with the following:
char acConTypes[4] = {‘E’, ‘G’', ‘E’ , ‘G" };

The number of nonzero coefficients in the constraint matrix is stored:
int nNZ = 9;

Finally, the length of each column in the constraint matrix is defined. This is set to NULL in this
example, since no blanks are being left in the matrix:
int *pnLenCol = NULL;

The nonzero coefficients, column-start indices, and the row indices of the nonzero coefficients are put
into arrays with the following:

int anBegCol[5] {o , 2 ,5 , 7 , 91}
double ada[(9] = { 3.0, 4.0, 6.0, 5.0, 7.0, 8.0, 1.0, 2.0, 9.0 };
int anRowx(9] = {0 , 2 ,1 ,2 ,3 ,2 ,3 ,0 ,1 i

Note: Refer to the section Sparse Matrix Representation above for more information on
representing a matrix with three or four vectors.

INTRODUCTION 17

Variables
The following code segment is used to declare the number of variables:

int nN = 4;
The upper and lower bounds on the variables are defined with the following:
double pdLower[4] = {2, 1, -LS_INFINITY, -LS INFINITY};

double pdUpper (4] = {5, LS INFINITY, 10, LS INFINITY};

Then, the variable types are placed into an array with the following:
char acVarTypes[4] = {‘C’,‘C’",‘C’,'C"};

The variable types could actually be omitted and LINDO API would assume that the variables were
continuous.

We have now assembled a full description of the model and pass this information to LINDO API with
the following:

nErrorCode = LSloadLPData(pModel, nM, nN, nDir, dObjConst, adC, adB,
acConTypes, nNZ, anBegCol, pnLenCol, adA, anRowX, pdLower, pdUpper);

All LINDO API functions return an error code indicating whether the call was successful or not. If the
call was successful, then the error code is zero. Otherwise, an error has occurred and its type could be
looked up in Appendix A, Error Codes. It is imperative that the error code returned is always checked
to verify that the call was successful.

Note: If there is a nonzero error code, the application program should stop, since the results would
be unpredictable and it may cause the program to crash.

Solve
Since the model is an LP, a linear solver, such as the primal simplex method, can be used. The model
is solved with the following call:

nErrorCode = LSoptimize(pModel, LS METHOD PSIMPLEX, &nSolStat);

Alternative solvers available for linear models include dual simplex and barrier (if licensed). When the
second argument in the function call is set to LS METHOD_FREE, LINDO API will decide the solver
to use by examining its structure and mathematical content. See the Common Macro Definitions
section of Chapter 2, Function Definitions, for more information on the predefined macros

LS METHOD PSIMPLEX and LS METHOD FREE.

Retrieve the Solution

The next step is to retrieve the solution using solution query functions. Many of the LINDO API query
functions need to have space allocated before calling the routine. You must be sure to allocate
sufficient space for query routines that include a pointer to a string, an integer vector, a double
precision vector, or character vector. If sufficient memory is not initially allocated, the application will
crash once it is built and executed. See Solution Query Routines in Chapter 2, Function Definitions, for
more information on which routines require space to be allocated for them. Refer to Chapter 3, Solving
Linear Programs, for more details on building and solving the model and a programming example in
Visual Basic.

18 CHAPTER 1

Here, the objective value and optimal variable values will be displayed. The objective value is
retrieved and printed with the following:

double adX([4];
nErrorCode = LSgetInfo(pModel, LS DINFO POBJ, &dObj):;
printf("Objective Value = %g\n", doObj);

See the context of the LSgetinfo() function in Chapter 2, Function Definitions, for more information on
the predefined macro LS DINFO_POBJ. It tells LINDO API to fetch the value of the primal objective
value via the LSgetInfo() function. The optimal variable values are retrieved and printed with the
following:

nErrorCode = LSgetPrimalSolution (pModel, adX);

printf ("Primal values \n");

for (i = 0; i < nN; i++) printf(" x[%d] = %g\n", 1, adX[i]):;
printf ("\n");

The output of this program would appear as follows:

Objective Value = 10.44118
Primal values

x[0] =5

x[1] = 1.176471

x[2] = 1.764706

x[3] = 2.5
Clear Memory

A last step is to release the LINDO API memory by deleting the LINDO environment with the
following call:

nErrorCode = LSdeleteEnv(&pEnv);

This frees up all data structures LINDO API allocated to the environment and all of the environment’s
associated models.

Chapter 2:
Function Definitions

In this section, we give "header" definitions of all user callable functions in LINDO API. Most of the
functions return error or information codes. For a complete listing of the codes, see Appendix A, Error
Codes.

The general form of functions in LINDO API is:

LSverbObject(specific_object)

Typical verbs are: create, delete, get, set, and optimize. Typical objects are: environment, model, and
parameter. LINDO API assumes typical default values (e.g., zero or infinity (LS _INFINITY) for most
of the specific objects). If you are happy with these defaults, then you can simply pass NULL for these
arguments in a function call.

In describing the callable functions, we have adopted a variable-naming convention, which is
commonly referred to as Hungarian notation. Several versions of Hungarian notation have evolved
over the years and all its dialects are intended to be mnemonic (easy to remember) for your
convenience. The version used here is dictated mainly by the data structure definitions that arise in the
representation of mathematical models. In building your own applications, you may follow or alter
them as desired.

In Hungarian notation, variable names begin with one or more lowercase letters that denote the
variable type, thus providing an inherent identification. For example, the prefix ad is used to identify a
double precision array, as in adVal. In like fashion, the prefix psz identifies a pointer to a
null-terminated string, as in *pszFilename. The following table summarizes the Hungarian notation
conventions for the commonly used data types in LINDO API:

Prefix Data type

Array

Integer (count)

Character

Double

Float

Integer (index into arrays)

Integer

A pointer variable containing the address of a variable
Null-terminated string (ASCIIZ)

K]J’UB""H?CL%ON

20 CHAPTER 2

Common Parameter Macro Definitions

Macro symbols are extensively used in LINDO API as arguments during function calls or as a
parameter to specify a choice or value. The macros can take integer, double, or character values. In the
following table, the most common ones are listed. The first column gives the name of the macro, the
second column refers to the value it refers to, and the third column gives a brief description.

Symbol Value |Description
Model Types
LS LP 10 |Linear programs
LS QP 11 |Quadratic programs
LS SOCP 12 |Conic programs
LS SDP 13 [Semidefinite programs
LS NLP 14 |Nonlinear programs
LS MILP 15 |Mixed-integer linear programs
LS MIQP 16 |Mixed-integer quadratic programs
LS MISOCP 17 |Mixed-integer conic programs
LS _MISDP 18 |Mixed-integer semidefinite programs
LS MINLP 19 |Mixed-integer nonlinear programs
LS CONVEX QP 20 |Convex QP
LS CONVEX NLP 21 [Convex NLP
LS CONVEX MIQP 22 [Convex MIQP
LS CONVEX MINLP 23 |Convex MINLP
LS UNDETERMINED -1 |Undetermined
Model Status
LS STATUS OPTIMAL 1 |An optimal solution is found
LS STATUS BASIC OPTIMAL 2 |An optimal basic solution is found
LS STATUS_INFEASIBLE 3 |The model is infeasible
LS STATUS UNBOUNDED 4 [The model is unbounded
LS STATUS _FEASIBLE 5 |The model is feasible
LS STATUS INFORUNB 6 [The solution is infeasible or unbounded. In order
to determine the actual status, primal simplex
method should be run on the model with
resolver off.
LS STATUS NEAR OPTIMAL 7 |A near optimal solution is found (for

FUNCTION DEFINITIONS 21

nonlinear problems only)

LS STATUS LOCAL OPTIMAL 8 |A local optimal solution is found (for
nonlinear problems only)

LS STATUS LOCAL INFEASIBLE 9 A locally infeasible solution is found
(for nonlinear problems only)

LS STATUS CUTOFF 10 |The solver found an optimal solution worse than
the cutoff

LS STATUS NUMERICAL ERROR| 11 [The solver encountered a numerical error during
a function evaluation (e.g., square root of a
negative number)

LS STATUS UNKNOWN 12 |Model was attempted to be solved, but the
optimization session terminated without
producing any useful information as to what
the actual status of the model is. So, the status of
the model is remains unknown.

LS STATUS _UNLOADED 13 |No model is loaded

LS STATUS LOADED 14 [Model is loaded, but it has not been attempted to
be solved yet.

Optimization Direction
LS_MIN 1 [Minimization type model.
LS MAX -1 |Maximization type model.
[Numerical Infinity

LS INFINITY 1.E30 |Numeric infinity for variable bounds. All bounds
whose absolute value is larger than
LS INFINITY is truncated.

Constraint Types (Senses)
LS CONTYPE LE ‘L> |Less than equal to.
LS CONTYPE EQ ‘E’ [Equal to.
LS CONTYPE GE ‘G’ |Greater than equal to.
LS CONTYPE FR ‘N’ [Free (or neutral).
Cone Types

LS CONETYPE _QUAD ‘Q’ |Quadratic cone

LS CONETYPE RQUAD ‘R> |Rotated quadratic cone
Variable Types

LS VARTYPE CONT ‘C’ |Continuous variable.

LS VARTYPE BIN ‘B’ |Binary variable.

LS VARTYPE INT ‘I’ |General integer variable.

LS VARTYPE SC ‘S’ |Semi-continuous variable.

Solver Types
LS METHOD FREE 0 [Solver decides.

22

CHAPTER 2

LS METHOD PSIMPLEX 1 |Primal simplex method.
LS METHOD DSIMPLEX 2 |Dual simplex method.
LS METHOD BARRIER 3 |Barrier method.
LS METHOD NLP 4 |Nonlinear Solver.
LS METHOD GA 13 |Genetic optimization solver
LS METHOD_ HEUMIP 15 |Use different heuristic algorithms to find a
feasible MIP solution.
LS METHOD PRIMIP 16 | Use different starting priorities to find a feasible
MIP solution.
Basis Status
LS BASTYPE BAS 0 [Basic.
LS BASTYPE ATLO -1 |Non-basic at lower bound.
LS BASTYPE ATUP -2 [Non-basic at upper bound.
LS BASTYPE FNUL -3 |Free and non-basic at zero value.
LS BASTYPE SBAS -4 [Fixed and non-basic at both lower and upper
bounds.
Solution File Format and Types
LS SOLUTION_OPT 0 [Default solution file format.
LS SOLUTION_MIP 1 [Solution file format for MIP solutions.
LS SOLUTION OPT IPM 2 |Solution file format for interior point solutions.
LS SOLUTION_OPT OLD 3 [Solution file format in LINDO API version 1.x.
LS SOLUTION_MIP_OLD 4 [Solution file format for MIP solutions in LINDO
API version 1.x
Set Types
LS MIP_SET_SOS1 1 [Special ordered set of type-1
LS MIP_SET_SOS2 2 [Special ordered set of type-2
LS MIP_SET SOS3 3 |Special ordered set of type-3
LS MIP_SET_CARD 4 [Set cardinality.
[Norm Options
LS IIS NORM_FREE 0 [Solver decides the infeasibility norm for IIS
analysis.
LS IIS NORM_ONE 1 [Solver uses L-1 norm for IIS analysis.
LS IIS NORM_INFINITY 2 [Solver uses L-co norm for IIS analysis
IS Methods
LS IIS DEFAULT 0 |Use default filter in IIS analysis.
LS IIS DEL FILTER 1 |Use deletion filter in IIS analysis.
LS IIS ADD_ FILTER 2 |Use additive filter in IIS analysis.
LS IIS GBS FILTER 3 |Use generalized-binary-search filter in IIS

analysis.

FUNCTION DEFINITIONS 23

LS 1IS DFBS FILTER 4 |Use depth-first-binary-search filter in IIS
analysis.
LS IIS FSC FILTER 5 |Use fast-scan filter in IIS analysis.
LS IIS ELS FILTER 6 |Use elastic filter in IIS analysis.
Stochastic Optimization Methods
LS METHOD STOC FREE -1 [Solve with the method chosen by the solver.
LS METHOD STOC DETEQ 0 [Solve the deterministic equivalent (DETEQ).
LS METHOD_ STOC NBD 1 |Solve with the Nested Benders Decomposition
(NBD) method.
LS METHOD STOC ALD 2 |Solve with the Augmented Lagrangian
Decomposition (ALD) method.
LS METHOD_STOC HS 4 |Solve with the Heuristic-Search (HS) method.
Stochastic Data Types
LS JCOL _INST -8 |Stochastic parameter is an instruction code
LS JCOL RUB -7 |Stochastic parameter is an upper bound for RHS
(reserved for future use)
LS JCOL RLB -6 |Stochastic parameter is a lower bound for RHS
(reserved for future use)
LS JCOL RHS -5 |Stochastic parameter is a RHS value (belongs to
RHS column)
LS TIROW_OBJ -4 |Stochastic parameter is an objective coefficient
(belongs to OBJ row)
LS IROW_VUB -3 |Stochastic parameter is a lower bound (belongs
to LO row)
LS IROW_VLB -2 |Stochastic parameter is an upper bound (belongs
to UP row)
LS IROW_VFX -1 |Stochastic parameter is a fixed bound (belongs
to FX row)
LS IMAT AlJ 0 |Stochastic parameter is an LP matrix entry.
Property
LS PROPERTY_CONST 1 |Constraint function is a constant
LS PROPERTY_ LINEAR 2 [Constraint function is linear
LS PROPERTY_CONVEX 3 |Constraint function is convex
LS PROPERTY CONCAVE 4 |Constraint function is concave
LS PROPERTY_ QUASI CONVEX 5 |Constraint function is quasi-convex
LS PROPERTY_QUASI CONCAVE 6 |Constraint function is quasi-concave
LS PROPERTY MAX 7 |Reserved for future use
LS PROPERTY