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Preface 
LINDO Systems is proud to introduce LINDO API 10.0. The general features include a) stochastic 

optimization b) global and multistart solvers for global optimization, c) nonlinear solvers for general 

nonlinear optimization, d) simplex solvers for linear optimization e) barrier solvers for linear, 

quadratic and second-order-cone optimization f) mixed-integer solvers for linear-integer and 

nonlinear-integer optimization, g) tools for analysis of infeasible linear, integer and nonlinear models, 

h) features to exploit parallel processing on multi-core computers, i) interfaces to other systems such as 

MATLAB, Ox, Java and .NET and j) support of more platforms 

(see below). The primary solvers in LINDO API 10.0 are: 

 

 Global Solver:   

The global solver combines a series of range bounding (e.g., interval analysis and convex 

analysis) and range reduction techniques (e.g., linear programming and constraint 

propagation) within a branch-and-bound framework to find proven global solutions to non-

convex NLPs. Traditional nonlinear solvers can get stuck at suboptimal, local solutions. 

Version 10.0 incorporates substantial improvements in a) finding good feasible solutions 

quickly and  b) constructing bounds on both convex and nonconvex functions so optimality 

can be proven more quickly. 

 Mixed Integer Solver:  

The mixed integer solver of LINDO API 10.0 solves linear, quadratic, and general nonlinear 

integer models. It contains advanced  techniques such as a) cut generation b) tree reordering 

to reduce tree growth dynamically, and c) advanced heuristic and presolve strategies. 

Substantial improvements in 10.0 include: a)  heuristics for finding good solutions quickly, 

and b) identifying certain model structures and exploiting for much faster solution. 

 General Nonlinear Solver:  

LINDO API is the first full-featured solver callable library to offer general nonlinear and 

nonlinear/integer capabilities. This unique feature allows developers to use a single general 

purpose solver into custom applications. As with its linear and integer capabilities, LINDO 

API provides the user with a comprehensive set of routines for formulating, solving, and 

modifying nonlinear models. Version 10.0 supports several dozen additional nonlinear 

functions, mainly in the area of probability distributions, pdf’s, cdf’s, and their inverses. 

 Multistart  Nonlinear Solver:  

The multistart solver intelligently generates a sequence of candidate starting points in the 

solution space of NLP and mixed integer NLPs. A traditional NLP solver is called with each 

starting point to find a local optimum. For non-convex NLP models, the quality of the best 

solution found by the multistart solver tends to be superior to that of a single solution from a 

traditional nonlinear solver. A user adjustable parameter controls the maximum number of 

multistarts to be performed. See Chapter 7, Solving Nonlinear Models, for more information. 
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 Simplex Solvers:  

LINDO API 10.0 offers two advanced implementations of the primal and dual simplex 

methods as the primary means for solving linear programming problems.  Its flexible design 

allows the users to fine tune each method by altering several of the algorithmic parameters.  

The Sprint method uses the standard simplex solvers efficiently to handle “skinny” LP’s, 

those having millions of variables, but a modest number of constraints. 

 Barrier (Interior-Point) Solver:  

Barrier solver is an alternative way for solving linear and quadratic programming problems. 

LINDO API’s state-of-the-art barrier solver offers great speed advantages for large scale 

sparse models.  LINDO API 10.0 also includes a special variant of the barrier solver 

specifically designed to solve Second-Order-Cone (SOC) problems, including Semi-Definite 

Programs (SDP). See Chapter 6, Solving Second-Order-Cone Models, for more information. 

Version 10.0 includes improved techniques for automatically identifying models than can be 

solved as SOC. 

 Stochastic Solver,  Multistage and Chance Constrained:  

LINDO API 10.0 supports decision making under uncertainty. Its powerful stochastic solver 

offers the ability to solve: 

a) chance-constrained models,  

b) multistage stochastic models with recourse.  

For both types, the user expresses the uncertainty by providing distribution functions, either 

built-in or user-defined. In multistage models, the stochastic solver optimizes the model to 

minimize the cost of the initial stage plus the expected value of recourse over all future 

stages. In chance-constrained models, the solver finds the best solution that satisfies 

constraints with a specified probability.  

 Parallel Extensions:  

LINDO API 10.0 includes multi-cpu optimization extensions to its solvers to take advantage 

of computers with multicore processors. The multicore extensions are of  two types: 

concurrent optimizers and parallel optimizers (using built-in parallel algorithms). Parallel 

versions of random number generators and sampling features are also provided. 

 Statistical Sampling Tools: 

LINDO API 10.0 offers extensive set of API functions for sampling from various statistical 

distributions. Sampling error can be reduced by using variance reduction methods such as 

Latin-Hyper-Square sampling and Antithetic variates.  Generation of correlated (dependent) 

samples based on Pearson, Spearman or Kendall’s correlation measures is provided. A 

pseudo-random number generation API offers advanced generators with long cycles. 

 Model and Solution Analysis Tools: 

LINDO API 10.0 includes a comprehensive set of analysis tools for a) debugging of  

infeasible linear, integer and nonlinear programs using series of advanced techniques to 

isolate the source of infeasibilities to smaller subset of the original constraints, b) performing 

sensitivity analysis to determine the sensitivity of the optimal basis to changes in certain data 

components (e.g. objective vector, right-hand-size values etc..). 

 Quadratic Recognition Tools: 

The QP recognition tool is a useful algebraic pre-processor that automatically determines if 

an arbitrary NLP is actually a quadratic or SOC model. These models may then be passed to 

the faster quadratic solver, which is available as part of the barrier solver option. 
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 Linearization Tools:   

Linearization is a comprehensive reformulation tool that automatically converts many non-

smooth functions and operators (e.g., max and absolute value) to a series of linear, 

mathematically equivalent expressions. Many non-smooth models may be entirely linearized. 

This allows the linear solver to quickly find a global solution to what would have otherwise 

been an intractable nonlinear problem. 

 Decomposition Solvers and Tools:  

Many large scale linear and mixed integer problems have constraint matrices that are 

decomposable into certain forms that could offer computational advantage when solving. For 

instance, some models decompose into a series of totally independent subproblems. A user 

adjustable parameter can be set, so the solver checks if a model possesses such a structure. If 

total decomposition is possible, it will solve the independent problems sequentially to reach a 

solution for the original model. This may result in dramatic speed improvements. In other 

cases, the model could have dual-angular structure with few linking columns, in which case 

Benders decomposition solver may be useful. Models with primal-angular structure with a 

few linking row can exploit the BNP solver. BNP solver can also be helpful in determining 

very tight bounds to MIP problems using the built-in Lagrangean relaxation procedure. To 

help identify different decomposition structures, special tools are provided to determine lower 

triangular, dual-angular and primal-angular structures. Refer to the Block Structured Models 

section in Chapter 10, Analyzing Models and Solutions, for more information. 

 Java Native Interface:  

LINDO API includes Java Native Interface (JNI) support for Windows, Solaris, and Linux 

platforms. This new feature allows users to call LINDO API from Java applications, such as 

applets running from a browser. 

 MATLAB Interface:  

The Matlab interface allows using LINDO API functions from within MATLAB. Using 

MATLAB’s modeling and programming environment, you can build and solve linear, 

nonlinear, quadratic, and integer models and create custom algorithms based upon LINDO 

API’s routines and solvers. 

 .NET Interface: 

LINDO API includes C# and VB.NET interfaces that allow it to be used from within .NET's 

distributed computing environment (including Windows Forms, ADO.NET, and ASP.NET). 

The interfaces are in the form of classes that allow managed .NET code to interact with 

unmanaged LINDO API code via the "System.Runtime.InteropServices" namespace. 

 Ox Interface: 

This interface provides users of the Ox statistical package, the ability to call LINDO API’s 

functions the same way they call native Ox functions. This offers greater flexibility in 

developing higher-level Ox routines that can set up and solve different kinds of large-scale 

optimization problems, testing new algorithmic ideas or expressing new solution techniques. 

 Python Interface: 

The Python interface allows using LINDO API from within applications written in Python 

language. Using Python’s extensive programming environment, you can build and solve all 

model types supported by the C API. The Python interface is particularly suited for fast 

development and testing of algorithmic ideas. 
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 R Interface: 

The R interface allows using LINDO API from within applications written in R-language. 

Coupled with R’s extensive statistical and data-mining tools, the LINDO API's R interface 

offers seamless possibilities in statistical analysis and optimization. All model types 

supported by the C API are available in the R interface. 

 Platforms: 

LINDO API 10.0 is currently available on Windows 32/64 bit, Linux 32/64-bit, OSX 64-bit 

platforms. For availability of LINDO API 10.0 on all other platforms, you may wish to 

contact LINDO Systems, Inc. 
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Chapter 1:  

Introduction 
What Is LINDO API? 
The LINDO Application Programming Interface (API) provides a means for software developers to 

incorporate optimization into their own application programs. LINDO API is designed to solve a wide 

range of optimization problems, including linear programs, mixed integer programs, quadratic 

programs, and general nonlinear non-convex programs. These problems arise in areas of business, 

industry, research, and government. Specific application areas where LINDO API has proven to be of 

great use include product distribution, ingredient blending, production and personnel scheduling, 

inventory management… The list could easily occupy the rest of this chapter. 

Optimization helps you find the answer that yields the best result; attains the highest profits, output, or 

happiness; or achieves the lowest cost, waste, or discomfort. Often these problems involve making the 

most efficient use of your resources—including money, time, machinery, staff, inventory, and more. 

Optimization problems are often classified as linear or nonlinear, depending on whether the 

relationships in the problem are linear with respect to the variables. 

The most fundamental type of optimization problems is the linear program (LP) of the form: 

Minimize (or maximize)   c1x1 +  c2x2 +  … +  cnxn 

Such that 

                                               A11x1 + A12x2 +  … + A1nxn   ?  b1 

                                               A21x1 + A22x2 +  … + A2nxn   ?  b2 

                                                         :               …                 : 

                                               Am1x1 + Am2x2 +  … + Amnxn  ? bm 

                                                          L1  x1  U1 

                                                          L2  x2  U2 

                                                                   : 

                                                          Ln  xn  Un 

 

where Aij, cj, bi, Lj, Uj are known real numbers; ? is one of the relational operators ‘’, ‘=’, or ‘’; and 

x1,x2,…,xn are the decision variables (unknowns) for which optimal values are sought. 

The expression being optimized is called the objective function and c1,c2,…,cn are the objective 

coefficients. The relationships whose senses are expressed with ? are the constraints; Ai1,Ai2,…,Ain are 

the coefficients; and bi is the right-hand side value for the i
th

 constraint. Lj and Uj represent lower and 

upper bounds for the j
th

 decision variable and can be finite or infinite.  
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At the core of LINDO API’s optimizers are the linear solvers, which solve problems of this form. On 

top of the linear solvers are other solver types. These can be used to solve generalizations of LPs, such 

as problems containing integer variables or quadratic or nonlinear expressions. 

The problem of mixed-integer linear programs (MILP) is an extension of LPs where some of the 

decision variables are required to take integer (whole number) values. Another extension of LPs is 

when the expressions in the objective function or the constraints are nonlinear functions of decision 

variables, such as logarithms or products of variables. Such problems are called nonlinear programs 

(NLPs). A special case of NLPs is quadratic programs (QPs) where the only nonlinear relationships 

among variables are products of two variables. NLPs and QPs with integrality restrictions on some 

variables are called mixed-integer nonlinear programs (MINLP) and mixed-integer quadratic 

programs (MIQP), respectively. 

Linear Solvers 
There are three linear solvers—the Primal Simplex, Dual Simplex, and the Barrier Methods. The 

simplex method (primal or dual) solves the LP by moving along the edges of the feasible region 

defined by the constraint set. By contrast, the barrier method walks through the interior of the feasible 

region while searching an optimal solution. All three methods either terminate with an optimal solution 

or return a flag indicating that the LP is infeasible or unbounded. 

In general, it is difficult to say which algorithm will be fastest for a particular model. A rough 

guideline is Primal Simplex tends to do better on sparse models with fewer rows than columns. Dual 

Simplex tends to do well on sparse models with fewer columns than rows or models that are primal 

and/or dual degenerate, while Barrier works best on structured models or very large models. The 

simplex methods use a state-of-the-art implementation of the revised simplex method with product 

form inverse. The barrier solver uses a homogeneous self-dual algorithm. All three use extensive 

preprocessing to help reduce the complexity of the LP and improve its numerical properties. See 

Chapter 3, Solving Linear Programs, for examples of solving linear programs with the LINDO API. 

Mixed-Integer Solver 
LINDO API solves the mixed-integer models with the branch-and-cut method. It is an iterative method 

that uses either the linear or nonlinear solver as a subsolver, depending on the nature of the problem. 

The mixed-integer solver is equipped with advanced preprocessing, heuristic and cut generation tools. 

Preprocessing generally reduces the problem size to a manageable size and offers great computational 

savings, especially for large problems. Addition of “cuts” helps eliminate the noninteger feasible 

regions quickly and provides improved bounds during the branch-and-bound. For many classes of 

MILP problems, heuristic algorithms quickly find good integer solutions and lead to improved bounds. 

All these techniques lead to improved solution times for most integer programming models. See 

Chapter 2, Function Definitions, for more information of optimization functions and related 

parameters. See Chapter 4, Solving Mixed-integer Programs, for examples of solving mixed integer 

programs with LINDO API. 
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Nonlinear Solver 
LINDO API’s nonlinear solver employs both successive linear programming (SLP) and generalized 

reduced gradient (GRG) methods. Under certain conditions, QPs, which are special cases of NLPs, can 

be solved more efficiently via the barrier method. 

The nonlinear solver returns a local optimal solution to the underlying problem. If local optimality 

cannot be achieved, then a feasible solution is reported if one had been found. In case no feasible 

solutions were found or the problem was determined to be unbounded or numerical problems have 

been encountered, then an appropriate flag is returned. 

LINDO API can automatically linearize a number of nonlinear relationships through the addition of 

constraints and integer variables, so the transformed linear model is mathematically equivalent to the 

original nonlinear model. Keep in mind, however, that each of these strategies will require additional 

computation time. Thus, formulating models, so they are convex and contain a single extremum, is 

desirable.  

Global Solver 
The standard nonlinear solver returns a local optimal solution to the NLP. However, many practical 

nonlinear models are non-convex and have more than one local optimal solution. In some applications, 

the user may want to find a global optimal solution. 

The optional global solver available in LINDO API employs branch-and-cut methods to break an NLP 

model down into many convex sub-regions and returns a provably global optimal solution. See 

Chapter 7, Solving Nonlinear Programs, for examples of solving nonlinear programs with LINDO 

API. 

LINDO API also has a multistart feature that restarts the standard (non-global) nonlinear solver from a 

number of intelligently generated points. This allows the solver to find a number of locally optimal 

points and report the best one found. This alternative could be used when global optimization is costly.  

Stochastic Solver 
LINDO API’s stochastic solver can solve multistage linear, nonlinear and integer models where some 

of the model parameters are not known with certainty but can be expressed probabilistically. Integer 

and nonlinear stochastic models are solved by transforming the model into the so-called deterministic-

equivalent model. Linear models can be solved  either with the nested Benders method or through the 

deterministic equivalent.  For models with parametric distributions, Monte-Carlo sampling is available 

for finite approximations. Standard variance reduction strategies like Latin-hypersquare sampling and 

antithetic control variates are also available during sampling. Advanced tools, like inducing a 

correlation structure among random parameters  based on various measures, are also provided. See 

Chapter 8, Stochastic Programming, for a detailed coverage of the topic and illustrative examples. 

Installation 
Installing the LINDO API software is relatively straightforward. To run LINDO API, we recommend a 

computer running Linux, Solaris, or a 32-bit  or 64-bit version of Windows. In general, you will need 

at least 32Mb of RAM and 20Mb of free disk space. A faster processor and additional memory may 

allow LINDO API to solve tougher problems and/or improve performance. It should be noted that 

these are minimums.  Solving big models may require more resources. 



4 CHAPTER 1 

 

Windows Platforms 
To install a Windows version (95/98/NT/XP/Vista/7), simply insert the LINDO API installation CD, 

double-click on the LINDO API folder to open the directory, and then double-click on the setup icon 

to run the LINDO API setup program. For a downloaded version of LINDO API, simply extract the 

executable file (.exe) from the (.zip) archive and run it (double-click the setup icon) to launch the 

installation process. Setup will do all the required work to install LINDO API on your system and will 

prompt you for any required information.  

After the installation process is complete, the following directory structure will be available.  

LINDOAPI\                 ' Installation directory 

LINDOAPI\BIN\WIN32        ' Executables, dynamic libraries 

LINDOAPI\LIB              ' Import library, Java class library 

LINDOAPI\MATLAB           ' Matlab scripts, functions, etc..  

LINDOAPI\OX               ' OX library 

LINDOAPI\INCLUDE          ' Header files 

LINDOAPI\LICENSE          ' License files 

LINDOAPI\DOC              ' User manual in PDF format 

LINDOAPI\SAMPLES          ' Samples directory 

LINDOAPI\SAMPLES\C\       ' C/C++ samples  

LINDOAPI\SAMPLES\DELPHI\  ' Delphi samples  

LINDOAPI\SAMPLES\JAVA\    ' Java samples (J2SDK and J++) 

LINDOAPI\SAMPLES\VB\      ' Visual Basic samples (Windows only) 

LINDOAPI\SAMPLES\DOTNET\VB' Visual Basic .NET samples  

LINDOAPI\SAMPLES\DOTNET\CS' C# .NET samples  

LINDOAPI\SAMPLES\FORT\    ' F90 samples (Windows only) 

LINDOAPI\SAMPLES\MPS\     ' Test problems in MPS format 

 

Note: The binaries in your installation are located  under ‘lindoapi\bin\<platform>’ directory, where 

<platform> refers to the platform (or operating system) you are working on. For instance, on 

x86 platform running 32-bit Windows, the binaries are located at ‘lindoapi\bin\win32’, similarly 

on x64 platform running 64-bit Linux, the binaries are at ‘lindoapi\bin\linux64’. 

Unix-Like Platforms  
Follow the steps below to complete the installation on Unix-like platforms. It is assumed that the 

Linux 32-bit version of  LINDO API is being installed. For Solaris and other platforms, these steps 

would be identical except for the installation file name. 

 

Step 1. Locate the LAPI-LINUX-IA32-10.0.tar.gz file on your CD. 

 

Step 2. Copy this file into an installation directory of your choice (e.g. /opt): 

%> cp LAPI-LINUX-IA32-10.0.tar.gz  /opt 

 

Step 3. Change working directory to '/opt' and uncompress the file using ‘gzip –d’ command as 

below. This operation creates LAPI-LINUX-IA32-10.0.tar.         

  %> gzip –d LAPI-LINUX-IA32-10.0.tar.gz  
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Step 4. Uncompress that file using ‘tar –xvf’ command as below. This will create the LINDO API 

directory ‘lindoapi/’. 

 %> tar –xvf LAPI-LINUX-IA32-10.0.tar 

 

Step 5. Set $LINDOAPI_HOME environment variable to point to the installation directory. 

LINDOAPI_HOME=/opt/lindoapi 

export LINDOAPI_HOME 

 

Step 6. Change file permissions and create symbolic links as needed.  

Change working directory to ‘$LINDOAPI_HOME/bin/linux32’ and check if LINDO 

API’s shared libraries (.so files) and the driver program ‘runlindo’ are all in  executable mode. If not, 

either run the script 'lsymlink.sh' or change the mode manually by typing the following commands: 
 

 %> chmod 755 liblindo.* 

 %> chmod 755 liblindojni.* 

 %> chmod 755 libmosek.so.* 

 %> chmod 755 runlindo 

 

Create symbolic links to the following library files – symbolic links are required for makefiles in 

samples directory. 

 

For Unix-like systems, 
 

 %> ln -sf liblindo.so.10.0 liblindo.so  

 %> ln -sf liblindojni.so.10.0 liblindojni.so 

 %> ln -sf libmosek.so.7.0 libmosek.so 

 

For Mac-OSX 
 

 %> ln -sf liblindo.10.0.dylib liblindo.dylib  

 %> ln -sf libmosek.7.0.dylib libmosek.dylib 

 

These steps can be performed using the script ‘$LINDOAPI_HOME/bin/<platform>/lsymlink.sh’. 

 

Step 7. (Optional) You can update your library path environment variable although it is not the 

recommended way to specify search directories. LINDO API already have the run-time search paths 

(RPATH) hardcoded into its libraries. LD_LIBRARY_PATH might only be appropriate as a short  

term solution during testing or development. For example, a developer might use it to point to  

older versions (prior to v8) of the LINDO API library. Older versions of LINDO API rely on this  

environment variable. 
     

LD_LIBRARY_PATH=$LINDOAPI_HOME/bin/<platform>:$LD_LIBRARY_PATH 

export LD_LIBRARY_PATH  

 

Note:  Mac-OSX, AIX and HP-UX do not use LD_LIBRARY_PATH. Users of these systems 

should apply the following equivalent changes. 
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      Mac-OSX: 
DYLD_LIBRARY_PATH=$LINDOAPI_HOME/bin/<platform>:$DYLD_LIBRARY_PATH 

export DYLD_LIBRARY_PATH  

 

      AIX: 
LIBPATH=$LINDOAPI_HOME/bin/<platform>:$LIBPATH 

export LIBPATH 

 

      HP-UX: 
SHLIB_PATH=$LINDOAPI_HOME/bin/<platform>:$SHLIB_PATH 

export SHLIB_PATH 

 

Step 8. (Optional) You can set $LINDOAPI_LICENSE_FILE environment variable to refer to 

the license file in your installation.  
 

 LINDOAPI_LICENSE_FILE = “$LINDOAPI_HOME/license/lndapi100.lic” 

 export LINDOAPI_LICENSE_FILE 

 

Alternatively, you can execute the shell script ‘lindoapivars.sh’ to perform the required updates in 

these environment variables.  

 

To execute this script manually, enter the following at command line: 
  

source $LINDOAPI_HOME/bin/<platform>/lindoapivars.sh 

 

To execute this script automatically at logon, append this line to the end of your startup script 

(.bashrc or .bash_profile for bash shell). 
         

Step 8. If you received a license file (lndapi100.lic) with your installation CD, copy this file into the 

‘$LINDOAPI_HOME/license’ directory.  
                

Step 9. You can test your installation by changing directory to $LINDOAPI_HOME/bin/<platform> 

and type the following. This should display the version info on your LINDO API installation. 
 

 %>  ./runlindo –v 

 

Optionally, you can add “./” to your $PATH variable to avoid having to type "./" in front of program 

runlindo from the current working directory. 
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Updating License Keys 
In a default installation, the license file (lndapi100.lic) is located under LINDOAPI\LICENSE 

directory. The license file initially contains a demo license, which allows full access to LINDO API 

with limited problem capacity. 

The contents of lndapi100.lic are as follows: 

LINDO API Demo 10.00 

1 

None 

Nonlinear Global Barrier   

Educational   

All platforms 

Eval Use Only 

> 

** place your license key here ** 

> 

Modify this file by placing the license key you received with your copy of the software between the 

“>” characters. Be sure to preserve capitalization and include all hyphens. For instance, suppose your 

license key is: AT3x-5*mX-6d9J-v$pG-TzAU-D2%. Then, modify lndapi100.lic, so it appears 

exactly as follows: 

LINDO API Demo 10.00 

1 

None 

Nonlinear Global Barrier   

Educational   

All platforms 

Eval Use Only 

> 

AT3x-5*mX-6d9J-v$pG-TzAU-D2% 

> 

Note: If you purchased a license, you should update the license file with the license key you obtained 

from your sales representative.  

           If you were e-mailed your license key, simply cut the license key from the e-mail that contains 

it and paste it into the lndapi100.lic file replacing the existing demo license key.  

Your license key is unique to your installation and contains information regarding your version's serial 

number, size, and supported options. The license key is case sensitive, so be sure to enter it exactly as 

listed, including all hyphens. Given that your license key is unique to your installation, you can not 

share it with any user not licensed to use your copy of the LINDO API. 
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Solving Models from a File using Runlindo 
LINDO API distribution contains a simple program, runlindo.exe that allows you to solve models from 

a file after installation. In a 32-bit Windows installation, runlindo.exe is in the \lindoapi\bin\win32 

directory.  Runlindo is intended to be run from a command line prompt.  To see command line options, 

type at the command line prompt: 

runlindo –help 

in which case the following command line options will be listed: 

Usage: RUNLINDO filename [ options ]  

  

General options: 

    -max            { Solve the problem as a maximization problem } 

    -min            { Solve the problem as a minimization problem } 

    -print   [n]    { Set print level to [n] } 

    -decomp  [n]    { Set decomposition type to 'n' when solving 

LP/MIPs (2)} 

    -iisfind [n]    { Find IIS with search level 'n' 

    -iisnorm [n]    { Set infeasibility norm to 'n' in IIS search 

(1). 

    -iismeth [n]    { Use method 'n' with IIS finder (1). 

    -iusfind [n]    { Find IUS with search level 'n' 

    -iusmeth [n]    { Use method 'n' with IUS finder (1). 

    -nblocks [n]    { Set number of blocks in a decomposed model to 

'n' (1)  

    -bnd, -b [n]    { Truncate infinite bounds with 1e+n (15) 

    -linfo          { Display license information } 

    -uinfo          { Display user information } 

    -licfile        { Read license file } 

    -tlim [n]       { Set time limit to 'n' secs. } 

    -ilim [n]       { Set iter limit to 'n'. } 

    -pftol [eps]    { Set primal feasibility tolerance to 'eps'.} 

                      Defaults for LP: 1e-7, NLP: 1e-6 

    -dftol [eps]    { Set dual feasibility tolerance to 'eps'.} 

                      Defaults for LP: 1e-7, NLP: 1e-7. 

    -aoptol [eps]   { Set absolute optimality tolerance to 'eps'.} 

                      Defaults for MILP: 0.0, GOP:1e-6, SP:1e-7 

    -roptol [eps]   { Set relative optimality tolerance to 'eps'.} 

                      Defaults for MILP:1e-6, GOP:1e-6, SP:1e-7 

    -poptol [eps]   { Set percent optimality tolerance to 'eps'.} 

                      Defaults for MILP:1e-5 

    -ver,-v         { Display version and build date } 

    -help,-h        { Help } 

    -nthreads [n]   { Set number of parallel threads. } 

    -ccstrategy [n] { Set concurrent strategy to n. } 

    -xsolver [n]    { Enable external LP solver #n. } 

    -threadmode [n] { Multithread mode for supported solvers. } 



INTRODUCTION      9 

 

Linear optimization options: 

    -lp             { Solve the problem as an LP problem } 

    -psim           { Use the primal simplex method for LP problems } 

    -dsim           { Use the dual simplex method for LP problems } 

    -bar            { Use the barrier method for LP problems } 

    -noscale        { Set scaling off } 

    -dual           { Solve the dual model implicitly } 

    -tpos           { Solve the dual model explicitly } 

    -novertex       { No crossover with barrier method } 

    -iusol          { Force the solver to return some solution  

                      when the model is infeasible or unbounded. } 

    -pre_lp [n]     { Set presolve level to 'n' for LP problems 

(126)} 

    -fileLP         { Solve specified LP model with sprint } 

    -refact [n]     { Refactor frequency (250) } 

  

Mixed integer optimization options: 

    -mip            { Solve the problem as a MIP problem } 

    -pri            { Read the priority file 'filename.ord' } 

    -pre_root [n]   { Set presolve level to 'n' for root node (510).} 

    -pre_leaf [n]   { Set presolve level to 'n' for leaf nodes 

(174).} 

    -cut_root [n]   { Set cut level to 'n' for root node (22526).} 

    -cut_leaf [n]   { Set cut level to 'n' for leaf nodes (20478).} 

    -ord_tree [n]   { Set tree reorder level to 'n' (10).} 

    -heuris   [n]   { Set heuristic level to 'n' (3).} 

    -strongb  [n]   { Set strongbranch level to 'n' (10).} 

    -kbest    [k]   { Find k best MIP solutions } 

    -bnp      [n]   { Solve MIP with branch and price method of level 

n} 

    -fblock   [n]   { Find block for bnp with level n (1 to 3)} 

    -colmt    [n]   { Limit for colums generated in bnp solver 

    -hsearch  [n]   { Solve MIP using heuristic-search using 

method/mode [n]} 

    -fp       [n]   { Set feasibility pump level (-1 to 2)} 

    -rootlp   [n]   { Set the method for solving root LP relaxation 

(0 to 4)} 

    -nodelp [n]     { Set the method for solving node LP relaxation 

(0 to 4)}  

 

Nonlinear optimization options: 

    -nlp            { Use the nonlinear solver for QP problems} 

    -multis  [n]    { Set number of multistarts to [n] for NLP 

problems} 

    -conopt  [n]    { Use Conopt version 'n' for NLP problems (3)} 

    -lnz     [n]    { Set linearization level for NLP problems to 'n' 

(0)} 

    -pre_nlp [n]    { Set presolve level to 'n' for NLP problems (0)} 

    -derv    [n]    { Set derivative type 'n' for NLP problems (0)} 

    -qp             { Solve QP problem} 

    -hessian        { Enable usage of Hessian (2nd order) matrix} 

    -lcrash  [n]    { Set advanced NLP crash mode to n (1)} 

    -filtmode[n]    { Set multistart filter mode (0) } 

    -prepmode[n]    { Set multistart prep mode (0) } 

  

Global optimization options: 
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    -gop            { Solve the problem as a GOP problem } 

  

I/O options: 

    -par <parfile>  { Read parameters from <parfile>} 

    -ini <inifile>  { Read initial solution from <inifile> or 

'filename.sol'} 

    -sol            { Write solution to file 'filename.sol' } 

    -sol_ipm        { Write IPM solution to file 'filename.sol' } 

    -fmps           { Read formatted MPS files (old MPS format)} 

    -cmps           { Read MPS compatible mode files (can combine 

with -fmps) } 

    -wmps           { Export the input model in MPS format } 

    -wmpi           { Export the input model in MPI format } 

    -wltx           { Export the input model in LINDO format } 

    -wlng           { Export the input model in LINGO format } 

    -wiis           { Export the IIS in LINDO format } 

    -wset           { Export the input model with sets/sc in MPS 

format} 

    -wbas           { Export the final basis into 'filename.bas'} 

    -smps           { Read SMPS/SMPI formatted SP model. } 

    -rtim           { Read time/block structure from 'filename.tim'} 

    -wtim           { Export time/block structure to 'filename.tim'} 

    -wpar <parfile> { Write parameters to <parfile>} 

    -ccpar <base>   { Read parameters for concurrent solve from  

                      file-chain <base>} 

     

For example, to solve a linear program in MPS format in a file called “mymodel.mps”, you might type: 

runlindo mymodel.mps  -sol 

The option “-sol” causes a solution report to be written to the file “mymodel.sol”.  To learn more about 

the file formats recognized, see the appendices. 

The ability to set parameters is not limited to command line arguments. Before initializing each 

optimization session, runlindo reads optionally specified parameters from a file named “lindo.par”.  

All LINDO API parameters can be set through this simple interface. Parameter values set through 

command line arguments have precedence over those set through “lindo.par”.  An example “lindo.par” 

can be found in: 

lindoapi/bin/$PLATFORM 

where $PLATFORM refers to one of the following 

win32        for 32-bit MS Windows on x86, 

win64        for 64-bit MS Windows on x64, 

osx32x86     for 32-bit Macintosh OSX on x86 

osx32ppc     for 32-bit Macintosh OSX on PowerPC 

linux32      for 32-bit Linux on x86 

linux64      for 64-bit Linux on x64 

solaris32    for 32-bit Sun Solaris 

solaris64    for 64-bit Sun Solaris 

For details, on available parameters in LINDO API and their usage through API calls and parameter-

files, see "Parameter Setting and Retrieving Routines" in Chapter 2." 
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Sample Applications 
The distribution package contains several sample application programs that illustrate the use of 

LINDO API using a high level programming language. The majority of the examples provided are in 

C/C++. Sample applications in other languages, such as Visual Basic, C#, Delphi, Fortran 90, and 

Java/J++ are also given.  

Note: The header files required by each programming language are located in LINDOAPI\INCLUDE 

directory. These headers contain macro definitions and function prototypes (calling sequences) 

for each programming language. For a detailed description of available LINDO API functions, 

please refer to Chapter 2, Function Definitions. 

Each sample is located in a separate directory along with a MAKEFILE and/or an IDE Project (for 

Windows only) to build the application. Depending on your platform, use MAKEFILE.UNX (for 

Solaris and Linux) or MAKEFILE.WIN (for Windows). 

Now, let’s illustrate how to get started using LINDO API by setting up and solving a small LP using a 

programming language. 

Array Representation of Models 
From within a programming environment, models can be entered into LINDO API in either of two 

ways: 1) characterize the model using data structures (array representation) and pass the associated 

data objects to LINDO API via model loading routines in LINDO API, or 2) read the model from a file 

directly into LINDO API via input/output routines available. Supported file formats are MPS, LINDO, 

MPI, SMPS, and SMPI formats, which are described in Appendices B, C, D, E, and F respectively. 

Here, we focus on the first alternative, which we have referred to as array representation, and describe 

how to characterize an LP model within a programming environment. In our discussion, the terms 

‘array’ and ‘vector’ are used interchangeably.  

 

We will use a small LP with four decision variables x1, x2, x3, x4 (n=4) and four constraints (m=4) for 

our example. The lower and upper bounds are specified for each variable explicitly. If neither bounds 

are given, it would be assumed the variable is continuous, bounded below by zero and bounded from 

above by infinity. The model appears as follows: 

Minimize    x1 +  x2  + x3 +  x4    

S.t.        

    3x1             + 2x4   =  20 

          6x2       + 9x4     20 

    4x1  + 5x2 + 8x3         =  40 

          7x2 + 1x3           10 

        

 2   x1    5 

 1   x2    + 

 -   x3   10 

 -   x4   + 
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The diagram below shows how each component of LP data, except the coefficients of the constraint 

matrix, can be trivially represented by vectors (arrays). The circled elements labeled A,B,C,D, and E in 

the following figure symbolize these components and refer to objective coefficients, constraint senses, 

right-hand sides, lower-bounds, and upper-bounds, respectively.  

 

In this small example, these vectors translate to the following: 

A = [ 1  1  1  1 ]. 

B = [ E  G  E  G ]. 

C = [ 20  20  40  10 ]. 

D = [ 2  1  -LS_INFINITY  -LS_INFINITY ]. 

E = [ 5  LS_INFINITY  10  LS_INFINITY ]. 

Each of these vectors can be represented with an array of appropriate type and passed to LINDO API 

via model loading routines. Although it is also possible to represent the coefficients of the constraint 

matrix with a single vector, a different representation, called the sparse matrix representation, has 

been adopted. This is discussed in more detail below. 

Sparse Matrix Representation 
LINDO API uses a sparse matrix representation to store the coefficient matrix of your model. It 

represents the matrix using three (or optionally four) vectors. This scheme is utilized, so it is 

unnecessary to store zero coefficients. Given that most matrix coefficients in real world math 

programming models are zero, this storage scheme proves to be very efficient and can drastically 

reduce storage requirements. Below is a brief explanation of the representation scheme. 

We will use the coefficients of the constraint matrix in our sample LP from above. These are as 

follows: 

                          x1 x2 x3 x4 

 3 0 0 2  

 0 6 0 9  

 4 5 8 0  

 0 7 1 0  
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Three Vector Representation 
Three vectors can represent a sparse matrix in the following way. One vector will contain all of the 

nonzero entries from the matrix, ordered by column. This is referred to as the Value vector. In our 

example, this vector has 9 entries and looks like: 

 Value = [ 3  4  6  5  7  8  1  2  9 ]. 

Note that all of the entries from the first column appear first, then the entries from the second column, 

and so on. All of the zeros have been stripped out.  

In the second vector, which we call the Column-start vector, we record which points in the Value 

vector represent the start of a new column from the original matrix. The n
th

 entry in the Column-start 

vector tells us where in the Value vector to find the beginning of the n
th

 column. For instance, the 

column starts for the Value vector of our small example are underlined in the following diagram. Note 

that LINDO API uses zero-based counting, so the Column-start vector is as follows:                 

 

Note that the Column-start vector has one more entry than there are columns in our matrix. The extra 

entry tells LINDO where the last column ends. It will always be equal to the length of the Value 

vector. 

From the Column-start vector, we can deduce which column is associated with each entry in our Value 

vector. The only additional information that we need is the row numbers of the entries. We store this 

information in a third vector, the Row-index vector. This vector is the same length as the Value vector. 

Each entry in the Row-index vector tells which row the corresponding entry from the Value vector 

belongs to. In our example, the number 3 belongs to the first row, which we call row 0, so the first 

entry in the Row-index vector is 0. Similarly, the second entry in the Value vector (4), belongs to the 

third row (row 2 when starting from zero), so the second entry of the Row-index vector is 2. 

Continuing in this way through the rest of the entries of the Value vector, the resulting Row-index 

vector appears as follows:  

              0  1  2  3  4  5  6  7  8 

Row-index = [ 0  2  1  2  3  2  3  0  1 ]. 

In summary, our transformation from a matrix into 3 vectors is:  

 

 3 0 0 2  

 0 6 0 9  

 4 5 8 0  

 0 7 1 0  

 Column-starts: [ 0  2  5  7  9 ] 

 Value: [ 3  4  6  5  7  8  1  2  9 ] 

 Row-index:  [ 0  2  1  2  3  2  3  0  1 ] 
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Four Vector Representation 
The four vector representation allows more flexibility than the three vector representation. Use it when 

you expect to add rows to your original matrix (i.e., if you will be adding additional constraints to your 

model). 

The four vector representation uses the same three vectors as above. However, it allows you to have 

“blanks” in your Value vector. Because of this, you must also pass a vector of column lengths, since 

the solver doesn’t know how many blanks there will be. 

For example, suppose we wish to leave room for one additional row. Then, our Value vector becomes: 

Value = [ 3  4  X  6  5  7  X  8  1  X  2  9  X ]  

where the X’s represent the blanks. The blanks may be nulls or any other value, since they will be 

ignored for the time being. 

Our Column-start vector becomes: 

 

Our new vector is the Column-length vector. It will contain the length of each column (i.e., the number 

of nonzeros in each column). This allows the solver to skip the blanks (X’s) in the Value vector. In our 

small example, since the first column contains two nonzero and nonblank entries, the first element of 

the Column-length vector will be 2. Continuing through the remaining columns, the Column-length 

vector and its corresponding entries from the Value vector are as follows:  

Column-length = [ 2  3  2  2 ]. 

Value = [ 3  4  X  6  5  7  X  8  1  X  2  9  X ].           

Our Row-index vector is as before, except we add a blank for each blank in the Value vector. As with 

the Value vector, these blanks will be ignored, so they can contain any value. Thus, the Row-index 

vector becomes: 

              0  1  2  3  4  5  6  7  8  9  10 11 12 

Row-index = [ 0  2  X  1  2  3  X  2  3  X  1  2  X ]. 

In summary, the four vector transformation is:  

 3 0 0 2   Column lengths: [ 2  3   2  2 ] 

 0 6 0 9  
 

Column starts: [ 0  3   7  10 13 ] 

 4 5 8 0  Values: [ 3  4  X  6  5  7  X  8  1  X  2  9  X ] 

 0 7 1 0   Row indexes: [ 0  2  X  1  2  3  X  2  3  X  0  1  X ] 
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Simple Programming Example 
Up to this point, we have seen that the objective function coefficients, right-hand side values, 

constraint senses, and variable bounds can be stored in vectors of appropriate dimensions and the 

constraint matrix can be stored in three or four vectors using the sparse matrix representation. In this 

section, we show how these objects should be declared, assigned values, and passed to LINDO API to 

complete the model setup phase and invoke optimization.  

Recall the small LP example model from the array representation section above: 

Minimize   x1 +  x2  +  x3  +  x4    

S.t. 

          3x1                   + 2x4 = 20 

               6x2           + 9x4  20 
          4x1 + 5x2  + 8x3         = 40 

             7x2  + 1x3          10 

 2  x1   5 

 1  x2   + 

 -  x3   10 

 -  x4   + 

It is easy to verify that the model has 4 variables, 4 constraints, and 7 nonzeros. As determined in the 

previous section, its constraint matrix has the following (three-vector) sparse representation: 

Column-start = [ 0  2  5  7  9 ] 

Values       = [ 3.0  4.0  6.0  5.0  7.0  8.0  1.0  2.0  9.0 ] 

Row-index    = [ 0  2  1  2  3  2  3  0  1 ] 

Other components of the LP data, as described above, are: 

Right-hand side values = [ 20  20  40  10 ]. 

Objective coefficients = [ 1  1  1  1 ]. 

Constraint senses = [ E  G  E  G ]. 

Lower bounds = [ 2  1  -LS_INFINITY  -LS_INFINITY ]. 

Upper bounds = [ 5  LS_INFINITY  10  LS_INFINITY ]. 

Create an Environment and Model 
Before any data can be input to LINDO API, it is necessary to request LINDO API to initialize the 

internal solvers by checking the license this user has and to get handles of the required resources 

(e.g., pointers to internal memory areas). This is achieved by creating a LINDO environment object 

and creating a model object within the environment. These reside at the highest level of LINDO API’s 

internal object oriented data structure. In this structure, a model object belongs to exactly one 

environment object. An environment object may contain zero or more model objects.  

The following code segment does this: 

/* declare an environment variable */ 

pLSenv pEnv;          

/* declare a model variable */ 

pLSmodel pModel;     

/* Create the environment */ 

pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

/* Create the model */ 

pModel = LScreateModel  ( pEnv, &nErrorCode); 



16 CHAPTER 1 

 

The environment data type, pLSenv, and the model data type, pLSmodel, are both defined in the lindo.h 

header file. A call to LScreateEnv() creates the LINDO environment. Finally, the model object is 

created with a call to LScreateModel(). For languages other than C/C++ pLSenv and pLSmodel objects 

refer to integer types. The associated header files are located in the ‘lindoapi/include’ directory. 

Load the Model 
The next step is to set up the LP data and load it to LINDO API. This is generally the most involved of 

the steps. 

Objective 

The following code segment is used to enter the direction of the objective. The possible values for the 

direction of the objective are LS_MAX and LS_MIN, which are predefined macros that stand for 

maximize or minimize. For our sample problem, the objective direction is given as maximization with 

the following code: 

int nDir = LS_MIN; 

The constant terms in the objective function are stored in a double scalar with the following: 

double dObjConst = 0.0; 

Finally, the objective coefficients are placed into an array with the following: 

double adC[4] = { 1., 1., 1., 1.}; 

Constraints 

The following code segment is used to enter the number of constraints: 

int nM = 4; 

The constraint right-hand sides are place into an array with the following: 

double adB[4] = { 20., 20., 40., 10. }; 

The constraint types are placed into an array with the following: 

char acConTypes[4] = {‘E’, ‘G’, ‘E’ , ‘G’ }; 

The number of nonzero coefficients in the constraint matrix is stored: 

int nNZ = 9; 

Finally, the length of each column in the constraint matrix is defined. This is set to NULL in this 

example, since no blanks are being left in the matrix: 

int *pnLenCol = NULL; 

The nonzero coefficients, column-start indices, and the row indices of the nonzero coefficients are put 

into arrays with the following: 

int anBegCol[5] = { 0  , 2  , 5  , 7  , 9 }; 

double   adA[9] = { 3.0, 4.0, 6.0, 5.0, 7.0, 8.0, 1.0, 2.0, 9.0 }; 

int   anRowX[9] = { 0  , 2  , 1  , 2  , 3  , 2  , 3  , 0  , 1   }; 

Note: Refer to the section Sparse Matrix Representation above for more information on 

representing a matrix with three or four vectors. 
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Variables 

The following code segment is used to declare the number of variables: 

int nN = 4; 

The upper and lower bounds on the variables are defined with the following: 

double pdLower[4] = {2, 1, -LS_INFINITY, -LS_INFINITY}; 

double pdUpper[4] = {5, LS_INFINITY, 10, LS_INFINITY}; 

Then, the variable types are placed into an array with the following: 

char acVarTypes[4] = {‘C’,‘C’,‘C’,‘C’}; 

The variable types could actually be omitted and LINDO API would assume that the variables were 

continuous. 

We have now assembled a full description of the model and pass this information to LINDO API with 

the following: 

nErrorCode = LSloadLPData( pModel, nM, nN, nDir, dObjConst, adC, adB, 

acConTypes, nNZ, anBegCol, pnLenCol, adA, anRowX, pdLower, pdUpper); 

All LINDO API functions return an error code indicating whether the call was successful or not. If the 

call was successful, then the error code is zero. Otherwise, an error has occurred and its type could be 

looked up in Appendix A, Error Codes. It is imperative that the error code returned is always checked 

to verify that the call was successful. 

Note:     If there is a nonzero error code, the application program should stop, since the results would 

be unpredictable and it may cause the program to crash. 

Solve  
Since the model is an LP, a linear solver, such as the primal simplex method, can be used. The model 

is solved with the following call: 

nErrorCode = LSoptimize( pModel, LS_METHOD_PSIMPLEX, &nSolStat); 

Alternative solvers available for linear models include dual simplex and barrier (if licensed). When the 

second argument in the function call is set to LS_METHOD_FREE, LINDO API will decide the solver 

to use by examining its structure and mathematical content. See the Common Macro Definitions 

section of Chapter 2, Function Definitions, for more information on the predefined macros 

LS_METHOD_PSIMPLEX and LS_METHOD_FREE. 

Retrieve the Solution 
The next step is to retrieve the solution using solution query functions. Many of the LINDO API query 

functions need to have space allocated before calling the routine. You must be sure to allocate 

sufficient space for query routines that include a pointer to a string, an integer vector, a double 

precision vector, or character vector. If sufficient memory is not initially allocated, the application will 

crash once it is built and executed. See Solution Query Routines in Chapter 2, Function Definitions, for 

more information on which routines require space to be allocated for them. Refer to Chapter 3, Solving 

Linear Programs, for more details on building and solving the model and a programming example in 

Visual Basic. 
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Here, the objective value and optimal variable values will be displayed. The objective value is 

retrieved and printed with the following: 

double adX[4]; 

nErrorCode = LSgetInfo( pModel, LS_DINFO_POBJ, &dObj); 

printf( "Objective Value = %g\n", dObj); 

See the context of the LSgetInfo() function in Chapter 2, Function Definitions, for more information on 

the predefined macro LS_DINFO_POBJ. It tells LINDO API to fetch the value of the primal objective 

value via the LSgetInfo() function. The optimal variable values are retrieved and printed with the 

following: 

nErrorCode = LSgetPrimalSolution ( pModel, adX); 

printf ("Primal values \n"); 

for (i = 0; i < nN; i++) printf( " x[%d] = %g\n", i, adX[i]); 

printf ("\n"); 

The output of this program would appear as follows: 

Objective Value = 10.44118 

Primal values 

 x[0] = 5 

 x[1] = 1.176471 

 x[2] = 1.764706 

 x[3] = 2.5 

Clear Memory 
A last step is to release the LINDO API memory by deleting the LINDO environment with the 

following call: 

nErrorCode = LSdeleteEnv( &pEnv); 

This frees up all data structures LINDO API allocated to the environment and all of the environment’s 

associated models. 



 

 

Chapter 2:  

Function Definitions 
In this section, we give "header" definitions of all user callable functions in LINDO API. Most of the 

functions return error or information codes. For a complete listing of the codes, see Appendix A, Error 

Codes.  

The general form of functions in LINDO API is: 

LSverbObject( specific_object) 

Typical verbs are: create, delete, get, set, and optimize. Typical objects are: environment, model, and 

parameter. LINDO API assumes typical default values (e.g., zero or infinity (LS_INFINITY) for most 

of the specific objects). If you are happy with these defaults, then you can simply pass NULL for these 

arguments in a function call.  

In describing the callable functions, we have adopted a variable-naming convention, which is 

commonly referred to as Hungarian notation. Several versions of Hungarian notation have evolved 

over the years and all its dialects are intended to be mnemonic (easy to remember) for your 

convenience. The version used here is dictated mainly by the data structure definitions that arise in the 

representation of mathematical models. In building your own applications, you may follow or alter 

them as desired. 

In Hungarian notation, variable names begin with one or more lowercase letters that denote the 

variable type, thus providing an inherent identification. For example, the prefix ad is used to identify a 

double precision array, as in adVal. In like fashion, the prefix psz identifies a pointer to a 

null-terminated string, as in *pszFilename. The following table summarizes the Hungarian notation 

conventions for the commonly used data types in LINDO API: 

Prefix Data  type 

a Array  
c Integer (count) 

ch Character  

d Double 

f Float 

i Integer (index into arrays) 
n Integer      
p A pointer variable containing the address of a variable 
sz Null-terminated string (ASCIIZ) 
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Common Parameter Macro Definitions 
Macro symbols are extensively used in LINDO API as arguments during function calls or as a 

parameter to specify a choice or value. The macros can take integer, double, or character values. In the 

following table, the most common ones are listed. The first column gives the name of the macro, the 

second column refers to the value it refers to, and the third column gives a brief description.   

 

Symbol Value Description 

Model Types   

LS_LP  10 Linear programs 

LS_QP  11 Quadratic programs 

LS_SOCP  12 Conic programs 

LS_SDP  13 Semidefinite programs 

LS_NLP  14 Nonlinear programs 

LS_MILP  15 Mixed-integer linear programs 

LS_MIQP  16 Mixed-integer quadratic programs 

LS_MISOCP  17 Mixed-integer conic programs 

LS_MISDP  18 Mixed-integer semidefinite programs 

LS_MINLP  19 Mixed-integer nonlinear programs 

LS_CONVEX_QP  20 Convex QP 

LS_CONVEX_NLP  21 Convex NLP 

LS_CONVEX_MIQP   22 Convex MIQP 

LS_CONVEX_MINLP  23 Convex MINLP 

LS_UNDETERMINED  -1 Undetermined 

Model Status   

LS_STATUS_OPTIMAL  1 An optimal solution is found 

LS_STATUS_BASIC_OPTIMAL  2 An optimal basic solution is found 

LS_STATUS_INFEASIBLE  3 The model is infeasible 

LS_STATUS_UNBOUNDED  4 The model is unbounded 

LS_STATUS_FEASIBLE  5 The model is feasible 

LS_STATUS_INFORUNB 6 The solution is infeasible or unbounded. In order 

to determine the actual status, primal simplex 

method should be run on the model with 

presolver off. 

LS_STATUS_NEAR_OPTIMAL 7 A near optimal solution is found (for 
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nonlinear problems only) 

LS_STATUS_LOCAL_OPTIMAL 8 A local optimal solution is found (for 

nonlinear problems only) 

LS_STATUS_LOCAL_INFEASIBLE 9 A locally infeasible solution is found 

(for nonlinear problems only) 

LS_STATUS_CUTOFF 10 The solver found an optimal solution worse than 

the cutoff 

LS_STATUS_NUMERICAL_ERROR 11 The solver encountered a numerical error during 

a function evaluation (e.g., square root of a 

negative number) 

LS_STATUS_UNKNOWN 12 Model was attempted to be solved, but the 

optimization session terminated without 

producing any useful information as to what 

the actual status of the model is. So, the status of 

the model is remains unknown. 

LS_STATUS_UNLOADED 13 No model is loaded 

LS_STATUS_LOADED 14 Model is loaded, but it has not been attempted to 

be solved yet. 

Optimization Direction   

LS_MIN 1 Minimization type model. 

LS_MAX -1 Maximization type model. 

Numerical Infinity   

LS_INFINITY 1.E30 Numeric infinity for variable bounds. All bounds 

whose absolute value is larger than 

LS_INFINITY is truncated. 

Constraint Types (Senses)   

LS_CONTYPE_LE ‘L’ Less than equal to. 

LS_CONTYPE_EQ ‘E’ Equal to. 

LS_CONTYPE_GE ‘G’ Greater than equal to. 

LS_CONTYPE_FR ‘N’ Free (or neutral). 

Cone Types   

LS_CONETYPE_QUAD ‘Q’ Quadratic cone 

LS_CONETYPE_RQUAD ‘R’ Rotated quadratic cone 

Variable Types   

LS_VARTYPE_CONT ‘C’ Continuous variable. 

LS_VARTYPE_BIN ‘B’ Binary variable. 

LS_VARTYPE_INT ‘I’ General integer variable. 

LS_VARTYPE_SC ‘S’ Semi-continuous variable. 

Solver Types   

LS_METHOD_FREE 0 Solver decides. 



22 CHAPTER 2 

 

LS_METHOD_PSIMPLEX 1 Primal simplex method. 

LS_METHOD_DSIMPLEX 2 Dual simplex method. 

LS_METHOD_BARRIER 3 Barrier method. 

LS_METHOD_NLP 4 Nonlinear Solver. 

LS_METHOD_GA                              13 Genetic optimization solver 

LS_METHOD_HEUMIP                          15 Use different heuristic algorithms to find a 

feasible MIP solution. 

LS_METHOD_PRIMIP                          16  Use different starting priorities to find a feasible 

MIP solution.    

Basis Status   

LS_BASTYPE_BAS 0 Basic. 

LS_BASTYPE_ATLO -1 Non-basic at lower bound. 

LS_BASTYPE_ATUP -2 Non-basic at upper bound. 

LS_BASTYPE_FNUL -3 Free and non-basic at zero value. 

LS_BASTYPE_SBAS -4 Fixed and non-basic at both lower and upper 

bounds. 

Solution File Format and Types   

LS_SOLUTION_OPT 0 Default solution file format. 

LS_SOLUTION_MIP 1 Solution file format for MIP solutions. 

LS_SOLUTION_OPT_IPM 2 Solution file format for interior point solutions. 

LS_SOLUTION_OPT_OLD 3 Solution file format in LINDO API version 1.x. 

LS_SOLUTION_MIP_OLD 4 Solution file format for MIP solutions in LINDO 

API version 1.x 

Set Types   

LS_MIP_SET_SOS1 1 Special ordered set of  type-1  

LS_MIP_SET_SOS2 2 Special ordered set of  type-2  

LS_MIP_SET_SOS3 3 Special ordered set of  type-3  

LS_MIP_SET_CARD 4 Set cardinality.  

Norm Options   

LS_IIS_NORM_FREE 0 Solver decides the infeasibility norm for IIS 

analysis. 

LS_IIS_NORM_ONE 1 Solver uses L-1 norm for IIS analysis. 

LS_IIS_NORM_INFINITY 2 Solver uses L-∞ norm for IIS analysis 

IIS Methods   

LS_IIS_DEFAULT 0 Use default filter in IIS analysis. 

LS_IIS_DEL_FILTER 1 Use deletion filter in IIS analysis. 

LS_IIS_ADD_FILTER 2 Use additive filter in IIS analysis. 

LS_IIS_GBS_FILTER 3 Use generalized-binary-search filter in IIS 

analysis. 
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LS_IIS_DFBS_FILTER 4 Use depth-first-binary-search filter in IIS 

analysis. 

LS_IIS_FSC_FILTER 5 Use fast-scan filter in IIS analysis. 

   LS_IIS_ELS_FILTER 6 Use elastic filter in IIS analysis. 

Stochastic Optimization Methods   

   LS_METHOD_STOC_FREE   -1 Solve with the method chosen by the solver.  

   LS_METHOD_STOC_DETEQ   0 Solve the deterministic equivalent (DETEQ).  

   LS_METHOD_STOC_NBD   1 Solve with the Nested Benders Decomposition 

(NBD) method.  

   LS_METHOD_STOC_ALD   2 Solve with the Augmented Lagrangian 

Decomposition (ALD) method.  

   LS_METHOD_STOC_HS       4 Solve with the Heuristic-Search (HS) method.    

Stochastic Data Types   

   LS_JCOL_INST   -8 Stochastic parameter is an instruction code  

   LS_JCOL_RUB   -7 Stochastic parameter is an upper bound for RHS 

(reserved for future use)  

   LS_JCOL_RLB   -6 Stochastic parameter is a lower bound for RHS 

(reserved for future use)  

   LS_JCOL_RHS   -5 Stochastic parameter is a RHS value (belongs to 

RHS column)  

   LS_IROW_OBJ   -4 Stochastic parameter is an objective coefficient 

(belongs to OBJ row)  

   LS_IROW_VUB   -3 Stochastic parameter is a lower bound (belongs 

to LO row)  

   LS_IROW_VLB   -2 Stochastic parameter is an upper bound (belongs 

to UP row)  

   LS_IROW_VFX   -1 Stochastic parameter is a fixed bound (belongs 

to FX row)  

   LS_IMAT_AIJ   0 Stochastic parameter is an LP matrix entry.  

Property   

   LS_PROPERTY_CONST        1 Constraint function is a constant 

   LS_PROPERTY_LINEAR                    2 Constraint function is linear 

   LS_PROPERTY_CONVEX                 3 Constraint function is convex 

   LS_PROPERTY_CONCAVE 4 Constraint function is concave 

   LS_PROPERTY_QUASI_CONVEX  5 Constraint function is quasi-convex 

   LS_PROPERTY_QUASI_CONCAVE 6 Constraint function is quasi-concave 

   LS_PROPERTY_MAX     7 Reserved for future use 

   LS_PROPERTY_MONO_INCREASE 8 Reserved for future use 

   LS_PROPERTY_MONO_DECREASE 9 Reserved for future use 

   LS_PROPERTY_UNKNOWN 0 Undetermined or general contraint classification 
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Structure Creation and Deletion Routines 
The routines in this section are used to create and destroy the basic data structures used within LINDO 

API to manage your mathematical programming models.  

In order to solve a model, you must begin by allocating a modeling environment. This is done through 

a call to LScreateEnv(). LINDO API uses the environment space to store global data pertaining to all 

models belonging to the environment. Once an environment has been created, you allocate space for 

one or more models within the environment. Models are allocated by calls to LScreateModel(). The 

model structure holds all model specific data and parameters. 

LScreateEnv() 

Description:  

Creates a new instance of LSenv, which is an environment used to maintain zero or more 

models. The LSenv data structure is defined in the lindo.h header file. 

Returns:  

If successful, a pointer to the newly created instance of LSenv is returned. If unsuccessful, 

NULL is returned. 

Prototype:  

pLSenv LScreateEnv( int *pnErrorcode, char *pszPassword)  

Input Arguments:  

Name  Description  

pszPassword A pointer to a character string containing a license key for 

LINDO API. 

Output Arguments:  

Name  Description  

pnErrorcode  A pointer to the error code. If successful, *pnErrorcode will be 

0 on return. A list of possible error codes may be found in 

Appendix A, Error Codes. 

Remarks: 

 Your license key is printed on the sleeve containing the distribution CD. 

 You can call LSloadLicenseString() to read the license key from a text file. 

 Be sure to call LSdeleteEnv (see below) once for each environment created when they are 

no longer needed. This will allow LINDO API to free all memory allocated to the 

environments. 
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LScreateModel() 

Description:  

Creates a new instance of LSmodel.  

Returns:  

If successful, a pointer to the newly created instance of LSmodel is returned. If unsuccessful, 

NULL is returned. 

Prototype:  

pLSmodel LScreateModel( pLSenv pEnv, int *pnErrorcode)  

Input Arguments:  

Name  Description  

pEnv Pointer to the current LINDO environment established via a 

call to LScreateEnv().  

Output Arguments:  

Name  Description  

pnErrorcode A pointer to the error code. If successful, *pnErrorcode will be 

0 on return. A list of potential error codes is listed in 

Appendix A, Error Codes. 

Remarks: 

 LScreateEnv() must be called before this function is called in order to obtain a valid 

environment pointer. 

 Be sure to call LSdeleteModel() (see below) once for each model created when they are 

no longer needed. This will allow LINDO API to free all memory allocated to the 

models. 

LSdeleteEnv() 

Description:  

Deletes an instance of LSenv. The memory used by the LSenv instance is freed and the pointer 

to the instance is set to NULL. Each model created under this environment will also be 

deleted by calls to LSdeleteModel().  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSdeleteEnv( pLSenv *pEnv)  

Input Arguments:  

Name  Description  

pEnv  A pointer to a pointer of an instance of LSenv.  
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LSdeleteModel() 

Description:  

Deletes an instance of LSmodel. The memory used by the LSmodel instance is freed and the 

pointer to this instance is set to NULL.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSdeleteModel( pLSmodel *pModel)  

Input Arguments:  

Name  Description  

pModel  A pointer to a pointer of an instance of LSmodel.  

License and Version Information Routines 
The first routine in this section allows you to read a license key from a file and load it into a local 

string buffer. Your license key is unique to your installation and contains information regarding your 

version’s serial number, size, and supported options. The license key is case sensitive, so be sure to 

enter it exactly as listed, including all hyphens. Given that your license key is unique to your 

installation, you should not share it with any user not licensed to use your copy of LINDO API. The 

second routine allows you to access the version and build date of LINDO API. 

LSgetVersionInfo() 

Description:  

Returns the version and build information of the LINDO API on your system.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSgetVersionInfo(char *pszVersion, char *pszBuildData) 

Output Arguments:  

Name  Description  

pszVersion A pointer to a null terminated string that keeps the version 

information of the LINDO API on your system. 

pszBuildDate A pointer to a null terminated string that keeps the build date of 

the LINDO API library on your system. 

LSloadLicenseString() 

Description:  

Reads the license string from the specified file in text format. 
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Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSloadLicenseString(char *pszFname, char *pszLicense) 

Input Arguments:  

Name  Description  

pszFname  A pointer to a null terminated string that refers to the name of 

the file that contains your license key. Typically, the license 

key is placed in the lndapi100.lic file. 

Output Arguments:  

Name  Description  

pszLicense A pointer to a null terminated string that keeps the license key. 



28 CHAPTER 2 

 

Input-Output Routines 
The routines in this section provide functionality for reading and writing model formulations to and 

from disk files. Loading a model from a file will generally not be as efficient as passing the nonzero 

structure directly via the routines discussed in the Model Loading Routines section below. However, 

some may find files more convenient. 

LINDO API currently supports four file formats: LINDO, MPS, LINGO, and MPI. LINDO format is 

identical to the format used by the interactive version of LINDO and is very straightforward to use. 

The LINDO format is discussed in detail in Appendix C, LINDO File Format. MPS format, although 

not as easy to deal with as LINDO format, is an industry standard and can be processed by most 

commercial solvers. The details of the MPS format are given in Appendix B, MPS File Format. The 

LINGO format is similar to the LINDO format and was originally developed for use with the LINGO 

modeling language. For details on the LINGO format, refer to the LINGO User’s Manual, available 

through LINDO Systems. MPI format is for representing nonlinear models, which is described in 

detail in Appendix D, MPI File Format. LINDO API can read and write both LINDO and MPS files. 

At present, LINGO files may only be written and may not be read, and MPI files can only be read. 

LSreadLINDOFile() 

Description:  

Reads the model in LINDO format from the given file and stores the problem data in the 

given model structure.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSreadLINDOFile( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

model. To obtain a pointer to a model structure, see 

LScreateModel(). 

pszFname A pointer to a null terminated string containing the path and 

name of the LINDO file. 

Remarks:  

 Details for the LP file format are given in Appendix C, LINDO File Format. 

 To write a model in LINDO format, see LSwriteLINDOFile(). 

 To read a model in MPS format, see LSreadMPSFile().  



FUNCTION DEFINITIONS     29 

 

LSreadMPSFile() 

Description:  

Reads a model in MPS format from the given file and stores the problem data in the given 

problem structure.  

Returns:   

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSreadMPSFile( pLSmodel pModel, char *pszFname, int 

nFormat)  

Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

model. To obtain a pointer to a model structure, see 

LScreateModel(). 

pszFname A pointer to a null terminated string containing the path and 

name of the MPS file. 

nFormat 

 

An integer parameter indicating whether the MPS file is 

formatted or not. The parameter value should be either 

LS_FORMATTED_MPS or LS_UNFORMATTED_MPS. 

Remarks:  

 All memory for the passed LSmodel structure will be allocated in this routine. Therefore, 

all pointers in the given structure are assumed to be NULL when this function is called. 

A call to both LScreateEnv() and LScreateModel(), however, must have been made first 

to properly establish the structure.  

 When reading a formatted MPS file, all text is read literally, including spaces, in the 

columns of that field. For example, if “ABC DEF” is the text provided in the field for 

row names in the ROWS section of the MPS file, then this is taken as the row name. If 

“ ABC DEF” (note the initial space) appears as another row name, then this name is 

treated literally as the text between the quotes and is therefore different from 

“ABC DEF”. MPS file format details are given in Appendix B, MPS File Format. 

 When reading an unformatted MPS file, the row and column names should not contain 

spaces. Spaces within the names will tend to generate errors and any leading or trailing 

spaces will be ignored (making “ ABC” equivalent to “ABC”). Note, "unformatted" in 

the sense used here, does not mean binary format as used by some compilers. The low 

level file format is still standard ASCII text. 

 When the file type is set to LS_FORMATTED_MPS, all names will have 8 characters. 

When the file type is set to LS_UNFORMATTED_MPS, the length of a name is only 

restricted by the maximum length of a line, which is 256 characters.  

 To minimize the probability of a file open error, it is useful to give the fully specified file 

path name (e.g., c:\mydir\myfile.mps) rather than just myfile.mps.  

 An MPS file is allowed to specify a constant in the objective. Some solvers will disregard 

this constant. LINDO API does not. This may cause other solvers to display different 

optimal objective function values than that found by LINDO API.  
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 If a variable is declared integer in an MPS file but the file contains no specification for 

the bounds of the variable, LINDO API assumes the lower bound is 0 and the upper 

bound is infinity. Other solvers may in this case assume the upper bound is 1.0.  This 

may cause other solvers to obtain a different optimal solution than that found by LINDO 

API. 

Description:  

Reads the model in MPI format from the given file and stores the problem data in the given 

model structure.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSreadMPIFile( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

model. To obtain a pointer to a model structure, see 

LScreateModel(). 

pszFname A pointer to a null terminated string containing the path and 

name of the MPI format file. 

Remarks:  

 Details for the MPI file format are given in Appendix D, MPI File Format. 

LSwriteMPIFile() 

Description:  

Writes the given model in MPI format.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSwriteMPIFile( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

model.  

pszFname A pointer to a null terminated string containing the path and 

name of the MPI format file. 

Remarks:  

 The model must have been loaded via LSloadInstruct call previously. 
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 Details for the MPI file format are given in Appendix D, MPI File Format. 
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LSreadBasis() 

Description:  

Reads an initial basis from the given file in the specified format. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSreadBasis( pLSmodel pModel, char *pszFname, int 

nFormat)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

model 

pszFname A pointer to a null terminated string containing the path and 

name of the basis file. 

nFormat An integer parameter indicating the format of the file to be 

read. Possible values are 

 LS_BASFILE_BIN : Binary format (default) 

 LS_BASFILE_MPS : MPS file format.  

 LS_BASFILE_TXT : Space delimited text format. 

Remarks:  

 LS_BASFILE_MPS option requires the variable and constraint names in the resident 

model and the basis MPS file to match. 

LSwriteBasis() 

Description:  

 Writes the resident basis to the given file in the specified format. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSwriteBasis( pLSmodel pModel, char *pszFname, int 

nFormat)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

model 

pszFname A pointer to a null terminated string containing the path and 

name of the basis file. 
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nFormat An integer parameter indicating the format of the file to be 

written. Possible values are 

 LS_BASFILE_BIN : Binary format (default) 

 LS_BASFILE_MPS : MPS file format.  

 LS_BASFILE_TXT : Space delimited text format. 

Remarks:  

 LS_BASFILE_MPS option requires the variable and constraint names in the resident 

model and the basis MPS file to match. 

LSwriteDualLINDOFile() 

Description:  

Writes the dual of a given problem to a file in LINDO format.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSwriteDualLINDOFile( pLSmodel pModel, char *pszFname, 

int nObjsense)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel containing the model to be 

written to a LINDO format file.  

pszFname A pointer to a null terminated character string containing the 

path and name of the file to which the dual model should be 

written. 

nObjsense  An integer specifying if the dual problem will be posed as a 

maximization or minimization problem. The possible values 

are LS_MAX and LS_MIN. 

Remarks: 

 The primal model is assumed to be a linear model. Presence of integrality restrictions and 

quadratic terms will be ignored when writing the dual problem. 
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LSwriteDualMPSFile() 

Description:  

Writes the dual of a given problem to a file in MPS format.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSwriteDualMPSFile( pLSmodel pModel, char *pszFname, int 

nFormat, int nObjsense)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel containing the model to be 

written to a MPS format file.  

pszFname A pointer to a null terminated character string containing the 

path and name of the file to which the dual model should be 

written. 

nFormat An integer parameter indicating the format of the file to be 

written. LS_FORMATTED_MPS indicates the file is to be 

formatted, while LS_UNFORMATTED_MPS indicates 

unformatted output. 

nObjsense  An integer specifying if the dual problem will be posed as a 

maximization or minimization problem. The possible values 

are LS_MAX and LS_MIN. 

Remarks: 

 The primal model is assumed to be a linear model. Presence of integrality restrictions and 

quadratic terms in the primal model will be ignored when creating the dual problem. 
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LSwriteIIS() 

Description:  

Writes the IIS of an infeasible LP to a file in LINDO file format. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int   LSwriteIIS( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel containing the infeasible 

model for which the IIS has already been computed. 

pszFname A character string containing the path and name of the file to 

which the IIS should be written. 

Remarks:  

 LSfindIIS() can be used to find the IIS of an infeasible LP. 

LSwriteIUS() 

Description:  

Writes the IUS of an unbounded LP to a file in LINDO file format.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int   LSwriteIUS( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel containing the unbounded 

model for which the IUS has already been computed. 

pszFname A character string containing the path and name of the file to 

which the IUS should be written. 

Remarks:  

 LSfindIUS() can be used to find IUS of an unbounded linear model. 
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LSwriteLINDOFile() 

Description:  

Writes the given problem to a file in LINDO format.  Model must be linear. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSwriteLINDOFile( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel containing the model to be 

written to a LINDO format file.  

pszFname A pointer to a null terminated character string containing the 

path and name of the file to which the model should be written. 

Remarks:  

 Details for the LINDO file format are given in Appendix C, LINDO File Format. 

 To read a model in LINDO format, see LSreadLINDOFile(). 

 To write a model in MPS format, see LSwriteMPSFile().  

LSwriteLINGOFile() 

Description:  

Writes the given problem to a file in LINGO format. Model must be linear. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSwriteLINGOFile( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel containing the model to be 

written to a LINGO file.  

pszFname A pointer to a null terminated string containing the path and 

name of the file to which the model should be written. 

Remarks:  

 To write a model in LINDO format, see LSwriteLINDOFile(). 

 To write a model in MPS format, see LSwriteMPSFile().  
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LSwriteMPSFile() 

Description:  

Writes the given problem to a specified file in MPS format.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSwriteMPSFile( pLSmodel pModel, char *pszFname, int 

nFormat)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel containing the model to be 

written to an MPS file. 

pszFname A pointer to a null terminated string containing the path and 

name of the file to which the model should be written. 

nFormat An integer parameter indicating the format of the file to be 

written. LS_FORMATTED_MPS indicates the file is to be 

formatted, while LS_UNFORMATTED_MPS indicates 

unformatted output. 

Remarks:  

 If the name vectors in the model are not set, then the problem title will be "NO_TITLE"; 

the objective name will be "OBJ"; the column names will be "C0000001", "C0000002", 

etc.; and the row names will be "R0000001", "R0000002", etc. The name vectors may be 

set via a call to LSloadNameData(). 

 When using formatted output, this routine writes in the standard MPS format using 8 

character names. Longer names are truncated to 8 characters. Therefore, care must be 

taken when using longer names, since two unique names such as "012345678" and 

"012345679" will both be treated as "01234567". If your model has names longer than 

eight characters, you should use unformatted output. 

 Details for the MPS file format are given in Appendix B, MPS File Format. 

 To read a model in MPS format, see LSreadMPSFile(). 

 To write a model in LINDO format, see LSwriteLINDOFile(). 
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LSwriteSolution() 

Description:  

Writes the LP solution to a file. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int   LSwriteSolution( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel containing the model to 

write the LP solution for. 

pszFname A character string containing the path and name of the file to 

which the solution should be written. 

LSreadSMPSFile () 

Description:  

This subroutine is the top level input routine. It first reads a core-file in the MPS format. It 

then calls further subroutines to read time and stoch files whose format are laid out in 

Appendix E.  

Returns:   

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSreadSMPSFile (pLSmodel pModel, char * coreFile, char * 

timeFile, char * stocFile, int nMPStype) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

coreFile A string specifying the name of the CORE file in MPS format. 

timeFile A string specifying the name of the TIME file. 

stocFile A string specifying the name of the STOCH file. 

nMPStype An integer parameter indicating whether the MPS file is 

formatted or not. Possible values are: 

 LS_FORMATTED_MPS 

 LS_UNFORMATTED_MPS 

 LS_FORMATTED_MPS_COMP 

Remarks: 

Refer to appendix for details on SMPS format.  

LSreadSMPIFile() 

Description: 

Read an SP model in SMPI file format in to the given model instance. . It first reads a core-

file in the MPI format. It then calls further subroutines to read time and stoch files whose 

format are laid out in Appendix F.  

 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSreadSMPIFile (pLSmodel pModel, char *coreFile, char 

*timeFile, char *stocFile) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

coreFile A string specifying the name of the CORE file in MPS format. 

timeFile A string specifying the name of the TIME file. 

stocFile A string specifying the name of the STOCH file. 

Remarks: 

Refer to appendix for details on SMPI format.  
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LSwriteSMPIFile() 

Description: 

Writes the CORE,TIME,STOCH files for SP models in SMPI format.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSwriteSMPIFile (pLSmodel pModel, char * coreFile, char * 

timeFile, char * stocFile) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

coreFile A string specifying the name of the CORE file in MPI format. 

timeFile A string specifying the name of the TIME file. 

stocFile A string specifying the name of the STOCH file. 

LSwriteSMPSFile () 

Description: 

Writes the CORE,TIME,STOCH files for SP models in SMPS format.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSwriteSMPSFile (pLSmodel pModel, char * coreFile, char * 

timeFile, char * stocFile, int nMPStype) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

coreFile A string specifying the name of the CORE file in MPS format. 

timeFile A string specifying the name of the TIME file. 

stocFile A string specifying the name of the STOCH file. 

nMPStype An integer parameter indicating whether the MPS file is 

formatted or not. Possible values are: 

LS_FORMATTED_MPS 

LS_UNFORMATTED_MPS 

LS_FORMATTED_MPS_COMP 
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LSwriteDeteqMPSFile () 

Description: 

Writes the deterministic equivalent for the SP model in MPS format.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSwriteDeteqMPSFile (pLSmodel pModel, char * mpsFile, int 

nMPStype, int iDeqType) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

mpsFile A string specifying the name of the MPS file 

nMPStype An integer parameter indicating whether the MPS file is 

formatted or not. Possible values are: 

 LS_FORMATTED_MPS 

 LS_UNFORMATTED_MPS 

 LS_FORMATTED_MPS_COMP 

iDeqType An integer specifying the type of the deterministic equivalent. 

Possible values are 

 LS_DETEQ_IMPLICIT 

 LS_DETEQ_EXPLICIT (default). 

LSwriteDeteqLINDOFile () 

Description: 

Writes the deterministic equivalent (DEQ) of the SP models in LINDO format.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSwriteDeteqLINDOFile (pLSmodel pModel, char * ltxFile, 

int iDeqType) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

ltxFile An string specifying the name of the LINDO file. 

iDeqType Type of the the deterministic equivalent. Possible values are 

 LS_DETEQ_IMPLICIT 

 LS_DETEQ_EXPLICIT (default). 

LSgetNodeReducedCost () 

Description: 

Returns the reduced cost for the specified node.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetNodeReducedCost (pLSmodel pModel, int iScenario, int 

iStage, double * padD) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario the node belongs to. 

iStage An integer specifying the stage the node belongs to.  

padD A double array to return specified nodes's dual solution The 

length of this vector is equal to the number of variables in the 

stage associated with the node. It is assumed that memory has 

been allocated for this vector. 

Remarks: 

The number of variables or constraints in a stage can be accessed via LSgetStocInfo().  
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LSwriteScenarioSolutionFile () 

Description: 

Writes the scenario solution to a file. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSwriteScenarioSolutionFile (pLSmodel pModel, int 

iScenario, char * szFname) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario to write the solution for. 

szFname A null terminated string containing the file name. If set to 

NULL, then the results are printed to stdout 

LSwriteNodeSolutionFile () 

Description: 

Writes the node solution to a file.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSwriteNodeSolutionFile (pLSmodel pModel, int iScenario, 

int iStage, char * szFname) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario number the node belongs to. 

iStage An integer specifying the stage the node belongs to. 

szFname A null terminated string containing the file name. If set to 

NULL, then the results are printed to stdout. 
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LSwriteScenarioMPIFile () 

Description: 

Write scenario model in MPI format.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSwriteNodeSolutionFile (pLSmodel pModel, int iScenario, 

int iStage, char * szFname) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario to write in MPI format.. 

scenFile A null terminated string specifying file to write the scenario 

model.. 

LSwriteScenarioMPSFile () 

Description: 

Write a specific scenario model in MPS format.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSwriteScenarioMPSFile (pLSmodel pModel, int iScenario, 

char * scenFile, int nMPStype) 

 Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario to write in MPS format.. 

scenFile A null terminated string specifying file to write the scenario 

model. 

nMPStype An integer parameter indicating whether the MPS file is 

formatted or not. Possible values are: 

 LS_FORMATTED_MPS 

 LS_UNFORMATTED_MPS 

 LS_FORMATTED_MPS_COMP 
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LSwriteScenarioLINDOFile () 

Description: 

Write scenario model in LINDO format.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSwriteScenarioLINDOFile (pLSmodel pModel, int iScenario, 

char * scenFile) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario to write in MPI format.. 

scenFile A null terminated string specifying file to write the scenario 

model. 
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Parameter Setting and Retrieving Routines 
The routines in this section allow you to set and retrieve system parameter values. Each of these 

routines is distinguished on three dimensions:  

1. The parameter being dealt with is void, double precision, or integer. 

2. The routine either gets or sets the specified parameter’s value. 

3. The parameter being dealt with is in either a model space or an environment space. 

The various permutations of these three options result in a total of fifteen routines. A brief listing of 

these routines and their usage is listed in the following table: 

Routine Parameter Type Action Location 

LSgetEnvParameter() Void Gets Environment 

LSgetEnvDouParameter() Double Gets Environment 

LSgetEnvIntParameter() Integer Gets Environment 

LSgetModelParameter() Void Gets Model 

LSgetModelDouParameter() Double Gets Model 

LSgetModelIntParameter() Integer Gets Model 

LSsetEnvParameter() Void Sets Environment 

LSsetEnvDouParameter() Double Sets Environment 

LSsetEnvIntParameter() Integer Sets Environment 

LSsetModelParameter() Void Sets Model 

LSsetModelDouParameter() Double Sets Model 

LSsetModelIntParameter() Integer Sets Model 

LSreadEnvParameter() N/A Reads Environment 

LSwriteEnvParameter() N/A Writes Environment 

LSreadModelParameter() N/A Reads Model 

LSwriteModelParameter() N/A Writes Model 

These fifteen functions are documented in detail immediately below. The list of parameters that may 

be referenced through these routines is given in the section Available Parameters. This lists, each of 

the parameter’s data type (integer or double) and whether they are available as part of the environment 

or model. The parameters available to be set for the environment are also available to be set for the 

model. However, some of the parameters available to be set for the model are not available to be set 

for the environment.  

All parameters are assigned default (initial) values during environment and model creation. These 

defaults work best for general purpose. However, there may be cases where users prefer to work with 

different settings for a subset of the available parameters. When a model is created, it inherits the 

parameter values in the environment it belongs to. Changes to the parameter values in the model do not 

affect the parameter values currently set in the environment. Similarly, once a model is created in an 
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environment, subsequent changes in the environment parameters do not affect the parameter settings in 

the model. During the optimization process, the solver uses the parameter settings in the model space. 

If a parameter is not part of the model space, then the solver uses the value in the environment space. 

LSgetEnvParameter() 

Description:  

Retrieves a parameter for a specified environment. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetEnvParameter( pLSenv pEnv, int nParameter, void 

*pvValue)  

Input Arguments:  

Name  Description  

pEnv  Pointer to an instance of LSenv. 

nParameter An integer macro (e.g., LS_IPARAM_STATUS). 

Output Arguments:  

Name  Description  

pvValue On return, *pvValue will contain the parameter’s value. The 

user is responsible for allocating sufficient memory to store the 

parameter value. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For retrieving model parameters, use LSgetModelParameter(). 
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LSgetEnvDouParameter() 

Description:  

Retrieves a double precision parameter for a specified environment.  

Returns:  
0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetEnvDouParameter( pLSenv pEnv, int nParameter, double 

*pdVal)  

Input Arguments:  

Name  Description  

pEnv  Pointer to an instance of LSenv.  

nParameter An integer macro referring to a double precision parameter 

(e.g., LS_DPARAM_SOLVER_FEASTOL). 

 

Output Arguments:  

Name  Description  

pdVal A pointer to a double precision variable. On return, *pdVal 

will contain the parameter’s value. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For retrieving double precision model parameters, use LSgetModelDouParameter(). 

 For retrieving integer environment parameters, use LSgetEnvIntParameter(). 

LSgetEnvIntParameter() 

Description:  

Retrieves an integer parameter for a specified environment.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetEnvIntParameter( pLSenv pEnv, int nParameter, int 

*pnVal)  

Input Arguments:  

Name  Description  

pEnv  Pointer to an instance of LSenv.  

nParameter An integer macro referring to an integer parameter (e.g., 

LS_IPARAM_LP_ITRLMT). 
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Output Arguments:  

Name  Description  

pnVal A pointer to an integer variable. On return, *pnVal will contain 

the parameter’s value. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For retrieving integer model parameters, use LSgetModelIntParameter(). 

 For retrieving double precision environment parameters, use LSgetEnvDouParameter(). 

LSgetModelParameter() 

Description:  

Retrieves a parameter or status variable for a specified model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetModelParameter( pLSmodel pModel, int nParameter, 

void *pvValue)  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

nParameter An integer macro (e.g., LS_IPARAM_STATUS). 

Output Arguments:  

Name  Description  

pvValue On return, *pvValue will contain the parameter’s value. The 

user is responsible for allocating sufficient memory to store the 

parameter value. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For retrieving environment parameters, use LSgetEnvParameter(). 
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LSgetModelDouParameter 

Description:  

Retrieves a double precision parameter for a specified model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetModelDouParameter( pLSmodel pModel, int 

nParameter, double *pdVal)  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

nParameter An integer macro referring to a double precision parameter 

(e.g., LS_DPARAM_MIP_RELOPTTOL). 

Output Arguments:  

Name  Description  

pdVal A pointer to a double precision variable. On return, *pdVal 

will contain the parameter’s value. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For retrieving double precision environment parameters, use LSgetEnvDouParameter(). 

 For retrieving integer model parameters, use LSgetModelIntParameter(). 

LSgetModelIntParameter() 

Description:  

Retrieves an integer parameter for a specified model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetModelIntParameter( pLSmodel pModel, int nParameter, 

int *pnVal)  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

nParameter An integer macro referring to an integer parameter (e.g., 

LS_IPARAM_LP_ITRLMT). 
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Output Arguments:  

Name  Description  

pnVal A pointer to an integer variable. On return, *pnVal will contain 

the parameter’s value. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For retrieving integer environment parameters, use LSgetEnvIntParameter(). 

 For retrieving double precision model parameters, use LSgetModelDouParameter(). 

 

LSsetEnvParameter() 

Description:  

Sets a parameter for a specified environment. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetEnvParameter( pLSenv pEnv, int nParameter, void 

*pvValue)  

Input Arguments:  

Name  Description  

pEnv  Pointer to an instance of LSenv. 

nParameter An integer macro (e.g., LS_DPARAM_SOLVER_FEASTOL). 

pvValue A variable containing the parameter’s new value. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For setting model parameters, use LSsetModelParameter(). 
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LSsetEnvDouParameter() 

Description:  

Sets a double precision parameter for a specified environment.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetEnvDouParameter( pLSenv pEnv, int nParameter, double 

dVal)  

 

Input Arguments:  

Name  Description  

pEnv  Pointer to an instance of LSenv.  

nParameter An integer macro referring to a double precision parameter 

(e.g., LS_DPARAM_SOLVER_FEASTOL). 

dVal A double precision variable containing the parameter’s new 

value. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For setting integer environment parameters, use LSsetEnvIntParameter(). 

 For setting double precision model parameters, use LSsetModelDouParameter(). 
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LSsetEnvIntParameter() 

Description:  

Sets an integer parameter for a specified environment.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetEnvIntParameter( pLSenv pEnv, int nParameter, int 

nVal)  

Input Arguments:  

Name  Description  

pEnv  Pointer to an instance of LSenv.  

nParameter An integer macro referring to an integer parameter (e.g., 

LS_IPARAM_LP_PRELEVEL). 

nVal An integer variable containing the parameter’s new value. 

Remarks:  

 The available parameters are described in Available Parameters below. 

 For setting double precision environment parameters, use LSsetEnvDouParameter(). 

 For setting integer model parameters, use LSsetModelIntParameter(). 

LSsetModelParameter() 

Description:  

Sets a parameter for a specified model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetModelParameter( pLSmodel pModel, int nParameter, 

void *pvValue)  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

nParameter An integer macro (e.g., LS_IPARAM_LP_ITRLMT). 

PvValue A variable containing the parameter’s new value. 

Remarks:  

 The available parameters are described in Available Parameters below. 

 For setting environment parameters, use LSsetEnvParameter(). 
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LSsetModelDouParameter() 

Description:  

Sets a double precision parameter for a specified model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetModelDouParameter( pLSmodel pModel, int nParameter, 

double dVal)  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

nParameter An integer macro referring to a double precision parameter 

(e.g., LS_DPARAM_SOLVER_FEASTOL). 

dVal A double precision variable containing the parameter’s new 

value. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For setting integer model parameters, use LSsetModelIntParameter(). 

 For setting double precision environment parameters, use LSsetEnvDouParameter(). 

LSsetModelIntParameter() 

Description:  

Sets an integer parameter for a specified environment.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetModelIntParameter( pLSmodel pModel, int nParameter, 

int nVal)  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

nParameter An integer macro referring to an integer parameter (e.g., 

LS_IPARAM_TIMLIM). 

nVal An integer variable containing the parameter’s new value. 
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Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For setting double precision model parameters, use LSsetModelDouParameter(). 

 For setting integer environment parameters, use LSsetEnvIntParameter(). 

LSreadEnvParameter() 

Description:  

Reads environment  parameters from a parameter file.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSreadEnvParameter( pLSenv pEnv, char *pszFname)  

Input Arguments:  

Name  Description  

pEnv Pointer to an instance of LSenv.  

pszFname A null-terminated string containing the path and name of the 

file from which parameters will be read. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For retrieving environment parameters, use LSgetModelParameter(). 

 For an example parameter file, see lindo.par in the distribution. 

LSreadModelParameter() 

Description:  

Reads model parameters from a parameter file.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSreadModelParameter( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

pszFname A null-terminated string containing the path and name of the 

file from which parameters will be read. 

Remarks:  

 The available parameters are described in the Available Parameters section below. 

 For retrieving environment parameters, use LSgetEnvParameter(). 
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LSwriteEnvParameter() 

Description:  

Writes environment parameters to a parameter file.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSwriteEnvParameter( pLSenv pEnv, char *pszFname)  

Input Arguments:  

Name  Description  

pEnv  Pointer to an instance of LSenv. 

pszFname A null-terminated string containing the path and name of the 

file to which parameters will be written. 

Remarks:  

 LSmodel objects inherit default parameter values from the LSenv object they belong. 

LSwriteModelParameter() 

Description:  

Writes model parameters to a parameter file.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSwriteModelParameter( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel. 

pszFname A null-terminated string containing the path and name of the 

file to which parameters will be written. 

Remarks:  

 LSmodel objects inherit default parameter values from the LSenv object they belong. 
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LSgetParamShortDesc() 

Description:  

Get the specified parameter's short description.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetParamShortDesc(pLSenv pEnv, int nParam,                   

char *szDescription)  

Input Arguments:  

Name  Description  

pEnv An instance of LSenv. 

nParam An integer parameter identifier. 

szDescription A string buffer to copy the parameter's description. This buffer 

should be sufficiently long (e.g. 256 characters or more). 

LSgetParamLongDesc() 

Description:  

Get the specified parameter's long description, which is also the entry in the user manual for 

the parameter.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetParamLongDesc(pLSenv pEnv, int nParam,                   

char *szDescription) 

Input Arguments:  

Name  Description  

pEnv An instance of LSenv. 

nParam An integer parameter identifier. 

szDescription A string buffer to copy the parameter's description. This buffer 

should be sufficiently long (e.g. 1024 characters or more). 
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LSgetParamMacroName() 

Description:  

Get the specified parameter's macro name.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetParamMacroName(pLSenv pEnv, int nParam, char 

*szMacro) 

Input Arguments:  

Name  Description  

pEnv An instance of LSenv. 

nParam An integer parameter identifier. 

szMacro A string buffer to return the name. 

LSgetParamMacroID() 

Description:  

Get the integer identifier and the data type of parameter specified by its name.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetParamMacroID(pLSenv pEnv, char *szParam, int 

*pnParamType,  int *pnParam) 

Input Arguments:  

Name  Description  

pEnv An instance of LSenv. 

szParam A parameter macro name. 

pnParamType An integer pointer to return the data type. 

pnParam An inter pointer to return the integer identifier of the 

parameter. 

Remark:   

A typical call in C/C++ is:  

 

LSgetParamMacroID(pEnv,"LS_DPARAM_SOLVER_TIMLMT",&nParamType,&nParam); 

assert(nParam==LS_DPARAM_SOLVER_TIMLMT); 

assert(nParamType==LS_DOUBLE_PARAMETER_TYPE); 
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LScopyParam() 

Description:  

Copy model parameters to another model.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LScopyParam( pLSmodel sourceModel, pLSmodel 

targetModel, int mSolverType)  

Input Arguments:  

Name  Description  

sourceModel  Pointer to an instance of LSmodel to copy the parameters from. 

targetModel Pointer to an instance of LSmodel to copy the parameters to. 

mSolverType An integer specifying the solver type to copy the parameters 

for. Reserved for future use. 

LSgetCLopt() 

Description:  

Get command line options.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetCLOpt(pLSenv pEnv, int nArgc,  char **pszArgv, char      

*pszOpt) 

Input Arguments:  

Name  Description  

pEnv An instance of LSenv. 

nArgc Number of command line arguments. 

pszArgv Argument list. 

pszOpt Option list. 
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LSgetCLoptArg() 

Description:  

Retrieve option argument.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetCLOptArg(pLSenv pEnv, char **pszOptArg) 

Input Arguments:  

Name  Description  

pEnv An instance of LSenv. 

pszOptArg Option arguments returned. 

LSgetCLoptInd() 

Description:  

Retrieve option argument.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetCLOptInd(pLSenv pEnv, int *pnOptInd); 

Input Arguments:  

Name  Description  

pEnv An instance of LSenv. 

pnOptInd Option indices returned. 
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Available Parameters 
In this section, a detailed description of all the parameters available through the 

LSgetxxxyyyParameter() and LSsetxxxyyyParameter() routines are described. These parameters are 

defined in the lindo.h header file in the LSparameter enumerated type definition. The parameters that 

start with LS_IPARAM corresponds to integer type parameters. Similarly, parameters that start with 

LS_DPARAM correspond to double type parameters. 

Note: For details on the relationship between environment and model parameters, see the Parameter 

Setting and Retrieving Routines section above. 

General Solver Parameters 
Name  Available for Description  

LS_IPARAM_CHECK_FOR_ERRORS Environment, 

Model 

This is a flag indicating if the loaded 

model will be checked for errors. 

Possible values are 0 and 1. 1 means 

that the loaded model will be checked 

for errors. 0 means it will not. The 

default is 0. 

LS_IPARAM_SPLEX_REFACFRQ Environment, 

Model 

This is a positive integer scalar referring 

to the simplex iterations between two 

consecutive basis re-factorizations. For 

numerically unstable models, setting 

this parameter to smaller values may 

help. Range for possible values is 

(0,inf). The default is 200. 

 LS_IPARAM_BARRIER_SOLVER Environment, 

Model 

This is the type of barrier method to be 

used for solving the referred model. 

This macro is reserved for future use. 

The default is 4. 

LS_IPARAM_ALLOW_CNTRLBREAK Environment, 

Model 

This flag controls if the user can 

interrupt the solver using the CTRL+C 

keys. Possible values are 0 (off) and 1 

(on). The default is 1 (on). 

LS_IPARAM_SOL_REPORT_STYLE Model This controls the solution report style 

produced. Possible values are 0 (default) 

and 1. The latter produces solution 

reports in LINDO API 1.x style. 

LS_DPARAM_CALLBACKFREQ Environment, 

Model 

This controls the frequency with which 

the solver calls back to your optionally 

supplied callback routine. Range for 

possible values is [0,inf). The default 

value for this option is 0.5, meaning the 

solver calls back once every 0.5 

seconds. 
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LS_IPARAM_INSTRUCT_LOADTYPE Model This is reserved for internal use only. 

The default is 0. 

LS_DPARAM_SOLVER_CUTOFFVAL  Environment, 

Model 

If the optimal objective value of the LP 

being solved is shown to be worse than 

this (e.g., if the dual simplex method is 

being used), then the solver will exit 

without finding a feasible solution. This 

is a way of saving computer time if 

there is no sufficiently attractive 

solution. Range for possible values is (-

inf,inf). Default is -1e+30. 

LS_IPARAM_MPS_OBJ_WRITESTYLE Environment, 

Model 
Standard MPS format assumes that the 

underlying model is of minimization 

type. This flag indicates how to handle 

‘maximization’ type models when 

exporting in MPS format. Possible 

values are: 

# LS_MPS_USE_MAX_NOTE (0): 

Export the model as minimization type 

without flipping the objective function 

but a comment is printed in the file that 

the model is of maximization type.   

# LS_MPS_USE_MAX_CARD (1): 

Export the model using the non-

standard ‘MAX’ operator. Some MPS 

parsers, including LINDO API can 

process MAX operator. 

# LS_MPS_USE_MAX_FLIP (2): 

Export the model as a minimization 

problem after flipping the sign of the 

objective. This is the default. 

The default value is: 

LS_MPS_USE_MAX_FLIP (2). 

LS_IPARAM_FMT_ISSQL Environment, 

Model 
Reserved for internal use. 

The default is 0. 
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LS_IPARAM_DECOMPOSITION_TYPE Environment, 

Model 

This refers to the type of decomposition 

to be performed on a linear or mixed 

integer model. The possible values are 

identified with the following macros: 

# LS_LINK_BLOCKS_FREE (0): The 

solver decides which type of 

decomposition to use. 

# LS_LINK_BLOCKS_SELF (1): The 

solver does not perform any 

decompositions and uses the original 

model. This is the default. 

# LS_LINK_BLOCKS_NONE (2): 

Attempt total decomposition (no linking 

rows or columns). 

# LS_LINK_BLOCKS_COLS (3): The 

decomposed model will have dual 

angular structure (linking columns). 

# LS_LINK_BLOCKS_ROWS (4): The 

decomposed model will have block 

angular structure (linking rows). 

# LS_LINK_BLOCKS_BOTH (5): The 

decomposed model will have both dual 

and block angular structure (linking 

rows and columns). 

For more information on decomposing 

models, refer to Chapter 10, Analyzing 

Models and Solutions. 

LS_DPARAM_SOLVER_FEASTOL  Environment, 

Model 

This is the feasibility tolerance. A 

constraint is considered violated if the 

artificial, slack, or surplus variable 

associated with the constraint violates 

its lower or upper bounds by the 

feasibility tolerance. Range for possible 

values is [1e-16,inf). The default value 

is 1.0e-7. 

LS_DPARAM_SOLVER_OPTTOL  Environment, 

Model 

This is the optimality tolerance. It is 

also referred to as the dual feasibility 

tolerance. A dual slack (reduced cost) is 

considered violated if it violates its 

lower bound by the optimality tolerance.  

Range for possible values is [1e-16,inf). 

The default value is 1.0e-7. 
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LS_IPARAM_LP_SCALE Environment, 

Model 

This is the scaling mode for linear 

models, applies to both simplex 

methods as well as the barrier and 

mixed-integer solver. Scaling multiplies 

the rows and columns of the model by 

appropriate factors so as to reduce the 

range of coefficients. This tends to 

reduce numerical difficulties. Possible 

values are: 

# -1 Solver decides 

#  0 Scaling is off 

#  1 Scale rows and columns 

#  2 Scale rows only 

#  3 Scale columns only 

The default is -1. 

LS_IPARAM_LP_ITRLMT  Environment, 

Model 

This is a limit on the number of 

iterations the solver will perform before 

terminating. If this value is a 

nonnegative integer, then it will be used 

as an upper bound on the number of 

iterations the solver will perform. If this 

value is -1, then no iteration limit will 

be used. The solution may be infeasible.  

Range for possible values is [-

1,INT_MAX].  

The default is INT_MAX 

(2147483647). 

Remark: Deprecated name 

LS_IPARAM_SPLEX_ITRLMT 

LS_DPARAM_LP_ITRLMT  Environment, 

Model 

This is a limit on the number of 

iterations (stored as a double) the solver 

will perform before terminating. If this 

value is a nonnegative double, then it 

will be used as an upper bound on the 

number of iterations the solver will 

perform. If this value is -1.0, then no 

iteration limit will be used. The solution 

may be infeasible.  Range for possible 

values is [-1.0,inf). The default is -1.0. 
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LS_IPARAM_SOLVER_IUSOL  Environment, 

Model 

This is a flag that, when set to 1, will 

force the solver to compute a basic 

solution to an infeasible model that 

minimizes the sum of infeasibilities and 

a basic feasible solution to an 

unbounded problem from which an 

extreme direction originates. When set 

to 0, the solver will return with an 

appropriate status flag as soon as 

infeasibility or unboundedness is 

detected. If infeasibility or 

unboundedness is declared with 

presolver's determination, no solution 

will be computed. The default is 0. 

LS_IPARAM_LP_PRINTLEVEL  Environment, 

Model  

This controls the level of trace output 

printed by the simplex and barrier 

solvers.  0 means no trace output. 

Higher values lead to more trace output. 

Range for possible values is [0,inf). The 

default is 0. 

LS_DPARAM_OBJPRINTMUL Model  When printing the objective value, it 

will first be multiplied by the value of 

this parameter. For example, you may 

wish to set it to -1.0 if the original 

problem was a maximization problem, 

but it is being solved as a minimization 

problem. Range for possible values is (-

inf,inf). The default value is 1.0. 

LS_IPARAM_OBJSENSE Model  Use this parameter to set the sense of 

the objective function. The default value 

is LS_MIN for minimization. Set this 

parameter to LS_MAX if you want to 

maximize the objective. 

LS_IPARAM_SPLEX_PPRICING Environment, 

Model 

This is the pricing option to be used by 

the primal simplex method. Possible 

values are: 

# -1: Solver decides the primal pricing 

method (default). 

# 0: Partial pricing. 

# 1: Devex  
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LS_IPARAM_SPLEX_DPRICING Environment, 

Model 

This is the pricing option to be used by 

the dual simplex method. Possible 

values are: 

# -1: Solver decides (Default). 

# 0: Dantzig’s rule (partial pricing). 

# 1: Dantzig’s rule (full pricing with 

fallback to partial). 

# 2: Steepest edge rule. 

# 3: Dual Devex rule. 

# 4: Approximate dual Devex rule. 

LS_IPARAM_SOLVER_RESTART Environment, 

Model 

This is the starting basis flag. Possible 

values are 1 or 0. 1 means LINDO API 

will start from a cold basis discarding 

any basis resident in memory.  0 means 

LINDO API will perform warm starts 

using any basis currently in memory. 

The default is 0. 

LS_IPARAM_PROB_TO_SOLVE Environment, 

Model 

This controls whether the explicit 

primal or dual form of the given LP 

problem will be solved. Possible values 

are: 

# 0: Solver decides (default). 

# 1: Explicit primal form. 

# 2: Explicit dual form. 

 

LS_IPARAM_SOLVER_IPMSOL Environment, 

Model 

This flag controls whether a basis 

crossover will be performed when 

solving LPs with the barrier solver. A 

value of 0 indicates that a crossover to a 

basic solution will be performed. If the 

value is 1, then the barrier solution will 

be left intact. For example, if alternate 

optima exist, the barrier method will 

return a solution that is, loosely 

speaking, the average of all alternate 

optima. The default is 0. 

LS_DPARAM_SOLVER_TIMLMT Environment, 

Model 

This is a time limit in seconds for the 

LP solver. The default value of -1 

imposes no time limit. If 

LS_DPARAM_TIMLMT < -1, then an 

error is returned. Range for possible 

values is [-1, inf). 

Remark: Deprecated name 

LS_IPARAM_TIMLMT (integer typed) 



FUNCTION DEFINITIONS     67 

 

LS_IPARAM_SOLVER_TIMLMT Environment, 

Model 

This specifies an integer valued time 

limit in seconds for the LP solver. The 

default value of -1 imposes no time 

limit. If LS_IPARAM_TIMLMT < -1, 

then an error is returned. Range for 

possible values is [-1, INT_MAX]. 

Remark: Deprecated name 

LS_IPARAM_TIMLMT (integer typed) 

LS_IPARAM_SOLVER_USECUTOFFVAL Environment, 

Model  

This is a flag for the parameter 

LS_DPARAM_SOLVER_CUTOFFVA

L. The possible value of 0 means 

LS_DPARAM_SOLVER_CUTOFFVA

L is not used, else it is used as defined. 

Possible values are 0 (no), 1 (yes) and -

1 (the solver decides). The default is 0. 

LS_IPARAM_VER_NUMBER  Environment, 

Model 

This is the version number of LINDO 

API. This value cannot be set. 

LS_IPARAM_VER_MAJOR Environment, 

Model 

This is the major version number of 

LINDO API. This value cannot be set. 

LS_IPARAM_VER_MINOR Environment, 

Model 

This is the minor version number of 

LINDO API. This value cannot be set. 

LS_IPARAM_VER_BUILD Environment, 

Model 

This is the build number of LINDO 

API. This value cannot be set. 

LS_IPARAM_VER_REVISION Environment, 

Model 

This is the revision number of LINDO 

API. This value cannot be set. 

LS_IPARAM_LP_PRELEVEL  

 

Environment, 

Model 

This controls the amount and type of LP 

pre-solving to be used. Possible values 

in bit-mask form are: 

# Simple pre-solving        +2 

# Primal based        +4 

# Coefficient reduction              +8 

# Elimination      +16 

# Dual column based               +32 

# Dual row based                     +64 

# Use Max pass limit    +128 

The default value is:  

126  = 2+4+8+16+32+64. 
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LS_IPARAM_SOLVER_PRE_ELIM_FILL Environment, 

Model 

This is a nonnegative value that controls 

the fill-in introduced by the eliminations 

during pre-solve. Smaller values could 

help when the total nonzeros in the 

presolved model is significantly more 

than the original model.  Range for 

possible values is [0,inf). The default is 

1000. 

LS_IPARAM_SPLEX_DUAL_PHASE Environment, 

Model 

This controls the dual simplex strategy, 

single-phase versus two-phase. The 

possible values are 0,1 and 2. The 

default is 0, i.e. the solver decides. 
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LS_IPARAM_COPY_MODE Environment, 

Model 

This value specifies the mode when 

copying a model object. Bitmasks to 

define possible values are:  

# LS_RAW_COPY                         0 

# LS_DEEP_COPY                        1 

# LS_TIME_COPY                        2 

# LS_STOC_COPY                        4 

# LS_SNGSTG_COPY                   8 

The default is LS_RAW_COPY (0). 

LS_IPARAM_SBD_NUM_THREADS Environment, 

Model 

This value specifies the number of 

parallel threads to be used when solving 

a model with SBD method. Possible 

values are positive integers. The default 

is 1. 

LS_DPARAM_SOLVER_PERT_FEASTOL Environment, 

Model 

Reserved for future use.  

Default is 1.0e-12. 

LS_IPARAM_SOLVER_PARTIALSOL_LEV

EL    

Environment, 

Model 

Reserved for future use. Default is 0. 

LS_IPARAM_MULTITHREAD_MODE     Environment, 

Model 

This parameter controls the threading 

mode for solvers with multithreading 

support. Possible values are: 

# LS_MTMODE_FREE = -1, solver 

decides. 

# LS_MTMODE_EXPLCT  = 0, 

reserved for future. 

# LS_MTMODE_PPCC = 1, try parallel 

mode (PP), but if it is not available try 

concurrent mode (CC). 

# LS_MTMODE_PP = 2, try parallel 

mode (PP) only. 

# LS_MTMODE_CCPP = 3, try 

concurrent mode (CC), but if it is not 

available try parallel mode (PP). 

# LS_MTMODE_CC = 4, try 

concurrent mode (CC) only. 

The default is LS_MTMODE_FREE, 

implying the best performing mode will 

be used. 
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LS_IPARAM_FIND_BLOCK  Environment, 

Model 

Specifies the graph partitioning method 

to find block structures. Possible values 

are: 

# 0: Use an edge-weight minimizing 

graph partitioning heuristic. 

# 1: Use a vertex-weight minimizing 

graph partitioning heuristic. 

The default is 0. 

LS_IPARAM_NUM_THREADS  Environment, 

Model 

Number of threads to use in the solver 

routine to be called.  

It is a solver-independent parameter 

which internally sets solver-specific 

threading parameters automatically. 

Possible values are positive integers. 

The default is 1. 

LS_IPARAM_INSTRUCT_SUBOUT  Environment, 

Model 

This is a flag indicating whether 1) 

fixed variables are substituted out of the 

instruction list,  

2) performing numerical calculation on 

constant numbers and replacing with the 

results. 

Possible values are: 

# -1: Solver decides (default) 

# 0:  substitutions will not be performed 

# 1:  substitutions will be performed 

LS_IPARAM_STRING_LENLMT 

 

Model This specifies the maximum number of 

characters of strings in an instruction 

lists. 

Possible values are positive integers. 

The default is 20. 

LS_IPARAM_USE_NAMEDATA Model This specifies whether to use name data 

or not when exporting models in a 

portable file format. 

Possible values are: 

# 0: do not use name data 

# 1: use name data 

The default is 1. 

LS_IPARAM_SPLEX_USE_EXTERNAL Environment, 

Model 

This specifies whether to use an external 

simplex solver or not. 

Possible values are: 

# 0: do not use external simplex solver 

# 1: use external simplex solver 

The default is 0. 
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LS_IPARAM_PROFILER_LEVEL Environment, 

Model 

Specifies the profiler level to break 

down the total cpu time into. 

Possible values are: 

# 0: Profiler is off. 

# 1: Enable for simplex solver. 

# 2: Enable for integer solver. 

# 4: Enable for multistart solver. 

# 8: Enable for global solver. 

The default is 0. 

LS_IPARAM_INSTRUCT_READMODE Environment, 

Model 

This controls the input mode when 

reading from MPI file. 

Possible values are the following 

# 0: High memory utilization, fast 

access speed 

# 1: Low memory utilization, moderate 

access speed (default) 

# 2: Conservative memory utilization, 

slow access speed 

# 3: Reserved for future use 

LS_DPARAM_LP_MIN_FEASTOL Environment, 

Model 

Minimum feasibility tolerance for LPs. 

Possible values are (0,inf). 

Default is 1e-009. Reserved for future 

use. 

LS_DPARAM_LP_MAX_FEASTOL Environment, 

Model 

Maximum feasibility tolerance for LPs. 

Possible values are (0,inf). 

Default is 1e-005. Reserved for future 

use. 

LS_DPARAM_LP_MIN_OPTTOL Environment, 

Model 

Minimum optimality tolerance for LPs. 

Possible values are (0,inf). 

Default is 1e-009. Reserved for future 

use. 

LS_DPARAM_LP_MAX_OPTTOL Environment, 

Model 

Maximum optimality tolerance for LPs. 

Possible values are (0,inf). 

Default is 1e-005. Reserved for future 

use. 

LS_DPARAM_LP_AIJ_ZEROTOL Environment, 

Model 

Coefficient matrix zero tolerance. 

Possible values are (0,inf). 

Default is 2.22045e-016. 

LS_DPARAM_LP_PIV_ZEROTOL Environment, 

Model 

Simplex pivot zero tolerance. Possible 

values are (0,inf). 

Default is 1e-008. 

LS_DPARAM_LP_PIV_BIGTOL Environment, 

Model 

Simplex maximum pivot tolerance. 

Possible values are (0,inf). 

Default is 1e-005. 

LS_DPARAM_LP_BIGM Environment, 

Model 

Big-M for phase-I. Possible values are 

(0,inf). 

Default is 1e6.  
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LS_DPARAM_LP_BNDINF Environment, 

Model 

Big-M to truncate lower and upper 

bounds in single phase dual-simplex. 

Possible values are (0,inf). 

Default is 1e+015. 

LS_DPARAM_LP_INFINITY Environment, 

Model 

Numeric infinity used by LP solvers. 

This value cannot be set. It is 1e+030. 

LS_IPARAM_LP_PPARTIAL Environment, 

Model 

Primal simplex partial pricing method. 

Possible values are: 

# 0 : solver decides (default) 

# 1 : use method 1 

# 2 : use method 2 

# 3 : use method 3 

LS_IPARAM_LP_DPSWITCH Environment, 

Model 

Flag specifies whether LP primal-dual 

simplex switch is enabled or not. 

Default is 1. 

LS_IPARAM_LP_PALLOC Environment, 

Model 

Reserved for internal use. 

Default is 5. 

LS_IPARAM_LP_PRTFG Environment, 

Model 

LP Simplex print level. Possible values 

are nonnegative integers. Default is 0. 

LS_IPARAM_LP_OPRFREE Environment, 

Model 

Reserved for internal use.  

Default is 33. 

LS_IPARAM_LP_SPRINT_SUB Environment, 

Model 

LP method for subproblem in Sprint 

method. Possible values are macros for 

available LP solvers. 

Default is 0. 

LS_IPARAM_LU_NUM_CANDITS Environment, 

Model 

Number of pivot candidates in LU 

decomposition. Possible values are 

positive integers. Default is 4. 

LS_IPARAM_LU_MAX_UPDATES Environment, 

Model 

Number of maximum updates in LU 

decomposition. Possible values are 

positive integers. Default is 500. 

LS_IPARAM_LU_PRINT_LEVEL Environment, 

Model 

Print level for LU decomposition. 

Possible values are positive integers. 

Default is 0. 

LS_IPARAM_LU_UPDATE_TYPE Environment, 

Model 

Basis update type in simplex. Possible 

values are  

# 0: Eta updates 

# 1: Forrest-Tomlin updates. 

Default is 1. 

LS_IPARAM_LU_USE_PIVCOL Environment, 

Model 

Reserved for internal use. Default is 0. 

LS_IPARAM_LU_PIVMOD Environment, 

Model 

LU pivot mode. Reserved for internal 

use. Default is 0. 

LS_DPARAM_LU_EPS_DIAG Environment, 

Model 

LU Pivot tolerance. Possible values are 

(0,1). Default is 2.22045e-016. 
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LS_DPARAM_LU_EPS_NONZ Environment, 

Model 

LU Nonzero tolerance. Possible values 

are (0,1). Default is 2.22045e-016. 

LS_DPARAM_LU_EPS_PIVABS Environment, 

Model 

Absolute pivot tolerance. Possible 

values are (0,1). Default is 1e-008. 

LS_DPARAM_LU_EPS_PIVREL Environment, 

Model 

LU Relative pivot tolerance. Possible 

values are (0,1). Default is 0.01 

LS_DPARAM_LU_INI_RCOND Environment, 

Model 

LU Initial reciprocal condition estimator 

tolerance. 

Possible values are (0,1).  

Default is 0.01. 

LS_DPARAM_LU_SPVTOL_UPDATE Environment, 

Model 

LU Threshold for sparse update. 

Reserved for internal use. 

Default is 0.001. 

LS_DPARAM_LU_SPVTOL_FTRAN Environment, 

Model 

LU threshold for sparse FTRAN. 

Reserved for internal use. 

Default is 0.2. 

LS_DPARAM_LU_SPVTOL_BTRAN Environment, 

Model 

LU threshold for sparse BTRAN. 

Reserved for internal use. 

Default is 0.1. 

LS_IPARAM_LP_RATRANGE Environment, 

Model 

This controls the number of pivot-

candidates to consider when searching 

for a stable pivot in LU decomposition. 

Range for possible values is [1,inf). The 

default is 4. 

LS_DPARAM_LP_MAX_PIVTOL Environment, 

Model 

Reserved for future use.  

The default is 0.00001.  

LS_DPARAM_LP_MIN_PIVTOL Environment, 

Model 

Reserved for future use. 

The default is 1e-10. 

LS_IPARAM_LP_DPARTIAL Environment, 

Model 

Reserved for future use. 

LS_IPARAM_LP_DRATIO Environment, 

Model 

This controls the dual min-ratio 

strategy. Possible values are 0,1 and 2. 

The default is 1. 

LS_IPARAM_LP_PRATIO Environment, 

Model 

Reserved for future use. 

LS_IPARAM_LP_PERTMODE                     Environment, 

Model 

This specifies the perturbation mode in 

simplex solvers. Reserved for future 

use. 

LS_IPARAM_LP_PCOLAL_FACTOR                 Environment, 

Model 

Reserved for future use. 
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Nonlinear Optimization Parameters 
LS_IPARAM_NLP_SOLVE_AS_LP Environment, 

Model 

This is a flag indicating if the nonlinear model 

will be solved as an LP. Possible values are 0 

and 1. 1 means that an LP using first order 

approximations of the nonlinear terms in the 

model will be used when optimizing the model 

with the LSoptimize() function. The default is 

0. 

LS_IPARAM_NLP_SOLVER Environment, 

Model 

This refers to the type of nonlinear solver. The 

possible values are:  

# LS_NMETHOD_FREE(4): solver decides, 

# LS_NEMTHOD_LSQ(5): uses Levenberg-

Marquardt method to solve nonlinear least-

squares problem. 

# LS_NMETHOD_QP(6): uses Barrier solver 

for convex QCP models. 

# LS_NMETHOD_CONOPT(7): uses 

CONOPT’s reduced gradient solver. This is 

the default. 

# LS_NEMTHOD_SLP(8): uses SLP solver. 

# LS_NMETHOD_MSW_GRG(9): uses 

CONOPT with multistart feature enabled.  

LS_IPARAM_NLP_SUBSOLVER Environment, 

Model 

This controls the type of linear solver to be 

used for solving linear sub problems when 

solving nonlinear models. The possible values 

are: 

# LS_METHOD_FREE (0) 

# LS_METHOD_PSIMPLEX (1): primal 

simplex method.  

# LS_METHOD_DSIMPLEX(2): dual 

simplex method,  

# LS_METHOD_BARRIER(3): barrier  solver 

with or without crossover. 

The default is LS_METHOD_FREE. 

LS_DPARAM_NLP_PSTEP_FINITEDI

FF 

Environment, 

Model 

This controls the value of the step length in 

computing the derivatives using finite 

differences. Range for possible values is (0, 

inf). The default value is 5.0e-07. 

LS_IPARAM_NLP_USE_CRASH Environment, 

Model 

This is a flag indicating if an initial solution 

will be computed using simple crash routines. 

Possible values are 0 (no), 1 (yes) and -1 (the 

solver decides). The default is 0. 
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LS_IPARAM_NLP_USE_STEEPEDGE Environment, 

Model 

This is a flag indicating if steepest edge 

directions should be used in updating the 

solution. Possible values are 0 (no), 1 (yes) and 

-1 (the solver decides). The default value is 0. 

LS_IPARAM_NLP_USE_SLP Environment, 

Model 

This is a flag indicating if sequential linear 

programming step directions should be used in 

updating the solution. Possible values are 0 

(no), 1 (yes) and -1 (the solver decides). The 

default value is 1. 

LS_IPARAM_NLP_USE_SELCONEVA

L 

Environment, 

Model 

This is a flag indicating if selective constraint 

evaluations will be performed in solving a 

nonlinear model. Possible values are 0 (no), 1 

(yes) and -1 (the solver decides). The default 

value is 0. 

LS_IPARAM_NLP_PRELEVEL 

 

Environment, 

Model 

This controls the amount and type of NLP pre-

solving. Possible options are: 

# Simple pre-solving +2 

# Probing +4 

# Coefficient reduction +8 

# Elimination +16 

#Dual reductions +32  

# Use dual information +64  

# Maximum pass +512 

The default value is: 0 

LS_IPARAM_NLP_AUTODERIV 

 

Environment, 

Model 

This is a flag to indicate if automatic 

differentiation is the method of choice for 

computing derivatives and select the type of 

differentiation. If the value is 0, then the Finite 

Differences approach will be used. If the value 

is 1, then the forward type of Automatic 

Differentiation will be used. If the value is 2, 

then the backward type of Automatic 

Differentiation will be used. The default is 2.  

Note: Automatic Differentiation can be used 

only with Instruction style input. It is only 

useful when the instructions are loaded. 
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LS_IPARAM_NLP_LINEARZ 

 

Environment, 

Model 

This determines the extent to which the solver 

will attempt to linearize nonlinear models. The 

available options are  

# 0: Solver decides. 

# 1: No linearization occurs. 

# 2: Linearize ABS, MAX, and MIN functions. 

# 3: Same as option 2 plus IF, AND, OR, 

NOT, and all logical operators ( i.e., , = , , 

and <>) are linearized.  

The default is 0. 

LS_IPARAM_NLP_LINEARITY Environment, 

Model 

This is used to check the linearity 

characteristic of the solved model. If the 

returned value equals 1, then the model is 

linear or has been completely linearized in the 

linearization step. Thus, the global optimality 

of the solution can be ensured. This parameter 

cannot be set. This parameter will be 

deprecated in future versions. 

LS_IPARAM_NLP_PRINTLEVEL  Environment, 

Model 

This controls the level of trace output printed 

by the nonlinear solver. 1 means normal trace 

output. Higher values for this parameter lead to 

more trace output.  Range for possible values 

is [0,inf). The default is 1. 
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LS_IPARAM_NLP_FEASCHK Environment, 

Model 

This input parameter specifies how the NLP 

solver reports the results when an optimal or 

local-optimal solution satisfies the feasibililty 

tolerance (LS_DPARAM_NLP_FEASTOL) of 

the scaled model but not the original (descaled) 

one. Possible values for 

LS_IPARAM_NLP_FEASCHK are 

# 0 - Perform no action, accept the final 

solution and model status. 

# 1 - Declare the model status as 

LS_STATUS_FEASIBLE if maximum 

violation in the unscaled model is not higher 

than 10 times of the current feasibililty 

tolerance (LS_DPARAM_NLP_FEASTOL), 

otherwise declare the status as 

LS_STATUS_UNKNOWN. 

# 2 - Declare the model status as 

LS_STATUS_UNKNOWN if maximum 

violation in the unscaled model is higher than 

the current feasibililty tolerance 

(LS_DPARAM_NLP_FEASTOL). The default 

is (0). 

LS_DPARAM_NLP_FEASTOL  Environment, 

Model 

This is the feasibility tolerance for nonlinear 

constraints. A constraint is considered violated 

if the artificial, slack, or surplus variable 

associated with the constraint violates its lower 

or upper bounds by the feasibility tolerance. 

Range for possible values is (0,1). The default 

value is 1.0e-6. 

LS_DPARAM_NLP_REDGTOL  Environment, 

Model 

This is the tolerance for the gradients of 

nonlinear functions. The (projected) gradient 

of a function is considered to be the zero-

vector if its norm is below this tolerance.  

Range for possible values is (0,1). The default 

value is 1.0e-7. 
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LS_IPARAM_NLP_DERIV_DIFFTYPE Environment, 

Model 

This is a flag indicating the technique used in 

computing derivatives with Finite Differences. 

The possible values are: 

# LS_DERIV_FREE: the solver decides, 

# LS_DERIV_FORWARD_DIFFERENCE: 

use forward differencing method,  

# LS_DERIV_BACKWARD_DIFFERENCE: 

use backward differencing method,  

# LS_DERIV_CENTER_DIFFERENCE: use 

center differencing method. 

The default value is 0. 

LS_IPARAM_NLP_ITRLMT Environment, 

Model 

This controls the iteration limit on the number 

of nonlinear iterations performed. Range for 

possible values is [-1,INT_MAX]. The default 

is INT_MAX (2147483647). 

LS_IPARAM_NLP_STARTPOINT Environment, 

Model 

This is a flag indicating if the nonlinear solver 

should accept initial starting solutions. 

Possible values are 0 (no), 1 (yes). The default 

is 1. 

LS_IPARAM_NLP_CONVEXRELAX Environment, 

Model 

This is reserved for internal use only. 

The default is 0. 

LS_IPARAM_NLP_CR_ALG_REFOR

M 

Environment, 

Model 

This is reserved for internal use only. 

The default is 0. 

LS_IPARAM_NLP_QUADCHK Environment, 

Model 

This is a flag indicating if the nonlinear model 

should be examined to check if it is a quadratic 

model. . Possible values are 0 (no), 1 (yes). 

The default value is 1. 

LS_IPARAM_NLP_MAXLOCALSEAR

CH 

Environment, 

Model 

This controls the maximum number of local 

searches (multistarts) when solving a NLP 

using the multistart solver. Range for possible 

values is [0,inf). The default value is 5. 

LS_IPARAM_NLP_CONVEX Environment, 

Model 

This is a flag indicating if the quadratic model 

is convex or not. If the value is 1, the 

minimization (maximization) model is convex 

(concave). This value cannot be set. Default is 

1. 

LS_IPARAM_NLP_CONOPT_VER Environment, 

Model 

This specifies the CONOPT version to be used 

in NLP optimizations. Possible values are 2 

and 3 (default). 
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LS_IPARAM_NLP_USE_LINDO_CRA

SH 

Environment, 

Model 

This is a flag indicating if an initial solution 

will be computed using advanced crash 

routines. Possible values are 0 (no), 1 (yes) and 

-1 (the solver decides). The default is 0. 

LS_IPARAM_NLP_STALL_ITRLMT Environment, 

Model 

This specifies the iteration limit before a 

sequence of non-improving NLP iterations is 

declared as stalling, thus causing the solver to 

terminate.  The default is 100. 

LS_IPARAM_NLP_AUTOHESS Environment, 

Model 

This is a flag to indicate if Second Order 

Automatic Differentiation will be performed in 

solving a nonlinear model. The second order 

derivatives provide an exact/precise Hessian 

matrix to the SQP algorithm, which may lead 

to less iterations and better solutions, but may 

also be quite expensive in computing time for 

some cases. If the value is 1, then the Second 

Order Automatic Differentiation will be used. 

The default is 0.  

Note: Automatic Differentiation can be used 

only with Instruction style input. It is only 

useful when the instructions are loaded. 
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LS_IPARAM_NLP_MSW_SOLIDX Environment, 

Model 

Index of the multistart solution to be loaded 

main solution structures Range of possible 

values are [0,+inf]. Default is 0. 

LS_IPARAM_NLP_ITERS_PER_LOGL

INE 

Environment, 

Model 

Number of nonlinear iterations to elapse before 

next progress message. Range of possible 

values are [1,+inf]. Default is 50. 

LS_IPARAM_NLP_MAX_RETRY Environment, 

Model 

Maximum number refinement retries to purify 

the final NLP solution. Range of possible 

values are [-1,+inf]. Default is 5. 

LS_IPARAM_NLP_MSW_NORM Environment, 

Model 

Norm to measure the distance between two 

points in multistart search. Range of possible 

values are [-1,+inf]. Default is 2. 

LS_IPARAM_NLP_MSW_POPSIZE Environment, 

Model 

Maximum number of reference points in the 

solution space to generate trial points in 

multistart search. Range of possible values are 

[-1,+inf]. Default is  -1 (solver decides). 

LS_IPARAM_NLP_MSW_MAXPOP Environment, 

Model 

Maximum number of populations to generate 

in multistart search. Range of possible values 

are [-1,+inf].  

Default is -1 (solver decides). 

LS_IPARAM_NLP_MSW_MAXNOIM

P 

Environment, 

Model 

Maximum number of consecutive populations 

to generate w/o any improvements. Range of 

possible values are [-1,+inf]. Default is -1 

(solver decides). 

LS_DPARAM_NLP_ITRLMT Environment, 

Model 

This controls the iteration limit (stored as a 

double) on the number of nonlinear iterations 

performed. Range for possible values is [-

1,INT_MAX]. The default is INT_MAX 

(2147483647). 
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LS_IPARAM_NLP_MSW_FILTMODE Environment, 

Model 

Filtering mode to exclude certain domains 

during sampling in multistart search. Bitmasks 

for possible values are 

# -1 - Solver decides 

# 1 - filter-out the points around known KKT 

or feasible points previously visited. 

# 2 - filter-out the points whose p() are in the 

vicinity of p(x), where x is an initial point of a 

previous local optimizations with p() being an 

internal merit function.  

# 4 - filter-out the points in the vicinity of x, 

where x are initial points of all previous local 

optimizations.  

# 8 - filter-out the points whose p(.) values are 

below a dynamic threshold tolerance, which is 

computed internally. 

Default is -1. 

LS_DPARAM_NLP_MSW_POXDIST_

THRES   

Environment, 

Model 

Penalty function neighborhood threshold in 

multistart search. Possible values are (0,inf). 

Default is 0.01. 

LS_DPARAM_NLP_MSW_EUCDIST_

THRES 

Environment, 

Model 

Euclidean distance threshold in multistart 

search. Possible values are (0,inf). Default is 0.001. 

LS_DPARAM_NLP_MSW_XNULRAD

_FACTOR 

Environment, 

Model 

Initial solution neighborhood factor in 

multistart search. Possible values are (0,inf). 

Default is 0.5. 

LS_DPARAM_NLP_MSW_XKKTRAD

_FACTOR 

Environment, 

Model 

KKT solution neighborhood factor in 

multistart search. Possible values are (0,inf). 

Default is 0.85. 

LS_IPARAM_NLP_MAXLOCALSEAR

CH_TREE  

Environment, 

Model 

Maximum number of multistarts (at tree 

nodes). Possible values are positive integers. 

Default is 1. 

LS_IPARAM_NLP_MSW_NUM_THRE

ADS        

 

Environment, 

Model 

This value specifies the number of parallel 

threads to be used when solving an NLP model 

with the multistart solver. Possible values are 

positive integers. The default is 1.    

LS_IPARAM_NLP_MSW_RG_SEED            Environment, 

Model 

This value specified the random number 

generator seed for the multistart solver. 

Possible values are nonnegative integers. The 

default is 1019. 
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LS_IPARAM_NLP_MSW_PREPMODE         Environment, 

Model 

This value specifies the preprocessing 

strategies in multistart solver. Bitmasks 

defining possible values are: 

# -1: Solver decides 

# LS_MSW_MODE_TRUNCATE_FREE: 

Truncate free variables 

# LS_MSW_MODE_SCALE_REFSET: Scale 

reference points to origin 

# LS_MSW_MODE_EXPAND_RADIUS: 

Enable expansive scaling of radius[k] by hit[k]  

# LS_MSW_MODE_SKEWED_SAMPLE: 

Skewed sampling allowing values in the 

vicinity of origin. 

# LS_MSW_MODE_BEST_LOCAL_BND: 

Get best bounds by presolver 

# LS_MSW_MODE_BEST_GLOBAL_BND: 

Get best bounds using GOP 

# LS_MSW_MODE_SAMPLE_FREEVARS: 

Enable sampling of free variables (not 

recommended) 

# LS_MSW_MODE_PRECOLLECT:   

Collect sufficiently many trial points prior to 

local solves 

# LS_MSW_MODE_POWER_SOLVE: 

Enable power solver, trying several different 

local strategies 

The default is : -1 

LS_IPARAM_NLP_MSW_RMAPMOD

E               

Environment, 

Model 

This value specifies the mode to map reference 

points in the unit cube into the original space. 

Possible values are: 

# -1 Solver decides 

# 0 Use original variable bounds 

# 1 Use min-max values over all sample points 

per each dimension 

# 2 Use min-max values over all sample points 

over all dimensions. 

The default value is -1. 

LS_IPARAM_NLP_XSMODE  Environment, 

Model 

This value controls the bitmask for advanced 

local optimization modes. Reserved for future 

use. Default value is: 197152. 
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LS_DPARAM_NLP_MSW_OVERLAP

_RATIO  

Environment, 

Model 

This value  specifies the rate of replacement in 

successive populations. Higher values favors 

survival of points in the parent population. 

Possible values are (0,1). The default value is 

0.1. 

LS_DPARAM_NLP_INF  Environment, 

Model 

Specifies the numeric infinity for nonlinear 

models. Possible values are positive real 

numbers. 

Default is 1e30. Smaller values could cause 

numerical problems. 

LS_IPARAM_NLP_USE_SDP Environment, 

Model 

This is a flag to use SDP solver for POSD 

constraint. Possible values are 0 and 1. The 

default is 1 (yes). 

LS_IPARAM_NLP_MAXSUP Environment, 

Model 

This specifies the superbacic variable limit in 

nonlinear solver. Range for possible values is 

[-1,INT_MAX]. The default is INT_MAX 

(2147483647). 

LS_IPARAM_NLP_IPM2GRG Environment, 

Model 

This is a flag to switch from IPM solver to the 

standard NLP (GRG) solver when IPM fails 

due to numerical errors. Possible values are 0 

and 1. The default is 1. 

Interior-Point (Barrier) Solver Parameters 
LS_DPARAM_IPM_TOL_INFEAS Environment, 

Model 

This is the tolerance to declare the 

model primal or dual infeasible using 

the interior-point optimizer. A smaller 

number means the optimizer gets more 

conservative about declaring the model 

infeasible. Range for possible values is 

(0,inf). The default is 1e-10. 

LS_DPARAM_IPM_CO_TOL_INFEAS Environment, 

Model 
This controls when the conic optimizer 

declares the model primal or dual 

infeasible. Smaller values mean the 

optimizer gets more conservative about 

declaring the model infeasible.  

The default is 1e-10 
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LS_DPARAM_IPM_TOL_PATH Environment, 

Model 

Controls how close the interior-point 

optimizer follows the central path. A 

large value of this parameter means the 

central path is followed very closely. 

For numerically unstable problems it 

might help to increase this parameter. 

Range for possible values is (0,0.5). The 

default is 1e-08. 

LS_DPARAM_IPM_TOL_PFEAS Environment, 

Model 

Primal feasibility tolerance used for 

linear and quadratic optimization 

problems. Range for possible values is 

(0,inf). The default is 1e-8. 

LS_DPARAM_IPM_TOL_REL_STEP Environment, 

Model 

Relative step size to the boundary for 

linear and quadratic optimization 

problems. Range for possible values is 

(0,9.99999e-1). The default is 0.9999. 

LS_DPARAM_IPM_TOL_PSAFE Environment, 

Model 

Controls the initial primal starting point 

used by the interior-point optimizer. If 

the interior-point optimizer converges 

slowly and/or the constraint or variable 

bounds are very large, then it might be 

worthwhile to increase this value. Range 

for possible values is [1e-2,inf). The 

default is 1.0. 

LS_DPARAM_IPM_TOL_DFEAS Environment, 

Model 

Dual feasibility tolerance used for linear 

and quadratic optimization problems. 

Range for possible values is (0,inf). The 

default is 1e-8. 

LS_DPARAM_IPM_TOL_DSAFE Environment, 

Model 

Controls the initial dual starting point 

used by the interior-point optimizer. If 

the interior-point optimizer converges 

slowly and/or the dual variables 

associated with constraint or variable 

bounds are very large, then it might be 

worthwhile to increase this value. Range 

for possible values is [1e-4,inf). The 

default is 1.0. 

LS_DPARAM_IPM_TOL_MU_RED Environment, 

Model 

Relative complementarity gap tolerance. 

Range for possible values is (0,inf). The 

default is 1e-16. 

LS_DPARAM_IPM_BASIS_REL_TOL_S Environment, 

Model 

Maximum relative dual bound violation 

allowed in an optimal basic solution. 

Range for possible values is (0,inf). The 

default is 1e-12. 
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LS_DPARAM_IPM_BASIS_TOL_S Environment, 

Model 

Maximum absolute dual bound violation 

in an optimal basic solution. Range for 

possible values is (0,inf). The default is 

1e-07. 

LS_DPARAM_IPM_BASIS_TOL_X Environment, 

Model 

Maximum absolute primal bound 

violation allowed in an optimal basic 

solution. Range for possible values is 

(0,inf). The default is 1e-07. 

LS_DPARAM_IPM_BI_LU_TOL_REL_PIV Environment, 

Model 

Relative pivot tolerance used in the LU 

factorization in the basis identification 

procedure. Range for possible values is 

(0,9.99999e-1). 0.01. 

LS_IPARAM_IPM_MAX_ITERATIONS Environment, 

Model 

Controls the maximum number of 

iterations allowed in the interior-point 

optimizer. Range for possible values is 

[0,inf). The default is 1000. 

LS_IPARAM_IPM_OFF_COL_TRH Environment, 

Model 

Controls the extent for detecting the 

offending columns in the Jacobian of 

the constraint matrix. Range for possible 

values is [0,inf). 0 means no offending 

columns will be detected. 1 means 

offending columns will be detected. In 

general, increasing the parameter value 

beyond the default value of 40 does not 

improve the result. 

LS_IPARAM_IPM_NUM_THREADS Environment, 

Model 

Number of threads to run the interior-

point optimizer on. 

Possible values are positive integers. 

The default is 1. 

LS_IPARAM_IPM_CHECK_CONVEXITY   Environment, 

Model 

This is a flag to check convexity of a 

quadratic program using barrier solver. 

Possible values are: 

# -1: check convexity only without 

solving the model. 

# 0: use barrier solver to check 

convexity. 

# 1: do not use barrier solver to check 

convexity. 

The default is 1. 

LS_IPARAM_SOLVER_CONCURRENT_OP

TMODE 

Environment, 

Model 

Controls if simplex and interior-point 

optimizers will run concurrently, 0 

means no concurrent runs will be 

performed,1 means both optimizers will 

run concurrently if at least two threads 

exist in system, 2 means both optimizers 

will run concurrently. The default is 0. 
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LS_DPARAM_IPM_CO_TOL_PFEAS Environment, 

Model 

Primal feasibility tolerance for Conic 

solver. 

Range for possible values is (0,inf). The 

default is 1e-008. 

LS_DPARAM_IPM_CO_TOL_DFEAS Environment, 

Model 

Dual feasibility tolerance for Conic 

solver. 

Range for possible values is (0,inf). The 

default is 1e-008. 

LS_DPARAM_IPM_CO_TOL_MU_RED Environment, 

Model 

Optimality tolerance for Conic solver. 

Range for possible values is (0,inf). The 

default is 1e-008. 

Mixed-Integer Optimization Parameters 
LS_IPARAM_MIP_USE_INT_ZERO_TOL Environm

ent, 

Model 

This flag controls if all MIP calculations 

would be based on the integrality tolerance 

specified by 

LS_DPARAM_MIP_INTTOL.  The flag 

will be disregarded if the following 

conditions fail to hold 

# All coefficients of the coefficient matrix 

and the right-hand side vector are integers 

# Any continuous variable that is not yet 

proved to be an implied integer has 

coefficients  all -1 or +1. 

# All continuous variables have integer 

bounds or, –inf or +inf 

# All continuous variables have only one 

nonzero in each constraint. 

 Possible values are 0 (no), 1 (yes) and -1 

(the solver decides). The default for this 

flag is 0. 

LS_IPARAM_MIP_USE_CUTS_HEU Environm

ent, 

Model 

This flag controls if cut generation is 

enabled during MIP heuristics. Possible 

values are 0 (no), 1 (yes) and -1 (the solver 

decides). The default is -1.  

LS_DPARAM_MIP_BIGM_FOR_INTTOL Environm

ent, 

Model 

This value specifies the threshold for which 

the coefficient of a binary variable would 

be considered as big-M (when applicable). 

Range for possible values is (0,inf). The 

default is 1.0e8. 
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LS_IPARAM_MIP_STRONGBRANCHDONU

M 

Environm

ent, 

Model 

This value specifies the minimum number 

of variables, among all the candidates,  to 

try the strong branching on. Range for 

possible values is [0,inf). The default is 3. 

LS_IPARAM_MIP_MAKECUT_INACTIVE_

COUNT 

Environm

ent, 

Model 

This value specifies the threshold for the 

times a cut could remain active after 

successive reoptimization during branch-

and-bound.  If the count is larger than the 

specified level the solver will inactive the 

cut. Range for possible values is [0,inf). 

The default is 20. 

LS_IPARAM_MIP_PRE_ELIM_FILL Environm

ent, 

Model 

This is a nonnegative value that controls the 

fill-in introduced by the eliminations during 

pre-solveSmaller values could help when 

the total nonzeros in the presolved model is 

significantly more than the original model.  

Range for possible values is [0,inf). The 

default is 100. 

LS_IPARAM_MIP_HEU_MODE Environm

ent, 

Model 

This controls the MIP heuristic mode.  

Possible values are: 

≤0 solver is free to decide when to stop the 

heuristic (default), 

≤1 solver uses a pre-specified time limit to 

stop the heuristic. 

≤2 solver uses a pre-specified iteration limit 

to stop the heuristic. 

The default is 0. 

LS_IPARAM_MIP_FP_MODE Environm

ent, 

Model 

Controls the mode for the feasibility pump 

heuristic. Possible values are: 

# -1: Solver decides 

# 0: Off, 

# 1: Solver decides, 

# 2: On until the first solution,  

# 3: Try to get more than one solutions.  

The default is -1. 

LS_DPARAM_MIP_FP_WEIGHT Environm

ent, 

Model 

Controls the weight of the objective 

function in the  feasibility pump. Possible 

values are in the closed interval [0,1]. The 

default is 1.0. 
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LS_IPARAM_MIP_FP_OPT_METHOD Environm

ent, 

Model 

This specifies optimization and 

reoptimization method for feasibility pump 

heuristic. Possible values are: 

# 0: Solver decides (default). 

# 1: Use primal method.  

# 2: Use dual simplex. 

# 3:   Use barrier solver (with or without 

basis crossover, depending on 

LS_IPARAM_SOLVER_IPMSOL 

parameter setting described above) 

LS_DPARAM_MIP_FP_TIMLIM Environm

ent, 

Model 

This is the time limit in seconds for 

feasibility pump heuristic. A value of -1 

implies no time limit is imposed. Range for 

possible values is [-1,inf). The default value 

is 1800.  

LS_IPARAM_MIP_FP_ITRLIM Environm

ent, 

Model 

This is the iteration limit for feasibility 

pump heuristic. A value of -1 means no 

iteration limit is imposed. Range for 

possible values is [-1,inf). The default value 

is 500. 

LS_IPARAM_MIP_CUTLEVEL_TOP Environm

ent, 

Model  

This controls the combination of cut types 

to try at the root node when solving a MIP. 

Bit settings are used to enable the various 

cut types. Add the following values to 

enable the specified cuts: 

# GUB cover +2  

# Flow cover +4 

# Lifting  +8 

# Plant location +16 

# Disaggregation +32 

# Knapsack cover +64 

# Lattice +128 

# Gomory +256 

# Coefficient reduction  +512 

# GCD +1024 

# Obj integrality  +2048 

# Basis Cuts  +4096 

# Cardinality Cuts +8192 

# Disjunctive Cuts             +16384 

# Soft Knapsack Cuts        +32768 

The default is 57342  which means all cut 

types except cardinality cuts are generated. 
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LS_IPARAM_MIP_CUTLEVEL_TREE Environm

ent, 

Model  

This controls the combination of cut types 

to try at child nodes in the B&B tree when 

solving a MIP. The bit settings to enable 

cuts at child nodes are the same as those 

used to enable cuts at the root node. The 

default is 53246. 

LS_DPARAM_MIP_CUTTIMLIM Environm

ent, 

Model  

This controls the total time to be spent in 

cut generation throughout the solution of a 

MIP. Range for possible values is [0,inf).  

The default value is -1.0  indicating that no 

time limits will be imposed when 

generating cuts. 

LS_IPARAM_MIP_CUTFREQ Environm

ent, 

Model 

This controls the frequency of invoking cut 

generation at child nodes. Range for 

possible values is [0,inf). The default value 

is 10, indicating that the MIP solver will try 

to generate cuts at every 10 nodes. 

LS_IPARAM_MIP_CUTDEPTH Environm

ent, 

Model 

This controls a threshold value for the 

depth of nodes in the B&B tree, so cut 

generation will be less likely at those nodes 

deeper than this threshold. Range for 

possible values is [0,inf). The default is 5. 

LS_DPARAM_MIP_LBIGM Environm

ent, 

Model 

This refers to the Big-M value used in 

linearizing nonlinear expressions. Range 

for possible values is (0,inf). The default 

value is 1.0e+5. 

LS_DPARAM_MIP_DELTA Environm

ent, 

Model 

This refers to a near-zero value used in 

linearizing nonlinear expressions. Range 

for possible values is (0,inf). The default 

value is 1.0e-6. 
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LS_IPARAM_MIP_BRANCH_PRIO Environm

ent, 

Model 

This controls how variable selection 

priorities are set and used. Possible values 

are: 

# 0: If user has specified priorities, then 

use them. Otherwise, let LINDO API 

decide. 

# 1: If user has specified priorities, then 

use them. However, also allow overwriting 

user’s choices if necessary. 

# 2: If user has specified priorities, then 

use them. Otherwise, do not use any 

priorities. 

# 3: Let LINDO API set the priorities and 

ignore any user specified priorities. 

# 4:  Binaries always have higher priority 

over general integers. 

The default is 0. 

LS_IPARAM_MIP_SCALING_BOUND Environm

ent, 

Model 

This controls the maximum difference 

between the upper and lower bounds of an 

integer variable that will enable the scaling 

in the simplex solver when solving a sub 

problem in the branch-and-bound tree. 

Range for possible values is [-1,inf). The 

default value is 10000. 

LS_IPARAM_MIP_MAXCUTPASS_TOP Environm

ent, 

Model 

This controls the number passes to generate 

cuts on the root node. Each of these passes 

will be followed by a re-optimization and a 

new batch of cuts will be generated at the 

new solution.  Range for possible values is 

[0,inf). The default value is 100. 

LS_IPARAM_MIP_MAXCUTPASS_TREE Environm

ent, 

Model 

This controls the number passes to generate 

cuts on the child nodes. Each of these 

passes will be followed by a re-

optimization and a new batch of cuts will 

be generated at the new solution. Range for 

possible values is [0,inf). The default value 

is 2. 

LS_IPARAM_MIP_MAXNONIMP_CUTPASS Environm

ent, 

Model 

This controls the maximum number of 

passes allowed in cut-generation that does 

not improve the current relaxation. Range 

for possible values is [0,inf). The default 

value is 3. 
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LS_DPARAM_MIP_ADDCUTOBJTOL Environm

ent, 

Model 

This specifies the minimum required 

change in the objective function for the cut 

generation phase to continue generating 

cuts. Range for possible values is [0,1]. The 

default, based on empirical testing,  is set at  

1.5625e-5.
 

LS_DPARAM_MIP_HEUMINTIMLIM  Environm

ent, 

Model 

This specifies the minimum time in seconds 

to be spent in finding heuristic solutions to 

the MIP model. 

LS_IPARAM_MIP_HEULEVEL (below) 

controls the heuristic used to find the 

integer solution. Range for possible values 

is [0,inf). The default is 0. 

LS_DPARAM_MIP_REDCOSTFIX_CUTOFF Environm

ent, 

Model 

This specifies the cutoff value as a 

percentage of the reduced costs to be used 

in fixing variables when using the reduced 

cost fixing heuristic. Range for possible 

values is [0,9.9e-1]. The default is 0.99.  

LS_DPARAM_MIP_ADDCUTPER Environm

ent, 

Model 

This determines how many constraint cuts 

can be added as a percentage of the number 

of original rows in an integer programming 

model. Range for possible values is [0,100). 

0.75 is the default value, which means the 

total number of constraint cuts LINDO API 

adds will not exceed 75% of the original 

row count. 

LS_DPARAM_MIP_ADDCUTPER_TREE Environm

ent, 

Model 

This determines how many constraint cuts 

can be added at child nodes as a percentage 

of the number of original rows in an integer 

programming model. Range for possible 

values is [0,100). 0.75 is the default value, 

which means the total number of constraint 

cuts LINDO API adds will not exceed 75% 

of the original row count. 

LS_DPARAM_MIP_AOPTTIMLIM Environm

ent, 

Model  

This is the time in seconds beyond which 

the relative optimality tolerance, 

LS_DPARAM_MIP_PEROPTTOL, will 

be applied. Range for possible values is [-

1,inf). The default value is 100 seconds. 

LS_IPARAM_MIP_BRANCHDIR Environm

ent, 

Model  

This specifies the direction to branch first 

when branching on a variable. Possible 

values are: 

# 0: Solver decides (default), 

# 1: Always branch up first, 

# 2: Always branch down first. 
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LS_DPARAM_MIP_INTTOL Environm

ent, 

Model  

An integer variable is considered integer 

feasible if the absolute difference from the 

nearest integer is smaller than this. Range 

for possible values is (0,0.5). The default 

value is 0.000001. Note, this is similar to 

the tolerance 

LS_DPARAM_MIP_RELINTTOL, but it 

uses absolute differences rather than 

relative differences. 

LS_IPARAM_MIP_KEEPINMEM Environm

ent, 

Model  

If this is set to 1, the integer pre-solver will 

try to keep LP bases in memory. This 

typically gives faster solution times, but 

uses more memory. Setting this parameter 

to 0 causes the pre-solver to erase bases 

from memory. The default is 1. 

LS_DPARAM_MIP_ABSOPTTOL Environm

ent, 

Model  

This is the MIP absolute optimality 

tolerance. Solutions must beat the 

incumbent by at least this absolute amount 

to become the new, best solution. Range for 

possible values is [0,inf). The default value 

is 0. 

LS_DPARAM_MIP_RELOPTTOL Environm

ent, 

Model  

This is the MIP relative optimality 

tolerance. Solutions must beat the 

incumbent by at least this relative amount 

to become the new, best solution. Range for 

possible values is (0,1). The default value is 

1e-6. 

LS_DPARAM_MIP_PEROPTTOL Environm

ent, 

Model  

This is the MIP relative optimality 

tolerance that will be in effect after T 

seconds following the start. The value T 

should be specified using the 

LS_DPARAM_MIP_AOPTTIMLIM 

parameter. Range for possible values is 

(0,1). The default value is 1e-5. 
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LS_IPARAM_MIP_HEULEVEL Environm

ent, 

Model  

This specifies the heuristic used to find the 

integer solution. Possible values are: 

# 0: No heuristic is used. 

# 1: A simple heuristic is used. Typically, 

this will find integer solutions only on 

problems with a certain structure. However, 

it tends to be fast.  

# >2: This is an advanced heuristic that 

tries to find a "good" integer solution fast. 

In general, a value of 2 will not increase the 

total solution time and will find an integer 

solution fast on many problems.  

A higher value may find an integer solution 

faster, or an integer solution where none 

would have been found with a lower level. 

Try level 3 or 4 on "difficult" problems 

where 2 does not help.  

Higher values cause more time to be spent 

in the heuristic. The value may be set 

arbitrarily high. However, >20 is probably 

not worthwhile.  

The default is 3. 

LS_DPARAM_MIP_HEUMINTIMLIM 

(above) controls the time to be spent in 

searching heuristic solutions. 

LS_IPARAM_MIP_SOLVERTYPE  Environm

ent, 

Model 

This specifies the optimization method to 

use when solving mixed-integer models. 

Possible values are: 

# 0: Solver decides (default). 

# 1: Use B&B only. 

# 2: Use Enumeration and Knapsack 

solver only. 
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LS_IPARAM_MIP_NODESELRULE Environm

ent, 

Model  

This specifies the node selection rule for 

choosing between all active nodes in the 

branch-and-bound tree when solving 

integer programs. Possible selections are:  

# 0: Solver decides . 

# 1: Depth first search. 

# 2: Choose node with worst bound. 

# 3: Choose node with best bound. 

# 4: Start with best bound. If no 

improvement in the gap between best 

bound and best integer solution is obtained 

for some time, switch to: 

if (number of active nodes<10000) 

Best estimate node selection (5). 

else 

Worst bound node selection (2). 

# 5: Choose the node with the best 

estimate, where the new objective estimate 

is obtained using pseudo costs. 

# 6: Same as (4), but start with the best 

estimate. 

The default value is 4. 

LS_IPARAM_MIP_BRANCHRULE Environm

ent, 

Model  

This specifies the rule for choosing the 

variable to branch on at the selected node. 

Possible selections are:  

# 0: Solver decides (default). 

# 1: Basis rounding with pseudo reduced 

costs. 

# 2: Maximum infeasibility. 

# 3: Pseudo reduced costs only. 

# 4:   Maximum coefficient only. 

# 5:   Previous branching only. 
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LS_IPARAM_MIP_PRELEVEL Environm

ent, 

Model  

This controls the amount and type of MIP 

pre-solving at root node. Possible options 

are: 

# Simple pre-solving +2 

# Probing +4 

# Coefficient reduction +8 

# Elimination +16 

# Dual reductions +32  

# Use dual information +64 

# Binary row presolving    +128 

# Row aggregation             +256 

# Coefficient lifting            +512 

# Maximum pass              +1024 

# Similar row                    +2048 

The default value is:  

3070 = 2+4+8+16+32+64+128+256+ 

512+2048. 

LS_IPARAM_MIP_PREPRINTLEVEL Environm

ent, 

Model  

This specifies the trace print level for the 

MIP presolver. Possible selections are: 

# 0: Do not print anything (default). 

# 1: Print summary of preprocessing. 

LS_IPARAM_MIP_PRINTLEVEL Environm

ent, 

Model  

This specifies the amount of printing to do. 

Possible values are: 

# 0: Do not print anything. 

# 1: Print most basic information for 

branch-and-bound iterations. 

# 2: Level 1 plus print information 

regarding addition of cuts, etc (default). 

LS_DPARAM_MIP_CUTOFFOBJ Environm

ent, 

Model 

If this is specified, then any part of the 

branch-and-bound tree that has a bound 

worse than this value will not be 

considered. This can be used to reduce the 

running time if a good bound is known. Set 

to a large positive value (LS_INFINITY) to 

disable if a finite value had been specified. 

Range for possible values is (-inf,inf). 

Default is LS_INFINITY. 
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LS_IPARAM_MIP_USECUTOFFOBJ Environm

ent, 

Model  

This is a flag for the parameter 

LS_DPARAM_MIP_CUTOFFOBJ. The 

value of 0 means that the current cutoff 

value is ignored, else it is used as defined. 

If you don’t want to lose the value of the 

parameter 

LS_DPARAM_MIP_CUTOFFOBJ, this 

provides an alternative to disabling the 

cutoff objective. Possible values are 0 (no), 

1 (yes) and -1 (the solver decides). The 

default is 0. 

LS_DPARAM_MIP_RELINTTOL Environm

ent, 

Model  

An integer variable is considered integer 

feasible if the difference between its value 

and the nearest integer value divided by the 

value of the nearest integer is less than this. 

Range for possible values is (0,0.5). The 

default value is 8e-6. Note this is a relative 

version of the 

LS_DPARAM_MIP_INTTOL tolerance. 

LS_IPARAM_MIP_REOPT Environm

ent, 

Model  

This specifies which optimization method 

to use when doing reoptimization from a 

given basis. Possible values are: 

# LS_METHOD_FREE (default) 

# LS_METHOD_PSIMPLEX 

# LS_METHOD_DSIMPLEX 

# LS_METHOD_BARRIER 

# LS_METHOD_NLP 

LS_IPARAM_MIP_STRONGBRANCHLEVE

L 

Environm

ent, 

Model  

This specifies the depth from the root in 

which strong branching is used. Range for 

possible values is [0,inf). The default value 

of 10 means that strong branching is used 

on a level of 1 to 10 measured from the 

root. Strong branching finds the real bound 

for branching on a given variable, which, in 

most cases, requires a solution of a linear 

program and may therefore also be quite 

expensive in computing time. However, if 

used on nodes close to the root node of the 

tree, it also gives a much better bound for 

that part of the tree and can therefore 

reduce the size of the branch-and-bound 

tree.  

LS_IPARAM_MIP_TREEREORDERLEVEL Environm

ent, 

Model 

This specifies the tree reordering level. 

Range for possible values is [0,inf). The 

default is 10. 
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LS_IPARAM_MIP_ANODES_SWITCH_DF Environm

ent, 

Model 

This specifies the threshold on active nodes 

for switching to depth-first search rule. 

Range for possible values is [-1,inf). The 

default is 50,000. 

LS_DPARAM_MIP_SWITCHFAC_SIM_IPM

_ITER 

Environm

ent, 

Model 

This specifies the (positive) factor that 

multiplies the number of constraints to 

impose an iteration limit to simplex method 

and trigger a switch over to the barrier 

method. Range for possible values is [-

1,inf).  

The default value is –1, which means that 

no iteration limit is imposed.  

LS_DPARAM_MIP_TIMLIM Environm

ent, 

Model  

This is the time limit in seconds for MIP 

solver.  

Range for possible values is [-1.0, inf). The 

default value is -1, which means no time 

limit is imposed. If the time limit, 

LS_DPARAM_MIP_TIMLIM, is reached 

and a feasible integer solution was found, it 

will be installed as the incumbent (best 

known) solution. 

LS_IPARAM_MIP_BRANCH_LIMIT Environm

ent, 

Model  

This is the limit on the total number of 

branches to be created during branch-and-

bound. Range for possible values is [-1,inf). 

The default value is –1, which means no 

limit is imposed.  

If the branch limit, 

LS_IPARAM_MIP_BRANCH_LIMIT, is 

reached and a feasible integer solution was 

found, it will be installed as the incumbent 

(best known) solution. 

LS_IPARAM_MIP_TOPOPT Environm

ent, 

Model  

This specifies which optimization method 

to use when there is no previous basis. 

Possible values are: 

# LS_METHOD_FREE (default) 

# LS_METHOD_PSIMPLEX 

# LS_METHOD_DSIMPLEX 

# LS_METHOD_BARRIER 

# LS_METHOD_NLP  

LS_DPARAM_MIP_LSOLTIMLIM Environm

ent, 

Model 

This value controls the time limit until 

finding a new integer solution since the last 

integer solution found. Range for possible 

values is [-1,inf). The default value is -1, 

which means no time limit is imposed. 
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LS_IPARAM_MIP_DUAL_SOLUTION Environm

ent, 

Model 

This flag controls whether the dual solution 

to the LP relaxation that yielded the optimal 

MIP solution will be computed or not. 

Possible values are 0 (no), 1 (yes). The 

default is 0. 

LS_IPARAM_MIP_AGGCUTLIM_TOP Environm

ent, 

Model 

This specifies an upper limit on the number 

of constraints to be involved in the 

derivation of an aggregation cut at the root 

node.  Range for possible values is [-1,inf). 

The default is –1, which means that the 

solver will decide. 

LS_IPARAM_MIP_AGGCUTLIM_TREE Environm

ent, 

Model 

This specifies an upper limit on the number 

of constraints to be involved in the 

derivation of an aggregation cut at the tree 

nodes. Range for possible values is [-1,inf). 

The default is 3. 

LS_DPARAM_MIP_MINABSOBJSTEP Environm

ent, 

Model 

This specifies the value to update the cutoff 

value each time a mixed integer solution is 

found. Range for possible values is (-

inf,inf). The default is 0.0 

LS_IPARAM_MIP_PSEUDOCOST_RULE Environm

ent, 

Model 

This specifies the rule in pseudocost 

computations for variable selection. 

Possible values are  

# 0: solver decides (default). 

# 1: only use min pseudo cost. 

# 2: only use max pseudo cost. 

# 3: use quadratic score function and the 

pseudo cost weigth. 

# 4: same as 3 without quadratic score.  

LS_IPARAM_MIP_ENUM_HEUMODE Environm

ent, 

Model 

This specifies the frequency of enumeration 

heuristic. Possible values are  

# 0: off 

# 1: only at top (root) node without cuts. 

# 2: both at top (root) and tree nodes 

without cuts. 

# 3: same as 1 with cuts. 

# 4: same as 2 with cuts (default). 
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LS_IPARAM_MIP_PRELEVEL_TREE Environm

ent, 

Model  

This controls the amount and type of MIP 

pre-solving at tree nodes. Possible options 

are: 

# Simple pre-solving +2 

# Probing +4 

# Coefficient reduction +8 

# Elimination +16 

# Dual reductions +32  

# Use dual information +64 

# Binary row presolving    +128 

# Row aggregation             +256 

# Maximum pass +512 

The default value is:  

686 = 2+4+8+32+128+512. 

LS_DPARAM_MIP_PSEUDOCOST_WEIGT Environm

ent, 

Model 

This specifies the weight in pseudocost 

computations for variable selection. Range 

for possible values is (0,inf). The default is 

6.25. 

LS_DPARAM_MIP_REDCOSTFIX_CUTOFF

_TREE 

Environm

ent, 

Model 

This specifies the cutoff value as a 

percentage of the reduced costs to be used 

in fixing variables when using the reduced 

cost fixing heuristic at tree nodes. Range for 

possible values is [0,9.9e-1]. The default is 

0.9.  

LS_DPARAM_MIP_OBJ_THRESHOLD Environm

ent, 

Model 

This value specifies the threshold of 

objective value in the MIP solver. 

For min problem, if current incurmbent 

solution is less than the threshold MIP 

solver will stop. 

Range for possible values is (-inf, inf). 

The default value is -inf. 

LS_IPARAM_MIP_LOCALBRANCHNUM Environm

ent, 

Model 

Reserved for future use. Default is 0. 

LS_DPARAM_MIP_SWITCHFAC_SIM_IPM

_TIME 

Environm

ent, 

Model 

This specifies the (positive) factor that 

multiplies the number of constraints to 

impose a time limit to simplex method and 

trigger a switch over to the barrier method. 

Range for possible values is [-1.0,inf). The 

default value is –1.0, which means that no 

time limit is imposed. 
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LS_DPARAM_MIP_ITRLIM Environm

ent, 

Model 

This is the total LP iteration limit (stored as 

a double variable) summed over all 

branches for branch-and-bound. Range for 

possible values is [-1,inf). The default value 

is –1, which means no iteration limit is 

imposed. If this iteration limit is reached, 

branch-and-bound will stop and the best 

feasible integer solution found will be 

installed as the incumbent (best known) 

solution. 

Remark: Deprecated name 

LS_IPARAM_MIP_ITRLIM (integer 

typed) 

LS_IPARAM_MIP_MAXNUM_MIP_SOL_ST

ORAGE 

Environm

ent, 

Model 

This specifies the maximum number of k-

best solutions to store. Possible values are 

positive integers. Default is 10. 

LS_IPARAM_MIP_FP_HEU_MODE Environm

ent, 

Model 

This specifies the feasibility-pump (FP) 

heuristic mode. Possible values are : 

# 0 : FP is disabled. 

# 1 : Solver decides.  

# 2 : Enable FP if no cutoff value or initial 

mip solution was defined 

# 3 : Enable FP independent of cutoff 

values and initial mip solutions 

# 4 : Same as 2 but also enable FP on child 

nodes in branch-bound tree. 

# 5 : Same as 3 but also enable FP on child 

nodes in branch-bound tree. 

The default is 0. 

LS_DPARAM_MIP_ITRLIM_SIM     Environm

ent, 

Model 

This specifies the simplex-iteration limit for 

the MIP solver. Possible values are 

nonnegative integers and -1 (no limit). The 

default is -1. 

LS_DPARAM_MIP_ITRLIM_NLP             Environm

ent, 

Model 

This specifies the nonlinear-iteration limit 

for the MIP solver. Possible values are 

nonnegative integers and -1 (no limit). The 

default is -1. 
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LS_DPARAM_MIP_ITRLIM_IPM                  Environm

ent, 

Model 

This specifies the barrier-iteration limit for 

the MIP solver. Possible values are 

nonnegative integers and -1 (no limit). The 

default is -1. 

LS_IPARAM_MIP_PREHEU_LEVEL              Environm

ent, 

Model 

The heuristic level for the prerelax solver. -

1 is for solver decides, 0 is for nothing. 1 is 

for one-change, 2 is for one-change and 

two-change, and 3 is for depth first 

enumeration. Default is -1. 

LS_IPARAM_MIP_PREHEU_VAR_SEQ Environm

ent, 

Model 

The sequence of the variable considered by 

the prerelax heuristic. If 1, then forward; if 

-1, then backward. Default is -1. 

LS_IPARAM_MIP_PREHEU_TC_ITERLIM Environm

ent, 

Model 

Iteration limit for the two change heuristic. 

Default is 20000000. 

LS_IPARAM_MIP_PREHEU_DFE_VSTLIM Environm

ent, 

Model 

Limit for the variable visit in depth first 

enumeration. Default is 200. 

LS_IPARAM_MIP_CONCURRENT_TOPOPT

MODE 

Environm

ent, 

Model 

This value specifies the concurrent 

optimization mode with cold start. 

See: 

LS_IPARAM_SOLVER_CONCURRENT

_OPTMODE for possible values. The 

default is 0 

LS_IPARAM_MIP_CONCURRENT_STRATE

GY 

Environm

ent, 

Model 

Environment, Model This parameter 

controls the concurrent MIP strategy. 

Possible values are: 

# LS_MTMODE_FREE = -1, Solver 

decides 

# LS_STRATEGY_USER = 0, Use the 

custom search strategy defined via a 

callback function for each thread. 

# LS_STRATEGY_PRIMIP = 1, Defines 

built-in priority lists for each thread. 

# LS_STRATEGY_NODEMIP = 2, 

Reserved for future use  

# LS_STRATEGY_HEUMIP = 3, Defines 

heuristic based strategies for each thread. 

Default is -1. 
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LS_IPARAM_MIP_CONCURRENT_REOPT

MODE 

Environm

ent, 

Model 

This value specifies the concurrent 

optimization mode with warm start. 

See: 

LS_IPARAM_SOLVER_CONCURRENT

_OPTMODE for possible values. The 

default is 0 

LS_IPARAM_MIP_NUM_THREADS Environm

ent, 

Model 

This parameter specifies the number of 

parallel threads 

 to use by the parallel MIP solver.  Possible 

values are positive 

 integers. The default is 1 implying that the 

parallel solver is disabled. 

LS_IPARAM_MIP_PREHEU_PRE_LEVEL            Environm

ent, 

Model 

This values specifies the presolver level for 

the prerelax MIP solver. 

See:  LS_IPARAM_LP_PRELEVEL for 

possible values. The default is 10. 

LS_IPARAM_MIP_PREHEU_PRINT_LEVEL          Environm

ent, 

Model 

This value specifies the print level for the 

prerelax MIP solver. Possible values are 

nonnegative integers. The default is 0. 

LS_IPARAM_MIP_BASCUTS_DONUM Environm

ent, 

Model 

Reserved for future use. Default is 3. 
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LS_IPARAM_MIP_USE_PARTIALSOL_LEV

EL 

Environm

ent, 

Model 

Reserved for future use. Default is 2. 

LS_IPARAM_MIP_GENERAL_MODE            Environm

ent, 

Model 

This value specifies the general strategy in 

solving MIPs. Bitmasks defining possible 

values are: 

# LS_MIP_MODE_NO_TIME_EVENTS: 

Disable all time-driven events for 

reproducibility of runs. 

# LS_MIP_MODE_FAST_FEASIBILITY: 

Favor finding feasible solutions quickly 

(reserved for future use). 

# LS_MIP_MODE_FAST_OPTIMALITY: 

Favor proving optimality quickly (reserved 

for future use). 

# LS_MIP_MODE_NO_BRANCH_CUTS: 

Disable cut generation before branching. 

The default is 0. 

LS_IPARAM_MIP_POLISH_NUM_BRANCH

_NEXT            

Environm

ent, 

Model 

This value specifies the number of branches 

to polish in the next round. Possible values 

are nonnegative integers. The default is 

4000. 

LS_IPARAM_MIP_POLISH_MAX_BRANCH

_COUNT            

Environm

ent, 

Model 

This value specifies the maximum number 

of branches to polish. Possible values are 

nonnegative integers. The default is 2000. 

LS_DPARAM_MIP_POLISH_ALPHA_TARG

ET            

Environm

ent, 

Model 

This value specifies the proportion 

solutions in the pool to initiate a polishing-

task at the current node.  

Possible values are: 

In the range of [0.01,0.99]. 

The default is 0.6. 

LS_DPARAM_MIP_BRANCH_TOP_VAL_DI

FF_WEIGHT 

Environm

ent, 

Model 

Reserved for future use. 

The default is 1.0. 

LS_IPARAM_MIP_PARA_SUB  Environm

ent, 

Model 

This is a flag for whether to use MIP 

parallelization on subproblems solved in 

MIP preprocessing. 

# 0:  do not use  

# 1: use (default) 
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LS_DPARAM_MIP_PARA_RND_ITRLMT  Environm

ent, 

Model 

This value specifies the iteration limit of 

each round in MIP parallelization, it is a 

weighted combination of simplex and 

barrier iterations.  

Possible values are positive integers. The 

default is 2.0. 

LS_DPARAM_MIP_PARA_INIT_NODE  Environm

ent, 

Model 

This value specifies the number of initial 

nodes for MIP parallelization. 

Possible values are nonnegative integers 

and -1 (solver decides).  

The default is -1. 

LS_IPARAM_MIP_PARA_ITR_MODE  Environm

ent, 

Model 

This is a flag for iteration mode in MIP 

parallelization.  

Possible values are: 

# 0:  each thread terminates as soon as 

it reaches the iteration limit. 

# 1:  each thread waits until all threads 

reach their iteration limit (default). 

LS_IPARAM_MIP_HEU_DROP_OBJ  Environm

ent, 

Model 

This specifies whether to use without OBJ 

heu. 

Possible values are: 

# 0 : Not Use 

# 1:  Use. 

The default value is 0. 

LS_DPARAM_MIP_ABSCUTTOL  Environm

ent, 

Model 

This specifies the MIP absolute cut 

tolerance.  

Possible values are: 

#  < 0: Internally decided tolerance. 

#  >= 0: User defined tolerance. 

The default value is -1.0. 

LS_IPARAM_MIP_PERSPECTIVE_REFORM  Environm

ent, 

Model 

This specifies whether to use Perspective 

Reformulation.  

Possible values are: 

# 0: Off. 

# 1: on. 

The default value is 1. 
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LS_IPARAM_MIP_TREEREORDERMODE  Environm

ent, 

Model 

This specifies the tree reordering mode.  

Possible values are: 

# 1: Use tree reordering only for 

subproblems. 

# 2: Use tree reordering for subproblems 

and the main bnb loop only when LP status 

is infeasible. 

# 3: Not use tree reordering. 

# 4: Use tree reordering based on 

LS_IPARAM_MIP_TREEREORDERLEV

EL. 

The default value is 1. 

LS_IPARAM_MIP_PARA_FP  Environm

ent, 

Model 

This is a flag for whether to use 

parallelization on the feasibility pump 

heuristic.  

Possible options are: 

# 0:  not use 

# 1:  use 

The default value is 1. 

LS_IPARAM_MIP_PARA_FP_MODE  Environm

ent, 

Model 

This specifies the mode of parallel 

feasibility pump.  

Possible options are: 

# 0:  terminate when all threads finish 

# 1:  terminate as soon as the master thread 

finishes 

The default value is 0. 

LS_IPARAM_MIP_TIMLIM Environm

ent, 

Model 

This is the time limit in seconds (integer) 

for MIP solver. Range for possible values is 

[-1, inf). The default value is -1, which 

means no time limit is imposed. However, 

the value of 

LS_DPARAM_SOLVER_TIMLMT will 

be applied to each continuous sub problem 

solve. 

If the value of this parameter is greater than 

0, then thevalue of 

LS_DPARAM_SOLVER_TIMLMT will 

be disregarded. 

If the time limit, 

LS_DPARAM_MIP_TIMLIM, is reached 

and a feasible integer solution was found, it 

will be installed as the incumbent (best 

known) solution. 
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LS_IPARAM_MIP_AOPTTIMLIM Environm

ent, 

Model 

This is the time in seconds (integer) beyond 

which the relative optimality tolerance, 

LS_DPARAM_MIP_PEROPTTOL, will 

be applied. Range for possible values is [-

1,inf). The default value is 100 seconds. 

LS_IPARAM_MIP_LSOLTIMLIM Environm

ent, 

Model 

This value controls the time limit until 

finding a new integer solution since the last 

integer solution found. Range for possible 

values is [-1,inf). The default value is -1, 

which means no time limit is imposed. 

LS_IPARAM_MIP_CUTTIMLIM Environm

ent, 

Model 

This controls the total time to be spent in 

cut generation throughout the solution of a 

MIP. Range for possible values is [0,inf). 

The default value is -1, indicating that no 

time limits will be imposed when 

generating cuts. 

LS_IPARAM_MIP_HEUMINTIMLIM Environm

ent, 

Model 

This specifies the minimum time in seconds 

to be spent in finding heuristic solutions to 

the MIP model. 

LS_IPARAM_MIP_HEULEVEL (below) 

controls the heuristic used to find the 

integer solution. Range for possible values 

is [0,inf).  

The default is 0. 

LS_IPARAM_MIP_REP_MODE                    Environm

ent, 

Model 

Reserved for future use. 

LS_IPARAM_MIP_BNB_TRY_BNP                  Environm

ent, 

Model 

Reserved for future use. 

Global Optimization Parameters 
LS_DPARAM_GOP_ABSOPTTOL Environment, 

Model 

This is the GOP absolute optimality 

tolerance. Solutions must beat the 

incumbent by at least this absolute 

amount to become the new, best 

solution. Range for possible values is 

[0,inf). The default value is 1e-6. 
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LS_DPARAM_GOP_RELOPTTOL Environment, 

Model 

This value is the GOP optimality 

tolerance. Solutions must beat the 

incumbent by at least this amount to 

become the new best solution. Range 

for possible values is [0,1].  

The default value is 1e-5. 

Remark: Deprecated name 

LS_DPARAM_GOP_OPTTOL 

LS_DPARAM_GOP_BOXTOL Environment, 

Model 

This value specifies the minimal width 

of variable intervals in a box allowed to 

branch. Range for possible values is 

[0,1]. The default value is 1.0e-6. 

LS_DPARAM_GOP_WIDTOL Environment, 

Model 

This value specifies the maximal width 

of variable intervals for a box to be 

considered as an incumbent box 

containing an incumbent solution. It is 

used when 

LS_IPARAM_GOP_MAXWIDMD is 

set at 1. Range for possible values is 

[0,1]. The default value is 1e-4. 

LS_DPARAM_GOP_DELTATOL Environment, 

Model 

This value is the delta tolerance in the 

GOP convexification. It is a measure of 

how closely the additional constraints 

added as part of convexification should 

be satisfied. Range for possible values is 

[0,1]. The default value is 1e-7. 

LS_DPARAM_GOP_BNDLIM Environment, 

Model 

This value specifies the maximum 

magnitude of variable bounds used in 

the GOP convexification. Any lower 

bound smaller than the negative of this 

value will be treated as the negative of 

this value. Any upper bound greater 

than this value will be treated as this 

value. This helps the global solver focus 

on more productive domains. Range for 

possible values is [0,inf). The default 

value is 1e10.  

LS_IPARAM_GOP_TIMLIM Environment, 

Model 

This is the integer time limit in seconds 

for GOP branch-and-bound. Range for 

possible values is [-1, INT_MAX). The 

default value is -1, which means no time 

limit is imposed.  
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LS_IPARAM_GOP_OPTCHKMD Environment, 

Model 

This specifies the criterion used to 

certify the global optimality. Possible 

values are:  

# 0: the absolute deviation of objective 

lower and upper bounds should be 

smaller than 

LS_DPARAM_GOP_RELOPTTOL at 

the global optimum.  

# 1: the relative deviation of objective 

lower and upper bounds should be 

smaller than 

LS_DPARAM_GOP_RELOPTTOL at 

the global optimum.  

# 2: which means either absolute or 

relative tolerance is satisfied at global 

optimum (default). 

LS_IPARAM_GOP_MAXWIDMD Environment, 

Model 

This is the maximum width flag for the 

global solution. The GOP branch-and-

bound may continue contracting a box 

with an incumbent solution until its 

maximum width is smaller than 

LS_DPARAM_GOP_WIDTOL.  

The possible value are:  

# 0: the maximum width criterion is 

suppressed (default). 

# 1: the maximum width criterion is 

performed. 



FUNCTION DEFINITIONS     109 

 

LS_IPARAM_GOP_BRANCHMD Environment, 

Model 

This specifies how the branching 

variable is selected in GOP. The branch 

variable is selected as the one that holds 

the largest magnitude in the measure.  

Possible values are: 

# 0: Absolute width of interval. 

# 1: Locally relative width. 

# 2: Globally relative width. 

#3: Globally relative distance from 

the convex minimum to the bounds. 

# 4: Absolute violation between the 

function and its convex envelope at the 

convex minimum. 

# 5: Relative violation between the 

function and its convex envelope at the 

convex minimum. 

The default value is 5. 

LS_IPARAM_GOP_PRELEVEL Environment, 

Model 

This controls the amount and type of 

GOP pre-solving. Possible options are: 

# Initial model reduction                +1 

# Initial local optimization             +2 

# Initial linear constraint  

propagation                                    +4 

# Recursive linear constraint 

propagation                                    +8 

# Recursive nonlinear constraint 

propagation                                  +16 

# Search for good near feasible 

solutions.                                       +32 

# Check for unboundedness          +64 

# Alter derivative methods          +128 

# MIP pre-optimizations             +256                                 

# NLP pre-optimizations             +512                        

The default value is 1022 = 

2+4+8+16+32+64+128+256+512  

LS_IPARAM_GOP_POSTLEVEL Environment, 

Model 

This controls the amount and type of 

GOP post-solving. Possible options are: 

Apply LSgetBestBound()   +2 

Reoptimize variable bounds   +4 

Reoptimize variable bounds on 

selected node only                     +8 

The default value is: 14 = 2+4+8 
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LS_IPARAM_GOP_BBSRCHMD Environment, 

Model 

This specifies the node selection rule for 

choosing between all active nodes in the 

GOP branch-and-bound tree when 

solving global optimization programs. 

Possible selections are: 

# 0: Depth first search. 

# 1: Choose node with worst bound. 

The default value is 1. 

LS_IPARAM_GOP_DECOMPPTMD Environment, 

Model 

This specifies the decomposition point 

selection rule. In the branch step of 

GOP branch-and-bound, a branch point 

M is selected to decompose the selected 

variable interval [Lb, Ub] into two sub-

intervals, [Lb, M] and [M, Ub]. Possible 

options are: 

# 0: mid-point. 

# 1: local minimum/convex minimum. 

The default value is 1. 

LS_IPARAM_GOP_ALGREFORMMD Environment, 

Model 

This controls the algebraic 

reformulation rule for a GOP. The 

algebraic reformulation and analysis is 

very crucial in building a tight convex 

envelope to enclose the nonlinear/non-

convex functions. A lower degree of 

overestimation on convex envelopes 

helps increase the convergence rate to 

the global optimum. Possible options 

are: 

# Rearrange and collect terms   +2 

# Expand all parentheses   +4 

# Retain nonlinear functions   +8 

# Selectively expand parentheses +16 

The default value is:  18 = 2+16 

LS_IPARAM_GOP_PRINTLEVEL Environment, 

Model 

This specifies the amount of print to do 

for the global solver. Possible selections 

are: 

# 0: Do not print anything. 

# 1: Print information for GOP branch-

and-bound iterations (default). 

LS_IPARAM_GOP_CORELEVEL Environment, 

Model 

Reserved for future use. The default is 

30. 
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LS_IPARAM_GOP_RELBRNDMD Environment, 

Model 

This controls the reliable rounding rule 

in the GOP branch-and-bound. The 

global solver applies many sub-

optimizations to estimate the lower and 

upper bounds on the global optimum. A 

rounding error or numerical instability 

could unintentionally cut off a good 

solution. A variety of reliable 

approaches are available to improve the 

precision. Possible values are: 

# No rounding  0  

# Use smaller optimality/feasibility 

tolerances and appropriate pre-solving 

options  +2 

# Apply interval arithmetic to re-verify 

the solution feasibility  +4 

The default value is 0. 

LS_IPARAM_GOP_BNDLIM_MODE Environment, 

Model 

This value is associated with the 

parameter 

LS_DPARAM_GOP_BNDLIM and 

determines the mode how the specified 

bound limit will be used.  

Possible values are: 

 # 0:Do not use the bound limit on the 

variables. 

 # 1: Use the bound limit right at the 

beginning of global optimization. 

 # 2: Use the bound limit after the initial 

local optimization, if selected. This 

properly sets the bound limit for each 

variable to include the initial solution, if 

any, within the range. 

The default is 2. 

LS_IPARAM_GOP_OPT_MODE Environment, 

Model 

This specifies the mode for global 

search. Possible values are 

# 0: global search for a feasible solution 

(thus a feasibility certificate). 

# 1: global search for an optimal 

solution (default). 

# 2: global search for an unboundedness 

certificate. 

The default value is 1. 
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LS_IPARAM_GOP_BRANCH_LIMIT Environment, 

Model 

This is the integer limit on the total 

number of branches to be created during 

branch-and-bound in GOP tree. Range 

for possible values is [-1,INT_MAX]. 

The default is INT_MAX 

(2147483647). If the branch limit, 

LS_IPARAM_GOP_BRANCH_LIMIT, 

is reached and a feasible solution was 

found, it will be installed as the 

incumbent (best known) solution. 
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 LS_IPARAM_GOP_CORELEVEL Environment,   

Model 

This controls the strategy of GOP  

branch-and-bound procedure.  

Possible options are:  

# LP convex relaxation       +2  

# Honor NLP solutions       +4  

# Box Branching                 +8  

# Honor IPM solutions      +16 

 The default is 30. 

 LS_IPARAM_GOP_HEU_MODE Environment, 

Model 

This specifies the heuristic used in the 

global solver to find good solution. 

Possible values are: 

# 0: No heuristic is used. 

# 1: A simple heuristic is used. 

Typically, this will put more efforts in 

searching for good solutions, and less in 

bound tightening. The default is 0. 

 LS_IPARAM_GOP_SUBOUT_MODE Environment, 

Model 

This is a flag indicating whether fixed 

variables are substituted out of the 

instruction list used in the global solver. 

Possible values are 0 (no), 1 (yes). The 

default is 1. 

 LS_IPARAM_GOP_USE_NLPSOLVE Environment, 

Model 

This is reserved for internal use only.  

The default value is 1. 

 LS_IPARAM_GOP_LSOLBRANLIM Environment,  

Model 

This value controls the branch limit until 

finding a new nonlinear solution since 

the last nonlinear solution is found. 

Range for possible values is [-1,inf). The 

default value is –1, which means no 

branch limit is imposed. 

LS_IPARAM_GOP_LPSOPT Environment, 

Model 

This is reserved for internal use only. 

The default is 2. 

LS_DPARAM_GOP_TIMLIM Environment, 

Model 

This is the time limit in seconds for GOP 

branch-and-bound. Range for possible 

values is [-1.0,inf). The default value is 

-1.0, which means no time limit is 

imposed. 
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LS_DPARAM_GOP_BRANCH_LIMIT Environment, 

Model 

This is the limit on the total number of 

branches (stored as a double) to be 

created during branch-and-bound in 

GOP tree. Range for possible values is [-

1, +inf).The default value is –1, which 

means no limit is imposed. If the branch 

limit, 

LS_DPARAM_GOP_BRANCH_LIMIT

, is reached and a feasible solution was 

found, it will be installed as the 

incumbent (best known) solution. 

LS_IPARAM_GOP_QUADMD Environment, 

Model 

This is a flag indicating if GOP exploits 

quadratic feature. Possible values are:    

0 (no) and 1 (yes). The default is 0. 

LS_IPARAM_GOP_LIM_MODE                   Environment, 

Model 

This is a flag indicating which heuristic 

limit on sub-solver in GOP is based. 

Possible values are: 

# 0: No limit. 

# 1: time based limit. 

# 2: iteration based limit. 

# 3: both time and iteration based limit. 

The default value is 1 (time based limit). 

LS_DPARAM_GOP_ITRLIM                    Environment, 

Model 

This is the total iteration limit (including 

simplex, barrier and nonlinear iteration) 

summed over branches in GOP.  Range 

for possible values is [-1, inf). The 

default value is -1, which means no 

iteration limit is imposed. If this limit is 

reached, GOP will stop. 

LS_DPARAM_GOP_ITRLIM_SIM              Environment, 

Model 

This is the total simplex iteration limit 

summed over all branches in GOP. 

Range for possible values is [-1, inf). 

The default value is -1, which means no 

iteration limit is imposed. If this limit is 

reached, GOP will stop. 

LS_DPARAM_GOP_ITRLIM_IPM                  Environment, 

Model 

This is the total barrier iteration limit 

summed over all branches in GOP. 

Range for possible values is [-1, inf). 

The default value is -1, which means no 

iteration limit is imposed. If this limit is 

reached, GOP will stop. 
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LS_DPARAM_GOP_ITRLIM_NLP                  Environment, 

Model 

This is the total nonlinear iteration limit 

summed over all branches in GOP. 

Range for possible values is [-1, inf). 

The default value is -1, which means no 

iteration limit is imposed. If this limit is 

reached, GOP will stop. 

LS_DPARAM_GOP_PEROPTTOL Environment, 

Model 

Reserved for future use. 

LS_DPARAM_GOP_AOPTTIMLIM Environment, 

Model 

Reserved for future use. 

LS_IPARAM_GOP_LINEARZ Environment, 

Model 

This is a flag indicating if GOP exploits 

lineariable model.Possible values are 0 

(no) and 1 (yes).The default value is 1. 

LS_IPARAM_GOP_NUM_THREADS Environment, 

Model 

This value specifies the number of 

parallel threads to be used when solving 

a nonlinear model with the global 

optimization solver. Possible values are 

positive integers. The default is 1.    

LS_DPARAM_GOP_FLTTOL  Environment, 

Model 

Option GOP floating-point tolerance. 

The default is 1e-010. 

LS_IPARAM_GOP_MULTILINEAR  Environment, 

Model 

This is a flag indicating if GOP exploits 

multi linear feature. Possible values are: 

0 (no) and 1 (yes). The default is 1. 

LS_DPARAM_GOP_OBJ_THRESHOLD  Environment, 

Model 

This value specifies the threshold of 

objective value in the GOP solver. For 

min problem, if current incurmbent 

solution is less than the threshold GOP 

solver will stop. Range for possible 

values is (-inf, inf).  

The default value is -inf. 

LS_DPARAM_GOP_QUAD_METHOD                 Environment, 

Model 

Reserved for future use. 
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License Information Parameters 
LS_IPARAM_LIC_PLATFORM Environment, 

Model 

This returns the platform identifier for a 

given license key. This value cannot be 

set. 

LS_IPARAM_LIC_CONSTRAINTS Environment, 

Model 

This returns an integer containing the 

number of constraints allowed for a 

single model. It returns -1 if the number 

is unlimited. This value cannot be set. 

LS_IPARAM_LIC_VARIABLES Environment, 

Model 

This returns an integer containing the 

maximum number of variables allowed 

in a single model. It returns -1 if the 

number is unlimited. This value cannot 

be set. 

LS_IPARAM_LIC_INTEGERS Environment, 

Model 

This returns an integer containing the 

maximum number of integer variables 

allowed in a single model. It returns -1 

if the number is unlimited. This value 

cannot be set. 

LS_IPARAM_LIC_NONLINEARVARS Environment, 

Model 

This returns an integer containing the 

maximum number of nonlinear 

variables allowed in a single model. It 

returns -1 if the number is unlimited. 

This value cannot be set. 

LS_IPARAM_LIC_GOP_INTEGERS Environment, 

Model 

This returns an integer containing the 

maximum number of integer variables 

allowed in a global optimization model. 

It returns -1 if the number is unlimited. 

This value cannot be set. 

LS_IPARAM_LIC_GOP_NONLINEARVARS Environment, 

Model 

This returns an integer containing the 

maximum number of nonlinear 

variables allowed in a global 

optimization model. It returns -1 if the 

number is unlimited. This value cannot 

be set. 

LS_IPARAM_LIC_DAYSTOEXP Environment, 

Model 

This returns an integer containing the 

number of days until the license expires. 

It returns -2 if there is no expiration 

date. This value cannot be set. 

LS_IPARAM_LIC_DAYSTOTRIALEXP Environment, 

Model 

This returns an integer containing the 

number of days until the trial features of 

the license expires. It returns -2 if there 

is no trial period. This value cannot be 

set. 
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LS_IPARAM_LIC_BARRIER Environment, 

Model 

This returns an integer containing a 1 if 

the barrier solver option is available and 

0 if it is not. The barrier solver, also 

known as the “interior point” solver, 

tends to be faster on some large models. 

A license for the barrier solver may be 

obtained through LINDO Systems. This 

value cannot be set.  

LS_IPARAM_LIC_NONLINEAR Environment, 

Model 

This returns an integer containing a 1 if 

the nonlinear solver option is available 

and 0 if it is not. A license for the 

nonlinear solver may be obtained 

through LINDO Systems. This value 

cannot be set.  

LS_IPARAM_LIC_GLOBAL Environment, 

Model 

This returns an integer containing a 1 if 

the global solver option is available and 

0 if it is not. A license for the global 

solver may be obtained through LINDO 

Systems. This value cannot be set.  

LS_IPARAM_LIC_EDUCATIONAL Environment, 

Model 

This returns an integer containing a 1 or 

a 0. 1 means that the current license is 

for educational use only. This value 

cannot be set. 

LS_IPARAM_LIC_NUMUSERS Environment, 

Model 

This returns an integer specifying the 

maximum number of concurrent users 

allowed to use the current license. This 

value cannot be set. 

LS_IPARAM_LIC_RUNTIME Environment, 

Model 

This returns an integer containing a 1 or 

a 0. 1 meaning the license is for runtime 

use only. This value cannot be set. 

LS_IPARAM_LIC_CONIC Environment, 

Model 

This returns an integer containing a 1 if 

the conic solver option is available and 

0 if it is not. A license for the conic 

solver may be obtained through LINDO 

Systems. This value cannot be set. 

LS_IPARAM_LIC_MIP Environment, 

Model 

This returns an integer containing a 1 if 

the mixed-integer solver option is 

available and 0 if it is not. A license for 

the mixed-integer solver may be 

obtained through LINDO Systems. This 

value cannot be set. 
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LS_IPARAM_LIC_SP Environment, 

Model 

This returns an integer containing a 1 if 

the stochastic-programming solver 

option is available and 0 if it is not. A 

license for the stochastic-programming 

solver may be obtained through LINDO 

Systems. This value cannot be set. 

Model Analysis Parameters 
LS_IPARAM_IIS_METHOD Environment, 

Model 

This specifies the method to use in 

analyzing infeasible models to locate an 

IIS. Possible values are:  

# LS_IIS_DEFAULT = 0, 

# LS_IIS_DEL_FILTER =1, 

# LS_IIS_ADD_FILTER =2, 

# LS_IIS_GBS_FILTER =3, 

# LS_IIS_DFBS_FILTER =4, 

# LS_IIS_FSC_FILTER =5, 

# LS_IIS_ELS_FILTER =6 

The default is  LS_IIS_DEFAULT  

LS_IPARAM_IIS_USE_EFILTER Environment, 

Model 

This flag controls whether the Elastic 

Filter should be enabled as the 

supplementary filter in analyzing 

infeasible models when the Elastic 

Filter is not the primary method. 

Possible values are 0 (no), 1 (yes) and -

1 (the solver decides). The default is 0. 

LS_IPARAM_IIS_USE_GOP Environment, 

Model 

This flag controls whether the global 

optimizer should be enabled in 

analyzing infeasible NLP models. 

Possible values are 0 (no), 1 (yes) and -

1 (the solver decides). The default is 0. 
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LS_IPARAM_IIS_ANALYZE_LEVEL  Environment, 

Model 

This controls the level of analysis when 

locating an IIS to debug an infeasible 

model. Bit mask values are: 

# LS_NECESSARY_ROWS= 1, Search 

for necessary rows,  

# LS_NECESSARY_COLS = 2, Search 

for necessary columns, 

 # LS_SUFFICIENT_ROWS= 4,  

Search for sufficient rows,  

# LS_SUFFICIENT_COLS = 8, Search 

for sufficient columns , 

# LS_IIS_INTS = 16,  Consider 

integrality restrictions as the potential 

cause of infeasibilities and  include it in 

the analysis. If this option is disabled, 

all integrality restrictions  will be 

considered permanent in the model and 

will not be relaxes. 

# LS_IISRANK_LTF = 32, Compute 

the underlying LTF matrix and use this 

as the basis of a ranking score to guide 

the IIS run. E.g. one could start from the 

bottom of the triangulated matrix and 

move up. 

# LS_IISRANK_DECOMP = 64, If the 

underlying matrix is totally 

decomposable, rank blocks w.r.t their 

sizes and debug the smallest 

independent infeasible block,  

# LS_IISRANK_NNZ = 128,  Use the 

nonzero structure of the underlying 

matrix to compute a ranking score to 

guide the IIS run. E.g. remove rows 

with more nonzero first etc… 

#LS_IISLIMIT_MIS = 256,  Treat 

iter/time limits as intractability.    

 

LS_IPARAM_IUS_ANALYZE_LEVEL  Environment, 

Model 

This controls the level of analysis when 

locating an IUS to debug an unbounded 

LP. Bit mask values are: 

# LS_NECESSARY_COLS = 2, 

# LS_SUFFICIENT_COLS  = 8. 

The default is 2. 
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LS_IPARAM_IIS_REOPT 

  

Environment, 

Model 

This specifies which optimization 

method to use when starting from a 

given basis. Possible values are: 

# LS_METHOD_FREE  

# LS_METHOD_PSIMPLEX 

# LS_METHOD_DSIMPLEX 

# LS_METHOD_BARRIER 

# LS_METHOD_NLP 

The default is LS_METHOD_FREE. 

LS_IPARAM_IIS_TOPOPT  Environment, 

Model 

This specifies which optimization 

method to use when there is no previous 

basis. Possible values are: 

# LS_METHOD_FREE  

# LS_METHOD_PSIMPLEX 

# LS_METHOD_DSIMPLEX 

# LS_METHOD_BARRIER 

# LS_METHOD_NLP 

The default is LS_METHOD_FREE. 

LS_IPARAM_IIS_USE_SFILTER Environment, 

Model 

 This is a flag indicating is sensitivity 

filter will be used during IIS search. 

Possible values are 0 (no), 1 (yes) and -

1 (the solver decides). The default is 1. 

LS_IPARAM_IIS_PRINT_LEVEL Environment, 

Model 

This specifies the amount of print to do 

during IIS search. Possible values are: 

# 0: Do not print anything (default). 

# >0:  Print more information. 

Default is 2. 

LS_IPARAM_IIS_INFEAS_NORM Environment, 

Model 

This specifies the norm to measure 

infeasibilities in IIS search. Possible 

values are: 

# LS_IIS_NORM_FREE : Solver 

decides 

# LS_IIS_NORM_ONE: Use L-1 norm. 

# LS_IIS_NORM_INFINITY: Use L-

infinity norm. 

The default is 0. 

LS_IPARAM_IIS_ITER_LIMIT Environment, 

Model 

This is the iteration limit for IIS search. 

The default value is -1, which means no 

iteration limit is imposed. 

LS_IPARAM_IIS_TIME_LIMIT Environment, 

Model 

This is the time limit for IIS search. The 

default value is -1, which means no time 

limit is imposed. 
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LS_IPARAM_IIS_NUM_THREADS Environment, 

Model 

This value specifies the number of 

parallel threads to be used when using 

the IIS finder. Possible values are 

positive integers. Reserved for future 

use. 

LS_DPARAM_IIS_ITER_LIMIT  Environment, 

Model 

This is the iteration limit (double 

precision) for IIS search. The default 

value is -1.0, which means no iteration 

limit is imposed. 

LS_IPARAM_IIS_GETMODE  Environment, 

Model 

This flag controls whether LSgetIIS() 

function should retrieve variable bounds 

in the IIS or the integer restrictions. This 

parameter is effective only for infeasible 

integer models. For continuous models, 

it will be ignored.  

Possible values are: 

 0 (variable bound), 1 (integer 

restrictions). 

The default is 0. 

Stochastic Parameters 
LS_IPARAM_STOC_NSAMPLE_SPAR Environment, 

Model 

Common sample size per stochastic 

parameter.  Possible values are positive 

integers or -1. Default is -1, which 

implies 'not specified'. 

LS_IPARAM_STOC_NSAMPLE_STAGE Environment, 

Model 

Common sample size per stage. Possible 

values are positive integers or -1. 

Default is -1, which implies 'not 

specified'. 

LS_IPARAM_STOC_RG_SEED   Environment, 

Model 

Seed to initialize the random number 

generator.  Possible values are positive 

integers. The default is 1031. 

LS_IPARAM_STOC_METHOD   Environment, 

Model 

Stochastic optimization method to solve 

the model. Possible values are: 

# LS_METHOD_STOC_FREE   

# LS_METHOD_STOC_DETEQ   

# LS_METHOD_STOC_NBD   

# LS_METHOD_STOC_ALD   

The default is 

LS_METHOD_STOC_FREE. 
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LS_IPARAM_STOC_REOPT   Environment, 

Model 

Reoptimization method to solve the 

node-models.  Possible values are: 

# LS_METHOD_FREE (default) 

# LS_METHOD_PSIMPLEX 

# LS_METHOD_DSIMPLEX 

# LS_METHOD_BARRIER 

# LS_METHOD_NLP 

LS_IPARAM_STOC_TOPOPT   

 

Environment, 

Model 

Optimization method to solve the root 

problem. Possible values are: 

# LS_METHOD_FREE (default) 

# LS_METHOD_PSIMPLEX 

# LS_METHOD_DSIMPLEX 

# LS_METHOD_BARRIER 

# LS_METHOD_NLP 

# LS_METHOD_MULTIS 

# LS_METHOD_GOP 

LS_IPARAM_STOC_ITER_LIM   Environment, 

Model 

Iteration limit for stochastic solver. 

Possible values are positive integers or 

(-1) no limit. Default is -1. 

LS_IPARAM_STOC_PRINT_LEVEL   Environment, 

Model 

Print level to display progress 

information during optimization. 

Possible values are nonnegative 

integers. Default is 2. 

LS_IPARAM_STOC_DETEQ_TYPE   Environment, 

Model 

Type of deterministic equivalent to be 

used by the solver. Possible values are: 

# LS_DETEQ_FREE (-1)  

# LS_DETEQ_IMPLICIT (0)    

# LS_DETEQ_EXPLICIT (1) 

# LS_DETEQ_CHANCE (2) 

LS_DETEQ_IMPLICIT is valid for 

linear and integer models only. 

Default value is LS_DETEQ_FREE(-1). 

 

LS_IPARAM_STOC_CALC_EVPI   Environment, 

Model 

Flag to enable/disable calculation of 

lower bounds on EVPI. Possible values 

are (0): disable, (1) enable. Default is 1. 

LS_IPARAM_STOC_DEBUG_MASK Environment, 

Model 

Specifies the bitmask to export 

stochastic model data for advanced 

debugging. Possible values are 0, 1, 2, 4 

and 8. Default is 0. 

LS_IPARAM_STOC_SAMP_CONT_ONLY   Environment, 

Model 

Flag to restrict sampling to continuous 

stochastic parameters only or not.  

Possible values are (0): disable, (1) 

enable. Default is 0. 
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LS_IPARAM_STOC_BUCKET_SIZE   Environment, 

Model 

Bucket size in Benders decomposition. 

Possible values are positive integers or 

(-1) for solver decides. Default is -1. 

LS_IPARAM_STOC_MAX_NUMSCENS   Environment, 

Model 

Maximum number of scenarios allowed 

when solving an SP. Possible values are 

positive integers. Default is 40,000.  

If the model contains stochastic 

parameters from distributions with 

infinite populations, the solver will 

return error: 

LSERR_STOC_SCENARIO_LIMIT 

unless a sampling scheme is specified. 

Sampling shemes can be specified either 

parametrically (using 

LS_IPARAM_STOC_NSAMPLE_STA

GE or 

LS_IPARAM_STOC_NSAMPLE_SPA

R) or by calling  LSloadSampleSizes() 

function. 

LS_IPARAM_STOC_SHARE_BEGSTAGE   Environment, 

Model 

Stage beyond which node-models share 

the same model structure. Possible 

values are positive integers less than or 

equal to number of stages in the model 

or (-1) for solver decides. Default is -1. 

LS_IPARAM_STOC_NODELP_PRELEVEL   Environment, 

Model 

Presolve level solving node-models.  

Possible values are bitmasks defined in 

LS_IPARAM_LP_PRELEVEL.  

Default is 0. 

LS_DPARAM_STOC_TIME_LIM   Environment, 

Model 

Time limit for stochastic solver. 

Possible values are nonnegative real 

numbers or -1.0 for solver decides. 

Default is -1.0. 

LS_DPARAM_STOC_RELOPTTOL   Environment, 

Model 

Relative optimality tolerance (w.r.t 

lower and upper bounds on the true 

objective) to stop the solver.  Possible 

values are reals in (0,1) interval. Default 

is 1e-7. 

LS_DPARAM_STOC_ABSOPTTOL   Environment, 

Model 

Absolute optimality tolerance (w.r.t 

lower and upper bounds on the true 

objective) to stop the solver. .  Possible 

values are reals in (0,1) interval. Default 

is 1e-7. 
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LS_IPARAM_STOC_VARCONTROL_METH

OD 

Environment, 

Model 

Sampling method for variance 

reduction. Possible values are: 

# LS_MONTECARLO (0)  

# LS_LATINSQUARE (1) 

# LS_ANTITHETIC  (2) 

# LS_LATINSQUARE +  

# LS_ANTITHETIC (3) 

LS_MONTECARLO implies the use of 

standard sampling with no variance 

reduction. LS_ANTITHETIC implies 

the use of antithetic pairs of uniform 

variates to control variance. 

LS_LATINSQUARE implies the use of 

basic Latin-hypercude sampling which 

is known to be efficient for most 

distributions. Default is 

LS_LATINSQUARE.   

LS_IPARAM_STOC_CORRELATION_TYPE Environment, 

Model 

Correlation type associated with the 

correlation matrix. Possible values are: 

# LS_CORR_TARGET (-1) 

# LS_CORR_PEARSON (0) 

# LS_CORR_KENDALL (1) 

# LS_CORR_SPEARMAN (2) 

Default is LS_CORR_PEARSON. 

LS_IPARAM_STOC_WSBAS  Environment, 

Model 

Warm start basis for wait-see model . 

Possible values are: 

# LS_WSBAS_FREE = -1  Solver 

decides (Default) 

# LS_WSBAS_NONE = 0,  No warm-

starts 

# LS_WSBAS_AVRG = 1,  Use the 

optimal basis from Average (Expected 

Value) model 

# LS_WSBAS_LAST = 2,  Use the last 

valid basis, typically the optimal basis 

from the last scenario solved. 

LS_IPARAM_STOC_ALD_OUTER_ITER_LI

M         

Environment, 

Model 

Outer loop iteration limit for ALD.  

Possible values are positive integers. 

Default is 200. 

LS_IPARAM_STOC_ALD_INNER_ITER_LI

M         

Environment, 

Model 

Inner loop iteration limit for ALD. 

Possible values are positive integers. 

Default is 1000.  

LS_DPARAM_STOC_ALD_DUAL_FEASTO

L           

Environment, 

Model 

Dual feasibility tolerance for ALD. 

Range for possible values is [1e-16,inf). 

The default value is 0.0001. 
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LS_DPARAM_STOC_ALD_PRIMAL_FEAST

OL         

Environment, 

Model 

Primal feasibility tolerance for ALD. 

Range for possible values is [1e-16,inf). 

The default value is 0.0001. 

LS_DPARAM_STOC_ALD_DUAL_STEPLE

N           

Environment, 

Model 

Dual step length for ALD. Range for 

possible values is [1e-16,inf). The 

default value is 0.9. 

LS_DPARAM_STOC_ALD_PRIMAL_STEPL

EN         

Environment, 

Model 

Primal step length for ALD. Range for 

possible values is [1e-16,inf). The 

default value is 0.5. 

LS_IPARAM_CORE_ORDER_BY_STAGE             Environment, 

Model 

Flag to specify whether to order non-

temporal models or not. Default is 1. 

LS_SPARAM_STOC_FMT_NODE_NAME       Environment, 

Model 

Node name format. Reserved for 

internal use. 

LS_SPARAM_STOC_FMT_SCENARIO_NA

ME          

Environment, 

Model 

Scenario name format. Reserved for 

internal use. 

LS_IPARAM_STOC_MAP_MPI2LP Environment, 

Model 

Flag to specify whether stochastic 

parameters in MPI will be mapped as 

LP matrix elements. Default is 0. It is 

required to set this flag to 1 to use 

Nested-Benders Method to solve linear 

SPs. 

Remark: This parameter is relevant only 

when the underlying SP model is 

formulated using the instruction-list 

interface (MPI). When the parameter is 

set to 1, the solver converts the model 

into matrix format. For this conversion 

to be successful, it is required that 

expressions that involve stochastic 

parameters are simple univariate linear 

functions like (alpha*r+beta) where 

alpha and beta are scalars and r is the 

random parameter. See 'Using Nested-

Benders Method' section in Chapter 8. 

LS_IPARAM_STOC_AUTOAGGR Environment, 

Model 

Flag to enable or disable 

autoaggregation of stages. Default is 1. 
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LS_IPARAM_STOC_BENCHMARK_SCEN             Environment, 

Model 

Benchmark scenario to compare EVPI 

and EVMU against. Possible values are: 

# LS_SCEN_ROOT (-1)   Root 

scenario, usually corresponds to the first 

scenario. 

# LS_SCEN_AVRG (-2)  Average 

(expected value) scenario.  

# LS_SCEN_MEDIAN (-3) Median 

scenario 

# LS_SCEN_USER  (-4) User specified 

scenario 

# LS_SCEN_NONE  (-5) No 

benchmark scenarios. 

Default is LS_SCEN_AVRG. 

LS_DPARAM_STOC_INFBND                     Environment, 

Model  
Value to truncate infinite bounds at non-

leaf nodes. Range for possible values is 

(0,inf). Default is 1e+9. 

LS_IPARAM_STOC_ADD_MPI                    Environment, 

Model 

Flag to use add-instructions mode when 

building deteq. Default is 0. 

LS_IPARAM_STOC_ELIM_FXVAR                 Environment, 

Model 

Flag to enable elimination of fixed 

variables from deteq MPI. Default is 1. 

LS_DPARAM_STOC_SBD_OBJCUTVAL              Environment, 

Model 

RHS value of objective cut in SBD 

master problem. . Range for possible 

values is (-inf,inf). Default is -1e+30. If 

this value is set to a finite value, then an 

objective cut with specified RHS will be 

added to the master problem. 

LS_IPARAM_STOC_SBD_OBJCUTFLAG             Environment, 

Model 

Flag to enable objective cut in SBD 

master problem. Default is 1. 

LS_IPARAM_STOC_SBD_NUMCANDID              Environment, 

Model 

Maximum number of candidate 

solutions to generate at SBD root . 

Possible values are nonnegative integers 

or -1 (solver decides). The default is -1. 

LS_DPARAM_STOC_BIGM                       Environment, 

Model 

Big-M value for linearization and 

penalty functions. Range for possible 

values is (0,inf). Default is 1e+008. 
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LS_IPARAM_STOC_NAMEDATA_LEVEL             Environment, 

Model 

This value controls the creation and 

loading of name-date in DETEQ and 

SCENARIO models when working with 

an SP model. Possible values are 

positive integers. Default is 0, which 

implies no name data will be generated 

and the DETEQ and SCENARIO 

models will have generic variable and 

constraint names. 

LS_IPARAM_STOC_SBD_MAXCUTS                Environment, 

Model 

Max cuts to generate for master 

problem. Possible values are non-

negative integers and -1. Default is -1, 

which imples 'solver decides'. 

LS_IPARAM_STOC_DEQOPT        Environment, 

Model 

This specifies the method to use when 

solving the deterministic equivalent. 

Possible values are: 

#LS_METHOD_FREE ( 0) Solver 

decides. 

#LS_METHOD_SBD ( 10) Use simple 

Benders Decomposition. 

The default is LS_METHOD_FREE (0) 

LS_IPARAM_STOC_DS_SUBFORM Environment, 

Model 

This parameter specifies the type of 

subproblem formulation to be used in 

heuristic search. 

Possible values are nonnegative integers 

and -1.  

# 0 - Perform heuristic search in the 

original solution space. 

# 1 - Perform heuristic search in the 

space of discrete variables coupled with 

optimizations in the linear space.  

The default is -1 (solver decides). 

LS_DPARAM_STOC_REL_PSTEPTOL          Environment, 

Model 

This value specifies the primal-step 

tolerance in decomposition based 

algorithms. Possible values are in the 

range of (0,1). The default is 1e-8. 

LS_DPARAM_STOC_REL_DSTEPTOL           Environment, 

Model 

This value specifies the dual-step 

tolerance in decomposition based 

algorithms. Possible values are in the 

range of (0,1). The default is 1e-7. 
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LS_IPARAM_STOC_NUM_THREADS          Environment, 

Model 

This value specifies the number of 

parallel threads to be used when solving 

a stochastic programming model. 

Possible values are positive integers.The 

default is 0.    

LS_IPARAM_STOC_DETEQ_NBLOCKS Environment, 

Model 

This value specifies the number of 

implict blocks when exporting a 

DETEQ model. Reserved for internal 

use. Default is -1. 

Sampling Parameters 
LS_IPARAM_SAMP_NCM_ITERLIM                Environment Iteration limit for NCM method. 

Possible values are integers in [-1,inf).  

The default is 100. 

LS_DPARAM_SAMP_NCM_OPTTOL                 Environment Optimality tolerance for NCM method. 

Possible values are (0,1).  

Default is 1e-7. 

LS_IPARAM_SAMP_NUM_THREADS         Environment This value specifies the number of 

parallel threads to be used when 

sampling. Possible values are positive 

integers. The default is 0.    

LS_IPARAM_SAMP_RG_BUFFER_SIZE     Environment This value specifies the buffer size for 

random number generators in running in 

parallel mode. Possible values are 

nonnegative integers. The default is 0 

(solver decides). 

LS_IPARAM_SAMP_NCM_METHOD Environment Bitmask to enable available methods for 

solving the nearest correlation matrix 

(NCM) subproblem. 

Possible values are :  

# Solver decides = 0 

# LS_NCM_STD = 1 

# LS_NCM_GA = 2 

# LS_NCM_ALTP = 4 

# LS_NCM_L2NORM_CONE = 8 

# LS_NCM_L2NORM_NLP = 16 

Default is 5. 

LS_DPARAM_SAMP_NCM_CUTOBJ Environment SP Objective cutoff (target) value to 

stop the nearest correlation matrix 

(NCM) subproblem. 

Possible values are (-inf,inf). Default is 

-1e+30 (for minimization type 

problems). 
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LS_IPARAM_SAMP_NCM_DSTORAGE Environment Level for using partial point in solver. 

Possible values are nonnegative  

integers. 

Default is -1. 

LS_DPARAM_SAMP_CDSINC Environment SP Correlation matrix diagonal shift 

increment. Possible values are (-inf,inf). 

Default is 1e-006. 

LS_IPARAM_SAMP_SCALE Environment SP Flag to enable scaling of raw sample 

data. Possible values are 0: don't scale, 

1: scale. The default is 0. 

BNP Parameters 
LS_DPARAM_BNP_INFBND                    Environment, 

Model 

This parameter specifies the limited 

bound for those unbounded continuous 

variables.  

Possible values are in (0, +Inf).  

The default is 100000. 

LS_IPARAM_BNP_LEVEL                   Environment, 

Model 

This parameter specifies the computing 

level of BNP solver.  

Possible values are integers in [0,4]. 

# 0 - A pure Lagrangean Relaxation 

procedure. 

# 1 - Best-First search branch and price 

procedure. 

# 2 - Worst-First search branch and 

price procedure. 

# 3 - Depth-First search branch and 

price procedure. 

# 4 - Breadth-First search branch and 

price procedure. 

The default is 1. 

LS_IPARAM_BNP_PRINT_LEVEL                 Environment, 

Model 

This parameter speciefies the print level 

for BNP solver.  

Possible values are nonnegative 

integers. The default is 2. 

LS_DPARAM_BNP_BOX_SIZE                   

 

Environment, 

Model 

This parameter specifies the box size for 

the Box-Step method used in BNP 

solver.  

Possible values are nonnegative real 

numbers. The default is 0.0(no box). 

LS_IPARAM_BNP_NUM_THREADS           Environment, 

Model 

This parameter speciefies the number of 

parallel threads used in BNP solver.  

Possible values are positive integers. 

The default is 1. 
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LS_DPARAM_BNP_SUB_ITRLMT             Environment, 

Model 

This parameter specifies iteration limit 

when solving subproblems.  

Possible values are -1 and nonnegative 

real numbers. The default is -1.0. 

LS_IPARAM_BNP_FIND_BLK                Environment, 

Model 

This parameter specifies the method for 

finding block structure in BNP solver. 

Possible values are 1, 2, and 3.  

# 1  - Use heuristic #1 to find block 

structure. 

# 2  - Use heuristic #2 to find block 

structure. 

# 3 - Read user defined block structure 

from a .tim file. 

The default is 1. 

LS_IPARAM_BNP_PRELEVEL               Environment, 

Model 

This parameter specifies the presolve 

level for BNP solver. Possible values 

are nonnegative integers. The default is 

0 (no presolve). 

LS_DPARAM_BNP_COL_LMT                  Environment, 

Model 

This parameter specifies the limit on the 

number of generated columns in BNP 

solver. Possible values are -1 and 

nonnegative real numbers. The default 

is -1.0 (no limit). 

LS_DPARAM_BNP_TIMLIM               Environment, 

Model 

This parameter specifies time limit for 

BNP solver. Possible values are -1 and 

nonnegative real numbers. The default 

is -1.0 (no limit). 

LS_DPARAM_BNP_ITRLIM_SIM              Environment, 

Model 

This parameter specifeis the limit on 

simplex iterations in BNP solver. 

Possible values are -1 and nonnegative 

real numbers. The default is -1.0 (no 

limit). 

LS_DPARAM_BNP_ITRLIM_IPM               Environment, 

Model 

This parameter specifies the IPM limit 

in BNP solver. Possible values are -1 

and nonnegative real numbers. The 

default is -1.0 (no limit). 

LS_IPARAM_BNP_BRANCH_LIMIT         Environment, 

Model 

This parameter specifies the limit on the 

total number of branches in BNP solver. 

Possible values are -1 and nonnegative 

integers. The default is -1 (no limit). 

LS_DPARAM_BNP_ITRLIM Environment, 

Model 

This parameter specifies the iteration 

limit in BNP solver. Possible values are 

-1 and nonnegative real numbers. The 

default is -1.0 (no limit). 
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GA Parameters 
LS_DPARAM_GA_CXOVER_PROB         Environment, 

Model 

This value specifies the probability of 

crossover for continuous variables. 

Possible values are in [0,1]. The default 

is 0.8. 

LS_DPARAM_GA_XOVER_SPREAD            Environment, 

Model 

This value specifies the spreading factor 

for crossover. Possible values are 

positive integers. Higher values imply 

lesser spread. The default is 10. 

LS_DPARAM_GA_IXOVER_PROB               Environment, 

Model 

This values specifies the probability of 

crossover for integer variables. Possible 

values are in [0,1]. The default is 0.8. 

LS_DPARAM_GA_CMUTAT_PROB              Environment, 

Model 

This value specifies the probability of 

mutation for continuous variables. 

Possible values are in [0,1].  The default 

is 0.05. 

LS_DPARAM_GA_MUTAT_SPREAD        Environment, 

Model 

This value specifies the spreading factor 

for mutation. Possible values are 

positive integers. Higher values imply 

lesser spread. The default is 20. 

LS_DPARAM_GA_IMUTAT_PROB             Environment, 

Model 

This values specifies the probability of 

mutation for integer variables. Possible 

values are in [0,1]. The default is 0.1. 

LS_DPARAM_GA_TOL_ZERO                Environment, 

Model 

This value specifies the zero tolerance. 

Possible values are in (0,1). The default 

is 1e-14 

LS_DPARAM_GA_TOL_PFEAS             Environment, 

Model 

This values specifies the primal 

feasibility tolerance. Possible values are 

in (0,1). The default is 0.0000001. 

LS_DPARAM_GA_INF                        Environment, 

Model 

This values specifies the numeric 

infinity. Possible values are positive real 

numbers in (1e10, 1e30). The default is 

1e15. 

LS_DPARAM_GA_INFBND                     Environment, 

Model 

This values specifies the infinity 

threshold for finite bounds. Possible 

values are in (1e-6,1e12). The default is 

100000000. 

LS_DPARAM_GA_BLXA                   Environment, 

Model 

This values specifies the 'Alpha' 

parameter in Blending Alpha Crossover 

method. Possible values are in (0,+inf). 

The default is 5. 
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LS_DPARAM_GA_BLXB                       Environment, 

Model 

This values specifies the 'Beta' 

parameter in Blending Alpha-Beta 

Crossover method. Possible values are 

in (0,+inf). The default is 5. 

LS_IPARAM_GA_CXOVER_METHOD        Environment, 

Model 

This values specifies the method of 

crossover for continuous variables. 

Possible values are:  

# -1 Solver decides 

#  LS_GA_CROSS_BLXA : Blending 

Alpha Crossover 

# LS_GA_CROSS_BLXAB : Blending 

Alpha-Beta Crossover 

# LS_GA_CROSS_SBX : Simulated 

(Binary) Crossover  

The default is:  -1. 

LS_IPARAM_GA_IXOVER_METHOD            Environment, 

Model 

This values specifies the method of 

crossover for integer variables. Possible 

values are: 

# -1 Solve decides 

# LS_GA_CROSS_TWOPOINT Two-

point Binary Crossover. 

# LS_GA_CROSS_ONEPOINT One-

point Binary Crossover. 

The default is:  -1 

LS_IPARAM_GA_CMUTAT_METHOD              Environment, 

Model 

This values specifies the method of 

mutation for continuous variables. 

Reserved for future use.  

The default is -1. 

LS_IPARAM_GA_IMUTAT_METHOD             Environment, 

Model 

This values specifies the method of 

mutation for integer variables. Reserved 

for future use. The default is -1. 

LS_IPARAM_GA_SEED                         Environment, 

Model 

This values specifies the random seed. 

Possible values are nonnegative 

integers. The default value is 1031. 

LS_IPARAM_GA_NGEN                        Environment, 

Model 

This values specifies the number of 

generations. Possible values are positive 

integers. The default is 500. 

LS_IPARAM_GA_POPSIZE                    Environment, 

Model 

This values specifies the population 

size. Possible values are positive 

integers. The default is 200. 
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LS_IPARAM_GA_FILEOUT                      Environment, 

Model 

This values specifies the print level to 

log files. 

Possible values are positive integers. 

The default is 0. 

LS_IPARAM_GA_PRINTLEVEL                  

 

Environment, 

Model 

This values specifies the print level. 

Possible values are positive integers. 

The default is 1. 

LS_IPARAM_GA_INJECT_OPT                Environment, 

Model 
This values specifies the flag to specify 

whether an optimum individual will be 

injected. Possible values are: 

# 0 - do not inject an optimum 

individual 

# 1 - inject an optimum individual 

The default is 0. 

LS_IPARAM_GA_NUM_THREADS                 Environment, 

Model 

This value specifies the number of 

parallel threads to be used when solving 

a model with genetic algorithm. 

Possible values are positive integers. 

The default is 1. 

LS_IPARAM_GA_OBJDIR                      Environment, 

Model 

This values specifies the objective 

function sense. Possible values are 

LS_MIN and LS_MAX. The default is 

1. 

LS_DPARAM_GA_OBJSTOP                   Environment, 

Model 

This values specifies the target objective 

function value. Possible values are real 

numbers in (-1e30,+1e30). The default 

is +1e30. 

LS_DPARAM_GA_MIGRATE_PROB             Environment, 

Model 

This values specifies the probability of 

migration of individuals to the next 

generation. Possible values are in [0,1]. 

The default is 0.0      

LS_IPARAM_GA_SSPACE                    Environment, 

Model 

This values specifies the search space or 

search mode. Reserved for future use. 

The default is 0. 

 

Available Information 
These macros refer to available information about the model, solution or sample associated with the 

specified object.  
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General Model and Solution Information 
LS_IINFO_METHOD Model Optimization method used.  

LS_IINFO_NUM_CONES Model Number of cones. 

LS_IINFO_NUM_CONE_NONZ Model Number of nonzeros in the conic 

structure. 

LS_IINFO_LEN_CONENAMES Model Length of cone names. 

LS_DINFO_INST_VAL_MIN_COEF Model Minimum coefficient in instruction list. 

LS_IINFO_INST_VARNDX_MIN_COEF Model Variable index of the minimum 

coefficient. 

LS_IINFO_INST_CONNDX_MIN_COEF Model Constraint index of the minimum 

coefficient. 

LS_DINFO_INST_VAL_MAX_COEF Model Maximum coefficient in instruction list.  

LS_IINFO_INST_VARNDX_MAX_COEF Model Variable index of the maximum 

coefficient. 

LS_IINFO_INST_VARNDX_MAX_COEF Model Variable index of the maximum 

coefficient. 

LS_IINFO_INST_CONNDX_MAX_COEF Model  Constraint index of the maximum 

coefficient. 

LS_IINFO_NUM_CALL_FUN Model Number of function evaluations. 

LS_IINFO_NUM_CALL_DEV Model Number of first-derivative (Jacobian) 

evaluations. 

LS_IINFO_NUM_CALL_HES Model Number of second-derivative (Hessian) 

evaluations. 

LS_IINFO_ELAPSED_TIME Model  Total CPU time elapsed solving the 

continuous problem. 

LS_IINFO_MODEL_STATUS Model  The status of given model based on the 

result of last optimization. 

LS_IINFO_PRIMAL_STATUS Model The status of the primal model based on 

the result of the last optimization.  

LS_IINFO_IPM_STATUS Model The status of the interior-point solution 

based on the barrier solver. 

LS_IINFO_DUAL_STATUS Model Dual solution status. 

LS_IINFO_BASIC_STATUS Model  Basic solution status. 

LS_IINFO_SIM_ITER Model Number of simplex iterations performed 

when solving a continuous problem. 
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LS_IINFO_BAR_ITER Model  Number of barrier iterations performed 

when solving a continuous problem. 

LS_IINFO_NLP_ITER Model Number of nonlinear iterations 

performed when solving a continuous 

problem. 

LS_DINFO_POBJ Model Primal objective value of a continuous 

problem. 

LS_DINFO_DOBJ Model Dual objective value of a continuous 

problem. 

LS_DINFO_PINFEAS Model Maximum primal infeasibility. 

LS_DINFO_DINFEAS Model  Maximum dual infeasibility. 

LS_DINFO_MSW_POBJ Model Value of the incumbent objective value 

when using the multistart solver. 

LS_IINFO_MSW_PASS Model Number of multistart passes. 

LS_IINFO_MSW_NSOL Model Number of distinct solutions found 

when using the multistart solver. 

LS_DINFO_IPM_POBJ Model  Primal objective value w.r.t the 

interior-point solution. 

LS_DINFO_IPM_DOBJ Model Dual objective value w.r.t the interior-

point solution. 

LS_DINFO_IPM_PINFEAS Model  Primal infeasibility w.r.t the interior-

point solution. 

LS_DINFO_IPM_DINFEAS Model Dual infeasibility w.r.t the interior-point 

solution.  

LS_IINFO_NUM_CONS Model Number of constraints in the model. 

LS_IINFO_NUM_VARS Model Number of variables in the model. 

LS_IINFO_NUM_NONZ Model Number of nonzeros in the linear 

portion of the model. 

LS_IINFO_NUM_NLP_CONS Model Number of NLP constraints in the 

model. 

LS_IINFO_NUM_NLP_VARS Model Number of NLP variables in the model. 

LS_IINFO_NUM_QC_NONZ Model Number of nonzeros in the quadratic 

matrices. 

LS_IINFO_NUM_NLP_NONZ Model Number of nonzeros in the nonlinear 

portion of the model. 

LS_IINFO_NUM_NLPOBJ_NONZ Model Number of nonzeros in the nonlinear 

objectives in the model. 
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LS_IINFO_NUM_RDCONS Model Number of constraints in the presolved 

(reduced) model. 

LS_IINFO_NUM_RDVARS Model Number of variables in the presolved 

(reduced) model. 

LS_IINFO_NUM_RDNONZ Model Number of nonzeros in the linear 

portion of the presolved (reduced) 

model. 

LS_IINFO_NUM_RDINT Model Number of integer (including binary) 

variables in the presolved (reduced) 

model. 

LS_IINFO_LEN_VARNAMES Model Cumulative size of the variable names 

in the model. 

LS_IINFO_LEN_CONNAMES Model Cumulative size of the constraint names 

in the model. 

LS_IINFO_NUM_BIN Model Number of binary variables in the 

model. 

LS_IINFO_NUM_INT Model  Number of general integer variables in 

the model. 

LS_IINFO_NUM_CONT Model Number of continuous variables in the 

model. 

LS_IINFO_PRE_NUM_RED Model Number of reductions in pre-solve. 

LS_IINFO_PRE_TYPE_RED Model Type of last reduction. 

LS_IINFO_PRE_NUM_RDCONS Model Number of constraints in the pre-solved 

model. 

LS_IINFO_PRE_NUM_RDVARS Model Number of variables in the pre-solved 

model. 

LS_IINFO_PRE_NUM_RDNONZ Model Number of nonzeros in the pre-solved 

model. 

LS_IINFO_PRE_NUM_RDINT Model Number of integer variables in the pre-

solved model. 

LS_IINFO_NUM_SUF_ROWS Model Number of sufficient rows in IIS.                 

LS_IINFO_NUM_IIS_ROWS Model Number of necessary rows in IIS.                    

LS_IINFO_NUM_SUF_BNDS Model Number of sufficient variable bounds in 

IIS.  

LS_IINFO_NUM_IIS_BNDS Model Number of necessary variable bounds in 

IIS.                    

LS_IINFO_NUM_SUF_COLS: Model Number of sufficient columns in IUS.                    
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LS_IINFO_NUM_IUS_COLS: Model Number of necessary columns in IUS.        

LS_IINFO_ERR_OPTIM Model The error code produced at last 

optimization session.  

LS_DINFO_INST_VAL_MIN_COEF Model Values of the minimum matrix 

coefficient in the model. 

LS_IINFO_INST_VARNDX_MIN_COEF Model Variable index of the minimum matrix 

coefficient in the model. 

LS_IINFO_INST_CONNDX_MIN_COEF Model Constraint index of the minimum matrix 

coefficient in the model. 

LS_DINFO_INST_VAL_MAX_COEF Model Values of the maximum matrix 

coefficient in the model. 

LS_IINFO_INST_VARNDX_MAX_COEF Model Variable index of the maximum matrix 

coefficient in the model. 

LS_IINFO_INST_CONNDX_MAX_COEF Model Constraint index of the maximum 

matrix coefficient in the model. 

LS_IINFO_NUM_VARS_CARD Model Number of cardinality sets. 

LS_IINFO_NUM_VARS_SOS1 Model Number of type-1 SOS variables. 

LS_IINFO_NUM_VARS_SOS2 Model Number of type-2 SOS variables. 

LS_IINFO_NUM_VARS_SOS3 Model Number of type-3 SOS variables. 

LS_IINFO_NUM_VARS_SCONT Model Number of semi-continous variables. 

LS_IINFO_NUM_CONS_L Model Number of ‘less-than-or-equal-to’ 

constraints. 

LS_IINFO_NUM_CONS_E Model Number of ‘equality’ type constraints. 

LS_IINFO_NUM_CONS_G Model Number of ‘greater-than-or-equal-to’ 

type constraints. 

LS_IINFO_NUM_CONS_R Model Number of ranged constraints. 

LS_IINFO_NUM_CONS_N Model Number of neutral (objective) 

constraints. 

LS_IINFO_NUM_VARS_LB Model Number of variables with only a lower 

bound. 

LS_IINFO_NUM_VARS_UB Model Number of variables with only an upper 

bound. 

LS_IINFO_NUM_VARS_LUB Model Number of variables with both lower 

and upper bounds.  

LS_IINFO_NUM_VARS_FR Model Number of free variables. 

LS_IINFO_NUM_VARS_FX Model Number of fixed variables.     
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LS_IINFO_MODEL_STATUS Model The status of given model based on the 

result of last optimization. 

LS_IINFO_PRIMAL_STATUS Model The status of the primal solution. If the 

model is infeasible or unbounded, there 

may be no solution available. In such 

cases, solution status will not be 

available. A typical case is when the 

infeasibility or unboundedness is 

determined by the presolver. 

LS_IINFO_NUM_POSDS Model Number of POSD blocks in the SDP 

model. 

LS_DINFO_ACONDEST Model Approximate condition-estimate of the 

basis matrix. 

LS_DINFO_BCONDEST Model Reserved for internal use. 

LS_IINFO_LPTOOL Model Reserved for internal use. 

LS_IINFO_NUM_SUF_INTS Model  Number of sufficient integer restrictions 

in IIS. 

LS_IINFO_NUM_IIS_INTS Model   Number of necessary integer 

restrictions in IIS. 

Integer Optimization Information 
LS_DINFO_MIP_OBJ Model MIP objective value.  

LS_DINFO_MIP_BESTBOUND Model Best bound on MIP objective. 

LS_DINFO_MIP_TOT_TIME Model Total CPU time spent for solving a MIP. 

LS_DINFO_MIP_OPT_TIME Model CPU time spent for optimizing the MIP. 

LS_DINFO_MIP_HEU_TIME Model CPU time spent in MIP presolver and 

other heuristics. 

LS_IINFO_MIP_LPCOUNT Model Number of LPs solved for solving a 

MIP.  

LS_IINFO_MIP_BRANCHCOUNT Model Number of branches generated for 

solving a MIP. 

LS_IINFO_MIP_ACTIVENODES Model Number of remaining nodes to be 

explored. 
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LS_IINFO_MIP_LTYPE Model Step at which the last integer solution 

was found during the optimization of a 

MIP. Possible values are: 

10: backward strong branching or tree 

reordering 

9: simple enumerator  

8: advanced branching 

7: advanced heuristics 

6: after adding cuts 

5: on the top 

4: simple rounding heuristic 

3: strong branching 

2: knapsack solver or enumerator 

1: normal branching 

LS_IINFO_MIP_AOPTTIMETOSTOP Model Time to approximate optimality. 

LS_IINFO_MIP_STATUS Model Status of MIP solution. 

LS_IINFO_MIP_SIM_ITER Model Number of simplex iterations performed 

when solving a MIP. 

LS_IINFO_MIP_BAR_ITER Model Number of barrier iterations performed 

when solving a MIP. 

LS_IINFO_MIP_NLP_ITER Model Number of nonlinear iterations 

performed for solving a MIP. 

LS_IINFO_MIP_NUM_TOTAL_CUTS Model Number of total cuts generated. 

LS_IINFO_MIP_GUB_COVER_CUTS Model Number of GUB cover cuts generated. 

LS_IINFO_MIP_FLOW_COVER_CUTS Model Number of flow cover cuts generated. 

LS_IINFO_MIP_LIFT_CUTS Model Number of lifted knapsack covers 

generated. 

LS_IINFO_MIP_PLAN_LOC_CUTS Model Number of plant location cuts 

generated. 

LS_IINFO_MIP_DISAGG_CUTS Model Number of disaggregation cuts 

generated. 

LS_IINFO_MIP_KNAPSUR_COVER_CUTS Model Number of surrogate knapsack covers 

generated. 

LS_IINFO_MIP_LATTICE_CUTS Model Number of lattice cuts generated. 

LS_IINFO_MIP_GOMORY_CUTS Model Number of Gomory cuts generated. 
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LS_IINFO_MIP_COEF_REDC_CUTS Model  Number of coefficient reduction cuts 

generated. 

LS_IINFO_MIP_GCD_CUTS Model Number of GCD cuts generated. 

LS_IINFO_MIP_OBJ_CU Model Number of objective cuts generated. 

LS_IINFO_MIP_BASIS_CUTS Model Number of basis cuts generated. 

LS_IINFO_MIP_CARDGUB_CUTS Model Number of cardinality/GUB cuts 

generated. 

LS_IINFO_MIP_CONTRA_CUTS Model Number of contra cuts generated. 

LS_IINFO_MIP_CLIQUE_CUTS Model Number of clique cuts generated. 

LS_IINFO_MIP_GUB_CONS Model Number of GUB constraints in the 

formulation. 

LS_IINFO_MIP_GLB_CONS Model Number of GLB constraints in the 

formulation. 

LS_IINFO_MIP_PLANTLOC_CONS Model  Number of plant location constraints in 

the formulation. 

LS_IINFO_MIP_DISAGG_CONS Model Number of disaggregation constraints in 

the formulation. 

LS_IINFO_MIP_SB_CONS Model Number of single bound constraints in 

the formulation. 

LS_IINFO_MIP_IKNAP_CONS Model Number of pure integer knapsack 

constraints in the formulation. 

LS_IINFO_MIP_KNAP_CONS Model Number of knapsack constraints in the 

formulation. 

LS_IINFO_MIP_NLP_CONS Model Number of nonlinear constraints in the 

formulation. 

LS_IINFO_MIP_CONT_CONS Model Number of objective constraints in the 

formulation. 

LS_DINFO_MIP_TOT_TIME Model Total MIP time including model I/O, 

optimization, heuristics. 

LS_DINFO_MIP_OPT_TIME  Model Total MIP optimization time. 

LS_DINFO_MIP_HEU_TIME Model Total MIP heuristic time. 

LS_IINFO_MIP_SOLSTATUS_LAST_BRAN

CH 

Model Solution status of the relaxation at the 

last branch. 

LS_DINFO_MIP_SOLOBJVAL_LAST_BRAN

CH 

Model Objective value of the relaxation at the 

last branch. 

LS_IINFO_MIP_HEU_LEVEL Model The current level for MIP heuristic 

engine. 
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LS_DINFO_MIP_PFEAS  Model Primal infeasibility of the resident 

integer solution. 

LS_DINFO_MIP_INTPFEAS Model Integer infeasibility of the resident 

integer solution. 

LS_IINFO_MIP_THREADS Model The number of parallel threads used in 

MIP solver 

LS_SINFO_MIP_THREAD_LOAD Model The string containing the thread 

workload in the last LSsolveMIP call.  

LS_IINFO_MIP_WHERE_IN_CODE Model The location macro specifying where 

the program control is in LSsolveMIP. 

LS_DINFO_MIP_ABSGAP Model Absolute gap at current MIP solution. 

Also see: 

LS_DPARAM_MIP_ABSOPTTOL. 

LS_DINFO_MIP_RELGAP Model Relative gap at current MIP solution. 

Also see: 

LS_DPARAM_MIP_RELOPTTOL.  

LS_IINFO_MIP_SOFTKNAP_CUTS Model Number of soft-knapsack cuts used. 
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Global Optimization Information 
LS_DINFO_GOP_OBJ Model Objective value of the global optimal 

solution of a GOP.  

LS_IINFO_GOP_SIM_ITER Model Number of simplex iterations performed 

for solving a GOP. 

LS_IINFO_GOP_BAR_ITER Model Number of barrier iterations performed 

for solving a GOP. 

LS_IINFO_GOP_NLP_ITER Model Number of NLP iterations performed 

for solving a GOP. 

LS_DINFO_GOP_BESTBOUND Model Best bound on the objective value of a 

GOP. 

LS_IINFO_GOP_STATUS Model Solution status of a GOP. 

LS_IINFO_GOP_LPCOUNT Model Number of LPs solved for solving a 

GOP. 

LS_IINFO_GOP_NLPCOUNT Model Number of NLPs solved for solving a 

GOP. 

LS_IINFO_GOP_MIPCOUNT Model Number of MIPs solved for solving a 

GOP.  

LS_IINFO_GOP_NEWSOL Model Whether a new GOP solution has been 

found or not. 

LS_IINFO_GOP_BOX Model Number of explored boxes. 

LS_IINFO_GOP_BBITER Model Number of iterations performed during 

a major GOP iteration. 

LS_IINFO_GOP_SUBITER Model Number of iterations performed during 

a minor GOP iteration. 

LS_IINFO_GOP_ACTIVEBOXES Model Number of active boxes at current state 

for solving a GOP. 

LS_IINFO_GOP_TOT_TIME Model Total CPU time spent for solving a 

GOP. 

LS_IINFO_GOP_MAXDEPTH Model Maximum depth of stack reached to 

store active boxes. 

LS_IINFO_GOP_MIPBRANCH Model  Number of branches created for solving 

a GOP. 

LS_DINFO_GOP_TOT_TIME             Model The total CPU time in GOP solver. 

LS_IINFO_GOP_THREADS              Model The number of parallel threads used in 

GOP solver. 
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LS_SINFO_GOP_THREAD_LOAD          Model The string containing the thread 

workload in the last LSsolveGOP call. 

LS_DINFO_GOP_ABSGAP Model Absolute gap at current GOP solution. 

Also see: 

LS_DPARAM_GOP_ABSOPTTOL. 

LS_DINFO_GOP_RELGAP Model Relative gap at current GOP solution. 

Also see: 

LS_DPARAM_GOP_ABSOPTTOL.  
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Model Analysis Information 
LS_IINFO_IIS_SIM_ITER Model Number of simplex iterations in IIS 

search.  

LS_IINFO_IIS_BAR_ITER Model Number of barrier iterations in IIS 

search.  

LS_IINFO_IIS_TOT_TIME Model Total CPU time spent for IIS search. 

LS_IINFO_IIS_ACT_NODE Model Number of active sub problems 

remaining to complete the IIS search. 

LS_IINFO_IIS_LPCOUNT Model Number of LPs solved during IIS 

search. 

LS_IINFO_IIS_NLPCOUNT Model Number of NLPs solved during IIS 

search. 

LS_IINFO_IIS_MIPCOUNT Model Number of MIPs solved during IIS 

search. 

LS_IINFO_IUS_BAR_ITER Model Number of barrier iterations in IUS 

search.  

LS_IINFO_IUS_SIM_ITER Model Number of simplex iterations in IUS 

search. 

LS_IINFO_IUS_TOT_TIME Model Total CPU time spent for IIS search. 

LS_IINFO_IUS_ACT_NODE Model Number of active sub problems 

remaining to complete the IUS search. 

LS_IINFO_IUS_LPCOUNT Model Number of  LPs solved during IUS 

search. 

LS_IINFO_IUS_NLPCOUNT Model Number of  NLPs solved during IUS 

search. 

LS_IINFO_IUS_MIPCOUNT Model Number of  MIPs solved during IUS 

search.   

LS_IINFO_IIS_THREADS           Model The number of parallel threads used in 

IIS finder. Reserved for future use. 

LS_SINFO_IIS_THREAD_LOAD         Model The string containing the thread 

workload in the last LSfindIIS call. 

Reserved for future use. 

LS_IINFO_IUS_THREADS        Model The number of parallel threads used in 

IUS finder. Reserved for future use. 

LS_SINFO_IUS_THREAD_LOAD  Model The string containing the thread 

workload in the last LSfindIUS call.       

Reserved for future use. 
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Stochastic Information 
LS_DINFO_STOC_EVOBJ   Model  Expected value of the SP objective 

function, also called the Here-and-Now 

(HN) objective.  

LS_DINFO_STOC_EVWS Model Expected value of the Wait-and-See 

(WS) model, which is a relaxation to the 

SP obtained by dropping the 

nonanticipativity restrictions. 

LS_DINFO_STOC_EVPI   Model Expected value of perfect information, 

which is defined as the difference 

between the expected value of the Wait-

and-See objective value and the Here-

and-Now objective function value.  

LS_DINFO_STOC_EVAVR Model Optimal objective value of the restricted 

WS model where all stage-0 decisions 

are fixed at their respective values from 

the optimal solution of the Average-

Model. The Average Model is the 

deterministic version of the original 

model constructed by replacing all 

random parameters with their expected 

values. 

LS_DINFO_STOC_EVMU Model Expected value of modeling 

uncertainity, which is defined as the 

difference between the the Here-and-

Now objective and the optimal value of 

the restricted-Wait-See objective.  This 

value is also called the ‘Value of 

Stochastic Solution’. 

LS_DINFO_STOC_PINFEAS   Model Primal infeasibility of the first stage 

solution.  

LS_DINFO_STOC_DINFEAS   Model Dual infeasibility of the first stage 

solution.  

LS_DINFO_STOC_RELOPT_GAP   Model Relative optimality gap at current 

solution.  

LS_DINFO_STOC_ABSOPT_GAP   Model Absolute optimality gap at current 

solution.  

LS_IINFO_STOC_SIM_ITER   Model Number of simplex iterations 

performed.  

LS_IINFO_STOC_BAR_ITER   Model Number of barrier iterations performed.  

LS_IINFO_STOC_NLP_ITER   Model Number of nonlinear iterations 

performed.  
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LS_IINFO_NUM_STOCPAR_RHS   Model Number of stochastic parameters in the 

RHS.  

LS_IINFO_NUM_STOCPAR_OBJ   Model Number of stochastic parameters in the 

objective function.  

LS_IINFO_NUM_STOCPAR_LB   Model Number of stochastic parameters in the 

lower bound.  

LS_IINFO_NUM_STOCPAR_UB   Model Number of stochastic parameters in the 

upper bound.  

LS_IINFO_NUM_STOCPAR_INSTR_OBJS   Model Number of stochastic parameters in the 

instructions constituting the objective.  

LS_IINFO_NUM_STOCPAR_INSTR_CONS   Model Number of stochastic parameters in the 

instructions constituting the constraints.  

LS_IINFO_NUM_STOCPAR_INSTR  Model Total number of stochastic parameters 

in the instructions constituting the 

constraints and the objective.  

LS_IINFO_NUM_STOCPAR_AIJ   Model Number of stochastic parameters in the 

LP matrix.  

LS_DINFO_STOC_TOTAL_TIME   Model Total time elapsed in seconds to solve 

the model  

LS_IINFO_STOC_STATUS   Model Status of the SP model.  

LS_IINFO_STOC_STAGE_BY_NODE   Model Stage of the specified node.  

LS_IINFO_STOC_NUM_SCENARIOS   Model Number of scenarios (integer) in the 

scenario tree.  

LS_DINFO_STOC_NUM_SCENARIOS   Model Number of scenarios (double) in the 

scenario tree.  

LS_IINFO_STOC_NUM_STAGES   Model Number of stages in the model.  

LS_IINFO_STOC_NUM_NODES   Model Number of nodes in the scenario tree 

(integer).  

LS_DINFO_STOC_NUM_NODES   Model Number of nodes in the scenario tree 

(double).  

LS_IINFO_STOC_NUM_NODES_STAGE   Model Number of nodes that belong to 

specified stage in the scenario tree 

(integer).  

LS_DINFO_STOC_NUM_NODES_STAGE   Model Number of nodes that belong to 

specified stage in the scenario tree 

(double).  

LS_IINFO_STOC_NUM_NODE_MODELS   Model Number of node-models created or to be 

created.  
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LS_IINFO_STOC_NUM_COLS_BEFORE_N

ODE   

Model Column offset in DEQ of the first 

variable associated with the specified 

node.  

LS_IINFO_STOC_NUM_ROWS_BEFORE_N

ODE   

Model Row offset in DEQ of the first variable 

associated with the specified node.  

LS_IINFO_STOC_NUM_COLS_DETEQI   Model Total number of columns in the implicit 

DEQ (integer).  

LS_DINFO_STOC_NUM_COLS_DETEQI   Model Total number of columns in the implicit 

DEQ (double).  

LS_IINFO_STOC_NUM_ROWS_DETEQI   Model Total number of rows in the implicit 

DEQ (integer).  

LS_DINFO_STOC_NUM_ROWS_DETEQI   Model Total number of rows in the implicit 

DEQ (double).  

LS_IINFO_STOC_NUM_COLS_DETEQE   Model Total number of columns in the explicit 

DEQ (integer).  

LS_DINFO_STOC_NUM_COLS_DETEQE   Model Total number of columns in the explicit 

DEQ (double).  

LS_IINFO_STOC_NUM_ROWS_DETEQE   Model Total number of rows in the explicit 

DEQ (integer).  

LS_DINFO_STOC_NUM_ROWS_DETEQE   Model Total number of rows in the explicit 

DEQ (double).  

LS_IINFO_STOC_NUM_COLS_NAC   Model Total number of columns in non-

anticipativity block.  

LS_IINFO_STOC_NUM_ROWS_NAC   Model Total number of rows in non-

anticipativity block.  

LS_IINFO_STOC_NUM_COLS_CORE   Model Total number of columns in core model.  

LS_IINFO_STOC_NUM_ROWS_CORE   Model Total number of rows in core model.  

LS_IINFO_STOC_NUM_COLS_STAGE   Model Total number of columns in core model 

in the specified stage.  

LS_IINFO_STOC_NUM_ROWS_STAGE   Model Total number of rows in core model in 

the specified stage.  

LS_IINFO_STOC_NUM_BENDERS_FCUTS   Model Total number of feasibility cuts 

generated during NBD iterations.  

LS_IINFO_STOC_NUM_BENDERS_OCUTS   Model Total number of optimality cuts 

generated during NBD iterations.  

LS_IINFO_DIST_TYPE   Model Distribution type of the sample  

LS_IINFO_SAMP_SIZE   Model Sample size.  
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LS_DINFO_SAMP_MEAN   Model Sample mean.  

LS_DINFO_SAMP_STD   Model Sample standard deviation.  

LS_DINFO_SAMP_SKEWNESS   Model Sample skewness.  

LS_DINFO_SAMP_KURTOSIS   Model Sample kurtosis.  

LS_IINFO_STOC_NUM_QCP_CONS_DETE

QE         

Model Total number of quadratic constraints in 

the explicit deterministic equivalent.  

LS_IINFO_STOC_NUM_CONT_CONS_DET

EQE        

Model Total number of continuous constraints 

in the explicit deterministic equivalent.  

LS_IINFO_STOC_NUM_INT_CONS_DETEQ

E         

Model Total number of constraints with 

general integer variables in the explicit 

deterministic equivalent.  

LS_IINFO_STOC_NUM_BIN_CONS_DETEQ

E         

Model Total number of constraints with binary 

variables in the explicit deterministic 

equivalent.  

LS_IINFO_STOC_NUM_QCP_VARS_DETE

QE         
Model Total number of quadratic variables in 

the explicit deterministic equivalent.  

LS_IINFO_STOC_NUM_NONZ_DETEQE             Model Total number of nonzeros in the explicit 

deterministic equivalent.  

LS_IINFO_STOC_NUM_BIN_DETEQE             Model Total number of binaries in the explicit 

deterministic equivalent.  

LS_IINFO_STOC_NUM_INT_DETEQE              Model Total number of general integer 

variables in the explicit deterministic 

equivalent.  

LS_IINFO_STOC_NUM_CONT_DETEQE             Model Total number of continuous variables in 

the explicit deterministic equivalent. 

LS_IINFO_STOC_NUM_QC_NONZ_DETEQ

E          

Model Total number of quadratic nonzeros in 

the explicit deterministic equivalent.  

LS_IINFO_STOC_NUM_NLP_NONZ_DETE

QE         

Model Total number of nonlinear nonzeros in 

the constraints of explicit deterministic 

equivalent.  

LS_IINFO_STOC_NUM_NLPOBJ_NONZ_DE

TEQE     

 

Model Total number of nonlinear nonzeros in 

the objective function of explicit 

deterministic equivalent.  

LS_IINFO_STOC_NUM_QCP_CONS_DETE

QI        
Model Total number of quadratic constraints in 

the implicit deterministic equivalent. 

LS_IINFO_STOC_NUM_CONT_CONS_DET

EQI      
Model Total number of continuous constraints 

in the implicit deterministic equivalent. 
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LS_IINFO_STOC_NUM_INT_CONS_DETEQ

I         

Model Total number of constraints with 

general integer variables in the implicit 

deterministic equivalent. 

LS_IINFO_STOC_NUM_BIN_CONS_DETEQ

I         

Model Total number of constraints with binary 

variables in the implicit deterministic 

equivalent. 

LS_IINFO_STOC_NUM_QCP_VARS_DETE

QI      
Model Total number of quadratic variables in 

the implicit deterministic equivalent. 

LS_IINFO_STOC_NUM_NONZ_DETEQI             

 

Model Total number of nonzeros in the implicit 

deterministic equivalent. 

LS_IINFO_STOC_NUM_BIN_DETEQI              

 

Model Total number of binaries in the implicit 

deterministic equivalent.  

LS_IINFO_STOC_NUM_INT_DETEQI              Model Total number of general integer 

variables in the implicit deterministic 

equivalent. 

LS_IINFO_STOC_NUM_CONT_DETEQI             Model Total number of continuous variables in 

the implicit deterministic equivalent.  

LS_IINFO_STOC_NUM_QC_NONZ_DETEQI          Model  Total number of quadratic nonzeros in 

the implicit deterministic equivalent.  

LS_IINFO_STOC_NUM_NLP_NONZ_DETE

QI         

 

Model Total number of nonlinear nonzeros in 

the constraints of implicit deterministic 

equivalent. 

LS_IINFO_STOC_NUM_NLPOBJ_NONZ_DE

TEQI      

 

Model Total number of nonlinear nonzeros in 

the objective function of implicit 

deterministic equivalent. 

LS_IINFO_STOC_NUM_EVENTS_BLOCK          Model Total number of block events. 

LS_IINFO_STOC_NUM_EVENTS_DISCRET

E         

Model Total number of independent events 

with a discrete distribution. 

LS_IINFO_STOC_NUM_EVENTS_PARAME

TRIC       

Model Total number of independent events 

with a parametric distribution. 

LS_IINFO_STOC_NUM_EVENTS_SCENARI

OS        

Model Total number of events loaded explicitly 

as a scenario. 

LS_IINFO_STOC_PARENT_NODE                 Model Index of a node's parent. 

LS_IINFO_STOC_ELDEST_CHILD_NODE           Model Index of a node's eldest child. 

LS_IINFO_STOC_NUM_CHILD_NODES         Model Total number of childs a node has. 

LS_IINFO_INFORUNB_SCEN_IDX Model Index of the infeasible or unbounded 

scenario. 

LS_IINFO_DIST_NARG  Model  Number of arguments of a distribution 

sample.  
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LS_IINFO_SAMP_VARCONTROL_METHO

D   
Model Variance reduction/control method used 

in generating the sample.   

LS_IINFO_STOC_NUM_NLP_VARS_DETE

QE  
Model Total number of nonlinear variables in 

the explicit deterministic equivalent.  

LS_IINFO_STOC_NUM_NLP_CONS_DETE

QE 
Model Total number of nonlinear constraints in 

the explicit deterministic equivalent.  

LS_DINFO_STOC_EVOBJ_LB Model Best lower bound on expected value of 

the objective function.   

LS_DINFO_STOC_EVOBJ_UB Model Best upper bound on expected value of 

the objective function. 

LS_DINFO_STOC_AVROBJ Model Expected value of average model's 

objective. 

LS_DINFO_SAMP_MEDIAN Model Sample median. 

LS_DINFO_DIST_MEDIAN Model Distribution (population) median. 

LS_IINFO_STOC_NUM_EQROWS_CC               Model  Number of equality type rows in all 

chance-constraints.  

LS_IINFO_STOC_NUM_ROWS                   Model  Number of stochastic rows 

LS_IINFO_STOC_NUM_CC_VIOLATED           Model Number of chance sets violated over all 

scenarios.  

LS_IINFO_STOC_NUM_COLS_DETEQC             Model Total number of columns in the chance 

deterministic equivalent.  

LS_IINFO_STOC_NUM_ROWS_DETEQC             Model Total number of rows in the chance 

deterministic equivalent.  

LS_IINFO_STOC_NUM_QCP_CONS_DETE

QC  
Model Total number of quadratic constraints in 

the chance deterministic equivalent.  

LS_IINFO_STOC_NUM_CONT_CONS_DET

EQC 
Model Total number of continuous constraints 

in the chance deterministic equivalent. 

LS_IINFO_STOC_NUM_INT_CONS_DETEQ

C 
Model Total number of constraints with 

general integer variables in the chance 

deterministic equivalent.  

LS_IINFO_STOC_NUM_BIN_CONS_DETEQ

C 
Model Total number of constraints with binary 

variables in the chance deterministic 

equivalent.  

LS_IINFO_STOC_NUM_QCP_VARS_DETE

QC  
Model Total number of quadratic variables in 

the chance deterministic equivalent.  

LS_IINFO_STOC_NUM_NONZ_DETEQC             Model  Total number of nonzeros in the chance 

deterministic equivalent.  

LS_IINFO_STOC_NUM_BIN_DETEQC              Model Total number of binaries in the chance 

deterministic equivalent. 
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LS_IINFO_STOC_NUM_INT_DETEQC              Model Total number of general integer 

variables in the chance deterministic 

equivalent.  

LS_IINFO_STOC_NUM_CONT_DETEQC             Model Total number of continuous variables in 

the chance deterministic equivalent.  

LS_IINFO_STOC_NUM_QC_NONZ_DETEQ

C  
Model  Total number of quadratic nonzeros in 

the chance deterministic equivalent.  

LS_IINFO_STOC_NUM_NLP_NONZ_DETE

QC  
Model Total number of nonlinear nonzeros in 

the constraints of chance deterministic 

equivalent.  

LS_IINFO_STOC_NUM_NLPOBJ_NONZ_DE

TEQC  
Model Total number of nonlinear nonzeros in 

the objective function of chance 

deterministic equivalent.  

LS_IINFO_STOC_NUM_NLP_CONS_DETE

QC         
Model Total number of nonlinear constraints in 

the constraints of chance deterministic 

equivalent.   

LS_IINFO_STOC_NUM_NLP_VARS_DETE

QC        
Model Total number of nonlinear variables in 

the constraints of chance deterministic 

equivalent.  

LS_IINFO_STOC_NUM_NONZ_OBJ_DETE

QC        
Model Total number of nonzeros in the 

objective of chance deterministic 

equivalent.  

LS_IINFO_STOC_NUM_NONZ_OBJ_DETE

QE       
Model Total number of nonzeros in the 

objective of explict deterministic 

equivalent.  

LS_DINFO_STOC_CC_PLEVEL    Model P-level for chance constraint. 

LS_IINFO_STOC_THREADS           Model The number of parallel threads used in 

stochastic solver. 

LS_DINFO_STOC_THRIMBL           Model The work imbalance across threads in 

stochastic solver. Reserved for future 

use. 

LS_IINFO_STOC_NUM_EQROWS      Model The number of EQ type stochastic rows 

LS_SINFO_STOC_THREAD_LOAD              Model The string containing the thread 

workload in the last LSsolveSP call.   

LS_SINFO_CORE_FILENAME  Model The name of the file containing the core 

model data. 

LS_SINFO_STOC_FILENAME  Model The name of the file containing the 

stochastic data. 

LS_SINFO_TIME_FILENAME  Model The name of the file containing the time 

data. 
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BNP Information 
LS_IINFO_BNP_SIM_ITER                  Model The number of simplex iterations in 

BNP solver.  

LS_IINFO_BNP_LPCOUNT                  Model The number of solved LPs in BNP 

solver. 

LS_IINFO_BNP_NUMCOL         Model The number of generated columns in 

BNP solver. 

LS_DINFO_BNP_BESTBOUND         Model Current best bound on objective in BNP 

solver. 

LS_DINFO_BNP_BESTOBJ               Model Objevtive for current best solution. 

Miscellaneous Information 
LS_SINFO_MODEL_FILENAME  Model The name of the file the model was 

imported from.  

LS_SINFO_MODEL_SOURCE               Model The name of the path the model file. 

 LS_IINFO_MODEL_TYPE  Model An integer macro specifying the model 

type. Possible values are given in 

Common Parameter Macro Definitions 

section under Model Types heading. 

 LS_IINFO_ASSIGNED_MODEL_TYPE  Model An integer macro specifying the derived 

model type. Possible values are given in 

Common Parameter Macro Definitions 

section under Model Types heading. 
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Model Loading Routines 
The routines described in this section allow you to pass a model to LINDO API directly through 

memory. LINDO API expects the formulation to be in sparse format. In other words, only nonzero 

coefficients are passed. For details on sparse representation, see the section titled Sparse Matrix 

Representation in Chapter 1, Introduction. Before using routines described in this section, be aware 

that another way of passing a model to the LINDO API is by using one of the LSreadLINDOFile, 

LSreadMPSFile, and LSreadMPIFile routines described earlier in this chapter.  In fact, for debugging 

reasons, you may want to consider passing your model to the LINDO API by file using the 

LSreadXXFile routines rather than with the direct memory methods described below.  If a model is not 

behaving as you think it should, it is relatively easy to send a file to the Tech support people at 

LINDO.  If you are confident that your formulation is debugged, and you need high performance, or 

the ability to run several models simultaneously, as in a web-based application, then you can always 

switch to the direct memory transfer routines described below. 

Note:     LINDO API keeps its own copies of the data passed via the input arguments in the model 

space. Therefore, the user can free the local copies after the call completes successfully. 

LSloadConeData()  

Description:  

Loads quadratic cone data into a model structure. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

  int  LSloadConeData ( pLSmodel pModel, int nCone, char 

*pszConeTypes, int *paiConebegcone, int *paiConecols) 
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Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

problem data.  

nCone Number of cones to add. 

pszConeTypes A pointer to a character vector containing the type of each cone 

being added. Valid values for each cone are ‘Q’ and ‘R’. The 

length of this vector is equal to nCone. 

paiConebegcone  A pointer to an integer vector containing the index of the first 

variable that appears in the definition of each cone. This vector 

must have nCone+1 entries. The last entry will be the index of 

the next appended cone, assuming one was to be appended. If 

paiConebegcone [i] < paiConebegcone [i-1], then 

LSERR_ERROR_IN_INPUT is returned. 

paiConecols A pointer to an integer vector containing the indices of 

variables representing each cone. The length of this vector is 

equal to paiConebegcone[nCone].  

LSloadInstruct() 

Description:  

Loads instruction lists into a model structure.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSloadInstruct (pLSmodel pModel, int nCons, int nObjs, int 

nVars, int nNums, int *panObjSense, char *pacConType, char 

*pacVarType, int *panCode, int nCode, int *paiVars, double 

*padVals, double *padX0, int *paiObj, int *panObj, int 

*paiRows, int *panRows, double *padL, double *padU) 

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

nCons Number of constraints in the model. 

nObjs Number of objectives in the model. Currently, there is only 

support for a single objective (i.e., nObjs = 1). 

nVars Number of variables in the model. 

nNums Number of real numbers in the model. 

panObjSense A pointer to an integer vector containing the indicator stating 

whether the objective is to be maximized or minimized. Valid 
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values are LS_MAX or LS_MIN, respectively. The length of 

this vector is equal to nObjs. Currently, there is only support 

for a single objective. 

pacConType A pointer to a character vector containing the type of each 

constraint. Each constraint is represented by a single byte in the 

array. Valid values for each constraint are ‘L’, ‘E’, ‘G’, or ‘N’ 

for less-than-or-equal-to, equal to, great-than-or-equal-to, or 

neutral, respectively. The length of this vector is equal to 

nCons. 

pacVarType A pointer to a character vector containing the type of each 

variable. Valid values for each variable are ‘C’, ‘B’, ‘I’, or ‘S’ 

for continuous, binary, general integer or semi-continuous 

variables, respectively. The length of this vector is equal to 

nVars. This value may be NULL on input, in which case all 

variables will be assumed to be continuous. 

panCode A pointer to an integer vector containing the instruction list. 

The length of this vector is equal to nCode. For details on 

instruction list representation, see the section titled Instruction-

List Style Interface in Chapter 7, Solving Nonlinear Programs. 

nCode Number of items in the instruction list.  

paiVars A pointer to an integer vector containing the variable index. 

The length of this vector is equal to nVars. This pointer may be 

set to NULL if the variable index is consistent with the variable 

position in the variable array. 

padVals A pointer to a double precision vector containing the value of 

each real number in the model. The length of this vector is 

equal to nNums. 

padX0 A pointer to a double precision vector containing starting 

values for each variable in the given model. The length of this 

vector is equal to nVars. 

paiObj A pointer to an integer vector containing the beginning 

positions on the instruction list for each objective row. The 

length of this vector is equal to nObjs. Currently, there is only 

support for a single objective. 

panObj A pointer to an integer vector containing the length of 

instruction code (i.e., the number of individual instruction 

items) for each objective row. The length of this vector is equal 

to nObjs. Currently, there is only support for a single objective. 

paiRows A pointer to an integer vector containing the beginning 

positions on the instruction list for each constraint row. The 

length of this vector is equal to nCons. 

panRows A pointer to an integer vector containing the length of 

instruction code (i.e., the number of individual instruction 
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items) for each constraint row. The length of this vector is 

equal to nCons. 

padL A pointer to a double precision vector containing the lower 

bound of each variable. If there is no lower bound on the 

variable, then this value should be set to –LS_INFINITY. If 

padL is NULL, then the lower bounds are internally set to zero. 

padU A pointer to a double precision vector containing the upper 

bound of each variable. If there is no upper bound on the 

variable, then this value should be set to LS_INFINITY. If 

padU is NULL, then the upper bounds are internally set to 

LS_INFINITY. 

Remarks:  

 The instruction lists for the objective and constraints are all carried by the same code 

vector, *panCode, to load into LINDO API model structure. 

 The index vector *paiVars can be used to store the user-specified variable index. 

Currently, the values supplied in paiVars[ ] are unimportant.  

LSloadLPData() 

Description:  v 

Loads the given LP data into the LSmodel data structure.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

  int  

 

LSloadLPData ( pLSmodel pModel, int nCons, int nVars, int 

dObjsense, double dObjconst, double *padC, double *padB, 

char *pachContypes, int nAnnz, int *paiAcols, int *pacAcols, 

double *padAcoef, int *paiArows, double *padL, double 

*padU) 

Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

problem data.  

nCons Number of constraints in the model. 

nVars Number of variables in the model. 

dObjsense An indicator stating whether the objective is to be maximized 

or minimized. Valid values are LS_MAX or LS_MIN.  

dObjconst  A constant value to be added to the objective value.  

padC  A pointer to a double precision vector containing the objective 

coefficients.  
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padB  A pointer to a double precision vector containing the constraint 

right-hand side coefficients.  

pachContypes  A pointer to a character vector containing the type of each 

constraint. Each constraint is represented by a single byte in the 

array. Valid values for each constraint are 'L', 'E', 'G', or ‘N’ for 

less-than-or-equal-to, equal-to, greater-than-or-equal-to, or 

neutral, respectively. 

nAnnz The number of nonzeros in the constraint matrix. 

paiAcols  A pointer to an integer vector containing the index of the first 

nonzero in each column. This vector must have nVars+1 

entries. The last entry will be the index of the next appended 

column, assuming one was to be appended. If 

paiAcols[i] < paiAcols[i-1], then LSERR_ERROR_IN_INPUT 

is returned. 

pacAcols A pointer to an integer vector containing the length of each 

column. Note that the length of a column can be set to be 

smaller than the values paiAcols would suggest (i.e., it is 

possible for pacAcols[i] < paiAcols[i+1] – paiAcols[i]). This 

may be desirable in order to prevent memory reallocations in 

the event that any rows are added to the model. If the columns 

are packed tight (i.e., the length of a column i is equal to 

paiAcols[i+1] – paiAcols[i] for all i), then pacAcols can be set 

to NULL on input. 

padAcoef A pointer to a double precision vector containing the nonzero 

coefficients of the constraint matrix. 

paiArows A pointer to an integer vector containing the row indices of the 

nonzeros in the constraint matrix. If any row index is not in the 

range [ 0, nCons -1], LSERR_INDEX_OUT_OF_RANGE is 

returned. 

padL A pointer to a double precision vector containing the lower 

bound of each variable. If there is no lower bound on the 

variable, then this value should be set to -LS_INFINITY. If it 

is NULL, then the lower bounds are internally set to zero. 

padU  A pointer to a double precision vector containing the upper 

bound of each variable. If there is no upper bound on the 

variable, then this value should be set to LS_INFINITY. If it is 

NULL, then the upper bounds are internally set to 

LS_INFINITY. 

Remarks:  

 The data from each of the arrays passed to this routine are actually copied into arrays 

within the LSmodel structure. Therefore, the calling routine can free the memory if the 

information is no longer needed.  

 To retrieve the LP’s data from the model structure, see routine LSgetLPData(). 
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LSloadNameData() 

Description:  
Loads the given name data (e.g., row and column names), into the LSmodel data structure.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int 

  

LSloadNameData( pLSmodel pModel, char *pszTitle, char 

*pszObjName, char *pszRhsName, char *pszRngName, char 

*pszBndname, char **paszConNames, char **paszVarNames, 

char **paszConeNames)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

problem data.  

pszTitle  A pointer to a null terminated string containing the title of the 

problem.  

pszObjName  A pointer to a null terminated string containing the name of the 

objective.  

pszRhsName  A pointer to a null terminated string containing the name of the 

right-hand side vector.  

pszRngName  A pointer to a null terminated string containing the name of the 

range vector.  

pszBndname  A pointer to a null terminated string containing the name of the 

bounds vector.  

paszConNames  A pointer to an array of pointers to the null terminated 

constraint names.  

paszVarNames  A pointer to an array of pointers to the null terminated variable 

names.  

paszConeNames A pointer to an array of pointers to the null terminated cone 

names. 

Remarks:  

 The data from each of the arrays passed to this routine are actually copied into arrays 

within the LSmodel structure. Therefore, the calling routine can free the memory if the 

information is no longer needed.  

 Any of the pointers to name data passed to this routine may be set to NULL if the 

information is not relevant.  
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LSloadNLPData() 

Description:  

Loads a nonlinear program’s data into the model data structure.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSloadNLPData ( pLSmodel pModel, int * paiCols,                

int * pacCols, double * padCoef, int * paiRows, int nObj, int 

*paiObj, double *padObjCoef) 

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

paiCols A pointer to an integer vector containing the index of the first 

nonlinear nonzero in each column. This vector must have 

nVars+1 entries, where nVars is the number of variables. The 

last entry will be the index of the next appended column, 

assuming one was to be appended. 

pacCols A pointer to an integer vector containing the number of 

nonlinear elements in each column.  

padCoef A pointer to a double precision vector containing initial values 

of the nonzero coefficients in the (Jacobian) matrix. It may be 

set to NULL, in which case, LINDO API will compute an 

initial matrix.  

paiRows A pointer to an integer vector containing the row indices of the 

nonlinear elements. 

nObj An integer containing the number of nonlinear variables in the 

objective. 

paiObj A pointer to an integer vector containing the column indices of 

nonlinear variables in the objective function. 

padObjCoef A pointer to double precision vector containing the initial 

nonzero coefficients in the objective. It may be set to NULL, in 

which case, LINDO API will compute an initial gradient 

vector.  
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Remarks:  

 Currently, the values supplied in padCoef are unimportant and can always be set to 

NULL.  

 Note, a nonzero constraint matrix must be established before calling LSloadNLPData(). 

This is accomplished through a call to LSloadLPData(). The subsequent call to 

LSloadNLPData() simply identifies the nonzeros in the matrix that are nonlinear (i.e., not 

constant). As an example, consider the nonlinear row: 3x + y^2 –1 ≤ 0. In this row, x 

appears linearly and, therefore, has a fixed coefficient of value 3. The variable y, on the 

other hand, appears nonlinearly and does not have a fixed coefficient. Its coefficient at 

any given point must be determined through finite differences or a call to pGradcalc(). 

Note that a variable appearing in both linear and nonlinear terms should be treated 

nonlinearly and has no fixed coefficient (e.g., x + x^2). Identifying the fixed coefficients 

allows LINDO API to minimize the amount of work required to compute gradients. 

LSloadQCData() 

Description:  

Loads quadratic program data into the LSmodel data structure.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int 

  

LSloadQCData(pLSmodel pModel, int nQCnnz, int 

*paiQCrows, int *paiQCcols1, int *paiQCcols2, double 

*padQCcoef)  

Arguments:  

Name  Description  

pModel  An instance of LSmodel in which to place the problem data.  

nQCnnz The total number of nonzeros in quadratic coefficient matrices.  

paiQCrows 

 

A pointer to a vector containing the index of the constraint 

associated with each nonzero quadratic term. This vector must 

have nQCnnz entries.  

paiQCcols1 A pointer to a vector containing the index of the first variable 

defining each quadratic term. This vector must have nQCnnz 

entries. 

paiQCcols2 

 

A pointer to a vector containing the index of the second 

variable defining each quadratic term. This vector must have 

nQCnnz entries. 

padQCcoef  A pointer to a vector containing the nonzero coefficients in the 

quadratic matrix. This vector must also have nQCnnz entries. 
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Remarks:  

 The data from each of the arrays passed to this routine are actually copied into arrays 

within the LSmodel structure. Therefore, the calling routine can free the memory if the 

information is no longer needed.  

 The quadratic matrices are assumed to be symmetric. 

 Only the upper triangular part of the quadratic matrices must be specified.  

 For variations on the above, e.g. if a matrix is not naturally symmetric, see Chapter 5, 

Solving Quadratic Programs, for more information. 

LSloadSemiContData() 

Description:  

Loads semi-continuous data into the Lsmodel data structure. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int LSloadSemiContData(pLSmodel pModel, int nSC, int 

*piVarndx, double *padl, double *padu)  

Arguments:  

Name  Description  

pModel  An instance of LSmodel in which to place the problem data. 

nSC The number of semi-continuous variables. 

piVarndx A pointer to a vector containing the indices of  semi-

continuous variables. This vector must have nSC entries. 

padl A pointer to a vector containing the lower bound associated 

with each semi-continuous variable. This vector must also have 

nSC entries. 

padu  A pointer to a vector containing the upper bound associated 

with each semi-continuous variable. This vector must also have 

nSC entries. 
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LSloadSETSData() 

Description:  

Loads special sets data into the Lsmodel data structure. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int 

  

LSloadSETSData(pLSmodel pModel, int nSETS, char 

*pszSETStype, int *paiCARDnum, int *paiSETSbegcol, int 

*paiSETScols)  

Arguments:  

Name  Description  

pModel  An instance of LSmodel in which to place the problem data. 

nSETS Number of sets to load. 

pszSETStype A pointer to a character vector containing the type of each set. 

Valid values for each set are : 

  LS_MIP_SET_CARD 

  LS_MIP_SET_SOS1 

  LS_MIP_SET_SOS2 

  LS_MIP_SET_SOS3 

paiCARDnum A pointer to an integer vector containing set cardinalities. This 

vector must have nSETS entries. The set cardinalities are taken 

into account only for sets with  pszSETStype[i] = 

LS_MIP_SET_CARD. 

paiSETSbegcol A pointer to an integer vector containing the index of the first 

variable in each set. This vector must have nSETS+1 entries. 

The last entry will be the index of the next appended set, 

assuming one was to be appended. If paiSETSbegcol[i]  <  

paiSETSbegcol [i-1], then LSERR_ERROR_IN_INPUT is 

returned. 

paiSETScols A pointer to an integer vector containing the indices of 

variables in each set. If any index is not in the range [ 0, nVars 

-1], LSERR_INDEX_OUT_OF_RANGE is returned. 
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LSloadVarType() 

Description:  

Loads the given MIP (mixed-integer program) data into the LSmodel data structure. The old 

name for this function is LSloadMIPData(). 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSloadVarType( pLSmodel pModel, char *pachVartypes)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the MIP 

data.  

pachVartypes  

 

A pointer to a character vector containing the type of each 

variable. Valid values for each variable are ‘C’, ‘B’, ‘I’, or ‘S’ 

for continuous, binary,  general integer or semi-continuous, 

respectively.  

This value may be NULL on input, in which case all variables 

will be assumed to be continuous. 

Remarks:  

 The ability to solve mixed-integer programs is an optional feature. Not all installations 

will have this capability. To determine if your license includes MIP functionality, use 

LSgetModelIntParameter() with license information access macros. 

 The data from each of the arrays passed to this routine are actually copied into arrays 

within the LSmodel structure. Therefore, the calling routine can free the memory if the 

information is no longer needed.  

 LSloadLPData() must be called prior to calling this routine. 

 LScreateModel() must be called prior to calling this routine.  

 To load variable branching priorities, see LSloadVarPriorities().  

 LSloadLPData must have been called previously. 
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LSloadStringData() 

Description:  

Loads a vector of strings into the LSmodel data structure and gets sort order.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSloadStringData( pLSmodel pModel, int nStrings, char 

**paszStrings)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

string data.  

nStrings  Number of strings to load 

PaszStrings A pointer to an array of pointers to the null terminated strings.. 

Remarks:  

 All strings to be used in a model need to be loaded into LINDO API  with either a 

sequence of calls to LSloadString followed by a final call to LSbuildStringData, or a 

single call to LSloadStringData. These calls must be made before strings can be referred 

to in the instruction list through the operators EP_PUSH_STR or EP_VPUSH_STR. The 

vector of strings loaded is automatically sorted by finalizing the loading with a call to 

LSbuildStringData. An index, starting from 1, is assigned to each unique string and this 

index can be used to access the string values by a call to LSgetStringValue. 

LSloadString() 

Description:  

Load a single string into the LSmodel data structure.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSloadString( pLSmodel pModel, char *szString)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

string data. 

szString A pointer to a null terminated string . 

Remarks:  

 See also LSbuildStringData, and LSloadStringData. 
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LSbuildStringData() 

Description:  

Gets sort order of all strings loaded by previous calls to LSloadString,  and assigns a unique 

value to each unique string. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSbuildStringData( pLSmodel pModel)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

string data. 

Remarks:  
See also, LSloadString and LSloadStringData.  

LSdeleteStringData() 

Description:  

Delete the string values data  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSdeleteStringData( pLSmodel pModel)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

string data. 

Remarks:  

 Please refer to LSloadStringData for the detailed string support. 
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LSdeleteString() 

Description:  

Delete the complete string data, including the string vector and values. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSdeleteString( pLSmodel pModel)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

string data. 

Remarks:  

 Please refer to LSloadStringData for the detailed string support. 

 

LSgetStringValue() 

Description:  

Retrieve a string value for a specified string index. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetStringValue( pLSmodel pModel, int nStringIdx, double 

pdStrinVal)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel in which to place the 

string data. 

nStringIdx  An integer containing the index of the string whose value you 

wish to retrieve. 

pdStrinVal A pointer to a double precision quantity that returns the string 

value. 

Remarks:  

 Please refer to LSloadStringData for the detailed string support. 
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LSloadSampleSizes () 

Description: 

Loads sample sizes per stage for the stochastic model.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSloadSampleSizes (pLSmodel pModel, int * panSampleSize) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

panSampleSize An integer vector specifying the stage sample sizes. The length 

of this vector should be at least the number of stages in the 

model. 

LSsetNumStages () 

Description: 

Set number of stages in the model.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSsetNumStages (pLSmodel pModel, int numStages) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

numStages An integer specifying the number of stages in the model. 
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LSloadConstraintStages () 

Description: 

Load stage structure of the constraints in the model.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSloadConstraintStages (pLSmodel pModel, int * panRstage) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

panRstage A vector in which information about the stage membership of 

the constraints is held. The length of this vector is equal to the 

number of constraints in the model. If constraint i  belongs to 

stage k , then  panRstage[i] = k-1 

LSloadVariableStages () 

Description: 

Load stage structure of the variables in the model.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSloadVariableStages (pLSmodel pModel, int * panCstage) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

panCstage A vector in which information about the stage membership of 

the variables is held. The length of this vector is equal to the 

number of variables in the model. If variable i  belongs to stage 

k , then  panCstage[i] = k-1   
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LSloadStocParData () 

Description: 

Load stage structure of the stochastic parameters (SPARs) in the model.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSloadStocParData (pLSmodel pModel, int * panSvarStage, 

double * padSvarValue) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

panSvarStage An integer vector specifying the stages of SPARs. The length 

of this vector is equal to the number of SPARs in the model. if 

SPAR i  belongs to stage k , then  panSvarStage[i] = k-1    

padSvarValue A double vector specifying the default values of SPARs. The 

length of this vector is equal to the number of SPARs in the 

model. If NULL, a value of zero is assumed for all SPARS. 

Remarks: 

 Length of SPARS can be retrieved with LS_IINFO_NUM_SPARS macro. 

LSaddDiscreteIndep () 

Description: 

Adds a new discrete independent stochastic parameter to the SP model. The positions of 

stochastic parameters are specified with either  (iRow,jCol)   or iStv , but not with 

both. For SP models where core model is described with an instruction list, iStv  have to be 

used.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSaddDiscreteIndep (pLSmodel pModel, int iRow, int jCol, int 

iStv, int nRealizations, double * padProbs, double * padVals, 

int iModifyRule) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

iRow An integer specifying the row index of the stochastic 

parameter. It should be ignored if iStv  will be specified.  

jCol An integer specifying the column index of the stochastic 

parameter. It should be ignored if iStv  will be specified. 

iStv An integer specifying the index of stochastic parameter in the 

instruction list. It should ignored if  (iRow,jCol)   is specified. 

nRealizations An integer specifying the number of all possible realizations 

for the specified stochastic parameter. 

padProbs A double vector of probabilities associated with the 

realizations of the stochastic parameter. The length of this 

vector should be nRealizations  or more. 

padVals A double vector of values associated with the probabilities. 

The length of this vector should be nRealizations  or more. 

iModifyRule A flag indicating whether stochastic parameters update the core 

model by adding or replacing. 

LSaddParamDistIndep () 

Description: 

Adds a new independent stochastic parameter with a parameteric distribution to the SP model. 

The positions of stochastic parameters are specified with either  (iRow, jCol)   or 

iStv , but not with both. For SP models where core model is described with an instruction 

list, iStv  have to be used.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSaddParamDistIndep (pLSmodel pModel, int iRow, int jCol, 

int iStv, int nDistType, int nParams, double * padParams, int 

iModifyRule) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

iRow An integer specifying the row index of the stochastic 

parameter. It should be ignored if iStv  will be specified. 

jCol An integer specifying the column index of the stochastic 

parameter. It should be ignored if iStv  will be specified. 

iStv An integer specifying the index of stochastic parameter in the 

instruction list. It should ignored if  (iRow, jCol)   is specified. 

nDistType An integer specifying the parametric distribution type. See the 

‘Distributions’ table for possible values.  

padParams An double vector specifying the parameters of given 

distribution.  

nParams An integer specifying the length of padParams .  

iModifyRule A flag indicating whether stochastic parameters update the core 

model by adding or replacing. Possible values are: 

 LS_REPLACE 

 LS_ADD 

LSaddDiscreteBlocks () 

Description: 

Adds a new discrete stochastic block to the SP model. The positions of stochastic parameters 

are specified with either (paiArows,paiAcols)  or paiStvs , but not with both. For 

SP models where core model is described with an instruction list, paiStvs  have to be used.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSaddDiscreteBlocks (pLSmodel pModel, int iStage, int 

nBlockEvents, double * padProb, int * pakEvent, int * 

paiArows, int * paiAcols, int * paiStvs, double * padVals, int 

iModifyRule) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

iStage An integer specifying the stage of the stochastic block.  

nBlockEvents An integer specifying the number of discrete events in the 

block.  

padProb An double vector of event probabilities.  

pakEvent An integer vector of starting positions of events in the sparse 

matrix or instruction list. This vector should have  

nBlockEvents+1   elements or more.  

paiArows An integer vector of row indices of stochastic parameters. This 

vector should have  pakEvent[nBlockEvents]   elements. It 

should be NULL when paiStvs  is specified.  

paiAcols An integer vector of column indices of stochastic parameters. 

This vector should have  pakEvent[nBlockEvents]   elements. 

It should be NULL when paiStvs  is specified.  

paiStvs An integer vector of indices of stochastic parameters in the 

instruction list. The length of this vector should be  

pakEvent[nBlockEvents]   or more. It should be NULL when  

(paiArows,paiAcols)   is specified.  

padVals A double vector of stochastic values associated with the 

stochastic parameters listed in paiStvs  or  (paiArows,paiAcols)   

The length of this vector should be  pakEvent[nBlockEvents]   

or more.  

iModifyRule A flag indicating whether stochastic parameters update the core 

model by adding or replacing. 

LSaddScenario () 

Description:  

Adds a new scenario block to the SP model. The positions of the stochastic parameters are 

specified with either (paiArows,paiAcols) or paiStvs , but not with both. 

 For SP models where core model is described with an instruction list, paiStvs  have to be 

used.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSaddScenario (pLSmodel pModel, int jScenario, int 

iParentScen, int iStage, double dProb, int nElems, int * 

paiArows, int * paiAcols, int * paiStvs, double * padVals, int 

iModifyRule) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

jScenario An integer specifying the index of the new scenario to be 

added.  

iParentScen Index of the parent scenario. 

iStage Index of the stage the new scenario branches from its parent.  

dProb A double scalar specifying the scenario probability.  

nElems The number of stochastic parameters realized at stage iStage  

in the new scenario.  

paiArows An integer vector of the row indices of stochastic parameters. 

This vector should have nElems  elements or more. It should 

be NULL when paiStvs  is specified.  

paiAcols An integer vector of the column indices of stochastic 

parameters. This vector should have nElems  elements or more. 

It should be NULL when paiStvs  is specified.  

paiStvs An integer vector of indices of stochastic parameters in 

instruction list. This vector should have nElems  elements or 

more. It should be NULL when  (paiArows,paiAcols)   is 

specified.  

padVals A double vector of values of stochastic parameters. This vector 

should have nElems  elements or more.  

iModifyRule A flag indicating whether stochastic parameters update the core 

model by adding or replacing. 

LSloadStocParNames () 

Description: 

This routine loads name data for stochastic parameters into the specified LSmodel structure.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSloadStocParNames (pLSmodel pModel, int numVars, char 

** stv_names) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

numVars An integer specifying the number of stochastic parameters.  

stv_names An array of pointers to the stochastic parameter names. This 

value can be NULL.  

Remarks: 

The data from each of the arrays passed to this routine are actually copied into arrays within 

the LSmodel structure. Therefore, the calling routine can free the memory if the information 

is no longer needed.  

LSloadCorrelationMatrix () 

Description: 

Load a correlation matrix to be used by the sampling scheme in stochastic programming.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSloadCorrelationMatrix (pLSmodel pModel, int nDim, int 

nCorrType, int QCnonzeros, int *QCvarndx1, int *QCvarndx2, 

double *QCcoef) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object. 

nDim An integer specifying the number of stochastic parameters 

involved in the correlation structure. This value cannot be 

larger than the number of stochastic parameters in the model. 

nCorrType Correlation type. Possible values are: 

 LS_CORR_PEARSON 

 LS_CORR_SPEARMAN 

 LS_CORR_KENDALL 

QCnonzeros The number of nonzero correlation coefficients. 

QCvarndx1 A vector containing the first index of variable the correlation 

term belongs to (\c QCnonzeros long). 

QCvarndx2 A vector containing the second  index of variable the 

correlation term belongs to (\c QCnonzeros long). 

QCcoef A vector containing the correlation terms (\c QCnonzeros 

long). 
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Remarks: 

 Suppose the correlation matrix, involving variables 2, 4, 5, and 7 is: 

          (2)     (4)     (5)       (7) 

           1    0.5796  -0.953    0.5409    (2) 

        0.5796     1    -0.4181   0.6431   (4) 

       -0.953  -0.4181     1     -0.2616    (5) 

        0.5409  0.6431  -0.2616       1     (7) 

  The parameters would be:      

     nDim = 4, 

     QCnonzeros = 6; (in general for a dense matrix, nDim*(nDim - 1)/2 ) 

     QCvarndx1=   2       2      2      4        4       5; 

     QCvarndx2=   4       5      7      5        7       7; 

     QCcoef   = 0.5796  -0.953 0.5409 -0.4181  0.6431 -0.2616;  

LSloadMultiStartSolution () 

Description: 

Loads the multistart solution at specified index to the main  solution structures for access with 

solution query routines. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSloadMultiStartSolution(pLSmodel  pModel, int  nIndex) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel. 

nIndex Index of the multistart solution  
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LSloadVarStartPointPartial () 

Description: 

Loads a partial initial point for NLP models. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSloadVarStartPointPartial(pLSmodel pModel, int nCols, int      

*paiCols,  double *padPrimal) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel. 

nCols Number of variables in the partial solution. 

paiCols A vector containing the indicies of variables in the partial 

solution. 

padPrimal A vector containing the values of the partial solution. 

Remark:  

Use LSloadBasis for LP models. 

LSloadMIPVarStartPointPartial () 

Description: 

Loads a partial MIP initial point for MIP/MINLP models. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSloadMIPVarStartPointPartial(pLSmodel pModel, int nCols, 

int *paiCols,  double *padPrimal) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel. 

nCols Number of variables in the partial solution. 

paiCols A vector containing the indicies of variables in the partial 

solution. 

padPrimal A vector containing the values of the partial solution. 
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Remark:  

Values for non-integer variables are ignored except for set-variables. 

 In case of semi continuous variables, specify 0 or 1 to indicate whether the variable is zero or 

greater-than zero. 

LSreadSDPAFile () 

Description: 

Read SDP model from an SDPA formatted file. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSreadSDPAFile(pLSmodel pModel, char *pszFname); 

Input Arguments:  

Name  Description  

pModel An instance of LSmodel in which to place the model. 

pszFname The name of the SDPA file. 
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LSloadPOSDData () 

Description: 

This routine loads the given POSD data into the LSmodel data structure. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSloadPOSDData(pLSmodel pModel, int nPOSD, int  

*paiPOSDdim, int *paiPOSDbeg, int *paiPOSDrowndx, int  

*paiPOSDcolndx, int *paiPOSDvarndx) ;   

Input Arguments:  

Name  Description  

pModel An instance of LSmodel in which to place the problem data. 

nPOSD The number of PSD diagonal blocks to load. 

paiPOSDdim A vector containing the dimensions of PSD diagonal blocks. 

This vector should have at least nPOSD entries. 

paiPOSDbeg A vector containing beginning position of each PSD matrix in 

paiPOSDrowndx, paiPOSDcolndx and paiPOSDvarndx 

vectors. 

paiPOSDrowndx A vector specifying the row indices of variables within PSD 

matrix blocks. 

paiPOSDcolndx A vector specifying the column indices of variables within 

PSD matrix blocks. 

paiPOSDvarndx A vector specifying the original indices of variables within 

PSD matrix blocks. 

LSaddObjPool() 

Description:  

Add a new linear objective function to the objective pool. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSaddObjPool(pLSmodel  pModel, double *padC,  int 

objSense, int nRank, double dRelOptTol) 

Input Output Arguments:  

Name  Description  

pModel An instance of LSmodel in which to load the new objective 

function. 
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padC A vector containing the linear objective coefficients. 

objSense   An indicator stating whether the objective  is to be maximized 

or minimized. Valid values are:  LS_MAX or LS_MIN, 

respectively. 

nRank A positive integer specifying the rank of this objective function 

relative to others in the pool. Ties are broken arbitrarily. 

(Reserved for future) 

Input Arguments:  

Name  Description  

dRelOptTol Relative optimality tolerance in (0,1) range specifying the 

maximum deviation allowed for this objective function from its 

true optimum value. Higher values allow a wider range of 

admissible solutions. 

LSremObjPool() 

Description:  

Removes the specified linear objective vector from the objective pool. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSremObjPool(pLSmodel  pModel, int iObj) 

Input Output Arguments:  

Name  Description  

pModel     An instance of LSmodel from which the objective function will 

be removed. 

iObj Index specifying the objective function to remove from the 

pool. 
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LSFreeObjPool() 

Description:  

Frees objective pool. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSFreeObjPool(pLSmodel pModel) 

Input Output Arguments:  

Name  Description  

pModel     An instance of LSmodel for which the objective pool will be 

freed 

LSsetObjPoolInfo() 

Description:  

Set specified info for the objective specified by its index. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetObjPoolInfo(pLSmodel  pModel, int iObj, int mInfo, 

double dValue) 

Input Output Arguments:  

Name  Description  

pModel     An instance of LSmodel for which the info (attribute) will be 

specified. 

iObj An index specifying the objective function.  

Input Arguments:  

Name  Description  

mInfo An integer macro specifying the info (attribute) to set for the 

selected obj. 

dValue Attribute value. 
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Solver Initialization Routines 
The routines in this section allow you to pass the internal solver starting-point information when 

solving linear models and branching priorities when solving mixed-integer models.  

LSloadBasis() 

Description:  

Provides a starting basis for the simplex method. A starting basis is frequently referred to as 

being a “warm start”. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSloadBasis( pLSmodel pModel, int *panCstatus, int 

*panRstatus)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel containing the model for 

which you are providing the basis. 

panCstatus  

 

A pointer to an integer vector containing the status of each 

column in the given model. The length of this vector is equal to 

the number of variables in the model. The i-th element of the 

array corresponds to the i-th variable in the model. Set each 

variable’s element to 0, –1, –2, or –3 for Basic, Nonbasic at 

lower bound, Nonbasic at upper bound, or Free and nonbasic at 

zero value, respectively. 

panRstatus  

 

A pointer to an integer vector in which information about the 

status of the rows is to be placed. The length of this vector is 

equal to the number of constraints in the model. The i-th 

element of the array corresponds to the i-th row in the model. 

Set each row’s element to 0 or –1 if row’s associated slack 

variable is basic or row’s associated slack variable is nonbasic 

at zero, respectively. 

Remarks: 

 To retrieve a basis use LSgetBasis(). 

 LSloadBasis() does not require the row indices that the variables are basic in. Setting all 

basic variables to a nonnegative integer is sufficient to specify a basis. 

 LSgetBasis(), in addition to the indices of basic variables, returns also the indices of the 

rows that variables are basic in. 
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LSloadVarPriorities()  

Description:  

Provides priorities for each variable for use by mixed-integer and global solvers. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSloadVarPriorities( pLSmodel pModel, int *panCprior)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

panCprior A pointer to a vector containing the priority of each column in 

the given model. The length of this vector is equal to the 

number of variables in the model. A valid priority value is any 

nonnegative integer value. Variables with higher priority 

values are given higher branching priority. 

Remarks:  

 Although this routine requires priorities for all variables, the mixed-integer solver only 

makes use of the priorities on the integer variables and ignores those of continuous 

variables. The global solver makes use of priorities on both continuous and integer 

variables.  

 To read priorities from a disk file, see LSreadVarPriorities().  

LSloadVarStartPoint()  

Description:  

Provides an initial starting point for nonlinear and mixed-integer solvers.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSloadVarStartPoint( pLSmodel pModel, double *padPrimal)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

padPrimal A pointer to a double precision vector containing starting 

values for each variable in the given model. The length of this 

vector is equal to the number of variables in the model. 
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Remarks:  

 The nonlinear solver may modify the initial solution to improve its quality if sequential 

linear programming (SLP) step directions are allowed.  

 Although this routine requires values for all variables, the mixed-integer solver will only 

make use of the values for the integer variables. 

LSloadMIPVarStartPoint()  

Description:  

Provides an initial starting point for LSsolveMIP.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSloadMIPVarStartPoint( pLSmodel pModel, double 

*padPrimal)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

padPrimal A pointer to a double precision vector containing starting 

values for each variable in the given model. The length of this 

vector is equal to the number of variables in the model. 

LSloadBlockStructure()  

Description:  

Provides a block structure for the constraint matrix by specifying block memberships of each 

variable and constraint. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSloadBlockStructure( pLSmodel pModel, int nBlock, int 

*panRblock, int *panCblock, int nType)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  
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Output Arguments:  

Name  Description  

nBlock An integer scalar that contains the number of blocks the model 

matrix decomposes into.  

panRblock 

 

A pointer to an integer vector in which information about the 

block membership of the constraints is placed. The length of 

this vector must be  the number of constraints in the model. 

The i-th element of this array keeps the information on the i-th 

constraint as follows: 

 0:   The row is a member of the linking (row) block.  

k>0:  The row is a member of the k-th block.  

where 1 <= k <= nBlock. 

panCblock 

 

A pointer to an integer vector in which information about the 

block membership of the variables is placed. The length of this 

vector must be  the number of variables in the model. The j-th 

element of this array contains information on the j-th column 

as follows: 

 0:   The column is a member of the linking (column) block.  

k>0:  The column is a member of the k-th block.  

where 1 <= k <= nBlock. 

nType 

 

An integer scalar indicating the type of decomposition loaded. 

The possible values are identified with the following macros: 

 LS_LINK_BLOCKS_COLS: The decomposed model 

has dual angular structure (linking columns). 

 LS_LINK_BLOCKS_ROWS: The decomposed 

model has block angular structure (linking rows). 

 LS_LINK_BLOCKS_BOTH: The decomposed model 

has both dual and block angular structure (linking 

rows and columns) 

Remarks: 

 For more information on decomposition and linking structures, refer to Chapter 10, 

Analyzing Models and Solutions. 

 See also LSfindBlockStructure(). 



FUNCTION DEFINITIONS     185 

 

LSreadVarPriorities()  

Description:  

Reads branching priorities of variables from a disk file. This information is used by mixed-

integer and global solvers.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSreadVarPriorities( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

pszFname A pointer to a null terminated string containing the name of the 

file from which to read the priorities. 

Remarks:  

 This routine expects one variable name and one integer priority value per record. The 

variable name must appear first followed by a nonnegative integer priority value. You 

need not specify priorities on all variables. If desired, you may specify priorities on only 

a subset of the variables. 

 To pass priorities directly through an array, see LSloadVarPriorities().  

LSreadVarStartPoint()  

Description:  

Provides initial values for variables from a file. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSreadVarStartPoint( pLSmodel pModel, char *pszFname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

pszFname A pointer to a null terminated string containing the name of the 

file from which to read the starting values. 

Remarks:  

 This routine expects one variable name and one value per record. The variable name 

must appear first followed by a starting value. To pass initial values directly through an 

array, see LSloadVarStartPoint().  
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Optimization Routines 
The routines in this section are called to invoke LINDO API’s solver. There are three routines—

LSsolveMIP(), LSoptimize(), and LSsolveGOP(). LSsolveMIP() should be called when the model has 

one or more integer variables, while LSoptimize() should be called when all the variables are 

continuous. LSsolveGOP() should be called for global optimization of nonlinear models.   

LSoptimize() 

Description:  

Optimizes a continuous model by a given method.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSoptimize( pLSmodel pModel, int nMethod, int *pnStatus)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nMethod A parameter indicating the solver to be used in optimizing the 

problem. Current options for this parameter are 

 LS_METHOD_FREE: 0,  

 LS_METHOD_PSIMPLEX: 1,  

 LS_METHOD_DSIMPLEX: 2,  

 LS_METHOD_BARRIER: 3,  

 LS_METHOD_NLP: 4.  

When the method is set to LS_METHOD_FREE, LINDO API 

will decide the best solver to use. The remaining four methods 

correspond to the primal simplex, dual simplex, barrier solver, 

and nonlinear solvers, respectively. The barrier solver, also 

known as the interior point solver, and the nonlinear solver are 

optional features and require additional purchases. 

Output Arguments:  

Name  Description  

pnStatus A pointer to an integer variable containing the status of the 

optimization. For possible values, refer to the Common Macro 

Definitions table. 

Remarks:  

 The solver returns LS_STATUS_INFORUNB as solution status if primal or dual model is 

found to be infeasible. This could be determined either by the presolver or by phase-1 of 

dual simplex (LS_METHOD_DSIMPLEX) provided the dual is infeasible. In the former 

case, the solver computes no solutions and hence all solution access routines, such as 

LSgetPrimalSolution, returns an LSERR_NOT_AVAILABLE error. However, the solver 



FUNCTION DEFINITIONS     187 

 

can be forced to compute a basis by setting LS_IPARAM_SOLVER_IUSOL to 1. In the 

second case, the actual status of the primal model can be found by re-optimizing the 

model using the primal simplex method (LS_METHOD_PSIMPLEX). 

 LINDO API is equipped with advanced recovery techniques that resolve numeric issues 

stemming from  

(a) Poor scaling,  

(b) Linear dependency among model variables (columns).  

(c) Degeneracy (redundancies in the formulation) in primal and or dual space. 

In rare pathological instances, it is possible that the solver returns a 

LSERR_NUMERIC_INSTABILITY error using the default tolerance setting. In this case, 

accumulated errors that occurred during numeric computations were so severe that the 

solver could not take further steps towards optimality. For all such cases, however, there 

exist a certain tolerance settings that would render the model solvable. The main 

tolerances that affect the numerical properties are primal and dual feasibility tolerances. 

The latter is also known as the optimality tolerance.  

 If the LS_METHOD_BARRIER is used, a crossover to a basic solution is done at the 

end. If, instead, you want the nonbasic interior point solution, then use 

LSsetModIntParameter() to set the parameter LS_IPARAM_SOLVER_IPMSOL=1. 

 Prior to solving the problem, LS_IPARAM_DECOMPOSITION_TYPE parameter can 

be set to LS_LINK_BLOCKS_NONE to force the linear solver to exploit total 

decomposition. 

 The solution process can be lengthy on large models. LINDO API can be set to 

periodically callback to your code to allow you to monitor the solver’s progress. For 

more information, see LSsetCallback(). 

 To solve mixed-integer models, see LSsolveMIP(). 

LSsolveFileLP() 

Description:  

Optimizes a large LP from an MPS file. This routine is appropriate only for LP models with 

many more columns, e.g., millions, than rows. It is appropriate for LP’s that might otherwise 

not easily fit into available memory. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSsolveFileLP(pLSmodel pModel, szFileNameMPS, szFileNameSol, 

  int nNoOfColsEvaluatedPerSet, int nNoOfColsSelectedPerSet,  

int nTimeLimitSec, int *pnSolStatusParam,     int *pnNoOfConsMps, 

int *plNoOfColsMps, int *plErrorLine)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

sFileNameMPS The name of the input MPS file. 

szFileNameSol The name of the output solution file. 
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nNoOfColsEvaluatedPerSet The number of columns evaluated together in one set. 

nNoOfColsSelectedPerSet The number of columns selected from one set. 

nTimeLimitSec The time limit for the program in seconds  

Output Arguments:  

Name  Description  

pnSolStatusParam A pointer to an integer variable containing the status of the 

optimization. For possible values, refer to the Common Macro 

Definitions table.  

pnNoOfConsMps The number of constraints in the problem. 

plNoOfColsMps The number of variables (columns) in the problem. 

plErrorLine The line number at which a structural error was found. 

Remarks:  

 LSsolveLP can solve an LP model that is stored in an MPS file. 

LSsolveGOP() 

Description:  

Optimizes a global optimization problem.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSsolveGOP(pLSmodel pModel, int *pnStatus)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pnStatus A pointer to an integer variable containing the status of the 

optimization. For possible values, refer to the Common Macro 

Definitions table.  

Remarks:  

 LINDO API’s global optimization solver is specifically designed to solve hard nonlinear 

models with multiple local solutions. 

 See the Global Optimization Parameters section above for available parameters that 

could be used to fine tune the global optimizer to yield improved performance in solving 

different problem classes. 
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 The solution process can be lengthy on medium to large models with multiple extrema. 

LINDO API can be set to periodically callback to your code to allow you to monitor the 

solver’s progress. For more information, see LSsetCallback() and LSsetMIPCallback(). 
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LSsolveMIP() 

Description:  

Optimizes a mixed-integer programming model using branch-and-cut.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSsolveMIP(pLSmodel pModel, int *pnStatus)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pnStatus A pointer to an integer variable containing the status of the 

optimization. For possible values, refer to the Common Macro 

Definitions table. 

Remarks:  

 To solve continuous models, see LSoptimize(). 

 To establish branching priority amongst the variable, see LSloadVarPriorities(). 

 The solution process can be lengthy on large models. LINDO API can be set to 

periodically callback to your code to allow you to monitor the solver’s progress. For 

more information, see LSsetCallback() and LSsetMIPCallback(). 

 Prior to solving the problem, LS_IPARAM_DECOMPOSITION_TYPE parameter can 

be set to LS_LINK_BLOCKS_NONE to force the mixed-integer solver to exploit total 

decomposition. 

 LSbnbSolve(), from LINDO API 1.x, has been deprecated. LINDO API is equipped with 

a state-of-the-art MIP (LP) presolver that performs a wide range of reduction and 

elimination techniques that aims at reducing the size of a given problem before 

optimizing it.  The preprocessing phase terminates with one of the following outputs, 

1) A reduced model ready to be submitted to the solver engine. 

2) A solution status indicating infeasibility (LS_STATUS_INFEASIBLE)  

3) A solution status indicating unboundedness (LS_STATUS_UNBOUNDED)  

4) A solution status indicating infeasibility or unboundedness 

(LS_STATUS_INFORUNB), but no certificate of which.  
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LSsolveSP () 

Description: 

Solves the SP models. All parameters controlling the solver should be set before calling the 

routine.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSsolveSP (pLSmodel pModel, int * pnStatus) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel object. 

pnStatus An integer reference for the status 

LSoptimizeQP() 

Description:  

Optimizes a quadratic model with the best suitable solver.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSoptimizeQP(pLSmodel pModel, int *pnStatus)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pnStatus A pointer to an integer variable containing the status of the 

optimization. For possible values, refer to the Common Macro 

Definitions table. 

 

LSPreRelaxMIP() 

Description:  

This method use the one-change, two-change, and the depth first enumeration heuristics to 

find a feasible solution for 0-1 pure integer programs or 0-1 mixed integer programs with 

only soft constraints. 
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Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSPreRelaxMIP(pLSmodel pModel, int nPreRelaxLevel, int 

nPreLevel,int nPrintLevel) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nPreRelaxLevel The heuristic level. 

- Set to 1, try only one-change heuristic with all 0s initial 

solution and reverse order. 

-Set to 2, try level 1, and then try two-change heuristic. 

- Set to 3, try depth-first enumeration heuristic. 

nPreLevel Set an MIP presolve level, add flags. 

nPrintLevel The print level for the solver. 

 

Remarks: 

 If the solver finds a feasible solution that is better than the current incumbent for the 

MIP problem, then it will store the solution to pLSmodel->mipsol->primal. 

 

LSsolveSBD() 

Description:  

Optimizes a given LP or MILP model with Benders’ decomposition. The model should have 

dual angular block structure to be solved with this routine. The dual angular structure is 

specified explicitly with the argument list.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSsolveSBD(pLSmodel pModel, int nStages, int 

*panRowStage, int *panColStage, int *pnStatus)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nStages An integer specifying the number of stages/blocks in the dual 

angular model. 

panRowStage An integer array specifying the stage indices of constraints. 

Stage-0 indicates linking row or column.  
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panColStage An integer array specifying the stage indices of variables. 

Stage-0 indicates linking row or column. 

Output Arguments:  

Name  Description  

pnStatus A pointer to an integer variable containing the status of the 

optimization. For possible values, refer to the Common Macro 

Definitions table.  

Remarks:  

 Models with block angular structure (linking rows) can be dualized and solved with 

this routine. 

 If the model has too many linking columns, the efficiency would be diminished 

substantially. This routine is best fitted to models with several explicit blocks and a few 

linking variables (e.g. 5-10% of all variables). 

LSsolveHS() 

Description:   

Solves the given model heuristically using the specified search method. All parameters 

controlling the solver should be set before calling the routine.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSsolveHS(pLSmodel pModel, int nSearchMethod, int     

*pnStatus) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nSearchMethod An integer macro specifying the heuristic search method. 

Output Arguments:  

Name  Description  

pnStatus An integer reference for the status. 

Remark: 

The solutions found by this routine are not guaranteed to be globally optimal. 

If any feasible solution is found, the solution status at termination would be 

LS_STATUS_FEASIBLE. 
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LSsolveMipBnp() 

Description:   

Solve the MIP model with the branch-and-price method..  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSsolveMipBnp(pLSmodel  pModel, int nBlock, char 

*pszFname, int *pnStatus) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nBlock An integer specifying the number of blocks. 

pszFname An input file specifying the block structure (optional). 

pnStatus A pointer to an integer variable containing the status of the 

optimization. For possible values, refer to the Common Macro 

Definitions table. 
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Solution Query Routines 
The routines in this section allow you to retrieve information regarding a model’s solution values 

following optimization. 

Note:     LINDO API requires that sufficient memory is allocated for each output argument of the 

retrieving function.  

LSgetBasis() 

Description:  

Gets information about the basis that was found after optimizing the given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetBasis( pLSmodel pModel, int *panCstatus, int 

*panRstatus)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

panCstatus 

 

A pointer to an integer vector in which information about the 

status of the variables is to be placed. The length of this vector 

must be  the number of variables in the model. The i-th 

element of this array returns information on the i-th variable as 

follows: 

≥0: Index of the row that variable is basic in  

-1: Nonbasic at lower bound 

-2: Nonbasic at upper bound 

-3: Free and nonbasic at zero value 

This value may be set to NULL if column basis information is 

not needed. 

panRstatus 

 

A pointer to an integer vector in which information about the 

status of the constraints is to be placed. The length of this 

vector must be  the number of constraints in the model. The 

i-th element of this array returns information on the i-th 

constraint as follows: 

    ≥0: Row’s associated slack variable is basic 

-1: Row’s associated slack variable is nonbasic at zero 

This value may be set to NULL if constraint information is not 

needed. 
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Remarks 

 To load a basis, use LSloadBasis(). 

 LSloadBasis() does not require the row indices that the variables are basic in. Setting all 

basic variables to a nonnegative integer is sufficient to specify a basis. 

 LSgetBasis(), in addition to the indices of basic variables, returns also the indices of the 

rows that variables are basic in. 

 If the LP presolver was on during LP optimization, the column status of basic variables 

that were eliminated from the original LP will not correspond to row indices. In order to 

obtain the row indices of all the basic variables, you will need to turn off the LP 

presolver and call LSoptimize() again. This reoptimization would normally take zero 

iteration because the last basis is already optimal. Calling LSgetBasis() after the 

reoptimization would return panCstatus with correct row indices for all basic columns. 

Note: Solution query routines will return an error code of 2009 -the requested info not available- 

whenever they are called after the optimization halts without a solution being computed. The 

main reasons for not having a solution after optimization are  

 1) optimization halts due to a time or iteration limit 

 2) optimization halts due to numerical errors 

 3) optimization halts due to CTRL-C (user break)  

 4) presolver determines the problem to be infeasible or unbounded 

 5) the solver used in current optimization session (e.g. LSsolveMIP) did not produce any 

     results for the queried solution object (e.g. GOP solution). 

 The last error code returned by the optimizer can be retrieved by calling LSgetInfo() function.  

LSgetDualSolution() 

Description:  

Returns the value of the dual variables for a given model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetDualSolution( pLSmodel pModel, double *padDual)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel. 

Output Arguments:  

Name  Description  

padDual  A pointer to a double precision vector in which the dual 

solution is to be placed. The length of this vector must be equal 

to or exceed the number of constraints in the model. It is 
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assumed that sufficient memory has been allocated for this 

vector.  

Remarks:  

 The dual variable associated with a constraint is the increase in the objective function 

value per unit of increase in the right-hand side of the constraint, given the change is 

within the sensitivity limits of that RHS. Thus, if the objective is MAX,  then a “” 

constraint has a nonnegative dual price and a “” constraint has a nonpositive dual price. 

If the objective is MIN,  then a “” constraint has a nonpositive dual price and a “” 

constraint has a nonnegative dual price. 

 To learn more about sensitivity analysis, see Chapter 10. 

 To get slack values on the constraints, see LSgetSlacks(). 

LSgetInfo() 

Description:  

Returns model or solution information about the current state of the LINDO API solver after 

model optimization is completed. This function cannot be used to access callback 

information. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetInfo( pLSmodel pModel, int nQuery, void *pvValue)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of Lsmodel. 

nQuery For possible values, refer to the tables under ‘Available 

Information’ section. 

Output Arguments:  

Name  Description  

pvValue  This is a pointer to a memory location where LINDO API will 

return the requested information. You must allocate sufficient 

memory for the requested information prior to calling this 

function.  

Remarks:  

 This function cannot be used to access callback information. LSgetCallbackInfo() should 

be used instead. 

 Query values whose names begin with LS_IINFO return integer values, while those 

whose names begin with LS_DINFO return double precision floating point values. 
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LSgetProfilerInfo() 

Description:  

Get profiler info for the specified context. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetProfilerInfo(pLSmodel pModel, int mContext,  int *pnCalls, 

double  *pdElapsedTime); 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of Lsmodel. 

mContext An integer macro specifying the profiler context. 

pnCalls An integer reference to return the number of calls/hits to the 

context. 

pdElapsedTime A double reference to return the elapsed time in the context. 

LSgetProfilerContext() 

Description:  

Return the profiler context description. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetProfilerContext(pLSmodel pModel, int mContext); 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of Lsmodel. 

mContext An integer macro specifying the profiler context. 
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LSgetMIPBasis() 

Description:  

Gets information about the basis that was found at the node that yielded the optimal MIP 

solution.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetMIPBasis( pLSmodel pModel, int *panCstatus, int 

*panRstatus)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

panCstatus 

 

A pointer to an integer vector in which information about the 

status of the variables is to be placed. The length of this vector 

must be  the number of variables in the model. The i-th 

element of this array returns information on the i-th variable as 

follows: 

 ≥0: Index of row that variable is basic in  

-1: Nonbasic at lower bound 

-2: Nonbasic at upper bound 

-3: Free and nonbasic at zero value 

This value may be set to NULL if column basis information is 

not needed.. 

panRstatus 

 

A pointer to an integer vector in which information about the 

status of the constraints is to be placed. The length of this 

vector must be  the number of constraints in the model. The 

i-th element of this array returns information on the i-th 

constraint as follows: 

0: Slack is basic 

-1: Slack is nonbasic at zero 

This value may be set to NULL if constraint information is not 

needed.  

Remarks: 

 For information on loading a mixed-integer program’s formulation data into the system, 

see LSloadVarType(). 
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LSgetMIPDualSolution()  

Description:  

Gets the current dual solution for a MIP model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetMIPDualSolution( pLSmodel pModel, double *padDual)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

padDual A pointer to a double precision vector containing the optimal 

dual solution to the LP relaxation of a MIP model by fixing all 

integer variables with respect to the resident MIP solution. The 

number of elements in this vector must equal, or exceed, the 

number of constraints in the model. 

Remarks: 

 For information on loading a mixed-integer program’s formulation data into the system, 

see LSloadVarType(). 

LSgetMIPPrimalSolution()  

Description:  

Gets the current primal solution for a MIP model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetMIPPrimalSolution( pLSmodel pModel, double 

*padPrimal)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

padPrimal A pointer to a double precision vector in which the primal 

solution to the integer model is to be placed. The length of this 
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vector is equal to or exceeds the number of variables in the 

model—continuous and integer.  

Remarks: 

 For information on loading a mixed-integer program’s formulation data into the system, 

see LSloadVarType(). 

 To get the solution for a continuous model, see LSgetPrimalSolution(). 

LSgetMIPReducedCosts() 

Description:  

Gets the current reduced cost for a MIP model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetMIPReducedCosts( pLSmodel pModel, double 

*padRedCostl)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

padRedCostl A pointer to a double precision vector containing the optimal 

reduced costs to the LP relaxation of a MIP model by fixing all 

integer variables with respect to the resident MIP solution. The 

number of elements in this vector must equal, or exceed, the 

number of constraints in the model. 

Remarks: 

 For information on loading a mixed-integer program’s formulation data into the system, 

see LSloadVarType(). 
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LSgetMIPSlacks() 

Description:  

Gets the slack values for a mixed-integer model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetMIPSlacks( pLSmodel pModel, double *padSlacks)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name Description  

padSlacks A pointer to a double precision vector in which the slack values 

are to be placed. The number of elements in this vector must 

equal, or exceed, the number of constraints in the model.  

Remarks: 

 The ability to solve mixed-integer programs is an optional feature. Not all installations 

will have this capability. To determine if your license includes MIP functionality, use 

LSgetModelIntParameter() with license information access macros. 

 To get the slacks on a continuous LP model, see LSgetSlacks(). 

LSgetPrimalSolution() 

Description:  

Returns the primal solution values for a given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetPrimalSolution( pLSmodel pModel, double *padPrimal)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

padPrimal  

 

A pointer to a vector in which the primal solution is to be 

placed. The length of this vector must equal or exceed the 

number of variables in the model.  



FUNCTION DEFINITIONS     203 

 

Remarks: 

 To get reduced costs on the variables, see LSgetReducedCosts(). 

LSgetReducedCosts()  

Description:  

Returns the reduced cost of all variables of a given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetReducedCosts( pLSmodel pModel, double 

*padRedcosts)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

padRedcosts 

 

A pointer to a double precision vector in which the reduced 

costs of the variables are to be returned. The vector length must 

be equal to or exceed the number of variables in the model.  

Remarks: 

 The reduced cost is the dual price of the simple lower or upper bound constraint of a 

variable.  Thus, if the objective is MIN, then a binding lower bound will have a positive 

reduced cost,  and a binding upper bound will have a negative reduced cost. If the 

objective is MAX, then a binding lower bound will have a negative reduced cost,  and a 

binding upper bound will have a positive reduced cost. 

 To get primal values on the variables, see LSgetPrimalSolution(). 

LSgetReducedCostsCone()  

Description:  

Returns the reduced cost of all cone variables of a given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetReducedCostsCone( pLSmodel pModel, double 

*padRedcosts)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  
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Output Arguments:  

Name  Description  

padRedcosts 

 

A pointer to a double precision vector in which the reduced 

costs of the variables are to be returned. The vector length must 

be equal to or exceed the number of variables in the model.  

LSgetSlacks() 

Description:  

Returns the value of the slack variable for each constraint of a continuous model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetSlacks( pLSmodel pModel, double *padSlacks)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

padSlacks 

 

A pointer to a double precision vector in which the slack 

variables are to be returned. The length of this vector must 

equal or exceed the number of constraints in the model. Slack 

values are computed using the formula: s = b – Ax, where s is 

the vector of slacks, b is the right-hand side vector, A is the 

nonzero matrix for the basic columns, and x is the solution 

vector. Thus, less-than-or-equal-to constraints will return 

nonnegative values when feasible, while 

greater-than-or-equal-to constraints will return nonpositive 

values when feasible. 

Remarks: 

 To get dual values of the constraints, see LSgetDualSolution(). 

 To get the slacks for a MIP model, see LSgetMIPSlacks(). 
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LSgetSolution() 

Description:  
  Gets the solution specified by the second argument, 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype: 

int LSgetSolution(pLSmodel  pModel,  int nWhich, double 

*padValues)  

Input Arguments: 

Name   Description  

pModel  A pointer to an instance of LSmodel.  

nWhich An integer parameter specifying the solution to be retrieved. 

Possible values are: 

 LSSOL_BASIC_PRIMAL 

 LSSOL_BASIC_DUAL 

 LSSOL_BASIC_SLACK 

 LSSOL_BASIC_REDCOST 

 LSSOL_INTERIOR_PRIMAL 

 LSSOL_INTERIOR_DUAL 

 LSSOL_INTERIOR_SLACK 

 LSSOL_INTERIOR_REDCOST 

Output Arguments: 

Name   Description  

padValues  A pointer to a double precision vector in which the specified 

solution is to be placed. The length of this vector must be equal 

to or exceed the number of elements to be retrieved (e.g. 

number of constraints or variables). It is assumed that 

sufficient memory has been allocated for this vector. 
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LSgetNodePrimalSolution () 

Description: 

Returns the primal solution for the specified node.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype: 

int LSgetNodePrimalSolution (pLSmodel pModel, int iScenario, 

int iStage, double * padX) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario the node belongs to. 

iStage An integer specifying the stage the node belongs to. 

padX A double array to return specified nodes's dual solution The 

length of this vector is equal to the number of variables in the 

stage associated with the node. It is assumed that memory has 

been allocated for this vector. 

Remarks: 

The number of variables or constraints in a stage can be accessed via LSgetStocInfo(). 

LSgetScenarioObjective () 

Description: 

Returns the objective value for the specified scenario.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype: 

int LSgetScenarioObjective (pLSmodel pModel, int iScenario, 

double * pObj) 
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Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario index. 

pObj A reference to a double variable to return the result. 

LSgetScenarioPrimalSolution () 

Description: 

Returns the primal solution for the specified scenario.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype: 

int  LSgetScenarioPrimalSolution (pLSmodel pModel, int 

iScenario, double * padX, double * pObj) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario index. 

padX A double array to return scenario's primal solution. The length 

of this vector is equal to the number of variables in the core 

model. It is assumed that memory has been allocated for this 

vector.  

 

pObj A reference to a double to return the objective value for the 

specified scenario. 

LSgetScenarioReducedCost () 

Description: 

Returns the reduced cost for the specified scenario.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype: 

int LSgetScenarioReducedCost (pLSmodel pModel, int iScenario, 

double * padD) 
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Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario index. 

padD A double array to return scenario's reduced cost. The length of 

this vector is equal to the number of variables in the core 

model. It is assumed that memory has been allocated for this 

vector. 

LSgetNodeDualSolution () 

Description: 

Returns the dual solution for the specified node.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype: 

int  LSgetNodeDualSolution (pLSmodel pModel, int iScenario, int 

iStage, double * padY) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario the node belongs to 

iStage An integer specifying the stage the node belongs to. 

padY A double array to return specified nodes's dual solution The 

length of this vector is equal to the number of constraints in the 

stage associated with the node. It is assumed that memory has 

been allocated for this vector. 

LSgetNodeSlacks () 

Description: 

Returns the dual solution for the specified node.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype: 

int  LSgetNodeSlacks (pLSmodel pModel, int iScenario, int 

iStage, double * padS) 
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Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario the node belongs to 

iStage An integer specifying the stage the node belongs to. 

padS a double array to return specified nodes's dual solution The 

length of this vector is equal to the number of constraints in the 

stage associated with the node. It is assumed that memory has 

been allocated for this vector. 

LSgetScenarioDualSolution () 

Description: 

Returns the dual solution for the specified scenario.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype: 

int  LSgetScenarioDualSolution (pLSmodel pModel, int iScenario, 

double * padY) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario index.  

iStage An integer specifying the stage the node belongs to. 

padY A double array to return scenario's dual solution The length of 

this vector is equal to the number of constraints in the core 

model. It is assumed that memory has been allocated for this 

vector. 
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LSgetScenarioSlacks () 

Description: 

Returns the primal slacks for the specified scenario.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype: 

int  LSgetScenarioSlacks (pLSmodel pModel, int iScenario, 

double * padS) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel object. 

iScenario An integer specifying the scenario index.  

iStage An integer specifying the stage the node belongs to. 

padS A double array to return scenario's primal slacks. The length of 

this vector is equal to the number of constraints in the core 

model. It is assumed that memory has been allocated for this 

vector. 

 

LSgetNextBestMIPSoln() 

Description:  

Generates the next best (in terms of objective value) solution for the current mixed-integer 

model.  Repeated calls to LSgetNextBestMIPSoln() will allow one to generate the so-called 

K-Best solutions to mixed-integer model. This is useful for revealing alternate optima. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetNextBestMIPSoln( pLSmodel pModel, int 

*pnIntModStatus)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pnIntModStatus A pointer to an integer varaible that will return the status on the 

new, next-best solution. 
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Remarks: 

 LSgetNextBestMIPSoln() may not be used on models containing general integer 

variables; all integer variables must be binary. 

 LSgetNextBestMIPSoln() modifies the original, base model by adding one constraint to 

the end of the model for each call to LSgetNextBestMIPSoln().  To return to the original 

model, you must delete these additional constraints after the final call to 

LSgetNextBestMIPSoln(). 

 To generate the K-Best solutions for a MIP, one would perform the following steps: 

1. Generate the base MIP model. 

2. Call LSsolveMIP() to optimize the base model. 

3. Set i=0. 

4. If current solution status is not optimal, go to step 10. 

5. Call one or more model solution query routines to retrieve the current solution.   

6. Set i=i+1. 

7. If i>=K go to 10. 

8. Call LSgetNextBestMIPSoln() to find the next best solution. 

9. Go to step 4.  

10. Exit. 

LSreadSolutionFromSolFile() 

Description:  

This method reads the LP solution from a binary file. Since the number of columns can be too 

large to handle in a single array, the method takes in two parameters, lBeginIndexPrimalSol 

and lEndIndexPrimalSol and returns all the primal values for the columns whose index lies 

between these two values. 
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Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSreadSolutionFileLP(char *szFileNameSol, int nFileFormat, 

long long lBeginIndexPrimalSol, long long 

lEndIndexPrimalSol, int *pnSolStatus, double *pdObjValue, 

int  *pnNoOfCons, long long *plNoOfCols, int     

*pnNoOfColsEvaluated,  int *pnNoOfIterations, double    

*pdTimeTakenInSeconds, double *padPrimalValues, double    

*padDualValues) 

Input Arguments:  

Name  Description  

szFileNameSol The name of the binary file from which the solution is to be 

read. 

nFileFormat The format of the binary file. We are currently supporting a 

single format in which data is written to the file in the 

following sequence: 

 1) File format: Possible values are: 

LS_SPRINT_OUTPUT_FILE_FREE (default) 

LS_SPRINT_OUTPUT_FILE_BIN 

LS_SPRINT_OUTPUT_FILE_TXT                               

2) Solution status                               

3) Objective value 

4) No of constraints 

5) No of columns (total) 

6) No of columns (evaluated) 

7) Primal solution 

8) Dual solution 

lBeginIndexPrimalSol The starting index for the set of columns whose primal value is 

to be retuned. 

lEndIndexPrimalSol The ending index of the set of columns whose primal value is 

to be retuned. 

Output Arguments:  

Name  Description  

nSolStatus The status of the solution: feasible, infeasible,etc… 

dObjValue Objective function value. 

nNoOfCons Number of constraints. 

lNoOfCols Number of columns in the MPS file. 
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nNoOfColsEvaluated Number of columns that were evaluated and added to the LP at 

some stage. 

pnNoOfIterations Number of iterations. 

pdTimeTakenInSeconds Time elapsed in seconds. 

padPrimalValues Primal solution, this array must be assigned memory 

equivalent to (lEndIndexPrimalSol - lBeginIndexPrimalSol + 

1) doubles. 

padDualValues Dual solution. 

 

LSloadGASolution()  

Description:  

Loads the GA solution at specified index in the final population to the main solution 

structures for access with solution query routines. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes 

Prototype:  

int LSloadGASolution(pLSmodel pModel, int nIndex); 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

nIndex Index of the individual in the final population 
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LSgetObjPoolNumSol() 

Description:  

Get the total number of alternative solutions found w.r.t the objective function at specified 

index. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  SgetObjPoolNumSol(pLSmodel pModel, int nObjIndex,  

int *pNumSol) 

Input Arguments:  

Name  Description  

pModel     An instance of LSmodel. 

nObjIndex Index of the objective function for which the solution is 

queried for. 

Output Arguments:  

Name  Description  

pNumSol An integer reference to return the number of solutions found. 

LSloadSolutionAt() 

Description:  

Loads the solution at specified index and objective level to the main solution structures for 

access with solution query routines. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSloadSolutionAt(pLSmodel  pModel, int nObjIndex, int 

nSolIndex) 

Input Arguments:  

Name  Description  

pModel     An instance of LSmodel. 

nObjIndex Index of the objective function for which the solution is 

queried for. 

nSolIndex Index of the alternative solution for the specified objective 

function. 
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Model Query Routines 
The routines in this section allow you to retrieve the components of the model data. 

LSgetConeDatai()  

Description:  

Retrieve data for cone i. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes 

Prototype:  

int LSgetConeDatai( pLSmodel pModel, int iCone, char 

*pachConeType, int *piNnz, int *piCols)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

iCone The index of the cone to retrieve the data for. 

Output Arguments:  

Name  Description  

pachConeType A pointer to a character variable that returns the constraint’s 

type. The returned value will be ‘'Q', or ‘R’. 

piNnz A pointer to an integer variable that returns the number of 

variables characterizing the cone. 

piCols A pointer to an integer vector that returns the indices of 

variables characterizing the cone. 
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LSgetConeIndex()  

Description:  

Gets the index of a cone with a specified name. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes 

Prototype:  

int LSgetConeIndex( pLSmodel pModel, char *pszConeName, int 

*piCone)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

pszConeName A pointer to a null-terminated string containing the name of the 

cone for which the index is requested. 

Output Arguments:  

Name  Description  

piCone A pointer to an integer scalar that returns the index of the cone 

requested. 

LSgetConeNamei()  

Description:  

Gets the name of a cone with a specified index. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes 

Prototype:  

int LSgetConeNamei( pLSmodel pModel, int iCone, char 

*pachConeName)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

iCone Index of the cone whose name is to be retrieved. 

Output Arguments:  

Name  Description  

pachConeName A pointer to a character array that contains the cone’s name 

with a null terminator. 
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LSgetConstraintDatai() 

Description:  

Gets data on a specified constraint. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSgetConstraintDatai( pLSmodel pModel, int iCon, char 

*pchContype, char *pchIsNlp, double *pdB)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

iCon The index of the constraint you wish to receive information on. 

Output Arguments:  

Name  Description  

pchContype A pointer to a character variable that returns the constraint’s 

type. The returned value will be ‘'L', 'E', 'G', or ‘N’, for less-

than-or-equal-to, equal to, greater-than-or-equal-to, or neutral, 

respectively. 

pchIsNlp A pointer to a character that returns 0 if the constraint is linear 

and 1 if it is nonlinear.  

pdB A pointer to a double precision variable that returns the 

constraint’s right-hand side value. 
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LSgetConstraintIndex() 

Description:  

Gets the index of a constraint with a specified name. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetConstraintIndex( pLSmodel pModel, char *pszConname, 

int *piCon)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

pszConname A pointer to a character array that contains the constraint’s 

name with a null terminator.  

Output Arguments:  

Name  Description  

piCon A pointer to an index of the constraint whose name is to be 

retrieved. 

LSgetConstraintNamei() 

Description:  

Gets the name of a constraint with a specified index. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetConstraintNamei( pLSmodel pModel, int iCon, char 

*pszConname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

iCon Index of the constraint whose name is to be retrieved. 

Output Arguments:  

Name  Description  

pszConname A pointer to a character array that contains the constraint’s 

name with a null terminator.  
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LSgetLPConstraintDatai() 

Description:  

Retrieves the formulation data for a specified constraint in a linear or mixed integer linear 

program. Individual pointers may be set to NULL if a particular item is not required. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetLPConstraintDatai( pLSmodel pModel, int iCon, char 

*pchContype, double *pdB, int *pnNnz, int *paiVar, double 

*padAcoef)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

iCon  An integer containing the index of the constraint whose data 

you wish to retrieve. 

Output Arguments:  

Name  Description  

pchContype A pointer to a character that returns the constraint’s type. 

Values returned are 'L' for less-than-or-equal-to, 'E' for 

equal-to, 'G' for greater-than-or-equal-to, or ‘N’ for neutral. 

pdB A pointer to a double precision quantity that returns the 

constraint’s right-hand side coefficient. 

pnNnz A pointer to an integer that returns the number of nonzero 

coefficients in the constraint. 

paiVar A pointer to an integer array that returns the indices of the 

variables with nonzero coefficients in the constraint. You must 

allocate all required space for this array before calling this 

routine. 

padAcoef A pointer to a double precision array that returns the 

constraint’s nonzero coefficients. You must allocate all 

required space for this array before calling this routine. 

Remarks: 

 If you know a constraint’s name, but don’t know its internal index, you can obtain the 

index with a call to LSgetConstraintIndex(). To get a constraint’s name, given its index, 

see LSgetConstraintNamei(). 
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LSgetLPData() 

Description:  

Retrieves the formulation data for a given linear or mixed integer linear programming model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int 

  

LSgetLPData( pLSmodel pModel, int *pObjsense, double 

*pdObjconst, double *padC, double *padB, char 

*pachContypes, int *paiAcols, int *pacAcols, double 

*padAcoef, int *paiArows, double *padL, double *padU)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pObjsense  A pointer to an integer indicating whether the objective is to be 

maximized or minimized. Valid values are LS_MAX or 

LS_MIN, respectively.  

pdObjconst A pointer to a double precision constant to be added to the 

objective value.  

padC  A pointer to a double precision vector that returns the linear 

program’s objective coefficients. This vector must have at least 

one element for each variable in the model. 

padB  A pointer to a double precision vector that returns the 

constraint right-hand side coefficients. This vector must have at 

least one element for each constraint in the model. 

pachContypes  

 

A pointer to a character vector that returns the type of each 

constraint. Values returned are 'L', 'E', 'G', or ‘N’ for 

less-than-or-equal-to, equal-to, greater-than-or-equal-to, or 

neutral, respectively. This array must contain at least one byte 

for each constraint. 

paiAcols  

 

A pointer to an integer vector returning the index of the first 

nonzero in each column. This vector must have n + 1 entries, 

where n is the number of variables in the model. The last entry 

will be the index of the next appended column, assuming one 

was to be appended. 

pacAcols  

 

A pointer to an integer vector returning the length of each 

column. Note that the length of a column can be set to be 

greater than the values of paiAcols would suggest. In other 

words, it is possible for pacAcols[i] < paiAcols[i+1] – 
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paiAcols[i].  

padAcoef  A pointer to a double precision vector returning the nonzero 

coefficients of the constraint matrix. This vector must contain 

at least one element for each nonzero in the constraint matrix. 

paiArows  A pointer to an integer vector returning the row indices of the 

nonzeros in the constraint matrix. You must allocate at least 

one element in this vector for each nonzero in the constraint 

matrix. 

padL  A pointer to a double precision vector containing the lower 

bound of each variable. If there is no lower bound on the 

variable, then this value will be equal to -LS_INFINITY. You 

must allocate at least one element in this vector for each 

variable in the model. 

padU A pointer to a double precision vector containing the upper 

bound of each variable. If there is no upper bound on the 

variable, then this value will be equal to LS_INFINITY. You 

must allocate at least one element in this vector for each 

variable in the model. 

Remarks: 

 For information on loading a linear program’s formulation data into the system, see 

LSloadLPData(). 

 Pointers may be set to NULL for any information not required. 
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LSgetLPVariableDataj() 

Description:  

Retrieves the formulation data for a specified variable. Individual pointers may be set to 

NULL if a particular item is not required. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetLPVariableDataj( pLSmodel pModel, int iVar, char 

*pchVartype, double *pdC, double *pdL, double *pdU, int 

*pnAnnz, int *paiArows, double *padAcoef)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

iVar  An integer containing the index of the variable whose data you 

wish to retrieve. 

Output Arguments:  

Name  Description  

pchVartype A pointer to a character that returns the variable’s type. Values 

returned are 'B' for binary, 'C' for continuous, or 'I' for general 

integer. 

pdC A pointer to a double precision quantity that returns the 

variable’s objective coefficient. 

pdL A pointer to a double precision quantity that returns the 

variable’s lower bound. 

pdU A pointer to a double precision quantity that returns the 

variable’s upper bound. 

pnAnnz A pointer to an integer that returns the number of nonzero 

constraint coefficients in the variable’s column. 

paiArows A pointer to an integer array that returns the row indices of the 

variable’s *pnAnnz nonzeros. You must allocate the required 

space for this array before calling this routine. 

padAcoef A pointer to a double precision array that returns the variable’s 

nonzero coefficients. You must allocate all required space for 

this array before calling this routine. 

Remarks: 

 If you know a variable’s name, but don’t know its internal index, you can obtain the 

index with a call to LSgetVariableIndex(). To get a variable’s name given its index, see 

LSgetVariableNamej(). 
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LSgetNameData() 

Description:  

Returns the names—objective, right-hand side vector, range vector, bound vector, constraints, 

and variables—of a given model. Any of the pointers to the names can be input as NULL if 

the corresponding information is not required.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetNameData( pLSmodel pModel, char *pszTitle, char 

*pszObjname, char *pszRhsname, char *pszRngname, char 

*pszBndname, char **paszConnames, char * 

pachConNameData , char **paszVarnames, char 

*pachVarNameData)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pszTitle  A pointer to a character array that returns the title of the 

problem. A model’s title can be of any length, so be sure to 

allocate sufficient space to store the title you originally passed 

to LINDO API. The returned title will be null terminated. 

pszObjname A pointer to a character array that will return the name of the 

objective, null terminated.  

pszRhsname A pointer to a character array that returns the name of the 

right-hand side vector, null terminated.  

pszRngname A pointer to a character array that returns the name of the range 

vector, null terminated. This pointer is reserved for future use. 

pszBndname A pointer to a character array that returns the name of the 

bound vector, null terminated.  

paszConnames A pointer to an array of pointers of length equal to or 

exceeding the number of constraints. On return, these pointers 

will point to the constraint names stored in the character array 

pointed to by paszConNameData. You must allocate space for 

m pointers, where m is the number of rows. 

pachConNameData A pointer to an array of characters used to store the actual 

constraint name data. 

paszVarnames A pointer to an array of pointers of length equal to or 

exceeding the number of variables. On return, the pointers will 
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point to the variable names stored in the character array 

pointed to by paszVarNameData. You must allocate space for 

n pointers, where n is the number of variables. 

pachVarNameData A pointer to an array of characters used to store the actual 

variable name data. 

Remarks:  

 The right-hand side name, range name, and bound name are typically only used if the 

model was read from an MPS file.  

 You may set any of the pointers to NULL if the particular name data is not relevant. 

 The constraint and variable name data in the output arguments pachConNameData and 

pachVarNameData are created internally by LINDO API with LSloadNameData. 

LSgetNLPConstraintDatai() 

Description:  

Gets data about the nonlinear structure of a specific row of the model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetNLPConstraintDatai ( pLSmodel pModel, int i, int 

*pnNnzi, int *paiColi, double *padCoefi);  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

i An integer indicating the constraint to retrieve the data for. 

Output Arguments: 

Name  Description  

pnNnzi A pointer to an integer returning the number of nonlinear 

nonzeros in constraint i. 

paiColi A pointer to an integer vector returning the column indices of 

the nonlinear nonzeros in the i
th

 row of the constraint matrix. 

padCoefi A pointer to a double precision vector returning the current 

values of the nonzero coefficients in the i
th

 row of the coefficient 

(Jacobian) matrix.  

Remarks:  

 It is the caller’s responsibility to make sure that the vectors paiColi and padCoefi have 

room for at least *pnNnzi elements. 
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LSgetNLPData() 

Description:  

Gets data about the nonlinear structure of a model, essentially the reverse of 

LSloadNLPData().  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetNLPData(pLSmodel pModel, int *paiCols, int *pacCols, 

double *padCoef, int *paiRows, int *pnObj, int *paiObj, 

double *padObjCoef, char *pachConType) 

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

paiCols A pointer to an integer vector returning the index of the first 

nonlinear nonzero in each column. This vector must have 

nVars+1 entries, where nVars is the number of variables. The 

last entry will be the index of the next appended column, 

assuming one was to be appended. 

pacCols A pointer to an integer vector returning the number of 

nonlinear elements in each column.   

padCoef A pointer to a double precision vector returning the current 

values of the nonzero coefficients in the (Jacobian) matrix. 

This can be NULL. 

paiRows A pointer to an integer vector returning the row indices of the 

nonlinear nonzeros in the coefficient matrix. 

pnObj An integer returning the number of nonlinear variables in the 

objective function. 

paiObj A pointer to an integer vector returning column indices of the 

nonlinear terms in the objective. 

padObjCoef A pointer to a double precision vector returning the current 

partial derivatives of the objective corresponding to the 

variables paiObj [ ]. 

pachConType A pointer to a character vector whose elements indicate 

whether a constraint has nonlinear terms or not. If 

pachConType [i] > 0, then constraint i has nonlinear terms.  
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LSgetNLPObjectiveData() 

Description:  

Gets data about the nonlinear structure of the objective row. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int   LSgetNLPObjectiveData ( pLSmodel pModel, int *pnObj, int 

*paiObj, double *padObjCoef); 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pnObj A pointer to an integer returning the number of nonlinear 

variables in the objective function. 

paiObj A pointer to an integer vector returning column indices of the 

nonlinear terms in the objective. 

padObjCoef A pointer to a double precision vector returning the current 

partial derivatives of the objective corresponding to the 

variables in paiObj with respect to the last primal solution 

computed during the iterations 

Remarks:  

 It is the caller’s responsibility to make sure that the vectors paiObj and padObjCoef have 

room for at least *pnObj elements. 
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LSgetNLPVariableDataj() 

Description:  

Gets data about the nonlinear structure of a specific variable of the model  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetNLPVariableDataj ( pLSmodel pModel,int j, int 

*pnNnzj, int *paiRowj, double * padCoefj);  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

j An integer indicating the column to retrieve the data for. 

Output Arguments 

Name  Description  

pnNnzj A pointer to an integer returning the number of nonlinear 

nonzeros in column j. 

paiRowj A pointer to an integer vector returning the row indices of the 

nonlinear nonzeros in the j
th

 column of the constraint matrix. 

padCoefj A pointer to a double precision vector returning the current 

values of the nonzero coefficients in the j
th

 column of the 

coefficient (Jacobian) matrix with respect to the last primal 

solution computed during the iterations.  

Remarks:  

 It is the caller’s responsibility to make sure that the vectors paiRowj and padCoefj have 

room for at least *pnNnzj elements.  
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LSgetQCData()  

Description:  

Retrieves the quadratic data from an LSmodel data structure. Any of the pointers in the output 

argument list can be set to NULL if the corresponding information is not required.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error codes. 

Prototype:  

int  LSgetQCData(pLSmodel pModel, int *paiQCrows, int 

*paiQCcols1, int *paiQCcols2, double *padQCcoef)  

Input Arguments: 

Name  Description  

pModel  A pointer to an instance of LSmodel from which to retrieve the 

problem data.  

Output Arguments: 

Name  Description  

paiQCrows 

 

A pointer to an integer vector containing the index of the 

constraint associated with each quadratic term with a nonzero 

coefficient. The objective row is indicated with an index of 

-1.This vector must have room for all nonzero entries.  

PaiQCcols1 A pointer to an integer vector containing the index of the first 

variable defining each quadratic term. This vector must have 

one element for each nonzero in the matrix. 

paiQCcols2 

 

A pointer to an integer vector containing the index of the second 

variable defining each quadratic term. This vector must have 

one element for each nonzero in the matrix. 

padQCcoef  A pointer to a double vector containing the nonzero coefficients 

in the quadratic matrix. This vector must also have space for 

each nonzero matrix element. 

Remarks:  

 LSgetQCData does not return the number of nonzeros in the Q matrices. You can get that 

information using LSgetInfo(). 
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LSgetQCDatai()  

Description:  

Retrieves the quadratic data associated with constraint i from an LSmodel data structure. Any 

of the pointers in the output argument list can be set to NULL if the corresponding 

information is not required.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error codes. 

Prototype:  

int LSgetQCDatai(pLSmodel pModel, int iCon, int *pnQCnnz, int 

*paiQCcols1, int *paiQCcols2, double *padQCcoef)  

Input Arguments: 

Name  Description  

pModel  A pointer to an instance of LSmodel from which to retrieve the 

problem data.  

iCon An integer scalar specifying the constraint for which the 

quadratic data will be retrieved. 

Output Arguments:  

Name  Description  

pnQCnnz  A pointer to an integer containing the number of nonzeros in the 

coefficient matrix of the quadratic term.  

paiQCcols1 A pointer to an integer vector containing the index of the first 

variable defining each quadratic term. This vector must have 

one element for each nonzero in the matrix. 

paiQCcols2 

 

A pointer to an integer vector containing the index of the second 

variable defining each quadratic term. This vector must have 

one element for each nonzero in the matrix. 

padQCcoef  A pointer to a double vector containing the nonzero coefficients 

in the quadratic matrix. This vector must also have space for 

each nonzero matrix element. 
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LSgetSemiContData()   

Description:  

Retrieves the semi-continuous data from an LSmodel data structure. Any of the pointers in the 

output argument list can be set to NULL if the corresponding information is not required.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error codes.. 

Prototype:  

int LSgetSemiContData(pLSmodel pModel, int *piNvars, int 

*piVarndx, double *padl, double *padu)  

Input Arguments: 

Name  Description  

pModel  A pointer to an instance of LSmodel from which to retrieve the 

problem data.  

Output Arguments:  

Name  Description  

piNvars  A pointer to an integer variable to return the number of semi-

continuous variables. 

piVarndx A pointer to an integer vector to return the indices of semi-

continuous variables. 

padl A pointer to a vector to return the lower bounds of semi-

continuous variables. 

padu A pointer to a vector to return the upper bounds of semi-

continuous variables. 
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LSgetSETSData()   

Description:  

Retrieves sets data from an LSmodel data structure. Any of the pointers in the output 

argument list can be set to NULL if the corresponding information is not required.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error codes 

Prototype:  

int LSgetSETSData(pLSmodel pModel, int *piNsets, int *piNtnz, 

char *pachSETtype, int *piCardnum, int *piNnz, int piBegset, 

int *piVarndx)  

Input Arguments: 

Name  Description  

pModel  A pointer to an instance of LSmodel from which to retrieve the 

problem data.  

Output Arguments:  

Name  Description  

piNsets A pointer to an integer variable to return the number of sets in 

the model. 

piNtnz A pointer to an integer variable to return the total number of 

variables in the sets. 

pachSETtype A pointer to a character array to return the type of sets in the 

model. The size of this array should be at least  (*piNsets) 

piCardnum A pointer to an integer array to return the cardinalities of sets in 

the model. The size of this array should be at least  (*piNsets) 

piNnz A pointer to an integer array to return the number of variables in 

each set in the model. The size of this array should be at least  

(*piNsets)  

piBegset A pointer to an integer array returning the index of the first 

variable in each set. This vector must have (*piNsets + 1) 

entries, where *piNsets is the number of sets in the model. The 

last entry will be the index of the next appended set, assuming 

one was to be appended. 

piVarndx A pointer to an integer vector returning the indices of the 

variables in the sets. You must allocate at least one element in 

this vector for each <variable,set> tuple (i.e. at least *piNtnz 

elements are required.) 
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LSgetSETSDatai()   

Description:  

Retrieves the data for set i from an LSmodel data structure. Any of the pointers in the output 

argument list can be set to NULL if the corresponding information is not required.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error codes. 

Prototype:  

int LSgetSETSDatai(pLSmodel pModel, int iSet, char 

*pachSETType, int *piCardnum, int *piNnz, int *piVarndx)  

Input Arguments: 

Name  Description  

pModel  A pointer to an instance of LSmodel from which to retrieve the 

problem data.  

iSet The index of the set to retrieve the data for. 

Output Arguments:  

Name  Description  

pachSETType  A pointer to a character variable to return the set type. 

piCardnum A pointer to an integer variable to return the set cardinality. 

piNnz A pointer to an integer variable to return the number of 

variables in the set. 

piVarndx A pointer to an integer vector to return the indices of the 

variables in the set. This vector should have at least (*piNnz) 

elements. 
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LSgetVariableIndex() 

Description:  

Retrieves the internal index of a specified variable name.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetVariableIndex( pLSmodel pModel, char *pszVarname, 

int *piVar)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

pszVarname A pointer to a null terminated character string containing the 

name of the variable. 

Output Arguments:  

Name  Description  

piVar A pointer to an integer that returns the variable’s index. 

Remarks: 

 To get a variable’s name given its index, see LSgetVariableNamej().  

 If you have problems with this routine, watch out for embedded blanks. For example, 

"X005    " (four trailing blanks) is not the same as "    X005" (four leading 

blanks), is not the same as "X005" (no blanks). 

 Refer to LSreadMPSFile() for a detailed description of the internal formatting of the 

name data. 
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LSgetVariableNamej() 

Description:  

Retrieves the name of a variable, given its index number.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetVariableNamej( pLSmodel pModel, int iVar, char 

*pszVarname)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

iVar  An integer containing the index of the variable whose name 

you wish to retrieve. 

Output Arguments:  

Name  Description  

pszVarname A pointer to a character array that returns the variable’s name 

with a null terminator. 

Remarks: 

 To get a variable’s formulation data given its index, see LSgetLPVariableDataj(). 

LSgetVarStartPoint()  

Description:  

Retrieves the values of the initial primal solution. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSgetVarStartPoint( pLSmodel pModel, double *padPrimal)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

padPrimal A pointer to a double precision vector containing starting 

values for each variable in the given model. The length of this 

vector is equal to the number of variables in the model. 
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LSgetVarType() 

Description:  

Retrieves the variable types and their respective counts in a given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetVarType( pLSmodel pModel, char *pachVartypes)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pachVartypes A pointer to a vector returning the type of each variable. 

Return value for each variable is either 

‘C’ for a continuous variable, 

‘B’ for a binary variable, or 

‘I’ for a general integer variable. 

The length of this vector must be at least that of the current 

number of variables in the model. This pointer can be set to 

NULL if the variable types are not required. 

Remarks: 

 For information on loading a mixed-integer program’s formulation data into the system, 

see LSloadVarType(). 

LSgetStageName () 

Description: 

Get stage name by index.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetStageName (pLSmodel pModel, int stageIndex, char * 

stageName) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

stageIndex An integer specifying the index of the stage to retrieve the 

name for.  

stageName A string to retrieve the stage name (max length is 255 

characters). 

LSgetStageIndex () 

Description: 

Get index of stage by name.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetStageIndex (pLSmodel pModel, char * stageName, int * 

stageIndex) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

stageName  A string specifying the name of the stage to return the index 

for.  

stageIndex A reference to an integer to return the index of the stage. 

LSgetStocParIndex () 

Description: 

Get the index of stochastic parameter by name.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetStocParIndex (pLSmodel pModel, char * svName, int * 

svIndex) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

svName A string specifying the name of the stochastic parameter to 

return the index for. 

svIndex A reference to an integer to return the index of the stochastic 

parameter. 

LSgetStocParName () 

Description: 

Get name of stochastic parameter by index.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetStocParName (pLSmodel pModel, int svIndex, char * 

svName) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

svIndex  A reference to an integer to return the index of the stochastic 

parameter. 

svName A string specifying the name of the stochastic parameter to 

return the index for. 

LSgetScenarioName () 

Description: 

Get scenario name by index.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetScenarioName (pLSmodel pModel, int jScenario, char * 

scenarioName) 

 

 

 

 



238 CHAPTER 2 

 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

jScenario An integer specifying the scenario index. 

scenarioName A string reference to return the name of the scenario (Max 

lengt 255 characters). 

LSgetScenarioIndex () 

Description: 

Get index of a scenario by its name.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetScenarioIndex (pLSmodel pModel, char * scenarioName, 

int * jScenario) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

scenarioName A string specifying the name of the scenario to return the index 

for.  

jScenario A reference an integer to return the index of the scenario. 

LSgetProbabilityByScenario () 

Description: 

Returns the probability of a given scenario.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetProbabilityByScenario (pLSmodel pModel, int jScenario, 

double * dprob) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

jScenario An integer specifying the scenario index. 

dprob A reference to a double to return the probabability of the 

scenario. 

LSgetProbabilityByNode () 

Description: 

Returns the probability of a given node in the stochastic tree.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetProbabilityByNode (pLSmodel pModel, int iNode, 

double * dprob) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

iNode An integer specifying the node index. 

dprob A reference to a double to return the probabability of the node. 

LSgetDeteqModel () 

Description: 

Get the deterministric equivalent (DEQ) of the SP model, building it if not existent.  

Returns: 

ideModel an instance of LSmodel object referring to the DEQ model 

Prototype:  

int  LSgetDeteqModel (pLSmodel pModel, int iDeqType, int * 

perrorcode) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

iDeqType An integer specifying the DEQ type (implicit or explicit). 

Possible values are: 

LS_DETEQ_FREE 

LS_DETEQ_IMPLICIT 

LS_DETEQ_EXPLICIT  

perrorcode an reference to an integer to return the error code. 

LSgetNodeListByScenario () 

Description: 

Retrieves the indices of the nodes that belong to a given scenario. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetNodeListByScenario (pLSmodel pModel, int jScenario, 

int * pNodesOnPath, int * pnNodes) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

jScenario An integer specifying the scenario index 

pNodesOnPath An integer array to return the node list constituting the 

scenario. The length of this vector is equal to the number of 

stages in the model. It is assumed that memory has been 

allocated for this vector. 

pnNodes An integer pointer to return the actual number of nodes on the 

scenario. 

Remarks: 

Also loads the nodes of the specified scenario into an internal buffer.  

LSgetStocParOutcomes () 

Description: 

Retrieve the outcomes of stochastic parameters for the specified scenario.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  
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Prototype:  

int  LSgetStocParOutcomes (pLSmodel pModel, int jScenario, 

double * padVals, double * pdProbability) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

jScenario An integer specifying the scenario index. be at least the number 

of stochastic parameters in the model. 

padVals a double vector to return the values of stochastic parameters for 

the specified scenario. The length of this vector should be at 

least the number of stochastic parameters in the model.  

pdProbability probability of the scenario. 

Remarks: 

Total number of stochastic parameters could be retrived with LS_IINFO_NUM_SPARS.  

LSgetStocParData () 

Description: 

Retrieve the data of stochastic parameters. 

 Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int  LSgetStocParData (pLSmodel pModel, int * paiStages, double 

* padVals) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

paiStages an integer vector to return the stages of stochastic parameters. 

The length of this vector should be at least the number of 

stochastic parameters in the model.  

padVals a double vector to return the values of stochastic parameters for 

the specified scenario. The length of this vector should be at 

least the number of stochastic parameters in the model.  

Remarks: 

Total number of stochastic parameters could be retrived with LS_IINFO_NUM_SPARS.  
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LSgetDiscreteBlocks () 

Description: 

Gets the stochastic data for the discrete block event at specified index.  

Returns: 

errorcode An integer error code listed in Appendix A. 

Prototype:  

int  LSgetDiscreteBlocks (pLSmodel pModel, int iEvent, int * 

nDistType, int * iStage, int * nRealzBlock, double * padProbs, 

int * iModifyRule) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

iEvent An integer specifying the index of the discrete block event.  

nDistType A reference to an integer to return the distribution type of the 

event (optional).  

iStage A reference to an integer to return the stage index of the block 

event.  

nRealzBlock A reference to an integer to return the number of block 

realizations in the event.  

padProbs An double vector to return event probabilities. The length of 

this vector should be  *nRealzBlock   or more.  

iModifyRule A reference to an integer to return the flag indicating whether 

stochastic parameters update the core model by adding or 

replacing. 

Remarks: 

iEvent  cannot be larger than the total number of discrete block events in the SP model. You 

can use LSgetStocInfo() or LSgetInfo() with LS_IINFO_STOC_NUM_EVENTS_BLOCK to 

retrieve the maximum possible value for iEvent .  
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LSgetDiscreteBlockOutcomes () 

Description: 

Gets the outcomes for the specified block-event at specified block-realization index.  

Returns: 

errorcode An integer error code listed in Appendix A. 

Prototype:  

int  LSgetDiscreteBlockOutcomes (pLSmodel pModel, int iEvent, 

int iRealz, int * nRealz, int * paiArows, int * paiAcols, int * 

paiStvs, double * padVals) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

iEvent An integer specifying the index of the discrete block event.  

iRealz An integer specifying the index of a block realization in the 

specified block event.  

nRealz A reference to an integer to return the number of individual 

stochastic parameters consitituting the block realization  

iRealz. 

paiArows An integer vector to return the row indices of stochastic 

parameters. in the block realization  iRealz . This vector should 

have  *nRealz   elements or more.  

paiAcols An integer vector to return the column indices of stochastic 

parameters. in the block realization  iRealz . This vector should 

have  *nRealz   elements or more.  

paiStvs An integer vector to return the (instruction-list) indices of 

stochastic parameters. in the block realization  iRealz  . This 

vector should have  *nRealz   elements or more.  

padVals A double vector to return the values associated with the 

stochastic parameters listed in paiStvs  or  (paiArows,paiAcols)   

The length of this vector should be  *nRealz   or more. 

Remarks: 

Only one of the following, paiStvs  or  (paiArows,paiAcols)  , will take sensible values on 

return. paiStvs  should be used with instruction-based input, whereas  (paiArows,paiAcols)   

should be used with matrix-based input. The argument(s) of the other group can be NULL. 

 

iEvent  cannot be larger than the total number of discrete block events in the SP model. You 

can use LSgetStocInfo() or LSgetInfo() to retrieve the maximum possible value for iEvent .  
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LSgetDiscreteIndep () 

Description: 

Gets the stochastic data for the (independent) discrete stochastic parameter at the specified 

event index.  

Returns: 

errorcode An integer error code listed in Appendix A. 

Prototype:  

int  LSgetDiscreteIndep (pLSmodel pModel, int iEvent, int * 

nDistType, int * iStage, int * iRow, int * jCol, int * iStv, int * 

nRealizations, double * padProbs, double * padVals, int * 

iModifyRule) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

iEvent An integer specifying the index of the discrete independent 

event. 

nDistType A reference to an integer to return the distribution type of the 

event (optional).  

iStage A reference to an integer to return the stage index of the 

discrete-independent event.  

iRow A reference to an integer to return the row index of the 

stochastic parameter. 

jCol A reference to an integer to return the column index of the 

stochastic parameter. 

iStv A reference to an integer specifying the index of stochastic 

parameter in the instruction list.  

nRealizations A reference to an integer to return the number of all possible 

realizations for the stochastic parameter.  

padProbs A double vector to return the probabilities associated with the 

realizations of the stochastic parameter. The length of this 

vector should be  *nRealizations   or more.  

padVals A double vector to return the values associated with the 

realizations of the stochastic parameter. The length of this 

vector should be  *nRealizations   or more.  

iModifyRule A reference to an integer to return the flag indicating whether 

stochastic parameters update the core model by adding or 

replacing. 
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Remarks: 

Only one of the following, iStvs  or  (iRow,jCol)  , will take sensible values on return. iStvs  

should be used with instruction-based input, whereas  (iRow,jCol)   should be used with 

matrix-based input. The argument(s) of the other group can be NULL. 

 

iEvent  cannot be larger than the total number of discrete independent events in the SP model. 

You can use LSgetStocInfo() or LSgetInfo() with 

LS_IINFO_STOC_NUM_EVENTS_DISCRETE to retrieve the maximum possible value for 

iEvent .  

LSgetSampleSizes () 

Description: 

Retrieve the number of nodes to be sampled in all stages.  

Returns: 

errorcode An integer error code listed in Appendix A.  

Prototype:  

int  LSgetSampleSizes (pLSmodel pModel, int * panSampleSizes) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

panSampleSizes an integer vector to return the sample size per stage The length 

of this vector should be the number of stages in the model or 

more.  

 

LSgetVariableStages () 

Description: 

Retrieve the stage indices of variables.  

Returns: 

errorcode An integer error code listed in Appendix A.  

Prototype:  

int  LSgetVariableStages (pLSmodel pModel, int * panStage) 
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

panStage an integer vector to return the stage indices of variables in the 

core model. The length of this vector should be at least the 

number of variables in the core model.  

LSgetHistogram () 

Description: 

Retrieves the histogram for given data with given bin specs.  

Returns: 

errorcode An integer error code listed in Appendix A.  

Prototype:  

int  LSgetHistogram(pLSmodel pModel, int nSampSize,                       

double *padVals, double dHistLow, double dHistHigh,                           

int *pnBins, int *panBinCounts, double *padBinLow, double 

*padBinHigh, double *padBinLeftEdge, double * 

padBinRightEdge) 
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Input Arguments:  

Name  Description  

pModel  An instance of LSmodel object.  

nSampSize An integer specifying the length of the input array.  

padVals A double reference to the input array 

dHistLow A double scalar specifying the low end of the histogram 

dHistHigh A double scalar specifying the high end of the histogram 

pnBins An integer reference to specify (or return) the number of bins 

(optional). 

panBinCounts An integer array to return bin counts. Length of this array 

should at least be (*pnBins). 

padBinLow An double array to return bin lows. Length of this array should 

at least be (*pnBins). 

padBinHigh An double array to return bin highs. Length of this array should 

at least be (*pnBins). 

padBinLeftEdge A double array to return bins left edges. Length of this array 

should at least be (*pnBins). 

 

padBinRightEdge A double array to return bins right edges. Length of this array 

should at least be (*pnBins). 

Remarks: 

 Set dHistLow = dHistHigh on input for the module to choose a suitable pair for low and high 

values defining the histogram. 

 If *pnBins is set to zero on input, the module will choose a suitable value for the number of 

bins and on return this value will contain the number of bins. 

  During calls with (*pnBins) = 0, all other output arguments should preferably be NULL. 

 Make sure to allocate at least (*pnBins) elements for  panBinCounts,  panBinProbs,  

padBinLow, padBinHigh arrays. 

Populating these output will require a second call to the function after (*pnBins) is 

determinated by a previous call. 

 On return padBinLow[0] = smallest value found in padVals, and padBinHigh[*pnBins-1] = 

largest value found in padVals. 
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LSgetScenarioModel () 

Description: 

Get a copy of the scenario model.  

Returns: 

scenModel An instance of pLSmodel containing the scenario model.  

Prototype:  

pLSmodel LSgetScenarioModel(pLSmodel pModel, int jScenario, int 

*pnErrorcode) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

jScenario An integer specifying the scenario to retrieve. 

pnErrorcode A reference to an integer to return the error code. 

LSgetScenario () 

Description: 

Gets the outcomes for the specified specified scenario.  

Returns: 

errorcode An integer error code listed in Appendix A. 

Prototype:  

int LSgetScenario(pLSmodel pModel, int jScenario, int   

*iParentScen, int *iBranchStage, double *dProb,  int     

*nRealz, int *paiArows, int *paiAcols, int *paiStvs, double 

*padVals, int *iModifyRule)   
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Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

jScenario   An integer specifying the index of a scenario realization.  

iParentScen A reference to an integer specifying the index of the parent 

scenario. 

iBranchStage    A reference to an integer specifying the branching stage. 

dProb A reference to a double to return event probability of scenario. 

nRealz A reference to an integer to return the number of individual 

stochastic parameters consitituting the scenario. 

paiArows An integer vector to return the row indices of stochastic 

parameters in the scenario. This vector should have*nRealz  

elements or more.  

paiAcols An integer vector to return the column indices of stochastic 

parameters in the scenario. This vector should  have*nRealz 

elements or more.  

paiStvs An integer vector to return the (instruction-list) indices of  

stochastic parameters.  in the scenario. This vector should 

have*nRealz elements or more. 

padVals A double vector to return the values associated with the 

stochastic parameters listed in  paiStvs or (paiArows,paiAcols)  

The length of this vector should be *nRealz or more. 

iModifyRule A reference to an integer to return the flag indicating  

whether stochastic parameters update the core model by adding  

or replacing. 

 Remark : 

Only one of the following,  paiStvs or  (paiArows,paiAcols), 

will take sensible values on return. \c paiStvs should be used with instruction-based input, 

whereas (paiArows,paiAcols) should be used with matrix-based input. The argument(s) of the 

other group can be NULL. 

LSgetParamDistIndep () 

Description: 

Gets the stochastic data for the (independent) parametric stochastic parameter at the specified 

event index.  

Returns: 

errorcode An integer error code listed in Appendix A. 
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Prototype:  

int LSgetParamDistIndep(pLSmodel pModel, int iEvent, int     

*nDistType, int *iStage, int *iRow, int *jCol, int *iStv, int 

*nParams, double *padParams, int *iModifyRule) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

iEvent An integer specifying the index of the discrete independent 

event. 

nDistType A reference to an integer to return the distribution type of the 

event (optional). 

iStage A reference to an integer to return the stage index of the 

discrete-independent event. 

iRow A reference to an integer to return the row index of the 

stochastic parameter. 

jCol A reference to an integer to return the column index of the 

stochastic parameter. 

iStv A reference to an integer specifying the index of stochastic 

parameter in the instruction list. 

nParams A reference to an integer to return the length of \c padParams. 

padParams A double vector to return the parameters defining the 

underlying distribution. 

iModifyRule A reference to an integer to return the flag indicating whether 

stochastic parameters update the core model by adding or 

replacing. 

Remark: 

Only one of the following,  iStvs or (iRow,jCol), will take sensible values on return. 

iStvs should be used with instruction-based input, whereas (iRow,jCol) should be used with 

matrix-based input. The argument(s) of the other group can be NULL.  

iEvent cannot be larger than the total number of discrete independent events in the SP model. 

You can use LSgetStocInfo() or LSgetInfo() with 

LS_IINFO_STOC_NUM_EVENTS_PARAMETRIC to retrieve the maximum possible value 

for iEvent. 

LSgetStocCCPInfo () 

Description: 

Get information about the current state of the stochastic model. 

Returns: 

errorcode An integer error code listed in Appendix A. 
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Prototype:  

int LSgetStocCCPInfo(pLSmodel  pModel, int query, int 

jscenario, int jchance, void *result) 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

query A valid information macro. Possible values are: 

 LS_DINFO_PINFEAS 

 LS_IINFO_STOC_NUM_CC_VIOLATED 

jscenario An optional argument to specify the scenario index. 

jchance An optional argument to specify the chance constraint index. 

result A reference to a variable of appropriate type to  return the 

result. 

Remark: 

Query values whose names begin with LS_IINFO take integer values, while those whose 

names begin with LS_DINFO take double-precision floating point values.       

LSgetChanceConstraint () 

Description: 

Gets the stochastic data for the specified chance constraint 

Returns: 

errorcode An integer error code listed in Appendix A. 
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Prototype:  

int LSgetChanceConstraint(pLSmodel pModel, int iChance, int 

*piSense, int *pnCons, int *paiCons, double *pdProb, double 

*pdObjWeight)              

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

iChance     An integer specifying the index of the chance constraint. 

piSense A reference to an integer to return the sense of the chance 

constraint. 

pnCons A reference to an integer to return the number of constraints in 

the chance-constraint. 

paiCons An integer vector to return the indices of the constraints 

in the constraints in the chance-constraint *pnCons or more. 

pdProb A reference to a double to return the probability level required. 

pdObjWeight A reference to a double to return the weight of the chance-

constraint in the probabilistic objective. 

Remark: 

iChance cannot be larger than the total number of chance constraints in the SP model. You 

can use LSgetStocInfo() or LSgetInfo() with LS_IINFO_STOC_NUM_CC to retrieve the 

maximum possible value for iChance.  

LSgetStocRowIndices () 

Description: 

Retrieve the indices of stochastic rows. 

Returns: 

errorcode An integer error code listed in Appendix A. 

Prototype:  

int LSgetStocRowIndices(pLSmodel pModel, int *paiSrows); 

Input Arguments:  

Name  Description  

pModel  A reference to an instance of LSmodel object.  

Output Arguments:  

Name  Description  

paiSrows an integer vector to return the indices of stochastic rows in the 

core model. The length of this vector should be at least the 

number of constraints in the core model. 
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LSgetVarStartPointPartial () 

Description: 

Retrieves the resident partial initial point for NLP models. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSgetVarStartPointPartial(pLSmodel pModel, int *pnCols,    

int *paiCols,  double *padPrimal) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel. 

pnCols An integer reference to return the number of variables in the 

partial solution. 

paiCols A vector to return the indicies of variables in the partial 

solution. 

padPrimal A vector to return the values of the partial solution. 
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LSgetMIPVarStartPointPartial () 

Description: 

Retrieves the resident initial point for MIP/MINLP models. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSgetMIPVarStartPointPartial(pLSmodel pModel, int 

*pnCols,    int *paiCols,  double *padPrimal) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel. 

pnCols An integer reference to return the number of variables in the 

partial solution. 

paiCols A vector to return the indicies of variables in the partial 

solution. 

padPrimal A vector to return the values of the partial solution. 

LSgetMIPVarStartPoint () 

Description: 

Retrieves the values of the initial MIP primal solution. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSgetMIPVarStartPoint(pLSmodel pModel, double 

*padPrimal) 

Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel. 

padPrimal A pointer to a double precision vector containing starting 

values for each variable in the given MIP model. The length of 

this vector is equal to the number of variables in the model. 
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LSgetQCEigs ()  

Description:  

Finds a few eigenvalues and eigenvectors of a quadratic matrix 

    Q_{i} for the specified model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes 

Prototype:  

int LSgetQCEigs(pLSmodel pModel, int      iRow,  

char *pachWhich, double   *padEigval, double   **padEigvec,  

int      nEigval, int      nCV, double   dTol,  int      nMaxIter) 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

iRow The row index of the quadratic constraint for which the 

eigenvalues of the associated Q matrix will be computed. 

pachWhich A character array specifying the type of eigenvalues to return.  

    Possible values are:      

       'LM' or 'SM' - Largest or Smallest Magnitude 

    For real symmetric problems: 

       'LA' or 'SA' - Largest or Smallest Algebraic 

       'BE' - Both Ends, one more from high end if K is odd 

    For nonsymmetric and complex problems:  

       'LR' or 'SR' - Largest or Smallest Real part 

       'LI' or 'SI' - Largest or Smallest Imaginary part 

padEigval A double vector of length nEigval to return the eigenvalues 

padEigvec A double vector of length nEigval by NVARS to return the 

eigenvectors or NULL 

nEigval The Number of eigenvalues to be computed.  

 0 < nEigval < NVARS should hold and if nEigval<=0, 

nEigval=4 is assumed. 

nCV The number of columns of the matrix padEigvec (which should 

be less than or equal to NVARS). This will indicate how many 

Lanczos vectors are generated at each iteration. 

dTol Stopping tolerance which is the relative accuracy of the Ritz 

value. If dTol<0 is passed a default value of 1e-16 is used. 

nMaxIter Maximum number of iterations. If nMaxIter < 0 is passed, a 

default of 300 is used 
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Model Modification Routines 
The routines in this section can modify the structure of a model on an incremental basis. For instance, 

these routines may be used to add and/or delete constraints and/or variables. After modifying a model, 

the LINDO API solver will restart using the remains of the last solution basis. Thus, after applying 

modest modifications to a model, re-solving should be relatively fast. These routines are intended for 

making minor modifications to a model. If you need to pass a new formulation, it is faster to use a 

routine such as LSloadLPData(), which is discussed above in the Model Loading Routines section. 

LSaddCones()  

Description:  

Adds cones to a given model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int 

  

LSaddCones( pLSmodel pModel, int nCone, char 

*pszConeTypes, char **pcConenames, int *paiConebegcol, int 

*paiConecols)  

Input Arguments:  

Name  Description  

model A pointer to an instance of LSmodel. 

nCone An integer containing the number of cones to append. 

pszConeTypes A pointer to a character array containing the type of each cone 

to be added to the model. 

pcConenames A pointer to a vector of pointers to null terminated strings 

containing the name of each new cone.  

paiConebegcol A pointer to an integer vector containing the index of the first 

variable in each new cone. This vector must have nCone +1 

entries. The last entry should be equal to the number of 

variables in the added cones. 

paiConecols A pointer to an integer vector containing the indices of the 

variables in the new cones. 
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LSaddConstraints() 

Description:  

Adds constraints to a given model. If both constraints and variables need to be added to a 

model and adding the new information in row format is preferred, then this routine can be 

called after first calling LSaddVariables().  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int 

  

LSaddConstraints( pLSmodel pModel, int nNumaddcons, char 

*pachContypes, char **paszConnames, int *paiArows, double 

*padAcoef, int *paiAcols, double *padB)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nNumaddcons An integer containing the number of constraints to append.  

pachContypes A pointer to a character array containing the type of each 

constraint to be added to the model. Valid values for each 

constraint are 'L', 'E', 'G', or ‘N’ for less-than-or-equal-to, 

equal-to, greater-than-or-equal-to, or neutral, respectively.  

paszConnames A pointer to a vector of pointers to null terminated strings 

containing the name of each new constraint.  

paiArows A pointer to an integer vector containing the index of the first 

nonzero element in each new constraint. This vector must have 

nNumaddcons +1 entries. The last entry should be equal to the 

number of nonzeros in the added constraints.  

padAcoef A pointer to a double precision vector containing the nonzero 

coefficients of the new constraints.  

paiAcols A pointer to an integer vector containing the column indices of 

the nonzeros in the new constraints.  

padB A pointer to a double precision vector containing the 

right-hand side coefficients for each new constraint.  

Remarks:  

 If, in addition, variables need to be added to a model, then LSaddVariables() must be 

called prior to this routine. The call to LSaddVariables() should pass NULL as the 

paiAcols, padAcoef, and paiArows arguments.  

 If you need to load a new model, LSloadLPData() is a more efficient routine 
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LSaddChanceConstraint () 

Description:  

Adds a new chance-constraint to the SP model, which is characterized by a set of constraint 

indices from the original model and the probability levels to be satisfied. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSaddChanceConstraint (pLSmodel pModel,                           

int iSense, int nCons,  int *paiCons, double dPrLevel, double 

dObjWeight)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

iSense An integer macro specifying the sense of the chance-constraint. 

Possible values are LS_CONTYPE_LE and 

LS_CONTYPE_GE. 

nCons An integer specifying the number of rows in this chance-

constraint. 

paiCons An integer vector specifying the row indices in the chance-

constraint. 

dPrLevel A double scalar specifying the probability level of this chance-

constraint. 

dObjWeight A double scalar specifying the constraint's weight in the 

probabilistic objective relative to the orignal objective 

function. Typically this value is zero. 

 

LSsetConstraintProperty () 

Description:  

Sets the property of the specified constraint of the given model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSsetConstraintProperty ( pLSmodel pModel, int ndxCons, int 

nProp)  
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Input Arguments:  

Name  Description  

pModel A pointer to an instance of Lsmodel. 

ndxCons An integer specifying the index of the constraint to set the 

property for. 

nProp An integer macro to specify the constraint property. Possible 

values are: 

 LS_PROPERTY_UNKNOWN      

 LS_PROPERTY_LINEAR 

 LS_PROPERTY_CONVEX                                          

 LS_PROPERTY_CONCAVE              

 LS_PROPERTY_QUASI_CONVEX  

 LS_PROPERTY_QUASI_CONCAVE 

 LS_PROPERTY_MAX                      

 

LSgetConstraintProperty () 

Description:  

Returns the property of the specified constraint of the given model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetConstraintProperty ( pLSmodel pModel, int ndxCons, int 

*pnProp)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of Lsmodel. 

ndxCons An integer specifying the index of the constraint for which the 

property is requested. 

Output Arguments:  

Name  Description  

pnProp A reference to an integer to return the constraint property. 

LSaddSETS()  

Description:  

Adds sets to a given model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 
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Prototype:  

int 

  

LSaddSETS( pLSmodel pModel, int nSETS, char 

*pszSETStypes, int *paiCARDnum, int *paiSETSbegcol, int 

*paiSETScols)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

nSETS An integer containing the number of sets to add. 

pszSETStypes A pointer to a character array containing the type of each set to 

be added to the model. 

paiCARDnum An integer array containing the cardinalities of the sets to be 

added. 

paiSETSbegcol A pointer to an integer vector containing the index of the first 

variable in each new set. This vector must have nSETS +1 

entries. The last entry should be equal to the total number of 

variables in the new sets. 

paiSETScols A pointer to an integer vector containing the indices of the 

variables in the new sets.  

LSaddVariables() 

Description:  

Adds variables to a given model. If both constraints and variables need to be added to a model 

and adding the new information in column format is preferred, then this routine can be called 

after first calling LSaddConstraints().  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int 

  

LSaddVariables( pLSmodel pModel, int nNumaddvars, char 

*pachVartypes, char **paszVarnames, int *paiAcols, int 

*pacAcols, double *padAcoef, int *paiArows, double *padC, 

double *padL, double *padU)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nNumaddvars The number of variables to append to the model.  

pachVartypes A pointer to a character array containing the types of each 

variable to be added to the model. Valid values for each 

variable are 'B', 'C', or 'I' for binary, continuous, or general 
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integer, respectively.  

paszVarnames A pointer to a vector of pointers to null terminated strings 

containing the name of each new variable.  

paiAcols A pointer to an integer vector containing the index of the first 

nonzero element in each new column. This vector must have 

nNumaddvars+1 entries. The last entry should be equal to the 

number of nonzeros in the new columns.  

pacAcols A pointer to a vector containing the length of each column. 

Note that the length of a column can be set to be shorter than 

the values of paiAcols would suggest (i.e., it is possible for 

pacAcols[i] < paiAcols[i+1] – paiAcols[i]). This may be 

desirable in order to prevent memory reallocations if rows are 

subsequently added to the model. If the length of each column i 

is equal to paiAcols[i+1] – paiAcols[i], then pacAcols can be 

set to NULL on input. 

padAcoef A pointer to a double precision vector containing the nonzero 

coefficients of the new columns.  

paiArows A pointer to an integer vector containing the row indices of the 

nonzeros in the new columns.  

padC A pointer to a double precision vector containing the objective 

coefficients for each new variable.  

padL A pointer to a double precision vector containing the lower 

bound of each new variable. If there is no lower bound on a 

variable, then the corresponding entry in the vector should be 

set to -LS_INFINITY. If padL is NULL, then the lower bounds 

are internally set to zero. 

padU A pointer to a double precision vector containing the upper 

bound of each new variable. If there is no upper bound on the 

variable, then this value should be set to LS_INFINITY. If 

padU is NULL, then the upper bounds are internally set to 

LS_INFINITY.  

Remarks:  

 If, in addition, constraints need to be added to a model and adding the new information in 

column format is preferred, then this routine can be called after first calling 

LSaddConstraints(). The call to LSaddConstraints() should pass NULL as the paiArows, 

padAcoef, and paiAcols arguments.  

 NULL may be passed for paiAcols, padAcoef, and paiArows. 

 

LSaddQCterms()  

Description:  

Adds quadratic elements to the given model. 
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Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSaddQCterms ( pLSmodel pModel, int nQCnonzeros, int 

*paiQCconndx, int *paiQCvarndx1, *paiQCvarndx2, double 

*padQCcoef) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

nQCnonzeros The total number of nonzeros in quadratic coefficient matrices 

to be added. 

paiQCconndx A pointer to a vector containing the index of the constraint 

associated with each nonzero quadratic term. This vector must 

have nQCnonzeros entries.  

paiQCvarndx1 A pointer to a vector containing the indices of the first variable 

defining each quadratic term. This vector must have 

nQCnonzeros entries. 

paiQCvarndx2 A pointer to a vector containing the indices of the second 

variable defining each quadratic term. This vector must have 

nQCnonzeros entries. 

padQCcoef A pointer to a vector containing the nonzero coefficients in the 

quadratic matrix. This vector must also have nQCnonzeros 

entries. 
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LSaddNLPAj()  

Description:  

Adds NLP elements to the specified column for the given model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSaddNLPAj ( pLSmodel pModel, int iVar1, int nRows, int 

*paiRows, double *padAj) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

iVar1 The index of the variable to which NLP elements will be 

added. 

nRows The total  number of  constraints for which NLP elements will 

be added. 

paiRows A pointer to an integer vector containing the row indices of the 

nonlinear elements. The indices are required to be in ascending 

order. 

padAj A pointer to a double vector containing the initial nonzero 

coefficients of the NLP elements. If padAj is NULL,  the solver 

will set the initial values.  

  

Remarks:  

 paiRows should be sorted in ascending order. 
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LSaddNLPobj()  

Description:  

Adds NLP elements to the objective function for the given model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSaddNLPobj ( pLSmodel pModel, int nCols, int *paiCols, 

double *padColj) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

nCols The total  number of  variables for which NLP elements will be 

added. 

paiCols A pointer to an integer vector containing the variable indices of 

the nonlinear elements.  

padColj A pointer to a double vector containing the initial nonzero 

coefficients of the NLP elements. If padColj is NULL,  the 

solver will set the initial values.  

Remarks:  

 paiCols should be sorted in ascending order. 

LSdeleteCones()  

Description:  

Deletes a set of cones in the given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

Int LSdeleteCones( pLSmodel pModel, int nCones, int *paiCones) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

nCones The number of cones in the model to delete. 

paiCones A pointer to a vector containing the indices of the cones that 

are to be deleted. 
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LSdeleteConstraints() 

Description:  

Deletes a set of constraints in the given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSdeleteConstraints( pLSmodel pModel, int nCons, int 

*paiCons)  

Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nCons The number of constraints in the model to delete.  

paiCons A pointer to a vector containing the indices of the constraints 

that are to be deleted.  

LSdeleteQCterms() 

Description:  

Deletes the quadratic terms from a set of constraints in the given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSdeleteQCterms(pLSmodel pModel, int nCons, int *paiCons)  

Input Arguments:  

Name  Description  

pModel An instance of LSmodel.  

nCons The number of constraints in the model whose quadratic terms 

will be deleted.  

paiCons A pointer to a vector containing the indices of the constraints 

whose quadratic terms will be deleted.  
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LSdeleteNLPobj()  

Description:  

Deletes NLP elements from the objective function for the given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

Int LSdeleteNLPobj ( pLSmodel pModel, int nCols, int *paiCols) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

nCols The number of variables for which NLP elements will be 

deleted. 

paiCols A pointer to a vector containing the indices of the variables  

whose NLP elements are to be deleted. 
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LSdeleteAj()  

Description:  

Deletes the elements at specified rows for the specified column for the given model. The 

elements deleted are set to zero. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

Int LSdeleteAj ( pLSmodel pModel, int iVar1, int nRows, int 

*paiRows) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

iVar1 The index of the variable whose elements will be deleted. 

nRows The number of  constraints at which elements will be deleted. 

paiRows A pointer to an integer vector containing the row indices of the 

elements to be deleted. The indices are required to be in 

ascending order. 

LSdeleteSemiContVars()  

Description:  

Deletes a set of semi-continuous variables in the given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSdeleteSemiContVars( pLSmodel pModel, int nSC, int 

*SCndx) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nSC The number of semi-continuous variables in the model to 

delete.  

SCndx A pointer to a vector containing the indices of the semi-

continuous variables that are to be deleted.  
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LSdeleteSETS()  

Description:  

Deletes the sets in the given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSdeleteSETS( pLSmodel pModel, int nSETS, int *SETSndx) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

nSETS The number of sets  in the model to delete.  

SETSndx A pointer to a vector containing the indices of the sets that are 

to be deleted.  

LSdeleteVariables() 

Description:  

Deletes a set of variables in the given model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSdeleteVariables( pLSmodel pModel, int nVars, int *paiVars)  

Input Arguments:  

Name  Description  

pModel An instance of LSmodel.  

nVars The number of variables in the model to delete.  

paiVars A pointer to a vector containing the indices of the variables that 

are to be deleted.  
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LSmodifyAj() 

Description:  

Modifies the coefficients for a given column at specified constraints.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifyAj( pLSmodel pModel, int iVar1, int nRows, int * 

paiCons, double *padAj)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

iVar1 The index of the variable to modify the constraint coefficients. 

nCons Number of constraints to modify. 

paiCons A pointer to an array of the indices of the constraints to 

modify. 

padAj A pointer to a double precision array containing the values of 

the new coefficients. 

LSmodifyCone()  

Description:  

  Modifies the data for the specified cone. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifyCone( pLSmodel pModel, char cConeType, int 

iConeNum, int iConeNnz, int *paiConeCols) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

cConeType A character variable specifying the new type of the cone. 

iConeNum An integer scalar that refers to the index of the cone to modify. 

iConeNnz An integer scalar that refers to the number of variables 

characterizing the cone. 

paiConeCols An integer vector that keeps the indices of the variables 

characterizing the cone. Its size should be iConeNnz. 
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LSmodifyConstraintType() 

Description:  

Modifies the type or direction of a set of constraints.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifyConstraintType( pLSmodel pModel, int nCons, int 

*paiCons, char *pachContypes)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nCons Number of constraints to modify. 

paiCons A pointer to an array of the indices of the constraints to 

modify. 

pachContypes A pointer to a character vector in which each element is either: 

‘L’, ‘E’, ‘G’ or ‘N’ indicating each constraint's type.  

Remarks:  

 A constraint can be disabled by making its type ‘N’. 

 To modify the direction of the objective, use the function LSsetModIntParameter (model, 

LS_IPARAM_OBJSENSE, value), where value is either LS_MIN or LS_MAX. 

LSmodifyObjConstant() 

Description:  

Modifies the objective’s constant term for a specified model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifyObjConstant( pLSmodel pModel, double dObjconst)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

dObjconst The new objective constant term. 

Remarks:  

 To modify the objective’s coefficients, see LSmodifyObjective(). 
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LSmodifyLowerBounds() 

Description:  

Modifies selected lower bounds in a given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifyLowerBounds( pLSmodel pModel, int nVars, int 

*paiVars, double *padL)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nVars The number of bounds in the model to modify.  

paiVars A pointer to an integer vector containing the indices of the 

variables for which to modify the lower bounds.  

padL A pointer to a double precision vector containing the new 

values of the lower bounds on the variables.  

LSmodifyObjConstant() 

Description:  

Modifies the objective’s constant term for a specified model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifyObjConstant( pLSmodel pModel, double dObjconst)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

dObjconst The new objective constant term. 

Remarks:  

 To modify the objective’s coefficients, see LSmodifyObjective(). 
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LSmodifyObjective() 

Description:  

Modifies selected objective coefficients of a given model. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifyObjective( pLSmodel pModel, int nVars, int 

*paiVars, double *padC)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nVars Number of objective coefficients to modify. 

paiVars A pointer to an integer vector containing a list of the indices of 

the objective coefficients to modify.  

padC A pointer to a double precision vector containing the new 

values for the modified objective coefficients. 

Remarks:  

 To modify the objective’s constant term, see LSmodifyObjConstant(). 

LSmodifyRHS() 

Description:  

Modifies selected constraint right-hand sides of a given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifyRHS( pLSmodel pModel, int nCons, int *paiCons, 

double *padB)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nCons The number of constraint right-hand sides to modify.  

paiCons A pointer to an integer vector containing the indices of the 

constraints whose right-hand sides are to be modified.  

padB A pointer to a double precision vector containing the new 

right-hand side values for the modified right-hand sides.  



FUNCTION DEFINITIONS     273 

 

LSmodifySemiContVars()  

Description:  

Modifies data of a set of semi-continuous variables in the given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifySemiContVars( pLSmodel pModel, char nSC, int 

*piVarndx, double *padl, double *padu) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

nSC The number of semi-continuous variables to modify.  

piVarndx A pointer to an integer vector containing the indices of the 

variables whose data are to be modified.  

padl A pointer to a double precision vector containing the new 

lower bound values for the semi-continuous variables. 

padu A pointer to a double precision vector containing the new 

upper bound values for the semi-continuous variables. 

LSmodifySET()  

Description:  

Modifies set data in the given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifySET( pLSmodel pModel, char cSETtype, int 

iSETnum, int iSETnnz, int *paiSETcols) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

cSETtype A character variable containing the new type for the specified 

set. 

iSETnum An integer variable containing the index of the set to apply the 

modification. 

iSETnnz An integer variable containing the number of variables in the 

set specified with iSETnum. 
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paiSETcols A pointer to an integer array containing the indices of variables 

in the set specified with iSETnum. 

LSmodifyUpperBounds() 

Description:  

Modifies selected upper bounds in a given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifyUpperBounds( pLSmodel pModel, int nVars, int 

*paiVars, double *padU)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nVars The number of bounds in the model to modify.  

paiVars A pointer to an integer vector containing the indices of the 

variables for which to modify the upper bounds.  

padU A pointer to a double precision vector containing the new 

values of the upper bounds. 

LSmodifyVariableType() 

Description:  

Modifies the types of the variables of the given model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSmodifyVariableType( pLSmodel pModel, int nVars, int 

*paiVars, char *pachVartypes)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

nVars Number of variables to modify. 

paiVars A pointer to an array of the indices of the variables to modify. 

pachVartypes A pointer to a character vector containing the types of 

variables. Valid values for each variable are 'C', 'B', or 'I' for 

continuous, binary, or general integer, respectively.  
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Remarks:  

 To modify the direction of the objective, use the function LSsetModelIntParameter( 

model, LS_IPARAM_OBJSENSE, value), where value is either LS_MIN or LS_MAX. 

LSaddUserDist () 

Description:  

Adds a new user-defined stochastic parameter function to the SP model. The positions of 

stochastic parameters are specified with either (iRow, jCol) or  iStv, but not with both. For SP 

models where core model is described with an instruction list,  iStv have to be used. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSaddUserDist(pLSmodel pModel, int iRow, int jCol, int      

iStv, UserPdf_t  pfUserFunc, int nSamples, pLSsample 

*paSamples, void *pvUserData, int iModifyRule) 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

iRow An integer specifying the row index of the stochastic 

parameter. It should be ignored if  iStv will be specified. 

jCol An integer specifying the column index of the stochastic 

parameter. It should be ignored if iStv will be specified. 

iStv An integer specifying the index of stochastic parameter in the 

instruction list. It should be ignored if (iRow, jCol) is specified. 

pfUserFunc A callback function to compute generate samples. 

nSamples An integer specifying the number of LSsample objects 

(independent parameters) required in the computation of the 

stochastic parameter. 

paSamples A vector of LSsample objects associated with the independent 

parameters required in the computation of the stochastic 

parameter. These sample objects need to be created explictly 

before passing to this function. 

pvUserData A reference to user's data object. 

iModifyRule A flag indicating whether stochastic parameters update the core 

model by adding or replacing. Possible values are:  

 LS_REPLACE  

 LS_ADD 
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LSaddQCShift () 

Description:  

Shift diag(Q_{i}) by lambda,  i.e. Q_{i} = Q_{i} + I_{i}*dShift. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSaddQCShift(pLSmodel pModel, int iRow, double dShift); 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

iRow An integer specifying the index of the QC row. 

dShift A double specifying the shift parameter. 

LSgetQCShift () 

Description:  

Get the current value of the shift parameter associated with Q_{i}. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSgetQCShift(pLSmodel pModel, int iRow, double *pdShift); 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

iRow An integer specifying the index of the QC row. 

pdShift A double pointer to return the shift parameter. 

LSresetQCShift () 

Description:  

Reset to zero any shift previously made to diag(Q_{i}), i.e. Q_{i} = Q_{i} - 

I_{i}*currentShift. 
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Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSresetQCShift(pLSmodel pModel, int iRow); 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

iRow An integer specifying the index of the QC row. 

 

Model and Solution Analysis Routines 
The routines in this section allow you to analyze models and their solutions, such as performing 

sensitivity analysis of optimal solutions or debugging infeasible or unbounded linear programs. For a 

more detailed overview, see Chapter 10, Analyzing Models and Solutions. 

LSfindBlockStructure  

Description:  

Examines the nonzero structure of the constraint matrix and tries to identify block structures 

in the model. If neither linking rows nor linking columns exist, then the model is called 

“totally decomposable”. Unless total decomposition is requested, the user should specify as 

an input the number of blocks to decompose the matrix into. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSfindBlockStructure( pLSmodel pModel, int nBlock, int 

nType)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

nBlock An integer indicating the number of blocks to decompose the 

coefficient matrix into. The value of this argument is ignored if 

total decomposition is requested. 

nType 

 

An integer scalar indicating the type of decomposition 

requested. The possible values are identified with the following 

macros: 

LS_LINK_BLOCKS_NONE: Try total decomposition (no 

linking rows or columns). 

LS_LINK_BLOCKS_COLS: The decomposed model will 
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have dual angular structure (linking columns). 

LS_LINK_BLOCKS_ROWS: The decomposed model will 

have block angular structure (linking rows). 

LS_LINK_BLOCKS_BOTH: The decomposed model will 

have both dual and block angular structure (linking rows 

and columns). 

LS_LINK_BLOCKS_FREE: Solver decides which type of 

decomposition to use. 

Remarks:  

 Only one stage of decomposition is attempted (i.e., no attempt is made to find further 

decomposition within a sub-block). 

 The block structure obtained can be accessed by LSgetBlockStructure(). 

 Refer to Chapter 10, Analyzing Models, for details on block structures.  

 Parameter LS_IPARAM_FIND_BLOCK controls which heuristic algorithm to be used. 

LSfindIIS() 

Description:  

Finds an irreducibly inconsistent set (IIS) of constraints for an infeasible model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int LSfindIIS(pLSmodel pModel, int nLevel)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

nLevel  An integer indicating the level of analysis in finding the IIS. Bit 

mask values are:  

LS_NECESSARY_ROWS = 1, 

LS_NECESSARY_COLS = 2, 

LS_SUFFICIENT_ROWS = 4, 

LS_SUFFICIENT_COLS = 8. 

Remarks:  

 The IIS obtained can be accessed by LSgetIIS(). 

 Refer to Chapter 10, Analyzing Models, for details on debugging a model. 
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LSfindIUS()  

Description:  

Finds an irreducibly unbounded set (IUS) of columns for an unbounded linear program.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

Int LSfindIUS(pLSmodel pModel, int nLevel) 

Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

nLevel  An integer indicating the level of detail of the analysis in 

finding the IUS. Significant bit mask values are: 

LS_NECESSARY_COLS = 2, 

LS_SUFFICIENT_COLS = 8. 

Remarks:  

 The IUS obtained, can be accessed by LSgetIUS(). 

 Refer to Chapter 10, Analyzing Models, for details on debugging a model. 

LSgetBestBounds() 

Description:  

Finds the best implied variable bounds for the specified model by improving the original 

bounds using extensive preprocessing and probing. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetBestBounds( pLSmodel pModel, double *padBestL, 

double *padBestU)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

padBestL A double precision vector containing the best implied lower 

bounds if different from NULL. This vector must at least have 

as many entries as the number of variables in the model. 

padBestU A double precision vector containing the best implied upper 
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bounds if different from NULL. This vector must at least have 

as many entries as the number of variables in the model. 

LSgetBlockStructure()  

Description:  

Retrieves the block structure information following a call to LSfindBlockStructure.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetBlockStructure( pLSmodel pModel, int *pnBlock, int 

*panRblock, int *panCblock, int *pnType)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pnBlock A pointer to an integer scalar that contains the number of 

blocks to decompose the model matrix into. If nType = 

LS_LINK_BLOCKS_NONE, then *pnBlock functions as an 

output argument, which will contain the number of 

independent blocks identified (provided that total 

decomposition is successful). Otherwise, it serves as an input 

argument where the solver attempts to decompose the model 

into *pnBlock blocks linked by a set of rows or/and columns. 

panRblock 

 

A pointer to an integer vector in which information about the 

block membership of the constraints is to be placed. The length 

of this vector must be  the number of constraints in the model. 

The i-th element of this array returns information on the i-th 

constraint as follows: 

 0:   The row is a member of the linking (row) block.  

k>0:  The row is a member of the k-th block.  

where 1 <= k <= *pnBlock. 

panCblock 

 

A pointer to an integer vector in which information about the 

block membership of the variables is to be placed. The length 

of this vector must be  the number of variables in the model. 

The j-th element of this array contains information on the j-th 

column as follows: 

 0:   The column is a member of the linking (column) block.  

k>0:  The column is a member of the k-th block.  

where 1 <= k <= *pnBlock. 

pnType A pointer to an integer returning the type of the decomposition. 
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 The following macros identify possible values: 

LS_LINK_BLOCKS_NONE: Try total decomposition (no 

linking rows or columns). 

LS_LINK_BLOCKS_COLS: The decomposed model will 

have dual angular structure (linking columns). 

LS_LINK_BLOCKS_ROWS: The decomposed model will 

have block angular structure (linking rows). 

LS_LINK_BLOCKS_BOTH: The decomposed model will 

have both dual and block angular structure (linking rows 

and columns). 

LS_LINK_BLOCKS_FREE: Solver decides which type of 

decomposition to use. 

Remarks: 

 For more information on decomposition and linking structures, refer to Chapter 10, 

Analyzing Models. 

LSgetBoundRanges() 

Description:  

Retrieves the maximum allowable decrease and increase in the primal variables for which the 

optimal basis remains unchanged.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetBoundRanges (pLSmodel pModel, double *padDec, 

double *padInc) 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments: 

Name  Description 

padDec A pointer to a double precision vector that keeps the maximum 

allowable decrease in the lower and upper bounds. The vector 

size should be greater-than-or-equal-to the number of 

variables. 

padInc A pointer to a double precision vector that keeps the maximum 

allowable increase in the lower and upper bounds. The vector 

size should be greater-than-or-equal-to the number of 

variables. 
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LSgetConstraintRanges() 

Description:  

Retrieves the maximum allowable decrease and increase in the right-hand side values of 

constraints for which the optimal basis remains unchanged.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetConstraintRanges (pLSmodel pModel, double *padDec, 

double *padInc) 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments: 

Name  Description 

padDec A pointer to a double precision vector that keeps the maximum 

allowable decrease in the right-hand sides of constraints. The 

size of this vector should be greater-than-or-equal-to the 

number of constraints. 

padInc A pointer to a double precision vector that keeps the maximum 

allowable increase in the right-hand sides of constraints. The 

size of this vector should be greater-than-or-equal-to the 

number of constraints. 
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LSgetIIS() 

Description:  

Retrieves the irreducibly inconsistent set (IIS) of constraints for an infeasible model following 

a call to LSfindIIS(). Any of the pointers to the names can be input as NULL if the 

corresponding information is not required.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int 

  

LSgetIIS(pLSmodel pModel, int *pnSuf_r, int *pnIIS_r, int 

*paiCons, int *pnSuf_c, int *pnIIS_c, int *paiVars, int 

*panBnds)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pnSuf_r A pointer to the number of constraints in the sufficient set. 

pnIIS_r A pointer to the number of rows in the IIS. 

paiCons A pointer to a vector of size *pnIIS_r containing the indices of 

the rows in the IIS. The locations paiCons[0] to 

paiCons[*pnSuf_r –1] keep the indices of the sufficient rows.  

pnSuf_c A pointer to the number of column bounds in the sufficient set. 

pnIIS_c A pointer to the number of column bounds in the IIS. 

paiVars A pointer to a vector of size *pnIIS_c containing the indices of 

the column bounds in the IIS. The locations paiVars[0] to 

paiVars[*pnSuf_c –1] store the indices of the members of the 

sufficient column bounds.  

panBnds A pointer to a vector of size *pnIIS_c indicating whether the 

lower or the upper bound of the variable is in the IIS. Its 

elements are –1 for lower bounds and +1 for upper bounds. 

Remarks: 

 This tool assumes that the user has recently attempted optimization on the model and the 

solver returned a basic, but infeasible, solution. If an infeasible basis is not resident in the 

solver, the diagnostic tool cannot initiate the processes to isolate an IIS. Cases that 

violate this condition are: the pre-solver has detected the infeasibility of the model, or the 

barrier solver has terminated without performing a basis crossover. To obtain an IIS for 

such cases, the pre-solve option should be turned off and the model must be optimized 

again. 

 Refer to Chapter 10, Analyzing Models, for details on debugging a model. 
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LSgetIISInts() 

Description:  

Retrieves the integrality restrictions as part of an IIS determined by a call to LSfindIIS(). Any 

of the pointers to the names can be input as NULL if the corresponding information is not 

required.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int 

  

LSgetIISInts(pLSmodel pModel, int *pnSuf_i, int *pnIIS_i, int 

*paiVars)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pnSuf_i A pointer to the number of integrality restrictions in the 

sufficient set. 

pnIIS_i A pointer to the number of integrality restrictions in the IIS. 

paiVars A pointer to a vector of size *pnIIS_i containing the indices of 

the integrality restrictions in the IIS. The locations paiVars[0] 

to paiVars[*pnSuf_i –1] store the indices of the members of the 

sufficient integrality restrictions.  

Remarks: 

 This tool assumes that the solver returned an infeasible status for the underlying integer 

model and LSfindIIS has been called with LS_IIS_INTS flag turned on. This flag enables 

the IIS finder to include integrality restrictions in the analysis. If the cause of infeasibility 

is not related to integer restrictions, the argument *pnIIS_i will be zero. 

 Refer to Chapter 10, Analyzing Models, for details on debugging a model. 
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LSgetIUS() 

Description:  

Retrieves the irreducibly unbounded set (IUS) of columns for an unbounded linear program 

following a call to LSfindIUS(). Any of the pointers to the names can be input as NULL if the 

corresponding information is not required 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetIUS(pLSmodel pModel, int *pnSuf, int *pnIUS, int 

*paiVars) 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments:  

Name  Description  

pnSuf A pointer to the number of columns in the sufficient set. 

pnIUS A pointer to the number of columns in the IUS. 

paiVars A pointer to a vector of size *pnIUS containing the indices of 

the columns in the IUS. The locations paiVars[0] to 

paiVars[*pnSuf –1] store the indices of the members of the 

sufficient set. 

Remarks:  

 Refer to Chapter 10, Analyzing Models, for details on debugging a model. 
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LSgetObjectiveRanges() 

Description:  

Retrieves the maximum allowable decrease and increase in objective function coefficients for 

which the optimal basis remains unchanged.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int LSgetObjectiveRanges(pLSmodel pModel, double *padDec, 

double *padInc) 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments: 

Name  Description 

padDec A pointer to a double precision vector that keeps the maximum 

allowable decrease in the objective function coefficients. The 

size of this vector should be greater-than-or-equal-to the 

number of variables. 

PadInc A pointer to a double precision vector that keeps the maximum 

allowable increase in the objective function coefficients. The 

vector size should be greater-than-or-equal-to the number of 

variables. 

LSfindLtf () 

Description: 

Finds an approximately lower triangular form for the underlying model's matrix structure. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  
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Prototype:  

int LSfindLtf(pLSmodel pModel, int *panNewColIdx,  int      

*panNewRowIdx, int *panNewColPos,  int *panNewRowPos) 

Input Arguments:  

Name  Description  

pModel An instance of the LSmodel object. 

panNewColIdx Entry j means the index of the column that is in the postion j of 

new matrix. 

panNewRowIdx Entry i means the index of the row that is in the postion i of 

new matrix. 

panNewColPos Entry j means the new position of column j in the new matrix. 

panNewRowPos Entry i means the new position of row i in the new matrix. 
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Error Handling Routines 
The routines in this section allow you to get detailed information about the errors that occur during 

calls to LINDO API routines and while accessing a text file for I/O. 

LSgetErrorMessage() 

Description:  

Retrieves the error message associated with the given error code. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSgetErrorMessage( pLSenv pEnv, int nErrorcode, char 

*pszMessage)  

Input Arguments:  

Name  Description  

pEnv A pointer to an instance of LSenv. Error messages are stored in 

this environment.  

nErrorcode An integer referring to the error code.  

Output Arguments:  

Name  Description  

pszMessage The error message associated with the given error code. It is 

assumed that memory has been allocated for this string. 

Remarks: 

 The length of the longest message will not exceed 

LS_MAX_ERROR_MESSAGE_LENGTH, including the terminating null character. So, 

be sure to allocate at least this many bytes before calling LSgetErrorMessage(). 
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LSgetErrorRowIndex() 

Description: 

Retrieves the index of the row where a numeric error has occurred. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype: 

int (pLSmodel  pModel, int *piRow); 

Input Arguments: 

Name  Description  

pModel  A pointer to an instance of LSmodel.  

Output Arguments: 

Name  Description  

piRow  A pointer to an integer variable to return the row index with 

numeric error. 

LSgetFileError() 

Description:  

Provides the line number and text of the line in which an error occurred while reading or 

writing a file. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSgetFileError ( pLSmodel pModel, int *pnLinenum, char 

*pszLinetxt)  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel. 

Output Arguments:  

Name  Description  

pnLinenum A pointer to an integer that returns the line number in the I/O 

file where the error has occurred. 

pszLinetxt A pointer to a null terminated string that returns the text of the 

line where the error has occurred. 
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Advanced Routines 
The routines in this section perform specialized functions. Users interested in only building and 

solving a model will not need to access the routines detailed in this section. Users who are developing 

customized solution procedures, however, may find these routines useful. 

LSdoBTRAN() 

Description:  

Does a so-called backward transformation. That is, the function solves the linear system 

B
T
X = Y, where B

T
 is the transpose of the current basis of the given linear program and Y is a 

user specified vector.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSdoBTRAN( pLSmodel pModel, int *pcYnz, int *paiY, 

double *padY, int *pcXnz, int *paiX, double *padX)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

pcYnz A pointer to an integer containing the number of nonzeros in 

the right-hand side vector Y. 

paiY A pointer to an integer vector containing the positions of the 

nonzeros in Y. 

padY A pointer to a double precision vector containing the 

coefficients of the nonzeros in Y.  

Output Arguments:  

Name  Description  

pcXnz A pointer to an integer containing the number of nonzeros in 

the solution vector X.  

paiX A pointer to an integer vector containing the positions of the 

nonzeros in X. You must allocate the memory for this vector, 

and should allocate at least m elements, where m is the number 

of constraints. 

padX A pointer to a double precision vector containing the 

coefficients of the nonzeros in X. You must allocate the 

memory for this vector, and should allocate at least m 

elements, where m is the number of constraints. 

Remarks:  

 This routine should be called only after optimizing the model.  
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LSdoFTRAN() 

Description:  

Does a so-called forward transformation. That is, the function solves the linear system 

B X = Y, where B is the current basis of the given linear program, and Y is a user specified 

vector.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSdoFTRAN( pLSmodel pModel, int *pcYnz, int *paiY, 

double *padY, int *pcXnz, int *paiX, double *padX)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

pcYnz A pointer to an integer containing the number of nonzeros in 

the right-hand side vector Y. 

paiY A pointer to an integer vector containing the positions of the 

nonzeros in Y. 

padY A pointer to a double precision vector containing the 

coefficients of the nonzeros in Y.  

Output Arguments:  

Name  Description  

pcXnz A pointer to an integer containing the number of nonzeros in 

the solution vector, X. 

paiX A pointer to a vector containing the positions of the nonzeros 

in X. 

padX A pointer to a double precision vector containing the 

coefficients of the nonzeros in X.  

Remarks:  

 This routine should be called only after optimizing the model.  
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LScalcConFunc()  

Description:  

Calculates the constraint activity at a primal solution. The specified model should be loaded 

by using LSloadInstruct(). 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LScalcConFunc( pLSmodel pModel, int iCon, double 

*padPrimal, double *pdValue,)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

iCon  An integer containing the index of the constraint whose activity 

is requested. 

padPrimal A pointer to a double precision vector that contains the primal 

solution at which the constraint activity will be computed. 

Output Arguments:  

Name  Description  

pdValue A double precision variable that returns the constraint activity 

at the given primal solution padPrimal. 
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LScalcConGrad()  

Description:  

Calculates the partial derivatives of the function representing a constraint with respect to a set 

of primal variables. The specified model should be loaded by using LSloadInstruct(). 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LScalcConGrad(pLSmodel pModel, int iCon, double 

*padPrimal, int nVar, int *paiVar, double *padVar) 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

iCon  An integer containing the index of the constraint whose partial 

derivatives is requested. 

padPrimal A pointer to a double precision vector that contains the primal 

solution at which the partial derivatives of the constraint will 

be evaluated. 

nVar An integer scalar indicating the number of variables to 

compute the partial derivatives for. 

paiVar A pointer to an integer vector that contains the indices of the 

variables to compute the partial derivatives for. 

Output Arguments:  

Name  Description  

padVar A pointer to a double precision vector that returns the partial 

derivatives of the variables indicated by paiVar[]. 
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LScalcObjFunc()  

Description:  

Calculates the objective function value at a primal solution. The specified model should be 

loaded by using LSloadInstruct(). 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LScalcObjFunc( pLSmodel pModel, double *padPrimal , 

double *pdPobjval,)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

padPrimal A pointer to a double precision vector that contains the primal 

solution at which the objective function will be evaluated. 

Output Arguments:  

Name  Description  

pdPobjval A double precision variable that returns the objective value for 

the given primal solution. 
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LScalcObjGrad()  

Description:  

Calculates the partial derivatives of the objective function with respect to a set of primal 

variables. The specified model should be loaded by using LSloadInstruct(). 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LScalcObjGrad(pLSmodel pModel, double *padPrimal,  

int nVar, int *paiVar, double *padVar) 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

padPrimal A pointer to a double precision vector that contains the primal 

solution at which the partial derivatives of the objective 

function will be evaluated. 

nVar An integer scalar indicating the number of variables to 

compute the partial derivatives for. 

paiVar A pointer to an integer vector that contains the indices of the 

variables to compute the partial derivatives for. 

Output Arguments:  

Name  Description  

padVar A pointer to a double precision vector that returns the partial 

derivatives of the variables indicated by paiVar[]. 
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LScomputeFunction()  

Description:  

Computes many of the functions that correspond to the EP_xxx instruction codes described in 

the “Solving Nonlinear Programs “ chapter. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LScomputeFunction( int ninst, double *padinput, double 

*padoutput) 

Input Arguments:  

Name  Description  

ninst  ID of a function operator.  

padInput Pointer to a double precision vector of the input arguments.. 

Output Arguments:  

Name  Description  

padOutput Pointer to a double precision vector that returns the results of 

the function operator. 

Remarks:  

 LScomputeFunction( )  returns an integer error code  

*  -  LSERR_NO_ERROR: no error, result in pdaOutput  

*  -  LSERR_NOT_SUPPORTED: not supported function operator  

*  -  LSERR_ILLEGAL_NULL_POINTER: illegal output argument  

*  -  LSERR_ERROR_IN_INPUT: input argument error,  

*         *pdaOutput stores the index of input argument causing error  

*  -  LSERR_NUMERIC_INSTABILITY: numerical error 
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LScheckQterms()  

Description:  

Checks the definiteness of quadratic terms in the specified set of constraints.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LScheckQterms(pLSmodel pModel, int nCons, int*paiCons, 

int *paiType) 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

nCon  An integer specifying the number of constraints whose 

quadratic terms will be checked.  

paiCons A pointer to a vector containing the indices of the constraints 

whose quadratic terms will be checked. Use index -1 for the 

objective function. When this variable is set to NULL,  the 

check will be performed on all constraints including the 

objective function. In this case, the size of the paiType vector 

should be at least n_cons+1, where n_cons is the number of 

constraints in the model.  

Output Arguments:  

Name  Description  

paiVar A pointer to an integer vector to return the type of quadratic 

terms in associated rows. Possible values for the type of 

quadratic terms are  

 # LS_QTERM_NONE         0 

 # LS_QTERM_INDEF        1 

 # LS_QTERM_POSDEF       2 

 # LS_QTERM_NEGDEF       3 

 # LS_QTERM_POS_SEMIDEF  4 

 # LS_QTERM_NEG_SEMIDEF  5 
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LSrepairQterms()  

Description:  

Repairs the quadratic terms in the specified set of constraints by shifting 

the diagonals to make them semi-positive-definite or semi-negative-definite to achieve  

a convex approximation to the model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSrepairQterms(pLSmodel pModel, int nCons, int*paiCons, 

int *paiType) 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

nCon  An integer specifying the number of constraints whose 

quadratic terms will be repaired.  

paiCons A pointer to a vector containing the indices of the constraints 

whose quadratic terms will be repaired. Use index -1 for the 

objective function. When this variable is set to NULL,  the 

repair will be performed on all constraints including the 

objective function. In this case, the size of the paiType vector 

should be at least n_cons+1, where n_cons is the number of 

constraints in the model.  

Output Arguments:  

Name  Description  

paiVar A pointer to an integer vector to return the type of quadratic 

terms in associated rows after the repair. Possible values for the 

type of quadratic terms are  

 # LS_QTERM_NONE         0 

 # LS_QTERM_INDEF        1 

 # LS_QTERM_POSDEF       2 

 # LS_QTERM_NEGDEF       3 

 # LS_QTERM_POS_SEMIDEF  4 

 # LS_QTERM_NEG_SEMIDEF  5 

If the repair is unsuccessful for some of the constraints, then 

the value for those rows will remain as LS_QTERM_INDEF.  
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Matrix Operations  

LSgetEigs() 

Description:  

Get eigenvalues and eigenvectors of symmetric matrix.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetEigs(int nDim, char chUL, double *padA, double   

*padD, double *padV,  int *pnInfo); 

Input Arguments:  

Name  Description  

nDim An integer indicating the dimension of matrix padA. 

chUL Upper ('U' or 'u') or lower ('L' or 'l') triangler of padA is stored. 

padA nDim by nDim double symmetric matrix. 

Output Arguments:  

Name  Description  

padD nDim double vector, eigenvalues in ascending order. 

padV nDim by nDim double matrix, orthonormal eigenvectors. 

pnInfo A reference to an integer exit code. Possible values are: 

 # = 0: successful exit.    

 # < 0: if (*pnInfo) = -i, the i^th argument had an illegal 

value. 

 # > 0: internal error. 



300 CHAPTER 2 

 

LSgetMatrixTranspose() 

Description:  

Get general m by n matrix transpose.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  int LSgetMatrixTranspose(int nRows, int nCols, double 

*padA,  double *padAT); 

Input Arguments:  

Name  Description  

nRows An integer indicating the number of rows of the matrix. 

nCols An integer representing the number of columns of the matrix. 

padA nRows by nCols double matrix. 

Output Arguments:  

Name  Description  

padAT nCols by nRows double matrix transpose. 

LSgetMatrixInverse() 

Description:  

Get general m by m  matrix inverse.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetMatrixInverse(int nRows, double *padA, double   

*padAinv, int *pnInfo); 

Input Arguments:  

Name  Description  

nRows An integer indicating the dimension of the square matrix. 

padA nRows by nRows double matrix. 

Output Arguments:  

Name  Description  

padAinv nRows by nRows double matrix inverse. 

pnInfo A reference to an integer exit code. Possible values are: 

 # = 0: successful exit.    

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal 
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value. 

 # > 0: if (*pnInfo) = i, padU(i,i) is exactly zero.  The 

factorization has been completed, but the factor padU  is 

exactly singular, so the solution could not be computed. 

LSgetMatrixInverseSY() 

Description:  

Get symmetric  m by m  matrix inverse.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetMatrixInverseSY(int nRows, char chUpLo, double 

*padA, double *padAinv, int *pnInfo); 

Input Arguments:  

Name  Description  

nRows An integer indicating the dimension of the square matrix. 

chUpLo A character to indicate if upper ('U') or lower ('L') triangle of 

padA is stored. 

padA nRows by nRows double matrix. 

Output Arguments:  

Name  Description  

padAinv nRows by nRows double matrix inverse. 

pnInfo A reference to an integer exit code. Possible values are: 

 # = 0: successful exit.    

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal 

value. 

 # > 0: i, D(i,i) is exactly zero. The factorization has been 

completed, but the block diagonal matrix D is exactly singular, 

so the solution could not be computed. 

LSgetMatrixLUFactor() 

Description:  

Get LU factorization of a general m by n matrix.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetMatrixLUFactor(int nRows, int nCols, double *padA, int      

*panP, double *padL, double *padU,  int *pnInfo); 
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Input Arguments:  

Name  Description  

nRows An integer indicating the number of rows of the matrix. 

nCols An integer indicating the number of columns of the matrix. 

padA nRows by nCols double matrix. 

Output Arguments:  

Name  Description  

panP nRows by nRows permutation matrix. 

padL If  nRows > nCols 

nRows by nCols matrix, lower trapezoidal with unit diagonal 

elements; 

Else: 

nRows by nRows matrix, lower triangular with unit diagonal 

elements. 

padU If  nRows > nCols 

nCols by nCols matrix, upper triangular; 

Else: 

nRows by nCols matrix, upper trapezoidal. 

pnInfo A reference to an integer exit code. Possible values are: 

 # = 0: successful exit.    

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal 

value. 

 # > 0: i, U(i,i) is exactly zero. The factorization has been 

completed, but the factor U is exactly singular, and division by 

zero will occur if it is used to solve a system of equations. 

LSgetMatrixQRFactor() 

Description:  

Get QR factorization of a general m by n matrix.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetMatrixQRFactor(int nRows, int nCols, double *padA, 

double *padQ, double *padR, int  *pnInfo); 

Input Arguments:  

Name  Description  

nRows An integer indicating the number of rows of the matrix. 

nCols An integer indicating the number of columns of the matrix. 
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padA nRows by nCols double matrix. 

Output Arguments:  

Name  Description  

padQ nRows by nRows orthogonal matrix. 

padR nRows by nCols matrix, upper triangular (nRows >= nCols) or 

upper trapezoidal (nRows < nCols). 

pnInfo A reference to an integer exit code. Possible values are: 

 # = 0: successful exit.    

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal 

value. 

LSgetMatrixDeterminant() 

Description:  

Get the determinant of a square matrix.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetMatrixDeterminant(int nRows, double *padA, double 

*padDet, int *pnInfo); 

Input Arguments:  

Name  Description  

nRows An integer indicating the dimension of the square matrix padA. 

padA nRows by nRows double matrix. 

Output Arguments:  

Name  Description  

padDet The determinant of the square matrix padA. 

pnInfo A reference to an integer exit code. Possible values are: 

 # = 0: successful exit.    

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal 

value. 

 # > 0: i, U(i,i) is exactly zero. The factorization has been 

completed, but the factor U is exactly singular, and division by 

zero will occur if it is used to solve a system of equations. 

LSgetMatrixCholFactor() 

Description:  

Get Cholesky factorization of symmetic matrix.   



304 CHAPTER 2 

 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetMatrixCholFactor(int nRows, char chUpLo, double 

*padA, double *padUL, int *pnInfo); 

Input Arguments:  

Name  Description  

nRows An integer indicating the dimension of the square matrix padA. 

chUpLo A character to indicate if upper ('U') or lower ('L') triangle of 

padA is stored. 

padA nRows by nRows double symmetric matrix. 

Output Arguments:  

Name  Description  

padUL If chUpLo = 'U', upper triangular matrix. 

If chUpLo = 'L', lower triangular matrix. 

pnInfo A reference to an integer exit code. Possible values are: 

 # = 0: successful exit.    

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal 

value. 

 # > 0: i, the leading minor of order i is not positive 

definite, and the factorization could not be completed.   

LSgetMatrixSVDFactor() 

Description:  

Get SVD factorization of a general m by n matrix.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetMatrixSVDFactor(int nRows, int nCols, double *padA, 

double *padU, double *padS, double *padVT, int *pnInfo); 

Input Arguments:  

Name  Description  

nRows An integer indicating the number of rows of the matrix. 

nCols An integer indicating the number of columns of the matrix. 

padA nRows by nCols double matrix. 
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Output Arguments:  

Name  Description  

padU nRows by nRows orthogonal matrix. 

padS Dimension min(nRows, nCols), singular values of padA, sorted 

in descending order. 

padVT nCols by nCols orthogonal matrix. 

pnInfo A reference to an integer exit code. Possible values are: 

 # = 0: successful exit.    

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal 

value. 

 # > 0: did not converge, updating process failed.   

 

LSgetEigg() 

Description:  

Compute the eigenvalues and, optionally, the left and/or right eigenvectors of a general 

(nonsymmetric) real square matrix.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetEigg(int nDim, char chJOBV, double *padA, double 

*padWR, double *padWI, double *padVRR, double *padVRI, 

double *padVLR, double *padVLI,  int *pnInfo) ; 

Input Arguments:  

Name  Description  

nDim Dimension of matrix A.  

chJOBV An integer specifying which eigenvectors should be computed. 

Possible values are: 

        - 'N': no eigenvectors are computed 

        - 'L': left eigenvectors are computed 

        - 'R': right eigenvectors are computed 

        - 'B': both left and right are computed 

padA A double matrix of dimension nDim x nDim. 

Output Arguments:  

Name  Description  

padWR A double array of size nDim for the real part of computed 

eigenvalues. 
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padWI A double array of size nDim  for the imaginary part of 

computed eigenvalues. Complex conjugate pairs of eigenvalues 

appear consecutively with the eigenvalue having the positive 

imaginary part first. 

padVRR The real part of right eigenvectors. 

padVRI The imaginary part of right eigenvectors 

if JOBV = 'N' or 'L', padVRR and padVRI are not referenced 

if JOBV = 'R' or 'B', padVRR and padVRI are nDim by nDim 

matrix 

padVRR and padVRI are stored one after another in the same in 

the same order as their eigenvalues. 

padVLR The real part of left eigenvectors. 

padVLI The imaginary part of left eigenvectors  

if  JOBV = 'N' or 'R', padVLR and padVLI are not referenced 

 if JOBV = 'L' or 'B', padVLR and padVLI are nDim by nDim 

matrix  

padVLR and padVLI are stored one after another in the same 

order as their eigenvalues. 

The computed eigenvectors are normalized  so the sum of 

squares of both real and imaginary parts equal to 1. 

pnInfo A reference to an integer exit code. Possible values are: 

 # = 0: successful exit.    

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal 

value. 

 # > 0: if (*pnInfo) = i, the QR algorithm failed to compute 

all the eigenvalues, and no eigenvectors have been computed;    

elements i+1:N of padWR and padWI contain eigenvalues 

which have converged.  
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LSloadNLPDense() 

Description:  

Set up a dense nonlinear model with specified dimensions.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSloadNLPDense(pLSmodel pModel, int nCons, int nVars, int 

dObjSense, char *pszConTypes, char *pszVarTypes, double 

*padX0, double *padL, double *padU); 

Input Arguments:  

Name  Description  

pLSmodel An instance of LSmodel in which to load the problem data. 

nCons Number of constraints in the model. 

nVars Number of variables in the model. 

dObjSense An indicator stating whether the objective function is to be 

maximized or minimized. Valid values are:  LS_MAX or 

LS_MIN, respectively. 

pszConTypes A vector containing the type of each constraint. Valid values 

for each constraint are 'L', 'E', 'G' or 'N' for less than or equal 

to, equal to, or greater than or equal to, or free, respectively. 

pszVarTypes A vector containing the type of each variable. Valid values for 

each variable are 'C', 'B', 'I' or 'S' for continuous, binary, 

general integer or semi-continuous, respectively. This value 

may be NULL on input. 

padX0 A vector containing a guess for primal values which a given 

method can use to start with. This value may be NULL on 

input. 

padL A vector containing the lower bound of each variable.  If there 

is no lower bound on the variable, then this value should be set 

to -LS_INFINITY.  If this value is NULL, then the lower 

bounds are internally set to zero. 

padU A vector containing the upper bound of each variable.  If there 

is no upper bound on the variable, then this value should be set 

to LS_INFINITY.  If this value is NULL, then the upper bounds 

are internally set to LS_INFINITY. 
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LSloadIISPriorities() 

Description:  

Provide priorities for constraints and variables in IIS search.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSloadIISPriorities(pLSmodel pModel, int *panRprior,  int     

*panCprior); 

Input Arguments:  

Name  Description  

pModel An instance of LSmodel. 

panRprior A integer vector containing the priority of each row in the 

given model. The length of this vector is equal to the number 

of constraints in the model. If (panRprior==NULL) then the 

default priority scheme will be used. 

panCprior A integer vector containing the priority of each column in the 

given model. The length of this vector is equal to the number 

of variables in the model. If (panCprior==NULL) then the 

default priority scheme will be used. 
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LSgetJac() 

Description:  

Get Cholesky factorization of symmetic matrix.   

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetJac(pLSmodel pModel,  int *pnJnonzeros,  int 

*pnJobjnnz,  int *paiJrows, int *paiJcols, double *padJcoef, 

double *padX) ; 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

padX A pointer to a double vector containing values of each variable 

in the model. 

Output Arguments:  

Name  Description  

pnJnonzeros A reference to an integer to return nonzeros in the Jacobian 

matrix. 

pnJobjnnz A reference to an integer to return the nonzeros in the objective 

function. 

paiJrows A pointer to an integer of vector returning the index of the first 

nonzero element in Jacobian matrix. This vector must have 

m+2 entries, where m is the number of constraints in the 

model. The first entry is for objective the next m entries are for 

constraints. The last entry will be the total number of nonzeros. 

paiJcols A pointer to an integer vector returning the column indices of 

nonzeros in the Jacobian matrix. 

padJcoef A pointer to a double vector returning the nonzero coefficients 

of  the Jacobian matrix at padX, when padJcoef and padX  is 

not NULL. 
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LSgetHess() 

Description:  

Get Hessian (second order derivative) matrix.    

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSgetHess(pLSmodel pModel, int *pnHnonzeros,  int 

*paiHrows,  int *paiHcol1,  int *paiHcol2, double *padHcoef, 

double *padX) ; 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. 

padX A pointer to a double vector containing values of each variable 

in the model. 

Output Arguments:  

Name  Description  

pnHnonzeros A reference to an integer returning the number of nonzero in 

the Hessian. 

paiHrows A pointer to an integer of vector returning the index of the first 

nonzero element in Hessian matrix. This vector must have m+2 

entries, where m is the number of constraints in the model. The 

first entry is for objective the next m entries are for constraints. 

The last entry will be equal to the total number of nonzeros. 

paiHcol1 A pointer to an integer vector returning the partial column1 

indices. 

paiHcol2 A pointer to an integer vector returning the partial column2 

indices. 

padHcoef A pointer to a double vector returning the coefficients of  the 

Hessian matrix at padX, when padHcoef and padX  is not 

NULL. 
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LSregress() 

Description:  

Compute the linear regression coefficients in the linear model Y = B0 + X*B.    

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSregress(int nNdim,  int nPdim,double *padY,double 

*padX,double *padB, double *pdB0, double *padR, double 

*padstats) ; 

Input Arguments:  

Name  Description  

nNdim The number of observations. 

nPdim The number of predictors. 

padY A double vector of observed responses with nNdim dimension. 

padX A double matrix of predictors with nNdim x pPdim dimension. 

Output Arguments:  

Name  Description  

padB A double vector of size nPdim for regression coefficients. 

pdB0 A reference to a double scalar for the intercept (optional), i.e. 

this argument could be set to NULL.  

padR A double vector of size nNdim for residuals (optional), i.e. this 

argument could be set to NULL. 

padstats A 4-dimensional double vector (optional) to return regression 

statistics. The following values will be returned at specified 

positions: 

padstats[0]: R-squared statistic. 

padstats[1]: F-statistic value. 

padstats[2]: p-value for the F-test on the regression model. 

padstats[3]: estimate of error variance. 
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Callback Management Routines 
The routines in this section allow the user to set callback functions and manage callback information. 

Refer to Chapter 9, Using Callback Functions, for examples of using callback management routines. 

LSgetCallbackInfo() 

Description:  

Returns information about the current state of the LINDO API solver during model 

optimization. This routine is to be called from your user supplied callback function that was 

set with LSsetCallback().  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetCallbackInfo( pLSmodel pModel, int nLocation, int 

nQuery, void *pvValue)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. This should be the same 

instance as was passed to your user callback function from the 

LINDO API solver.  

nLocation The solver’s current location. This parameter is passed to your 

callback function by the LINDO API solver.  

nQuery  The information desired from LINDO API. Only the following 

select information can be obtained from the callback function: 

 LS_IINFO_SIM_ITER: Number of simplex iterations 

performed for solving a continuous problem. 

 LS_IINFO_BAR_ITER: Number of barrier iterations 

performed for solving a continuous problem. 

 LS_IINFO_NLP_ITER: Number of nonlinear 

iterations performed for solving a continuous 

problem. 

 LS_DINFO_POBJ: Primal objective value of a 

continuous problem. 

 LS_DINFO_DOBJ: Dual objective value of a 

continuous problem. 

 LS_DINFO_PINFEAS: Maximum primal 

infeasibility. 

 LS_DINFO_DINFEAS: Maximum dual infeasibility. 

 LS_DINFO_MSW_POBJ: Value of the incumbent 

objective value when using the multistart solver. 

 LS_IINFO_MSW_PASS: Number of multistart 

passes. 

 LS_IINFO_MSW_NSOL: Number of distinct 
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solutions found when using the multistart solver. 

 LS_DINFO_MIP_OBJ: MIP objective value. 

 LS_DINFO_MIP_BESTBOUND: Best bound on MIP 

objective. 

 LS_IINFO_MIP_LPCOUNT: Number of LPs solved 

for solving a MIP. 

 LS_IINFO_MIP_BRANCHCOUNT: Number of 

branches generated for solving a MIP. 

 LS_IINFO_MIP_ACTIVENODES: Number of 

remaining nodes to be explored. 

 LS_IINFO_MIP_LTYPE: Type of the last MIP 

solution. 

 LS_IINFO_MIP_SIM_ITER: Number of simplex 

iterations performed for solving a MIP. 

 LS_IINFO_MIP_BAR_ITER: Number of barrier 

iterations performed for solving a MIP. 

 LS_IINFO_MIP_NLP_ITER: Number of nonlinear 

iterations performed for solving a MIP. 

 LS_IINFO_MIP_NUM_TOTAL_CUTS: Number of 

total cuts generated. 

 LS_IINFO_MIP_GUB_COVER_CUTS: Number of 

GUB cover cuts generated. 

 LS_IINFO_MIP_FLOW_COVER_CUTS: Number of 

flow cover cuts generated. 

 LS_IINFO_MIP_LIFT_CUTS: Number of lifted 

knapsack covers generated. 

 LS_IINFO_MIP_PLAN_LOC_CUTS: Number of 

plant location cuts generated. 

 LS_IINFO_MIP_DISAGG_CUTS: Number of 

disaggregation cuts generated. 

 LS_IINFO_MIP_KNAPSUR_COVER_CUTS: 

Number of surrogate knapsack cover cuts generated. 

 LS_IINFO_MIP_LATTICE_CUTS: Number of 

lattice cuts generated. 

 LS_IINFO_MIP_GOMORY_CUTS: Number of 

Gomory cuts generated. 

 LS_IINFO_MIP_COEF_REDC_CUTS: Number of 

coefficient reduction cuts generated. 

 LS_IINFO_MIP_GCD_CUTS: Number of GCD cuts 

generated. 

 LS_IINFO_MIP_OBJ_CUT: Number of objective 

cuts generated. 

 LS_IINFO_MIP_BASIS_CUTS: Number of basis 

cuts generated. 

 LS_IINFO_MIP_CARDGUB_CUTS: Number of 

cardinality/GUB cuts generated. 

 LS_IINFO_MIP_CONTRA_CUTS: Number of 

contra cuts generated. 
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 LS_IINFO_MIP_CLIQUE_CUTS: Number of clique 

cuts generated. 

 LS_DINFO_GOP_OBJ: Objective value of the global 

optimal solution of a GOP. 

 LS_DINFO_GOP_BESTBOUND: Best bound on the 

objective value of a GOP. 

 LS_IINFO_GOP_STATUS: Solution status of a GOP. 

 LS_IINFO_GOP_LPCOUNT: Number of LPs solved 

for solving a GOP. 

 LS_IINFO_GOP_NLPCOUNT: Number of NLPs 

solved for solving a GOP. 

 LS_IINFO_GOP_MIPCOUNT: Number of MIPs 

solved for solving a GOP. 

 LS_IINFO_GOP_NEWSOL: If a new GOP solution 

has been found or not. 

 LS_IINFO_GOP_BOX: Number of explored boxes  

 LS_IINFO_GOP_BBITER: Number of iterations 

performed during a major GOP iteration. 

 LS_IINFO_GOP_SUBITER: Number of iterations 

performed during a minor GOP iteration. 

 LS_IINFO_GOP_ACTIVEBOXES: Number of active 

boxes at current state for solving a GOP. 

 LS_IINFO_GOP_MIPBRANCH: Number of 

branches created for solving a GOP. 

Output Arguments:  

Name  Description  

pvValue  This is a pointer to a memory location where LINDO API will 

return the requested information. You must allocate sufficient 

memory for the requested information prior to calling this 

function.  

Remarks:  

 LSgetInfo() cannot be used during callbacks.  

 Query values whose names begin with LS_IINFO return integer values, while those 

whose names begin with LS_DINFO return double precision floating point values. 

 Refer to Chapter 9, Using Callback Functions, for additional information. 
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LSgetMIPCallbackInfo() 

Description:  

Returns information about the current state of the LINDO API branch-and-bound solver. This 

routine is to be called from your user supplied callback functions that were established with 

the calls LSsetCallback()and LSsetMIPCallback(). 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSgetMIPCallbackInfo( pLSmodel pModel, int nQuery, void 

*pvValue)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel. This should be the same 

instance as was passed to your user callback function from the 

LINDO API solver.  

nQuery This is the information desired from LINDO API. All 

information that can be accessed via LsgetCallbackInfo() is 

available. 

Output Arguments:  

Name  Description  

pvValue  This is a pointer to a memory location where LINDO API will 

return the requested information. You must allocate sufficient 

memory for the requested information prior to calling this 

function.  

Remarks:  

 Query values whose names begin with LS_IINFO return integer values, while those 

values whose names begin with LS_DINFO return double precision floating point values. 

 Refer to Chapter 9, Using Callback Functions, for additional information on the use of 

callback functions. 
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LSsetCallback() 

Description:  

Supplies LINDO API with the address of the callback function that will be called at various 

points throughout all components of LINDO API. The user supplied callback function can be 

used to report the progress of the solver routines to a user interface, interrupt the solver, etc. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int LSsetCallback( pLSmodel pModel, int (CALLBACKTYPE 

*pcbFunc)( LSmodel*, int, void*), void *pvData)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

pcbFunc  A pointer to the user supplied callback function. 

pvData A pointer to any data you wish to access within the callback 

function. Of course, this can be a pointer to a structure, 

allowing any amount of information to be passed.  

Remarks:  

 To disable the callback function, call this routine with the callback function set to NULL. 

 To control the frequency of callbacks, use LSsetEnvDouParameter() to set parameter 

LS_DPARAM_CALLBACKFREQ. This parameter is the number of seconds 

(approximately) between callbacks. 

 If the value returned by the callback function is nonzero, the solver will interrupt and the 

control of the application program will pass to the user. 

 Refer to the lindo.h file for CALLBACKTYPE macro definition. 

 Refer to Chapter 9, Using Callback Functions, for additional information. 
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LSsetEnvLogFunc () 

Description:  

Supplies the specified environment with the addresses of a) the pLogfunc() that will be called 

each time LINDO API logs message and b) the address of the user data area to be passed 

through to the pUsercalc() routine.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetEnvLogFunc ( pLSenv pEnv, printLOG_t *pLogfunc, 

void *pUserData)  

Input Arguments:  

Name  Description  

pEnv  A pointer to an instance of LSenv.  

pLogfunc A pointer to the subroutine that will be called to log messages. 

pUserData A pointer to a “pass through” data area in which your calling 

application may place information about the functions to be 

calculated. Whenever LINDO API calls your subroutine 

pUsercalc(), it passes through the pointer pUserData which 

could contain data to be used in the computation of the final 

value.  Passing data in this manner will ensure that your 

application remains thread safe. 
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LSsetFuncalc () 

Description:  

Supplies LINDO API with the addresses of a) the user-supplied function computing the 

routine pFuncalc() (see Chapter 7) that will be called each time LINDO API needs to 

compute a row value, and b) the address of the user data area to be passed through to the 

pFuncalc() routine.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetFuncalc ( pLSmodel pModel, Funcalc_type *pFuncalc, 

void *pUserData)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

pFuncalc A pointer to the subroutine that computes the value of a 

specified nonlinear row. See the definition of pFuncalc() in 

Chapter 7, Solving Nonlinear Programs, for details on this 

function’s prototype. 

pUserData A pointer to a “pass through” data area in which your calling 

application may place information about the functions to be 

calculated. Whenever LINDO API calls your subroutine 

pFuncalc(), it passes through the pointer pUserData. All data 

that pFuncalc() needs to compute function values should be in 

the pUserData memory block. Passing data in this manner will 

ensure that your application remains thread safe. 

Remarks:  

 Visual Basic users can use the AddressOf operator to pass the address of a routine to 

LSsetFuncalc(). The supplied routine must be in a VB module, or the AddressOf operator 

will fail.  
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LSsetGradcalc()  

Description:  

Supplies LINDO API with the addresses of a) the pGradcalc () callback function (see Chapter 

7, Solving Nonlinear Programs) that will be called each time LINDO API needs a gradient 

(i.e., vector of partial derivatives), and b) the data area to be passed through to the gradient 

computing routine. This data area may be the same one supplied to LSsetFuncalc(). 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSsetGradcalc ( pLSmodel pModel, Gradcalc_type 

*pGradcalc, void *pUserData, int nLenUseGrad, int 

*pnUseGrad); 

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

pGradcalc  A pointer to the subroutine that computes the gradients for 

specified nonlinear rows. See the definition of pGradcalc () in 

Chapter 7, Solving Nonlinear Programs, for details on this 

function’s interface. 

pUserData A pointer to a “pass through” data area in which your calling 

application may place information about the partial derivatives 

to be calculated. Whenever LINDO API calls your subroutine 

pGradcalc(), it passes through the pointer pUserData. All data 

that pGradcalc() needs to compute gradients should be in the 

pUserData memory block. Passing data in this manner will 

ensure that your application remains thread safe. 

nLenUseGrad An integer indicating how many nonlinear rows will make use 

of the pGradcalc() routine. 0 is interpreted as meaning that no 

functions use a pGradcalc() routine, thus meaning that partials 

on all functions are computed with finite differences. A value 

of -1 is interpreted as meaning the partials on all nonlinear 

rows will be computed through the pGradcalc() routine. A 

value greater than 0 and less-than-or-equal-to the number of 

nonlinear rows is interpreted as being the number of nonlinear 

rows that make use of the pGradcalc () routine. And, the list of 

indices of the rows that do so is contained in the following 

array, pnUseGrad. 

pnUseGrad An integer array containing the list of nonlinear rows that make 

use of the pGradcalc() routine. You should set this pointer to 

NULL if nLenUseGrad is 0 or -1. Otherwise, it should point to 

an array of dimension nLenUseGrad, where pnUseGrad[j] is 

the index of the j-th row whose partial derivatives are supplied 

through the pGradcalc() function. A value of -1 indicates the 
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objective row. 

Remarks:  

 LSsetGradcalc() need not be called. In that case, gradients will be approximated by finite 

differences. 

 Visual Basic users can use the AddressOf operator to pass the address of a routine to 

LSsetGradcalc(). The supplied routine must be in a VB module, or the AddressOf 

operator will fail. 

LSsetMIPCallback() 

Description:  

Supplies LINDO API with the address of the callback function that will be called each time a 

new integer solution has been found to a mixed-integer model.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSsetMIPCallback( pLSmodel pModel, int ( 

CALLBACKTYPE *pMIP_caller)( LSmodel*, void*, double, 

double*), void *pvData)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

pMIP_caller  A pointer to your user supplied callback function.  

pvData A pointer to any data you wish to access within the callback 

function. Of course, this can be a pointer to a structure, 

allowing any amount of information to be passed.  

Remarks:  

 To disable the MIP callback function, call this routine with the callback function set to 

NULL. 

 To retrieve information in your MIP callback routine, see LSgetMIPCallbackInfo(). 

 To interrupt the mixed-integer optimizer before a new integer solution is found or in 

between new integer solutions, set a general callback function via LSsetCallback(). 

 Refer to the lindo.h file for the CALLBACKTYPE macro definition. 

 Refer to Chapter 9, Callback Functions, for additional information. 
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LSsetGOPCallback()  

Description:  

Supplies LINDO API with the address of the callback function that will be called each time a 

the global solver updates the incumbent solution, i.e. finds a solution with objective value 

better than the best known solution.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSsetGOPCallback( pLSmodel pModel, int ( 

CALLBACKTYPE *pGOP_caller)( LSmodel*, void*, double, 

double*), void *pvData)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

pGOP_caller  A pointer to your user supplied callback function.  

pvData A pointer to any data you wish to access within the callback 

function. Of course, this can be a pointer to a structure, 

allowing any amount of information to be passed.  

LSsetModelLogFunc() 

Description:  

Supplies the specified model with the addresses of a) the pLogfunc () that will be called each 

time LINDO API logs message and b) the address of the user data area to be passed through 

to the pUsercalc() routine.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetModelLogFunc ( pLSmodel pModel, printLOG_t 

*pLogfunc, void *pUserData)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

pLogfunc A pointer to the subroutine that will be called to log messages. 

pUserData A pointer to a “pass through” data area in which your calling 

application may place information about the functions to be 

calculated. Whenever LINDO API calls your subroutine 

pUsercalc(), it passes through the pointer pUserData which 

could contain data to be used in the computation of the final 
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value.  Passing data in this manner will ensure that your 

application remains thread safe. 
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LSsetUsercalc () 

Description:  

Supplies LINDO API with the addresses of a) the pUsercalc() (see Chapter 7) that will be 

called each time LINDO API needs to compute the value of the user-defined function and b) 

the address of the user data area to be passed through to the pUsercalc() routine.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetFuncalc ( pLSmodel pModel, user_callback_t 

*pUsercalc, void *pUserData)  

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

pUsercalc A pointer to the subroutine that computes the value of a user-

defined function. See the definition of pUsercalc() in Chapter 

7, Solving Nonlinear Programs, for details on this function’s 

prototype. 

pUserData A pointer to a “pass through” data area in which your calling 

application may place information about the functions to be 

calculated. Whenever LINDO API calls your subroutine 

pUsercalc(), it passes through the pointer pUserData which 

could contain data to be used in the computation of the final 

value.  Passing data in this manner will ensure that your 

application remains thread safe. 

Remarks:  

 LSsetGradcalc() need not be called. In that case, gradients will be approximated by finite 

differences. 
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LSsetMIPCCStrategy () 

Description:  

Set the callback function that will be called to define competing strategies 

 for each thread when in a concurrent MIP run.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

Prototype:  

int  LSsetMIPCCStrategy(pLSmodel pModel, cbStrategy_t    

MIP_strategy, int nRunId, char *szParamFile, void           

*puserData) 

Input Arguments:  

Name  Description  

pModel  A pointer to an instance of LSmodel.  

MIP_strategy A pointer to the callback function to define a MIP strategy in 

the concurrent run. 

nRunId The index of the instance in the concurrent run. 

szParamFile A parameter file to import strategy parameters. 

puserData A pointer to data that is passed back to the callback function.  

This pointer can be a pointer to a structure so that any amount 

of information can be passed back. 

Note:  

 To disable the callback function, call this routine again with  the callback function set to 

NULL. 
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Memory Management Routines 
The routines in this section allow the user to manage the memory used by the LINDO API solvers. 

LSfreeGOPSolutionMemory() 

Description:  

This routine frees up the arrays associated with the GOP solution of a given model. After 

freeing the memory, you will lose all access to the information associated to GOP solutions.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSfreeGOPSolutionMemory( pLSmodel pModel)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

LSfreeHashMemory() 

Description:  

This routine frees up work arrays associated with a given model’s variable name hashing. 

This will release memory to the system pool, but will cause any subsequent variable name 

lookup to pause to regenerate these tables. 

Returns:  

if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

void  LSfreeHashMemory( pLSmodel pModel)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

Remarks:  

 A model also stores work arrays for the solver. These arrays may be freed by a call to 

LSfreeSolverMemory(). 
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LSfreeMIPSolutionMemory() 

Description:  

This routine frees up the arrays associated with the MIP solution of a given model. After 

freeing the memory, you will lose all access to the information associated to MIP solutions.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSfreeMIPSolutionMemory( pLSmodel pModel)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

LSfreeSolutionMemory() 

Description:  

This routine frees up the arrays associated with the solution of a given model. This will 

release the associated memory blocks to the system, but will not cause the solver to loose any 

warm start capability for the model on its next run. However, you will lose all access to the 

model’s solution information. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

int  LSfreeSolutionMemory( pLSmodel pModel)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  
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LSfreeSolverMemory() 

Description:  

This routine frees up solver work arrays associated with a given model. This will release the 

associated memory to the system, but will cause any subsequent reoptimization of the model 

to take more time. In other words, the solver will lose its warm start capability for the model 

on its next run. Note that by freeing solver memory, you will not lose access to the model’s 

solution information. 

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes. 

Prototype:  

void  LSfreeSolverMemory( pLSmodel pModel)  

Input Arguments:  

Name  Description  

pModel A pointer to an instance of LSmodel.  

Remarks:  

 A model also stores work arrays for variable name hashing. These arrays may be freed by 

a call to LSfreeHashMemory(). 
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Random Number Generation Routines 
Random Number Generator Functions. 

LScreateRG () 

Description: 

Create a new random generator object.  

Returns: 

pRG A reference to a random number generator.  

Prototype:  

pLSrandGen LScreateRG (pLSenv pEnv, int nMethod) 

Input Arguments:  

Name  Description  

pEnv A reference to an instance of LSenv. 

nMethod An integer specifying the random number generator to use. 

Possible values are: 

 LS_RANDGEN_FREE 

 LS_RANDGEN_SYSTEM 

 LS_RANDGEN_LINDO1 

 LS_RANDGEN_LINDO2 

 LS_RANDGEN_LIN1 

 LS_RANDGEN_MULT1 

 LS_RANDGEN_MERSENNE 

Remark: 

Call LScreateRGMT() for multithreaded random number generation. 

LSgetDoubleRV () 

Description: 

Get the next standard uniform random variate in the stream.  

Prototype:  

double LSgetDoubleRV (pLSrandGen pRG) 

Input Arguments:  

Name  Description  

pRG A reference to the random number generator. 
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LSgetDistrRV () 

Description: 

Get the next double random variate of underlying distribution.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSgetDistrRV (pLSrandGen pRG, void * dResult) 

Input Arguments:  

Name  Description  

pRG A reference to the random number generator. 

dResult The next random value from underlying distribution 

LSgetInitSeed () 

Description: 

Get the seed initiated this random generator.  

Prototype:  

int LSgetInitSeed (pLSrandGen pRG) 

Input Arguments:  

Name  Description  

pRG A reference to the random number generator. 

LSgetInt32RV () 

Description: 

Get the next integer random variate in the stream.  
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Prototype:  

int LSgetInt32RV (pLSrandGen pRG, int ib, int ie) 

Input Arguments:  

Name  Description  

pRG A reference to the random number generator. 

ib lower bound for random variate 

ie upper bound for random variate 

LSsetRGSeed () 

Description: 

Set an initialization seed for the random number generator.  

Prototype:  

void LSsetRGSeed (pLSrandGen pRG, int seed) 

Input Arguments:  

Name  Description  

pRG A reference to the random number generator. 

seed An integer specifying the seed to set. 

LSdisposeRG () 

Description: 

Delete the specified random generator object.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

void LSdisposeRG (pLSrandGen * ppRG) 

Input Arguments:  

Name  Description  

ppRG A reference to the address of a random number generator. 
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LSsetDistrRG () 

Description: 

Set a cdfinv for the random generator.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsetDistrRG (pLSrandGen pRG, int nDistType) 

Input Arguments:  

Name  Description  

pRG A reference to the random number generator. 

nDistType An integer specifying the distribution type. See 

LSsampCreate() for possible values. 

LSsetDistrParamRG () 

Description: 

Set distribution parameters for internal cdfinv.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsetDistrParamRG (pLSrandGen pRG, int iParam, double 

dParam) 

Input Arguments:  

Name  Description  

pRG A reference to the random number generator. 

iParam A parameter index 

dParam A parameter value 

LSgetRGNumThreads () 

Description: 

Get the number of parallel threads for specified pLSrandGen instance. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  
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Prototype:  

int LSgetRGNumThreads(pLSrandGen pRG, int *pnThreads); 

Input Arguments:  

Name  Description  

pRG A reference to the random number generator. 

Output Arguments:  

Name  Description  

pnThreads An integer reference to return the number of parallel threads 

used. 

LSfillRGBuffer () 

Description: 

Generate next batch of random numbers into random number buffer. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSfillRGBuffer(pLSrandGen pRG) 

Input Arguments:  

Name  Description  

pRG A reference to the random number generator. 

Remark: 

This function is used only with parallel random number generator created with 

LScreateRGMT(). 

LSgetRGBufferPtr () 

Description: 

Get buffer pointer for fast access. 

Returns: 

A pointer to a double array of size (*pnBufferLen).  
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Prototype:  

double LSgetRGBufferPtr(pLSrandGen pRG, int *pnBufferLen) 

Input Arguments:  

Name  Description  

pRG A reference to the random number generator. 

pnBufferLen An integer reference to return the length of output buffer. 
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Sampling Routines 
Sampling Functions. 

LSsampCreate () 

Description: 

Create an instance of a sample (pLSsample) of specified distribution.  

Returns: 

A reference to an instance of LSsample object.  

Prototype:  

pLSsample LSsampCreate (pLSenv pEnv, int nDistrType, int * 

perrorcode) 

Input Arguments:  

Name  Description  

pEnv A reference to an instance of LSenv object. 

nDistrType An integer specifying the distribution type. Possible values: 

one of the distribution functions listed in the table above 

Distribution Function Macros. 

perrorcode An reference to an integer returning the error code. See 

Appendix-A for possible values. 

LSsampDelete () 

Description: 

Delete the specified pLSsample object.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampDelete (pLSsample * pSample) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 
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LSsampLoadDiscretePdfTable () 

Description: 

Load a PDF table for a user defined discrete distribution.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampLoadDiscretePdfTable (pLSsample pSample, int nLen, 

double * padProb, double * padVals) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

nLen An integer specifying the table length. 

padProb A double array specifying the probabilities of outcomes. 

padVals A double array specifying the values of outcomes (optional) 

Remarks: 

 if nLen <=0, the table length will be set to default (100)  

LSsampGetDiscretePdfTable () 

Description: 

Get the PDF table from a discrete distribution sample.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampGetDiscretePdfTable (pLSsample pSample, int nLen, 

double * padProb, double * padVals) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

nLen An integer to return the table length. 

padProb A double array to return the probabilities of outcomes. 

padVals A double array to return the values of outcomes (optional) 

Remarks: 

 Normally, this function should be called twice. The first call to get pnLen (with other 

arguments set to NULL) to allocate space for padProb and padVals. In the second call, 

padProb and padVals would be populated. 
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LSsampSetUserDistr () 

Description: 

Specify a custom function to compute the PDF.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampSetUserDistr (pLSsample pSample, UserPdf * pFunc) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

pFunc A user defined routine. 

LSsampSetDistrParam () 

Description: 

Set the specified parameter of the given distribution.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampSetDistrParam (pLSsample pSample, int iarg, double 

dargv) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

iarg An integer specifying the index of the parameter. 

dargv A double precision value specifying the parameter value. 

LSsampGetDistrParam () 

Description: 

Get the specified parameter of a given distribution. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  
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Prototype:  

int LSsampGetDistrParam (pLSsample pSample, int iarg, double * 

dargv) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

iarg An integer specifying the index of the parameter. 

dargv A double precision value specifying the parameter value. 

LSsampEvalDistr () 

Description: 

Evaluate the specified function associated with given distribution at specified point.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampEvalDistr (pLSsample pSample, int nFuncType, 

double dX, double * dResult) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

nFuncType An integer specifying the function type to evaluate. Possible 

values are: 

 LS_PDF: probability density function. 

 LS_CDF: cummulative density function. 

 LS_CDFINV: inverse of cummulative density 

function. 

 LS_PDFDIFF: derivative of the probability 

density function.  

dX A double precision value to evaluate the specified function.  

dResult A reference to a double value to return the result. 

 LSsampSetRG () 

Description: 

Set a random number generator object to the specified distribution.  
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Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampSetRG (pLSsample pSample, void * pRG) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

pRG A reference to a random number generator. 

LSsampGenerate () 

Description: 

Generate a sample of size nSampSize  with specified method from the underlying 

distribution.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampGenerate (pLSsample pSample, int nSampMethod, int 

nSampSize) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

nSampMethod An integer specifying the sampling method. Possible values 

are: 

 LS_MONTECARLO  

 LS_LATINSQUARE (default) 

 LS_ANTITHETIC  

nSampSize An integer specifying the sample size. Possible values are 

nonnegative integers > 2. 

LSsampGetPoints () 

Description: 

Get a copy of the generated sample points.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  
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Prototype:  

int LSsampGetPoints (pLSsample pSample, int * pnSampSize, 

double * pX) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

pnSampSize A reference to an integer specifying the sample size.  

pX A reference to a double pointer containing the sample. 

Remarks: 

Use LSdistGetSamplePtr for fast access to the sample. 

LSsampGetPointsPtr () 

Description: 

Get a reference to the generated sample points.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampGetPointsPtr (pLSsample pSample, int * pnSampSize, 

double ** pX) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

pnSampSize A reference to an integer specifying the sample size.  

pX A reference to a double pointer containing the sample. 

LSsampGetCIPoints () 

Description: 

Get a copy of the correlation induced sample points.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  
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Prototype:  

int LSsampGetCIPoints (pLSsample pSample, int * pnSampSize, 

double *pX) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

pnSampSize A refernce to an integer specifying the sample size. 

pX A reference to a double vector containing the sample. 

LSsampGetCIPointsPtr () 

Description: 

Get a reference to the correlation induced sample points.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampGetCIPointsPtr (pLSsample pSample, int * 

pnSampSize, double ** pX) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

pnSampSize A reference to an integer specifying the sample size.  

pX A reference to a double pointer containing the sample. 

LSsampGetCorrelationMatrix () 

Description: 

Get the correlation structure between variables.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  
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Prototype:  

int LSsampGetCorrelationMatrix (pLSsample * paSample, int 

nDim, int iFlag, int nCorrType, int * QCnonzeros, int * 

QCvarndx1, int * QCvarndx2, double * QCcoef) 

Input Arguments:  

Name  Description  

paSample An array of instances of pLSsample 

nDim An integer specifying the number of variables (length of 

paSample ) 

iFlag An integer specifying the sample (original or corr-induced). 

Possible values are: 

 0 use independent sample 

 1 use dependent (correlation induced) sample.  

nCorrType Correlation type. Possible values are: 

 LS_CORR_PEARSON (default) 

 LS_CORR_SPEARMAN 

 LS_CORR_KENDALL  

 LS_CORR_TARGET 

QCnonzeros A reference to an integer to return the number of nonzero 

correlation coefficients.  

QCvarndx1 A vector containing the first index of variable the correlation 

term belongs to (QCnonzeros  long)..  

QCvarndx2 A vector containing the second index of variable the 

correlation term belongs to (QCnonzeros  long)..  

QCcoef A vector containing the correlation terms (QCnonzeros  long). 

LSsampInduceCorrelation () 

Description: 

Induce a target dependence structure between the stochastic elements via the specified 

correlation matrix.  This matrix can be retrieved with LSgetCorrelationMatrix function with 

LS_CORR_TARGET as the argument. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  
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Prototype:  

int LSsampInduceCorrelation (pLSsample * paSample, int nDim, 

int nCorrType, int QCnonzeros, int * QCvarndx1, int * 

QCvarndx2, double * QCcoef) 

Input Arguments:  

Name  Description  

paSample An array of instances of LSsample 

nDim An integer specifying the number of variables (length of 

paSample ) 

nCorrType Correlation type. Possible values are: 

 LS_CORR_PEARSON 

 LS_CORR_SPEARMAN 

 LS_CORR_KENDALL  

QCnonzeros The number of nonzero correlation coefficients. 

QCvarndx1 A vector containing the first index of variable the correlation 

term belongs to (QCnonzeros  long)..  

QCvarndx2 A vector containing the second index of variable the 

correlation term belongs to (QCnonzeros  long)..  

QCcoef A vector containing the correlation terms (QCnonzeros  long). 

Remarks: 

Use LSdistGetSamplePtr for fast access to the sample.  

 LSsampGetInfo () 

Description: 

Get information about the sample.  

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  
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Prototype:  

int LSsampGetInfo (pLSsample pSample, int query, void * result) 

Input Arguments:  

Name  Description  

paSample An array of instances of LSsample 

query An integer specifying the information requested from the 

sample. Possible values are: 

 LS_IINFO_DIST_TYPE 

 LS_IINFO_SAMP_SIZE 

 LS_DINFO_SAMP_MEAN 

 LS_DINFO_SAMP_STD 

 LS_DINFO_SAMP_SKEWNESS 

 LS_DINFO_SAMP_KURTOSIS 

result A reference to the appropriate type to return the result. 

Note: 

Query values whose names begin with LS_IINFO take integer values while those whose 

names begin with LS_DINFO take double-precision floating point values.  

LSgetStocParSample () 

Description: 

Get a handle for the LSsample object associated with the specified stochastic parameter.  

Returns: 

A reference to an instance of LSsample object. 

Prototype:  

pLSsample LSgetStocParSample (pLSmodel pModel, int iStv, int iRow, 

int jCol, int * nErrorCode) 
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Input Arguments:  

Name  Description  

pModel A reference to an instance of LSmodel object.  

iStv An integer specifying the index of stochastic parameter in the 

instruction list. It should be ignored if  (iRow,jCol)   is 

specified.  

iRow An integer specifying the row index of the stochastic 

parameter. It should be ignored if iStv  will be specified.  

jCol An integer specifying the column index of the stochastic 

parameter. It should be ignored if iStv  will be specified. 

nErrorCode A reference to an integer error code. 

LSsampEvalUserDistr () 

Description: 

Evaluate the specified multivariate function associated with given distribution at specified 

point. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  
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Prototype:  

int (pLSsample pSample, int nFuncType, double *padX, int nX, 

double *dResult) 

Input Arguments:  

Name  Description  

pSample A reference to an instance of LSsample object. 

nFuncType An integer specifying the function type to evaluate. Possible  

values are: 

 LS_PDF: probability density function. 

 LS_CDF: cummulative density function. 

 LS_CDFINV: inverse of cummulative density 

function. 

 LS_PDFDIFF: derivative of the probability density 

function.  

 LS_USER: a user-defined function. The UserPDF() 

will  

padX A double precision vector containing the values required to 

evaluate the specified function. This vector has nX elements. 

nX An integer specifying the number of values required in the 

computation of the sample point. 

dResult A reference to a double value to return the result. 

LSsampAddUserFuncArg () 

Description: 

Adds other samples as arguments to a sample with a user-defined distribution or a function 

with random arguments. 

Returns: 

0 if successful, else one of the error codes listed in Appendix A, Error Codes  

Prototype:  

int LSsampAddUserFuncArg(pLSsample pSample, pLSsample 

pSampleSource) 

Input Arguments:  

Name  Description  

pSample An instance of LSsample which depends on pSampleSource 

pSampleSource Another instance of LSsample 
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Distribution Function Macros 
  Symbol  Value Distribution Parameters 

  Param 1  Param 2 Param 3 

Parametric Discrete Distributions 

LSDIST_TYPE_BINOMIAL          701 

no. of trials  

success 

prob.  

N/A 

[0, +inf) [0, 1] N/A 

  

LSDIST_TYPE_NEGATIVE_BINOMIAL 704 

r- factor success 

prob.  

N/A 

(0, +inf) (0, 1) N/A 

LSDIST_TYPE_GEOMETRIC         705 

success prob.  N/A N/A 

(0, 1] N/A N/A 

LSDIST_TYPE_POISSON           706 

mean  N/A N/A 

(0, +inf) N/A N/A 

LSDIST_TYPE_LOGARITHMIC       707 

p-factor  N/A N/A 

(0, 1) N/A N/A 

LSDIST_TYPE_HYPER_GEOMETRIC   708 

total pop. (N) 

sample 

size (n) 

defective 

factor (m) 

[0, +inf) [0, N] [0, N] 

Parametric Continuous Distributions   

LSDIST_TYPE_BETA              801 

Shape 1 Shape 2 N/A 

(0,+inf) (0,+inf) N/A 

LSDIST_TYPE_CAUCHY            802 

location  scale  N/A 

(-inf, +inf) (0,+inf) N/A 

LSDIST_TYPE_CHI_SQUARE        803 

deg. of 

freedom 

N/A N/A 

(0,+inf) N/A N/A 

LSDIST_TYPE_EXPONENTIAL       804 

 Rate N/A N/A 

(0,+inf) N/A N/A 

LSDIST_TYPE_F_DISTRIBUTION    805 

deg. of 

freedom  1 

deg. of 

freedom 2 

N/A 

(0,+inf) (0,+inf) N/A 

LSDIST_TYPE_GAMMA             806 shape  scale  N/A 
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(0,+inf) (0,+inf) N/A 

LSDIST_TYPE_GUMBEL            807 

location scale  N/A 

(-inf, +inf) (0,+inf) N/A 

LSDIST_TYPE_LAPLACE           808 

location scale  N/A 

(-inf, +inf) (0,+inf) N/A 

LSDIST_TYPE_LOGNORMAL         809 

location scale  N/A 

(-inf, +inf) (0,+inf) N/A 

LSDIST_TYPE_LOGISTIC          810 

location  scale  N/A 

(-inf, +inf) (0,+inf) N/A 

LSDIST_TYPE_NORMAL            811 

mean standard 

deviation 

N/A 

(-inf, +inf) (0,+inf) N/A 

LSDIST_TYPE_PARETO            812 

scale  shape  N/A 

(0,+inf) (0,+inf) N/A 

LSDIST_TYPE_STUDENTS_T        814 

deg. of 

freedom 

N/A N/A 

(0,+inf) N/A N/A 

LSDIST_TYPE_TRIANGULAR        815 

lower limit 

(a) 

upper 

limit (b) mode (c) 

(-inf, b] [a, +inf) [a, b] 

LSDIST_TYPE_UNIFORM           816 

lower limit 

(a) 

upper 

limit (b) 

N/A 

(-inf, b] [a, +inf) N/A 

LSDIST_TYPE_WEIBULL           817 

scale  shape  N/A 

(0,+inf) (0,+inf) N/A 

LSDIST_TYPE_BETABINOMIAL 819 N>0 shape1>0 shape2>0 

LSDIST_TYPE_SYMMETRICSTABLE 820 2>alpha>0.02 N/A N/A 

Customized Distributions  

LSDIST_TYPE_DISCRETE          702 N/A N/A N/A 

LSDIST_TYPE_DISCRETE_BLOCK    703 N/A N/A N/A 

LSDIST_TYPE_LINTRAN_BLOCK     709 N/A N/A N/A 

LSDIST_TYPE_SUB_BLOCK         710 N/A N/A  N/A  

LSDIST_TYPE_SUB               711 N/A N/A N/A 
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LSDIST_TYPE_USER              712 N/A N/A N/A 
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Date and Time Routines 
The routines in this section provide basic date-time-calendar functionality.  

LSdateDiffSecs () 

Description:  

Computes number of seconds between two instants in Yr, Mon, Day, Hr, Mn, Sec form. Leap 

years are properly accounted for.   

Returns:  

0 if successful, else an error code if one of the inputs is incorrect, e.g., Mon < 1 or Mon > 12, 

etc. See error codes listed in Appendix A, Error Codes.  

Prototype:  

  int  LSdateDiffSecs (  int nYr1, int nMon1, int nDay1, int nHr1, int 

nMin1, double dSec1, int nYr2, int nMon2, int nDay2, int 

nHr2, int nMin2, double dSec2,  double *pdSecdiff) 

Input Arguments:  

Name  Description  

nYr1 Year, e.g., 1981,  of first instant. May be negative for a BC 

date.  

nMon1 Month of first instant. An integer in [1, 12]. 

nDay1 Day of month of first instant. An integer in [1, 31]. 

nHr1 Hour of day of first instant. An integer in [1, 24]. 

nMin1 Minute of hour of first instant. An integer in [1, 60]. 

dSec1 Second of hour of first instant. A floating point number in [0, 

59.99999], i.e., accurate to 5 decimal places. 

nYr2 Year of second instant. May be negative for a BC date.  

nMon2 Month of second instant. An integer in [1, 12]. 

nDay2 Day of month of second instant. An integer in [1, 31]. 

nHr2 Hour of day of second instant. An integer in [1, 24]. 

nMin2 Minute of the hour of second instant. An integer in [1, 60]. 

dSec2 Second of hour of second instant. A floating point number in 

[0, 59.99999], i.e., accurate to 5 decimal places. 

*dSecdiff Pointer to a double precision variable into which to place the 

difference in seconds, including fraction, between the two 

instants. 
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LSdateYmdhms () 

Description:  

Given an elapsed time in seconds and a first instant in Yr, Mon, Day, Hr, Min, Sec form, this 

function computes the Yr, Mon, Day, Hr, Min, Sec, and Day of week of a second instant that 

exceeds the first by the specified elapsed seconds. Leap years are properly accounted for.   

Returns:  

0 if successful, else an error code if one of the inputs is incorrect, e.g., Mon < 1 or Mon > 12, 

etc. See error codes listed in Appendix A, Error Codes.  

Prototype:  

  int  LSdateYmdhms (  double dSecdiff , int nYr1, int nMon1, int 

nDay1, int nHr1, int nMin1, double dSec1, int *pnYr2, int  

*pnMon2, int*pnDay2, int *pnHr2, int *pnMin2, double 

*pdSec2,  int *pnDow,) 

Input Arguments:  

Name  Description  

dSecdiff A double precision value giving an elapsed time in seconds. 

The second instant will differ from the first instant by this 

number of seconds. 

nYr1 Year, e.g., 1981,  of first instant. May be negative for a BC 

date.  

nMon1 Month of first instant. An integer in [1, 12]. 

nDay1 Day of month of first instant. An integer in [1, 31]. 

nHr1 Hour of day of first instant. An integer in [1, 24]. 

nMin1 Minute of hour of first instant. An integer in [1, 60]. 

dSec1 Second of hour of first instant. A floating point number in [0, 

59.99999], i.e., accurate to 5 decimal places. 

*pnYr2 Pointer to an integer variable into which the year of second 

instant will be placed. May be negative for a BC date.  

*pnMon2 Pointer to an integer variable into which the month of second 

instant will be placed. An integer in [1, 12]. 

*pnDay2 Pointer to an integer variable into which the day of month of 

second instant will be placed. An integer in [1, 31]. 

*pnHr2 Pointer to an integer variable into which the hour of day of 

second instant will be placed. An integer in [1, 24]. 

*pnMin2 Pointer to an integer variable into which the minute of the hour 

of second instant will be placed. An integer in [1, 31]. 
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*pdSec2 Pointer to a double variable into which the second of minute of 

second instant will be placed. A floating point number  in [0, 

59.99999], i.e., accurate to 5 decimal places. 

*pnDow Pointer to an integer variable into which the day of the week of 

the second instant will be placed, where 0 is Sunday, 1 is 

Monday, ... , 6 is Saturday. 

LSdateToday ()  

Description:  

Returns the Yr, Mon, Day, Hr, Min, Sec, and Day of week at the instant when the function 

was called. Leap years are properly accounted for. 

Returns:  

0 if successful, else an error code if one of the input pointers is invalid. See error codes listed 

in Appendix A, Error Codes.  

Prototype:  

  int  LSdateYmdhms ( int *pnYr1, int  *pnMon1, int*pnDay1, int 

*pnHr1, int *pnMin1, double *pdSec1,  int *pnDow,) 

Input Arguments:  

Name  Description  

*pnYr1 Pointer to an integer variable into which the year of today will 

be placed. 

*pnMon1 Pointer to an integer variable into which the month of today 

will be placed. An integer in [1, 12]. 

*pnDay1 Pointer to an integer variable into which the day of month of 

today will be placed. An integer in [1, 31]. 

*pnHr1 Pointer to an integer variable into which the current hour of 

today will be placed. An integer in [1, 24]. 

*pnMin1 Pointer to an integer variable into which the current minute of 

the hour of today will be placed. An integer in [1, 31]. 

*pdSec1 Pointer to a double variable into which the current second of 

the minute of today will be placed. A floating point number  in 

[0, 59.99999], i.e., accurate to 5 decimal places. 

*pnDow Pointer to an integer variable into which the day of the week of 

the today will be placed, where 0 is Sunday, 1 is Monday, ... , 6 

is Saturday. 

 
 





 

 

Chapter 3:  

Solving Linear Programs 
In this chapter, we demonstrate the use of LINDO API to build and solve a very simple model. We 

will give examples written in both C and Visual Basic.  

Recall the simple programming example from Chapter 1. It is a small product mix model that appears 

as follows: 

Maximize:    20 * A + 30 * C  

Subject to: 

                  A           <=  60 

                           C  <=  50 

                  A +  2 * C  <= 120 

The optimal objective value for this model is 2100, with A = 60 and C = 30. 

Solving such a problem with LINDO API involves the following steps: 

1. Create a LINDO environment. 

2. Create a model in the environment. 

3. Specify the model. 

4. Perform the optimization. 

5. Retrieve the status and model solution. 

6. Delete the LINDO environment. 

We illustrate each of these steps for both C and Visual Basic. 

A Programming Example in C 
In this section, we will illustrate the use of LINDO API to build and solve the small model discussed 

above. The code for this example is contained in the file \lindoapi\samples\c\ex_samp1\ex_samp1.c. 

The contents of this file are reproduced below: 

/* ex_samp1.c 

  A C programming example of interfacing with the 

  LINDO API. 

 

  The problem: 

     MAX = 20 * A + 30 * C 

     S.T.       A +  2 * C  <= 120 

                A           <=  60 

                         C  <=  50 

 

   Solving such a problem with the LINDO API involves  

   the following steps: 
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      1. Create a LINDO environment. 

      2. Create a model in the environment. 

      3. Specify the model. 

      4. Perform the optimization. 

      5. Retrieve the status and model solution. 

      6. Delete the LINDO environment. 

*/ 

#include <stdlib.h> 

#include <stdio.h> 

 

/* LINDO API header file is located under \lindoapi\include */ 

#include "lindo.h" 

 

/* Define a macro to declare variables for error checking */ 

#define APIERRORSETUP   

   int nErrorCode;  

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]  

 

/* Define a macro to do our error checking */ 

#define APIERRORCHECK   

   if (nErrorCode)  

   {  

      if ( pEnv)  

      {  

         LSgetErrorMessage( pEnv, nErrorCode,  

          cErrorMessage);  

         printf("Errorcode=%d:  %s\n", nErrorCode,  

          cErrorMessage);  

      } else { 

         printf( "Fatal Error\n");  

      }  

      exit(1);  

   }  

 

/* main entry point */ 

int main() 

{ 

   APIERRORSETUP; 

/* Number of constraints */ 

   int nM = 3; 

/* Number of variables */ 

   int nN = 2; 

/* declare an instance of the LINDO environment object */ 

   pLSenv pEnv; 

/* declare an instance of the LINDO model object */ 

   pLSmodel pModel; 

 

   int nSolStatus; 

   char MY_LICENSE_KEY[1024]; 

 

/* >>> Step 1 <<< Create a model in the environment. */ 

   nErrorCode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

   pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

   if ( nErrorCode == LSERR_NO_VALID_LICENSE) 
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   { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

 

/* >>> Step 2 <<< Create a model in the environment. */ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   APIERRORCHECK; 

   { 

/* >>> Step 3 <<< Specify the model. 

 

 To specify our model, we make a call to LSloadLPData, 

  passing it: 

 - A pointer to the model which we are specifying(pModel) 

 - The number of constraints in the model 

 - The number of variables in the model 

 - The direction of the optimization (i.e. minimize or 

 -  maximize) 

 - The value of the constant term in the objective (may 

    be zero) 

 - The coefficients of the objective function 

 - The right-hand sides of the constraints 

 - The types of the constraints 

 - The number of nonzeros in the constraint matrix 

 - The indices of the first nonzero in each column 

 - The length of each column 

 - The nonzero coefficients 

 - The row indices of the nonzero coefficients 

 - Simple upper and lower bounds on the variables 

*/ 

 

/* The direction of optimization */ 

      int nDir = LS_MAX; 

/* The objective's constant term */ 

      double dObjConst = 0.; 

/* The coefficients of the objective function */ 

      double adC[2] = { 20., 30.}; 

/* The right-hand sides of the constraints */ 

      double adB[3] = { 120., 60., 50.}; 

/* The constraint types */ 

      char acConTypes[3] = {'L', 'L', 'L'}; 

/* The number of nonzeros in the constraint matrix */ 

      int nNZ = 4; 

/* The indices of the first nonzero in each column */ 

      int anBegCol[3] = { 0, 2, nNZ}; 

/* The length of each column.  Since we aren't leaving 

    any blanks in our matrix, we can set this to NULL */ 

      int *pnLenCol = NULL; 

/* The nonzero coefficients */ 

      double adA[4] = { 1., 1., 2., 1.}; 

/* The row indices of the nonzero coefficients */ 

      int anRowX[4] = { 0, 1, 0, 2}; 

/* Simple upper and lower bounds on the variables. 

    By default, all variables have a lower bound of zero 

    and an upper bound of infinity.  Therefore pass NULL 
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    pointers in order to use these default values. */ 

      double *pdLower = NULL, *pdUpper = NULL; 

/* We have now assembled a full description of the model. 

    We pass this information to LSloadLPData with the 

    following call. */ 

      nErrorCode = LSloadLPData( pModel, nM, nN, nDir, 

       dObjConst, adC, adB, acConTypes, nNZ, anBegCol, 

       pnLenCol, adA, anRowX, pdLower, pdUpper); 

      APIERRORCHECK; 

   } 

 

 /* >>> Step 4 <<< Perform the optimization */ 

   nErrorCode = LSoptimize( pModel, 

    LS_METHOD_PSIMPLEX, &nSolStatus); 

   APIERRORCHECK; 

 

   if (nSolStatus == LS_STATUS_OPTIMAL || 

       nSolStatus == LS_STATUS_BASIC_OPTIMAL) 

   { 

 /* >>> Step 5 <<< Retrieve the solution */ 

      int i; 

      double adX[ 2], dObj; 

 /* Get the value of the objective */ 

      nErrorCode = LSgetInfo( pModel, LS_DINFO_POBJ, &dObj) ; 

      APIERRORCHECK; 

      printf( "Objective Value = %g\n", dObj); 

 /* Get the variable values */ 

      nErrorCode = LSgetPrimalSolution ( pModel, adX); 

      APIERRORCHECK; 

      printf ("Primal values \n"); 

      for (i = 0; i < nN; i++) printf( " x[%d] = %g\n", i,adX[i]); 

      printf ("\n"); 

   } 

   else 

   { 

     /* see include\lindo.h for status definitions */ 

     printf( "Optimal solution was not" 

       " found -- status: %d\n", nSolStatus); 

   } 

 

 /* >>> Step 6 <<< Delete the LINDO environment */    

   nErrorCode = LSdeleteModel( &pModel); 

   nErrorCode = LSdeleteEnv( &pEnv); 

 

  /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   getchar(); 

} 

\lindoapi\samples\c\ex_samp1\ex_samp1.c 

The C header file lindo.h must be included in each C source file that makes any calls to LINDO API. 

This file contains definitions of all LINDO data structures, macros, and function prototypes. This is 

done in our sample with the following code: 

/* LINDO API header file */ 

#include "lindo.h" 
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Next, the license key is read into a local string using the following code fragment.  

nErrorCode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

The sample code then defines the macros APIERRORSETUP and APIERRORCHECK that are used to 

streamline error checking after calls to LINDO API. If an error is encountered after a call to a LINDO 

API routine, the APIERRORCHECK macro will cause the application to immediately cease execution. 

As mentioned above, the first two major steps in a typical application calling LINDO API are: 1) 

creating a LINDO environment object, and 2) creating a model object within the environment. The 

following code segment does this: 

/* declare an instance of the LINDO environment object */ 

   pLSenv pEnv;   

/* declare an instance of the LINDO model object */ 

   pLSmodel pModel;   

   int nSolStatus; 

   char MY_LICENSE_KEY[1024]; 

 

/* >>> Step 1 <<< Create a model in the environment */ 

nErrorCode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

   pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY);  

   if ( nErrorCode == LSERR_NO_VALID_LICENSE)  

   { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

/* >>> Step 2 <<< Create a model in the environment. */ 

   pModel = LScreateModel ( pEnv, &nErrorCode);  

   APIERRORCHECK; 

The environment data type, pLSenv, and the model data type, pLSmodel, are both defined in the lindo.h 

header file. A call to LScreateEnv() creates the LINDO environment. The second argument to 

LScreateEnv() is the local sting variable MY_LICENSE_KEY that holds the license key read from 

lndapi100.lic file. Immediately after the call to LScreateEnv(), a specific error check is done to trap the 

condition of an invalid license key. Finally, the model object is created with a call to LScreateModel(). 

The next step is to define the model. This is generally the most involved of the steps. The model 

definition code in this example is as follows: 

/* The direction of optimization */ 

      int nDir = LS_MAX; 

/* The objective's constant term */ 

      double dObjConst = 0.; 

/* The coefficients of the objective function */ 

      double adC[2] = { 20., 30.}; 

/* The right-hand sides of the constraints */ 

      double adB[3] = { 60., 50., 120.}; 

/* The constraint types */ 

      char acConTypes[3] = {'L', 'L', 'L'};  
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/* The number of nonzeros in the constraint matrix */ 

      int nNZ = 4; 

/* The indices of the first nonzero in each column */ 

      int anBegCol[3] = { 0, 2, nNZ}; 

/* The length of each column. Since we aren't leaving 

    any blanks in our matrix, we can set this to NULL */ 

      int *pnLenCol = NULL; 

/* The nonzero coefficients */ 

      double adA[4] = { 1., 1., 1., 2.}; 

/* The row indices of the nonzero coefficients */ 

      int anRowX[4] = { 0, 2, 1, 2}; 

/* Simple upper and lower bounds on the variables. 

    By default, all variables have a lower bound of zero  

    and an upper bound of infinity. Therefore pass NULL  

    pointers in order to use these default values. */ 

      double *pdLower = NULL, *pdUpper = NULL; 

/* We have now assembled a full description of the model.  

    We pass this information to LSloadLPData with the  

    following call. */ 

      nErrorCode = LSloadLPData( pModel, nM, nN, nDir,  

       dObjConst, adC, adB, acConTypes, nNZ, anBegCol,  

       pnLenCol, adA, anRowX, pdLower, pdUpper); 

      APIERRORCHECK; 

First, the direction of the objective is set with the following: 

/* The direction of optimization */ 

      int nDir = LS_MAX; 

Had the problem been a minimization type, LS_MIN would have been used instead. 

This model does not have a constant term in the objective, so it is set to zero: 

/* The objective's constant term */ 

      double dObjConst = 0.; 

The model’s objective coefficients are placed into an array: 

/* The coefficients of the objective function */ 

      double adC[2] = { 20., 30.}; 

The constraint right-hand side values are placed into an array: 

/* The right-hand sides of the constraints */ 

      double adB[3] = { 60., 50., 120.}; 

The constraint types are placed into an array: 

/* The constraint types */ 

      char acConTypes[3] = {'L', 'L', 'L'};  

The three constraints in this model are less-than-or-equal-to constraints. Thus, all the constraint type 

codes are set to be “L”. Had any of the constraints been greater-than-or-equal-to, equality, or neutral, 

the constraint type code would have been set to “G”, “E”, or “N”, respectively. 
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The number of nonzero coefficients in the constraint matrix is stored: 

/* The number of nonzeros in the constraint matrix */ 

      int nNZ = 4; 

The index of the first nonzero element in each column is placed into an array: 

/* The indices of the first nonzero in each column */ 

      int anBegCol[3] = { 0, 2, nNZ}; 

Note that zero based indices are being used. This array index must have one more element than the 

number of variables. The extra element must point to where any new column would start in the 

nonzero coefficient matrix. 

The next step, is to perform the optimization of the model. This is accomplished with the following 

call to LSoptimize(): 

/* >>> Step 4 <<< Perform the optimization */ 

   nErrorCode = LSoptimize( pModel,  

    LS_METHOD_PSIMPLEX, & nSolStatus); 

   APIERRORCHECK; 

LSoptimize() takes three arguments. The first is the pointer to the model object you wish to optimize. 

The second is the index of the type of solver you wish to use. In this case, the primal simplex solver 

was selected by setting the second argument to LS_METHOD_PSIMPLEX. Alternative types of solvers 

available for linear models include dual simplex and barrier (if licensed). The third argument is a 

pointer to return the status of the solution. 

Once the model is solved, the next step is to retrieve the components of the solution that are of interest 

to your particular application. In this example, the objective value and the variable values are 

displayed. First, check whether LSoptimize() successfully computed an optimal solution by examining 

the value of the status variable nSolStatus. Provided that an optimal solution is available, a call to 

LSgetInfo() with macro LS_DINFO_POBJ fetches the (primal) objective value, while a call to 

LSgetPrimalSolution() retrieves the variable values: 

       if (nSolStatus == LS_STATUS_OPTIMAL || 

           nSolStatus == LS_STATUS_BASIC_OPTIMAL) 

{ 

/* >>> Step 5 <<< Retrieve the solution */ 

      int i; 

      double adX[ 2], dObj; 

/* Get the value of the objective */ 

      nErrorCode = LSgetInfo( pModel, LS_DINFO_POBJ, &dObj) ; 

      APIERRORCHECK; 

      printf( "Objective Value = %g\n", dObj); 

/* Get the variable values */ 

      nErrorCode = LSgetPrimalSolution ( pModel, adX); 

      APIERRORCHECK; 

      printf ("Primal values \n"); 

      for (i = 0; i < nN; i++) printf( " x[%d] = %g\n", i, adX[i]); 

      printf ("\n"); 

} 
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As our last step, the LINDO environment is deleted with a call to LSdeleteEnv():  

/* >>> Step 6 <<< Delete the LINDO environment */ 

      nErrorCode = LSdeleteEnv( &pEnv);  

This allows LINDO to free up all data structures allocated to the environment and all of the 

environment’s associated models. 

The next section goes through the steps required for compiling and linking this program using Visual 

C++ (version 6.0 or later). However, keep in mind that any C development environment should be able 

to successfully link the code above with LINDO API.  

This application will be built using the nmake utility supplied with Visual C++. The mechanics for 

performing the build are illustrated in the DOS command line session below, where user input is 

displayed in bold type: 

C:\>cd \lindoapi\samples\c\ex_samp1 

C:\lindoapi\samples\c\ex_samp1>dir 

 Volume in drive C has no label. 

 Volume Serial Number is 1833-D1E6 

 Directory of C:\lindoapi\samples\c\ex_samp1 

11/25/02  12:00p        <DIR>          . 

11/25/02  12:00p        <DIR>          .. 

11/25/02  12:00p                 1,347 makefile.unx 

11/25/02  12:00p                 1,371 makefile.win 

11/25/02  12:00p                 5,307 ex_samp1.c 

 

11/25/02  12:00p                 4,285 ex_samp1.dsp 

11/25/02  12:00p                   533 ex_samp1.dsw 

11/25/02  12:00p                36,864 ex_samp1.exe 

               8 File(s)         48,923 bytes 

                          5,553,143,808 bytes free 

C:\lindoapi\samples\c\ex_samp1>del ex_samp1.exe 

C:\lindoapi\samples\c\ex_samp1>command /e:32000 

Microsoft(R) Windows 98 

   (C)Copyright Microsoft Corp 1981-1998. 

C:\lindoapi\samples\c\ex_samp1>vcvars32 

Setting environment for using Microsoft Visual C++ tools. 

C:\lindoapi\samples\c\ex_samp1>nmake -f makefile.win 

Microsoft (R) Program Maintenance Utility   Version 6.00.8168.0 

Copyright (C) Microsoft Corp 1988-1998. All rights reserved. 

        cl -c -D_LINDO_DLL_ -I"..\..\..\include" -I"..\..\..\license" 

ex_samp1.c 

Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 12.00.8168 for 

80x86 

Copyright (C) Microsoft Corp 1984-1998. All rights reserved. 

ex_samp1.c 
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        cl ex_samp1.obj ..\..\..\lib\win32\lindo10_0.lib –

Feex_samp1.exe 

Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 12.00.8168 for 

80x86 

Copyright (C) Microsoft Corp 1984-1998. All rights reserved. 

Microsoft (R) Incremental Linker Version 6.00.8447 

Copyright (C) Microsoft Corp 1992-1998. All rights reserved. 

/out:ex_samp1.exe 

ex_samp1.obj 

..\..\..\lib\win32\lindo10_0.lib 

C:\lindoapi\samples\c\ex_samp1>ex_samp1 

Objective Value = 2100 

Primal values 

 x[0] = 60 

 x[1] = 30 

Press <Enter> ... 

The following seven commands were issued to build and run the application: 

 cd \lindoapi\samples\c\ex_samp1– This selects the directory where the sample code is 

stored. This assumes that you placed LINDO API into the default subdirectory titled 

“lindoapi”. 

 dir – A directory listing is requested from DOS. The two key files are ex_samp1.c (the source 

file) and makefile.win (the input file for the nmake utility). The ex_samp1.exe file is a copy of 

the executable that was supplied with LINDO API. 

 del ex_samp1.exe – Since the file will be built, the old copy is removed. 

 command /e:32000 – This loads a new copy of the command line processor. This is done in 

order to increase the space allocated to the environment with the /e:32000 switch. This 

allocates enough space in the environment to store all the environment variables required by 

the Visual C++ compiler. 

 vcvars32 – This runs the vcvars32.bat batch job supplied by Visual C++ that configures the 

environment for use of the command line versions of the compiler tools. If this command 

fails, it is probably due to not having vcvars32.bat on your search path. Search your hard 

drive for vcvars32.bat, and then move it to either a directory on the search path or to the 

directory where this sample is located. If you are unable to find vcvars32.bat, you will need to 

reinstall Visual C++. 

 nmake –f makefile.win – This command invokes the make utility that uses the input supplied 

in makefile.win to perform the compiling and linking of our sample application. The details of 

the steps contained in this file are discussed below.  

 ex_samp1 – Here the actual sample application is run. As predicted, the optimal objective 

value is 2100, variable 1 has a value of 60, and variable 2 has a value of 30.  

The contents of the make utility input file, makefile.win, are listed below. Users on Unix-like platforms 

should refer to makefile.unx: 

EXAMPLE= ex_samp1 

IFLAGS = -I"..\..\..\include" -I"..\..\..\license" 

DFLAGS = -D_LINDO_DLL_ 

all : $(EXAMPLE).obj $(EXAMPLE).exe 

$(EXAMPLE).obj : $(EXAMPLE).c 

 cl -c $(DFLAGS) $(IFLAGS) $(EXAMPLE).c 
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$(EXAMPLE).exe : ..\..\..\lib\win32\lindo10_0.lib $(EXAMPLE).obj 

 cl $(EXAMPLE).obj ..\..\..\lib\win32\lindo10_0.lib -

Fe$(EXAMPLE).exe 

The first and second lines designate the name of the executable and the paths to include directories. 

The third line defines the preprocessor macro _LINDO_DLL_. This definition modifies the behavior of 

the lindo.h header file in order to allow access to LINDO API as a DLL. Users on platforms other than 

Windows should omit this definition.  

The fourth line uses the “all” pseudo target to specify the build order. The following set of instructions 

listing ex_samp1.obj as the target invokes the command line compiler to compile our source file. The 

next directive listing ex_samp1.exe as the target links the object code with the LINDO API import 

library to build the completed application.  

If you would prefer to build this application using the Visual C++ 6.0 IDE, you should follow these 

steps: 

 1. Start Visual C++ 6.0. 

2. Issue the File|New command.  

3. Do the following in the “New” dialog box: select the “Project” tab, click on “Win32 Console 

Application”, in the “Project Name” edit field enter “MySample”, in the “Location” edit field 

enter \lindoapi\samples\c\ex_samp1, and, finally, click the OK button. 

4. Click the Finish button in the “Win32 Console Application” dialog. 

5. Click the OK button to clear the “New Project Information” dialog. 

6. Run the Project|Add to Project|Files command and add 

\lindoapi\samples\c\ex_samp1\samp1.c to the project. 

7. Run the Project|Add to Project|Files command and add \lindoapi\lib\win32\lindo10_0.lib to 

the project. 

8. Run the Project|Settings command, select “All Configurations” from the “Settings For” drop 

down list box, select the C/C++ tab, select “General” from the “Category” list box, and in the 

“Preprocessor definitions” box add _LINDO_DLL_ to the list of definitions. Click the OK 

button. 

9. Once again, run the Project|Settings command, select “All Configurations” from the “Settings 

For” drop down list box, select the C/C++ tab, select “Preprocessor” from the “Category” list 

box, and in the “Additional include directories” box add “\lindoapi\include” and 

“\lindoapi\license” (without quotes and separated by a comma). Click the OK button. 

10. Run the File|Save Workspace command. 

11. Run the Build|Rebuild All command to build the executable. 

12. Run the Build|Start Debug|Go command to run the sample application. 



SOLVING LINEAR PROGRAMS   363 

 

A Programming Example in Visual Basic 
The overall design and code of a program in Visual Basic is quite similar to the C example. Analogous 

to the inclusion of lindo.h in our C example, the Visual Basic project includes a module titled 

lindo.bas, which facilitates access to LINDO API. A copy of lindo.bas may be found in the main 

LINDO API folder. Add lindo.bas to projects with the Project|Add Module command in VB. 

There are differences in syntax between the C and VB code. Calls to LINDO API within Visual Basic 

are made using Visual Basic type variables. These types differ from the types specified by LINDO API 

C-language function prototypes detailed in Chapter 2, Function Definitions. The following chart of 

conversions shows how to invoke C routines by passing the appropriate arguments in calls. 

If a LINDO routine expects… Then from VB pass… 

An int A Long 

A double A Double 

A pointer to a numeric value Pass the variable as you normally would 

A numeric array Pass the first element of the array 

A null pointer to a numeric value Pass ‘ByVal 0’ 

A character array Pass a String 

A null pointer to a character array Pass the constant vbNullString 

The difference in types between C and VB affects use of several routines returning pointers to a 

LINDO environment or model object. For example, LScreateEnvironment() and LScreateModel() 

return pointers to environment and model objects, respectively. Neither of these objects can be defined 

in Visual Basic (because they contain pointers). Fortunately, the user of LINDO API never has to 

directly access or modify these objects. All we need is a pointer to them, which can be conveyed in 

Visual Basic code with a Long variable. Wherever a pointer to an environment or a model is needed, a 

Long variable can be substituted in its place. 

Using VB, the product mix model listed at the beginning of this chapter will be solved once again. The 

VB 6.0 project for this example may be found in \lindoapi\samples\vb\samp1\samplevb.vbp, and may 

be loaded into VB 6.0 with the File|Open Project command. The code for solving the model is listed 

below: 

'  A VB programming example of interfacing with the 

'  LINDO API. 

' 

'  the problem: 

'     Max = 20 * A + 30 * C 

'     S.T.       A +  2 * C  <= 120 

'                A           <=  60 

'                         C  <=  50 

'   Solving such a problem with the LINDO API involves 

'   the following steps: 

'      1. Create a LINDO environment. 

'      2. Create a model in the environment. 

'      3. Specify the model. 

'      4. Perform the optimization. 

'      5. Retrieve the solution. 
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'      6. Delete the LINDO environment. 

 

Option Explicit 

 

Private Sub Command1_Click() 

  'Declarations 

  Dim con_type As String 

  Dim env As Long 

  Dim errorcode As Long 

  Dim i As Long 

  Dim m As Long 

  Dim n As Long 

  Dim nz As Long 

  Dim prob As Long 

  Dim Abegcol() As Long 

  Dim Arowndx() As Long 

  Dim Acoef() As Double 

  Dim b() As Double 

  Dim c() As Double 

  Dim obj As Double 

  Dim x() As Double 

  Dim LicenseKey As String * LS_MAX_ERROR_MESSAGE_LENGTH 

' Name data 

  Dim szTitle, szObjName, szRhsName, szRngName, szBndname As String 

  Dim szConNames() As String 

  Dim szVarNames() As String 

' Auxiliary byte arrays for keeping variable and constraint name 

' data for keeping 

  Dim acConNames() As Byte 

  Dim acVarNames() As Byte 

' Pointer arrays for storing the address of each name within the byte 

' arrays. These pointers will be passed to LINDO API 

  Dim pszConNames() As Long 

  Dim pszVarNames() As Long 

   

'>>> Step 1 <<<:  Create a LINDO environment. 

  errorcode = LSloadLicenseString("\lindoapi\license\lndapi100.lic", 

LicenseKey) 

  Call CheckErr(env, errorcode) 

  env = LScreateEnv(errorcode, LicenseKey) 

  If (errorcode > 0) Then 

     MsgBox ("Unable to create environment.") 

     End 

  End If 

         

'>>> Step 2 <<<:  Create a model in the environment. 

  prob = LScreateModel(env, errorcode) 

  Call CheckErr(env, errorcode) 

   

'>>> Step 3 <<<:  Specify the model.   

  'Set the problem sizes 

  'number of constraints 

  m = 3 

  'number of variables 

  n = 2 

  'objective coefficients 
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  ReDim c(n) 

  c(0) = 20 

  c(1) = 30 

  'right-hand-sides of constraints 

  ReDim b(m) 

  b(0) = 120 

  b(1) = 60 

  b(2) = 50 

  'constraint types 

  con_type = "LLL" 

  'index of first nonzero in each column 

  ReDim Abegcol(n + 1) 

  Abegcol(0) = 0 

  Abegcol(1) = 2 

  Abegcol(2) = 4 

  'number of nonzeros in constraint matrix 

  nz = 4 

  'the nonzero coefficients 

  ReDim Acoef(nz) 

  Acoef(0) = 1 

  Acoef(1) = 1 

  Acoef(2) = 2 

  Acoef(3) = 1 

  'the row indices of the nonzeros 

  ReDim Arowndx(nz) 

  Arowndx(0) = 0 

  Arowndx(1) = 1 

  Arowndx(2) = 0 

  Arowndx(3) = 2 

  ' Load LP data 

  errorcode = LSloadLPData(prob, m, n, LS_MAX, 0, _ 

   c(0), b(0), con_type, nz, Abegcol(0), ByVal 0, _ 

   Acoef(0), Arowndx(0), ByVal 0, ByVal 0) 

  Call CheckErr(env, errorcode) 

  ' name data 

  szTitle = "SAMP1" 

  szObjName = "OBJ" 

  szRhsName = "RHS" 

  szRngName = "RNG" 

  szBndname = "BND" 

  ' local arrays for variable and constraint names 

  ReDim szConNames(m) 

  ReDim szVarNames(n) 

  Dim szConNamesLen As Long, szVarNamesLen As Long 

  szConNames(0) = "Cons0" 

  szConNames(1) = "Cons1" 

  szConNames(2) = "Cons2" 

  For i = 0 To m - 1 

    szConNamesLen = szConNamesLen + Len(szConNames(i)) + 1 

  Next 

  szVarNames(0) = "VarA" 

  szVarNames(1) = "VarC" 

  For i = 0 To n - 1 

    szVarNamesLen = szVarNamesLen + Len(szVarNames(i)) + 1 

  Next 

  ' byte arrays to keep name data 
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  ReDim acConNames(szConNamesLen) 

  ReDim acVarNames(szVarNamesLen)      

  ' pointer arrays for keeping addresses of each name 

  ' located in the byte arrays 

  ReDim pszConNames(m) 

  ReDim pszVarNames(n) 

  ' parse string arrays to byte arrays and record pointers (source: 

' Strutil.bas) 

  Call NameToPtr(acConNames, pszConNames, szConNames, m) 

  Call NameToPtr(acVarNames, pszVarNames, szVarNames, n)  

  ' pass names 

  errorcode = LSloadNameData(prob, szTitle, szObjName, szRhsName, 

szRngName, szBndname, _ 

  pszConNames(0), pszVarNames(0)) 

  Call CheckErr(env, errorcode) 

  ' Export the model in LINDO File format 

  Dim LindoFile As String 

  LindoFile = "samp1.mps" 

  Call LSwriteMPSFile(prob, LindoFile, LS_FORMATTED_MPS) 

      

  '>>> Step 4 <<<:  Perform the optimization. 

  errorcode = LSoptimize(prob, LS_METHOD_PSIMPLEX, ByVal 0) 

  Call CheckErr(env, errorcode) 

   

  '>>> Step 5 <<<:  Retrieve the solution. 

  'Print the objective value and primals 

  errorcode = LSgetInfo(prob, LS_DINFO_POBJ, obj) 

  Call CheckErr(env, errorcode) 

  ReDim x(n) 

  errorcode = LSgetPrimalSolution(prob, x(0)) 

  Call CheckErr(env, errorcode) 

  MsgBox ("Objective value: " & obj & vbCrLf & _ 

   "Primal values: A=" & x(0) & ", C=" & x(1)) 

  errorcode = LSsetModelIntParameter(prob, 

LS_IPARAM_SOL_REPORT_STYLE, 0) 

  errorcode = LSwriteSolution(prob, "samp1.sol") 

  Call LSdeleteModel(prob) 

 

  '>>> Step 6 <<< Delete the LINDO environment. 

  Call LSdeleteEnv(env) 

End Sub 

 

Public Sub CheckErr(env As Long, errorcode As Long) 

' Checks for an error condition.  If one exists, the 

'  error message is displayed then the application 

'  terminates. 

   If (errorcode > 0) Then 

      Dim message As String 

      message = String(LS_MAX_ERROR_MESSAGE_LENGTH, _ 

       vbNullChar) 

      Call LSgetErrorMessage(env, errorcode, message) 

      MsgBox (message) 

      End 

   End If 

End Sub 
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Private Sub Form_Load() 

Dim szVernum As String * LS_MAX_ERROR_MESSAGE_LENGTH 

Dim szBuildDate As String * LS_MAX_ERROR_MESSAGE_LENGTH 

Call LSgetVersionInfo(szVernum, szBuildDate) 

 

Label2.Caption = "LINDO API  Version  " & szVernum 

Label1.Caption = "Max = 20 A + 30 C " & vbNewLine & vbNewLine & _ 

                 "S.T.     A +  2 C  <= 120 " & vbNewLine & _ 

                 "          A    <=  60 " & vbNewLine & _ 

                 "             C <=  50 " & vbNewLine & vbNewLine & _ 

                 "  A , C are nonnegative    " 

End Sub 

\lindoapi\samples\vb\samp1\samplevb.frm 

As mentioned above, the first two major steps in a typical application calling LINDO API are: 1) 

creating a LINDO environment object, and 2) creating a model object within the environment. This is 

done with the following code segment: 

''>>> Step 1 <<<:  Create a LINDO environment. 

  errorcode = LSloadLicenseString("\lindoapi\license\lndapi100.lic", 

LicenseKey) 

  Call CheckErr(env, errorcode) 

  env = LScreateEnv(errorcode, LicenseKey) 

  If (errorcode > 0) Then 

     MsgBox ("Unable to create environment.") 

     End 

  End If 

         

'>>> Step 2 <<<:  Create a model in the environment. 

  prob = LScreateModel(env, errorcode) 

  Call CheckErr(env, errorcode) 

The next step is to call LScreateModel() to create a model object in the newly created environment. 

After the call to LScreateModel(), a routine called CheckErr() is called. This routine is defined at the 

bottom of our code module. The code for CheckErr() has been reproduced below: 

Public Sub CheckErr(env As Long, errorcode As Long) 

 

' Checks for an error condition.  If one exists, the 

'  error message is displayed then the application 

'  terminates. 

 

   If (errorcode > 0) Then 

      Dim message As String 

      message = String(LS_MAX_ERROR_MESSAGE_LENGTH, _ 

       vbNullChar) 

      Call LSgetErrorMessage(env, errorcode, message) 

      MsgBox (message) 

      End 

   End If 

    

End Sub 

CheckErr() is merely used to determine if LINDO API returned an error. If an error is returned, 

CheckErr() calls the API routine LSgetErrorMessage() to translate the error code into a text message. 

The message is displayed, and CheckErr() terminates the application. 
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The next step is to define the model. The model definition code is listed here: 

'>>> Step 3 <<<:  Specify the model. 

  'Set the problem sizes 

  'number of constraints 

  m = 3 

  'number of variables 

  n = 2 

  'objective coefficients 

  ReDim c(n) 

  c(0) = 20 

  c(1) = 30 

  'right-hand-sides of constraints 

  ReDim b(m) 

  b(0) = 120 

  b(1) = 60 

  b(2) = 50 

  'constraint types 

  con_type = "LLL" 

  'index of first nonzero in each column 

  ReDim Abegcol(n + 1) 

  Abegcol(0) = 0 

  Abegcol(1) = 2 

  Abegcol(2) = 4 

  'number of nonzeros in constraint matrix 

  nz = 4 

  'the nonzero coefficients 

  ReDim Acoef(nz) 

  Acoef(0) = 1 

  Acoef(1) = 1 

  Acoef(2) = 2 

  Acoef(3) = 1 

  'the row indices of the nonzeros 

  ReDim Arowndx(nz) 

  Arowndx(0) = 0 

  Arowndx(1) = 1 

  Arowndx(2) = 0 

  Arowndx(3) = 2 

  ' Load LP data 

  errorcode = LSloadLPData(prob, m, n, LS_MAX, 0, _ 

   c(0), b(0), con_type, nz, Abegcol(0), ByVal 0, _ 

   Acoef(0), Arowndx(0), ByVal 0, ByVal 0) 

  Call CheckErr(env, errorcode) 

  ' name data 

  szTitle = "SAMP1" 

  szObjName = "OBJ" 

  szRhsName = "RHS" 

  szRngName = "RNG" 

  szBndname = "BND" 

  ' local arrays for variable and constraint names 

  ReDim szConNames(m) 

  ReDim szVarNames(n) 

  Dim szConNamesLen As Long, szVarNamesLen As Long 

  szConNames(0) = "Cons0" 

  szConNames(1) = "Cons1" 

  szConNames(2) = "Cons2" 
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  For i = 0 To m - 1 

    szConNamesLen = szConNamesLen + Len(szConNames(i)) + 1 

  Next 

  szVarNames(0) = "VarA" 

  szVarNames(1) = "VarC" 

  For i = 0 To n - 1 

    szVarNamesLen = szVarNamesLen + Len(szVarNames(i)) + 1 

  Next 

  ' byte arrays to keep name data 

  ReDim acConNames(szConNamesLen) 

  ReDim acVarNames(szVarNamesLen)    

  ' pointer arrays for keeping addresses of each name 

  ' located in the byte arrays 

  ReDim pszConNames(m) 

  ReDim pszVarNames(n) 

  ' parse string arrays to byte arrays and record pointers (source: 

' Strutil.bas) 

  Call NameToPtr(acConNames, pszConNames, szConNames, m) 

  Call NameToPtr(acVarNames, pszVarNames, szVarNames, n) 

  ' pass names 

  errorcode = LSloadNameData(prob, szTitle, szObjName, szRhsName, 

szRngName, szBndname, _ 

  pszConNames(0), pszVarNames(0)) 

  Call CheckErr(env, errorcode) 

  ' Export the model in LINDO File format 

  Dim LindoFile As String 

  LindoFile = "samp1.mps" 

  Call LSwriteMPSFile(prob, LindoFile, LS_FORMATTED_MPS) 

First, the model’s dimensions are stored: 

 'Set the problem sizes 

  'number of constraints 

  m = 3 

  'number of variables 

  n = 2 

Then, the arrays are filled with the objective and right-hand side coefficients: 

 'objective coefficients 

  ReDim c(n) 

  c(0) = 20 

  c(1) = 30 

  'right-hand sides of constraints 

  ReDim b(m) 

  b(0) = 120 

  b(1) = 60 

  b(2) = 50 

There are three constraints in the model, and all are of type less-than-or-equal-to. Thus, a string of 

three L’s is stored to indicate this to the solver: 

 'constraint types 

  con_type = "LLL" 
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Index of first nonzero in each column are stored next:  

 'index of first nonzero in each column 

  ReDim Abegcol(n + 1) 

  Abegcol(0) = 0 

  Abegcol(1) = 2 

  Abegcol(2) = 4 

The constraint nonzero coefficients are stored next: 

 'number of nonzeros in constraint matrix 

  nz = 4 

 'the nonzero coefficients 

  ReDim Acoef(nz) 

  Acoef(0) = 1 

  Acoef(1) = 1 

  Acoef(2) = 2 

  Acoef(3) = 1 

There are four nonzeros in the constraints—two for column A and two for column C. Note that the 

nonzero coefficients for column A (1,1) are passed first. The nonzeros for column C (2,1) are passed 

next. 

Next, the row indices for the constraint nonzeros are stored: 

 'the row indices of the nonzeros 

  ReDim Arowndx(nz) 

  Arowndx(0) = 0 

  Arowndx(1) = 1 

  Arowndx(2) = 0 

  Arowndx(3) = 2 

Note that the indices are zero-based, so a nonzero in the first constraint has a row index of 0.  

Finally, all the data is passed off to LINDO API with the following call to LSloadLPData(): 

errorcode = LSloadLPData(prob, m, n, LS_MAX, 0, _ 

 c(0), b(0), con_type, nz, Abegcol(0), ByVal 0, _ 

 Acoef(0), Arowndx(0), ByVal 0, ByVal 0) 

Call CheckErr(env, errorcode) 

Note that the fourth argument has been explicitly set to be LS_MAX to indicate that the objective is to 

be maximized. Another interesting aspect of this call is that arguments 11, 14, and 15 have been set to 

“ByVal 0”. These arguments respectively correspond to the column-nonzero-count array, 

variable-lower-bound array, and variable-upper-bound array. A column-nonzero-count array is not 

needed, because our nonzeros have been stored in a dense manner. Therefore, the column-nonzero 

count is inferred from the other data. The default bounds for variables are zero to infinity, which are 

appropriate for this example. Thus, the two-variable bound arguments are also superfluous. By setting 

these arguments to “ByVal 0”, a C-style null pointer is mimicked. This indicates that values are not 

supplied. 

Now that the model has been defined, the next step is to invoke the solver. This is done with the 

following call to LSoptimize(): 

  '>>> Step 4 <<<:  Perform the optimization. 

  errorcode = LSoptimize(prob, LS_METHOD_PSIMPLEX,ByVal 0) 

  Call CheckErr(env, errorcode) 
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As our next step, the solution from LINDO is retrieved: 

  '>>> Step 5 <<<:  Retrieve the solution. 

    'Print the objective value and primals 

  errorcode = LSgetInfo(prob, LS_DINFO_POBJ, obj) 

  Call CheckErr(env, errorcode) 

  ReDim x(n) 

  errorcode = LSgetPrimalSolution(prob, x(0)) 

  Call CheckErr(env, errorcode) 

  MsgBox ("Objective value: " & obj & vbCrLf & _ 

   "Primal values: A=" & x(0) & ", C=" & x(1)) 

  errorcode = LSsetModelIntParameter(prob, 

LS_IPARAM_SOL_REPORT_STYLE, 0) 

  errorcode = LSwriteSolution(prob, "samp1.sol") 

  Call LSdeleteModel(prob) 

The objective is fetched with a call to LSgetObjective() and the variable values by calling 

LSgetPrimalSolution(). When this application is run, these values are posted in a dialog box as shown 

below: 

 

The final step is to free up the memory allocated by LINDO API with a call to LSdeleteEnv(): 

'>>> Step 6 <<< Delete the LINDO environment. 

  Call LSDeleteEnv( env)  

VB and Delphi Specific Issues  
Some of LINDO API's functions accept C-type NULL as a valid argument. Passing a NULL value 

would allow the associated argument to be left out of the scope of the action requested. For instance, 

consider the following use of LSgetBasis function using the C language.  

 { // init 

   int *panCstatus = malloc(nVars*sizeof(int)); 

   int *panRstatus = malloc(nCons*sizeof(int)); 

   int nErr = LSERR_NO_ERROR; 

   .. 

   // FIRST call to LSgetBasis 

   nErr = LSgetBasis(pModel, panCstatus,  NULL); 

   // SECOND call to LSgetBasis 

   nErr = LSgetBasis(pModel, NULL, panRstatus ); 

   .. 

   // clean 

   free (panCstatus); 

   free (panRstatus) 

 } 
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The first call to LSgetBasis retrieves the basis status of primal variables and places them in panCstatus 

vector. Here, the retrieval of basis status of the constraint slacks are skipped since a NULL value was 

passed as the third argument. In the second call, the basis status of primal variables was ignored in a 

similar fashion and the basis status of the constraint slacks were retrieved. This calling convention is 

common with most query and loading routines in LINDO API. 

In certain programming languages (e.g. VB or Delphi), where NULL is not supported, this 

functionality can be achieved by following the steps below: 

Step 1) Locate the function declaration under consideration in the header file associated with the 

language you are using (e.g. lindo.bas (VB), lindo.pas (Delphi)). 

Step 2) Locate all the arguments that you want to pass a NULL value for.  

Step 3) Modify the type of these arguments from 'by-reference' to 'by-value', whatever that would 

mean in terms of the underlying language.  

Step 4) Go back to your application and pass a zero value for these arguments.  

For instance, Step 3 would lead to the following definition of LSgetBasis() in lindo.bas (VB). 

  Public Declare Function LSgetBasis _ 

 Lib "LINDO10_0.DLL" (ByVal nModel As Long, _ 

                     ByRef anCstatus As Any, _ 

                     ByRef anRstatus As Any) As Long 

A hypothetical VB application could then make the following calls  

 Redim anCstatus(nVars) 

 Redim anRstatus(nVars) 

 .. 

 LSgetBasis(pModel, anCstatus, ByVal 0) 

 LSgetBasis(pModel, ByVal 0, anRstatus) 

 .. 

Similarly, the following modification to LSgetBasis() in lindo.pas would allow the same effect for 

Delphi. 

function  LSgetBasis ( nModel    :  Integer;  

                       anCstatus :  Integer;  

                   Var anRstatus :  Integer) : Integer; stdcall; 

external 'lindo10_0.dll'; 

 

The situation is handled in a similar fashion for string arrays, but with a little extra work. LINDO API 

functions that take string arrays as arguments require that all string arrays are converted to a C-type 

character array before they are passed. A simple utility module for VB  performing this conversion is 

available as “lindoapi/include/strutil.bas”. Please refer to the sample VB application under 

“lindoapi/samples/vb/ samp1” for an illustration of how this interface is used to pass string arrays (or a 

NULL when needed)  to the solver 

Solving Large Linear Programs using Sprint 
Sprint is a linear programming solver of  the LINDO API, designed for solving “skinny” LP models, 

i.e., many more variables, e.g., a million or more, than constraints. The LP model is represented in 

MPS file format.  The solver uses a column selection or sifting method method. It iteratively reads 

columns, i.e., variables, from the MPS file and selects attractive columns to add to an abbreviated 

model.  All columns are separated into some sets, each set having nNoOfColsEvaluatedPerSet 
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columns. In each iteration or pass, the solver selects the most attractive nNoOfColsSelectedPerSet 

columns from each set. 

 

To solve the LP model in the MPS file using Sprint solver, one can use either the command line in 

runlindo or the Lindo API routine LSsolveFileLP(). The following demonstrates this using a small 

instance of a transportation problem. 

Solving Linear Programs using the –fileLP option in Runlindo 
The following MPS file, transprt.mps, contains a model of transportation problem with 2 resources and 

4 destinations. 

 

 

NAME          TRANSPORT   Sources,Destns=           2           4 

ROWS 

  N     COST 

  L        1 

  L        2 

  E        3 

  E        4 

  E        5 

  E        6 

COLUMNS 

    X0000001      COST           595 

    X0000001         1             1          3             1 

    X0000002      COST           670 

    X0000002         1             1          4             1 

    X0000003      COST           658 

    X0000003         1             1          5             1 

    X0000004      COST           519 

    X0000004         1             1          6             1 

    X0000005      COST           822 

    X0000005         2             1          3             1 

    X0000006      COST           309 

    X0000006         2             1          4             1 

    X0000007      COST           897 

    X0000007         2             1          5             1 

    X0000008      COST           803 

    X0000008         2             1          6             1 

RHS 

        RHSN         3           407 

        RHSN         4           980 

        RHSN         5           823 

        RHSN         6           653 

        RHSN         1         1446. 

        RHSN         2         1446. 

ENDATA 

 

 

To solve this model in runlindo using the Sprint solver, one might type 
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runlindo transprt.mps  -filelp –nc_eval n1 -nc_select n2 

in the command line. The option “–filelp” means solving the LP model with Sprint. The options  “–

nc_eval” and “-nc_select”  are used for setting the parameters  nNoOfColsEvaluatedPerSet and 

nNoOfColsSelectedPerSet, respectively, where n1 ≥ n2 are positive integers. The If nc_eval and 

nc_select are not specified, the solver will choose the values for them automatically. 

 

After the model is solved by Sprint, a solution report will be written to the file “transprt.log” 

automatically  as shown below. 

 

 

Solution status: 2 

ObjValue: 1524985.000000 

 

NoOfConsMps: 6 

NoOfColsMps: 8 

NoOfColsEvaluated: 6 

NoOfIterations: 3 

TimeTakenInSeconds:  0 

Primal solution:  

Col-Index      Value:  

 

0     0.000000 

1     0.000000 

2     793.000000 

3     653.000000 

4     407.000000 

5     980.000000 

6     30.000000 

7     0.000000 

 

Dual solution:  

Constraint-Index      Value:  

 

0     0.000000 

1     -239.000000 

2     0.000000 

3     822.000000 

4     309.000000 

5     897.000000 

 

A Programming Example in C 
The following is a sample code in C, which uses the Sprint solver to solve the above transportation 

model in the MPS file. 
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/* 

############################################################# 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2010 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

############################################################# 

  File   : sprint_exp.c 

  Purpose: Solve a transportation LP problem using Sprint. 

*/ 

#include <stdio.h> 

#include <stdlib.h> 

/* LINDO API header file */ 

#include "lindo.h" 

 

 

/* Define a macro to declare variables for 

    error checking */ 

#define APIERRORSETUP  \ 

   int nErrorCode; \ 

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH] \ 

/* Define a macro to do our error checking */ 

#define APIERRORCHECK  \ 

   if (nErrorCode) \ 

   { \ 

      if ( pEnv) \ 

      { \ 

         LSgetErrorMessage( pEnv, nErrorCode, \ 

          cErrorMessage); \ 

         printf("nErrorCode=%d:  %s\n", nErrorCode, \ 

          cErrorMessage); \ 

      } else {\ 

         printf( "Fatal Error\n"); \ 

      } \ 

      exit(1); \ 

   } \ 

 

#define APIVERSION \ 

{\ 

    char szVersion[255], szBuild[255];\ 

    LSgetVersionInfo(szVersion,szBuild);\ 

    printf("\nLINDO API Version %s built on 

%s\n",szVersion,szBuild);\ 

}\ 
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int main() 

{ 

  APIERRORSETUP; 

  pLSenv pEnv; 

  pLSmodel pModel; 

  char MY_LICENSE_KEY[1024]; 

  char *szFileNameMPS; 

  char *szFileNameSol; 

  char *szFileNameLog; 

  int nNoOfColsEvaluatedPerSet; 

  int nNoOfColsSelectedPerSet; 

  int nTimeLimitSec, nNoOfColsEvaluated; 

  int *pnSolStatusParam = NULL; 

  int *pnNoOfConsMps = NULL; 

  long long *plNoOfColsMps = NULL; 

  long long lErrorLine = -10; 

  long long lBeginIndexPrimalSol, lEndIndexPrimalSol; 

  double *padPrimalValuesSol = NULL, *padDualValuesSol = NULL; 

  double dObjValue; 

  FILE *pLogFile=NULL; 

  long long lNoOfValuesRequired; 

  int nNoOfValuesRequired; 

  int nNoOfIterations; 

  double dTimeTakenInSeconds; 

  long long lCount; 

  int nCount; 

  int nIndexTemp; 

  char *szErrorMessage; 
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  /***************************************************************** 

  * Step 1: Create a model in the environment. 

  *****************************************************************/ 

  nErrorCode =  

LSloadLicenseString("../../../license/lndapi100.lic",MY_LICENSE_KEY); 

  if ( nErrorCode != LSERR_NO_ERROR) 

  { 

    printf( "Failed to load license key (error %d)\n",nErrorCode); 

    exit( 1); 

  } 

 

  APIVERSION; 

  pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

  if ( nErrorCode == LSERR_NO_VALID_LICENSE)  

  { 

    printf( "Invalid License Key!\n"); 

    exit( 1); 

  } 

  APIERRORCHECK; 

 

  /***************************************************************** 

  * Step 2: Create a model in the environment. 

  *****************************************************************/ 

  pModel = LScreateModel(pEnv,&nErrorCode); 

  APIERRORCHECK; 

   

  /***************************************************************** 

  * Step 3: Define the input MPS file, the output solution file and    

  *         the log file. 

  *****************************************************************/ 

  szFileNameMPS = "lindoapi/samples/data/transport.mps"; 

  szFileNameSol = "lindoapi/samples/data/transprt.sol"; 

  szFileNameLog = "lindoapi/samples/data/transprt.log"; 

  pnSolStatusParam = (int *) malloc(1 * sizeof(int)); 

  pnNoOfConsMps = (int *) malloc(1 * sizeof(int)); 

  plNoOfColsMps = (long long *) malloc(1 * sizeof(long long)); 

 

  /***************************************************************** 

  * Step 4: Set the parameters. 

  *****************************************************************/ 

  nNoOfColsEvaluatedPerSet = 4; 

  nNoOfColsSelectedPerSet = 1; 

  nTimeLimitSec = 7200; // maximum running time 
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  /***************************************************************** 

  * Step 5: Solve the model using Sprint solver. 

  *****************************************************************/ 

  nErrorCode = LSsolveFileLP(pModel, szFileNameMPS, szFileNameSol, 

            nNoOfColsEvaluatedPerSet, 

                             nNoOfColsSelectedPerSet,  

            nTimeLimitSec,pnSolStatusParam, 

                             pnNoOfConsMps,plNoOfColsMps, 

                             &lErrorLine); 

 

 /***************************************************************** 

  * Step 6: Extract the solution from the solution file and output  

  *         the solution to the log file. 

  *****************************************************************/ 

  if ((nErrorCode == LSERR_NO_ERROR) && (pnSolStatusParam !=  

     LS_STATUS_INFEASIBLE)) 

  { 

    lBeginIndexPrimalSol = 0; 

    lEndIndexPrimalSol = *plNoOfColsMps - 1; 

    lNoOfValuesRequired = lEndIndexPrimalSol-lBeginIndexPrimalSol+1; 

    nNoOfValuesRequired = (int)lNoOfValuesRequired; 

 

padPrimalValuesSol = (double *) malloc( nNoOfValuesRequired *  

sizeof(double)); 

padDualValuesSol = (double *) malloc( (*pnNoOfConsMps) *  

sizeof(double)); 

 

    LSreadSolutionFileLP( 

                         szFileNameSol, 

                         LS_SPRINT_OUTPUT_FILE_DEFAULT, 

                         lBeginIndexPrimalSol, 

                         lEndIndexPrimalSol, 

                         pnSolStatusParam, 

                         &dObjValue, 

                         pnNoOfConsMps, 

                         plNoOfColsMps, 

                         &nNoOfColsEvaluated, 

 

                         &nNoOfIterations, 

                         &dTimeTakenInSeconds, 

 

                         padPrimalValuesSol, 

                         padDualValuesSol); 

    pLogFile = fopen(szFileNameLog, "w"); 

 

    fprintf(pLogFile, "Solution status: "); 

    fprintf(pLogFile, "%d\n", pnSolStatusParam); 

    fprintf(pLogFile, "ObjValue: "); 

    fprintf(pLogFile, "%f\n", dObjValue); 

    fprintf(pLogFile, "\nNoOfConsMps: "); 

    fprintf(pLogFile, "%d\n", *pnNoOfConsMps); 

    fprintf(pLogFile, "NoOfColsMps: "); 

    fprintf(pLogFile, "%d\n", *plNoOfColsMps); 

    fprintf(pLogFile, "\nNoOfColsEvaluated: "); 

    fprintf(pLogFile, "%d\n", nNoOfColsEvaluated); 

    fprintf(pLogFile, "\nNoOfIterations: "); 



SOLVING LINEAR PROGRAMS   379 

 

    fprintf(pLogFile, "%d\n", nNoOfIterations); 

    fprintf(pLogFile, "\nTimeTakenInSeconds: "); 

    fprintf(pLogFile, "%2.0f\n", dTimeTakenInSeconds); 

    fprintf(pLogFile, "Primal solution: \n"); 

    fprintf(pLogFile, "Col-Index      Value: \n"); 

 

for (lCount = lBeginIndexPrimalSol; lCount <= lEndIndexPrimalSol;  

lCount++) 

    { 

       nIndexTemp = (int)(lCount - lBeginIndexPrimalSol); 

       fprintf(pLogFile, "\n%llu     %f", lCount, 

                         *(padPrimalValuesSol + nIndexTemp)); 

    } 

 

    fprintf(pLogFile, "\n\nDual solution: \n"); 

    fprintf(pLogFile, "Constraint-Index      Value: \n"); 

    for (nCount = 0; nCount < *pnNoOfConsMps; nCount++) 

    { 

       fprintf(pLogFile, "\n%d     %f", nCount, *(padDualValuesSol +  

       nCount)); 

    } 

 

    fclose(pLogFile); 

  } 

  else 

  { 

    szErrorMessage = (char *) malloc(100 * sizeof(char)); 

    LSgetErrorMessage(pEnv, nErrorCode, szErrorMessage); 

    printf("Error : %s\n", szErrorMessage); 

    printf("Error Code: %d\n", nErrorCode); 

    printf("Error line: %d\n", lErrorLine); 

    if (szErrorMessage) free(szErrorMessage); 

  } 

 

  if (padPrimalValuesSol) free(padPrimalValuesSol); 

  if (padDualValuesSol) free(padDualValuesSol); 

  if (pnSolStatusParam) free(pnSolStatusParam); 

  if (pnNoOfConsMps) free(pnNoOfConsMps); 

  if (plNoOfColsMps) free(plNoOfColsMps); 

 

  nErrorCode = LSdeleteModel( &pModel); 

  nErrorCode = LSdeleteEnv( &pEnv); 

 

  getchar(); 

  return nErrorCode; 

} 

 

 

Note that the function for Sprint solver, LSsolveFileLP(), takes 10 parameters (the first seven are for 

input, the others are for output). The first is the pointer to the model object. The second is the name of 

the input MPS file. The third is the name of the output solution file. The fourth and fifth are the 

parameters nNoOfColsEvaluatedPerSet and nNoOfColsSelectedPerSet, respectively. The sixth is the 

time limit for the solver. The seventh is the the solution status. The eighth and ninth are number of 
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constraints and number of columns in the model, respecitvely. The tenth is the line number of the input 

MPS file at which an error was found.  

Also note that the output solution file, transprt.sol, is a binary file. Therefore, after the model is solved, 

the program goes to step 6 to extract the solution information from transprt.sol and output the solution 

to the log file, transprt.log. 

Multiobjective Linear Programs and Alternative 
Optima  
In certain linear programming (LP) applications, the decision maker is concerned with obtaining a 

solution which is optimum with respect to more than one objective criterion. These type of problems 

are often called multiobjective LPs where a standard LP formulation is extended with a set of 

additional objective functions. The original objective function and the set of additional objectives form 

the so-called objective pool where the objectives are ranked with respect to their significance 

determined by the decision maker.  

 
The standard LP along with an objective pool forms a hierarchy of subproblems which can be solved 

with LINDO API's LP solvers. In LINDO API's framework, the original objective function is assigned 

the lowest rank-index and hence has the highest priority. The lower the rank of an objective function in 

the objective pool the higher its priority in the hierarchy.  

 
LINDO API offers a small set of API routines to set up an objective pool associated with a standard 

LP. The steps involve the following 

 

1. Set up a standard linear program (LP) with a single objective function. See Chapter 3 for 

details. The objective function defined at this phase will be considered the original objective 

function and will have the lowest rank (highest priority) among objective functions to be 

added to the objective pool. 

 

2. Set up an objective pool by adding one or more objective functions to the pModel instance. 

Each objective function will be assigned an index automatically. This index will correspond 

to the order it was added to the pool. The index will also serve as the rank of the objective 

function in the pool. The original objective function will be automatically added to the pool 

with a rank-0 and need not be added explicitly.  
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The code snippet below generates four objective functions randomly and adds them to the objective 

pool of pModel instance. The fourth argument is a dummy variable specifying the rank of objective 

function. As of LINDO API 10.0, this argument is reserved for future use. Its value is not taken into 

account and is internally replaced with the order this function was added to the pool. 

 
   { 

     int i=0, j=1; 

     pLSrandGen pRG = LScreateRG(pEnv, LS_RANDGEN_FREE); 

     double *padC=NULL, u, dRelOptTol=-1.0; 

      

     nErrorCode = LSgetInfo(pModel,LS_IINFO_NUM_VARS,&n);  

     padC = (double *) malloc(n*sizeof(double)) 

 

     LSsetRGSeed(pRG,10001); 

     j=1;  

     while (j<4) { 

       for (i=0; i<n; i++) { 

         u = LSgetDoubleRV(pRG); 

         if (u<0.5) padC[i] = 0; 

         else       padC[i] = (double) LSgetInt32RV(pRG,1,100);          

       }//for 

       nErrorCode = LSaddObjPool(pModel,padC,LS_MIN,j,dRelOptTol); 

       APIERRORCHECK; 

       j++; 

     }//while 

     LSdisposeRG(&pRG); 

     free(padC); 

   } 
 

Solve the LP instance with a call to LSoptimize().  This will generate a solution pool which contains 

optimal solutions with respect to each objective function in the objective hierarchy. 

 
nErrorCode = LSoptimize( pModel, LS_METHOD_FREE, &status); 
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Each objective function in the objective pool has a set of references that allows access to the solutions 

optimizing that particular objective function. These solutions can be obtained through the following 

API calls. 

 
   { 

     int k; 

     int numSols=0; //number of alternative solutions. 

     int iObj=0; //index of the obj function in the pool. 

     for (iObj=0; iObj<4; iObj++) {  

       nErrorCode = LSgetObjPoolNumSol(pModel,iObj,&numSols); 

       for (k=0; k<numSols; k++) {// load solution 'k' for 

'iObj' for direct access 

         nErrorCode = LSloadSolutionAt(pModel,iObj,k); 

         if (nErrorCode) { 

           printf("\nError %d:", nErrorCode); 

         } else { 

           sprintf(strbuf,"model_obj%d_sol%d.sol",iObj,k); 

           LSwriteSolution(pModel,strbuf); 

         } 

       }//for 

     }//for 

   }// 

 

         // revert to the original solution of the LP 

   nErrorCode = LSloadSolutionAt(pModel,0,0); 
 
The significance of LSloadSolutionAt is that the solutions in the solution pool are not readily 

available for direct access. A solution in the solution pool can be accessed only after it is loaded to the 

common solution area by LSloadSolutionAt. After that, the standard Solution Access Routines 

can be called in the usual sense. For example, 

 
             // load k'th solution associated with iObj'th function 

in the pool 

 nErrorCode = LSloadSolutionAt(pModel,iObj,k); 

       APIERRORCHECK; 

   // access the solutions loaded  

       nErrorCode = LSgetPrimalSolution( pModel, primal) ; 

       APIERRORCHECK; 

       nErrorCode = LSgetDualSolution( pModel, dual) ; 

       APIERRORCHECK; 

       nErrorCode = LSgetInfo(pModel,LS_DINFO_POBJ,&dObj); 

       APIERRORCHECK; 
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Some of the characteristics of the solution pool can be listed as follows: 

 

1. The solutions retrieved at level iObj are dominated by the solutions retrieved at level jObj if 

iObj < jObj with respect to the set of solutions up to level jObj.  

2. The solution pool can grow very fast thus hindering the performance, especially if the 

standard LP model is highly primal degenerate. 

3. Higher values of relative optimality tolerance as identified by dRelOptTol (the fifth argument 

of LSaddObjPool) could lead to solutions which are non-optimal w.r.t. the objective functions 

higher in the hierarchy (i.e. those with lower ranks).  

4. An objective pool populated with random objective functions could help traverse the original 

optimal set for evaluating the solutions w.r.t. objective functions with no closed forms, e.g. 

those computed through simulation runs. 

 

 

 

 

 





 

 

    Chapter 4: Solving 
Mixed-Integer Programs 

This chapter walks through an example of a mixed-integer programming (MIP) model. A MIP model 

restricts one or more variables to integer values.  

MIP models require calling a few different routines from what would normally be called when solving 

a linear program (LP). This distinction provides the ability to maintain both the MIP solution and the 

continuous solution to a problem. The table below summarizes these differences: 

Task LP Routine MIP Routine(s) 

Loading formulation LSloadLPData() LSloadLPData() 

LSloadVarType() 

Establish callback routine LSsetCallback() LSsetCallback() 

LSsetMIPCallback() 

Solve LSoptimize() LSsolveMIP() 

Get information in callback LSgetCallbackInfo() LSgetCallbackInfo()  

LSgetMIPCallbackInfo() 

Get objective value LSgetInfo() LSgetInfo() 

Get primals LSgetPrimalSolution() LSgetMIPPrimalSolution () 

Get slacks LSgetSlacks() LSgetMIPSlacks() 

Get duals LSgetDualSolution() LSgetMIPDualSolution() 

Get reduced costs LSgetReducedCosts() LSgetMIPReducedCosts() 

As the table shows, loading a MIP formulation requires calling LSloadVarType() in addition to 

LSloadLPData(). The additional call to LSloadVarType() is made to identify the integer variables. An 

additional callback routine may be established for MIP models by calling LSsetMIPCallback(). The 

solver calls this additional callback routine every time a new integer solution is found. When retrieving 

information in callbacks, you may also be interested in LSgetMIPCallbackInfo(). This routine returns 

solver status information that is specific to MIP models.  

This sample model is a staffing model that computes the optimal staffing levels for a small business. 

Specifically, it determines the number of employees to start on each day of the week to minimize total 

staffing costs, while meeting all staffing demands throughout the week. Since a fractional number of 

employees cannot start, the variables representing the number of employees are required to be integer. 
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Suppose you run the popular Pluto Dogs hot dog stand that is open seven days a week. Employees are 

hired to work a five-day workweek with two consecutive days off. Each employee receives the same 

weekly salary. You would like to develop an interactive application that would allow you to enter your 

staffing requirements for a week and then use this data to come up with a minimal cost staff schedule 

minimizing the total number of required employees, while still meeting (or exceeding) staffing 

requirements. 

The model generated to solve this problem will have seven variables and seven constraints. The i-th 

variable represents the number of employees to start on the i-th day of the week. The i-th constraint 

will sum up the number of employees working on the i-th day of the week, and set this sum to be 

greater-than-or-equal-to the staff required on the i-th day of the week. The objective will simply 

minimize the sum of all employees starting throughout the week. The formulation for this model 

appears below: 

MIN  M + T + W + R + F + S + N 

SUBJECT TO 

     M +         R + F + S + N >=  

     M + T +         F + S + N >=  

     M + T + W +         S + N >=  

     M + T + W + R +         N >=  

     M + T + W + R + F         >=  

         T + W + R + F + S     >=  

             W + R + F + S + N >=  

END 

where M represents the number of employees starting on Monday, T the number on Tuesday, and so 

on. Furthermore, all variables must have nonnegative integer values. The right-hand side values were 

omitted in this formulation, because they will be specified at runtime. 

Staffing Example Using Visual C++ 
In this section, an application that interfaces with LINDO API to solve the Pluto Dogs problem will be 

built in Visual C++ 6.0. A complete version of this project may be found in 

\lindoapi\samples\c\ex_samp3. 

This example uses the MFC AppWizard in Visual C++ to build an MFC (Microsoft Foundation Class) 

Windows application for solving the Pluto Dogs problem. For those unfamiliar with MFC, it is an 

all-encompassing, object-oriented programming interface to Windows, designed for use with C++. 

MFC is not required to interface with LINDO API. It was chosen to use in our example because it 

greatly reduces the amount of development effort required to build a Windows application. 

To build the sample application, start Visual C++ 6.0 and then follow these steps: 

 Issue the File|New command. 

 In the “New” dialog box, click on the “Projects” tab. 

 On the “Projects” tab, click on the project type titled “MFC AppWizard (exe)”, input a name 

for the project in the “Project Name” edit field, input the destination folder in the “Project 

Name” edit field, and click the OK button. 

 You will see a dialog box titled “MFC AppWizard – Step 1”. Click on the Dialog Based radio 

button, because our application will reside entirely within a single dialog box. Click the 

Finish button. 

 Click the OK button to clear the “New Project Information” dialog, and the AppWizard will 

generate the skeleton code base for the application. 
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Next, modify the application’s dialog box, so it appears as follows: 

 

The user will input the staffing requirements in the “Needs” column. The application will read these 

requirements, and then build and solve the staffing integer programming model. To display the results, 

the application will place the optimal number of employees to start on each day of the week in the 

“Start” column, the number working each day in the “On Duty” column, and the total number of 

employees required in the “Total” field. The Solve button solves for the current staffing needs data, 

while the Exit button exits the application. 
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In order to access the various data fields in the dialog box, the ClassWizard in Visual C++ must be 

used to associate member variables with each of the data fields. After doing this, the handler code for 

the Solve button in the dialog class module should be edited, so that it is as follows: 

#include "lindo.h" 

#define APIERRORSETUP   

   int nErrorCode;  

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]  

/* Define a macro to do our error checking */ 

#define APIERRORCHECK   

   if (nErrorCode)  

   {  

      if ( pEnv)  

      {  

         LSgetErrorMessage( pEnv, nErrorCode,  

          cErrorMessage);  

         printf("Errorcode=%d:  %s\n", nErrorCode,  

          cErrorMessage);  

         LSdeleteEnv( &pEnv);  

      } else { 

         printf( "Fatal Error\n");  

      }  

      return;  

   }  

 

void CStafflndDlg::OnSolve() 

{ 

   APIERRORSETUP; 

   pLSenv pEnv = NULL; 

   char MY_LICENSE_KEY[1024]; 

 

// >>> Step 1 <<< Create an environment 

   nErrorCode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

   APIERRORCHECK; 

   pEnv = LScreateEnv( &nErrorCode, MY_LICENSE_KEY); 

   if ( !pEnv) 

   { 

      AfxMessageBox("Unable to create environment!"); 

      return; 

   } 

 

// >>> Step 2 <<< Create a model in the environment 

   pLSmodel pMod = NULL; 

   pMod = LScreateModel( pEnv, &nErrorCode); 

   APIERRORCHECK; 

 

// >>> Step 3 <<< Construct the model 

// Number of variables and constraints 

   const int nVars = 7, nRows = 7; 

 

// The direction of optimization 

   int nDir = LS_MIN; 

 

// The objective's constant term 

   double dObjConst = 0.; 
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// The coefficients of the objective function 

   double adC[ nVars] = {1.,1.,1.,1.,1.,1.,1.}; 

// Get right-hand sides of the constraints from 

//  the Needs column of the dialog box 

   UpdateData( true); 

   double dNeeds[7]; 

   dNeeds[ 0] = m_nNeedsMon; 

   dNeeds[ 1] = m_nNeedsTue; 

   dNeeds[ 2] = m_nNeedsWed; 

   dNeeds[ 3] = m_nNeedsThu; 

   dNeeds[ 4] = m_nNeedsFri; 

   dNeeds[ 5] = m_nNeedsSat; 

   dNeeds[ 6] = m_nNeedsSun; 

 

// The constraint types (all Greater-thans) 

   char acConTypes[ nRows] = {'G','G','G','G','G','G','G'}; 

 

// The number of nonzeros in the constraint matrix 

   const int nNZ = 35; 

 

// The indices of the first nonzero in each column 

   int anBegCol[ nVars + 1]; 

   for ( int i = 0; i <= nVars; i++) 

   { 

      anBegCol[ i] = 5 * i; 

   } 

// The length of each column. Since we aren't leaving 

//  any blanks in our matrix, we can set this to NULL. 

   int *pnLenCol = NULL; 

 

// The nonzero coefficients and row indices 

   double adA[ nNZ]; 

   int anRowX[ nNZ]; 

   int nX = 0; 

   for ( i = 0; i < 7; i++) 

   { 

      for ( int j = i; j < i + 5; j++) 

      { 

          adA[ nX] = 1.; 

          anRowX[ nX] = j % 7; 

          nX++; 

      } 

   } 

// Simple upper and lower bounds on the variables. 

//  By default, all variables have a lower bound of zero 

//  and an upper bound of infinity.  Therefore pass NULL 

//  pointers in order to use these default values. 

   double *pdLower = NULL, *pdUpper = NULL; 

 

// We have now assembled a full description of the model. 

//  We pass this information to LSloadLPData with the 

//  following call. 

   nErrorCode = LSloadLPData( pMod, nVars, nRows, nDir, 

    dObjConst, adC, dNeeds, acConTypes, nNZ, anBegCol, 

    pnLenCol, adA, anRowX, pdLower, pdUpper); 

   APIERRORCHECK; 
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// Mark all 7 variables as being general integer 

   nErrorCode = LSloadMIPData( pMod, "IIIIIII"); 

   APIERRORCHECK; 

 

// >>> Step 4 <<< Perform the optimization 

   nErrorCode = LSsolveMIP( pMod, NULL); 

   APIERRORCHECK; 

 

// >>> Step 5 <<< Retrieve the solution 

   double dObjVal, dStart[ 7], dSlacks[ 7]; 

   nErrorCode = LSgetInfo(pMod, LS_DINFO_MIP_OBJ, &dObjVal); 

   APIERRORCHECK; 

   nErrorCode = LSgetMIPPrimalSolution( pMod, dStart); 

   APIERRORCHECK; 

   nErrorCode = LSgetMIPSlacks( pMod, dSlacks); 

   APIERRORCHECK; 

 

// Display solution in dialog box 

   m_csTotal.Format( "%d", (int) dObjVal); 

   m_csStartMon.Format( "%d", (int) dStart[ 0]); 

   m_csStartTue.Format( "%d", (int) dStart[ 1]); 

   m_csStartWed.Format( "%d", (int) dStart[ 2]); 

   m_csStartThu.Format( "%d", (int) dStart[ 3]); 

   m_csStartFri.Format( "%d", (int) dStart[ 4]); 

   m_csStartSat.Format( "%d", (int) dStart[ 5]); 

   m_csStartSun.Format( "%d", (int) dStart[ 6]); 

   m_csOnDutyMon.Format( "%d", (int) ( dNeeds[ 0] - dSlacks[ 0])); 

   m_csOnDutyTue.Format( "%d", (int) ( dNeeds[ 1] - dSlacks[ 1])); 

   m_csOnDutyWed.Format( "%d", (int) ( dNeeds[ 2] - dSlacks[ 2])); 

   m_csOnDutyThu.Format( "%d", (int) ( dNeeds[ 3] - dSlacks[ 3])); 

   m_csOnDutyFri.Format( "%d", (int) ( dNeeds[ 4] - dSlacks[ 4])); 

   m_csOnDutySat.Format( "%d", (int) ( dNeeds[ 5] - dSlacks[ 5])); 

   m_csOnDutySun.Format( "%d", (int) ( dNeeds[ 6] - dSlacks[ 6])); 

   UpdateData( false); 

 

// >>> Step 6 <<< Delete the LINDO environment 

   LSdeleteEnv( &pEnv); 

} 

Prior to the point where the application begins constructing the model, the code should be familiar and 

require no explanation. Construction of the model is begun with the following code: 

// >>> Step 3 <<< Construct the model 

// Number of variables and constraints 

   const int nVars = 7, nRows = 7; 

// The direction of optimization 

   int nDir = LS_MIN; 

// The objective's constant term  

   double dObjConst = 0.; 

// The coefficients of the objective function  

   double adC[ nVars] = {1.,1.,1.,1.,1.,1.,1.}; 
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There are seven decision variables in this model — one for each day of the week to determine the 

number of employees to start on each day. There are also seven constraints — one for each day of the 

week to insure that the number of staff on duty on each day exceeds the specified staffing 

requirements. The objective in this example is to minimize the total number of employees hired. Thus, 

the direction of the objective is LS_MIN. There is no constant term in the objective function, so it is 

set to 0. The total number of employees in the objective must be summed. Thus, we place a coefficient 

of 1 on each of the seven variables in the objective row. 

Next, the staffing requirements is loaded from the dialog box into an array: 

// Get right-hand sides of the constraints from  

//  the Needs column of the dialog box 

   UpdateData( true); 

   double dNeeds[7]; 

   dNeeds[ 0] = m_nNeedsMon;  

   dNeeds[ 1] = m_nNeedsTue;  

   dNeeds[ 2] = m_nNeedsWed;  

   dNeeds[ 3] = m_nNeedsThu;  

   dNeeds[ 4] = m_nNeedsFri;  

   dNeeds[ 5] = m_nNeedsSat;  

   dNeeds[ 6] = m_nNeedsSun;  

This array will be passed to LINDO as the array of right-hand side values. 

Each of the seven constraints are of the form total staffing must be greater-than-or-equal-to staffing 

requirements. So, a string of seven uppercase letter G’s is constructed to indicate all the constraints are 

of type greater-than-or-equal-to: 

// The constraint types (all Greater-thans) 

   char acConTypes[ nRows] = {'G','G','G','G','G','G','G'};  

Each column in the model has five nonzero coefficients of 1, representing the five days of the week 

worked. Thus, given that there are seven columns, there are a total of 35 nonzero coefficients: 

// The number of nonzeros in the constraint matrix  

   const int nNZ = 35; 

Since there are 5 nonzeros per column, the column-starting pointers are 0, 5, 10, 15, 20, 25, 30, and 35:  

// The indices of the first nonzero in each column */ 

   int anBegCol[ nVars + 1];  

   for ( int i = 0; i <= nVars; i++) 

   { 

      anBegCol[ i] = 5 * i; 

   } 

Note that an eighth column-starting pointer that points to the position immediately following the last 

nonzero must be defined. 

We are passing LINDO a dense array of nonzeros, so the column lengths can be inferred from the 

column-starting pointers. Thus, the column-length pointer can be set to NULL: 

// The length of each column. Since we aren't leaving 

//  any blanks in our matrix, we can set this to NULL. 

   int *pnLenCol = NULL; 
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The next code segment generates the nonzero coefficients of the constraints and is a little tricky: 

// The nonzero coefficients and row indices 

   double adA[ nNZ]; 

   int anRowX[ nNZ]; 

   int nX = 0; 

   for ( i = 0; i < 7; i++) 

   { 

      for ( int j = i; j < i + 5; j++) 

      { 

          adA[ nX] = 1.; 

          anRowX[ nX] = j % 7; 

          nX++; 

      } 

   } 

A double loop is used here. The outer loop runs i from 0 to 6, indexing over the seven columns that are 

generated. In the inner loop, 5 nonzeros of value 1 are generated representing the five days worked for 

the column. The column representing employees starting on Monday will have nonzeros in rows 0 

through 4, representing the Mon – Fri work schedule. Rows 5 and 6 will not have coefficients due to 

the fact that Monday starters are off Saturday and Sunday. Things get a little more complicated later in 

the week. Suppose the nonzeros for the Thursday starters are being generated. These occur in the Thu, 

Fri, Sat, Sun, and Mon rows. The problem comes when the schedule needs to “wrap” around from 

Sunday to Monday. This is done by using the modulo operator (%), which wraps any row index of 7, 

or higher, around to the start of the week. A picture of the nonzero matrix for this model would appear 

as follows: 

 

Each column has a contiguous block of 5 nonzero coefficients. In each subsequent column, the block is 

shifted down one row. Starting with Thursday’s column, one or more nonzeros must wrap back to the 

top. 

The default bounds of zero to infinity are accepted by setting the bounds pointers to NULL: 

// Simple upper and lower bounds on the variables. 

//  By default, all variables have a lower bound of zero  

//  and an upper bound of infinity. Therefore pass NULL  

//  pointers in order to use these default values. 

   double *pdLower = NULL, *pdUpper = NULL; 
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The model has now been generated, so it will be passed to LINDO API by calling LSloadLPData(): 

// We have now assembled a full description of the model.  

//  We pass this information to LSloadLPData with the  

//  following call. 

   nErrorCode = LSloadLPData( pMod, nVars, nRows, nDir,  

    dObjConst, adC, dNeeds, acConTypes, nNZ, anBegCol,  

    pnLenCol, adA, anRowX, pdLower, pdUpper); 

   APIERRORCHECK; 

Up to this point, nothing has been indicated to LINDO API regarding the integrality requirement on 

the variables. We do this through a call to LSloadVarType(): 

// Mark all 7 variables as being general integer 

   nErrorCode = LSloadVarType( pMod, "IIIIIII"); 

   APIERRORCHECK; 

Each of the seven variables are integer, which is indicated by passing a string of seven letter I’s. Note 

that LSloadVarType() must be called after LSloadLPData(). Attempting to call LSloadVarType() prior 

to the call to LSloadLPData() will result in an error. 

The next step is to solve the model:  

// >>> Step 4 <<< Perform the optimization 

   nErrorCode = LSsolveMIP( pMod, NULL); 

   APIERRORCHECK; 

In this case, the branch-and-bound solver must be called with LSsolveMIP(), because we have integer 

variables in our model. 

Next, the solution values are retrieved: 

// >>> Step 5 <<< Retrieve the solution 

   double dObjVal, dStart[ 7], dSlacks[ 7]; 

   nErrorCode = LSgetInfo(pMod, LS_DINFO_MIP_OBJ, &dObjVal); 

   APIERRORCHECK; 

   nErrorCode = LSgetMIPPrimalSolution( pMod, dStart); 

   APIERRORCHECK; 

   nErrorCode = LSgetMIPSlacks( pMod, dSlacks); 

   APIERRORCHECK; 

Note that the query routines that are specifically designed for MIP models have been used. 

The remainder of the code is straightforward and deals with posting the solution in the dialog box and 

freeing the LINDO environment. 

Staffing Example Using Visual Basic 
This section will construct an example using the Visual Basic 6.0 development environment. 

After starting VB 6.0, a new project can be created using the following steps: 

 Run the File|New Project command. 

 In the “New Project” dialog box, click once on the “Standard EXE” icon, then press the OK 

button. 
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A simple form for the application’s dialog box will be presented. Modify this form, so it appears as 

follows: 

 

Double click on the Solve button in the form and enter the code below: 

Private Sub Solve_Click() 

Dim nErr As Long 

Dim pEnv As Long 

Dim LicenseKey As String * LS_MAX_ERROR_MESSAGE_LENGTH 

   

nErr = LSloadLicenseString("..\..\..\license\lndapi100.lic", 

LicenseKey) 

Call CheckErr(pEnv, nErr) 

 

'>>> Step 1 <<<:  Create a LINDO environment. 

pEnv = LScreateEnv(nErr, LicenseKey) 

If (nErr > 0) Then 

   MsgBox ("Unable to create environment.") 

   End 

End If 

 

'>>> Step 2 <<< create a model in the environment 

Dim pMod As Long 

pMod = LScreateModel(pEnv, nErr) 

Call CheckErr(pEnv, nErr) 

 

'>>> Step 3 <<< construct the model 

'number of variables 

Dim nVars As Long 
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nVars = 7 

'number of constraints 

Dim nRows As Long 

nRows = 7 

'direction of objective 

Dim nDir As Long 

nDir = LS_MIN 

'objective constant term 

Dim dObjConst As Double 

dObjConst = 0 

'objective coefficients 

ReDim dObjCoef(nVars) As Double 

Dim i As Integer 

For i = 0 To nVars - 1 

   dObjCoef(i) = 1 

Next 

'get the staffing needs for the model's right-hand sides 

ReDim dB(nVars) As Double 

For i = 0 To nVars - 1 

   dB(i) = Needs(i) 

Next 

'define the constraint types 

Dim cConTypes As String 

For i = 0 To nRows - 1 

  cConTypes = cConTypes & "G" 

Next 

'the number of nonzero coefficients 

Dim nNZ As Long 

nNZ = 35 

'the array of column start indices 

ReDim nBegCol(nVars + 1) As Long 

For i = 0 To nVars 

   nBegCol(i) = 5 * i 

Next 

'the nonzero coefficients 

ReDim dA(nNZ) As Double 

ReDim nRowX(nNZ) As Long 

Dim j, k As Integer 

k = 0 

For i = 0 To nVars - 1 

  For j = 0 To 4 

    nRowX(k) = (j + i) Mod 7 

    dA(k) = 1 

    k = k + 1 

  Next j 

Next i 

'load the problem 

nErr = LSloadLPData(pMod, nRows, nVars, nDir, _ 

 dObjConst, dObjCoef(0), dB(0), cConTypes, nNZ, _ 

 nBegCol(0), ByVal 0, dA(0), nRowX(0), ByVal 0, _ 

 ByVal 0) 

Call CheckErr(pEnv, nErr) 

'integer restrictions on the variables 

Dim cVarType As String 

For i = 1 To nVars 

  cVarType = cVarType & "I" 
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Next 

nErr = LSloadVarType(pMod, cVarType) 

Call CheckErr(pEnv, nErr) 

 

'>>> Step 4 <<< solve the model 

nErr = LSsolveMIP(pMod, ByVal 0) 

Call CheckErr(pEnv, nErr) 

 

'>>> Step 5 <<< retrieve the solution 

ReDim dX(nVars) As Double 

Dim dObj As Double 

Dim dSlacks(7) As Double 

nErr = LSgetInfo(pMod, LS_DINFO_MIP_OBJ, dObj) 

Call CheckErr(pEnv, nErr) 

nErr = LSgetMIPPrimalSolution(pMod, dX(0)) 

Call CheckErr(pEnv, nErr) 

nErr = LSgetMIPSlacks(pMod, dSlacks(0)) 

Call CheckErr(pEnv, nErr) 

'post solution in dialog box 

Total = dObj 

For i = 0 To nVars - 1 

   OnDuty(i) = dB(i) - dSlacks(i) 

   Start(i) = dX(i) 

Next 

 

'>>> Step 6 <<< Delete the LINDO environment 

Call LSdeleteEnv(pEnv) 

 

End Sub 

 

Public Sub CheckErr(pEnv As Long, nErr As Long) 

' Checks for an error condition.  If one exists, the 

'  error message is displayed then the application 

'  terminates. 

   If (nErr > 0) Then 

      Dim cMessage As String 

      cMessage = String(LS_MAX_ERROR_MESSAGE_LENGTH,  

 _vbNullChar) 

      Call LSgetErrorMessage(pEnv, nErr, cMessage) 

      MsgBox (cMessage) 

      End 

   End If    

End Sub 

Prior to the point where construction of the model begins, the code should be familiar and require no 

explanation. Construction of the model begins with the following code: 

'>>> Step 3 <<< construct the model 

'number of variables 

Dim nVars As Long 

nVars = 7 

'number of constraints 

Dim nRows As Long 

nRows = 7 

'direction of objective 

Dim nDir As Long 
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nDir = LS_MIN 

'objective constant term 

Dim dObjConst As Double 

dObjConst = 0 

'objective coefficients 

ReDim dObjCoef(nVars) As Double 

Dim i As Integer 

For i = 0 To nVars - 1 

   dObjCoef(i) = 1 

Next 

There are seven decision variables in this model – one for each day of the week to determine the 

number of employees to start on each day. There are also seven constraints – one for each day of the 

week to insure that the number of staff on duty on each day exceeds the specified staffing 

requirements. The objective is to minimize the total number of employees hired. Thus, the direction of 

the objective is LS_MIN. There is no constant term in the objective function, so it is set to 0. The total 

number of employees in the objective must be summed. Thus, a coefficient of 1 is placed on each of 

the seven variables in the objective row. 

Next, the staffing requirements are loaded from the dialog box into an array: 

'get the staffing needs for the model's right-hand sides 

ReDim dB(nVars) As Double 

For i = 0 To nVars - 1 

   dB(i) = Needs(i) 

Next 

This array will be passed to LINDO API as the array of right-hand side values. 

Each of the seven constraints are of the form total staffing must be greater-than-or-equal-to staffing 

requirements. So, a string of seven uppercase letter G’s is constructed to indicate all the constraints are 

of type greater-than-or-equal-to: 

'define the constraint types 

Dim cConTypes As String 

For i = 0 To nRows - 1 

   cConTypes = cConTypes & "G" 

Next 

Each column in the model has five nonzero coefficients of 1, representing the five days of the week 

worked. Thus, given that there are seven columns, there are a total of 35 nonzero coefficients: 

'the number of nonzero coefficients 

Dim nNZ As Long 

nNZ = 35 

Since there are 5 nonzeros per column, the column-starting pointers are 0, 5, 10, 15, 20, 25, 30, and 35:  

'the array of column start indices 

ReDim nBegCol(nVars + 1) As Long 

For i = 0 To nVars 

   nBegCol(i) = 5 * i 

Next 

Note that an eighth column-starting pointer that points to the position immediately following the last 

nonzero must be defined. 
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The next code segment generates the nonzero coefficients of the constraints and is a little tricky: 

'the nonzero coefficients 

ReDim dA(nNZ) As Double 

ReDim nRowX(nNZ) As Long 

Dim j, k As Integer 

k = 0 

For i = 0 To nVars - 1 

  For j = 0 To 4 

    nRowX(k) = (j + i) Mod 7 

    dA(k) = 1 

    k = k + 1 

  Next j 

Next i 

A double loop is used here. The outer loop runs i from 0 to 6, indexing over the seven columns that are 

generated. In the inner loop, 5 nonzeros of values 1 are generated representing the five days worked 

for the column. The column representing employees starting on Monday will have nonzeros in rows 0 

through 4, representing the Mon – Fri work schedule. Rows 5 and 6 will not have coefficients due to 

the fact that Monday starters are off Saturday and Sunday. Things get a little more complicated later in 

the week. Suppose the nonzeros for the Thursday starters are being generated. These occur in the Thu, 

Fri, Sat, Sun, and Mon rows. The problem comes when the schedule must “wrap” around from Sunday 

to Monday. This is done by using the modulo operator (mod), which wraps any row index of 7, or 

higher, around to the start of the week. A picture of the nonzero matrix for this model would appear as 

follows: 

 

Each column has a contiguous block of 5 nonzero coefficients in the constraints. In each subsequent 

column, the block is shifted down one row. Starting with Thursday’s column, one or more nonzeros 

must wrap back to the top. 

The model has now been generated, so it may be passed to LINDO API by calling LSloadLPData(): 

'load the problem 

nErr = LSloadLPData(pMod, nRows, nVars, nDir, _ 

 dObjConst, dObjCoef(0), dB(0), cConTypes, nNZ, _ 

 nBegCol(0), ByVal 0, dA(0), nRowX(0), ByVal 0, _ 

 ByVal 0) 

Call CheckErr(pEnv, nErr) 
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Note that three of the arguments are set to ByVal 0, which indicates those arguments are being omitted 

and their default values accepted. The first of these arguments is for the array of column lengths. Since 

the nonzero matrix includes no blank spaces, the column-length array is redundant. The remaining two 

0 arguments are for the variable bound arrays. These are omitted because the default variable bound of 

zero to infinity is correct for this model.  

After the call to LSloadLPData(), a test is done to see if any error condition was raised by calling our 

CheckErr() routine. CheckErr() should be familiar from the discussions in the previous chapter. 

Up to this point, nothing has been indicated to LINDO API regarding the integrality requirement on 

the variables. This is done through a call to LSloadVarType(): 

'integer restrictions on the variables 

Dim cVarType As String 

For i = 1 To nVars 

  cVarType = cVarType & "I" 

Next 

nErr = LSloadVarType(pMod, cVarType) 

Call CheckErr(pEnv, nErr) 

Each of the seven variables are integer, which is indicated by passing a string of seven letter I’s. Note 

that LSloadVarType() must be called after LSloadLPData(). Attempting to call LSloadVarType() prior 

to the call to LSloadLPData() will result in an error. 

The next step is to solve the model:  

'>>> Step 4 <<< solve the model 

nErr = LSsolveMIP(pMod, ByVal 0) 

Call CheckErr(pEnv, nErr) 

In this case, the branch-and-bound solver must be called with LSsolveMIP(), because there are integer 

variables in our model. 

Next, the solution values are retrieved: 

'>>> Step 5 <<< retrieve the solution 

ReDim dX(nVars) As Double 

Dim dObj As Double 

Dim dSlacks(7) As Double 

nErr = LSgetInfo(pMod, LS_DINFO_MIP_OBJ, dObj) 

Call CheckErr(pEnv, nErr) 

nErr = LSgetMIPPrimalSolution(pMod, dX(0)) 

Call CheckErr(pEnv, nErr) 

nErr = LSgetMIPSlacks(pMod, dSlacks(0)) 

Call CheckErr(pEnv, nErr) 

'post solution in dialog box 

Total = dObj 

For i = 0 To nVars - 1 

   OnDuty(i) = dB(i) - dSlacks(i) 

   Start(i) = dX(i) 

Next 
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Note that the query routines that are specifically designed for MIP models have been used. 

The remainder of the code is straightforward and deals with posting the solution in the dialog box and 

deleting the LINDO environment.  

Solving MIPs using BNP 
BNP (Branch and Price) is a mixed integer programming solver of LINDO API for solving models 

with block structures like the following: 

 

minimize ∑c(k)*x(k) 

s.t.  

               ∑A(k)* x(k)  =  d                 ---------------------- linking constraints  

               x(k)  in X(k), for all k           ---------------------- decomposition structure 

 

where d, c(k) and x(k)  are vectors and A(k) is a matrix of appropriate dimensions. x(k) contains 

decision variables and X(k) denotes a linear feasible domain for x(k). 

 

The BNP solver is a hybrid of Branch and Bound,  Column Generation, and Lagrangean Relaxation 

methods. It can help find either the optimal solution or a better lower bound (the Lagrangean bound) 

for a minimization problem. Based on the decomposition structure, the solver divides the original 

problem into several subproblems and solves them (almost) independently, exploiting parallel 

processing if multiple cores or processors are available, one for each block.  

 

BNP may perform better than the default MIP solver if: a) the number of linking constraints is small, 

b) the number of blocks is large and they are of approximately the same size, and c) the number of 

available processors (or cores) is large, e.g., 4 or more. Also, there may be some models for which 

BNP finds a good solution and good bound more quickly than the default MIP algorithm although it 

may take longer to prove optimality.  

 

To solve the model with BNP solver, one can use either the command line in runlindo or the LINDO 

API routine, LSsolveMipBnp(). The following illustrates this.  

Solving MIPs using the –bnp option in Runlindo 
We start this section by consider the following example: 

EXAMPLE1: 

  MIN      x1+x2+x3+x4+x5+x6 

  Subject to: 

         [1] x1+x2+x3+x4+x5+x6 >=3   --------------------- linking constraints 

         [2] x1+x2                          <=1   --------------------- block 1 

         [3]       x2+x3                    <=1   --------------------- block 1 

         [4]                    x4+x5+x6 <=2   --------------------- block 2 

  [5]                    x4+      x6 <=1   --------------------- block 2 
                       x1,x2,x3,x4,x5,x6 are binary  

 



SOLVING MIXED INTEGER PROGRAMS     401 

 

The above model has six variables and five constraints. Constraint 1 can be considered as the only 

linking constraint. Constraints 2 and 3 will be block 1. Constraints 4 and 5 will be block 2.   

 

In runlindo one can use the following command line format to call the BNP solver to solve the model: 

 

  runlindo filename.mps –bnp [m] –nblock [n] –nthreads [j] –colmt [g] –fblock [k] -rtim 

 

 filename.mps is the name of the MPS file which contains the MIP model to be solved.  

 Option -bnp means solving the problem using the BNP solver, m specifies the algorithmic 

approach, where the computing level, m = 0 denotes a pure Lagrangean Relaxation procedure, 

m = 1 denotes a best-first search BNP procedure, m = 2 denotes a worst-first search BNP 

procedure, m = 3 denotes a depth-first search BNP procedure, and m = 4 denotes a breadth-

first search BNP procedure. With m>=1, after each node is investigated, the best lower bound 

and the best feasible solution found will be displayed. 

 Option –nblock [n] specifies the number of independent blocks in the model to be n, which 

should be 2 in the above example.  

 Option –nthreads[j] specifies that j parallel threads should be used for solving the submodels 

in parallel. 

 Option –colmt [g] specifies a limit of g for the total generated columns. 

 Option –fblock [k] specifies different heuristic algorithms to find the block structure 

automatically, k can be 1 (default) or 2. 

 Option –rtim means that the user will input the block information via a file,  filename.tim. For 

the example above, a valid filename.tim should be essentially as follows: 

TIME          EXAMPLE1 

PERIODS       EXPLICIT 

    TIME0000 

    TIME0001 

    TIME0002 

ROWS 

    1    TIME0000 

    2    TIME0001 

    3    TIME0001 

    4    TIME0002 

    5    TIME0002                 

COLUMNS 

    x1    TIME0001  

    x2    TIME0001  

    x3    TIME0001 

    x4    TIME0002 

    x5    TIME0002 

    x6    TIME0002                

       ENDATA 

In the above .tim file, we input constraint 1 as the linking constraint (TIME0000), constraint 2 

and 3, variable x1, x2 and x3 as in block 1 (TIME0001), and constraint 4 and 5, variable x4, 

x5, and x6 as in block 2(TIME0002). Besides linking constraints, the input model can also 

have linking variables, in which case the solver will convert those linking variables into 

linking constraints automatically. 
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A Programming Example in C 
# include <stdio.h> 

# include <stdlib.h> 

# include "lindo.h" 

 

/* Define a macro to declare variables for error checking */ 

#define APIERRORSETUP  \ 

   int nErrorCode; \ 

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH] \ 

 

/* Define a macro to do the error checking */ 

#define APIERRORCHECK  \ 

   if (nErrorCode) \ 

   { \ 

      if ( pEnv) \ 

      { \ 

         LSgetErrorMessage( pEnv, nErrorCode, \ 

          cErrorMessage); \ 

         printf("Errorcode=%d:  %s\n", nErrorCode, \ 

          cErrorMessage); \ 

      } else {\ 

         printf( "Fatal Error\n"); \ 

      } \ 

      exit(1); \ 

   } \ 

 

#define APIVERSION \ 

{\ 

    char szVersion[255], szBuild[255];\ 

    LSgetVersionInfo(szVersion,szBuild);\ 

    printf("\nLINDO API Version %s built on %s\n",szVersion,szBuild);\ 

}\ 

 

int main(int argc, char** argv) 

{ 

 APIERRORSETUP; 

 pLSenv pEnv;            //LINDO environment object 

 pLSmodel pModel;        //LINDO model object 

 char MY_LICENSE_KEY[1024]; 

 int nStatus; 

 

 // create a model in the environment 

 nErrorCode = LSloadLicenseString("lndapi100.lic",MY_LICENSE_KEY); 

 if ( nErrorCode != LSERR_NO_ERROR) 

 { 

   printf( "Failed to load license key (error %d)\n",nErrorCode); 

   exit( 1); 

 } 

 APIVERSION; 

 pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

 if ( nErrorCode == LSERR_NO_VALID_LICENSE) 

 { 

   printf( "Invalid License Key!\n"); 

   exit( 1); 
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 } 

 APIERRORCHECK; 

 pModel = LScreateModel(pEnv, &nErrorCode); 

 APIERRORCHECK; 

 

       // read the mps file 

 nErrorCode = LSreadMPSFile(pModel,"example1.mps",LS_UNFORMATTED_MPS); 

 APIERRORCHECK; 

 

       // set the BNP level to be 1 

       nErrorCode = LSsetModelIntParameter(pModel,LS_IPARAM_BNP_LEVEL,1); 

       APIERRORCHECK; 

 

       // user input the block structure 

       nErrorCode =  

           LSsetModelIntParameter(pModel,LS_IPARAM_BNP_FIND_BLK,3); 

       APIERRORCHECK; 

 

       // set number of threads to be 2 

       nErrorCode =  

           LSsetModelIntParameter(pModel,LS_IPARAM_BNP_NUM_THREADS,2); 

       APIERRORCHECK; 

 

       // solve the model using BNP solver 

       nErrorCode = LSsolveMipBnp(pModel,2,"example1.tim", &nStatus); 

       APIERRORCHECK 

 

    return 0; 

} 

Prior to calling the BNP solver, we set some parameter values: 

 LS_IPARAM_BNP_LEVEL: Setting the BNP level. 

= 0 Call only the Lagrangean Relaxation (LR) procedure to get the LR bound. 

= 1 (default)  Incorporate the LR procedure with a best-first search BNP procedure. 

= 2 Incorporate the LR procedure with a worst-first search BNP procedure. 

= 3 Incorporate the LR procedure with a depth-first search BNP procedure. 

= 4 Incorporate the LR procedure with a breadth-first search BNP procedure. 

 

 LS_IPARAM_BNP_FIND_BLK: Setting the method for finding the block structure. 

= 1 Use heuristic algorithm to find the block structure. (default) 

= 2 Use another heuristic algorithm to find the block structure. 

= 3 User input the block structure. 

 

 LS_IPARAM_BNP_NUM_THREADS: Setting the number of threads to be used. 

 

 After setting the parameter values for the BNP solver, we call the routine LSsolveMipBnp(). 

This function takes four arguments, the first is a pointer to a model, the second is number of 

blocks in the model, the third is the name of the file which contains the user-input block 

structure. If the parameter LS_IPARAM_BNP_FIND_BLK is set to be 1 or 2, then this 

argument can be set to NULL. If a callback routine is specified, the best bound and best 

objective value so far can be found via the macros LS_DINFO_BNP_BESTBOUND and 

LS_DINFO_BNP_BESTOBJ. The fourth is an integer pointer which contains the status of 

optimization. 
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For other BNP parameter information, please refer to Chapter 2. 

 

 



 

 

Chapter 5: Solving 
Quadratic Programs 

The quadratic programming interface of LINDO API is designed to solve quadratically constrained 

problems (QCP) of the form: 

Optimize  ½ x’Q
c
x + cx;    

subject to: 

 ½ x’Q
i
x + ai x ? bi  for i = 0,1,…,m-1, 

 Lj  xj  Uj   for j = 0,1,…,n-1, 

 xj is integer   for j in a specified J  {0,…, n-1} 

where  

Optimize is either minimize or maximize, 

Q
c
, and Q

i
 are symmetric n by n matrices of constants for i=0,…,m-1, 

c and ai are 1 by n vectors of constants, 

x = {x0, x2,…,xn-1}, is an n-vector of decision variables. 

"?" is one of the relational operators "", "=", or "". 

LINDO API will solve and return a global optimum if: 

Q
c
 is positive semi-definite for a minimize objective, or,  

Q
c
 is negative semi-definite for a maximize objective, and 

Q
i
 is positive semi-definite for each  constraint, and 

Q
i
 is negative semi-definite for each  constraint. 

All the above are also true if “semi-” is deleted. LINDO API may not find a global optimum if some Q 

is indefinite, or some constraint with a Q on the left-hand side is an equality constraint. If, for example, 

Q is a valid covariance matrix, then Q is positive semi-definite. The negative of a positive semi-

definite matrix is negative semi-definite, and vice versa. If Q is positive (negative) semi-definite, then 

all of its eigenvalues are non-negative (non-positive). Strictly positive definite implies that Q is full 

rank. If the Q
i
 matrices are positive (negative) semi-definite for "" ( "") type constraints and equal to 

zero for "=" type constraints, then the feasible region is convex. Geometrically, a positive definite 

matrix corresponds to a bowl shaped function. A positive semi-definite matrix corresponds to a trough 

shaped function. A negative definite matrix corresponds to an umbrella shaped function. 

The ½ term is used above for historical reasons related to the fact that the derivative of ½ x’Qx is Qx. 

Note: LINDO API uses the barrier algorithm to solve quadratic programs when they satisfy the 

semi-definiteness conditions listed above. Otherwise, the nonlinear solver will be used. In the 

latter case, the global optimality cannot be ensured unless the global optimization is 

performed.  
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Setting up Quadratic Programs  
There are three ways by which you can setup a quadratic program with LINDO API. The first one is 

reading a quadratic program directly from an MPS format file, using an extended format to incorporate 

quadratic forms in the model formulation. The second way is to build the model directly in memory 

and pass the data of the matrices representing quadratic forms to LINDO API. The third way is to 

formulate the model using an instruction list (as described in Chapter 7 and Appendix D). Here, we 

describe the first and second ones.  

Loading Quadratic Data via Extended MPS Format Files 
The quadratic parts of the objective function and the constraints can be described in an MPS file by 

adding a QMATRIX section to the file for each quadratic form. Synonyms that can be used for this 

section are QSECTION or QUADS. The row labels that follow the QMATRIX term denote the 

constraints the quadratic terms belong to. The following example illustrates how an MPS file is 

modified to include quadratic terms in the objective function.  

Example: 
Suppose the quadratic program under consideration is: 

Minimize 0.5*(     X0*X0 +  .75*X0*X1  

              0.75*X0*X1 + 2.00*X1*X1) + X0 + X1; 

Subject to:        

               X0 + X1 >= 10; 

The corresponding MPS file to this quadratic program is: 

NAME          quadex2 

ROWS 

 N  OBJ 

 G  C1 

COLUMNS 

    X0        OBJ        1.0 

    X0        C1         1.0 

    X1        OBJ        1.0 

    X1        C1         1.0 

RHS 

    RHS       C1         10. 

QMATRIX       OBJ       

    X0        X0         1.0 

    X0        X1         0.75 

    X1        X1         2.0 

ENDATA 

The format of the QMATRIX section is similar to the COLUMNS section except that the first two 

columns on each line correspond to a pair of variables for which their product appears as a term in the 

quadratic objective and the third column on a line corresponds to the coefficient of this product. The 

presence of the factor 0.5 is assumed when specifying these coefficients. In describing the QMATRIX, 

it is sufficient to specify the elements on its diagonal and below-diagonal entries because the quadratic 

matrices are assumed to be symmetric. It should be noted that only one QMATRIX section is allowed 

for each constraint and no QMATRIX sections can precede the COLUMNS section. 
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The solution file for the above example will contain the report:  

PROBLEM NAME     quadex2 

 QP OPTIMUM FOUND 

 ITERATIONS BY SIMPLEX METHOD =           0 

 ITERATIONS BY BARRIER METHOD =           6 

 ITERATIONS BY NLP METHOD     =           0 

 TIME ELAPSED (s)             =           0 

 OBJECTIVE FUNCTION VALUE 

  1)                57.916666753 

 VARIABLE                VALUE                REDUCED COST 

  X0                       8.333333307              0.000000010 

  X1                       1.666666701              0.000000060 

 ROW               SLACK OR SURPLUS            DUAL PRICES 

  C1                      -0.000000008             10.583333322 

END OF REPORT 

Note: Your license must have the barrier or nonlinear license options to be able to work with 

quadratic formulations. Attempting to solve a problem that has a quadratic objective or 

constraint using other optimization algorithms such as primal simplex, dual simplex, or 

mixed-integer solver will return an error. 

Loading Quadratic Data via API Functions 
The second way to input a QCP is by setting-up a problem structure and using LINDO API’s quadratic 

programming functions to specify the quadratic terms. In this framework, your front-end program 

should perform at least the following steps to enter the problem and retrieve its solution: 

 Create a LINDO environment with a call to LScreateEnv(). 

 Create a model structure in this environment with a call to LScreateModel(). 

 Load problem structure and linear data into the model structure with a call to 

LSloadLPData(). 

 Load the quadratic problem data into the model structure with a call to LSloadQCData(). 

 Load (optionally) the integer-programming data with a call to LSloadVarType(). 

 Solve the problem with a call to LSoptimize() (or LSsolveMIP() if there are integer 

variables). 

 Retrieve the solution with calls to LSgetInfo(), LSgetPrimalSolution(), and 

LSgetDualSolution(). 

 Delete the model and environment with a call to LSdeleteEnv(). 

The step specific to loading quadratic models is Step 4.  Quadratic terms in each row, as well as the 

objective function, are represented with a symmetric matrix.  Each of these matrices is described by a 

vector of four-tuples or quadruplets, one quadruplet per nonzero.  Each quadruplet contains:  

 

 index of the constraint which the quadratic matrix belongs,  

 row index i (actually the index of a column) of the nonzero in quadratic matrix,  

 column index j of the nonzero in quadratic matrix,  

 nonzero value q(i,j).  
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We illustrate the preparation of the data with an example: 

 
Maximize    3x0 + 10x1 – 2 x0

2
 – 3x1

2
 

– 4x2
2
 + 2 x0x2 + 5x2x1  

   

s.t.        

Constraint 0:    (x0 – 1)
2
 + (x1 – 1)

2
              1 

Constraint 1:    (x1 – 3)
2
 + (x2 – 1)

2
      2 

        

 -   x0   + 

 -   x1   + 

 -   x2   + 

 

This model can be written in the equivalent symmetric matrix form 

 
Maximize       3 x0 + 10x1 +  

½(-4 x0
2   

        + 2x0x2
  

             
-6 x1

2
   + 5x1x2 

 + 2x2x0 +5x2x1   – 8  x2
2
) 

   

s.t.        

Constraint 0:    -2 x0 – 2 x1 + ½(2 x0
2
 + 2 

x1
2
)           

  -1 

Constraint 1:    -6 x1 – 2 x2 + ½(2 x1
2
 + 2 

x2
2
)         

  -8 

        

 -   x0   + 

 -   x1   + 

 -   x2   + 

 

Digression: The historic reason for writing the quadratic part in this form, with the factor of 1/2 in 

front, is as follow. When first partial derivatives are taken, the 1/2 cancels out, and the coefficients of 

the linear first order conditions that the computer solves are exactly the coefficients inside the 

parentheses. 

 

Several other conventions of note are: a) the LINDO API numbers the constraints starting at 0, 1, …,   

b) the objective row is denoted as row -1,  and c) because of symmetry, we only input the upper 

triangle of the symmetric matrix.  Thus, the equivalents of the above matrices in quadruplet form are:  

 

 

 

 

   Q
obj

 =   

 

 

 

 

 

Constraint 
Index 

Row 
index 

Column 
index 

Nonzero 
value 

-1 0 0 -4 

-1 0 2 2 

-1 1 1 -6 

-1 1 2 5 

-1 2 2 -8 

 x0 x1 x2 

x0 -4 0 2 

x1 0 -6 5 

x2 2 5 -8 
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And those associated with constraints 0 and 1 are Q
0
 and Q

1
, with 2 nonzeros in each. 

 

 

 

   Q
0
 =   

 

 

 

 

 

 

 

   Q
1
 = 

 

 

 

 

Combining the quadruplet representations of Q
obj

, Q
0
 and Q

1
, we obtain the following arrays: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The quadratic data for this model is now ready to be loaded to the solver.  Using C conventions, the 

following code fragment sets up the arrays and then calls the LSloadQCData function to load these 

four vectors into the LINDO API.  The LP data must have been previously loaded using 

LSloadLPData. 

 

{ 

  pLSmodel pModel; 

  int nQCnnz = 9; 

  int paiQCrows [9] = {  -1,  -1,  -1,  -1,  -1,   0,   0,   1,   1}; 

  int paiQCcols1[9] = {   0,   0,   1,   1,   2,   0,   1,   1,   2}; 

  int paiQCcols2[9] = {   0,   2,   1,   2,   2,   0,   1,   1,   2}; 

  int padQCcoef [9] = {-4.0, 2.0,-6.0, 5.0,-8.0, 2.0, 2.0, 2.0, 2.0}; 

  int nErr; 

 

  nErr = LSloadQCData(pModel, nQCnnz, paiQCrows, paiQCcols1, 

    paiQCcols2, padQCcoef); 

} 

 x0 x1 x2 

x0 2 0 0 

x1 0 2 0 

x2 0 0 0 

Constraint 
Index 

Row 
index 

Column 
index 

Nonzero 
value 

0 0 0 2 

0 1 1 2 

 x0 x1 x2 

x0 0 0 0 

x1 0 2 0 

x2 0 0 2 

Constraint 
Index 

Row 
index 

Column 
index 

Nonzero 
value 

1 1 1 2 

1 2 2 2 

Constraint 
Index 

Row 
index 

Column 
index 

Nonzero 
value 

-1 0 0 -4 

-1 0 2 2 

-1 1 1 -6 

-1 1 2 5 

-1 2 2 -8 

0 0 0 2 

0 1 1 2 

1 1 1 2 

1 2 2 2 
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We recommend that you load only the upper triangular portion of a Q matrix when you call 

LSloadQCData. You can in fact load the lower triangular portion of the matrix,  or even the full 

matrix, and the matrix need not be symmetric. If LSloadQCData finds one or more nonzero instances 

of the matrix element qij or qji, it treats both qij and qji as equal to the average of all the elements 

supplied for qij and qji. This, for example allows you to supply an asymmetric Q matrix and 

LSLoadQCData will automatically convert it to the equivalent symmetric matrix. 

 

In the following examples, the functions in LINDO API that are related to solving quadratic problems 

are described. 

Sample Portfolio Selection Problems 
A common use of quadratic programs is in portfolio selection in finance where the proportion of the 

available assets invested in each investment alternative is determined. The following examples 

illustrate the use of LINDO API to build and solve small portfolio selection models.  

Example 1. The Markowitz Model:  
Consider a portfolio problem with n assets or stocks held over one period. Let wi denote the amount of 

asset i invested and held throughout the period, and ri denote the return of asset i over the period. The 

decision variable is the vector w with two basic assumptions: wi  0 (short positions are not allowed) 

and w1 + w2 + … + wn = 1 (i.e., unit total budget).  

This example assumes the investor wishes to use the well known Markowitz model to balance the 

average expected risk and average return on each dollar invested in selecting the portfolio. This can be 

handled by maximizing the expected return while limiting the risk of loss with a constraint of the form 

w’Q w  K. Here, Q is the covariance matrix of returns and K is a bound on the risk of loss.  

The following C programming code illustrates how this model can be set up and solved using LINDO 

API for a small portfolio selection problem. 

 /*  

 

################################################################# 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

################################################################# 

 

  File   : markow.c 

  Purpose: Solve a quadratic programming problem. 

  Model  : The Markowitz Portfolio Selection Model 

 

           MAXIMIZE  r(1)w(1) + ... +r(n)w(n) 

           st.       sum_{ij} Q(i,j)w(i)w(j) <= K 

                         w(1) + ..... + w(n)  = 1 

                         w(1),         ,w(n) >= 0 

           where 

           r(i)  : return on asset i 
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           Q(i,j): covariance between the returns of i^th and 

                   j^th assets. 

           K     : a scalar denoting the level of risk of loss. 

           w(i)  : proportion of total budget invested on asset i 

 

  Covariance Matrix: 

          w1    w2    w3    w4 

     w1 [ 1.00  0.64  0.27  0.    ] 

     w2 [ 0.64  1.00  0.13  0.    ] 

     w3 [ 0.27  0.13  1.00  0.    ] 

     w4 [ 0.    0.    0.    1.00  ] 

 

  Returns Vector: 

          w1    w2    w3    w4 

  r =   [ 0.30  0.20 -0.40  0.20  ] 

 

  Risk of Loss Factor: 

  K = 0.4 

 

*/ 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

#include "lindo.h" 

 

/* Define a macro to declare variables for 

    error checking */ 

#define APIERRORSETUP   

   int nErrorCode;  

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]  

 

/* Define a macro to do our error checking */ 

#define APIERRORCHECK   

   if (nErrorCode)  

   {  

      if ( pEnv)  

      {  

         LSgetErrorMessage( pEnv, nErrorCode,  

          cErrorMessage);  

         printf("Errorcode=%d:  %s\n", nErrorCode,  

          cErrorMessage);  

      } else { 

         printf( "Fatal Error\n");  

      }  

      exit(1);  

   }  

 

/* main entry point */ 

int main(int argc, char **argv) 

{ 

   APIERRORSETUP;    

   int nM = 2;      /* Number of constraints */ 

   int nN = 4;      /* Number of assets */ 

    

   double K = 0.20; /* 1/2 of the risk level*/ 
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  /* declare an instance of the LINDO environment object */ 

   pLSenv pEnv = NULL; 

  /* declare an instance of the LINDO model object */ 

   pLSmodel pModel; 

 

   char MY_LICENSE_KEY[1024]; 

 

  /***************************************************************** 

   * Step 1: Create a model in the environment. 

   *****************************************************************/ 

   nErrorCode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

 

   pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

   if ( nErrorCode == LSERR_NO_VALID_LICENSE) 

   { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

 

  /**************************************************************** 

   * Step 2: Create a model in the environment. 

   ****************************************************************/ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   APIERRORCHECK; 

 

  /***************************************************************** 

   * Step 3: Specify and load the LP portion of the model. 

   *****************************************************************/ 

   { 

     /* The direction of optimization */ 

      int objsense = LS_MAX; 

      /* The objective's constant term */ 

      double objconst = 0.; 

      /* The coefficients of the objective function are the expected 

      returns*/ 

      double reward[4] = { .3, .2, -.4, .2}; 

      /* The right-hand sides of the constraints */ 

      double rhs[2] = { K, 1.0 }; 

      /* The constraint types */ 

      char contype[2] = {'L','E'}; 

      /* The number of nonzeros in the constraint matrix */ 

      int Anz = 4; 

      /* The indices of the first nonzero in each column */ 

      int Abegcol[5] = { 0, 1, 2, 3, Anz}; 

      /* The length of each column.  Since we aren't leaving 

       * any blanks in our matrix, we can set this to NULL */ 

      int *Alencol = NULL; 

      /* The nonzero coefficients */ 

      double A[4] = { 1., 1., 1., 1.}; 

      /* The row indices of the nonzero coefficients */ 

      int Arowndx[4] = { 1, 1, 1, 1}; 

      /* By default, all variables have a lower bound of zero 

       * and an upper bound of infinity.  Therefore pass NULL 

       * pointers in order to use these default values. */ 
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      double *lb = NULL, *ub = NULL; 

 

  /***************************************************************** 

   * Step 4: Specify and load the quadratic matrix 

   *****************************************************************/ 

     /* The number of nonzeros in the quadratic matrix */ 

      int Qnz = 7; 

      /* The nonzero coefficients in the Q-matrix */ 

      double Q[7] = { 1.00, .64, .27, 

                           1.00, .13, 

                                1.00, 

                                      1.00} ; 

      /* Specify the row indices of the nonzero coefficients in the 

         Q-matrix. */ 

      int Qrowndx[7] = { 0, 0, 0, 0, 0, 0, 0}; 

      /* The indices of variables in the Q-matrix */ 

      int Qcolndx1[7] = {  0, 1, 2, 1, 2, 2, 3}; 

      int Qcolndx2[7] = {  0, 0, 0, 1, 1, 2, 3}; 

      /* Pass the linear portion of the data to problem structure 

       * by a call to LSloadLPData() */ 

      nErrorCode = LSloadLPData( pModel, nM, nN, objsense, objconst, 

                                reward, rhs, contype, 

                                Anz, Abegcol, Alencol, A, Arowndx, 

                                lb, ub); 

      APIERRORCHECK; 

     /* Pass the quadratic portion of the data to problem structure 

      * by a call to LSloadQCData()  */ 

      nErrorCode = LSloadQCData(pModel, Qnz, Qrowndx, 

                                 Qcolndx1, Qcolndx2, Q ); 

      APIERRORCHECK; 

   } 

 

  /***************************************************************** 

   * Step 5: Perform the optimization using the barrier solver 

   *****************************************************************/ 

   nErrorCode = LSoptimize( pModel, LS_METHOD_BARRIER,NULL); 

   APIERRORCHECK; 

 

  /*************************************************************** 

   * Step 6: Retrieve the solution 

   ***************************************************************/ 

   { 

      int i; 

      double W[4], dObj; 

   /* Get the value of the objective */ 

      nErrorCode = LSgetInfo( pModel, LS_DINFO_POBJ, &dObj) ; 

      APIERRORCHECK; 

      printf( "* Objective Value = %10g\n\n", dObj); 

    /* Get the portfolio */ 

      nErrorCode = LSgetPrimalSolution ( pModel, W); 

      APIERRORCHECK; 

      printf ("* Optimal Portfolio : \n"); 

      for (i = 0; i < nN; i++) 

      printf( "Invest %5.2f percent of total budget in asset %d.\n", 

               100*W[i],i+1 ); 

      printf ("\n"); 
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   } 

 

  /*************************************************************** 

   * Step 7: Delete the LINDO environment 

   *****************************************************************/ 

   nErrorCode = LSdeleteEnv( &pEnv); 

   /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   getchar(); 

} 

The source code file for this example may be found in the \LINDOAPI\Samples\C\Markow folder. 

After creating the executable “markow.exe”, the application can be run from either with the Start |Run 

command, or from the DOS-prompt.  

The output for the example follows:  

* Objective Value =   0.173161 

* Optimal Portfolio =  

Invest 28.11 percent of total budget in asset 1. 

Invest 21.78 percent of total budget in asset 2. 

Invest  9.16 percent of total budget in asset 3. 

Invest 40.96 percent of total budget in asset 4. 

Example 2. Portfolio Selection with Restrictions on the Number 
of Assets Invested:  
Another common portfolio selection model is the one where there is a restriction on the number of 

assets invested. This is also called the portfolio selection problem with cardinality constraints. In this 

formulation, it is also common to have bounds on the proportion of total assets invested to a particular 

asset type. The following example, given the required data, demonstrates how LINDO API is used to 

set up and solve such problems. Besides this example, the sample file port.c distributed with LINDO 

API can be used to solve the portfolio selection problems in J. E. Beasley's collection at ORLIB 

(http://mscmga.ms.ic.ac.uk/jeb/orlib/portinfo.html). You can find the source file in the 

\LINDOAPI\SAMPLES\C\PORT folder. 

/* port.c 

 

################################################################### 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

################################################################### 

   

  File   : port.c 

  Purpose: Solve a quadratic mixed integer programming problem. 

  Model  : Portfolio Selection Problem with a Restriction on 

           the Number of Assets 

 

http://mscmga.ms.ic.ac.uk/jeb/orlib/portinfo.html
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           MINIMIZE   0.5 w'Q w 

           s.t.   sum_i  w(i)              =  1 

                  sum_i  r(i)w(i)         >=  R 

                  for_i  w(i) - u(i) x(i) <=  0   i=1...n 

                  sum_i  x(i)             <=  K 

                  for_i  x(i) are binary          i=1...n 

           where 

           r(i)  : return on asset i. 

           u(i)  : an upper bound on the proportion of total budget 

                   that could be invested on asset i. 

           Q(i,j): covariance between the returns of i^th and j^th 

                   assets. 

           K     : max number of assets allowed in the portfolio 

           w(i)  : proportion of total budget invested on asset i 

           x(i)  : a 0-1 indicator if asset i is invested on. 

 

  Data: 

  Covariance Matrix: 

               A1      A2      A3      A4      A5      A6      A7 

       A1 [  1.00    0.11    0.04    0.02    0.08    0.03    0.10 ] 

       A2 [  0.11    1.00    0.21    0.13    0.43    0.14    0.54 ] 

       A3 [  0.04    0.21    1.00    0.05    0.16    0.05    0.20 ] 

   Q = A4 [  0.02    0.13    0.05    1.00    0.10    0.03    0.12 ] 

       A5 [  0.08    0.43    0.16    0.10    1.00    0.10    0.40 ] 

       A6 [  0.03    0.14    0.05    0.03    0.10    1.00    0.12 ] 

       A7 [  0.10    0.54    0.20    0.12    0.40    0.12    1.00 ] 

 

  Returns Vector: 

               A1      A2      A3      A4      A5      A6      A7 

    r =   [  0.14    0.77    0.28    0.17    0.56    0.18    0.70 ] 

 

  Maximum Proportion of Total Budget to be Invested on Assets 

               A1      A2      A3      A4      A5      A6      A7 

    u =   [  0.04    0.56    0.37    0.32    0.52    0.38    0.25 ] 

 

  Target Return: 

  R = 0.30 

 

  Maximum Number of Assets: 

  K = 3 

*/ 

#include <stdlib.h> 

#include <stdio.h> 

 

/* LINDO API header file */ 

#include "lindo.h" 

 

/* Define a macro to declare variables for 

    error checking */ 

#define APIERRORSETUP   

   int nErrorCode;  

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]  

/* Define a macro to do our error checking */ 

#define APIERRORCHECK   

   if (nErrorCode)  

   {  
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      if ( pEnv)  

      {  

         LSgetErrorMessage( pEnv, nErrorCode,  

          cErrorMessage);  

         printf("Errorcode=%d:  %s\n", nErrorCode,  

          cErrorMessage);  

      } else { 

         printf( "Fatal Error\n");  

      }  

      exit(1);  

   }  

/* main entry point */ 

int main() 

{ 

   APIERRORSETUP; 

/* Number of constraints */ 

   int nM = 10; 

/* Number of assets (7) plus number of indicator variables (7) */ 

   int nN = 14; 

/* declare an instance of the LINDO environment object */ 

   pLSenv pEnv = NULL; 

/* declare an instance of the LINDO model object */ 

   pLSmodel pModel; 

 

   char MY_LICENSE_KEY[1024]; 

  /**************************************************************** 

   * Step 1: Create a LINDO environment. 

   ****************************************************************/ 

   nErrorCode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

   APIERRORCHECK; 

 

   pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

   if ( nErrorCode == LSERR_NO_VALID_LICENSE) 

   { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

 

  /**************************************************************** 

   * Step 2: Create a model in the environment. 

   ****************************************************************/ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   APIERRORCHECK; 

   { 

 

  /***************************************************************** 

   * Step 3: Specify and load the LP portion of the model. 

   *****************************************************************/ 

     /* The maximum number of assets allowed in a portfolio */ 

      int  K = 3; 

     /* The target return */ 

      double R = 0.30; 

     /* The direction of optimization */ 

      int objsense = LS_MIN; 
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      /* The objective's constant term */ 

      double objconst = 0.; 

      /* There are no linear components in the objective function.*/ 

      double c[14] = { 0., 0., 0., 0., 0., 0.,0., 

                       0., 0., 0., 0., 0., 0.,0.}; 

      /* The right-hand sides of the constraints */ 

      double rhs[10] = { 1.0, R, 0., 0., 0., 0., 0., 0., 0., K}; 

      /* The constraint types */ 

      char contype[10] = {'E','G','L','L','L','L','L','L','L','L'}; 

      /* The number of nonzeros in the constraint matrix */ 

      int Anz = 35; 

      /* The indices of the first nonzero in each column */ 

      int Abegcol[15] = { 0,  3,  6,  9, 12, 15, 18, 

                         21, 23, 25, 27, 29, 31, 33,Anz}; 

      /* The length of each column. Since we aren't leaving 

       * any blanks in our matrix, we can set this to NULL */ 

      int *Alencol = NULL; 

      /* The nonzero coefficients */ 

      double A[35] = {  1.00, 0.14, 1.00, 

                        1.00, 0.77, 1.00, 

                        1.00, 0.28, 1.00, 

                        1.00, 0.17, 1.00, 

                        1.00, 0.56, 1.00, 

                        1.00, 0.18, 1.00, 

                        1.00, 0.70, 1.00, 

                        -0.04, 1.00, 

                        -0.56, 1.00, 

                        -0.37, 1.00, 

                        -0.32, 1.00, 

                        -0.52, 1.00, 

                        -0.38, 1.00, 

                        -0.25, 1.00 }; 

      /* The row indices of the nonzero coefficients */ 

      int Arowndx[35] = { 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 

                          0, 1, 6, 0, 1, 7, 0, 1, 8, 2, 9, 3, 

                          9, 4, 9, 5, 9, 6, 9, 7, 9, 8, 9    }; 

      /* By default, all variables have a lower bound of zero 

       * and an upper bound of infinity. Therefore pass NULL 

       * pointers in order to use these default values. */ 

      double *lb = NULL, *ub = NULL; 

 

  /***************************************************************** 

   * Step 4: Specify and load the quadratic matrix 

   *****************************************************************/ 

   /* The number of nonzeros in the quadratic matrix */ 

      int Qnz = 28; 

   /* The nonzero coefficients in the Q-matrix */ 

   double Q[28] = { 1.00,  0.11,  0.04,  0.02,  0.08,  0.03,  0.10, 

                    1.00,  0.21,  0.13,  0.43,  0.14,  0.54, 

                    1.00,  0.05,  0.16,  0.05,  0.20, 

                    1.00,  0.10,  0.03,  0.12, 

                    1.00,  0.10,  0.40, 

                    1.00,  0.12, 

                    1.00 }; 
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    /* The row indices of the nonzero coefficients in the Q-matrix*/ 

    int  Qrowndx[28] = { -1, -1, -1, -1, -1, -1, -1, 

                         -1, -1, -1, -1, -1, -1, 

                         -1, -1, -1, -1, -1, 

                         -1, -1, -1, -1, 

                         -1, -1, -1, 

                         -1, -1, 

                         -1 }; 

    /* The indices of the first nonzero in each column in the Q-

matrix */ 

    int Qcolndx1[28] = {  0, 1, 2, 3, 4, 5, 6, 

                          1, 2, 3, 4, 5, 6, 

                          2, 3, 4, 5, 6, 

                          3, 4, 5, 6, 

                          4, 5, 6, 

                          5, 6, 

                          6}; 

    int Qcolndx2[28] = {  0, 0, 0, 0, 0, 0, 0, 

                          1, 1, 1, 1, 1, 1, 

                          2, 2, 2, 2, 2, 

                          3, 3, 3, 3, 

                          4, 4, 4, 

                          5, 5, 

                          6}; 

    /* Pass the linear portion of the data to problem structure 

     * by a call to LSloadLPData() */ 

     nErrorCode = LSloadLPData( pModel, nM, nN, objsense, objconst, 

                                c, rhs, contype, 

                                Anz, Abegcol, Alencol, A, Arowndx, 

                                lb, ub); 

     APIERRORCHECK; 

    /* Pass the quadratic portion of the data to problem structure 

     * by a call to LSloadQCData()  */ 

     nErrorCode = LSloadQCData(pModel, Qnz, Qrowndx, 

                               Qcolndx1, Qcolndx2, Q); 

     APIERRORCHECK; 

    /* Pass the integrality restriction to problem structure 

     * by a call to LSloadVarData()  */ 

     { 

       char vartype[14] ={ 'C','C','C','C','C','C','C',   /* w(j) */ 

                           'B','B','B','B','B','B','B' }; /* x(j) */ 

       nErrorCode = LSloadVarType(pModel, vartype); 

       APIERRORCHECK; 

     } 

   } 
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  /***************************************************************** 

   * Step 5: Perform the optimization using the MIP solver 

   *****************************************************************/ 

   nErrorCode = LSsolveMIP( pModel, NULL); 

   APIERRORCHECK; 

   { 

  /***************************************************************** 

   * Step 6: Retrieve the solution 

   *****************************************************************/ 

      int i; 

      double x[14], MipObj; 

      /* Get the value of the objective and solution */ 

      nErrorCode = LSgetInfo(pModel, LS_DINFO_MIP_OBJ, &MipObj); 

      APIERRORCHECK; 

 

      LSgetMIPPrimalSolution( pModel, x) ; 

      APIERRORCHECK; 

      printf ("*** Optimal Portfolio Objective = %f\n", MipObj); 

      for (i = 0; i < nN/2; i++) 

        printf( "Invest %5.2f percent of total budget in asset 

%d.\n", 

                 100*x[i],i+1 ); 

      printf ("\n"); 

   } 

  /***************************************************************** 

   * Step 7: Delete the LINDO environment 

   *****************************************************************/ 

   nErrorCode = LSdeleteEnv( &pEnv); 

 /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   getchar(); 

} 
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After building this application, it can be run from the DOS-prompt to produce the following summary 

report on your screen. 

*** Optimal Portfolio Objective = 0.192365 

Invest  0.00 percent of total budget in asset 1. 

Invest  0.00 percent of total budget in asset 2. 

Invest  0.00 percent of total budget in asset 3. 

Invest 32.00 percent of total budget in asset 4. 

Invest 32.76 percent of total budget in asset 5. 

Invest 35.24 percent of total budget in asset 6. 

Invest  0.00 percent of total budget in asset 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 6: Solving Conic 
Programs 

The optimization capabilities of LINDO API extend to the solution of conic problems. The problems 

in this class include a wide range of convex problems, which optimize a convex function over a set 

defined by the intersection of a set of linear constraints with a convex cone. The types of cones used in 

the formulation define subclasses of conic problems. LINDO API supports two major subclasses (i) 

second-order-cone problems (SOCP) and (ii) semi-definite problems (SDP). 

Second-Order Cone Programs  
The problems involving second-order-cones have the following form 

Optimize  ||A0 x + b0 ||+ c0 x 

subject to: 

 ||Ai x + bi ||- ci x  - di  ? 0 for i = 0,1,…,m-1, 

 Lj  xj  Uj    for j = 0,1,…,n-1, 

 xj is integer    for j in a specified J  {0,…, n-1} 

where  

Optimize is either minimize or maximize, 

Ai are matrices of appropriate dimensions i=0,…,m-1, 

bi and  ci are vectors of constants, 

di are constants, 

x = {x0, x2,…,xn-1}, is an n-vector of decision variables. 

"?" is one of the relational operators "", "=", or "". 

This formulation is generic and it should be transformed into the following equivalent form before it 

can be loaded to LINDO API.  

 

          = Wi                 for i = 0,1,…,m-1, 

         = yi                  for i = 0,1,…,m-1, 

Fx                    = g                   

||Wi|| - yi          ?  0                    for i = 0,1,…,m-1, 
Wi is free,  yi >=0                     for i = 0,1,…,m-1, 

 

Where 

Wi are vectors of appropriate dimensions i=0,…,m-1, 

yi are scalars 



422 CHAPTER 6 

  

Without the integrality restrictions, SOCPs are nonlinear convex problems that include linear and 

convex quadratically constrained quadratic programs as special cases. Several decision problems in 

engineering design and control can be formulated as SOCP.  LINDO API solves this class of problems 

using the so-called conic optimizer, which uses an interior-point algorithm. To solve a convex problem 

using LINDO API, it may be advantageous to cast the problem (e.g. a QCQP) as a SOCP and use the 

conic optimizer. It has been empirically observed that the conic optimizer is generally faster than the 

default barrier solver. 

To motivate the second-order cone problems and common forms of quadratic cones, consider the 

following two constraints: 

x
2
 + y

2
 - z

2
  0, 

z  0 

Geometrically, the feasible region defined by these two constraints is an ice cream cone, with the point 

of the cone at (0,0,0). The feasible region for the constraint x
2
 + y

2
 - z

2
  0 by itself is not convex. The 

feasible region consists of two ice cream cones, one right side up, the other upside down, and with 

their pointy ends touching. The constraint z  0 eliminates the upside down cone and leaves the 

quadratic cone illustrated in Figure 5. Second-order cone problems are essentially a generalization of 

linear models defined over polyhedral cones to ones defined over quadratic cones. 
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Figure 5. Quadratic Cone 

More generally, in n dimensions,  a simple quadratic cone (ice-cream cone) constraint is of the form: 
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-x0
2
 + x1

2
 + x2

2
 +… + xn

2
  0;  

x0   0; 

Second-order cone constraints are more general than they might at first appear. For another conic 

form, consider the constraints: 

-uv + x
2
  0, 

u, v  0. 

The first constraint by itself describes a nonconvex feasible region (colored blue and green) illustrated 

in Figure 6. The three constraints together, however, describe a convex feasible region (colored green 

only) called the rotated quadratic cone.  
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Figure 6. Rotated Quadratic Cone 

More generally,  in n dimensions,  the  rotated quadratic cone constraint in standard form is: 

-2x0 x1 + x2
2
 + x3

2
  +… + xn

2
  0;  

x0, x1  0; 

In both simple and rotated quadratic cones, a variable can appear in at most one cone constraint.  If 

naturally you would like to have a variable, say x2,  appear in two cone constraints, then you must 

introduce an extra copy of the variable, say y2 , for the second cone constraint and then connect the two 

with the linear constraint x2 - y2 = 0. 
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Notice, using a standard transformation, rotated quadratic cone constraints can be shown to be 

equivalent to quadratic cone constraints: 

y = (u – v)/2, 

z = (u + v)/2, 

x
2
 + y

2
 - z

2
  0, 

z  0. 

Setting up Second-Order Cone Programs  
There are three ways by which you can set up a second-order-cone program with LINDO API. The 

first is reading the model directly from an MPS file, which uses an extended format to incorporate 

quadratic cones in model formulation. The second way is to build the model directly in memory and 

pass the data representing quadratic cones to LINDO API. A third way is via the MPI instruction list 

format, see chapter 7. The third way requires less understanding of the details of  SOCP. If all 

constraints are either linear, or a quadratic of the form x'Qx - u*v ≤ d, where d is a scalar constant ≤ 

0, and u and v are non-negative scalar variables, and Q is a positive semi-definite matrix, and all 

constraints are entered in MPI/instruction list format, then the API will recognize the model as an 

SOCP model, and use the SOCP solver.  In this chapter we describe only the first two methods. Due to 

the simple structure of an SOCP const raint, LINDO API does not require cone constraints to be 

included in model body explicitly. In either approach, the following data suffice to characterize the 

cone constraints: 

 type of each cone (quadratic or rotated-quadratic), 

 ordered set of variables characterizing each cone. 

Loading Cones via Extended MPS Format Files 
The cone constraints can be described in an MPS file by adding a CSECTION section to the file for 

each cone. The format of the CSECTION section is simple. It contains four tokens per CSECTION 

line, and the names of variables that comprise the cone in the following lines. The second token in the 

CSECTION line stands for the name of the cone. The third token is reserved and arbitrarily set to 0. 

The fourth token stands for cone type (QUAD or RQUAD). The token QUAD stands for quadratic 

cones (e.g. Figure 5) and the token RQUAD stands for rotated-quadratic cones (e.g. Figure 6).  Each 

CSECTION line is followed by the names of variables (one per line) describing the cone. The ordering 

of variables is not important except for the first two. For QUAD cones, the first variable in the list 

should be the variable that stands for the depth of the cone, e.g. variable z in Figure 5.  For RQUAD, 

the first two variables in the list should be the ones that form the product of two variables (e.g. 

variables u and v in Figure 6). 

Consider the following second-order cone model. The single cone constraint in the model appears after 

constraint 2, without which the model is a simple linear model.  

Minimize    w     

s.t.        

Constraint 0:    19 x1 + 21 x3 + 21 x4            =  1 

Constraint 1:    12 x1 + 21 x2  =  1 

Constraint 2:    12 x2 + 16 x5            =  1 
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QUAD Cone:    - w  + (x1
2
 + … + x5

2
)
0.5 

  0 

 -   xi   + 

 0   w   + 

The cone constraint is a simple quadratic cone defined over variables {w, x1, x2, x3, x4, x5}. This 

reflects to the MPS file in the following fashion. 

NAME           MININORM 

ROWS 

 N       OBJ 

 E  R0000000 

 E  R0000001 

 E  R0000002 

 L  R0000003 

COLUMNS 

    W              OBJ                 1 

    X0000001  R0000000                19 

    X0000001  R0000001                12 

    X0000002  R0000001                21 

    X0000002  R0000002                12 

    X0000003  R0000000               -17 

    X0000004  R0000000                21 

    X0000005  R0000002                16 

RHS 

    RHS1      R0000000                 1 

    RHS1      R0000001                 1 

    RHS1      R0000002                 1 

BOUNDS 

 FR BND1      X0000001 

 FR BND1      X0000002 

 FR BND1      X0000003 

 FR BND1      X0000004 

 FR BND1      X0000005 

CSECTION      CONE0000                  0  QUAD 

* The first variable in this section must be the ‘x0’ variable 

    W        

    X0000001  

    X0000002  

    X0000003  

    X0000004  

    X0000005  

ENDATA 

Note: Your license must have the barrier or nonlinear license options to be able to work with 

second-order cone  formulations. Attempting to solve a problem that has cone data using 

other optimization algorithms such as primal simplex, dual simplex, or mixed-integer solver 

will return an error. 
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Loading Cones via API Functions 
The second way to input cone data is by setting-up a problem structure and using LINDO API’s cone 

programming functions to specify the cone constraints. In this framework, your front-end program 

should perform at least the following steps to enter the problem and retrieve its solution: 

 Create a LINDO environment with a call to LScreateEnv(). 

 Create a model structure in this environment with a call to LScreateModel(). 

 Load problem structure and linear data into the model structure with a call to 

LSloadLPData(). 

 Load the cone data into the model structure with a call to LSloadConeData(). 

 Load (optionally) the integer-programming data with a call to LSloadVarType(). 

 Solve the problem with a call to LSoptimize() (or LSsolveMIP() if there are integer 

variables). 

 Retrieve the solution with calls to LSgetInfo(), LSgetPrimalSolution(), and 

LSgetDualSolution(). 

 Delete the model and environment with a call to LSdeleteEnv(). 

The step specific to loading cone data is Step 4 where cone types and variable indices are loaded to the 

model.  Assuming the model has nCone cones, and a total of nNz variables in all cones, the following 

three-vector representation is sufficient to store all necessary data. 

char acConeTypes[nCone] = {‘Q’, ‘Q’, … , ‘R’ , ‘R’ }; 

int  anConeStart[nCone + 1] = {0, k1, k2, … , knCone-1, nNz}; 

int  anConeVars[nNz] = {j1,…,jk1,…,jk2,…,jk(nCone-1)} 

Notice,  anConeStart[kc] marks the beginning position in vector anConeVars[] keeping variables in 

cone c. This convention is similar to the one used in the representation of coefficient matrices in LPs. 

In the following, the complete source code for setting up the example above is given. 

Example 3: Minimization of Norms: 
One of the common types of second-order-cone problems is the minimization of norms. This problem 

has applications in several areas such as optimal location problems, statistics and engineering design. 

This problem has the following general form.  

Minimize  z
(j)  

Dx = b 

|| A
(j)

x + b
(j)

||  z
(j)

    for all j = 1,…,p 

 where  

z
(j)

 is a scalar decision variable for all j = 1,…,p, 

x = {x1, x2,…,xn} is a vector of decision variables. 

D is an m by nmatrix 

b is a m vector 

A
(j)

 is an nj by n matrix of constants, for j=1,…,p, 

b
(j)

 is a 1 by nj vector of constants, for j=1,…,p, 

The following sample code shows how to set up and solve a norm minimization problem using LINDO 

API’s conic solver.  
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/* 

############################################################ 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

############################################################ 

 

   File   : ex_soc1.c 

   Purpose: Solve a second-order cone program. 

   Model  : Simple norm minimization 

 

            MINIMIZE      w 

            subject to            A.x    >= b 

                         -w^2  + ||x||^2 <= 0 

            x  : an n-vector 

            w  : the norm of vector x. 

   Data: 

   A-matrix for linear constraints: 

             w     x1    x2    x3    x4   x5 

          [  0     19     0   -17    21   0   ] 

     A =  [  0     12    21    0     0    0   ] 

          [  0     0     12    0     0   16   ] 

 

   b-vector: 

     b =  [  1     1     1 ];        

 

*/ 

#include <stdlib.h> 

#include <stdio.h> 

#include "lindo.h" 

 

/* Define a macro to declare variables for error checking */  

#define APIERRORSETUP   

    int nErrorCode;  

    char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]  

 

/* Define a macro to do our error checking */  

#define APIERRORCHECK   

    if (nErrorCode)  

    {  

       if ( pEnv)  

       {  

          LSgetErrorMessage( pEnv, nErrorCode,  

           cErrorMessage);  

          printf("Errorcode=%d:  %s\n", nErrorCode,  

           cErrorMessage);  

       } else { 

          printf( "Fatal Error\n");  

       }  

       exit(1);  

    }  

/* main entry point */ 
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int main() 

{ 

    int nSolStatus; 

 

    APIERRORSETUP; 

 

    int nM = 4; /* Number of constraints */ 

 

    int nN = 6; /* Number of variables */ 

 

    pLSenv pEnv; 

 

    pLSmodel pModel; 

 

    char MY_LICENSE_KEY[1024]; 

   /********************************************************* 

    * Step 1: Create a model in the environment. 

    ********************************************************/ 

    nErrorCode = LSloadLicenseString( 

      "../../../license/lndapi100.lic",MY_LICENSE_KEY); 

    pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

    if ( nErrorCode == LSERR_NO_VALID_LICENSE) 

    { 

       printf( "Invalid License Key!\n"); 

       exit( 1); 

    } 

    APIERRORCHECK; 

 

   /********************************************************* 

    * Step 2: Create a model in the environment. 

    ********************************************************/ 

    pModel = LScreateModel ( pEnv, &nErrorCode); 

    APIERRORCHECK; 

 

    { 

   /********************************************************* 

    * Step 3: Specify the linear portion of the model. 

    ********************************************************/ 

 

      /* The direction of optimization */ 

       int objsense = LS_MIN; 

 

       /* The objective's constant term */ 

       double objconst = 0.; 

 

       /* The coefficients of the objective function*/ 

       double cost[6] = { 1., 0., 0., 0., 0., 0.}; 

 

       /* The right-hand sides of the constraints */ 

       double rhs[4] = { 1.0, 1.0, 1.0,  0.0 }; 

 

       /* The constraint types */ 

       char contype[4] = {'E','E','E','L'}; 

 

       /* The number of nonzeros in the constraint matrix */ 

       int Anz = 7; 
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       /* The indices of the first nonzero in each column */ 

       int Abegcol[7] = { 0, 0, 2, 4, 5, 6, Anz}; 

 

       /* The length of each column.  Since we aren't leaving 

        * any blanks in our matrix, we can set this to NULL */ 

       int *Alencol = NULL; 

 

       /* The nonzero coefficients */ 

       double A[7] = { 19, 12 , 21, 12, -17, 21, 16}; 

 

       /* The row indices of the nonzero coefficients */ 

       int Arowndx[7] = { 0, 1, 1, 2, 0, 0, 2}; 

 

       /* All variables, except w, are free */ 

       double lb[6] = { 0.000000000,-LS_INFINITY,-LS_INFINITY, 

                       -LS_INFINITY,-LS_INFINITY,-LS_INFINITY}; 

 

       double ub[6] = {LS_INFINITY,LS_INFINITY,LS_INFINITY, 

                       LS_INFINITY,LS_INFINITY,LS_INFINITY}; 

   /********************************************************* 

    **Step 4: Specify the QCONE data 

    ********************************************************/ 

   

    /** The number of CONE constraints*/ 

       int nCones = 1; 

 

    /** Specify the column indices of variables in the CONE 

constraint,*/ 

       int paiConecols[6] = {  0, 1, 2, 3, 4, 5}; 

 

       int paiConebeg[2] = {0, 6}; 

 

    /** Specify cone type */ 

       char pszConeTypes[1] = { LS_CONETYPE_QUAD }; 

 

      /* Pass the linear portion of the data to problem structure 

       * by a call to LSloadLPData() */ 

 

       nErrorCode = LSloadLPData( pModel, nM, nN, objsense, objconst, 

                                  cost, rhs, contype, 

                                  Anz, Abegcol, Alencol, A, Arowndx, 

                                  lb, ub); 

       APIERRORCHECK; 

        

      /* Pass the cone portion of the data to problem structure 

       * by a call to LSloadConeDataData()  */ 

       nErrorCode = LSloadConeData(pModel, nCones, pszConeTypes, 

         paiConebeg, paiConecols); 

       APIERRORCHECK; 

 

    /** Export the conic model in case required */ 

       LSwriteMPSFile(pModel,"cone.mps",0); 

 

    } 

   /********************************************************* 
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    * Step 5: Perform the optimization using the QCONE solver 

   *********************************************************/ 

    nErrorCode = LSsetModelIntParameter(pModel, 

LS_IPARAM_BARRIER_SOLVER, LS_BAR_METHOD_FREE); 

 

    nErrorCode = LSoptimize( pModel, LS_METHOD_FREE, &nSolStatus); 

    APIERRORCHECK; 

   /********************************************************* 

    * Step 6: Retrieve the solution 

    ********************************************************/ 

    if (nSolStatus == LS_STATUS_OPTIMAL ||  

        nSolStatus == LS_STATUS_BASIC_OPTIMAL) 

    { 

       int i; 

       double x[6], dObj; 

       /* Get the value of the objective */ 

       nErrorCode = LSgetInfo( pModel, LS_DINFO_POBJ, &dObj) ; 

       APIERRORCHECK; 

 

       nErrorCode = LSgetPrimalSolution ( pModel, x); 

       APIERRORCHECK; 

 

       printf("Minimum norm = %11.5f*\n",x[0]); 

       for (i = 0; i < nN; i++) 

         printf("%7s x[%d] = %11.5f\n","",i,x[i] ); 

       printf ("\n"); 

    } 

    else 

    { 

      printf("Not optimal, status = %d\n",nSolStatus); 

    } 

 

   /********************************************************* 

    * Step 7: Delete the LINDO environment 

    ********************************************************/ 

    nErrorCode = LSdeleteEnv( &pEnv); 

 

   /* Wait until user presses the Enter key */ 

    printf("Press <Enter> ..."); 

    getchar(); 

 

} 
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The source code file for this example may be found in the \LINDOAPI\samples\c\ex_soc1\ folder. 

After creating the executable “ex_soc1.exe”, you can run the application from the DOS-prompt and 

produce the following report on your screen. 

Minimum norm =     0.05903 

        x[0] =     0.05903 

        x[1] =     0.02083 

        x[2] =     0.03572 

        x[3] =    -0.01407 

        x[4] =     0.01738 

        x[5] =     0.03 

Converting Models to SOCP Form 
SOCP constraints are more general than perhaps is superficially obvious.  We give four examples. 

1) Any constraint of the form: 

               x
m/n

 ≤ r,  x ≥ 0,   where given integers m and n satisfy m ≥ n ≥ 1  

can be represented as a SOC constraint. For example, in financial portfolio models, sometimes the 

term x
3/2

 ≤ r arises in the modeling of the “market effect” of the size of a stock purchase on the price of 

the stock. The following will represent this as a rotated SOCP. 

               x
2
 ≤ 2ru;  

               s
2
 ≤ 2vw; 

                u = s; 

                x = v; 

                w = 1/8; 

To verify, observe that the above imply: x
2
 ≤ 2r(2x/8)

1/2
 = rx

1/2
, or x

3/2
 ≤ r. 

 

2) Also representable are constraints of the form: 

            r  ≤ x1
m1/n1

* x2
m2/n2

* . . . *xk
mk/nk 

, 

            xj ≥ 0,  where,  mi and ni are positive integers, and  m1/n1+m2/n2+ . . . +mk/nk ≤ 1. 

For example,  r  ≤ x1
1/4

* x2
1/2   

can be representd by the SOCP: 

            r
2
 ≤ u*v; 

            v
2  

≤ x2*1;  

            u
2  

≤ x1*x2; 

 

3) Also representable are constraints of the form: 

            r  ≥ x1
-m1/n1

* x2
-m2/n2

* . . . *xk
-mk/nk 

,  

            xj ≥ 0,   where,  the mi and ni are positive integers. 

For example,  r  ≥  x1
-4/3

* x2
-1/3   

can be representd by the SOC: 

            u
2  

≤ x2*r;  

            v
2  

≤ u*r;  

            1
  
≤ x1*v; 

 

 4) As another illustration of this generality, consider a constraint set of the form: 

r  (a + bx)/(c+dx);  
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c+dx   0;  

Expressions such as this arise for example in modeling traffic delay or congestion as a function of 

traffic volume through a congested facility or transportation link.  A constraint such as the above can 

be put into SOCP form if a – bc/d  0.  To do this define: 

2y =  c+dx, then x = (2y-c)/d,  and r  (a + bx)/(c+dx) = (a + bx)/(2y) = (a – bc/d)/(2y) + b/d.   

Thus, the constraint is convex  if y  0 and a – bc/d  0. 

If we define u = (r-b/d), then r - b/d  (a – bc/d)/(2y)  is equivalent to the cone constraint: 

2yu  a-bc/d. 

Summarizing, given a – bc/d  0, we can replace: 

r  (a + bx)/(c+dx); 

c+dx  0; 

by the SOCP set of constraints: 

2y =  c+dx; 

r = u + b/d;  

2yu  a-bc/d; 

y  0; 

The follow code shows how use LINDO API’s conic solver to set up and solve a model with 

constraints of the above type, where b = c = 0. 



 SOLVING SECOND-ORDER CONE PROGRAMS     433 

 

Example 4: Ratios as SOCP Constraints: 
 

/*  

############################################################# 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

############################################################# 

 

  File   : ex_soc2.c 

  Purpose: Solve a second-order rotated cone program. 

          A rotated cone constraint is of the form: 

            2*x0*x1 - x2*x2 - x3*x3 - ... >= 0; 

              x0, x1 >= 0; 

 

    The model in natural form: 

           MINIMIZE      11*x0 +  7*x1  + 9*x2; 

           subject to     5/x0 +  6/x1  + 8/x2 <= 1; 

                          x0, x1, x2 >= 0; 

 

       Reformulated as a rotated cone: 

           MINIMIZE      11*x0 +  7*x1  + 9*x2; 

           subject to     2*r0 +  2*r1  + 2*r2 <= 1; 

                            k0                 = 5^0.5; 

                                    k1         = 6^0.5; 

                                            k2 = 8^0.5 

                       2*r0*x0>= k0^2;  

                       2*r1*x1>= k1^2; 

                       2*r2*x2>= k2^2; 

                          x0, x1, x2 >= 0; 

                          r0, r1, r2 >= 0; 

    

  The constraint matrix for the linear constraints: 

            0   1   2   3   4   5   6   7   8 

           x0  x1  x2  r0  r1  r2  k0  k1  k2 

         [  0   0   0   2   2   2   0   0   0] <= 1 

    A =  [  0   0   0   0   0   0   1   0   0] = 5^0.5 

         [  0   0   0   0   0   0   0   1   0] = 6^0.5 

         [  0   0   0   0   0   0   0   0   1] = 8^0.5   

*/ 

#include <stdlib.h> 

#include <stdio.h> 

#include "lindo.h" 

 

/* Define a macro to declare variables for error checking */ 

#define APIERRORSETUP   

   int nErrorCode;  

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]  

 

/* Define a macro to do our error checking */ 
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#define APIERRORCHECK   

   if (nErrorCode)  

   {  

      if ( pEnv)  

      {  

         LSgetErrorMessage( pEnv, nErrorCode,  

          cErrorMessage);  

         printf("Errorcode=%d:  %s\n", nErrorCode,  

          cErrorMessage);  

      } else { 

         printf( "Fatal Error\n");  

      }  

      exit(1);  

   }  

 

/* main entry point */ 

int main() 

{ 

   int nSolStatus; 

 

   APIERRORSETUP; 

 

   int nM = 4; /* Number of linear constraints */ 

 

   int nN = 9; /* Number of variables */ 

 

   pLSenv pEnv; 

 

   pLSmodel pModel; 

 

   char MY_LICENSE_KEY[1024]; 

 

  /********************************************************* 

   * Step 1: Create a model in the environment. 

   *********************************************************/ 

  // Load the license into MY_LICENSE_KEY 

   nErrorCode = LSloadLicenseString( "../../../lndapi100.lic", 

MY_LICENSE_KEY); 

   pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

   if ( nErrorCode == LSERR_NO_VALID_LICENSE) 

   { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

 

  /********************************************************* 

   * Step 2: Create a model in the environment. 

   *********************************************************/ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   APIERRORCHECK; 

   { 

  /********************************************************* 

   * Step 3: Specify the linear portion of the model. 

   *********************************************************/ 

     /* The direction of optimization */ 
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      int objsense = LS_MIN; 

 

      /* The objective's constant term */ 

      double objconst = 0.; 

 

      /* The coefficients of the objective function*/ 

      double cost[9] = { 11.0, 7.0, 9.0 , 0., 0., 0., 0., 0., 0.}; 

 

/* The right-hand sides of the constraints( square roots of 5, 

6, 8)*/ 

      double rhs[4] = { 1.0, 2.2360679775, 2.44948974278, 

2.82842712475}; 

 

      /* The constraint types */ 

      char contype[4] = {'L', 'E', 'E', 'E'}; 

 

      /* The number of nonzeros in the constraint matrix */ 

      int Anz = 6; 

 

      /* The indices in A[] of the first nonzero in each column */ 

      int Abegcol[10] = { 0, 0, 0, 0, 1, 2, 3, 4, 5, Anz}; 

 

      /* The length of each column.  Since we aren't leaving 

       * any blanks in our matrix, we can set this to NULL */ 

      int *Alencol = NULL; 

 

      /* The nonzero constraint coefficients */ 

      double A[6] = { 2.0, 2.0, 2.0, 1.0, 1.0, 1.0}; 

 

      /* The row indices of the nonzero coefficients */ 

      int Arowndx[6] = { 0, 0, 0, 1, 2, 3}; 

 

      /* All variables are non-negative */ 

      double lb[9] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; 

 

      double ub[9] = {LS_INFINITY,LS_INFINITY,LS_INFINITY, 

                      LS_INFINITY,LS_INFINITY,LS_INFINITY, 

                      LS_INFINITY,LS_INFINITY,LS_INFINITY}; 

  /********************************************************* 

   * Step 4: Set up data describing the CONE constraints 

   *********************************************************/ 

     /* The number of Cone constraints */ 

      int nCones = 3; 

 

     /* The col indices of the variables in each Cone constraint */ 

      int paiConecols[9] = {0, 3, 6,  1, 4, 7,  2, 5, 8}; 

 

    /* The start in paiConecols[] of the indices for each Cone  

constraint */ 

      int paiConebeg[4] =  {0,        3,        6,      9}; 

 

     /* These are Rotated Cone constraints */ 

      char pszConeTypes[3] = { 'R', 'R', 'R'}; 

 

     /* Pass the linear portion of the data to problem structure 

      * by a call to LSloadLPData() */ 
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      nErrorCode = LSloadLPData( pModel, nM, nN, objsense, objconst, 

                                 cost, rhs, contype, 

                                 Anz, Abegcol, Alencol, A, Arowndx, 

                                 lb, ub); 

      APIERRORCHECK; 

     /* Pass the Cone portion of the data to the problem structure 

      * by a call to LSloadConeData()  */ 

      nErrorCode = LSloadConeData(pModel, nCones, pszConeTypes, 

        paiConebeg, paiConecols); 

      APIERRORCHECK; 

 

/* Optionally, write an MPS file version of the model */ 

      LSwriteMPSFile(pModel,"cone.mps",0); 

   } 

  /********************************************************* 

   * Step 5: Perform the optimization using the QCONE solver 

   *********************************************************/ 

   nErrorCode = LSsetModelIntParameter(pModel, 

LS_IPARAM_BARRIER_SOLVER, LS_BAR_METHOD_FREE); 

 

   nErrorCode = LSoptimize( pModel, LS_METHOD_FREE, &nSolStatus); 

   APIERRORCHECK; 

  /********************************************************* 

   * Step 6: Retrieve the solution 

   *********************************************************/ 

   if (nSolStatus == LS_STATUS_OPTIMAL || nSolStatus == 

LS_STATUS_BASIC_OPTIMAL) 

   { 

      int i; 

      double x[9], dObj; 

      /* Get the value of the objective */ 

      nErrorCode = LSgetInfo( pModel, LS_DINFO_POBJ, &dObj) ; 

      APIERRORCHECK; 

 

      nErrorCode = LSgetPrimalSolution ( pModel, x); 

      APIERRORCHECK; 

      printf("        Obj =  %11.5f\n",dObj); 

      for (i = 0; i < nN; i++) 

        printf("%7s x[%d] = %11.5f\n","",i,x[i] ); 

      printf ("\n"); 

   } 

   else 

   { 

     printf("Not optimal, status = %d\n",nSolStatus); 

   } 

 

  /********************************************************* 

   * Step 7: Delete the LINDO environment 

   *********************************************************/ 

   nErrorCode = LSdeleteEnv( &pEnv); 

 

  /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   getchar(); 

} 
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The source code file for this example may be found in the \LINDOAPI\samples\c\ex_soc2\ folder.  

After creating the executable “ex_soc2.exe”, you can run the application from the DOS-prompt and 

produce the following report on your screen. 

        Obj =    500.96379 

        x[0] =    15.09022 

        x[1] =    20.72079 

        x[2] =    21.10287 

        x[3] =     0.16567 

        x[4] =     0.14478 

        x[5] =     0.18955 

        x[6] =     2.23607 

        x[7] =     2.44949 

        x[8] =     2.82843 

 

Press <Enter> .. 

Quadratic Programs as SOCP 
Although perhaps not immediately obvious, a SOCP is at least as general as a quadratic program.  In a 

quadratic program one typically wants to either minimize a quadratic expression, written as x’Qx, or 

constrain x’Qx from above.  A related example is in Value-At-Risk analysis, where one may have 

models of the form: 

Minimize  k* - ; 

Subject to 

 
2 
  x’Qx; 

  = r’x; 

If the Q matrix is positive definite, then x’Qx is convex and SOCP can be applied as outlined below.  

An easy way to a) check for positive definiteness, and b) put the model into a SOCP form is to 

compute a Cholesky Decomposition or “square root” of the Q matrix.  In matrix notation we can write: 

 
2 
   x Q x' = x L L' x'. 

Here, L is a lower triangular matrix which we can think of as the square root of Q.  The following 

LINGO code will compute L: 

!Compute the Cholesky factor L, so LL'= Q; 

@FOR( ASSET( I): 

  @FOR( MAT( I, J)| J #LT# I:  

    ! Should watch for divide by zero here...; 

     L(I,J)= ( Q( I, J) - @SUM( MAT( I, K)| K #LT# J:  

                L( I, K) * L( J, K)))/ L( J, J); 

              ); 

     L(I,I)= ( Q( I, I) – @SUM( MAT( I, K)| K #LT# I: 

               L( I, K) * L( I, K)))^.5; 

             );  

A key observation is that Q is strictly positive definite if and only if L(i,i) > 0 at every step of the 

above computation.   Thus, given a quadratic expression,  we can try to compute the Cholesky 

decomposition of its coefficients.  If we succeed,  then we can replace  

 
2 
   x'Q x  = x’L’Lx. 

by the cone constraints: 
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w = x L, 

 
2 
  w w'; 

As an example, suppose we wish to use the following covariance matrix: 

     0.01080753  0.01240721  0.01307512 

  Q =  0.01240721  0.05839169  0.05542639 

     0.01307512  0.05542639  0.09422681 

The Cholesky factorization of Q is: 

       0.10395930    

  L =  0.11934681  0.21011433  

       0.1257716   0.19235219  0.20349188 

Notice that   0.10395930^2 = 0.01080753. 

We can replace the expression involving 9 quadratic terms (more accurately, 6): 

     
2
         0.01080753*x1*x1 + 0.01240721*x1*x2 + 0.01307512*x1*x3 

       + 0.01240721*x2*x1 + 0.05839169*x2*x2 + 0.05542639*x2*x3 

       + 0.01307512*x3*x1 + 0.05542639*x3*x2 + 0.09422681*x3*x3; 

by three linear expressions and one nonlinear expression involving 3 quadratic terms: 

  w1   = 0.10395930*x1;    

  w2   = 0.11934681*x1 + 0.21011433*x2;   

  w3   = 0.1257716 *x1 + 0.19235219*x2 + 0.20349188*x3; 

   
2
         w1*w1 + w2*w2 + w3*w3; 

which is a SOCP type constraint 

Semi-Definite Programs  
The LINDO API allows one to specify that a square matrix of decision variables must be symmetric 

and positive definite. Alternatively, one can think of this as allowing the user to formulate in terms of 

decision variables that are symmetric square matrices rather than just scalars, and where the non-

negativity of a scalar variable is replaced by the positive definiteness of the matrix decision variable. It 

turns out that the barrier algorithms that are used for second order cone problems can be generalized to 

solving models with semi-definite matrix decision variables.  

The LINDO API allows two general ways of inputting a Semi-Definite Program (SDP): a) Instruction-

List format and b) matrix format. The general Instruction-List form is introduced in Chapter 7, and 

there is a short section on inputting SDP’s in Instruction-List form.  The Instruction-List form is very 

general, and the user my find it convenient to simply  concentrate on the Instruction-List form and skip 

ahead to Chapter 7.  

For matrix form input of SDP’s, the problem statement is as follows: 
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Optimize  ∑ ∑A
0

ijXij 

                   
i    j 

subject to: 

       ∑ ∑A
k
ijXij                     ?  bk       for k = 1,…,m,  

         
i    j 

 Lij  Xij  Uij    for i,j = 0,1,…,n-1, 

 Xij is integer    for i,j in a specified  J  {0,…, n-1}×{0,…, n-1} 

       X is symmetric and positive semi-definite 

where  

Optimize is either minimize or maximize, 

A
k
  are matrices of appropriate dimensions k=1,…,m 

bk are vectors of constants for k=1,…,m 

X = {X00, X01,…,Xn-1,n-1}, is an n×n symmetric matrix of decision variables. 

"?" is one of the relational operators "", "=", or "". 

 

This formulation is a natural generalization of SOCPs in that the decision variables constitute a 

symmetric matrix with the additional restriction that the matrix is positive semi-definite.  The 

following result illustrates that SOCP is a special case of SDP 
 

                                x0  x1  x2  ... xn  

                         x1  x0                 

|| x ||   x0    <==>     x2      x0             is positive semi-definite. 

                         :                  

                         xn                x0  

 

                               

For a rigorous definition of positive semi-definite, see any comprehensive book on linear algebra. A 

very simple definition that may give some insight is that a square symmetric matrix X is positive semi-

definite if for every vector w, we have:  w’Xw ≥ 0.  In scalar notation, positive definiteness of X = (x11, 

x12, . . . , x1n, x21 . . . , xnn), corresponds to the condition that for every set of given weights w = (w1, w2, . . 

. , wn), the constraints ∑i ∑j wiwj xij ≥ 0 are satisfied. The LINDO API accepts SDP constraints if all the 

other constraints are linear or convex quadratic. 

Loading SDP via SDPA Format Files 
The SDPs can be fully described using the so-called SDPA text format. Like the MPS format, it is a 

sparse format and only non-zeros in the formulation are required to be included.   

 

The SDPA format assumes the following primal and dual forms 

 
Min  ∑ ∑ A

0
ijXij 

     
i   j 

s.t. 

     ∑ ∑ A
k
ijXij   =  bk       for k = 1,…,m    (PRIMAL) 

           X  (X is positive semi-definite) 

 

 
       max   b1y1+b2y1+...+bmym 

       s.t.  A
1
y1+A

2
y2+...+A

m
ym + Z = A

0
               (DUAL) 

             Z  (Z is positive semi-definite) 
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where Ai are n x n symmetric matrices. These matrices can have block diagonal structure 

 
               B1 

  Ak  =       B2             for k = 1,…,m 

                                .. 

                       BR 

 

where Br is a pr x pr matrix for r=1,..,R. 

 

The SDPA format is based on the dual formulation. It can be summarized as follows 

 
< "comment/title > (comment characters are * and " ) 

< m >          " the number of dual variables  

< k >          " the number of blocks 

< p1,p2,..pk >  " block structure vector 

< b1,b2,..bm >  " objective vector 

<mat1> <blk1> <i1> <j1> <value1> 

<mat1> <blk1> <i2> <j2> <value2> 

    : 

    : 

<matm> <blkk> <ip> <jq> <valuek> 

 

Here, matrix entries are given with 5 entries per line. The first entry <mat> species the matrix index 

the <value> belongs to.  The second entry <blk> specifies the block within this matrix <mat>, and 

<i> and <j> specify the coordinates of <value> in this block. Note that because Ai matrices are 

symmetric, only upper diagonal entries are to be given. 

 

Let's illustrate the SDPA format with a small example. 

 

 
s.t. 

 

  

 

 

               A1                                       A2                                              A0 

 

and  Z    

 

Models cast in this form are called the dual SDP model. SDPA format assumes the model will be input 

in this dual form. The above example can be written in SDPA format as follows 
  

"A sample problem.   

2 =mdim 

2 =nblocks 

2 2 
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10.0 20.0 

0 1 1 1 1.0 

0 1 2 2 2.0 

0 2 1 1 3.0 

0 2 2 2 4.0 

1 1 1 1 1.0 

1 1 2 2 1.0 

2 1 2 2 1.0 

2 2 1 1 5.0 

2 2 1 2 2.0 

2 2 2 2 6.0 

 

 

An SDPA format file can be loaded by calling LSreadSDPAFile function. Alternatively, if the 

command line frontend runlindo is used, and SDPA format file can be read and solved with a 

command like:  

 
$  runlindo example.sdpa -sol 

 
Reading model parameters from lindo.par 

 

Reading H:\prob\sdpa/sample.sdpa in SDPA format 

Number of constraints:       2    le:       0, ge:       0, eq:       2, rn:       0 (ne:0) 

Number of variables  :       6    lb:       0, ub:       0, fr:       6, bx:       0 (fx:0) 

Number of nonzeroes  :       6    density:   0.005(%)     , sb:       5 

 

Abs. Ranges     :         Min.          Max.    Condition. 

Matrix Coef. (A):      1.00000       6.00000       6.00000  

Obj. Vector  (c):      1.00000       4.00000       4.00000  

RHS Vector   (b):     10.00000      20.00000       2.00000  

Lower Bounds (l):  1.0000e-100   1.0000e-100       1.00000  

Upper Bounds (u):  1.0000e+030   1.0000e+030       1.00000  

BadScale Measure: 0 

 

 

 

Maximizing the LP objective... 

 

Computer 

  Platform               : Windows/32-X86   

  Cores                  : 2                

 

Problem 

  Name                   : lindoapi         

  Objective sense        : max              

  Type                   : CONIC (conic optimization problem) 

  Constraints            : 2                

  Cones                  : 0                

  Scalar variables       : 6                

  Matrix variables       : 2                

  Integer variables      : 0                

 

Optimizer started. 

Conic interior-point optimizer started. 

Presolve started. 

Linear dependency checker started. 

Linear dependency checker terminated. 

Eliminator - tries                  : 0                 time                   : 0.00             

Eliminator - elim's                 : 0                

Lin. dep.  - tries                  : 1                 time                   : 0.00             

Lin. dep.  - number                 : 0                

Presolve terminated. Time: 0.00     

Optimizer  - threads                : 1                

Optimizer  - solved problem         : the primal       

Optimizer  - Constraints            : 2 

Optimizer  - Cones                  : 0 
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Optimizer  - Scalar variables       : 0                 conic                  : 0                

Optimizer  - Semi-definite variables: 2                 scalarized             : 6                

Factor     - setup time             : 0.00              dense det. time        : 0.00             

Factor     - ML order time          : 0.00              GP order time          : 0.00             

Factor     - nonzeros before factor : 3                 after factor           : 3                

Factor     - dense dim.             : 0                 flops                  : 1.33e+002        

ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME   

0   8.0e+000 5.0e+000 9.0e+000 0.00e+000  1.000000000e+001  0.000000000e+000  1.0e+000 0.00   

1   9.4e-001 5.9e-001 1.1e+000 -5.59e-001 2.241982808e+001  1.723556960e+001  1.2e-001 0.00   

2   9.0e-002 5.6e-002 1.0e-001 5.65e-001  2.921088887e+001  2.851531567e+001  1.1e-002 0.00   

3   4.5e-003 2.8e-003 5.1e-003 9.64e-001  2.995968303e+001  2.992409052e+001  5.6e-004 0.00   

4   2.2e-004 1.4e-004 2.5e-004 9.98e-001  2.999798215e+001  2.999620075e+001  2.8e-005 0.00   

5   1.1e-008 6.8e-009 1.2e-008 1.00e+000  2.999999991e+001  2.999999978e+001  1.4e-009 0.00   

Interior-point optimizer terminated. Time: 0.00.  

 

Optimizer terminated. Time: 0.00     

 

 

 

Used Method        = 3  

Used Time          = 0  

Refactors (ok,stb) = 0 (-1.#J,-1.#J)  

Simplex   Iters    = 0  

Barrier   Iters    = 5  

Nonlinear Iters    = 0  

Primal Status      = 2  

Dual   Status      = 1  

Basis  Status      = 2  

Primal Objective   = 29.999999906583774  

Dual   Objective   = 29.999999783082483  

Duality Gap        = 1.235013e-007  

Primal Infeas      = 1.086410e-008  

Dual   Infeas      = 6.787018e-009  

 

 

Basic solution is optimal. 

 

 

The command line option "-sol" causes the solution to be written to a file "example.sol" in the 

format given below 

 
* PROBLEM NAME 

*  

*   CONIC GLOBAL OPTIMUM FOUND 

*  

*   ITERATIONS BY SIMPLEX METHOD =           0 

*   ITERATIONS BY BARRIER METHOD =           5 

*   ITERATIONS BY NLP METHOD     =           0 

*   TIME ELAPSED (s)             =           0 

*  

*   OBJECTIVE FUNCTION VALUE 

*  

*    1)                29.999999907 

*  

*                              XMATRIX                  ZMATRIX     MATRIX    MATRIX    MATRIX 

* VARIABLES                      VALUE             REDUCED COST      BLOCK       ROW    COLUMN 

 

  C0000000                 4.790372140              0.000000001          0         0         0 

  C0000001                 0.000000000              0.000000000          0         1         0 

  C0000002                 5.209627819             -0.000000000          0         1         1 

  C0000003                 2.112830326              1.999999991          1         0         0 

  C0000004                -2.112900305              1.999999988          1         1         0 

  C0000005                 2.112970288              1.999999990          1         1         1 

 

* CONSTRAINTS        SLACK OR SURPLUS              DUAL PRICES    

 

  R0000000                 0.000000000              0.999999990                          

  R0000001                 0.000000000              0.999999994                          

 

* XMATRIX    I     J           PRIMAL                   DUAL 
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       0     0     0            4.790372140           -0.000000001 

       0     1     0            0.000000000           -0.000000000 

       0     1     1            5.209627819            0.000000000 

 

       1     0     0            2.112830326           -1.999999991 

       1     1     0           -2.112900305           -1.999999988 

       1     1     1            2.112970288           -1.999999990 

 

 

* END OF REPORT 
 

The VARIABLES section reports the primal-dual solution in the following manner. The entries in 

VALUES column correspond to the primal variables X whereas the entries in REDUCED COST column 

correspond to dual-slacks Z. The matrix-block and row-column information is given in the last three 

columns.  

The CONSTRAINTS section gives the dual variable y1,y2,...,ym in DUAL PRICES column. SLACK or 

SURPLUS column is usually an all-zero vector.   

 

The XMATRIX section gives X and Z matrices separately for the sake completeness.  

 

It is important to note that there will be as many entries in each column in VARIABLES section as 

there are elements in the dense representation of  block-diagonal X and Z matrices. We can rearrange 

the terms of the constraint in above sample and write it as 

 

 

                          Z  =     

 

Here, we have 3 elements in each block of Z, thus we have a total of 6 reduced-cost values in the 

solution report. Similarly, there will be only 6 primal values in X  
 

Loading SDPs via API Functions 
An alternative way to input SDP data is by setting-up a problem structure and using LINDO API’s 

cone programming functions to specify the SDP structure. In this framework, your front-end program 

should perform at least the following steps to enter the problem and retrieve its solution: 

1. Create a LINDO environment with a call to LScreateEnv(). 

2. Create a model structure in this environment with a call to LScreateModel(). 

3. Load problem structure and linear data into the model structure with a call to 

LSloadLPData(). 

4. Load the cone data into the model structure with a call to LSloadPOSDData(). 

5. Load (optionally) the integer-programming data with a call to LSloadVarType(). 

6. Solve the problem with a call to LSoptimize() (or LSsolveMIP() if there are integer 

variables). 

7. Retrieve the solution with calls to LSgetInfo(), LSgetPrimalSolution(), and 

LSgetDualSolution(). 

8. Delete the model and environment with a call to LSdeleteEnv(). 
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The step specific to loading SDP data is Step 4 where number of  positive semi-definite constraints and 

associated matrices are loaded.  It is important to note that the use of this function requires the user to 

write-up the associated linear constraints explicitly and then impose the semi-definite condition for 

associated matrix. 

 

     

s.t. 

 

        

 

         

 
 

and  X    

 

The following data fully specifies the SDP data 

int nPOSD        = 2; 

int paiPOSDdim[] = { 2, 2, -1 }; 

int paiPOSDbeg[] = { 0, 3, 6 }; 

int paiPOSDrowndx[] = { 0, 1, 1, 0, 1, 1, -1 }; 

int paiPOSDcolndx[] = { 0, 0, 1, 0, 0, 1, -1 }; 

int paiPOSDvarndx[] = { 0, 1, 2, 3, 4, 5, -1 };  

 

Here, nPOSD is the number of blocks in the PSD constraint to load. paiPOSDdim is a vector 

containing the dimension of the blocks.  paiPOSDbeg is a vector containing begin position of each 

block in coordinate vectors. paiPOSDrowndx and paiPOSDcolndx gives the coordinates of rows and 

columns of non-zero expressions in each block. Finally, paiPOSDvarndx is a vector mapping the 

actual variable indices to columns of PSD matrix. 

In the following code,  we set up the primal formulation of the example given above  

 
 

/* 

################################################################### 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2014 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

################################################################### 
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  File   : ex_sdp.c 

 

  Purpose: Set up a SDP model and optimize. 

*/ 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

 

/* LINDO API header file */ 

#include "lindo.h" 

 

/* Define a macro to declare variables for 

    error checking */ 

#define APIERRORSETUP  \ 

   int nErrorCode; \ 

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH] \ 

 

/* Define a macro to do our error checking */ 

#define APIERRORCHECK  \ 

   if (nErrorCode) \ 

   { \ 

      if ( pEnv) \ 

      { \ 

         LSgetErrorMessage( pEnv, nErrorCode, \ 

          cErrorMessage); \ 

         printf("Errorcode=%d:  %s\n", nErrorCode, \ 

          cErrorMessage); \ 

      } else {\ 

         printf( "Fatal Error\n"); \ 

      } \ 

      exit(1); \ 

   } \ 

 

#define APIVERSION \ 

{\ 

    char szVersion[255], szBuild[255];\ 

    LSgetVersionInfo(szVersion,szBuild);\ 

    printf("\nLINDO API Version %s built on %s\n",szVersion,szBuild);\ 

}\ 

 

static void LS_CALLTYPE print_line_log(pLSmodel pModel, char *line, void *userdata) 

{ 

  if (line) 

  { 

    printf("%s",line); 

  } /*if*/ 

} /*print_line*/ 

 

// 

int main(int argc, char **argv) 

{ 

   APIERRORSETUP; 

   int m, n; /* number of constraints and vars */ 

   int nC=0, nB=0, nI=0; /* number of cont, bin. int vars*/ 

   double dObj; 

   int counter = 0, status; 

 

/* declare an instance of the LINDO environment object */ 

   pLSenv pEnv = NULL; 

/* declare an instance of the LINDO model object */ 

   pLSmodel pModel, pModelR=NULL; 
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   char MY_LICENSE_KEY[1024]; 

 

 

  /**************************************************************** 

   * Step 1: Create a LINDO environment. 

   ****************************************************************/ 

   nErrorCode = LSloadLicenseString("../../../license/lndapi100.lic",MY_LICENSE_KEY); 

   APIERRORCHECK; 

   APIVERSION; 

 

   pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

   if ( nErrorCode == LSERR_NO_VALID_LICENSE) { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

 

  /**************************************************************** 

   * Step 2: Create a model in the environment. 

   ****************************************************************/ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   APIERRORCHECK; 

 

  /**************************************************************** 

   * Step 3: Read the model from a LINDO file and get the model size 

     MODEL: 

     MAX= X11 + 2 * X22 + 3 * X33 + 4 * X44; 

          X11 +     X22                               = 10; 

                    X22 + 5 * X33 + 6 * X44 + 4 * X43 = 20; 

     END 

     FREE Xij for all ij 

   ****************************************************************/ 

 

   nErrorCode = LSreadLINDOFile(pModel,"posd.ltx"); 

   APIERRORCHECK; 

   if (0) 

   { 

     char varType[] = "CCCIII"; 

    LSloadVarType(pModel,varType); 

   } 

   nErrorCode = LSgetInfo(pModel,LS_IINFO_NUM_VARS,&n); 

   nErrorCode += LSgetInfo(pModel,LS_IINFO_NUM_CONS,&m); 

   nErrorCode += LSgetInfo(pModel,LS_IINFO_NUM_CONT,&nC); 

   APIERRORCHECK; 

   /*************************************************************** 

    * Step 4: Load PSD constraint 

 

        | X11             | 

    X = | X21 X22         |  is PSD 

        |         X33     | 

        |         X43 X44 | 

 

    ***************************************************************/ 

   { 

    int nPOSDBlocks  = 2; 

    int paiPOSDdim[] = {  2, 2 }; 

    int paiPOSDbeg[] = {  0, 3, 6}; 

    int paiPOSDrowndx[] = {  0, 1, 1, 0, 1, 1 }; 

    int paiPOSDcolndx[] = {  0, 0, 1, 0, 0, 1 }; 

    int paiPOSDvarndx[] = {  0, 1, 2, 3, 4, 5 }; 

    nErrorCode = LSloadPOSDData(pModel, 

                               nPOSDBlocks, 

                               paiPOSDdim, 
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                               paiPOSDbeg, 

                               paiPOSDrowndx, 

                               paiPOSDcolndx, 

                               paiPOSDvarndx); 

    APIERRORCHECK; 

   } 

 

 

 

   /*************************************************************** 

    * Step 5: Optimize the model 

    ***************************************************************/ 

   nErrorCode = LSsetModelLogfunc(pModel, (printModelLOG_t) print_line_log, NULL); 

   if (n - nC > 0) { nErrorCode = LSsolveMIP( pModel, &status);   }  

   else            { nErrorCode = LSoptimize( pModel, LS_METHOD_FREE, &status);  } 

   APIERRORCHECK; 

   LSwriteSolution(pModel,"posd.sol"); 

 

   /*************************************************************** 

    * Step 6: Access the final solution if optimal or feasible 

    ***************************************************************/ 

   if (status == LS_STATUS_OPTIMAL || status == LS_STATUS_BASIC_OPTIMAL || 

       status == LS_STATUS_LOCAL_OPTIMAL || status == LS_STATUS_FEASIBLE) 

   { 

     double *primal = NULL, *dual = NULL; 

     int    j; 

     primal = (double *) malloc(n*sizeof(double)); 

     dual   = (double *) malloc(m*sizeof(double)); 

     if (n - nC > 0) { 

       nErrorCode = LSgetInfo(pModel,LS_DINFO_MIP_OBJ,&dObj); 

       APIERRORCHECK; 

       nErrorCode = LSgetMIPDualSolution( pModel,dual); 

       APIERRORCHECK; 

       nErrorCode = LSgetMIPPrimalSolution( pModel,primal); 

       APIERRORCHECK; 

     } else { 

       nErrorCode = LSgetPrimalSolution( pModel, primal) ; 

       APIERRORCHECK; 

       nErrorCode = LSgetDualSolution( pModel, dual) ; 

       APIERRORCHECK; 

       nErrorCode = LSgetInfo(pModel,LS_DINFO_POBJ,&dObj); 

       APIERRORCHECK; 

     } 

     printf ("\n Objective at solution = %f \n", dObj); 

     // un/comment the block below if you would like the primal and dual solutions 

     // to be printed on the screen. 

     if (1){ 

       char szname[255]; 

       printf ("\n Primal Solution\n"); 

       printf("\t%8s %18s\n","VARS", "Primal"); 

       for (j = 0; j<n; j++) 

       { 

         nErrorCode = LSgetVariableNamej(pModel,j,szname); 

         printf("\t%8s %18.10e\n",szname, primal[j]); 

       } 

 

       printf ("\n Dual Solution\n"); 

       printf("\t%8s %18s\n","CONS", "Dual"); 

       for (j = 0; j<m; j++) 

       { 

         nErrorCode = LSgetConstraintNamei(pModel,j,szname); 

         printf("\t%8s %18.10e\n",szname, dual[j]); 

       } 
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     } 

     free(primal); 

     free(dual); 

   } 

   else 

   { 

     char strbuf[255]; 

     LSgetErrorMessage(pEnv,nErrorCode,strbuf); 

     printf ("\n Optimization failed. Status = %d ",status); 

     //printf ("\n Error %d: %s\n",nErrorCode,strbuf); 

   } 

 

   /*************************************************************** 

    * Step 7: Terminate 

    ***************************************************************/ 

   nErrorCode = LSdeleteModel( &pModel); 

   nErrorCode = LSdeleteEnv( &pEnv); 

 

Terminate: 

 

  /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   //getchar(); 

 

} 

 

 

Running the application at command-line would give the following output 

 

 
 Writing model solution. 

 

 Objective at solution = 30.000000 

 

 Primal Solution 

            VARS             Primal 

             X11  4.7903721396e+000 

             X12  0.0000000000e+000 

             X22  5.2096278186e+000 

             X33  2.1128303262e+000 

             X34 -2.1129003045e+000 

             X44  2.1129702878e+000 

 

 Dual Solution 

            CONS               Dual 

        R0000000  9.9999999037e-001 

        R0000001  9.9999999397e-001 
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Chapter 7: Solving 
Nonlinear Programs  

The nonlinear programming (NLP) interface of LINDO API is designed to solve optimization 

problems of the form: 

 optimize f(x); 

such that 

gi(x) ? bi  for i = 0 to m-1: 

Lj  xj  Uj for j = 0 to j = n – 1: 
xj is integer  for j in a specified J  {0,…, n-1} 

 

where 

optimize is either minimize or maximize, 

f(x) and gi(x)  are scalar valued real functions. 

x is the vector of all variables, and 

"?" is one of the relational operators "", "=", or "". 

For nonlinear constraints, bi is assumed to be zero.  

Nonlinear programs are the most general form of mathematical models solvable by LINDO API. They 

contain all other types of models that have been covered so far as special cases. It is useful to think of a 

mathematical modeling system as consisting of at least three layers: 1) a frontend/user interface that 

accepts a model in user-convenient form and converts it to solver-convenient form, 2) a solver 

manager that looks at the model in solver form and decides how to solve the model, and 3) solvers that 

do the low level solving (e.g., a primal simplex solver, barrier solver, network solver, general 

nonlinear solver, etc.).  

LINDO API performs levels (2) and (3) and provides tools for setting up and passing a model from 

level (1) to level (2). As we have seen, linear or quadratic (mixed-integer) models can be fully 

described by (sparse) matrices and vectors. Thus, setting up a model in one of these types involves the 

simple tasks of: (i) creating the sparse representation of the constraint matrix; (ii) building the 

objective function, right-hand-side, variable-bound, and variable-type vectors along with some others; 

and (iii) passing these data objects to LINDO API for solution (levels 2 and 3).  

The description of nonlinear models, however, is not as easy as for linear or quadratic (mixed-integer) 

models. The main issue lies in the evaluation of the functional values of the objective function and the 

constraints with respect to a solution vector. This is because the constraints and objective function are 

not linear and hence cannot be represented with matrices and vectors alone. However, if one has the 

means for evaluating nonlinear expressions at a given solution, then sparse matrix representation 

technique becomes an efficient tool for the nonlinear solver to manipulate working-matrices that 

depend on the nonzero structure of the constraint matrix and their gradients.  
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The LINDO API offers two basic interface styles for describing NLP’s: a) “Instruction-List” style, and 

b) “black-box” style,  plus  a combination of the two called c)”grey-box” style. Under the Instruction-

List style, the user passes a set of instruction lists to LINDO API. These instruction-lists describe how 

to compute the value of each row of the model. In the black-box style, the model developer achieves 

this by means of an external function (e.g., written in C or C++) that evaluates the nonlinear 

expressions at a given solution. When the problem is loaded, the name of this routine is passed to 

LINDO API. It is possible for the instruction-list interface to inherit the black-box interface via a 

special instruction operator. This feature lends itself to a combination of these two basic interfaces, 

called the grey-box interface. 

There are certain advantages to each of these approaches.  In the Instruction-List interface, LINDO 

API is given explicit information about each row of the model, rather than having this information 

hidden in a black box. For example, if a row of the model is in fact linear, then LINDO API will detect 

this and exploit it. If the user wants to use the Global Solver, then the Instruction-List style of input 

must be used. If a standard programming language is used by the black-box interface, the computation 

of the value of a row is very efficient. The following sections, describe in detail how each style could 

be used in setting up a mathematical programming model as general as nonlinear (integer) models.  

Instruction-List/MPI Style Interface  
Under the instruction list style, the front end supplies a set of instruction lists, one instruction list for 

each row of the model. LINDO API will automatically detect linearity and exploit it. Optionally, it can 

also detect quadratic and second order cone expressions. An instruction list is a vector of integers that 

encodes the original mathematical model. It represents the model in a variant of Reverse Polish 

notation (also called postfix notation). This scheme is attractive in that it is concise, easy to edit, easy 

and fast to run, and, most important, it retains the original mathematical structure of your model.  A 

model can be loaded in instruction list format with LSloadInstruct( ). 

 

If a model is stored in Instruction-List form in a file, the file is called an MPI file and it ends with the 

suffix: .mpi.  Hence for brevity, we will also refer to the Instruction-List format as MPI format. 

Postfix Notation in Representing Expressions 
Expressions in postfix notation consist of two elements: operators (e.g., addition and multiplication) 

and operands (e.g., variables or constants). Most operators are binary in the sense that they take two 

operands. In typical infix mathematical notation, binary operators appear between their operands (e.g., 

in A+B the operator ‘+’ comes between its operands A and B). In postfix or Reverse Polish notation, 

the operator comes after its operands. Thus, A+B is expressed A B +. There are also some operators 

that are unary and take a single operand. In this case, the ordinary mathematical notation (e.g., exp(A)) 

is transformed into the postfix notation by reversing the sequence (e.g., A exp).  

In infix notation, there may be ambiguity in the proper order of execution of various operators. This 

ambiguity is resolved in infix notation by specifying a priority among the operators (i.e., basic 

mathematical operator precedence). For example, when evaluating 2+6/3, we do the division before 

the addition and get the answer 4. Thus, the division operator has higher precedence than the addition. 

As a second example, when evaluating 8-5-2, we evaluate it as (8-5)-2 rather than as 8-(5-2) and get 

the answer 1. Similarly, 8-5+2 is taken as (8-5)+2, not 8-(5+2). The general rule is that if two adjacent 

operators are the same, or have equal precedence, then the leftmost takes precedence. There exists a 

means to override the precedence rules by employing parentheses. For example, we can write (3+7)/2 



 SOLVING NONLINEAR PROGRAMS     453 

 

if we want the + to be executed before the /. In postfix notation, all ambiguity has been removed and 

there are no parentheses. The following are examples of postfix notation. 

             Infix                                   Postfix 

              A                                              A 

              (A)                                           A 

              A/B                                          A B / 

              A+B*C                                    A B C * + 

              (A+B)*C                                 A B+ C *  

              A/B-C/7                                   A B / C 7 / - 

              A-B-3                                      A B - 3 - 

              A+(B-C/D)-E*F                      A B C D / - + E F * - 

In order to appreciate the usefulness of postfix notation, it helps to understand how it is used. Postfix 

instructions are executed on a “stack based” pseudo computer. This stack pseudo computer has only 

two very simple rules of operation: 

1. When an operand is encountered, load its value on top of a stack of numbers. 

2. When an operator is encountered, apply it to the numbers on top of the stack and replace the 

numbers used by the result. 

Consider the infix expression: 5+6/3. The postfix expression is 5, 6, 3, /, +. 

After the first three terms in postfix notation have been encountered, the stack will look like: 

. 

3 

6 

5 

Postfix Stack 

After the “/” is encountered, the stack will look like: 

. 

2 

5 

Postfix Stack 

After the “+” is encountered, the stack will look like: 

. 

7 

Postfix Stack 

This illustrates that after a properly formed postfix expression is executed, the stack will contain only 

one number. That number is the value of the expression. 

For LINDO API, a postfix expression is simply a list of integers. Each operator has a unique integer 

associated with it. For example, “+” is represented by the integer 1. Each operand is represented by 

two integers. The first integer effectively says “Here comes an operand”. The second integer specifies 

which operand. For example, x23, is represented by the integer 23. All currently supported operators 

and their functions are exhibited below, where A and/or B and/or C and/or D are argument(s) of each 

function or operand(s) to the operator. The integer associated with each operator can be found in the 

lindo.h header file that came with LINDO API. 
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Supported Operators and Functions 
A list of currently supported operators and functions are listed in the following table. If the Global 

solver is to be used, only operators with a “Y” in the “Global support” column can be used. The 

equivalent function in Excel is indicated by [Excel=Excelfunction]. 

Operator Index Function Global 

support

? 

Description of result 

EP_NO_OP 0000 -- Y No operation. 

EP_PLUS 1001 A + B Y Addition of A and B. 

EP_MINUS 1002 A – B Y Subtraction of A minus B. 

EP_MULTIPLY 1003 A * B Y Multiplication of A and B. 

EP_DIVIDE 1004 A / B Y Division of A by B. 

EP_POWER 1005 A ^ B Y Power of A to B. 

EP_EQUAL 1006 A = B Y True(1) if A is equal to B, else 

false(0). 

EP_NOT_EQUAL 1007 A != B Y True if A is not equal to B. 

EP_LTOREQ 1008 A <= B Y True if A is less-than-or-equal-to 

B. 

EP_GTOREQ 1009 A >= B Y True if A is greater-than-or-

equal-to B. 

EP_LTHAN 1010 A < B Y True if A is less than B. 

EP_GTHAN 1011 A > B Y True if A is greater than B. 

EP_AND 1012 A and B Y Logic conjunction: the 

expression is true if A and B are 

both true. 

EP_OR 1013 A or B Y Logic disjunction: the expression 

is true if A or B are true. 

EP_NOT 1014 ~ A Y The logic complement of A; 1 if 

A = 0, 0 if A > 0 

EP_PERCENT 1015 A / 100 Y The percentage of A. 

EP_NEGATE 1017 - A Y Negative value of A. 

EP_ABS 1018 |A| Y Absolute value of A. 

EP_SQRT 1019 (A)
1/2 

Y Square root of A. 

EP_LOG 1020 log(A) Y Common logarithm (base 10) of 

A. 

EP_LN 1021 ln(A) Y Natural logarithm of A. 
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EP_PI 1022 3.141592653589793 

[Excel=PI()] 

Y Load or push onto the top of the 

stack the ratio of the 

circumference of a circle to its 

diameter. 

EP_SIN 1023 sin(A) Y Sine  of A(in radians). 

EP_COS 1024 cos(A) Y Cosine of A(in radians).. 

EP_TAN 1025 tan(A) Y Tangent of A (in radians). 

 

EP_ATAN2 1026 atan2(A,B) Y Inverse arc tangent (in radians) 

of A (i.e., atan(B/A)). 

EP_ATAN 1027 atan(A) Y Arc tangent (in radians) of A. 

EP_ASIN 1028 asin(A) Y Arc sine (in radians) of A. 

EP_ACOS 1029 acos(A) Y Arc cosine (in radians) of A. 

EP_EXP 1030 exp(A) Y The constant e raised to the 

power A. 

EP_MOD 1031 mod(A,B) Y Remainder of A/B. 

EP_FALSE 1032 F Y Load or push a 0 (False) onto the 

top of the stack. 

EP_TRUE 1033 T Y Load or push a 1 (True) onto the 

top of the stack. 

EP_IF 1034 if(A,B,C) Y Returns B, if A is true (!=0) and 

returns C, if A is false (=0). 

EP_PSN 1035 psn(A) 

[Excel= 

NORMSDIST(A)] 

Y Cumulative standard Normal 

probability distribution, also 

known as the cumulative 

distribution function (cdf), i.e., 

Prob{standard Normal random 

variable  A}. 

EP_PSL 1036 psl(A) Y Unit Normal linear loss function 

(i.e., E[max{0, Z-A}], where Z = 

standard Normal). 

EP_LGM 1037 lgm(A) 

[Excel= 

GAMMALN(A)] 

Y Natural (base e) logarithm of the 

gamma (i.e., ln((A-1)!) when A is 

a positive integer). 

EP_SIGN 1038 sign(A) 

[Excel=SIGN(A)] 

Y  -1 if  A< 0,  +1 if A > 0,  else 0 

EP_FLOOR 1039  A Y Integer part of A when fraction is 

dropped. E.g., floor(-4.6) = -4. 
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[Excel= 

ROUNDDOWN(A,0)

]

EP_FPA 1040 fpa(A,B) Y Present value of an annuity (i.e., 

a stream of $1 payments per 

period at interest rate of A for B 

periods starting one period from 

now). 

EP_FPL 1041 fpl(A,B) Y Present value of a lump sum of 

$1 B periods from now if the 

interest rate is A per period. 

Note, A is a fraction, not a 

percentage. 

EP_PEL 1042 pel(A,B) Y Erlang’s loss probability for a 

service system with B servers 

and an arriving load of A, no 

queue allowed. 

EP_PEB 1043 peb(A,B) Y Erlang’s busy probability for a 

service system with B servers 

and an arriving load of A, with 

infinite queue allowed. 

EP_PPS 1044 pps(A,B) 

[Excel= 

POISSON(B,A,1)] 

Y Cumulative Poisson probability 

distribution. It returns the 

probability that a Poisson 

random variable with mean A is 

≤ B. 

EP_PPL 1045 ppl(A,B) N Linear loss function for the 

Poisson probability distribution. 

It returns the expected value of 

max(0,Z-B), where Z is a Poisson 

random variable with mean value 

A. 

EP_PTD 1046 ptd(A,B) 

[Excel= 1- 

TDIST(B,A,1)] 

N Cumulative distribution function 

for the t distribution with A 

degrees of freedom. It returns the 

probability that an observation 

from this distribution is ≤ B. 

EP_PCX 1047 pcx(A,B) 

[Excel 

=CHIDIST(B,A)] 

N Cumulative distribution function 

for the Chi-squared distribution 

with A degrees of freedom. It 

returns the probability that an 

observation from this distribution 

is less-than-or-equal-to B.  

EP_WRAP 1048 wrap(A,B) Y Transform A into the interval [1, 
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B],  If A > B, then A is “wrapped 

around”.  E.g., WRAP(14,12)= 

2. More generally,  =1+mod(A,B-

1). 

EP_PBNO 1049 pbn(A,B,C) 

[Excel= 

BINOMDIST(C,A,B,

1)] 

N Cumulative Binomial 

distribution. It returns the 

probability that a sample of A 

items, from a universe with a 

fraction of B of those items 

defective, has C or less defective 

items. 

EP_PFS 1050 pfs(A,B,C) N Expected number of customers 

waiting for repair in a finite 

source Poisson service system 

with B servers in parallel, C 

customers, and a limiting load of 

A. 

EP_PFD 1051 pfd(A,B,C) 

[Excel 

=FDIST(C,A,B)] 

N Cumulative distribution function 

for the F distribution with A 

degrees of freedom in the 

numerator and B degrees of 

freedom in the denominator. It 

returns the probability that an 

observation from this distribution 

is ≤ C.  

EP_PHG 1052 phg(A,B,C,D) 

[Excel= 
HYPGEOMDIST(D,

B,C,A)] 

N Cumulative distribution function 

for Hyper Geometric 

distribution. It returns the 

probability that D or fewer items 

in the sample are good, given a 

sample without replacement of B 

items from a population size A 

where C items in the population 

are good. 

EP_RAND 1053 rand(A) N Pseudo-random number 

uniformly distributed between 0 

and 1, depending 

deterministically on the seed A. 

EP_USER 1054 user(user_specified_a

rguments) 

N Returns the value of the function 

supplied by the user through 

LSsetUsercalc. The operator is 

followed by an integer specifying 

the number of arguments, and 

preceded by the arguments. See 

the definition of Usercalc() 

function below for a prototype. 
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EP_SUM 1055 sum(A1 , …, An ) Y Summation of vector A (i.e., A1 + 

… + An ). The operator is 

followed by an integer specifying 

the vector length n, and then the 

vector itself. 

EP_AVG 1056 avg(A1 , …, An ) Y Average of vector A (i.e., (A1 + 

… + An) / n). The operator is 

followed by an integer specifying 

the vector length n, and then the 

vector itself. 

EP_STDEV 1077 stdev(A1 , …, An ) Y Standard deviation of vector A. 

The operator is followed by an 

integer specifying the vector 

length n, and then the vector 

itself. 

EP_MIN 1057 min(A1 , …, An ) Y Minimum value in vector A. The 

operator is followed by an 

integer specifying the vector 

length n, and then the vector 

itself. 

EP_MAX 1058 max(A1 , …, An ) Y The maximum value in vector A. 

The operator is followed by an 

integer specifying the vector 

length n, and then the vector 

itself. 

EP_NPV 1059 npv(A,B1,…,Bn) N Net present value of an 

investment, using a discount rate 

(A) and a series of future 

payments (B1,…,Bn). The 

operator is followed an integer 

specifying the vector length, 

which is the number of payments 

n plus 1. 

EP_VAND 1060 A1 and A2…and An Y Vector AND: Returns true if the 

vector A are all true. The 

operator is followed by an 

integer specifying the vector 

length n, and then the vector 

itself. 

EP_VOR 1061 A1 or A2…or An Y Vector OR: Returns true if there 

is at least one element in the 

vector A that is true. The 

operator is followed by an 

integer specifying the vector 

length n, and then the vector 
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itself. 

EP_PUSH_NUM 1062 A Y Load or push a constant A onto 

the top of stack. 

EP_PUSH_VAR 1063 A Y Load or push a variable A onto 

the top of stack. 

EP_NORMDENS 1064 Normdens(A) Y Standard Normal density at A, 

also known as the probability 

density function (pdf), i.e., (exp(-

A*A/2))/((2*)
0.5

). 

EP_NORMINV 1065 NormInv(A, B, C) 

[Excel= 

NORMINV(A,B,C)] 

Y Inverse of the cumulative 

Normal distribution with input 

probability A, mean B and 

standard deviation C. The 

function EP_NRMINV is 

preferred. 

EP_TRIAINV 1066 TriaInv(A, B, C, D) N Inverse of a triangular 

cumulative distribution with 

input probability A, for lowest 

possible value B, mode C, and 

highest value D. Function 

EP_TRIAINV is preferred. 

EP_EXPOINV 1067 ExpoInv(A, B) Y Inverse of an exponential with 

input probability A and mean B, 

i.e. –B*ln(1-A). Function 

EP_EXPNINV is preferred. 

EP_UNIFINV 1068 UnifInv(A, B, C) N Inverse of Uniform cumulative 

distribution with input 

probability A, lower limit B, and 

upper limit C. Function 

EP_UNIFMINV is preferred. 

EP_MULTINV 1069 MultInv(A, B1,…, Bn, 

C1,…, Cn) 

N Inverse of the cumulative 

distribution of a multinomial 

random variable with A = 

probability, a supplied 

probability vector B and 

corresponding value vector C. 

The operator is followed by an 

integer specifying the vector 

length, which is 2n+1, where n is 

the vector length of B and C. 

EP_USRCOD 1070 UserCode ndx Y A user-defined instruction code. 

It is treated as an EP_NO_OP 

along with the integer 

immediately following it in the 
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list. 

EP_SUMPROD 1071 SumProd(V1 , V2 , V3 

,.. , Vn)  

Y Vector inner product.  Multiplies 

corresponding components in 

each vector, and returns the sum 

of those products (i.e., v11* 

v21*…*vm1 + v12* v22*…*vm2 + 

… + v1n* v2n*…*vmn). Note that 

these n vectors must have the 

same length of m. The operator is 

followed by two integers, 

specifying the number of vectors 

n and the vector length m, 

respectively. The syntax is: V1 , 

V2 , V3  ,.. , Vn, EP_SUMPROD, 

n, m. 

EP_SUMIF 1072 SumIf(w, V1 , V2) Y This vector type of operator adds 

the component in vector V2, if its 

corresponding component in 

vector V1 is equal to the target w 

(i.e., if(w== v11 , v21 ,0) + if(w== 

v12 , v22 ,0) + … + if(w== v1n , v2n 

,0)). Note, both vectors must 

have the same length of n. The 

operator is followed by an 

integer, specifying the number of 

vector n. The syntax is: w, V1 , V2 

, EP_SUMIF, n. 

EP_VLOOKUP 1073 Vlookup(w, V1 , V2, 

range_logic) 

Y This vector type of operator 

searches for a component in the 

first vector V1 with respect to the 

target w, and then returns the 

corresponding component in the 

second vector V2. The 

range_logic, which takes a value 

of 0 and 1 for False or True case, 

respectively, decides which type 

of logic used to select the 

winner. When range_logic is 

False, it returns: if(w==v11 , v21 , 

if(w==v12 , v22 ,…, if(w==v1n , 

v2n,, Infinity ))). When 

range_logic is False, it returns: 

if(w<v11 , Infinity , if(w<v12 , v21 

,…, if(w<v1n , v2(n-1) , v2n))). Note 

that both vectors must have the 

same length of n. The operator is 

followed by two integers, 

specifying the vector length n 
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and range_logic, respectively. 

The syntax is: w, V1 , V2 , 

EP_VLOOKUP, n, range_logic.     

EP_VPUSH_NUM 1074 n1, n2, n3,…,nm  Y Vector Push Number.  Loads a 

vector of number indices n1, n2, 

n3,…,nm. The operator is 

followed by an integer, 

specifying the vector length m. 

The syntax is: n1 , n2 , n3 ,… , nm , 

EP_VPUSH_NUM, m. 

EP_VPUSH_VAR 1075 v1, v2, v3,…,vm Y Vector Push Variable.  Loads a 

vector of variable indices v1, v2, 

v3,…,vm. The operator is followed 

by an integer, specifying the 

vector length m. The syntax is: 

v1, v2, v3,…,vm , 

EP_VPUSH_VAR, m. 

EP_VMULT 1074 A1 * A2 * …* Am Y This vector type of operator 

sequentially multiplies each 

element in vector A. The 

operator is followed by an 

integer, specifying the vector 

length m. The syntax is: v1 , v2 , 

v3 ,… , vm , EP_VMULT, m. 

EP_SQR 1077 A
2 

Y Square of A. 

EP_SINH 1078 Sinh(A) Y Hyperbolic sine of A . 

EP_COSH  1079 Cosh(A) Y Hyperbolic cosine of A . 

EP_TANH 1080 Tanh(A) Y Hyperbolic tangent of A . 

EP_ASINH 1081 Sinh
–1 

(A) Y Inverse hyperbolic sine of A . 

EP_ACOSH 1082 Cosh 
–1 

(A) Y Inverse hyperbolic cosine of A . 

EP_ATANH 1083 Tanh 
–1 

(A) Y Inverse hyperbolic tangent of A . 

EP_LOGB 1084 Log B (A) Y Logarithm of A with base B. 

EP_LOGX 1085 A *  Log(A) Y A times common logarithm (base 

10) of A . 

EP_LNX 1086 A *  Ln(A) Y A times natural logarithm of A.  

EP_TRUNC 1087 Trunc(A, B) Y Truncates A to a specified 

precision of B by removing the 

remaining part of value A . 

EP_NORMSINV        1088 NormSInv(A) 

[Excel= 

Y Inverse of the cumulative 

standard Normal distribution 

with input probability A. 
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NORMSINV(A)] 

EP_INT 1089 Int(A) Y Largest integer ≤ A. E.g., int(-

4.6) = -5, and int(4.6) = 4. 

EP_PUSH_STR 1090 string(A) Y Push string in position A of 

strings loaded with 

LS_load_string. 

EP_VPUSH_STR 1091 string1, string2, 

…,stringm. 

Y Push a vector of strings.  The 

operator is followed by an 

integer, specifying the vector 

length m. The syntax is: string 1, 

string 2,…, string m , 

EP_VPUSH_STR, m. 

EP_PUSH_SPAR 1092 A Y Load or push a stochastic 

(random) parameter A onto the 

top of stack. 

EP_NORMPDF 1093 NormPdf(A,B,C) 

[Excel=      

NORMDIST(A,B,C, 

0)] 

Y Probability density function of 

the  Normal distribution with 

mean B and standard deviation 

C, evaluated at A. 

EP_NORMCDF 1094 NormCdf(A,B,C) 

[Excel=      

NORMDIST(A,B,C, 

1)] 

Y Cumulative distribution function 

of the  Normal distribution with 

mean B and standard deviation 

C, evaluated at A. 

EP_LSQ 1095 u1, u2, u3,…, un 

T1,  T2, T3,…, Tn 

α1,  α2, α3,…, αm 

Y Least squares operator for fitting 

the best response model for a 

data set of n points (Ti, ui), where 

Ti is a vector of independent 

variables and ui is the observed 

dependent variable. The response 

function has the form  ûi = f(Ti;α 

), where  

α is a vector of adjustable model 

parameters. ûi is the estimated 

response. 

EP_LNPSNX 1096 A Y The logarithm of the cumulative 

probability density function of 

the standard normal distribution 

evaluated at A. 

EP_LNCPSN 1097 A Y The logarithm of the  tail 

probability of the standard 

normal distribution evaluated at 

A. 

EP_XEXPNAX 1098 B*exp(-A/B) Y Composite function 
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EP_XNEXPMX 1099 A N This is reserved for internal use. 

EP_PBT 1100 pbt(A,B,C) 

[Excel= 

BETADIST(C,A,B)] 

N Cumulative distribution function 

for Beta distribution with shape 

parameters A and B. It returns the 

probability that an observation 

from this distribution ≤ C. 

EP_PBTINV 1101 PbtInv(A,B,C)  

[Excel= 

BETAINV(C,A,B)] 

N Inverse of the cumulative Beta 

distribution with input 

probability C, and shape 

parameters A and B. 

EP_PBNINV 1102 PbnInv(A,B,C) N Inverse of Binomial distribution 

with input probability C, success 

probability B and sample size A. 

EP_PCC 1103 pcc(A,B,C) Y Cumulative distribution function 

for Cauchy distribution with 

location parameter A, scale 

parameter B. It returns the 

probability that an observation 

from this distribution is ≤ C. 

EP_PCCINV 1104 PccInv(A,B,C) Y Inverse of Cauchy distribution 

with input probability C, location 

parameter A, and scale parameter 

B. 

EP_PCXINV 1105 PcxInv(A,B) 

[Excel 

=CHIINV(B,A)] 

N Inverse of Chi-square 

distribution with input 

probability B and A degrees of 

freedom.  

EP_EXPN 1106 expn(A,B) 

[Excel= 

EXPONDIST(B,A,1)

] 

Y Cumulative distribution function 

for the Exponential distribution 

with parameter A ( mean =1/A).  

Returns the probability that an 

observation from this distribution 

is ≤ B.  

EP_PFDINV 1107 PfdInv(A,B,C) 

[Excel=FINV(C,A,B)

] 

N Inverse of F distribution with 

input probability C, and degrees 

of freedom A in numerator and B 

in denominator. 

EP_PGA 1108 pga(A,B,C) 

[Excel= 

GAMMADIST(C,B,

A,1)] 

N Cumulative distribution function 

for the Gamma distribution with 

scale parameter A, shape 

parameter B. It returns the 

probability that an observation 

from this distribution is ≤ C.  

EP_PGAINV 1109 PgaInv(A,B,C) N Inverse of Gamma distribution 
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[Excel= 

GAMMAINV(C,B,A

)] 

with input probability C, scale 

parameter A, and shape 

parameter B. 

EP_PGE 1110 pge(A,B) N Cumulative distribution function 

for Geometric distribution with 

success probability A. It returns 

the probability that the number 

of experiments needed for the 

first success is ≤ B.  

EP_PGEINV 1111 PgeInv(A,B) N Inverse of Geometric distribution 

with input probability B and 

success probability A. 

EP_PGU 1112 pgu(A,B,C) N Cumulative distribution function 

for Gumbel distribution with 

location parameter A and scale 

parameter B. It returns the 

probability that an observation 

from this distribution is ≤ C. 

EP_PGUINV 1113 PguInv(A,B,C) N Inverse of Gumbel distribution 

with input probability C, location 

parameter A, and scale parameter 

B. 

EP_PHGINV 1114 PhgInv(A,B,C,D) N Inverse of Hyper Geometric 

distribution with input 

probability D, population size A, 

number of good items in the 

population C, and sample size B. 

EP_PLA 1115 pla(A,B,C) N Cumulative distribution function 

for the Laplace distribution with 

location parameter A and scale 

parameter B. Returns probability 

that an observation is ≤ C. 

EP_PLAINV 1116 PlaInv(A,B,C) N Inverse of Laplace distribution 

with input probability C, location 

parameter A, and scale parameter 

B. 

EP_PLG 1117 plg(A,B) N Cumulative distribution function 

for the Logarithmic distribution 

with p-Factor A. It returns the 

probability that an observation 

from this distribution is ≤ B. 

EP_PLGINV 1118 PlgInv(A,B) N Inverse of Logarithmic 

distribution with input 

probability B and p-Factor A. 
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EP_LGT 1119 lgt(A,B,C) Y Cumulative distribution function 

for the Logistic distribution with 

location parameter A and scale 

parameter B. It returns the 

probability that an observation 

from this distribution is ≤ C. 

EP_LGTINV 1120 LgtInv(A,B,C) Y Inverse of Logistic distribution 

with input probability C, location 

parameter A and scale parameter 

B. 

EP_LGNM 1121 lgnm(A,B,C) 

[Excel= 

LOGNORMDIST(C,

A,B)] 

N Cumulative distribution function 

for the Lognormal distribution 

with location parameter A and 

scale parameter B. It returns the 

probability that an observation 

from this distribution is ≤ C. 

EP_LGNMINV 1122 LgnmInv(A,B,C) 

[Excel= 

LOGINV(C,A,B)] 

N Inverse of Lognormal 

distribution with input 

probability C, location parameter 

A and scale parameter B. 

EP_NGBN 1123 ngbn(A,B,C) 

[Excel= 

NEGBINOMDIST(C,

A,B)] 

N Cumulative Negative binomial 

distribution. It returns the 

probability that a Negative 

binomial random variable, with 

R-factor A and success 

probability B, is ≤ C. 

EP_NGBNINV 1124 NgbnInv(A,B,C) N Inverse of Negative binomial 

distribution with input 

probability C, R-Factor A and 

success probability B. 

EP_NRM 1125 nrm(A,B,C) 

[Excel=NORMDIST(

C,A,B,1)] 

Y Cumulative Normal distribution 

with mean A and standard 

deviation B. It returns the 

probability that an observation 

from this distribution is ≤ C. 

EP_PPT 1126 ppt(A,B,C) N Cumulative Pareto distribution 

with scale parameter A and shape 

parameter B. It returns the 

probability that an observation 

from this distribution is less than 

or equal to C. 

EP_PPTINV 1127 PptInv(A,B,C) N Inverse of Pareto distribution 

with input probability C, scale 

parameter A and shape parameter 
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B. 

EP_PPSINV 1128 PpsInv(A,B) N Inverse of Poisson distribution 

with input probability B and 

mean A. 

EP_PTDINV 1129 PtdInv(A,B) N Inverse of Student-t distribution 

with input probability B and A 

degrees of freedom. 

EP_TRIAN 1130 trian(A,B,C,D) N Cumulative Triangular 

distribution with lower limit A, 

mode C, upper limit B. It returns 

the probability that an 

observation from this distribution 

≤ D. 

EP_UNIFM 1131 unifm(A,B,C) N Cumulative Uniform distribution 

with lower limit A and upper 

limit B. It returns the probability 

that an observation from this 

distribution is ≤ C. 

EP_PWB 1132 pwb(A,B,C) 

[Excel= 

WEIBULL(C,B,A,1)] 

N Cumulative Weibull distribution 

with scale parameter A and shape 

parameter B. It returns the 

probability that an observation 

from this distribution is ≤ C. 

EP_PWBINV 1133 PwbInv(A,B,C) N Inverse of Weibull distribution 

with input probability C, scale 

parameter A, and shape 

parameter B. 

EP_NRMINV 1134 NrmInv(A,B,C) 

[Excel= 

NORMINV(C,A,B)] 

Y Inverse of Normal distribution 

with input probability C, mean A 

and standard deviation B. 

EP_TRIANINV 1135 TrianInv(A,B,C,D) N Inverse of Triangular cumulative 

distribution with input 

probability D, lower limit A, 

mode C, and upper limit B. 

EP_EXPNINV 1136 ExpnInv(A,B) Y Inverse of Exponential 

distribution with input 

probability B and parameter A ( 

mean 1/A). 

EP_UNIFMINV 1137 UnifmInv(A,B,C) N Inverse of Uniform cumulative 

distribution with input 

probability C, lower limit A, and 

upper limit B. 

EP_MLTNMINV 1138 MltnmInv(A1,…,An,B N Inverse of a multinomial 
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1,…Bn,C) cumulative distribution with C = 

probability to be inverted,  

supplied probability vector A and 

corresponding value vector B. 

The operator is followed by an 

integer specifying the vector 

length, which is 2n+1, where n is 

the vector length of A and B. 

EP_BTDENS 1139 BtDens(A,B,C) N Probability density function for 

Beta distribution with shape 

parameters A and B. It returns the 

probability density at C. 

EP_BNDENS 1140 BnDens(A,B,C) 

[Excel= 

BINOMDIST(C,A,B,

0)] 

N Probability mass function for 

Binomial distribution. It returns 

the probability that a sample of A 

items, from a universe with a 

fraction of B of those items 

defective, has C defective items.  

EP_CCDENS 1141 CcDens(A,B,C) Y Probability density function for 

Cauchy distribution with location 

parameter A, scale parameter B. 

It returns the probability density 

at C. 

EP_CXDENS 1142 CxDens(A,B) N Probability density function for 

the Chi-square distribution with 

A degrees of freedom. It returns 

the probability density at C. 

EP_EXPDENS 1143 ExpDens(A,B) 

[Excel= 

EXPONDIST(B,A,0)

] 

Y Probability density function for 

Exponential distribution with 

parameter A ( mean = 1/ A). It 

returns the probability density at 

B.  

EP_FDENS 1144 FDens(A,B,C) N Probability density function for 

the F distribution with A degrees 

of freedom in the numerator and 

B degrees of freedom in the 

denominator. It returns the 

probability density at C. 

EP_GADENS 1145 GaDens(A,B,C) 

[Excel= 

GAMMADIST(C,B,

A,0)] 

N Probability density function for 

the Gamma distribution with 

scale parameter A, shape 

parameter B. It returns the 

probability density at C.  

EP_GEDENS 1146 GeDens(A,B) N Probability mass function for 

Geometric distribution with 
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success probability A. It returns 

the probability density at B. 

EP_GUDENS 1147 GuDens(A,B,C) N Probability density function for 

Gumbel distribution with 

location parameter A and scale 

parameter B. It returns the 

probability density at C. 

EP_HGDENS 1148 HgDens(A,B,C,D) N Probability mass function for 

Hyper Geometric distribution , 

given a sample without 

replacement of B items from a 

population size A where C items 

in the population are good. It 

returns the probability of 

outcome D. 

EP_LADENS 1149 LaDens(A,B,C) N Probability density function for 

the Laplace distribution with 

location parameter A and scale 

parameter B. It returns the 

probability density at C. 

EP_LGDENS 1150 LgDens(A,B) N Probability mass function  for the 

Logarithmic distribution with p-

Factor A. It returns the 

probability density at B. 

EP_LGTDENS 1151 LgtDens(A,B,C) Y Probability density function for 

the Logistic distribution with 

location parameter A and scale 

parameter B. It returns the 

probability density at C. 

EP_LGNMDENS 1152 LgnmDens(A,B,C) N Probability density function for 

the Lognormal distribution with 

location parameter A and scale 

parameter B. It returns the 

probability density at C. 

EP_NGBNDENS 1153 NgbnDens(A,B,C) N Probability mass function for 

Negative binomial distribution 

with R-Factor A and success 

probability B. It returns the 

probability density at C. 

EP_NRMDENS 1154 NrmDens(A,B,C) 

[Excel= 

NORMDIST(C,A,B, 

0)] 

Y Probability density function for 

Normal distribution with mean A 

and standard deviation B. It 

returns the probability density at 

C. 
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EP_PTDENS 1155 PtDens(A,B,C) N Probability density function for 

Pareto distribution with scale 

parameter A and shape parameter 

B.  It returns the probability 

density at C. 

EP_PSDENS 1156 PsDens(A,B) 

[Excel= 

POISSON(B,A,0)] 

N Probability mass function for 

Poisson distribution with mean 

A. It returns the probability mass 

at B. 

EP_TDENS 1157 TDens(A,B) N Probability density function for 

Student-t distribution with A 

degrees of freedom. It returns the 

probability density at B. 

EP_TRIADENS 1158 TriaDens(A,B,C,D) N Probability density function for 

Triangular distribution with 

lower limit A, mode C, upper 

limit B. It returns the probability 

density at D. 

EP_UNIFDENS 1159 UnifDens(A,B,C) N Probability density function for 

Uniform distribution with lower 

limit A and upper limit B. It 

returns the probability density at 

C. 

EP_WBDENS 1160 WbDens(A,B,C) 

[Excel= 

WEIBULL(C,B,A,0)] 

N Probability density function for 

Weibull distribution with scale 

parameter A and shape parameter 

B. It returns the probability 

density at C. 

EP_RADIANS 1161 Radians(A)  

[Excel= 

RADIANS(A)] 

Y Convert A degrees to radians. 

EP_DEGREES 1162 Degrees(A) 

[Excel= 

DEGREES(A)] 

Y Convert A radians to degrees. 

EP_ROUND 1163 Round(A,B) 

[Excel= 

ROUND(A,B)] 

Y When A is greater than or equal 

to 0, if B is greater than 0, A is 

rounded to B decimal digits; if B 

is 0, A is rounded to the nearest 

integer; if B is less than 0, then A 

is rounded to the |B|+1 digits to 

the left of the decimal point. 

When A is less than 0, 

Round(A,B) = -Round(|A|,B) 

EP_ROUNDUP 1164 RoundUp(A,B)  

[Excel= 
Y When A is greater than or equal 

to 0, if B is greater than 0, A is 
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ROUNDUP(A,B)] rounded up to B decimal digits; if 

B is 0, A is rounded up to the 

nearest integer; if B is less than 

0, then A is rounded up to the 

|B|+1 digits to the left of the 

decimal point. 

When A is less than 0, 

RoundUp(A,B) = -

RoundUp(|A|,B) 

EP_ROUNDDOWN 1165 RoundDown(A,B)  

[Excel= 

ROUNDDOWN(A,B

)] 

Y When A is greater than or equal 

to 0, if B is greater than 0, A is 

rounded down to B decimal 

digits; if B is 0, A is rounded 

down to the nearest integer; if B 

is less than 0, then A is rounded 

down to the |B|+1 digits to the 

left of the decimal point. 

When A is less than 0, 

RoundDown(A,B) = -

RoundDown (|A|,B) 

EP_ERF 1166 erf(A)  Y Error function value of A. 

EP_PBN 1167 pbn(A,B,C) N Binomial cumulative distribution 

function at C with success 

probability B and sample size A.  

EP_PBB                                    1168 pbb(A,B,C,D) N Beta-binomial cumulative 

function at D with sample size A, 

shape parameters B and C. 

EP_PBBINV                                 1169 pbbinv(A,B,C,D) N Inverse of beta-binomial 

distribution function at input D 

with sample size A, shape 

parameters B and C. 

EP_BBDENS                                 1170 Bbdens(A,B,C,D) N Beta-binomial probability 

density function at D with 

sample size A, shape parameters 

B and C. 

EP_PSS                                 1171 pss(A,B) N Cummulative distribution 

function for the Symmetric 

Stable distribution with Alpha 

parameter A. It returns the 

probability that an observation 

from this distribution is less than 

or equal to B. Note that A should 

be in the range of (0,2]. 

EP_SSDENS                                 1172 ssdens(A,B) N Probability density function for 

Symmetric Stable distribution 

function with Alpha parameter 

A. It returns the probability 

density at B. Note that A should 

be in the range of (0,2]. 
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EP_SSINV                                 1173 ssinv(A,B) N Inverse of Symmetric Stable 

distribution with input 

probability B and Alpha 

parameter A. Note that A should 

be in the range of (0,2]. 

EP_POSD 1174 POSD(dim, nz, 

v1,r1,c1…) 
Y This is in fact a constraint for 

semi-definite programming 

(SDP) that forces a matrix to be 

symmetric positive semi-definite. 

dim is the dimension of the 

matrix, nz is the number of 

nonzeroes in the lower triangle 

of the matrix. The following nz 

triples (vi,ri,ci) give the (index of 

a variable,  row in the lower 

triangle of the matrix, column in 

the lower triangle of the matrix). 

Note ri >= ci. 

EP_SETS 1175 SETS(type, nz, 

v1,v2…) 
Y This is in fact a constraint for 

Special Ordered Sets (SOS) that 

provides a compact way of 

specifying multiple choice type 

conditions.  type is the type of 

SOS, possible values are 1, 2, 

and 3; nz is the number of 

variables in SOS. The following 

nz arguments give the index of  

variables in SOS. 

EP_CARD 1176 CARD(num_card, nz, 

v1,v2…) 
Y This is in fact a constraint that 

provides a compact way of 

specifying cardinality conditions.  

num_card is cardinality number; 

nz is the number of variables in 

cardinality constraint. The 

following nz arguments give the 

index of  variables. 

Inputting SDP/POSD Constraints via MPI File/Instruction List 
In Chapter 6, the capability for representing positive-definiteness constraints was introduced. If you 

are supplying a model to the LINDO API via the instruction list format, then there is a single operator, 

EP_POSD for specifying an SDP or POSD constraint. The format of this operator is the command 

sequence: 

 
              EP_POSD 
      ndim 

      nz 

      nv1 nr1 nc1 

        .  

        . 
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        . 

       

      nv1nz nr1nz nc1bz 

 

where,  

  ndim =  the dimension of the X matrix, 

    nz = the number of nonzeroes in the lower triangle of the X matrix, 

 For the following nz triples: 

  nvi = the index of a variable, 

  nri  = the  row in the lower triangle of the X matrix in which this variable appears 

   nci = column in the lower triangle of the matrix. 

 

Because the X matrix is required to be symmetric, only the lower triangle of the matrix X is to be 

specified. Zero based indexing of the rows and columns is used, thus, it is required that  0 ≤ nci ≤ 

nri ≤ ndim-1.  You may have several EP_POSD constraints in a model, however, a decision 

variable can appear in at most one EP_POSD constraint.  This restriction can be circumvented by the 

introduction of linking constraints to set one variable equal to another.  If the user, elsewhere in his 

model wants to reference an element of the upper triangle of a symmetric POSD matrix, then the user 

must add explicit constraints to enforce Xij = Xji.  

 

We illustrate with an application from statistics.  Suppose by some slightly ad hoc process we derived 

an initial estimate of a correlation matrix for three random variables. A required feature of a valid 

correlation matrix is that it must be positive definite. Unfortunately, our initial “guessed correlation” 

matrix is not positive definite.  So we give ourselves the problem of  finding  a “fitted” matrix that is 

positive semi-definite and close in some sense to this guessed matrix. As a measure of closeness we 

will take the squared difference.  Here is our initial guess at the correlation matrix. 
 

         1.000000   

         0.6938961   1.000000  

        -0.1097276   0.7972293  1.000000 ; 

 

We will show shortly that the matrix that is closest to the above matrix in the squared difference sense 

and is a valid correlation matrix in the sense that it is Positive Semi-definite is: 
 

         1.000000 

         0.6348391   1.000000 

        -0.0640226   0.7304152  1.000000 

 

How do we find the second matrix? We want to make modest adjustments to the off-diagonal entries 

of the original matrix to produce a Positive Semi-definite matrix.We want to solve the following 

optimization problem: 
 

    Minimize  QADJ_2_1 ^ 2 + QADJ_3_1 ^ 2 + QADJ_3_2 ^ 2; 

     Subject to: 

    QFIT_2_1 =   0.6938961 + QADJ_2_1; 

    QFIT_3_1 = - 0.1097276 + QADJ_3_1; 

    QFIT_3_2 =   0.7972293 + QADJ_3_2; 

    QFIT_1_1 = 1; 

    QFIT_2_2 = 1; 

    QFIT_3_3 = 1; 

 

   {QFIT} is POSD; 
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The only new feature of this formulation is the last line. We want the {QFIT} matrix to be Positive 

Semi-definite. The following MPI file describes the above problem. A comment line starts with a “!”. 

 
BEGINMODEL   POSDmakeCorr 

! Number of Objective Functions:         1 

! Number of Constraints        :         7 

! Number of Variables          :         9 

VARIABLES 

!  Name     Lower Bound  Initial Point   Upper Bound    Type 

   QFIT_1_1         0    1.23456788        1e+030        C 

   QADJ_2_1   -1e+030    1.23456788        1e+030        C 

   QFIT_2_1   -1e+030    1.23456788        1e+030        C 

   QFIT_2_2         0    1.23456788        1e+030        C 

   QADJ_3_1   -1e+030    1.23456788        1e+030        C 

   QFIT_3_1   -1e+030    1.23456788        1e+030        C 

   QADJ_3_2   -1e+030    1.23456788        1e+030        C 

   QFIT_3_2   -1e+030    1.23456788        1e+030        C 

   QFIT_3_3         0    1.23456788        1e+030        C 

OBJECTIVES 

! Minimize QADJ_2_1^2 + QADJ_3_1^2 + QADJ_3_2^2; 

  OBJ00000    MINIMIZE    LINEAR 

    EP_PUSH_VAR  QADJ_2_1 

    EP_PUSH_NUM       2  

    EP_POWER    

    EP_PUSH_VAR  QADJ_3_1 

    EP_PUSH_NUM       2  

    EP_POWER     

    EP_PLUS      

    EP_PUSH_VAR  QADJ_3_2 

    EP_PUSH_NUM       2  

    EP_POWER     

    EP_PLUS      

CONSTRAINTS 

! QFIT_2_1 =  0.6938961 + QADJ_2_1; 

  2    E           LINEAR 

    EP_PUSH_VAR  QFIT_2_1 

    EP_PUSH_NUM       0.6938961 

    EP_PUSH_VAR  QADJ_2_1 

    EP_PLUS      

    EP_MINUS     

! QFIT_3_1 =  -0.1097276  + QADJ_3_1; 

  3    E           LINEAR 

    EP_PUSH_VAR  QFIT_3_1 

    EP_PUSH_NUM       -0.1097276  

    EP_PUSH_VAR  QADJ_3_1 

    EP_PLUS      

    EP_MINUS  

! QFIT_3_2 =  0.7972293  + QADJ_3_2;    

  4    E           LINEAR  

    EP_PUSH_VAR  QFIT_3_2 

    EP_PUSH_NUM       0.7972293  

    EP_PUSH_VAR  QADJ_3_2 

    EP_PLUS      

    EP_MINUS    
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! QFIT_1_1 =  1;  

  5    E           LINEAR 

    EP_PUSH_VAR  QFIT_1_1 

    EP_PUSH_NUM       1  

    EP_MINUS     

  7    E           LINEAR 

! QFIT_2_2 =  1; 

    EP_PUSH_VAR  QFIT_2_2 

    EP_PUSH_NUM       1  

    EP_MINUS 

! QFIT_3_3 =  1;     

  9    E           LINEAR 

    EP_PUSH_VAR  QFIT_3_3 

    EP_PUSH_NUM       1  

    EP_MINUS     

! List the 6 scalar variables that 

! make up the lower triangle of the 

! 3x3 matrix that must be symmetric POSD,  

! using 0 based row/col indexing; 

  _R1    G           CONST 

    EP_POSD                3            6 

    QFIT_1_1               0            0 

    QFIT_2_1               1            0 

    QFIT_2_2               1            1 

    QFIT_3_1               2            0 

    QFIT_3_2               2            1 

    QFIT_3_3               2            2 

ENDMODEL 

 

If the above instructions are stored in the file posdmakecorr.mpi and at the command line we type: 
   runlindo posdmakecorr.mpi –sol 

then a solution file, posdmakecorr.sol, will be created, containing in part: 
 

*   OBJECTIVE FUNCTION VALUE 

*    1)                 0.010040800 

*                              XMATRIX                  ZMATRIX  

  VARIABLES                      VALUE             REDUCED COST  

  QFIT_1_1                 1.000000000             -0.040398696  

  QADJ_2_1                -0.059057019              0.000000000  

  QFIT_2_1                 0.634839076              0.059057019  

  QFIT_2_2                 1.000000000             -0.086332791  

  QADJ_3_1                 0.045704999              0.000000000  

  QFIT_3_1                -0.064022600             -0.045704999  

  QADJ_3_2                -0.066814075              0.000000000  

  QFIT_3_2                 0.730415219              0.066814075  

  QFIT_3_3                 1.000000000             -0.051708294  

 

Inputting SDP/POSD Constraints via a C Program 
The code below illustrates how to input an SDP/POSD model in MPI form via a C program. 
 
/* ex_sdp1.c 

  A C programming example for solving a mixed semidefinite and  

  conic quadratic programming problem, 
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  where the model is described via an instruction list. 

 

   Example model: 

  ***************************************************************** 

  *                                                               * 

  * minimize 2*(x00 + x10 + x11 + x21 + x22) + x0 ; 

  * st    x00 + x11 + x22 + x0 = 1 ; 

  *       x00 + x11 + x22 + 2*(x10 + x20 + x21) + x1 + x2 = 0.5 ; 

  *       x0^2 >= x1^2 + x2^2 ; 

  *       x0 >= 0 ; 

  *       | x00 x10 x20 | 

  *       | x10 x11 x21 |  is positive semidefinite 

  *       | x20 x21 x22 |  

  * 

  ***************************************************************** 

     

  Solving such a problem with the LINDO API involves  

  the following steps: 

  

      1. Create a LINDO environment. 

      2. Create a model in the environment. 

      3. Set up the instruction list of the model.  

      4. Load the model  

      5. Perform the optimization. 

      6. Retrieve the solution. 

      7. Delete the LINDO environment. 

*/ 

 

#include <stdio.h> 

#include <stdlib.h> 

/* LINDO API header file */ 

#include "lindo.h" 

/* Define a macro to declare variables for  

    error checking */ 

#define APIERRORSETUP  \ 

   int nErrorCode; \ 

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH] \ 

                         

/* Define a macro to do our error checking */ 

#define APIERRORCHECK  \ 

   if (nErrorCode) \ 

   { \ 

      if ( pEnv) \ 

      { \ 

         LSgetErrorMessage( pEnv, nErrorCode, \ 

          cErrorMessage); \ 

         printf("nErrorCode=%d:  %s\n", nErrorCode, \ 

          cErrorMessage); \ 

      } else {\ 

         printf( "Fatal Error\n"); \ 

      } \ 

      exit(1); \ 

   } \ 

 

#define APIVERSION \ 

{\ 
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    char szVersion[255], szBuild[255];\ 

    LSgetVersionInfo(szVersion,szBuild);\ 

    printf("\nLINDO API Version %s built on %s\n",szVersion,szBuild);\ 

}\ 

 

/* Set up an outputlog function. */ 

static void LS_CALLTYPE print_line_log(pLSmodel pModel, char *line, void 

*userdata) 

{ 

  if (line) 

  { 

    printf("%s",line); 

  } /*if*/ 

} /*print_line*/ 

 

/* main entry point */ 

int main() 

 

{ 

   APIERRORSETUP; 

/* declare an instance of the LINDO environment object */ 

   pLSenv pEnv = NULL; 

/* declare an instance of the LINDO model object */ 

   pLSmodel pModel, pModelR=NULL; 

 

   char MY_LICENSE_KEY[1024]; 

   int n, m, nC, status ; 

   double dObj; 

  /**************************************************************** 

   * Step 1: Create a LINDO environment. 

   ****************************************************************/ 

   nErrorCode = 

LSloadLicenseString("../../../license/lndapi100.lic",MY_LICENSE_KEY); 

   APIERRORCHECK; 

   APIVERSION; 

 

 

   pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

   if ( nErrorCode == LSERR_NO_VALID_LICENSE) { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

 

  /**************************************************************** 

   * Step 2: Create a model in the environment. 

   ****************************************************************/ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   APIERRORCHECK; 

   { 

  /**************************************************************** 

   *  Step 3: Set up the instruction list of the model.  

   ****************************************************************/ 

      int nobjs, ncons, nvars, nnums, lsize;  

      int objsense[10]; 

      char ctype[10], vtype[10]; 
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      int code[200]; 

      double numval[10],varval[10]; 

      int objs_beg[10], objs_length[10], cons_beg[10], cons_length[10]; 

      double lwrbnd[10], uprbnd[10]; 

      int ikod, iobj, icon;  

       

      /* Number of constraints */ 

      ncons = 4; 

      /* Number of objectives */ 

      nobjs = 1; 

      /* Number of variables */ 

      nvars = 9; 

      /* Number of real number constants */ 

      nnums = 4; 

 

      /*************** 

      variable name vs index  

       * 0   X00  

       * 1   X10  

       * 2   X11  

       * 3   X21  

       * 4   X22  

       * 5   X0   

       * 6   X20  

       * 7   X1   

       * 8   X2  

      **********************/ 

 

      /* Lower bounds of variables */ 

      lwrbnd[0]=-1e30; 

      lwrbnd[1]=-1e30; 

      lwrbnd[2]=-1e30; 

      lwrbnd[3]=-1e30; 

      lwrbnd[4]=-1e30; 

      lwrbnd[5]=0    ; 

      lwrbnd[6]=-1e30; 

      lwrbnd[7]=-1e30; 

      lwrbnd[8]=-1e30; 

 

      /* Upper bounds of variables */ 

      uprbnd[0]=1e30; 

      uprbnd[1]=1e30; 

      uprbnd[2]=1e30; 

      uprbnd[3]=1e30; 

      uprbnd[4]=1e30; 

      uprbnd[5]=1e30; 

      uprbnd[6]=1e30; 

      uprbnd[7]=1e30; 

      uprbnd[8]=1e30; 

 

      /* Starting point of variables */ 

      varval[0]=0.0; 

      varval[1]=0.0; 

      varval[2]=0.0; 

      varval[3]=0.0; 

      varval[4]=0.0; 
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      varval[5]=0.0; 

      varval[6]=0.0; 

      varval[7]=0.0; 

      varval[8]=0.0; 

 

      /* Variable type, C= continuous, B = binary */ 

      vtype[0] = 'C'; 

      vtype[1] = 'C'; 

      vtype[2] = 'C'; 

      vtype[3] = 'C'; 

      vtype[4] = 'C'; 

      vtype[5] = 'C'; 

      vtype[6] = 'C'; 

      vtype[7] = 'C'; 

      vtype[8] = 'C'; 

 

   /* Double Precision constants in the model */ 

      numval[0]=2.0; 

      numval[1]=1.0; 

      numval[2]=2.0; 

      numval[3]=0.5; 

 

      /* Count for instruction code */ 

   ikod = 0; 

      /* Count for objective row */ 

   iobj = 0; 

      /* Count for constraint row */ 

   icon = 0; 

 

      /* 

       *  Instruction code of the objective: 

       *   

       *  min  2*(x00 + x10 + x11 + x21 + x22) + x0 

       */ 

 

      /* Direction of optimization */ 

      objsense[iobj]= LS_MIN; 

      /* Beginning position of objective */ 

      objs_beg[iobj]=ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_NUM;    

      code[ikod++]=    0;    

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    0;    

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    1;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    2;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    3;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    4;    

      code[ikod++]=  EP_PLUS; 
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      code[ikod++]=  EP_MULTIPLY; 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    5;    

      code[ikod++]=  EP_PLUS; 

 

   /* Length of objective */ 

      objs_length[iobj] = ikod - objs_beg[iobj]; 

      /* Increment the objective count */ 

   iobj++; 

 

      /* 

       *  Instruction code of constraint 0: 

       *   x00 + x11 + x22 + x0 = 1 ; 

       */ 

 

   /* Constraint type */ 

      ctype[icon]= 'E';   /* less or than or equal to */ 

      /* Beginning position of constraint 0 */ 

      cons_beg[icon]= ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    0;    

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    2;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    4;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    5;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_NUM;    

      code[ikod++]=    1;    

      code[ikod++]=  EP_MINUS; 

 

   /* Length of constraint 0 */ 

      cons_length[icon] = ikod - cons_beg[icon]; 

      /* Increment the constraint count */ 

   icon++; 

 

      /* 

       *  Instruction code of constraint 1: 

       * 

       *   x00 + x11 + x22 + 2*(x10 + x20 + x21) + x1 + x2 = 0.5 ; 

       */ 

 

   /* Constraint type */ 

      ctype[icon]= 'E';   /* less or than or equal to */ 

      /* Beginning position of constraint 1 */ 

      cons_beg[icon]= ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    0;    

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    2;    

      code[ikod++]=  EP_PLUS; 
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      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    4;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_NUM;    

      code[ikod++]=    2;    

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    1;    

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    6;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    3;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_MULTIPLY ; 

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    7;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    8;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_NUM;    

      code[ikod++]=    3;    

      code[ikod++]=  EP_MINUS; 

 

   /* Length of constraint 1 */ 

      cons_length[icon] = ikod - cons_beg[icon]; 

      /* Increment the constraint count */ 

   icon++; 

 

      /* 

       *  Instruction code of constraint 2: 

       *   x0^2 >= x1^2 + x2^2 ; 

       */ 

 

   /* Constraint type */ 

      ctype[icon]= 'G';   /* less or than or equal to */ 

      /* Beginning position of constraint 2 */ 

      cons_beg[icon]= ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    5;    

      code[ikod++]=  EP_SQR;    

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    7;    

      code[ikod++]=  EP_SQR; 

      code[ikod++]=  EP_PUSH_VAR;    

      code[ikod++]=    8;    

      code[ikod++]=  EP_SQR;    

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_MINUS; 

 

   /* Length of constraint 2 */ 

      cons_length[icon] = ikod - cons_beg[icon]; 

      /* Increment the constraint count */ 

   icon++; 
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      /* 

       *  Instruction code of constraint 3: 

       *   | x00 x10 x20 | 

       *   | x10 x11 x21 |  is positive semidefinite 

       *   | x20 x21 x22 |  

       */ 

 

   /* Constraint type */ 

      ctype[icon]= 'G';    

      /* Beginning position of constraint 3 */ 

      cons_beg[icon]= ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_POSD  ;   // POSD constraint 

      code[ikod++]=    3;   // dimension of matrix 

      code[ikod++]=    6;   // number of matrix elements    

      // 1st matrix element 

      code[ikod++]=    0;  // variable index    

      code[ikod++]=    0;  // row index 

      code[ikod++]=    0;  // col index  

      // 2nd matrix element 

      code[ikod++]=    1;  // variable index    

      code[ikod++]=    1;  // row index 

      code[ikod++]=    0;  // col index  

      // 3rd matrix element 

      code[ikod++]=    6;  // variable index    

      code[ikod++]=    2;  // row index 

      code[ikod++]=    0;  // col index  

      // 4th matrix element 

      code[ikod++]=    2;  // variable index    

      code[ikod++]=    1;  // row index 

      code[ikod++]=    1;  // col index  

      // 5th matrix element 

      code[ikod++]=    3;  // variable index    

      code[ikod++]=    2;  // row index 

      code[ikod++]=    1;  // col index  

      // 6th matrix element 

      code[ikod++]=    4;  // variable index    

      code[ikod++]=    2;  // row index 

      code[ikod++]=    2;  // col index  

 

   /* Length of constraint 3 */ 

      cons_length[icon] = ikod - cons_beg[icon]; 

      /* Increment the constraint count */ 

   icon++; 

 

      /* Total number of items in the instruction list */ 

      lsize = ikod; 

 

   /**************************************************************** 

   *  Step 4: Load the model 

   ****************************************************************/ 

     /* Pass the instruction list to problem structure  

       * by a call to LSloadNLPCode() */ 

      nErrorCode = LSloadInstruct (pModel, ncons, nobjs, nvars, nnums,  

                    objsense, ctype,  vtype, code, lsize, NULL, 
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                    numval, varval, objs_beg, objs_length, cons_beg,  

                    cons_length, lwrbnd, uprbnd); 

      APIERRORCHECK; 

   }    

 

   /*************************************************************** 

    * Step 5: Optimize the model 

    ***************************************************************/ 

   /*  Set a log function to call.  */ 

   nErrorCode = LSsetModelLogfunc(pModel, (printModelLOG_t) print_line_log, 

NULL); 

   APIERRORCHECK; 

 

   nErrorCode = LSgetInfo(pModel,LS_IINFO_NUM_VARS,&n); 

   nErrorCode += LSgetInfo(pModel,LS_IINFO_NUM_CONS,&m); 

   nErrorCode += LSgetInfo(pModel,LS_IINFO_NUM_CONT,&nC); 

   APIERRORCHECK; 

 

   nErrorCode = LSoptimizeQP( pModel, &status); 

   APIERRORCHECK; 

 

   /*************************************************************** 

    * Step 6: Access the final solution if optimal or feasible 

    ***************************************************************/ 

   if (status == LS_STATUS_OPTIMAL || 

       status == LS_STATUS_BASIC_OPTIMAL || 

       status == LS_STATUS_LOCAL_OPTIMAL || 

       status == LS_STATUS_FEASIBLE) 

   { 

     double *primal = NULL, *dual = NULL; 

     int    j; 

 

     primal = (double *) malloc(n*sizeof(double)); 

     dual   = (double *) malloc(m*sizeof(double)); 

 

     nErrorCode = LSgetPrimalSolution( pModel, primal) ; 

     APIERRORCHECK; 

     nErrorCode = LSgetDualSolution( pModel, dual) ; 

     APIERRORCHECK; 

     nErrorCode = LSgetInfo(pModel,LS_DINFO_POBJ,&dObj); 

     APIERRORCHECK; 

 

     printf ("\n Objective at solution = %f \n", dObj); 

 

 

     // un/comment the block below if you would like  

     // the primal and dual solutions to be printed on the screen. 

     if (1){ 

       char szname[255]; 

       printf ("\n Primal Solution\n"); 

       printf("\t%8s %18s\n","VARS", "Primal"); 

       for (j = 0; j<n; j++) 

       { 

         nErrorCode = LSgetVariableNamej(pModel,j,szname); 

         printf("\t%8s %18.10e\n",szname, primal[j]); 

       } 
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       printf ("\n Dual Solution\n"); 

       printf("\t%8s %18s\n","CONS", "Dual"); 

       for (j = 0; j<m; j++) 

       { 

         nErrorCode = LSgetConstraintNamei(pModel,j,szname); 

         printf("\t%8s %18.10e\n",szname, dual[j]); 

       } 

     } 

     free(primal); 

     free(dual); 

   } 

   else 

   { 

     char strbuf[255]; 

     LSgetErrorMessage(pEnv,nErrorCode,strbuf); 

     printf ("\n Optimization failed. Status = %d ",status); 

     //printf ("\n Error %d: %s\n",nErrorCode,strbuf); 

   } 

 

   /*************************************************************** 

    * Step 7: Terminate 

    ***************************************************************/ 

   nErrorCode = LSdeleteModel( &pModel); 

   nErrorCode = LSdeleteEnv( &pEnv); 

 

Terminate: 

 

  /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   //getchar(); 

} 

 

Black-Box Style Interface  
One of the critical issues in efficient solution of NLP models using LINDO API’s black-box style 

interface is the exploitation of linearity and sparsity. The NLP solver can exploit linearity in the model 

where it exists if the user (optionally) points out in advance the location of the linear and nonlinear 

elements. This also allows the solver to partially see “inside the black box” to the extent that the user 

provides information about the nonzero structures of:  a) the linear terms  (step 3 below), and b)) the 

derivatives of nonlinear terms in the model (step 4 below).   

The other issue specific to black-box interface is the set-up of a callback function (step 5 below) to 

compute functional values of nonlinear terms, and optionally their gradients (step 6 below), in the 

model. 

For an efficient implementation of the black-box interface, the front-end or calling application must do 

the following steps: 

3. Create a LINDO environment with a call to LScreateEnv(). 

4. Create a model structure in this environment with a call to LScreateModel(). 

5. Load problem structure and linear data into the model structure with a call to 

LSloadLPData(). 
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6. Load nonlinear problem structure into the model structure with a call to 

LSloadNLPData(). 

7. Provide a pointer to a nonlinear function evaluation routine with a call to 

LSsetFuncalc(). 

8. Optionally, provide a pointer to a gradient calculation routine with a call to 

LSsetGradcalc(). 

9. Solve the problem with a call to LSoptimize(). 

10. Retrieve the solution with calls to LSgetInfo(), LSgetPrimalSolution(), and 

LSgetDualSolution(). 

11. Delete the model and environment with a call to LSdeleteEnv(). 

We first illustrate with an example how LP and NLP pieces of model data are loaded to the solver. Set 

up of callback functions referred to in steps 5 and 6 are discussed later in this chapter. 

Loading Model Data 
Consider the following minimization problem with 8 variables and 6 constraints, with finite bounds on 

all variables. It has both linear and nonlinear components.  

Minimize   x0 + log(x0*x1) + x3  + x2
2
    

s.t.      

Constraint 0:   + x3 + x5  400 

Constraint 1:   - 25*x3 + 25*x4 + 25*x6  10000 

Constraint 2:   - x4 + x7  100 

Constraint 3:   100*x0 - x1*x5 +  883*x3  83333 

Constraint 4:    x2*x3 - x2*x6 – 1250*x3 + 

1250*x4 

 

 

 

0.0 

Constraint 5:    x3*x4 – x2*x7 – 2500*x4  -1250000 

Bounds:      

 100  x1  10000 

 1000  x2  10000 

 1000  x3  10000 

 10  x4  1000 

 10  x5  1000 

 10  x6  1000 

 10  X7  1000 

 10  X8  1000 

Phase I: Loading LP structure 
The first step in loading model data is to ignore all nonlinear terms in the model and scan for linear 

terms to construct the LP coefficient matrix.   

Examining the model row-by-row, we note that 

1. Objective row, indexed -1, is linear in x0 and x3, 

2. Constraint 0 is linear in x3 and x5, 

3. Constraint 1 is linear in x3, x4, and x6, 
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4. Constraint 2 is linear in x4 and x7, 

5. Constraint 3 is linear in x0 and x3, 

6. Constraint 4 is linear in x4, 

7. Constraint 5 is not linear in any variables. 

Denoting nonlinear coefficients by “*”, this implies the NLP model has the following coefficient 

matrix  

 

 

 

 

 

        A =  

 

 

 

 

 

The matrix has 8 columns, 6 rows and 19 nonzeros. Using the guidelines in Chapter 1, we obtain the 

following sparse representation, where we use a 0 as a place-holder for nonlinear coefficients  

Column-start=[0, 1, 2,    4,                  9,             13,    15,   17,  

19]  

Row-Index= [  3, 3, 4, 5, 0,   1,   3, 4, 5,  1,  2,    4, 5, 0, 3,  1, 4, 2, 5] 

Values   = [100, 0, 0, 0, 1, -25, 883, 0, 0, 25, -1, 1250, 0, 1, 0, 25, 0, 1, 0] 

Other LP components, the cost vector, right-hand-side values, variable bounds, and constraint senses, 

are obtained from the original model that can be listed as 

Objective coefficients = [    1,     0,     0,    1,    0,    0,    0] 

Lower bounds           = [  100,   100,  1000,   10,   10,   10,   10] 

Upper bounds           = [10000, 10000, 10000, 1000, 1000, 1000, 1000]  

Right-hand-side vector = [400, 10000, 100, 83333, 0, -1250000] 

Constraint senses      = [  L,     L,   L,     L, L,        L] 

These Phase-I linear components can be represented using arrays of appropriate types in any 

programming language and be loaded to LINDO API using the LSloadLPData function just as in a 

linear model. 

Phase II: Loading NLP structure 

The next step in loading model data is to ignore all linear terms in the model and determine the 

nonzero structure of the NLP terms. A nonlinear (nonzero) coefficient is said to exist for row i, 

variable j, if the partial derivative of a row i with respect to variable j is not a constant. Scanning the 

model row-by-row, we observe the following 

8. Objective row, indexed -1, is nonlinear in x0, x1 and x2, 

9. Constraint 0 has no nonlinear terms, 

10. Constraint 1 has no nonlinear terms  

11. Constraint 2 has no nonlinear terms  

12. Constraint 3 is nonlinear in x1 and x5, 

 0 1 2 3 4 5 6 7 

0       1    1     

1     -25 25  25   

2      -1   1 

3 100 *  883  *    

4    * * 1250  *   

5      * * *     *  
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13. Constraint 4 is nonlinear in x2, x3 and x6, 

14. Constraint 5 is nonlinear in x2, x3, x4 and x7 

At this point we are interested in only the nonlinear coefficients of the constraints, i.e., the “*” in the 

previous matrix.  The sparse representation of this sub-matrix is 

 
Column-start = [0, 0, 1,    3,    5, 6, 7, 8, 9]  

Row-Index       = [3, 4, 5, 4, 5, 5, 3, 4, 5] 

The nonlinearities in the objective function are represented in a similar fashion using sparse 

representation.  We simply determine the number of nonlinear variables in the objective function and 

place the indices of these nonlinear variables in an array. 

Number of nonlinear-variables = 3 

Nonlinear variable-index = [0, 1, 2] 

As in phase-I, these components can be represented using arrays of appropriate types in any 

programming language, and be loaded to the solver via LSloadNLPData function. If required, 

integrality restrictions can be imposed using LSloadVarType function (see Chapter 2). In the section 

Sample Programming Problems, Examples 1 and 3 give complete code illustrating the Black-box style 

method. 

 Evaluating Nonlinear Terms via Callback Functions 
The black-box approach requires the user to set up a callback function that computes the functional 

values for f(x) and gi(x) for a given a row index i. A reference to this function is passed to the solver 

via LSsetFuncalc() routine so that it could evaluate functional values as needed. Optionally, a second 

callback function, which computes the partial derivatives, could be set via LSsetGradcalc() routine.  

However, since LINDO API is equipped with a versatile differentiation toolbox, it can compute the 

partial derivatives using functional values provided by the first callback function. This makes the use 

of a second callback function for derivatives optional.  In this approach, if the user does not provide a 

second callback function, the solver will automatically invoke its internal differentiation tools to 

compute derivatives.   

For certain classes of NLP models, however, a carefully implemented callback function for partial 

derivatives may be a more efficient than automatic differentiation.  In particular, for models where the 

nonlinear terms have potential numerical issues over certain ranges in the domains they are defined, a 

user-defined function may provide better means to control numerical accuracy. This advantage could 

lead to improved overall performance.  

In the following, we give the C prototypes for these callback functions. The function names, 

pFuncalc() and pGradcalc(), are arbitrary, and are used merely for illustration. Since these functions 

will reside in your calling application, you may choose any name you wish. However, the interfaces 

described must be preserved.  
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pFuncalc() 

Description:  

This is a user/frontend supplied routine to compute the value of a specified nonlinear row, 

given a current set of variable values. This function must be provided in order to solve 

nonlinear programs with black-box style interface. Use the LSsetFuncalc() routine (see 

Chapter 2) to identify your pFuncalc() routine to LINDO API. 

Returns:  

Returns a value greater than 0 if a numerical error occurred while computing the function 

value (e.g., square root of a negative number). Otherwise, returns 0. 

Prototype:  

int  pFuncalc ( pLSmodel pModel,  

                 void     *pUserData,           int     nRow,   

              double    *pdX,                     int      nJDiff,  

              double      dXJDiff,         double   *pdFuncVal,  

                  void    *pReserved);  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

pUserData Pointer to a user data area or structure in which any data 

needed to calculate function values can be stored (e.g., the 

number of variables). LINDO API obtains the value of this 

pointer when the pFuncalc() routine is established through a 

call to LSsetFuncalc() (see below). Subsequently, whenever 

LINDO API calls your pFuncalc() routine, it passes the same 

pointer value through pUserData. Any data that pFuncalc() 

needs to compute the value of a row in the model should be 

stored in the data structure pointed to by pUserData. 

nRow The row of the model to be evaluated. If nRow = -1, then it is 

assumed to be the objective row. Otherwise, nRow is the 

0-based index of the row to evaluate. 

pdX A pointer to an array containing the values of the decision 

variables at the point where the row is to be evaluated (i.e., 

pdX[ j] = value of variable j at current point for j = 0, 1, …, 

nNVars –1, where nNVars is the number of variables). 



488 CHAPTER 7 

  

nJDiff, dXJDiff If nJDiff is < 0, then pdX[] contains a new base point. If 0  

nJDiff < nNVars, then the current point is different from the 

current base point solely in dimension nJDiff, and the value of 

pdX[ nJDiff] at the base point is contained in the dXJDiff 

variable. If nJDiff is ≥ the number of variables, then pdX[] 

contains the previous base point, but the row to evaluate, 

nRow, has changed. Without loss of correctness, nJDiff and 

dXJDiff can be ignored (by setting nJDiff=-1). In certain cases, 

however, exploiting these arguments can reduce function 

evaluation times dramatically (an example is given below). 

Keep in mind that your implementation will be complicated 

through the use of these parameters. Therefore, the first time 

user may choose to ignore them. 

Output Arguments:  

Name  Description  

pdFuncVal *pdFuncVal returns the value of the function. 

pReserved A pointer reserved for future use. 

Remarks:  

 Any explicit constant term is assumed to have been brought to the left-hand side of the 

constraint. That is, an equality constraint is assumed to have been put in the standard 

form gi( x) = 0.  pdFuncalc() returns the value of gi( x).  

 The parameter nJDiff allows pFuncalc() to exploit some efficiencies in typical usage. In 

a model with many nonlinear variables, a major portion of the work in pFuncalc() may 

be in copying the variable values from pdX[] to local storage (typically in pUserData). 

The nonlinear solver may call pFuncalc() several times sequentially where the only 

difference in inputs is in the parameter nRow (i.e., the pdX[] values remain unchanged). 

Values of nJDiff ≥ the number of variables indicate this situation. 

 Somewhat similarly, if finite differences rather than derivatives are being used, the 

nonlinear solver may call pFuncalc() several times sequentially where the only 

difference in the pdX[] vector is in a single element pdX[ nJDiff]. Thus, if pFuncalc() has 

retained the values of the pdX[] from the previous call, then only the value pdX[ nJDiff] 

need be copied to local storage.  

 Further efficiencies may be gained when a row is separable in the variables. For 

example, suppose the objective is: ∑ i=1,1000 ( log( x[ i]). This would be an expensive 

function to evaluate at each point due to the time required to compute logarithms. In the 

case where finite differences are being used, performance could be improved 

dramatically in the case where pdX[] differs from the base point in a single dimension 

(i.e., when 0 ≤ nJDiff < number of variables). For example, suppose you have stored the 

function’s value at the base point in the variable dGBase, which will typically be part of 

the pUserData structure. This would allow us to recalculate the row’s value using the 

formula: dGBase + log( pdX[ nJDiff]) – log( dXJBase). This strategy reduces the number 

of logarithm computations to only 2 rather than 1000. 
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pGradcalc() 

Description:  

This is a user-supplied routine to compute the partial derivatives (i.e., gradient) of a specified 

nonlinear row given a current set of variable values. This function’s name, pGradcalc(), is 

arbitrary, and is used merely for illustration. Since this function will reside in your calling 

application, you may choose any name you wish. However, the interface described below 

must be duplicated. This function must be provided only if you do not want LINDO API to 

use finite differences. In which case, pGradcalc() will be called by LINDO API when it needs 

gradient information. Use the LSsetGradcalc() routine (see below) to identify your 

pGradcalc() routine to LINDO API. 

Returns:  

Returns a value greater than 0 if a numerical error occurred while computing partial values 

(e.g., square root of a negative number). Otherwise, returns 0. 

Prototype:  

int  pGradcalc ( pLSmodel pModel,  

              void     *pUserData,            int     nRow,   

           double    *pdX,                double     pdLB,  

           double    *pdUB,                    int     nNewPnt,  

                  int      nNPar,                   int   *pnParList,  

           double    *pdPartial)  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

pUserData Pointer to a user data area or structure in which you can store 

any data that is needed to calculate gradient values (e.g., 

number of variables). LINDO API obtains the value of this 

pointer when you establish your pGradcalc () routine through a 

call to LSsetGradcalc() (see below). Subsequently, whenever 

LINDO API calls your pGradcalc () routine, it passes the same 

pointer value through pUserData. Any data that pGradcalc () 

needs to compute partial derivatives should be stored in the 

data structure pointed to by pUserData. The pUserData data 

structure may be the same one used in pFuncalc(). 

nRow The row of the model for which partial derivatives are needed. 

pdX The values of the decision variables at the current point (i.e., 

pdX[j] = value of variable j at current point, for j = 0, 1,…). 

pdLB pdLB[ j] = lower bound on variable j. 

pdUB pdUB[ j] = upper bound on variable j. 

nNewPnt 

 

nNewPnt will be 0 if the variable values in pdX[ ] are the same 

as in the preceding call. If these values are still stored in your 

pUserData memory block, then they need not be copied again, 
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thereby improving performance. If any of the values are 

different, then nNewPnt will be greater than 0. Without loss of 

correctness, nNewPnt can be ignored. In certain cases, 

however, exploiting the information it provides can reduce 

function evaluation time. 

nNPar Number of variables for which partial derivatives are needed. 

pnParList pnParlList[ j] = 0-based index of the j-th variable for which a 

partial derivative is needed.  

Output Arguments:  

Name  Description  

pdPartial pdPartial[ j] = partial derivative with respect to variable j. In 

most cases, many of the elements of pdPartial[] will not have 

to be set. You need only set those elements listed in 

pnParList[]. LINDO API allocates the space for this array 

before calling pGradcalc (). 

 Remarks:  

 The variable bounds are passed for use in computing partials of functions with 

discontinuous derivatives. Note, the bounds may change from one call to the next if the 

model contains integer variables and the solver is performing branch-and-bound.  

 

Grey-Box Style Interface  
The grey-box style interface allows the user to supply some functions in instruction list style and 

others in the black-box style. This mixed approach is particularly useful for cases where function 

evaluating routines were implemented in the past (possibly in some other language) and it is 

imperative to reuse the existing source code. It might also be the case that some functions are difficult 

to express in an instruction list or even impossible due to lack of closed forms (like simulation output). 

In such case, the user can formulate an instruction-list using the EP_USER operator wherever the need 

arises to evaluate some of the expressions in a user-defined function. A simple C programming 

example using the grey-box interface is given as Example 5. 
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Usercalc() 

Description:  

In Grey-box style interface, this is the user/front-end supplied routine, required by the 

EP_USER operator, to compute the value of a user-defined function for a given set of 

arguments. The arguments the function uses are passed through in a double array of a pre-

specified size.  
 

This function name used here, Usercalc(), is arbitrary, and is merely for illustration. Since 

this function will reside in your calling application, you may choose any name you wish. 

However, the interface described below must be duplicated.  
 

This function should be provided for all nonlinear models that contain the EP_USER 

operator. This operator is particularly useful in expressing nonlinear relations, which are 

difficult or impossible to express in closed form. You should use the LSsetUsercalc() routine 

to identify your Usercalc() routine to LINDO API. 

Returns:  

Returns a value greater than 0 if a numerical error occurred while computing the function 

value (e.g., square root of a negative number). Otherwise, return 0. 

Prototype:  

int  Usercalc ( pLSmodel pModel, int  nArgs, double *pdValues, 

void *pUserData,  double *pdFuncVal);  

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

nArgs The number of arguments the function requires to evaluate the 

function value.   

pdValues A pointer to a double array containing the values of the 

arguments that will be used to evaluate the function. The size 

of  this array is specified by nArgs.  

pUserData Pointer to a user data area or structure in which any other data 

needed to calculate function values can be stored (e.g., input 

for a simulation experiment). LINDO API obtains the value of 

this pointer when the Usercalc() routine is established through 

a call to LSsetFuncalc() (see below). Subsequently, whenever 

LINDO API calls your Usercalc() routine, it passes the same 

pointer value through pUserData. Any data that Usercalc() 

needs to compute the function value could be stored in the data 

structure pointed to by pUserData. 

Output Arguments:  

Name  Description  

pdFuncVal *pdFuncVal returns the value of the function. 

 



492 CHAPTER 7 

  

Remark:  

This single Usercalc() function can be used as a gateway to multiple black-box functions by 

extending the use of pdValues array. You simply increase the number of arguments by 1 and 

use the first argument (pdValues[0]) as an integer to identify which black-box function needs 

to be computed. In such a framework, each EP_USER instruction-block will have to be 

extended with EP_PUSH_NUM operator to include a unique function identifier to pass to 

Usercalc(). This allows the user to transform Usercalc() into a wrapper for all black-boxes. 

With the use of  “if-else” blocks based on the value of pdValue[0] in Usercalc(), the user can 

divert the computations to the desired black-box.  This approach is illustrated in Example 5 

with two black-boxes. 

Instruction Format 
The instruction for most functions consists of a single operator that is represented by its operator name 

or the integer referring to its index number in the above list. For example, addition can be written as 

‘EP_PLUS’ or ‘1’ in the instruction list. The exceptions are functions involving a vector argument, 

such as EP_SUM, EP_AVG, EP_MIN, and EP_MAX, or two arguments, such as EP_SUMPROD and 

EP_VLOOKUP. Here an additional integer appears immediately after the operator code in order to 

specify the number of elements in the operand vector. When the argument is a variable, PUSH_VAR is 

used to invoke loading of the variable and then the position of that variable in the integer vector is 

specified. For example, variable ‘x0’ that is the first variable (at position 0, since LINDO API uses 

zero-based counting) in the variable vector ‘x’, takes a vector of [EP_PUSH_VAR, 0] or [63, 0] in the 

instruction list. When the argument is a (double precision) constant, the operator EP_PUSH_NUM is 

used to invoke the loading of the double precision number and then the position of that double 

precision number in the double precision number vector is specified. For example, say 3.0 is the 

second number (at position 1) in the double precision number vector of r[5]=[1.0, 3.0, 5.0 2.0, 7.0]. 

Write [EP_PUSH_NUM, 1] or [62, 1] in the instruction list to denote the double precision number 3.0.  

Given these representation rules and postfix notation, an instruction list for arbitrary mathematical 

expressions can now be constructed. Below are three examples to illustrate this translation. 

Example 1 
Infix expression = x0 + x1* x2. The corresponding postfix expression = [x0 x1 x2 * +]. 

If the variable vector is defined as x = [x0, x1, x2], then the resulting instruction list looks like: 

[EP_PUSH_VAR, 0, EP_PUSH_VAR, 1, EP_PUSH_VAR, 2, EP_MULTIPLY, EP_PLUS] 

or, in the equivalent all integer form: 

[1063, 0, 1063, 1, 1063, 2, 1003, 1001] 

Example 2 
Infix expression = 2 * max(x0, x1 + 3, sin(x0+ x1)) 

Notice max takes a vector argument with 3 elements. Define a vector of variables x = [x0 , x1] and 

declare a vector of double precision constants r=[2.0 , 4.0] storing number values. Then, the 

mathematical expression can be translated into the postfix notation, and the result looks like: 

[ 2   x0    x1   3   +   x0    x1    +   sin   max   * ] 
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This can be converted to the following instruction list: 

[EP_PUSH_NUM, 0, EP_PUSH_VAR, 0, EP_PUSH_VAR, 1, EP_PUSH_NUM, 1, 

EP_PLUS, EP_PUSH_VAR, 0, EP_PUSH_VAR, 1, EP_PLUS, EP_SIN, EP_MAX, 3, 

EP_MULTIPLY] 

or, in the equivalent all integer form: 

[1062, 0, 1063, 0, 1063, 1, 1062, 1, 1001, 1063, 0, 1063, 1, 1001, 1023, 1058, 3, 1003] 

Example 3 
Infix expression= (x0 + x1 - 1) * (x1 + 3) – 9 * exp(-5 * x0

2
 / x1) 

Define the vector of variables x = [x0 , x1] and declare a double precision vector r =[1.0 , 3.0 , 9.0, 5.0, 

2.0] that includes all double precision numbers in the expression. The corresponding postfix = 

[ x0    x1    +    1   -   x1   3   +   *   9    5   x0   2   ^   *   x1   /   -  exp  *   - ] 

Thus, the resulting instruction list looks like: 

[EP_PUSH_VAR, 0, EP_PUSH_VAR, 1, EP_PLUS, EP_PUSH_NUM, 0, EP_MINUS, 

EP_PUSH_VAR, 1, EP_PUSH_NUM, 1, EP_PLUS, EP_MULTIPLY, EP_PUSH_NUM, 2, 

EP_PUSH_NUM, 3, EP_PUSH_VAR, 0, EP_PUSH_NUM, 4, EP_POWER, EP_MULTIPLY, 

EP_PUSH_VAR, 1, EP_DIVIDE, EP_NEGATE, EP_EXP, EP_MULTIPLY, EP_MINUS], 

or, in the equivalent all integer form: 

[1063, 0, 1063, 1, 1001, 1062, 0, 1002, 1063, 1, 1062, 1, 1001, 1003, 1062, 2, 1062, 3, 1063, 

0, 1062, 4, 1005, 1003, 1063, 1, 1004, 1017, 1030, 1003, 1002]. 

Note that the last operator, “ - ”, is a negate operation, rather than a minus, because it only involves a 

single operand in the calculation. Also note that the power expression, [x0 2 ^ ], can be equivalently 

replaced by [x0 square ]. 

Information about the instruction lists and variable bounds are then passed to LINDO API with a call 

to LSloadInstruct. 

Differentiation 

When solving a general nonlinear problem, the solution method used by LINDO API requires the 

computation of derivatives. The accuracy and efficiency of the derivative computation are of crucial 

importance for convergence speed, robustness, and precision of the answer. The instruction list form of 

input supports two approaches to compute derivatives: finite differences and automatic differentiation. 

The finite differences approach is the default method to compute derivatives when the local NLP 

solver is used. For highly nonlinear cases, this approach may have poor numerical precision for 

computing the matrix of partial derivatives of the constraints, the so-called Jacobian. The automatic 

differentiation approach computes derivatives directly from the instruction list code. When the Global 

optimizer is used, the default method to compute derivatives is automatic differentiation. To select the 

automatic differentiation option, call LSsetModelIntParameter() to set the value of parameter 

LS_IPARAM_NLP_AUTODERIV to 1.  
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Solving Non-convex and Non-smooth models 
The two main reasons that you may not have gotten the best possible solution for your nonlinear model 

are a) the model contained non-convex relations, or b) the model contained nonsmooth relations. 

Qualitatively, if a model is non-convex, it means that a solution method that moves only in a direction 

of continuous improvement will not necessarily lead one to the best possible solution. An example of a 

non-convex model is: 

Maximize (x -5)
2
; 

             0 ≤ x ≤12;  

If you start at x = 4, moving in the direction of an improving solution will lead to a local optimum of 

x = 0. The global optimum is in fact at x = 12.  

In a nonsmooth model, even though the model is convex, it may be difficult to find a direction of 

improvement. Examples of nonsmooth functions are abs( x ), and max(x, y ). For example, abs( x ) is 

not smooth at x = 0, while max(x, y) has a sharp break at x = y. 

 An example of a convex and nonsmooth model is:  

Minimize max(abs(x-5), abs(y-5));  

The obvious global optimum occurs at x = y = 5. If you start at x = y = 0, the objective value is 5. 

Notice that increasing x by itself does not help. Decreasing x hurts. Similar comments apply to y. Thus, 

traditional solution methods based on derivatives may be unable to find a direction of improvement at 

a point such as x = y = 0, which is not even a local optimum. In this case, the solver will simply quit. 

LINDO API has three methods available for eliminating difficulties caused by nonsmooth or non-

convex functions: a) linearization, b) multiple start points, and c) rigorous global optimization. 

Linearization 
Using the first of these methods, a process referred to as linearization, some of the nonlinear functions 

and expressions supported by LINDO API may be automatically converted into a series of linear 

expressions by the solver. Linearization replaces a nonlinear function or expression with a collection 

of additional variables and linear constraints such that the modified model is mathematically 

equivalent to the original. However, the nonlinear functions or expressions have been eliminated. Note 

that the linearization process may internally add a considerable number of constraints and variables, 

some of which are binary, to the mathematical program generated to optimize your model. 

Nonlinear functions, operators, and expressions that may be eliminated through linearization are: 

Functions Operators Expressions 

EP_ABS < x* y (where at least one of x and y is a binary 0/1 variable) 

EP_AND  u* v = 0 

EP_IF < > u* v  0 

EP_MAX =  

EP_MIN <  

EP_NOT   

EP_OR   
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To select the linearization options, you can use LSsetModelIntParameter() to set the value of the 

LS_IPARAM_NLP_LINEARZ parameter and determine the extent to which LINDO API will attempt to 

linearize models. The available options here are: 

1. 0 (Solver decides) - Do Maximum linearization if the number of variables is    12 or less. 

Otherwise, no linearization will be performed. 

2. 1 (None) - No linearization occurs. 

3. 2 (Minimum)- Linearize EP_ABS, EP_MAX, and EP_MIN functions and expressions of 

x* y , u* v = 0, and u* v  0 (complementarity constraint). 

4. 3 (Maximum) - Same as Minimum plus linearize EP_IF, EP_AND, EP_OR, EP_NOT, 

and all logical operations (i.e., , =, , and <>).  

By default, this parameter is set to 0 (Solver decides). 

When a nonlinear model can be fully linearized using nonlinear-to-linear conversions, you may find a 

global optimum rather than a local minimum, find a solution where none could be found before, and/or 

find an optimal solution faster. Even when the nonlinear model is merely partially linearized and 

remains nonlinear after linearization, you still may have a good chance to get the aforementioned 

benefits. However, there is no mathematical guarantee. 

To check the linearity of the model, you can use LSgetModelIntParameter() to get the value of the 

LS_IPARAM_NLP_LINEARITY parameter. If the return value is 1, then the solver has determined that 

your model is linear or has been completely linearized in the pre-processing step. This also means that 

the solution obtained is the global optimum. If the return value is 0, your model is nonlinear or remains 

nonlinear after linearization and the solution may be a local optimum.  

Note:    It is not possible to linearize a model, which is already loaded. If linearization needs to be 

used, it should be turned on before the call to LSloadInstruct.  

Delta and Big M Coefficients 
In linearization, two coefficients, Delta and Big M, are used to build up the additional linear 

constraints added as part of linearization. The Delta coefficient is a measure of how closely the 

additional constraints should be satisfied. To define the Delta coefficient, you can use 

LSsetModelDouParameter() to set the value of the LS_DPARAM_MIP_DELTA parameter. LINDO 

API defaults to the tightest possible Delta coefficient of Big M.  

On the other hand, when LINDO API linearizes a model, it will add forcing constraints to the 

mathematical program to optimize your model. These forcing constraints are of the form: 

f(variables)  M * y 

where M is the Big M coefficient and y is a 0/1 binary variable. The idea is that, if some activity in the 

model is occurring, the forcing constraint will drive y to take on the value of 1. Given this, setting the 

Big M value too small could result in an infeasible model. The astute reader might conclude it would 

be smart to make Big M quite large, thereby minimizing the change of an infeasible model. 

Unfortunately, setting Big M to a large number can lead to numerical round-off problems in the solver 

that result in infeasible or suboptimal solutions. Therefore, getting a good value for the Big M 

coefficient may take some experimenting. To set the Big M coefficient, use 

LSsetModelDouParameter() to set the value of the LS_DPARAM_MIP_ LBIGM parameter. The 

default value for Big M is 1.0e+5. 
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Precedence Relations and Complementarity Constraints 
When the linearization option is turned on, LINDO API will recognize the expression pattern of x*y 

that involves the multiplication of at least one 0/1 variable (i.e., y). The linearization manager may 

attempt to rearrange the sequence of a series of products and determine the best linearization strategies. 

Even when the original model expression involves parentheses to override the precedence rules, the 

linearization manager still recognizes the possible x*y pattern exists by expanding parentheses. 

Subsequently, it will linearize these linearizable expressions.  

Currently, the linearization manager rearranges and detects products involving only single variables 

and constants (e.g., 2* x0* y0* x1* y1) and performs a comprehensive linearization. Products involving 

nonlinear elements (e.g., exp(x) or sin(x), x^2) in complicated expressions (e.g., 2* x0* y0*exp( x1)) 

won’t be rearranged. Thus, the model might be merely partially linearized. 

For complementarity constraints (i.e., u*v = 0 or u*v  0 or u*v  0), LINDO API can recognize and 

linearize any product of two continuous or discrete variables (i.e., u and v) constrained to be equal to, 

less than, or greater than zero. In order to be recognized as complementarity constraints, the 

corresponding instruction list of the constraint should be expressed exactly as: 

[EP_PUSH_VAR, (variable index 1) , EP_PUSH_VAR, (variable index 2), EP_MULTIPLY]. 

Solving and Retrieving the Solution of a Linearized Model 
Linearization adds binary variables to the original model and makes it an (mixed) integer (nonlinear) 

programming problem.  In order to ensure proper solution, LSsolveMIP should be run on the 

linearized model. Solution vectors in a linearized model should be accessed via MIP specific solution 

query functions (e.g. LSgetMIPPrimalSolution).    

Since linearization modifies the original model by adding new variables and constraints to it, the user 

should be careful when allocating space for solution vectors.  In particular, the number of variables and 

constraints in a linearized model would constitute the basis for the size of solution vectors. For 

example, a model that has n_vars variables without linearization would have n_vars + k variables with 

linearization. Similarly, a model that has n_cons constraints without linearization would have n_cons 

+ t constraints with linearization.   

The actual values for the number of variables and constraints should be obtained by calling LSgetInfo 

function and then be used to allocate sufficient space for the solution vectors. The values of the first 

n_vars (n_cons) elements in the primal (dual) solution vectors of the linearized model refer to the 

primal (dual) solution of the original model.  

Multistart Scatter Search for Difficult Nonlinear Models  
In many real-world systems, the governing dynamics are highly nonlinear and the only way they can 

be accurately modeled is by using complex nonlinear relationships. Although linear or convex 

approximations are often possible, there are cases where such approximations lead to a significant loss 

in the accuracy of the model. In the presence of such nonlinear relationships, the analyst faces the 

difficult task of solving non-convex nonlinear models. The difficulty is mainly due to three factors: (i) 

there are an unknown number of locally optimal solutions in the feasible solution set, (ii) the quality of 

these local solutions vary substantially, and (iii) exploring the solution space, even for small problems, 

could be prohibitive. 
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In solving non-convex models, the ultimate goal is to find the best of the local optimal solutions. This 

is referred to as the global optimum. The optimization task involved with finding the global optimum 

is called global optimization. In the context of minimization, LINDO API provides globally optimal 

solutions to linear or convex quadratic (mixed-integer) models. For nonlinear models, the solution 

returned will be a local optimum and is not known to be the global minimizer. If the nonlinear 

objective function and the feasible solution set is known to be convex, then any local optimal solution 

could be assessed as the global minimizer. However, it is generally not possible to check if the 

nonlinear model under consideration is convex or not. Verifying this is harder than finding a proven 

global minimizer. 

For non-convex nonlinear models, LINDO API is equipped with a global optimization heuristic called 

the multistart nonlinear solver. This method explores the feasible solution space in search of better 

local optimal solutions. A multistart method for global optimization refers to a generic algorithm that 

attempts to find a global solution by starting the main nonlinear solver from multiple starting points in 

the solution space. This method is stochastic in nature and ensures that the chances to achieve a global 

optimum are 100% if the algorithm is run indefinitely long. However, for practical purposes, LINDO 

API allows the user to set an upper limit on the number of local solutions to be examined within a 

fixed number of iterations or during a finite duration of time. This approach generally leads to locating 

several high quality local optima and then returns the best one found.  

In Figure 7.1, a box-constrained non-convex nonlinear model is illustrated. This is based on a non-

convex combination of three Gaussian distributions. The formal model statement is as follows:  

MINIMIZE Z =  3*(1-X)
2
*exp(-(X

2
)-(Y+1)

2
) – 10*(X/5-X

3
-Y

5
)*exp(-(X

2
) 

              -Y
2
) – exp(-((X+1)

2
)-Y

2
)/3 

S.T.          3   X  -3 ,  3   Y   -3   

This model has multiple local optimal solutions and its objective values are highly scale-dependent. In 

the following section, the section Example 1: Black-Box Style Interface below demonstrates how the 

standard nonlinear solver is used to solve the model. In the Example 3: Multistart Solver for Non-

Convex Models below, the same model is solved using the multistart solver to demonstrate the 

achievable improvements in the solution quality. Example 3 illustrates the use of a standard callback 

function to access every local solution found during optimization.  
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Figure 7.1  

Global Optimization of Difficult Nonlinear Models 
For difficult nonlinear models that are either non-smooth or non-convex, the multistart search option is 

worth considering. However, the multistart option does not provide a guarantee of global optimality. If 

a guarantee of global optimality is desired, then one may invoke the global optimizer in LINDO API. 

The global optimizer uses a) branching to split the feasible region into sub regions and b) bounding to 

get a valid bound on the optimal objective value in each sub region. Sub regions for which the bound is 

worse than some incumbent solution are discarded. A promising sub region may be subdivided further 

in order to get a more accurate bound. The multistart option works with either the black-box or 

instruction list style of input. The global optimizer option works only with the instruction list input 

format. See the sections Black-Box Style Interface and Instruction-List Style Interface above for more 

information. 

The global solver supports a wide range of mathematical functions. Functions currently supported are 

identified in the earlier table: “Supported Operators and Functions” in the column, “Global supported”. 

If the model contains functions that are not supported, the global solver will terminate without 

computing a solution and return an error message of LSERR_GOP_FUNC_NOT_SUPPORTED. In 

such cases, the standard or multistart NLP solvers could be invoked by calling LSoptimize() (or 

LSsolveMIP() for integer models) to obtain a local optimal solution 

 

An obvious question is, why not use the global solver option all the time? The answer is that finding a 

guaranteed global optimum is an NP-hard task. That is, just as with integer programs, the time to find a 

guaranteed global optimum may increase exponentially with problem size. 
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Sample Nonlinear Programming Problems 
Example 1: Black-Box Style Interface:  
This example illustrates the use of LINDO API to build and solve a small nonlinear model whose 

unconstrained version is illustrated in Figure 7.1 above. The black-box style interface is used. This 

requires a (callback) function to evaluate the objective function and constraints of the model. The 

callback function will be installed using the LSsetFuncalc() routine. A second callback function that 

computes the partial derivatives of the objective function and constraints is also provided. This second 

callback function is optional and need not be specified. LINDO API can approximate the derivatives 

from the functional values using a technique called finite differences. 

/* 

############################################################# 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

############################################################# 

  File   : ex_nlp1.c 

  Purpose: Solve a NLP using the black-box style interface. 

  Model  : A nonlinear model with multiple local minimizers. 

 

        minimize  f(x,y) =  3*(1-x)^2*exp(-(x^2) - (y+1)^2) 

                         - 10*(x/5 - x^3 - y^5)*exp(-(x^2)-(y^2)) 

                         - 1/3*exp(-(x(+1)^2) - (y^2)); 

        subject to 

                         x^2 + y   <=  6; 

                         x   + y^2 <=  6; 

*/ 

#include <stdio.h> 

#include <math.h> 

#include <string.h> 

#include "lindo.h" 

 

/* the summands of the objective function */ 

#define  g1(X,Y) ( exp( -pow(X  ,2)  - pow(Y+1,2) )  ) 

#define  g2(X,Y) ( exp( -pow(X  ,2)  - pow(Y  ,2) )  ) 

#define  g3(X,Y) ( exp( -pow(X+1,2)  - pow(Y  ,2) )  ) 

#define  f1(X,Y) ( pow(1-X,2)                        ) 

#define  f2(X,Y) ( X/5 - pow(X  ,3)  - pow(Y  ,5)    ) 

/* partial derivatives of the summands */ 

#define dxg1(X,Y)  ( g1(X,Y)*(-2)*X     ) 

#define dyg1(X,Y)  ( g1(X,Y)*(-2)*(Y+1) ) 

#define dxg2(X,Y)  ( g2(X,Y)*(-2)*X     ) 

#define dyg2(X,Y)  ( g2(X,Y)*(-2)*Y     ) 

#define dxg3(X,Y)  ( g3(X,Y)*(-2)*(X+1) ) 

#define dyg3(X,Y)  ( g3(X,Y)*(-2)*Y     ) 

#define dxf1(X,Y)  ( 2*(1-X)            ) 

#define dyf1(X,Y)  ( 0                  ) 

#define dxf2(X,Y)  ( 1/5 - 3*pow(X,2)   ) 

#define dyf2(X,Y)  ( -5*pow(Y,4)        ) 
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/**************************************************************** 

   Standard callback function to display local and intermediate 

   solutions 

 ****************************************************************/ 

int  LS_CALLTYPE print_log(pLSmodel model, int iLoc, void *cbData) 

{ 

  int iter=0,niter,biter,siter; 

  int *nKKT = (int *) cbData, npass; 

  double pfeas=0.0,pobj=0.0,dfeas=0.0; 

  double bestobj; 

  static int ncalls = 0; 

 

  if (iLoc==LSLOC_LOCAL_OPT) 

  { 

    LSgetCallbackInfo(model,iLoc,LS_IINFO_NLP_ITER,&niter); 

    LSgetCallbackInfo(model,iLoc,LS_IINFO_SIM_ITER,&siter); 

    LSgetCallbackInfo(model,iLoc,LS_IINFO_BAR_ITER,&biter); 

    LSgetCallbackInfo(model,iLoc,LS_DINFO_POBJ,&pobj); 

    LSgetCallbackInfo(model,iLoc,LS_DINFO_PINFEAS,&pfeas); 

    LSgetCallbackInfo(model,iLoc,LS_DINFO_DINFEAS,&dfeas); 

    LSgetCallbackInfo(model,iLoc,LS_IINFO_MSW_PASS,&npass); 

    LSgetCallbackInfo(model,iLoc,LS_DINFO_MSW_POBJ,&bestobj); 

    iter = niter+siter+biter; 

    printf("%5d %5d %16.5e %16.5e %16.5e %16.5e\n", 

      npass,iter,pobj,pfeas,dfeas,bestobj); 

    (*nKKT)++; 

  } 

  else if (iLoc == LSLOC_CONOPT) 

  { 

    if (ncalls == 0) 

    { 

      printf("%5s %5s %16s %16s %16s %16s\n", 

        "PASS","ITER","POBJ","PINFEAS","DINFEAS","BESTOBJ"); 

    } 

    LSgetCallbackInfo(model,iLoc,LS_IINFO_NLP_ITER,&iter); 

    LSgetCallbackInfo(model,iLoc,LS_DINFO_POBJ,&pobj); 

    LSgetCallbackInfo(model,iLoc,LS_DINFO_PINFEAS,&pfeas); 

    LSgetCallbackInfo(model,iLoc,LS_DINFO_DINFEAS,&dfeas); 

    printf("%5s %5d %16.5e %16.5e %16.5e %16s\n", 

      "",iter,pobj,pfeas,dfeas,"");  

  } 

  ncalls++; 

  return 0; 

} /*print_log*/ 

/**************************************************************** 

   Callback function to compute function values 

 ****************************************************************/ 

int    CALLBACKTYPE Funcalc8(pLSmodel pModel,void    *pUserData, 

                             int      nRow  ,double  *pdX, 

                             int      nJDiff,double  dXJBase, 

                             double   *pdFuncVal,int  *pReserved) 

{ 

  double val=0.0, X = pdX[0], Y = pdX[1]; 

  int    nerr=0; 

  /* compute objective's functional value*/ 
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  if (nRow==-1) 

    val = 3*f1(X,Y)*g1(X,Y) - 10*f2(X,Y)*g2(X,Y) - g3(X,Y)/3; 

  /* compute constraint 0's functional value */ 

  else if (nRow==0) 

    val = X*X + Y - 6.0; 

  /* compute constraint 1's functional value */ 

  else if (nRow==1) 

    val = X + Y*Y - 6.0; 

  *pdFuncVal=val; 

  return nerr; 

} /*Funcalc8*/ 

/*********************************************************** 

  Callback function to compute derivatives 

 ***********************************************************/ 

int CALLBACKTYPE Gradcalc8(pLSmodel pModel, void *pUserData, 

                           int nRow,double *pdX, double *lb, 

                           double *ub, int nNewPnt, int nNPar, 

                           int *parlist, double *partial) 

{ 

  int i2,nerr=0; 

  double X=pdX[0], Y=pdX[1]; 

  /*zero out the partials */ 

  for (i2=0;i2<nNPar;i2++) partial[i2]=0.0; 

  /* partial derivatives of the objective function */ 

  if (nRow==-1) { 

     for (i2=0;i2<nNPar;i2++) { 

       if (lb[parlist[i2]]!=ub[parlist[i2]]) { 

           if (parlist[i2]==0) { 

             partial[i2]= 

                  3*(dxf1(X,Y)*g1(X,Y) + f1(X,Y)*dxg1(X,Y) ) 

              -  10*(dxf2(X,Y)*g2(X,Y) + f2(X,Y)*dxg2(X,Y) ) 

              - 1/3*(dxg3(X,Y)); 

           } else if (parlist[i2]==1) { 

             partial[i2]= 

                  3*(dyf1(X,Y)*g1(X,Y) + f1(X,Y)*dyg1(X,Y) ) 

              -  10*(dyf2(X,Y)*g2(X,Y) + f2(X,Y)*dyg2(X,Y) ) 

              - 1/3*(dyg3(X,Y)); 

           } 

       } 

     } 

  } 

  /* partial derivatives of Constraint 0 */ 

  else if (nRow==0) { 

     for (i2=0;i2<nNPar;i2++) { 

       if (lb[parlist[i2]]!=ub[parlist[i2]]) { 

         if (parlist[i2]==0) { 

           partial[i2]=2.0*X; 

         } else if (parlist[i2]==1) { 

           partial[i2]=1; 

         } 

       } 

     } 

  } 

  /* partial derivatives of Constraint 1 */ 

  else if (nRow==1) { 

     for (i2=0;i2<nNPar;i2++) { 
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       if (lb[parlist[i2]]!=ub[parlist[i2]]) { 

         if (parlist[i2]==0) { 

           partial[i2]=1; 

         } else if (parlist[i2]==1) { 

           partial[i2]=2.0*Y; 

         } 

       } 

     } 

  } 

  return nerr; 

} 

/* main entry point*/ 

int main(int argc, char **argv) 

{ 

  pLSenv env      = NULL; 

  pLSmodel model  = NULL; 

  FILE *logfile   = stdout; 

  int errors=0,errorcode=LSERR_NO_ERROR, status; 

  double lb[2],ub[2],A[4],rhs[2],cost[2], primal[2],objval; 

  int Abegcol[3],Arowndx[4],Alencol[2],Nobjndx[2]; 

  int m,n,nz,  Nnlobj, counter = 0; 

  char contype[2]; 

  char MY_LICENSE_KEY[1024]; 

 /********************************************************** 

  * Step 1: Create a model in the environment. 

  **********************************************************/ 

  errorcode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

  env = LScreateEnv(&errorcode,MY_LICENSE_KEY); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

  model = LScreateModel(env,&errorcode); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

 /********************************************************** 

  * Step 2: Specify the LP portion of the model. 

  **********************************************************/ 

  /* model dimensions */ 

  m = n = 2;  nz = 4; 

  /* The indices of the first nonzero in each column */ 

  Abegcol[0]=0; Abegcol[1]=2; Abegcol[2]=4; 

  /* The length of each column */ 

  Alencol[0]=2; Alencol[1]=2; 

  /* The row indices of the nonzero coefficients */ 

  Arowndx[0]=0; Arowndx[1]=1;  Arowndx[2]=0;  Arowndx[3]=1; 

  /* The nonzero coefficients of the linear portion of the model*/ 

  /* The NLP elements have a zero at each of their occurrence    */ 

  A[0]=0.0; A[1]=1.0; A[2]=1.0; A[3]=0.0; 

  /* The objective coefficients of the linear portion of the model*/ 

  cost[0]=0.0; cost[1]=0.0; 

  /* lower bounds on variables */ 

  lb[0]=-3.0  ; ub[0]= 3.0;   lb[1]=-3.0  ; ub[1]= 3.0; 

  /* The right-hand sides of the constraints */ 

  rhs[0]=0.0; rhs[1]=0.0; 

  /* The constraint types */ 

  contype[0]='L'; contype[1]='L'; 

  /* Load in nonzero structure and linear/constant terms.  */ 

  errorcode=LSloadLPData(model,m,n,LS_MIN,0.0,cost,rhs,contype,nz, 
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                         Abegcol,Alencol,A,Arowndx,lb,ub); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

 /********************************************************** 

  * Step 3: Specify the NLP portion of the model. 

  **********************************************************/ 

  /* The number of nonlinear variables in each column */ 

  Alencol[0]=1; Alencol[1]=1; 

  /* The indices of the first nonlinear variable in each column */ 

  Abegcol[0]=0; Abegcol[1]=1; Abegcol[2]=2; 

  /* The indices of nonlinear constraints */ 

  Arowndx[0]=0; 

  Arowndx[1]=1; 

  /* The indices of variables that are nonlinear in the objective*/ 

  Nobjndx[0]=0; 

  Nobjndx[1]=1; 

  /* Number nonlinear variables in cost. */ 

  Nnlobj = 2; 

  /* Load the nonlinear structure */ 

  errorcode=LSloadNLPData(model,Abegcol,Alencol, 

            NULL,Arowndx,Nnlobj,Nobjndx,0); 

  printf("\nThe model is installed successfully...\n"); 

 /********************************************************** 

  * Step 4: Set up callback functions 

  **********************************************************/ 

  /* Install the routine that will calculate the function values. */ 

  errorcode=LSsetFuncalc(model,(Funcalc_type) Funcalc8,NULL); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

  /* Install the routine that will calculate the gradient */ 

  errorcode=LSsetGradcalc(model,Gradcalc8,NULL,0,NULL); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

  /* Install a callback function */ 

  LSsetCallback(model,(cbFunc_t) print_log, &counter); 

 

    /* Set the print level to 1 */ 

  errorcode=LSsetModelIntParameter(model,LS_IPARAM_NLP_PRINTLEVEL,1); 

  /* Turn multi-start search on */ 

LSsetModelIntParameter(model,LS_IPARAM_NLP_SOLVER,LS_NMETHOD_MSW_GRG)

; 

  /* Set maximum number of local optimizations */ 

  LSsetModelIntParameter(model,LS_IPARAM_NLP_MAXLOCALSEARCH,1); 

 /********************************************************** 

  * Step 5: Solve the model 

  **********************************************************/ 

  /* load an initial starting point */ 

  primal[0] = 0.25;  primal[1] = -1.65; 

  errorcode=LSloadVarStartPoint(model, primal); 

  /* optimize the model */ 

  errorcode=LSoptimize(model,LS_METHOD_FREE, &status); 

  if (errorcode!=LSERR_NO_ERROR) 

    return errorcode; 

  { 

    int i; 

    errorcode = LSgetInfo(model, LS_DINFO_POBJ, &objval); 

    errorcode = LSgetPrimalSolution(model, primal); 

    printf("\n\n\nPrinting the best local optimum found.\n"); 

    printf("obj  = %f \n",objval); 
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    for (i=0; i<2; i++) printf("x[%d] = %f \n",i,primal[i]); 

  } 

 /********************************************************** 

  * Step 6: Delete the model & env space 

  **********************************************************/ 

  LSdeleteModel(&model); 

  LSdeleteEnv(&env); 

  /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   getchar(); 

  return errorcode; 

} /*main*/ 

The source code file for this example may be found in the \lindoapi\samples\c\ex_nlp1\ folder. After 

creating the executable “ex_nlp1.exe”, you can run the application from the DOS-prompt and produce 

the following report on the screen.  

The model is installed successfully... 

PASS    ITER    POBJ            PINFEAS          DINFEAS      BESTOBJ 

        0     0.00000e+000     0.00000e+000     0.00000e+000 

        1     0.00000e+000     0.00000e+000     0.00000e+000 

        2     0.00000e+000     0.00000e+000     0.00000e+000 

        3    -6.54423e+000     0.00000e+000     6.15217e+000 

        4    -6.54480e+000     0.00000e+000     5.97951e+000 

        5     2.26638e-003     0.00000e+000     5.90105e+000 

        6    -7.50481e-003     0.00000e+000     1.59402e-001 

        6    -7.50481e-003     0.00000e+000     1.59402e-001 

        6     0.00000e+000     0.00000e+000     0.00000e+000 

        7     0.00000e+000     0.00000e+000     0.00000e+000 

        8     0.00000e+000     0.00000e+000     0.00000e+000 

        9    -7.50509e-003     0.00000e+000     4.32958e-001 

       10    -3.81927e-001     0.00000e+000     4.32968e-001 

       11    -4.28345e-001     0.00000e+000     2.43317e+000 

       12    -4.86107e-001     0.00000e+000     1.98075e+000 

       13    -1.22076e+000     0.00000e+000     3.24088e+000 

       14    -1.46611e+000     0.00000e+000     1.34246e+001 

       15    -2.45416e+000     0.00000e+000     2.11428e+001 

       16    -2.85036e+000     0.00000e+000     7.38464e+000 

       17    -3.01813e+000     0.00000e+000     1.31130e+001 

       18    -3.01813e+000     0.00000e+000     1.17374e+000 

       19    -2.97944e+000     0.00000e+000     1.17374e+000 

       19    -2.97944e+000     0.00000e+000     1.17374e+000 

       19    -2.97944e+000     0.00000e+000     1.17374e+000 

  

Printing the best local optimum found. 

obj  = -2.979441 

x[0] = -1.449174 

x[1] = 0.194467 

Press <Enter> ... 
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Example 2: Instruction-List Style Interface 
This example illustrates the use of LINDO API to build and solve a small nonlinear mixed integer 

model loaded via the instruction-list interface.  

/* 

############################################################# 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

############################################################# 

  File   : ex_nlp2.c 

  Purpose: Solve a NLP using the instruction-list style interface. 

  Model  : A nonlinear model with multiple local minimizers. 

 

            maximize  abs( x0 + 1) + .4 * x1; 

            s.t.     x0           + x1 - 4      <= 0; 

                     x0 * x1      + x1 - 6      <= 0; 

                     x0 * x1                    <= 0; 

                     max(x0 , x1 + 1)           >= 0; 

                     if(x1, 1, x1)              <= 0; 

                     (x1 * 2 * x1  -  x1) * x0  <= 0; 

                     -100  <=  x0  <=  100 

                     x1 is binary 

*/ 

#include <stdio.h> 

#include <stdlib.h> 

/* LINDO API header file */ 

#include "lindo.h" 

/* Define a macro to declare variables for 

    error checking */ 

#define APIERRORSETUP   

   int nErrorCode;  

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]  

/* Define a macro to do our error checking */ 

#define APIERRORCHECK   

   if (nErrorCode)  

   {  

      if ( pEnv)  

      {  

         LSgetErrorMessage( pEnv, nErrorCode,  

          cErrorMessage);  

         printf("nErrorCode=%d:  %s\n", nErrorCode,  

          cErrorMessage);  

      } else { 

         printf( "Fatal Error\n");  

      }  

      exit(1);  

   }  

/* main entry point */ 

int main() 

{ 
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   APIERRORSETUP; 

   pLSenv pEnv; 

   pLSmodel pModel; 

   char MY_LICENSE_KEY[1024]; 

 /********************************************************** 

  * Step 1: Create a model in the environment. 

  **********************************************************/ 

   nErrorCode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

 

   pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

   if ( nErrorCode == LSERR_NO_VALID_LICENSE) 

   { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

/* >>> Step 2 <<< Create a model in the environment. */ 

   pModel = LScreateModel(pEnv,&nErrorCode); 

   APIERRORCHECK; 

   { 

/* >>>> Step 3 <<< Set up the instruction list of the model. */ 

      int nobjs, ncons, nvars, nnums, lsize; 

      int objsense[1]; 

      char ctype[6], vtype[2]; 

      int code[100], varndx[2]; 

      double numval[8],varval[2]; 

      int objs_beg[1], objs_length[1], cons_beg[6], cons_length[6]; 

      double lwrbnd[2], uprbnd[2]; 

      int nLinearz, nAutoDeriv; 

      int ikod, iobj, icon; 

      /* Number of constraints */ 

      ncons = 6; 

      /* Number of objectives */ 

      nobjs = 1; 

      /* Number of variables */ 

      nvars = 2; 

      /* Number of real number constants */ 

      nnums = 5; 

      /* Variable index */ 

      varndx[0]=1; 

      varndx[1]=2; 

      /* Lower bounds of variables */ 

      lwrbnd[0]=-100.0; 

      lwrbnd[1]=0.0; 

      /* Upper bounds of variables */ 

      uprbnd[0]=100.0; 

      uprbnd[1]=1.0; 

      /* Starting point of variables */ 

      varval[0]=4.0; 

      varval[1]=0.0; 

      /* Variable type, C= continuous, B = binary */ 

      vtype[0] = 'C'; 

      vtype[1] = 'B'; 

 /* Double Precision constants in the model */ 

      numval[0]=1.0; 
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      numval[1]=0.4; 

      numval[2]=6.0; 

      numval[3]=4.0; 

      numval[4]=2.0; 

      /* Count for instruction code */ 

   ikod = 0; 

      /* Count for objective row */ 

   iobj = 0; 

      /* Count for constraint row */ 

   icon = 0; 

      /* 

       *  Instruction code of the objective: 

       * 

       *  max abs( x0 + 1) + .4 * x1; 

       */ 

      /* Direction of optimization */ 

      objsense[iobj]= LS_MAX; 

      /* Beginning position of objective */ 

      objs_beg[iobj]=ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    0; 

      code[ikod++]=  EP_PUSH_NUM; 

      code[ikod++]=    0; 

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_ABS; 

      code[ikod++]=  EP_PUSH_NUM; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]= EP_MULTIPLY; 

      code[ikod++]= EP_PLUS; 

 /* Length of objective */ 

      objs_length[iobj] = ikod - objs_beg[iobj]; 

 

      /* 

       *  Instruction code of constraint 0: 

       * 

       *  x0  + x1 - 4 <= 0; 

       */ 

 /* Constraint type */ 

      ctype[icon]= 'L';   /* less or than or equal to */ 

      /* Beginning position of constraint 0 */ 

      cons_beg[icon]= ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    0; 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_NUM; 

      code[ikod++]=    3; 

      code[ikod++]=  EP_MINUS; 

 /* Length of constraint 0 */ 

      cons_length[icon] = ikod - cons_beg[icon]; 

      /* Increment the constraint count */ 
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 icon++; 

      /* 

       *  Instruction code of constraint 1: 

       * 

       *  x0 * x1      + x1 - 6 <= 0; 

       */ 

 /* Constraint type */ 

      ctype[icon]= 'L';   /* less than or equal to */ 

      /* Beginning position of constraint 1 */ 

      cons_beg[icon]=  ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    0; 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_MULTIPLY; 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_PUSH_NUM; 

      code[ikod++]=    2; 

      code[ikod++]=  EP_MINUS; 

      /* Length of constraint 1 */ 

      cons_length[icon] = ikod - cons_beg[icon]; 

      /* Increment the constraint count */ 

 icon++; 

      /* 

       *  Instruction code of constraint 2: 

       * 

       *  x0 * x1           <= 0; 

       */ 

 /* Constraint type */ 

      ctype[icon]= 'L';   /* less than or equal to */ 

      /* Beginning position of constraint 2 */ 

      cons_beg[icon]=  ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    0; 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_MULTIPLY; 

 /* Length of constraint 2 */ 

      cons_length[icon] = ikod - cons_beg[icon]; 

      /* Increment the constraint count */ 

      icon++; 

      /* 

       *  Instruction code of constraint 3: 

       * 

       *  max(x0 , x1 + 1)        >= 0; 

       */ 

 /* Constraint type */ 

      ctype[icon]= 'G';   /* greater than or equal to */ 

      /* Beginning position of constraint 3 */ 

      cons_beg[icon]=  ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_VAR; 
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      code[ikod++]=    0; 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_PUSH_NUM; 

      code[ikod++]=    0; 

      code[ikod++]=  EP_PLUS; 

      code[ikod++]=  EP_MAX; 

      code[ikod++]=    2; 

 /* Length of constraint 3 */ 

      cons_length[icon] = ikod - cons_beg[icon]; 

      /* Increment the constraint count */ 

 icon++; 

      /* 

       *  Instruction code of constraint 4: 

       * 

       *  if(x1, 1, x1)        <= 0; 

       */ 

 /* Constraint type */ 

      ctype[icon]= 'L';  /* less than or equal to */ 

      /* Beginning position of constraint 4 */ 

      cons_beg[icon]=  ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_PUSH_NUM; 

      code[ikod++]=    0; 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_IF; 

 /* Length of constraint 4 */ 

      cons_length[icon] = ikod - cons_beg[icon]; 

      /* Increment the constraint count */ 

 icon++; 

      /* 

       *  Instruction code of constraint 5: 

       * 

       *  (x1 * 2 * x1  -  x1) * x0      <= 0; 

       */ 

 /* Constraint type */ 

      ctype[icon]= 'L';  /* less than or equal to */ 

      /* Beginning position of constraint 5 */ 

      cons_beg[icon]=  ikod; 

      /* Instruction list code */ 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_PUSH_NUM; 

      code[ikod++]=    4; 

      code[ikod++]=  EP_MULTIPLY; 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_MULTIPLY; 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    1; 

      code[ikod++]=  EP_MINUS; 

      code[ikod++]=  EP_PUSH_VAR; 

      code[ikod++]=    0; 
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      code[ikod++]=  EP_MULTIPLY; 

 /* Length of constraint 5 */ 

      cons_length[icon] = ikod - cons_beg[icon]; 

 

      /* Total number of items in the instruction list */ 

      lsize = ikod; 

      /* Set linearization level, before a call to LSloadInstruct. 

       * If not specified, the solver will decide */ 

      nLinearz = 1; 

      nErrorCode = LSsetModelIntParameter (pModel, 

                    LS_IPARAM_NLP_LINEARZ, nLinearz); 

      APIERRORCHECK; 

 

      /* Set up automatic differentiation, before a call to 

       * LSloadInstruct. If not specified, the numerical derivative 

       * will be applied */ 

      nAutoDeriv = 1; 

      nErrorCode = LSsetModelIntParameter (pModel, 

                    LS_IPARAM_NLP_AUTODERIV, nAutoDeriv); 

      APIERRORCHECK; 

      /* Pass the instruction list to problem structure 

       * by a call to LSloadInstruct() */ 

      nErrorCode = LSloadInstruct (pModel, ncons, nobjs, nvars, 

nnums, 

                    objsense, ctype,  vtype, code, lsize, varndx, 

                    numval, varval, objs_beg, objs_length, cons_beg, 

                    cons_length, lwrbnd, uprbnd); 

      APIERRORCHECK; 

   } 

/* 

 * >>> Step 5 <<< Perform the optimization using the MIP solver 

 */ 

   nErrorCode = LSsolveMIP(pModel, NULL); 

   APIERRORCHECK; 

   { 

      int nLinearity; 

      double objval=0.0, primal[100]; 

      /* Get the optimization result */ 

      LSgetInfo(pModel, LS_DINFO_MIP_OBJ, &objval); 

      APIERRORCHECK; 

      LSgetMIPPrimalSolution( pModel, primal) ; 

      APIERRORCHECK; 

      printf("\n\nObjective = %f \n",objval); 

      printf("x[0] = %f \n",primal[0]); 

      printf("x[1] = %f \n",primal[1]); 

      /* Get the linearity of the solved model */ 

      nErrorCode = LSgetModelIntParameter (pModel, 

                   LS_IPARAM_NLP_LINEARITY, &nLinearity); 

      APIERRORCHECK; 

      /* Report the status of solution */ 

      if (nLinearity) 

      printf("\nModel has been completely linearized.\ 

              \nSolution Status: Globally Optimal\n"); 

      else 

      printf("\nModel is nonlinear.\ 

              \nSolution Status: Locally Optimal\n\n"); 
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   } 

 /* >>> Step 7 <<< Delete the LINDO environment */ 

   LSdeleteEnv(&pEnv); 

  /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   getchar(); 

} 

This example maximizes a nonlinear objective subject to one linear and five nonlinear constraints. 

After including the C header file, creating a LINDO environment object, and creating a model object 

within the environment, the model is then assembled via the instruction list code. First, the numbers of 

objective, constraints, variables, and constants that appeared in the model are set with the following: 

/* Number of objectives */ 

nobjs = 1; 

/* Number of constraints */ 

ncons = 6; 

/* Number of variables */ 

nvars = 2; 

/* Number of real number constants */ 

nnums = 5; 

Then, all variable related information is defined, including lower bounds, upper bounds, variable types, 

starting points, and variable indices. The setting of starting points and variable indices are optional to 

the user. 

/* Lower bounds of variables */ 

lwrbnd[0]=-100.0; 

lwrbnd[1]=0.0; 

/* Upper bounds of variables */ 

uprbnd[0]=100.0; 

uprbnd[1]=1.0; 

/* Starting point of variables */ 

varval[0]=4.0; 

varval[1]=0.0; 

/* Variable type, C= continuous, B = binary */ 

vtype[0] = 'C'; 

vtype[1] = 'B'; 

/* Variable index */ 

varndx[0]=1; 

varndx[1]=2; 
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Next, all double precision constants used in the model are placed into a number array: 

/* Double Precision constants in the model */ 

numval[0]=1.0; 

numval[1]=0.4; 

numval[2]=6.0; 

numval[3]=4.0; 

numval[4]=2.0; 

Right before starting to build up instruction lists, the counts for instruction codes, objective rows, and 

constraint rows are reset with the following: 

/* Count for instruction code */ 

  ikod = 0; 

/* Count for objective row */ 

  iobj = 0; 

/* Count for constraint row */ 

  icon = 0; 

The instruction lists and related information are then constructed row by row. The objective function in 

our example is to maximize a nonlinear function involving the abs() function: 

/* 

 *  Instruction code of the objective: 

 *   

 *  max abs( x0 + 1) + .4 * x1; 

 */ 

For the objective row, the type of row is defined first by setting the direction of this objective: 

/* Direction of optimization */ 

objsense[iobj]= LS_MAX; 

The beginning position of the objective in the instruction list vector is set at the current count on the 

instruction code: 

/* Beginning position of objective */ 

objs_beg[iobj]=ikod; 

Following the principles of postfix, the corresponding instruction list of the objective function is 

placed into the code vector accordingly:  

/* Instruction list code */ 

code[ikod++]=  EP_PUSH_VAR;    

code[ikod++]=    0;    

code[ikod++]=  EP_PUSH_NUM;    

code[ikod++]=    0;    

code[ikod++]=  EP_PLUS;    

code[ikod++]=  EP_ABS;    

code[ikod++]=  EP_PUSH_NUM;    

code[ikod++]=    1;    

code[ikod++]=  EP_PUSH_VAR;    

code[ikod++]=    1;    

code[ikod++]= EP_MULTIPLY;    

code[ikod++]= EP_PLUS;  
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The length of the objective is calculated as the difference of the current count of codes and the 

beginning position: 

/* Length of objective */ 

objs_length[iobj] = ikod - objs_beg[iobj]; 

Since there is only a single objective, the constraint rows are developed. The first constraint row, 

constraint 0, is a simple linear equation constrained to less-than-or-equal-to zero: 

/* 

 *  Instruction code of constraint 0: 

 * 

 *  x0  + x1 - 4 <= 0; 

 */ 

For this constraint, the type of constraint must first be defined to be less-than-or-equal-to: 

/* Constraint type */ 

ctype[icon]= 'L';   /* less or than or equal to */ 

The beginning position of the constraint in the instruction list vector is set at the current count on the 

instruction code: 

/* Beginning position of constraint 0 */ 

cons_beg[icon]= ikod; 

Again, following the principles of postfix, the corresponding instruction list of this constraint function 

is placed into the code vector accordingly:  

/* Instruction list code */    

code[ikod++]=  EP_PUSH_VAR;    

code[ikod++]=    0;    

code[ikod++]=  EP_PUSH_VAR;    

code[ikod++]=    1;    

code[ikod++]=  EP_PLUS;    

code[ikod++]=  EP_PUSH_NUM;    

code[ikod++]=    3;    

code[ikod++]=  EP_MINUS;    

At the end, the length of the current instruction list is set: 

/* Length of constraint 0 */ 

cons_length[icon] = ikod - cons_beg[icon]; 

The count on constraint rows is then incremented by one: 

/* Increment the constraint count */ 

icon++; 

Following the same rule, the instruction lists for constraint 1, 2, 3, 4, and 5 can also be built 

accordingly. After completely specifying the instruction lists and their related information, this model 

definition segment is finished by declaring the total number of codes in the instruction lists: 

/* Total number of items in the instruction list */ 

lsize = ikod; 

LINDO API provides an user option in dealing with the model, which is linearization. To use this 

option, it should be specified before you call LSloadInstruct to load nonlinear codes. The example 

model contains nonlinear components of abs(), if(), complementary constraint, and x* y (where x 

and/or y are binary 0/1 variables). All of these nonlinear components are linearizable. Therefore, if the 
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Maximum linearization option is selected, the model can be completely linearized when loaded into 

LINDO API. In such a case, the model will be transformed into an equivalent linear format, which 

need not set up the differentiation option.  

Note: Constraint 5 involves a multiplication of a parenthetical expression  (x1*2*x1 - x1) with 

variable x0, which is expanded into x1*2*x1*x0 –x1*x0 and linearized accordingly.  

On the other hand, if the None linearization option is selected and the model stays in its nonlinear form 

when loaded into LINDO API, using automatic differentiation can help the solver converge to the 

optimal solution in a faster and more precise manner. Otherwise, the solver will use the default, finite 

difference differentiation. In this example, the linearization option is turned off and differentiation is 

set to automatic with the following code segment: 

/* Set linearization level, before a call to LSloadInstruct. 

 * If not specified, the solver will decide */ 

nLinearz = 1;  

nErrorCode = LSsetModelIntParameter (pModel,   

              LS_IPARAM_NLP_LINEARZ, nLinearz); 

APIERRORCHECK; 

/* Set up automatic differentiation. If not specified, the numerical  

   derivative will be applied */ 

nAutoDeriv = 1; 

nErrorCode = LSsetModelIntParameter (pModel,  

              LS_IPARAM_NLP_AUTODERIV, nAutoDeriv); 

APIERRORCHECK; 

The next step, step 5, is to perform the optimization of the model with a call to LSsolveMIP and 

retrieve the variable values. For a more detailed description of this step, please refer to the previous 

chapters. LINDO API also provides a parameter LS_IPARAM_NLP_LINEARITY for the user to check 

the characteristic of the solved model:  

/* Get the linearity of the solved model */ 

nErrorCode = LSgetModelIntParameter (pModel,   

             LS_IPARAM_NLP_LINEARITY, &nLinearity); 

APIERRORCHECK; 

If the returning value of linearity equals one, then the model is linear or has been completely linearized 

in the linearization step. Thus, the global optimality of solution can be ascertained.  

The source code file for this example may be found in the \lindoapi\samples\c\ex_nlp2\ folder. After 

creating the executable “ex_nlp2.exe”, the application can be run from the DOS-prompt and produce 

the following report on your screen. 

Objective = 5.000000 

x[0] = 4.000000 

x[1] = 0.000000 

Model is nonlinear. 

Solution Status: Locally Optimal 

Press <Enter> ... 
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Example 3:  Multistart Solver for Non-Convex Models 
This example demonstrates how the multistart nonlinear solver can be used in solving a non-convex 

mixed-integer nonlinear program. The example uses the same model given in Example 1 with the 

black-box style interface where gradients are computed using finite differences. A callback function is 

included, so each local solution found during the solution procedure is reported to the user. For more 

information on callback functions, refer to Chapter 9, Using Callback Functions.  

/* 

############################################################# 

#                       LINDO-API  

#                    Sample Programs 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

#   

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

############################################################# 

  File   : ex_nlp3.c 

  Purpose: Solve a MINLP using the black-box stye interface.  

  Model  : A nonlinear model with linear constraints. 

        minimize  f(x,y) =  3*(1-x)^2*exp(-(x^2) - (y+1)^2)  

                         - 10*(x/5 - x^3 - y^5).*exp(-x^2-y^2) 

                         - 1/3*exp(-(x+1)^2 - y^2); 

        subject to 

                         x  + y   <=  3; 

                            - y   <=  1; 

                         x  integer 

*/ 

#include <stdio.h> 

#include <math.h> 

#include <string.h> 

#include "lindo.h" 

 

/* the summands of the objective function */ 

#define  g1(X,Y) ( exp( -pow(X  ,2)  - pow(Y+1,2) )  ) 

#define  g2(X,Y) ( exp( -pow(X  ,2)  - pow(Y  ,2) )  ) 

#define  g3(X,Y) ( exp( -pow(X+1,2)  - pow(Y  ,2) )  )  

#define  f1(X,Y) (        pow(1-X,2)                 ) 

#define  f2(X,Y) ( X/5 - pow(X  ,3)  - pow(Y  ,5)    ) 

/**************************************************************** 

   Standard callback function to display local solutions 

 ****************************************************************/  

int  LS_CALLTYPE local_sol_log(pLSmodel model,int iLoc, void *cbData) 

{ 

  int iter=0,niter,biter,siter; 

  int *nKKT = (int *) cbData, npass, nbrn; 

  double pfeas=0.0,pobj=0.0;  

  double bestobj; 

  if (iLoc==LSLOC_LOCAL_OPT) 

  {     

    if (*nKKT == 0){ 

      printf(" %5s %11s %11s %11s %10s\n", 

        "Iter","Objective","Infeas","Best","Branches"); 

    } 
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    LSgetCallbackInfo(model,iLoc,LS_IINFO_MIP_NLP_ITER,&niter);  

    LSgetCallbackInfo(model,iLoc,LS_IINFO_MIP_SIM_ITER,&siter);  

    LSgetCallbackInfo(model,iLoc,LS_IINFO_MIP_BAR_ITER,&biter);  

    LSgetCallbackInfo(model,iLoc,LS_DINFO_POBJ,&pobj);  

    LSgetCallbackInfo(model,iLoc,LS_DINFO_PINFEAS,&pfeas);      

    LSgetCallbackInfo(model,iLoc,LS_DINFO_MSW_POBJ,&bestobj); 

    LSgetCallbackInfo(model,iLoc,LS_IINFO_MIP_BRANCHCOUNT,&nbrn); 

    iter = niter+siter+biter; 

    printf(" %5d %11.3f %11.3f %11.3f %10d\n",iter,pobj,pfeas, 

      bestobj,nbrn);   

    (*nKKT)++; 

  } 

  return 0; 

} /*local_sol_log*/ 

/*********************************************************** 

   Callback function to compute function values 

 ***********************************************************/ 

int    CALLBACKTYPE Funcalc8(pLSmodel pModel,void    *pUserData,  

                             int      nRow  ,double  *pdX,  

                             int      nJDiff,double  dXJBase, 

                             double   *pdFuncVal,int  *pReserved) 

{ 

  double val=0.0, X = pdX[0], Y = pdX[1]; 

  int    nerr=0;  

  /* compute objective's functional value*/ 

  if (nRow==-1) 

    val = 3*f1(X,Y)*g1(X,Y) - 10*f2(X,Y)*g2(X,Y) - g3(X,Y)/3; 

  /* compute constaint 0's functional value */ 

  else if (nRow==0) 

    val = X + Y - 3.0; 

  /* compute constaint 1's functional value */ 

  else if (nRow==1) 

    val = - Y - 1.0; 

  *pdFuncVal=val; 

  return nerr; 

} /*Funcalc8*/ 

 

/* main entry point*/ 

int main(int argc, char **argv) 

{ 

  pLSenv env      = NULL; 

  pLSmodel model  = NULL; 

  FILE *logfile   = stdout; 

  int errors=0,errorcode=LSERR_NO_ERROR; 

  double lb[2],ub[2],A[4],rhs[2],cost[2]; 

  int Abegcol[3],Arowndx[4],Alencol[2],Nobjndx[2]; 

  int m,n,nz, Nnlobj, howmany=0; 

  char contype[2],vartype[2]; 

  char MY_LICENSE_KEY[1024]; 

 /********************************************************** 

  * Step 1: Create a model in the environment. 

  **********************************************************/ 

  errorcode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

 

  env = LScreateEnv(&errorcode,MY_LICENSE_KEY); 



 SOLVING NONLINEAR PROGRAMS     517 

 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

  model = LScreateModel(env,&errorcode); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

 /********************************************************** 

  * Step 2: Specify the LP portion of the model.  

  **********************************************************/   

  /* model dimensions */ 

  m = n = 2;  nz = 3; 

  /* The indices of the first nonzero in each column */ 

  Abegcol[0]=0; Abegcol[1]=1; Abegcol[2]=3;   

  /* The length of each column */ 

  Alencol[0]=1; Alencol[1]=2; 

  /* The row indices of the nonzero coefficients */ 

  Arowndx[0]=0; Arowndx[1]=0;  Arowndx[2]=1;   

  /* The nonzero coefficients of the linear portion of the model*/ 

  /* The NLP elements have a zero at each of their occurence    */ 

  A[0]=1.0; A[1]=1.0; A[2]=-1.0;  

  /* The objective coefficients of the linear portion of the model*/ 

  cost[0]=0.0; cost[1]=0.0; 

  /* lower bounds on variables */ 

  lb[0]=-3.0  ; ub[0]= 3.0;   lb[1]=-3.0  ; ub[1]= 3.0;  

  /* The right-hand sides of the constraints */ 

  rhs[0]=3.0; rhs[1]=1.0; 

  /* The constraint types */ 

  contype[0]='L'; contype[1]='L';  

  vartype[0]='I'; vartype[1]='C';  

  /* Load in nonzero structure and linear/constant terms.  */ 

  errorcode=LSloadLPData(model,m,n,LS_MIN,0.0,cost,rhs,contype,nz, 

                         Abegcol,Alencol,A,Arowndx,lb,ub); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

  errorcode=LSloadVarType(model,vartype); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

  errorcode=LSwriteLINDOFile(model,"lpModel.ltx"); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

 /********************************************************** 

  * Step 3: Specify the NLP portion of the model.  

  **********************************************************/ 

  /* The number of nonlinear variables in each column */ 

  Alencol[0]=0; Alencol[1]=0; 

 

  /* The indices of the first nonlinear variable in each column */ 

  Abegcol[0]=0; Abegcol[1]=0; Abegcol[2]=0; 

 

  /* The indices of nonlinear constraints */ 

  Arowndx[0]=0;  

   

  /* The indices of variables that are nonlinear in the objective*/ 

  Nobjndx[0]=0;  Nobjndx[1]=1; 

 

  /* Number nonlinear variables in cost. */ 

  Nnlobj = 2;    

  /* Load the nonlinear structure */ 

  errorcode=LSloadNLPData(model,Abegcol,Alencol, 

            NULL,Arowndx,Nnlobj,Nobjndx,NULL);   

 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 
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 /********************************************************** 

  * Step 4: Set up callback functions 

  **********************************************************/ 

  /* Install the callback function to call at every local solution */ 

  LSsetCallback(model,(cbFunc_t) local_sol_log,&howmany); 

 

  /* Set the print level to 1 */ 

  errorcode=LSsetModelIntParameter(model,LS_IPARAM_NLP_PRINTLEVEL,1); 

 

  /* Set the NLP prelevel to 126 */ 

  errorcode=LSsetModelIntParameter(model,LS_IPARAM_NLP_PRELEVEL,0); 

 

  /* Install the routine that will calculate the function values. */ 

  errorcode=LSsetFuncalc(model,(Funcalc_type) Funcalc8,NULL); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

  /********************************************************** 

  * Step 5: Solve the model  

  **********************************************************/   

  /* Turn multi-start search on */ 

LSsetModelIntParameter(model,LS_IPARAM_NLP_SOLVER,LS_NMETHOD_MSW_GRG)

; 

  /* Set maximum number of local optimizations */ 

  LSsetModelIntParameter(model,LS_IPARAM_NLP_MAXLOCALSEARCH,5); 

 

  printf("\n\tSolving the MINLP using Multi-Start Approach.\n\n"); 

  errorcode=LSsolveMIP(model,NULL); 

  if (errorcode!=LSERR_NO_ERROR) return errorcode; 

  { 

    int i; 

    double objval, primal[2];    

    errorcode = LSgetMIPPrimalSolution(model, primal); 

    errorcode = LSgetInfo(model, LS_DINFO_MIP_OBJ, &objval); 

    if (errorcode == LSERR_NO_ERROR) 

    { 

      printf("\n\n\n"); 

      printf("obj  = %15.7f \n",objval); 

      for (i=0; i<2; i++) printf("x[%d] = %15.7f \n",i,primal[i]); 

    } 

    else 

    { 

      printf("Error %d occured\n\n\n",errorcode); 

    } 

  } 

 /********************************************************** 

  * Step 6: Delete the model & env space 

  **********************************************************/   

  LSdeleteModel(&model);   

  LSdeleteEnv(&env); 

  

  /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   getchar(); 

   

  return errorcode; 

} /*main*/ 
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The source code file for this example may be found in the \lindoapi\samples\c\ex_nlp3\ folder. After 

creating the executable “ex_nlp3.exe”, the application can be run from the DOS-prompt and produce 

the following report on your screen.  

        Solving the MINLP using Multi-Start Approach. 

 

  Iter   Objective      Infeas        Best   Branches 

    10      -0.032       0.000      -0.032          0 

    17       0.013       0.000      -0.032          0 

    33      -0.032       0.000      -0.032          0 

    40       0.013       0.000      -0.032          0 

    74      -0.032       0.000      -0.032          0 

    81       0.013       0.000      -0.032          0 

   106      -0.032       0.000      -0.032          1 

   113       0.013       0.000      -0.032          1 

   138      -0.009       0.000      -0.009          2 

   142       0.013       0.000       0.013          3 

 

 

obj  =      -0.0087619 

x[0] =      -3.0000000 

x[1] =      -1.0000000  

Press <Enter> ... 

 

As seen from the output report, the multistart solver locates several local optima at each branch. The 

internal branch-and-bound solver always uses the best known solution at each node. This leads to 

improved quality of the final integer solution. In order to see the effects of different multistart levels, 

set the value of LS_IPARAM_NLP_MAXLOCALSEARCH macro to lower or higher values and solve the 

model again.  

Example 4: Global Solver with MPI Input Format 
This example illustrates the use of LINDO API’s global solver to find a global optima to a non-convex 

model. The model is represented in MPI file format as given below. For details of the MPI file format, 

see the Instruction-List style interface introduced earlier in this chapter or Appendix D, MPI File 

Format. 

*  This is a variant of an expression found in 

*  Gupta, O. K. and A. Ravindran (1985) 

*  "Branch-and-bound Experiments in Convex Nonlinear  

*  Integer Programming.", Management Science, 31 pp.1533-1546. 

************************************************************* 

* MODEL: 

*  

* MIN = x0; 

*  

* - X1^2*X2 >= -675; 

*  

* - 0.1*X1^2*X3^2 >= -0.419; 

*  

*   0.201*X1^4*X2*X3^2 + 100*X0 = 0; 

*  

* @Bnd(0,X1,1e1);  

* @Bnd(0,X2,1e1);  

* @Bnd(0,x3,1e1);  
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* @Free(x0);  

*  

* End 

************************************************************* 

BEGINMODEL   gupta21         

!  NUMOBJS        1 

!  NUMCONS        3 

!  NUMVARS        4 

VARIABLES 

!       Name     Lower Bound   Initial Point     Upper Bound    Type 

    X0000000         -1e+030         1.23457          1e+030       C 

    X0000001               0         1.23457          1e+001       C 

    X0000002               0         1.23457          1e+001       C 

    X0000003               0             0.2          1e+001       C 

OBJECTIVES 

  OBJ00000    MINIMIZE   

    EP_PUSH_VAR      X0000000 

CONSTRAINTS 

  R0000000    G          

    EP_PUSH_VAR      X0000001 

    EP_PUSH_NUM             2 

    EP_POWER     

    EP_NEGATE    

    EP_PUSH_VAR      X0000002 

    EP_MULTIPLY  

    EP_PUSH_NUM           675 

    EP_NEGATE    

    EP_MINUS     

  R0000001    G          

    EP_PUSH_NUM           0.1 

    EP_NEGATE    

    EP_PUSH_VAR      X0000001 

    EP_PUSH_NUM             2 

    EP_POWER     

    EP_MULTIPLY  

    EP_PUSH_VAR      X0000003 

    EP_PUSH_NUM             2 

    EP_POWER     

    EP_MULTIPLY  

    EP_PUSH_NUM         0.419 

    EP_NEGATE    

    EP_MINUS     

  R0000002    E          

    EP_PUSH_NUM      0.201  

    EP_PUSH_VAR      X0000001 

    EP_PUSH_NUM       4  

    EP_POWER     

    EP_MULTIPLY  

    EP_PUSH_VAR      X0000002 

    EP_MULTIPLY  

    EP_PUSH_VAR      X0000003 

    EP_PUSH_NUM       2  

    EP_POWER     

    EP_MULTIPLY  

    EP_PUSH_NUM       100  

    EP_PUSH_VAR      X0000000 
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    EP_MULTIPLY  

    EP_PLUS      

    EP_PUSH_NUM       0  

    EP_MINUS     

ENDMODEL 

The following C program reads the MPI formatted file above and solves it using LINDO API’s global 

solver.  

/* 

############################################################# 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

############################################################# 

  File   : ex_nlp4.c 

  Purpose: Read a non-convex nonlinear model from an MPI file and 

           optimize with the GOP solver 

*/ 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

/* LINDO API header file */ 

#include "lindo.h" 

/* Define a macro to declare variables for 

    error checking */ 

#define APIERRORSETUP   

   int nErrorCode;  

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]  

/* Define a macro to do our error checking */ 

#define APIERRORCHECK   

   if (nErrorCode)  

   {  

      if ( pEnv)  

      {  

         LSgetErrorMessage( pEnv, nErrorCode,  

          cErrorMessage);  

         printf("Errorcode=%d:  %s\n", nErrorCode,  

          cErrorMessage);  

      } else { 

         printf( "Fatal Error\n");  

      }  

      exit(1);  

   }  

/* main entry point */ 

/*********************************************************** 

   Standard callback function to display local and intermediate 

   solutions 

 ***********************************************************/ 

int  LS_CALLTYPE print_log(pLSmodel model,int iLoc, void *cbData) 

{ 

  static int siter=0,niter=0; 
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  static double pobj=0.0; 

  static double bestbnd; 

  static int status; 

  if (iLoc == LSLOC_GOP) 

  { 

    LSgetCallbackInfo(model,iLoc,LS_IINFO_GOP_STATUS,&status); 

    LSgetCallbackInfo(model,iLoc,LS_IINFO_GOP_SIM_ITER,&siter); 

    LSgetCallbackInfo(model,iLoc,LS_IINFO_GOP_SIM_ITER,&niter); 

    LSgetCallbackInfo(model,iLoc,LS_DINFO_GOP_OBJ,&pobj); 

    printf("Iters=%6d \tObj=%11.5e \tStatus=%d\n",siter+niter,pobj, 

      status); 

  } 

  return 0; 

} /*print_log*/ 

 

int main(int argc, char **argv) 

{ 

   APIERRORSETUP; 

   int m, n; /* number of constraints and vars */ 

   double dObj; 

   int    status; 

/* declare an instance of the LINDO environment object */ 

   pLSenv pEnv; 

/* declare an instance of the LINDO model object */ 

   pLSmodel pModel; 

 

  char MY_LICENSE_KEY[1024]; 

 

 /*********************************************************** 

  * Step 1: Create a model in the environment. 

  ***********************************************************/ 

  nErrorCode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

   

  pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

   if ( nErrorCode == LSERR_NO_VALID_LICENSE) { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

  /********************************************************** 

   * Step 2: Create a model in the environment. 

   **********************************************************/ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   APIERRORCHECK; 

  /********************************************************** 

   * Step 3: Read the model from an MPS file and get the model size 

   **********************************************************/ 

   nErrorCode = LSreadMPIFile(pModel,"../../mps/testgop.mpi"); 

 

   if (nErrorCode != LSERR_NO_ERROR) { 

     printf("\n Bad  MPI  format\n"); 

   } else { 

     printf("Reading MPI format. \n\n"); 

   } 

   APIERRORCHECK; 
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   nErrorCode = LSgetInfo(pModel,LS_IINFO_NUM_VARS,&n); 

   APIERRORCHECK; 

   nErrorCode = LSgetInfo(pModel,LS_IINFO_NUM_CONS,&m);    

   APIERRORCHECK; 

   /********************************************************* 

    * Step 4: Optimize the model 

    *********************************************************/ 

   status = LS_STATUS_UNKNOWN; 

   LSsetModelDouParameter(pModel,LS_DPARAM_CALLBACKFREQ,2.0); 

   /* Install a callback function */ 

   LSsetCallback(pModel,(cbFunc_t) print_log, NULL); 

   /* optimize */ 

   printf("\tSolving for Global Solution\n\n"); 

   nErrorCode = LSsolveGOP( pModel, &status); 

   /********************************************************* 

    * Step 5: Access the final solution if optimal or feasible 

    *********************************************************/ 

   if (status == LS_STATUS_OPTIMAL || 

       status == LS_STATUS_LOCAL_OPTIMAL || 

       status == LS_STATUS_FEASIBLE ) 

   { 

     double *primal = NULL, *dual = NULL; 

     int    j, nCont; 

     primal = (double *) malloc(n*sizeof(double)); 

     dual   = (double *) malloc(m*sizeof(double)); 

     nErrorCode = LSgetInfo(pModel, LS_IINFO_NUM_CONT, &nCont); 

     APIERRORCHECK; 

     if (nCont < n) 

     { 

       printf ("\n *** Integer Solution Report *** \n"); 

       nErrorCode = LSgetInfo(pModel, LS_DINFO_MIP_OBJ, &dObj); 

         APIERRORCHECK; 

       nErrorCode = LSgetMIPPrimalSolution( pModel,primal); 

         APIERRORCHECK; 

       nErrorCode = LSgetMIPDualSolution( pModel,dual); 

         APIERRORCHECK; 

     } 

     else 

     { 

       printf ("\n ***  Solution Report *** \n"); 

       nErrorCode = LSgetInfo(pModel, LS_DINFO_POBJ, &dObj); 

         APIERRORCHECK; 

       nErrorCode = LSgetPrimalSolution( pModel,primal); 

         APIERRORCHECK; 

       nErrorCode = LSgetDualSolution( pModel,dual); 

         APIERRORCHECK; 

     } 

     printf ("\n Objective = %f \n", dObj); 

     printf ("\n Primal Solution\n"); 

     for (j = 0; j<n; j++) 

       printf("\tprimal[%d] = %18.10e\n",j, primal[j]); 

     printf ("\n Dual Solution\n"); 

     for (j = 0; j<m; j++) 

         printf("\tdual[%d] = %18.10e\n",j, dual[j]); 

     free(primal); 

     free(dual); 
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   } 

   /********************************************************* 

    * Step 6: Terminate 

    *********************************************************/ 

   nErrorCode = LSdeleteModel( &pModel); 

   nErrorCode = LSdeleteEnv( &pEnv); 

 

  /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   getchar(); 

} 

The source code file for this example may be found in the \lindoapi\samples\c\ex_nlp4\ folder. After 

creating the executable “ex_nlp4.exe”, the application can be run from the DOS-prompt and produce 

the following report on your screen:  

C:\lindoapi\samples\c\ex_nlp4>ex_nlp4 

Reading MPI format. 

 

        Solving for Global Solution 

 

Iters=     0    Obj=0.00000e+000        Status=12 

Iters=     0    Obj=0.00000e+000        Status=3 

Iters=     0    Obj=0.00000e+000        Status=12 

Iters=     0    Obj=0.00000e+000        Status=12 

Iters=     0    Obj=0.00000e+000        Status=12 

Iters=     0    Obj=-5.68478e+000       Status=8 

Iters=  7330    Obj=-5.68478e+000       Status=8 

Iters= 10702    Obj=-5.68478e+000       Status=8 

Iters= 13992    Obj=-5.68478e+000       Status=8 

Iters= 17454    Obj=-5.68478e+000       Status=8 

Iters= 21364    Obj=-5.68478e+000       Status=8 

Iters= 24940    Obj=-5.68478e+000       Status=8 

Iters= 27064    Obj=-5.68478e+000       Status=8 

Iters= 29150    Obj=-5.68484e+000       Status=8 

Iters= 36352    Obj=-5.68484e+000       Status=8 

Iters= 43502    Obj=-5.68484e+000       Status=8 

Iters= 44360    Obj=-5.68484e+000       Status=1 

 

 ***  Solution Report *** 

 

 Objective = -5.684836 

 

 Primal Solution 

        primal[0] = -5.6848364236e+000 

        primal[1] =  9.9939669649e+000 

        primal[2] =  6.7581618276e+000 

        primal[3] =  2.0481857461e-001 

 

 Dual Solution 

        dual[0] =  8.4219092109e-003 

        dual[1] =  1.3567519782e+001 

        dual[2] =  1.0000000000e-002 

Press <Enter> ... 
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Example 5: Grey-Box Style Interface 
This example illustrates the use of LINDO API’s grey-box interface. The application reads a nonlinear 

model in MPI format (i.e. instruction list). Two user-defined functions are provided to enable the 

EP_USER operators completing the grey-boxes. For details of the MPI file format, see the Instruction-

List style interface introduced earlier in this chapter or Appendix D, MPI File Format.  

/* 
################################################################### 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2006 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

################################################################### 

 

  @file   : ex_user.c 

 

  @purpose: Solve an NLP that uses two black-box functions within 

  the instruction-list interface. 

 

            minimize F(x) = f(x) * x 

                G(x) <= 100 

             0 <= x  <= 10 

     

  The black-box functions are  

 

    f(x)   the expression sin(pi*x)+cos(pi*x) 

    G(x)   the integral[g(x),a,b)], where a,b constants specifying 

           the limits of the integral. 

 

  @remark : This application uses the Instruction Style Interface,  

  where the instructions are imported from ex_user.mpi file. 

 

  @remark : EP_USER operator is used in the instruction list to 

  identify each black-box function and specify the number of  

  arguments they take. For each function, the first argument 

  is reserved to identify the function, whereas the rest are the 

  actual arguments for the associated function. 

 

  @remark : LSsetUsercalc() is used to set the user-defined 

  MyUserFunc() function  as the gateway to the black-box functions. 

 

*/ 

 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

/* LINDO API header file */ 

#include "lindo.h" 

 

/* Define a macro to declare variables for 
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    error checking */ 

#define APIERRORSETUP 

   int nErrorCode; 

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH] 

 

/* Define a macro to do our error checking */ 

#define APIERRORCHECK 

   if (nErrorCode) 

   {  

      if ( pEnv)  

      {  

         LSgetErrorMessage( pEnv, nErrorCode,  

          cErrorMessage);  

         printf("nErrorCode=%d:  %s\n", nErrorCode,  

          cErrorMessage);  

      } else { 

         printf( "Fatal Error\n");  

      }  

      exit(1);  

   }  

 

/*************************************************************** 

 *          Set up an output log function. 

 */ 

static void LS_CALLTYPE print_line(pLSmodel model, 

    char *line, void *notting) 

{ 

    if (line) 

    { 

        printf("%s",line); 

    } /*if*/ 

} /*print_line*/ 

 

 

/*************************************************************** 

 *         Function g(t) to integrate over [a,b] */ 

double gox(double x, double t)         

{ 

    double function; 

    function = exp(x*cos(t));  

    return(function);      

} 

 

/*************************************************************** 

 *          Black-box #2 -- G(x)  

 *          Calculated by Simpson's Rule. 

 */ 

double Gox(int n          /* Maximum number of steps (even) n */, 

           double x)         

{ 

    int c,k=1;            /* Counters in the algorithm        */ 

    double a=0;           /* Lower limit x=0                  */ 

    double b=8*atan(1);   /* Upper limit x=2*pi               */ 

    double h,dsum; 

 

    dsum=gox(x,a);        /* Initial function value */ 
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    c=2; 

    h=(b-a)/n;            /* Step size h=(b-a)/n */ 

    while (k <= n-1)      /* Steps through the iteration */ 

    { 

        c=6-c;            /* gives the 4,2,4,2,... */ 

        dsum = dsum +  

          c*gox(x,a+k*h); /* Adds on the next area */ 

        k++;              /* Increases k value by +1 */ 

    }     

    return ((dsum + gox(x,b))*h/3); 

}       

                       

/*************************************************************** 

 *          Black-box function #1 -- f(x). 

 */ 

double fox(double a, double b) 

{ 

  return sin(a) + cos(b); 

} 

 

/*************************************************************** 

 *          Grey-box interface 

 */ 

int LS_CALLTYPE MyUserFunc( pLSmodel model, 

    int      nargs, 

    double   *argval, 

    void     *UserData, 

    double   *FuncVal) 

{     

    double f; 

    if (argval[0]==1.) /* argval[0] is the function ID. */ 

    { 

      double a = argval[1]; 

      double b = argval[2];     

      f = fox(a,b); 

    } 

    else if (argval[0]==2.) 

    { 

      f = Gox((int)argval[1],argval[2]); 

    } 

 

    *FuncVal = f; 

 

    return (0); 

} /*print_line*/ 

 

/*************************************************************** 

 *                    Main entry point 

 */ 

int main() 

 

{ 

    APIERRORSETUP; 

    pLSenv pEnv = NULL; 

    pLSmodel pModel; 

    char MY_LICENSE_KEY[1024]; 
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    /* 

    * >>> Step 1 <<< Create a LINDO environment. 

    */ 

 

    nErrorCode = LSloadLicenseString( 

      "../../../license/lndapi100.lic",MY_LICENSE_KEY); 

    APIERRORCHECK; 

 

    pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

    if ( nErrorCode == LSERR_NO_VALID_LICENSE) 

    { 

        printf( "Invalid License Key!\n"); 

        exit( 1); 

    } 

    APIERRORCHECK; 

 

    /* 

    * >>> Step 2 <<< Create a model in the environment. 

    */ 

    pModel = LScreateModel(pEnv,&nErrorCode); 

    APIERRORCHECK; 

 

 

    /* 

    * >>>> Step 3 <<< Set up the instruction list of the model. 

    */ 

    { 

        int nLinearz, nAutoDeriv, nConvexRelax, nCRAlgReform; 

 

        /*  Set a log function to call.  */ 

        nErrorCode =  

                 LSsetLogfunc(pModel,(printLOG_t) print_line,NULL); 

        APIERRORCHECK; 

 

        /* Set linearization level, before a call to LSloadNLPCode. 

        * If not specified, the solver will decide */ 

        nLinearz = 1; 

        nErrorCode = LSsetModelIntParameter (pModel, 

            LS_IPARAM_NLP_LINEARZ, nLinearz); 

        APIERRORCHECK; 

 

        /* Select algebraic reformulation level, convex relaxation*/ 

        nCRAlgReform = 1; 

        nErrorCode = LSsetModelIntParameter (pModel, 

            LS_IPARAM_NLP_CR_ALG_REFORM, nCRAlgReform); 

        APIERRORCHECK; 

 

        /* Select convex relax level */ 

        nConvexRelax = 0; 

        nErrorCode = LSsetModelIntParameter (pModel, 

            LS_IPARAM_NLP_CONVEXRELAX, nConvexRelax); 

        APIERRORCHECK; 

 

        /* 

        * Set up automatic differentiation before call LSreadMPIFile. 
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        * If not specified, the numerical derivative will be applied 

        */ 

        nAutoDeriv = 0; 

        nErrorCode = LSsetModelIntParameter (pModel, 

            LS_IPARAM_NLP_AUTODERIV, nAutoDeriv); 

        APIERRORCHECK; 

 

        /* Set up MyUserFunc() as the user functionas */ 

        nErrorCode = LSsetUsercalc (pModel, 

            (user_callback_t) MyUserFunc, NULL); 

        APIERRORCHECK; 

 

        /* Read instructions from an MPI-file */ 

        nErrorCode = LSreadMPIFile (pModel,"ex_user.mpi"); 

        APIERRORCHECK; 

    } 

 

 

    /* 

    * >>> Step 5 <<< Perform the optimization using the 

    *                multi-start solver 

    */ 

 

    /* set multi-start as the current NLP solver */ 

    nErrorCode = LSsetModelIntParameter (pModel, 

        LS_IPARAM_NLP_SOLVER, LS_NMETHOD_MSW_GRG); 

    APIERRORCHECK; 

 

    nErrorCode = LSoptimize(pModel, LS_METHOD_FREE, NULL); 

    APIERRORCHECK; 

 

 

    /* 

    * >>> Step 6 <<< Retrieve the solution 

    */ 

    { 

        int nLinearity, i, stat, nvars, ncons; 

        double objval=0.0, primal[1000]; 

 

        /* Get the linearity of the solved model */ 

        nErrorCode = LSgetModelIntParameter (pModel, 

            LS_IPARAM_NLP_LINEARITY, &nLinearity); 

        APIERRORCHECK; 

 

        nErrorCode = LSgetInfo(pModel,LS_IINFO_MODEL_STATUS,&stat); 

        APIERRORCHECK; 

        printf("\n\n\nSolution status = %d \n",stat); 

 

        /* Report the status of solution */ 

        nErrorCode = LSgetInfo(pModel, LS_IINFO_NUM_VARS,&nvars); 

        APIERRORCHECK; 

 

        nErrorCode = LSgetInfo(pModel, LS_IINFO_NUM_CONS,&ncons); 

        APIERRORCHECK; 

 

        if (nLinearity) 
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        { 

            printf("\nModel has been completely linearized.\n"); 

        } 

        else 

        { 

            printf("\nModel is nonlinear. (nvars=%d, ncons=%d)\n", 

                                                     nvars,ncons); 

        } 

 

        nErrorCode = LSgetInfo(pModel,LS_DINFO_POBJ,&objval); 

        APIERRORCHECK; 

 

        nErrorCode = LSgetPrimalSolution(pModel,primal); 

        APIERRORCHECK; 

  

 if (stat==LS_STATUS_OPTIMAL || stat==LS_STATUS_BASIC_OPTIMAL || 

           stat==LS_STATUS_FEASIBLE || stat==LS_STATUS_LOCAL_OPTIMAL) 

        { 

            printf("\n\nPrinting the solution ... \n\n"); 

            printf("F(x) = %20.15f \n",objval); 

            printf("G(x) = %20.15f \n",Gox(20,primal[0])); 

            for (i=0;i<nvars;i++) 

              printf("  x  = %20.15f\n",i,primal[i]); 

            printf("\n"); 

        } 

        else if (stat == 3) 

            printf("\n\nNo feasible solution. \n\n"); 

 

        /* Get the linearity of the solved model */ 

        nErrorCode = LSgetModelIntParameter (pModel, 

            LS_IPARAM_NLP_LINEARITY, &nLinearity); 

        APIERRORCHECK; 

 

    } 

 

    /* 

    * >>> Step 7 <<< Delete the LINDO environment 

    */ 

    LSdeleteEnv(&pEnv); 

} 
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The source code file for this example is in the \lindoapi\samples\c\ex_user\ folder. After creating the 

executable “ex_user.exe”, the application can be run from the DOS-prompt and produce the following 

report on your screen:  

 

C:\lindoapi\samples\c\ex_user>ex_user 

 

 

  Iter  Phase   nInf         Objective         Pinf(sum)       Dinf(rgmax) 

     0      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     1      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     2      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     3      3      0  -4.61803483e+000   0.00000000e+000   5.80697188e-001 

     4      3      0  -4.61804849e+000   0.00000000e+000   7.11677064e-002 

     5      4      0  -4.61804850e+000   0.00000000e+000   2.68772059e-005 

     6      4      0  -4.61804850e+000   0.00000000e+000   7.58019439e-009 

 

  Iter  Phase   nInf         Objective         Pinf(sum)       Dinf(rgmax) 

     0      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     1      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     2      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     3      3      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     4      3      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

 

  Iter  Phase   nInf         Objective         Pinf(sum)       Dinf(rgmax) 

     0      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     1      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     2      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     3      3      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     4      3      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

 

  Iter  Phase   nInf         Objective         Pinf(sum)       Dinf(rgmax) 

     0      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     1      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     2      0      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     3      3      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

     4      3      0   0.00000000e+000   0.00000000e+000   0.00000000e+000 

 

 

 

Solution status = 8 

 

Model is nonlinear. (nvars=1, ncons=1) 

 

 

Printing the solution ... 

 

F(x) =   -4.618048495010020 

G(x) =   38.603313116588765 

  x  =   -0.000000000000006 
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Example 6: Nonlinear Least-Square Fitting 
This example illustrates the use of LINDO API’s EP_LSQ operator to solve a nonlinear least-squares 

problem.  The formal description of the problem is as follows: 

Given a set of dependent and independent variables (ti,ui), and a nonlinear response function, f(x | α1, 

α2,…, αm), with m parameters, the problem is to determine the best values for α1, α2,…, αm such that 

sum of residuals are minimized. A residual Ri is the difference between observed ui and estimated ûi = 

f(ti;α ) 

  Minimize ||R
t
 R||  

 s.t.  Ri = ui - f(ti; α1, α2,…, αm ) for all i=1…n 

In this application, the model input ti,ui and f(x| α1, α2,…, αm) is imported from an MPI-formatted file. 

In this file, we first provide the nonlinear response function, followed by operator EP LSQ with two 

integer arguments, K  (the number of independent variables), and N (the number of data points).   

In this example, K = 1 and N = 15. Note that multiple independent variables are allowed with operator 

EP LSQ. Next, the names of the K independent variables are given. Finally, a set of N data points is 

provided. Each data point consists of K independent values followed by one dependent value. 

 

BEGINMODEL   lsq00lsq        

! Number of Objective Functions:         1 

! Number of Constraints        :        16 

! Number of Variables          :        34 

! Solve the problem: 

!  MIN = @SUM(OBS(i): R(i)*R(i)); 

!  @FREE(X0); @FREE(X1); @FREE( X2); 

!  @FOR( OBS(i): 

!    @FREE(R(i)); 

!    R(i) = U(i) - (X1*t + (1-X0+X1+X2)*t*t)/ 

!                    (1+X1*t + X2*t*t); 

!      ); 

! DATA: 

!    t, U  = 

!    0.07 0.24 

!    0.13 0.35 

!    ... 

! 

VARIABLES 
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!  Name              Lower Bound        Initial Point          Upper Bound     Type 

   X0                   -1e+030              1.23457               1e+030        C 

   X1                   -1e+030              1.23457               1e+030        C 

   X2                   -1e+030              1.23457               1e+030        C 

   OBJ                        0              1.23457               1e+030        C 

   t                    -1e+030              1.23457               1e+030        C 

OBJECTIVES 

  OBJ00000    MINIMIZE   

    EP_PUSH_VAR  OBJ 

CONSTRAINTS 

  2    E          

  EP_PUSH_VAR  X1 

  EP_PUSH_VAR  t  

  EP_MULTIPLY  

  EP_PUSH_NUM       1  

  EP_PUSH_VAR  X0 

  EP_MINUS     

  EP_PUSH_VAR  X1 

  EP_PLUS      

  EP_PUSH_VAR  X2 

  EP_PLUS      

  EP_PUSH_VAR  t  

  EP_MULTIPLY  

 

  EP_PUSH_VAR  t  

  EP_MULTIPLY  

  EP_PLUS      

  EP_PUSH_NUM       1  

  EP_PUSH_VAR  X1 

  EP_PUSH_VAR  t  

  EP_MULTIPLY  

  EP_PLUS      

  EP_PUSH_VAR  X2 

  EP_PUSH_VAR  t  

  EP_MULTIPLY  

  EP_PUSH_VAR  t  

  EP_MULTIPLY  

  EP_PLUS      

  EP_DIVIDE 

  EP_LSQ 1 15 

      t 

 0.07  

 0.24 

 0.13 

 0.35 

 0.19 

 0.43 

 0.26 

 0.49 

 0.32 

 0.55 

 0.38 

 0.61 

 0.44 

 0.66 

 0.51 

 0.71 

 0.57 

 0.75 

 0.63 

 0.79 

 0.69 

 0.83 
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 0.76 

 0.87 

 0.82 

 0.90 

 0.88 

 0.94 

 0.94 

 0.97 

  EP_PUSH_VAR OBJ 

  EP_MINUS     

ENDMODEL 
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After building the sample application under \lindoapi\samples\c\ex_mps\ folder , one could solve the 

given MPI-formatted model (assumed to be saved as the text file lsq00sq.mpi) from the command 

prompt by running “ex_mps.exe” with it. The following report will be printed on your screen:  

Reading problem c:\lindoapi\bin\win32\lsq00lsq.mpi... 

 

Minimizing the NLP objective... 

 

tpre       ncons      nvars         nnzA      time 

 ini           1          5            4      0.03 

 sp1           1          4            4      0.03 

Number of constraints:       1    le:       0, ge:       0, eq:       1, rn:       

0 (ne:0) 

Number of variables  :       4    lb:       1, ub:       0, fr:       3, bx:       

0 (fx:0) 

Number of nonzeroes  :       4    density=0.01(%) 

 

Abs. Ranges     :         Min.          Max.    Condition. 

Matrix Coef. (A):      1.00000       1.00000       1.00000 

Obj. Vector  (c):      1.00000       1.00000       1.00000 

RHS Vector   (b):  1.0000e-100   1.0000e-100       1.00000 

Lower Bounds (l):  1.0000e-100   1.0000e-100       1.00000 

Upper Bounds (u):  1.0000e+030   1.0000e+030       1.00000 

BadScale Measure: 0 

 

 

Nonlinear variables  :       3 

Nonlinear constraints:       1 

Nonlinear nonzeroes  :       3+0 

 

 

 

  Iter  Phase   nInf         Objective         Pinf(sum)       Dinf(rgmax) 

     0      0      0   0.00000000e+000   9.12589819e-001   0.00000000e+000 

     1      0      0   0.00000000e+000   9.12589819e-001   0.00000000e+000 

     2      0      0   0.00000000e+000   4.56294909e-001   0.00000000e+000 

 … 

 … 

 … 

    41      4      0   1.76640710e-003   0.00000000e+000   6.92959063e-008 

 

 

 

Used Method        = 7 

Used Time          = 0 

Refactors (ok,stb) = 0 (-1.#J,-1.#J) 

Simplex   Iters    = 0 

Barrier   Iters    = 0 

Nonlinear Iters    = 41 

Primal Status      = 8 

Dual   Status      = 12 

Basis  Status      = 14 

Primal Objective   = 0.0017664071026782786 

Dual   Objective   = 0.0017664071026782786 

Duality Gap        = 0.000000e+000 

Primal Infeas      = 0.000000e+000 

Dual   Infeas      = 6.929591e-008 

 

 

Solution is locally optimal.



 

 



 

 

        Chapter 8:  

Stochastic Programming 
So far, we worked with deterministic mathematical programs where model parameters (e.g. 

coefficients, bounds, etc.) are known constants. A stochastic program (SP) is a mathematical program 

(linear, nonlinear or mixed-integer) in which some of the model parameters are not known with 

certainty and the uncertainty can be expressed with known probability distributions.  Applications arise 

in a variety of industries:  

 Financial portfolio planning over multiple periods for insurance and other financial 

companies, in face of uncertain prices, interest rates, and exchange rates 

 Exploration planning for petroleum companies, 

 Fuel purchasing  when facing uncertain future fuel demand, 

 Fleet assignment: vehicle type to route assignment in face of uncertain route demand, 

 Electricity generator unit commitment in face of uncertain demand, 

 Hydro management and flood control in face of uncertain rainfall, 

 Optimal time to exercise for options in face of uncertain prices,     

 Capacity and Production planning in face of uncertain future demands and prices, 

 Foundry metal blending in face of uncertain input scrap qualities, 

 Product planning in face of future technology uncertainty, 

 Revenue management in the hospitality and transport industries. 

Stochastic programs fall into two major categories  a) Multistage Stochastic Programs with Recourse, 

and b) Chance-Constrained Stochastic Programs. LINDO API 10.0 can solve models in both 

categories. 

Multistage Decision Making Under Uncertainty 
In this section, the term ‘stochastic program’ refers to a multistage stochastic model with recourse. The 

term ‘stage’ is an important concept, usually referring to a single ‘time period’, in which a set of 

decisions are to be made prior to the realization of random phenomena. However there are situations 

where a stage may consist of several time periods. The terms ‘random’, ‘uncertain’ and  ‘stochastic’ 

are  used interchangeably.  

Multistage decision making under uncertainty involves making optimal decisions for a T-stage horizon 

before uncertain events (random parameters) are revealed while trying to protect against unfavorable 

outcomes that could be observed in the future.  

Note:   A stage boundary is either a) the beginning of the problem, b) the end of the problem, or c) a 

point just after a decision event but just before a random event.  A stage is the sequence of 

random events followed by decision events between two successive stage boundaries. Thus, 

decisions made in stage k are based on all information revealed up to stage k, but no more. 
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In its most general form, a multistage decision process with T+1 stages follows an alternating 

sequence of random events and decisions.  Slightly more explicitly: 

0.1) in stage-0,  we make a decision x0, taking into account that… 

1.0) at the beginning of stage 1,  “Nature” takes a set of random decisions ω1, leading to realizations of 

all random events in stage 1, and… 

1.1) at the end of stage 1, having seen nature’s decision, as well as our previous decision, we make a 

recourse decision x1(ω1), taking into account that … 

2.0)  at the beginning of stage 2, “Nature” takes a set of random decisions ω2, leading to realizations of 

all random events in stage-2, and… 

2.1) at the end of stage 2, having seen nature’s decision, as well as our previous decisions, we make a 

recourse decision x2(ω1, ω2), taking into account that … 

  :  

  : 

T.0) At the beginning of stage T,  “Nature” takes a random decision, ωT, leading to realizations of all 

random events in stage T, and… 

T.1) at the end of stage T, having seen all of nature’s T previous decisions, as well as all our previous 

decisions, we make the final recourse decision xT(ω1,…,ωT).  

This relationship between the decision variables and realizations of random data can be illustrated as 

follows.  

 

 

 

Each decision, represented with a rectangle, corresponds to an uninterrupted sequence of decisions 

until the next random event. And each random observation corresponds to an uninterrupted sequence 

of random events until the next decision point. 
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Multistage Recourse Models 
The decision taken in stage 0 is called the initial decision, whereas decisions taken in succeeding 

stages are called ‘recourse decisions’. Recourse decisions are interpreted as corrective actions that are 

based on the actual values the random parameters realized so far, as well as the past decisions taken 

thus far. Recourse decisions provide latitude for obtaining improved overall solutions by realigning the 

initial decision with possible realizations of uncertainties in the best possible way.  

Restricting ourselves to linear multistage stochastic programs for illustration, we have the following 

form for a multistage stochastic program with (T+1) stages. 

 

Minimize (or maximize)   c0x0 + E1[c1x1 + E2[ c2x2 … + ET[ cTxT ] …]] 

Such that 

        A00x0                                                                                           ~   b0 

        A(ω1)10x0            + A(ω1) 11x1                                                     ~  b(ω1)1  

        A(ω1,…,ω2)20x0  + A(ω1,…,ω2)21x1 +  A(ω1,…,ω2)22x2              ~  b(ω1,…,ω2)2  

                                                 :          …            :                                      :                                               

A(ω1,…,ωT)T0x0 + A(ω1,…,ωT)T1x1 +  … +  A(ω1,…,ωT)TT xT   ~  b(ω1,…,ωT)T  

                                                          L0                      x0     U0 

                                                          L(ω1)1               x1     U(ω1)1                          

                                                           :                          :         :                                                  

                                                          L(ω1,…,ωT)T     xT      U(ω1,…,ωT)T                               

 

where, (ω1, ω2,…, ωt) represents random outcomes from event space (Ω1,..., Ωt) up to stage t,  

A(ω1,…,ωt)tp  is the coefficient matrix generated by outcomes up to stage-t for all p=1…t, t=1…T,  

c(ω1,…,ωt)t is the objective coefficients generated by outcomes up to stage-t for all t=1…T,    

 b(ω1,…,ωt)t is the right-hand-side values generated by outcomes up to stage-t for all t=1…T,    

L(ω1,…,ωt)t and U(ω1,…,ωt)t  are the lower and upper bounds generated by outcomes up to stage-t for 

all t=1…T,    

’~’ is one of the relational operators ‘’, ‘=’, or ‘’; and  

x0 and xt ≡ x(ω1, ω2,…, ωt)t are the decision variables (unknowns) for which optimal values are sought. 

The expression being optimized is called the cost due to initial-stage plus the expected cost of 

recourse. 

Note:  LINDO API can solve linear, nonlinear and integer multistage stochastic programming 

problems.  
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Scenario Tree  
When the probability distributions for the random parameters (events) are discrete, there are only a 

finite number of outcomes in each stage. With each random parameter fixed to one of its possible 

outcomes, one can create a scenario representing one possible realization of the future. Enumeration of 

all possible combinations of outcomes allows us to represent all scenarios in a tree, with each scenario 

being a path from the root of the tree to one of its leaves. The nodes visited by each path correspond to 

values assumed by random parameters in the model. 

 

We illustrate the construction of a scenario tree with a stochastic version of the well-known 

Newsvendor inventory problem. In this problem, we must decide how much to order initially and then 

later, how much of any unsold product to return before the end of the planning horizon. There is a 

shortage penalty when there are lost sales and a carrying cost for left over units. The decision process 

takes place under uncertain demand and uncertain price per returned item: 

 

 In stage 0, the order quantity has to be decided (under uncertain demand).  

 In stage 1, at the beginning, the demand is revealed. A recourse decision, at the end of stage 

1, is the number of units to be returned to the publisher (for an uncertain refund price)  

 In stage 2 at the beginning, the refund price is announced by the publisher. The price per 

returned item can be either  

o Positive (i.e. publisher accepts them at a high price which covers the cost of shipping 

and handling)  or 

o Negative (i.e. publisher accepts them at a low price which doesn’t cover the cost of 

shipping and handling).     

 The objective is to maximize the total expected profit at the end of planning horizon (stage 2).  
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In the scenario tree above, x0 represents the initial decision, order size to be determined before seeing 

any of the random outcomes.  x1 represents the quantity to return to the publisher of any portion of the 

unsold units. Profit2 represents the total profit collected at the end of planning horizon. The notation Ω1 

represents the event space for the unknown demand, for which there are three different possible 

outcomes Ω1 = {Low, Medium, and High} with probabilities {0.4, 0.3, 0.3}, respectively.  Once we 

observe the demand ω1 є Ω 1, we make a recourse decision x1 based upon which ω1 nature chose and 

our previous decision x0. The notation Ω2 represents the event space for refund price per unsold 

newspapers if returned to the publisher in stage 2. This event has two different outcomes Ω2 = 

{Positive, Negative} with probabilities {0.7, 0.3}. Once the refund price ω2 є Ω2 in stage 2 is observed, 

the total profit would be computed by the model as the final decision Profit2.  

 

It should be clear from the scenario tree that,  

 There are as many distinct scenarios in the SP as there are leaf-nodes.  

 Each root-leaf path defines a scenario, induced by a full observation of all random events.  

 There is a one-to-one correspondence between the scenarios and the leaf-nodes in the tree.  

 The unconditional probability of a node is computed by multiplying the conditional 

probabilities of the nodes positioned on the path, which starts from the root and terminates at 

that node.  

 The unconditional probability of each leaf-node corresponds to the probability of the 

associated scenario. 

 Each node in the tree corresponds to a vector of random parameter with a particular history up 

to that node in some scenario.  
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 The branches out of each node enumerate all possible outcomes associated with random 

parameters associated with it in order to construct the history of random parameters that 

belong to next stage. 

Setting up SP Models:  
Setting up an SP model in the LINDO API involves three major steps in the given order:  

 

a) Specify the core model as if all of nature’s decisions are known. This is simply describing the 

mathematical relations among all the variables in a typical mathematical model as described 

in Chapters 3 through 7. If an instruction list is used to represent the core model, the 

EP_PUSH_SPAR instruction is required in place of those LS_PUSH_NUM to identify the 

parameters that are in fact stochastic. If the core model will be set up using the standard array 

representation, a dummy nonzero element is required for each random parameter as a 

placeholder.  

b) Provide the time structure. This involves listing, either explicitly or implicitly, the stage of 

every random parameter, variable and constraint in the model. 

c) Provide the distributions describing the random parameters and the type of sampling from the 

underlying distributions, when or if required.   

 

An alternative way of inputting an SP to the LINDO API is via files.  To achieve this, one must 

prepare at least three files each of which will assume the role of the tasks above: 

1. A “core” or deterministic version of the model in one of the file formats supported by LINDO 

API, such as an MPI file, LINDO file or MPS file. If MPS or LINDO file formats are used, 

the core model must be in temporal order and each random parameter must have a dummy 

(possibly an average) value in the core model to serve as a placeholder. The file extension is 

either .mpi or .mps (or .ltx) depending on the format preferred. 

2. A stage or time file with a suffix of .time, which associates each constraint and variable with 

a stage, 

3. A stochastic data file with a suffix of .stoch, which provides the information about all random 

parameters and their properties. 

The three-file input is collectively called the SMPI or SMPS file format. The details on the format are 

summarized in Appendices E and F.  The contents of these files correspond almost exactly with the 

contents of the data objects used to set up the SP programmatically given in the following sections. 

Loading Core Model:  
Consider the Newsvendor problem written as a deterministic linear program after fixing the random 

parameters to dummy values temporarily. 

 
! Stochastic Newsvendor Model; 

DATA: 

 C = 30;  ! Purchase cost/unit; 

 P = 5;   ! Penalty shortage cost/unit unsatisfied demand; 

 H = 10;  ! Holding cost/unit leftover; 

 V = 60;  ! Revenue per unit sold; 

 

! Random demand (D); 

 D = 63; 

! Random refund per return; 
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 R = 9; 

ENDDATA 

 

MAX = Z; 

! Units bought, X, Buy at least 0 (serves as a dummy constraint for 

stage 1); 

[Row1] X >= 1; 

! Inventory (I) and Lost Sales (L); 

[Row2]  I = X + L - D; 

! Units sold S, and inventory left over, I; 

[Row3]  S = X - I; 

! Y units returned to vendor for a possible refund, and E kept; 

[Row4]  Y + E = I; 

! Profit, to be maximized; 

[Profit]  Z = V*S - C*X - H*I - P*L + Y*R - H*E; 

Using Instruction Lists 
Starting with the deterministic version given above, we rewrite the model in instruction list format and 

then mark each random parameter (D and R) by replacing the associated EP_PUSH_NUM instruction 

with an EP_PUSH_SPAR instruction. This is illustrated in the following where the stochastic 

parameters R and D are marked in red: 

 
[Row2] I = X + L – D 

 
Deterministic  Stochastic 

Row2    E          

    EP_PUSH_VAR   I 

    EP_PUSH_VAR   X 

    EP_PUSH_VAR   L 

    EP_PLUS      

    EP_PUSH_NUM 63  

    EP_MINUS     

    EP_MINUS   

   Row2    E          

    EP_PUSH_VAR   I 

    EP_PUSH_VAR   X 

    EP_PUSH_VAR   L 

    EP_PLUS      

    EP_PUSH_SPAR D  

    EP_MINUS     

    EP_MINUS   

 

 
[Profit] Z = V*S - C*X - H*I - P*L + Y*R - H*E; 

 

Deterministic  Stochastic 

 PROFIT    E          

    EP_PUSH_VAR       Z 

    EP_PUSH_NUM       60  

    EP_PUSH_VAR       S 

    EP_MULTIPLY  

    EP_PUSH_NUM       30  

    EP_PUSH_VAR       X 

    EP_MULTIPLY  

    EP_MINUS     

    EP_PUSH_NUM       10  

    EP_PUSH_VAR       I 

    EP_MULTIPLY  

    EP_MINUS     

    EP_PUSH_NUM       5  

    EP_PUSH_VAR       L 

    EP_MULTIPLY  

 PROFIT    E          

    EP_PUSH_VAR       Z 

    EP_PUSH_NUM       60  

    EP_PUSH_VAR       S 

    EP_MULTIPLY  

    EP_PUSH_NUM       30  

    EP_PUSH_VAR       X 

    EP_MULTIPLY  

    EP_MINUS     

    EP_PUSH_NUM       10  

    EP_PUSH_VAR       I 

    EP_MULTIPLY  

    EP_MINUS     

    EP_PUSH_NUM       5  

    EP_PUSH_VAR       L 

    EP_MULTIPLY  
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    EP_MINUS     

    EP_PUSH_VAR       Y 

    EP_PUSH_NUM       9  

    EP_MULTIPLY  

    EP_PLUS      

    EP_PUSH_NUM       10  

    EP_PUSH_VAR       E 

    EP_MULTIPLY  

    EP_MINUS     

    EP_MINUS   

    EP_MINUS     

    EP_PUSH_VAR       Y 

    EP_PUSH_SPAR      R  

    EP_MULTIPLY  

    EP_PLUS      

    EP_PUSH_NUM       10  

    EP_PUSH_VAR       E 

    EP_MULTIPLY  

    EP_MINUS     

    EP_MINUS   

 

As discussed in Chapter 7, EP_PUSH_NUM instruction loads (pushes) a constant value onto the top of 

stack, whereas EP_PUSH_SPAR instruction loads the name of the random parameter on the top of the 

stack. An appropriate index for each stochastic parameter will be created. Normally, the index value 

depends on the order it appears in the instruction list. Finally, the core model is loaded by calling the 

LSloadInstruct() function in the usual way.  

Note:  When the core model is loaded with an instruction list using LSloadInstruct(), all stochastic 

parameters will automatically be assigned a unique index. This index can be used to access to 

all information about that stochastic parameter, such as its stage index, stochastic data and 

others. See Chapter 2 for the public functions that relies on this index. 

Using the Array Representation of a Model: 
Because our model is linear, it could also be described in standard array representation (also called the 

matrix form). Refer to Chapter 1 for an overview. Starting with the deterministic version in matrix 

form, we have: 

 

 X (0) I (1) L (2) 

 

S(3) Y(4) E (5) Z (6)   

Max       1   

Row1 (0) 1            > 1 

Row2 (1) -1 1 -1        = -63 

Row3 (2) -1 1  1       = 0 

Row4 (3)   -1    1 1   = 0 

Profit(4) -30 -10 -5 60 -9 -10 -1 = 0 

 

The indices of variables and constraints are given next to their names in parenthesis. The equivalent 

array representation, where stochastic parameters are marked in red, is 

 
Column-indices:  0           1           2     3      4     5      6     

Column-starts:  [0           4           8    10     12    14     16   17] 

Values:         [1 -1 -1 -60 1 -1 -1 10 -1 -5  1  60  1 -9  1 -10 -1] 

Row-index:      [0  1  2   4 1  2  3  4  1  4  2   4  3  4  3   4  4] 

 
Right-hand side values = [ 1 -63 0 0 0 ] 

Objective coefficients = [ 0 0 0 0 0 0 1 ] 

Constraint senses = [ G E E E E] 

Lower bounds = [ 0 0 0 0 0 0 0] 

Upper bounds = [       ] 
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Take note of the coordinates of the matrix and vector elements where stochastic parameters are 

located. The random parameters in matrix form are identified by the (row, column) indices of the 

variable they go with. This information uniquely identifies a random element in matrix form and is 

needed when loading the stochastic data associated with each random parameter. For instance, in this 

example  

 

 The LP matrix has one stochastic element at matrix index position (4,4). 

 The RHS has one stochastic element at index 1. 

 

Note:  When the LP data contains a random parameter, the row and column indices of the variable 

and constraint that goes with the random parameter is sufficient to identify it.  If the random 

parameter is in the OBJECTIVE row, the RHS column or the BOUNDS rows then a dummy 

index is needed to identify these vectors. The following macros identify such dummy rows 

and columns: 

 LS_JCOL_RHS: Stochastic parameter is a RHS value (belongs to RHS column)     

 LS_IROW_OBJ: Stochastic parameter is an objective coefficient (belongs to OBJ row)     

 LS_IROW_VUB: Stochastic parameter is a lower bound (belongs to LO row)     

 LS_IROW_VLB: Stochastic parameter is an upper bound (belongs to UP row)     

 LS_IROW_VFX: Stochastic parameter is a fixed bound (belongs to FX row) 

 LS_JCOL_INST: Stochastic parameter is an instruction code. 

 

The important point is that each stochastic element has a nonzero position reserved in the constraint 

matrix and/or vector, possibly with a default or dummy value. Once this is ensured, the core model 

could be loaded by calling the LSloadLPData() function in the usual sense.  

Note:  In order to load the core model in matrix form using LSloadLPData, the constraints and 

variables in the core model should be in ascending order with respect to their stages. LP data 

which has this property is said to have temporal ordering. Such a requirement doesn’t exist 

when loading the core model via an instruction list. 

Loading the Time Structure:  
Loading timing or staging information  tells LINDO API a) how many time stages there are and b) the 

time stage of each random parameter, variable and constraint.  It is convenient to give a label to each 

time stage just like we do for variables and constraints.  

 

For this particular example, there are three stages, labeled TIME1, TIME2and TIME3, and they are 

associated with random parameters, variables and constraints as summarized in the following table. 

 
Variables Index Time Stage Stage Index 

    X          

    I   

    L   

    S      

    Y          

   0 

   1 

   2 

   3 

   4 

TIME1    

TIME2    

TIME2 

TIME2 

TIME2 

   0 

   1 

   1 

   1 

   1 
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    E          

    Z        

   5 

   6 

TIME2 

TIME3 

   1 

   2 

Constraints    

    Row1          

    Row2 

    Row3 

    Row4 

    Profit  

   0 

   1 

   2 

   3 

   4 

TIME1    

TIME2    

TIME2 

TIME2 

TIME3 

   0 

   1 

   1 

   1 

   2 

Random Par.    

    D 

    R          

   0 

   1 

TIME2    

TIME3 

   1 

   2 

 

Sometimes it may not be easy to deduce the stages of constraints involving several variables from 

different stages. The general rule is to set the stage index of the constraint to the largest of the variable 

stage indices which appear in that constraint.   

 

A typical call sequence that loads time/stage structure is as in the following code snippet in C 

language. See lindoapi/samples/c/ex_sp_newsboy directory for the complete application. 

 

{ /* Load stage data */ 

  int      errorcode   = LSERR_NO_ERROR; 

  int      numStages   = 3;   

  int      colStages[]   = {0,  1,  1,  1,  1,  1, 2}; /* Stage 

indices of columns */   

  int      rowStages[]   = {0,  1,  1,  1, 2 };         /* Stage 

indices of rows */   

  int      panSparStage[]= {1,  2 }; /* Stage indices of stochastic 

parameters */   

 

  errorcode=LSsetNumStages(pModel,numStages); 

  if (errorcode!=LSERR_NO_ERROR) 

{fprintf(stdout,"\nError=%d\n",errorcode); exit(1);} 

 

  errorcode=LSloadVariableStages(pModel,colStages); 

  if (errorcode!=LSERR_NO_ERROR) 

{fprintf(stdout,"\nError=%d\n",errorcode); exit(1);} 

 

  errorcode=LSloadConstraintStages(pModel,rowStages); 

  if (errorcode!=LSERR_NO_ERROR) 

{fprintf(stdout,"\nError=%d\n",errorcode); exit(1);} 

 

  errorcode=LSloadStocParData(pModel,panSparStage,NULL); 

  if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode); 

exit(1);} 

} 

Temporal Time Structure: 
If the core model is represented in matrix form and loaded with LSloadLPData(), it is required to 

have the so-called temporal ordering. When the LP data has temporal ordering, time structure can be 

represented by specifying the indices (or names) of the first variable and constraint in each stage.  
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In Newsvendor problem, the model is (already) in temporal order, thus it is sufficient to specify the 

indices of the first constraint and variable in each stage. 

 
 

Variables Index Time Stage Stage Index 

    X          

    I          

    Z                 

   0 

   1 

   2 

TIME1    

TIME2    

TIME3 

   0 

   1 

   2 

Constraints    

    Row1          

    Row2 

    Profit 

   0 

   1 

   2 

TIME1    

TIME2    

TIME3 

   0 

   1 

   2 

 

As seen in the table, variable I is the first variable in stage 2, and due to temporal ordering, all 

variables up to the next variable (Z) are also in stage 2. Similarly, Row2 is the first constraint in stage 2 

and all constraints up to the next row Profit belong to stage 2. 

 

Note:  Currently, temporal time structures can only be loaded through SMPS formatted files. Public 

API functions will be made available in future releases. 

Loading the Stochastic Structure:  
The final step of loading an SP model is to specify the stochastic data associated with all random 

parameters. This can be achieved in three different ways depending on the type of randomness and 

their relation with each other. The random parameters can be 

1. Independently distributed: when the behavior of the system in some stage depends on each 

random parameter in that stage independently. Such parameters can be represented in two 

forms: 

a. A univariate parametric distribution. The distribution can be continuous (e.g. 

univariate Normal distribution) or discrete (e.g. Poisson distribution). The stochastic 

data for such parameters can be loaded to LINDO API via 

LSaddParamDistIndep() function. 

b. A univariate discrete distribution in the form of a table describing the range of values 

that the random parameter can take and the probabilities associated with each. The 

stochastic data for such parameters can be loaded to LINDO API via 

LSaddDiscreteIndep() function. 

2. Jointly distributed: when the behavior of the system in some stage depends on two or more 

interdependent random parameters in that stage. Such random parameters and the 

relationships among them can be represented in two forms: 

a. A continuous joint distribution function (e.g. multivariate normal distribution). 

Multivariate continuous distributions cannot be loaded explicitly. The user is 

expected to load each parameter as a univariate continuous parameter and then add 

an appropriate correlation structure via LSloadCorrelationMatrix(). 
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b. A discrete joint distribution table specifying the probabilities of each joint realization 

of a vector of random parameters. The representation is similar to the univariate case 

except that each event ω is a vector and the event space Ω is a set of vectors with 

known probabilities. The stochastic data for such parameters can be loaded to 

LINDO API via LSaddDiscreteBlocks() function. 

3. Distributed with interstage dependency: when the event space Ω in some stage depends on the 

realizations of random parameters in previous stages. A typical example is when modeling the 

operations of an investment bank at a particular stage. It may encounter different event spaces 

in the future depending on the past decisions that led to a particular state. For instance, a set 

of decisions might lead to bankruptcy beyond which future events will be totally different 

than those in non-bankruptcy scenarios. The stochastic data for such cases can be loaded to 

LINDO API via LSaddScenario() function 

Note:  In cases where random parameters don’t have interstage dependency, the stochastic data can 

be loaded for each stage separately and the scenario tree can be created by LINDO API 

automatically. When there is interstage dependency, the user is expected to create the 

scenario tree explicitly by loading scenarios via LSaddScenario(). 

 

Typical usage of these functions is illustrated for the Newsvendor problem under various stochastic 

data types. It is assumed that an instruction list has been used to load the core model.  

Case 1:  Let D and R be independently distributed discrete parameters with the following event space 

and event probabilities: 

 

Random 

Param. 

Index Ω P(ω) |Ω| 

D 

R 

0 

1 

   {H=90,M=60,L=30} 

   {P=9,N=-15} 

{0.4, 0.3, 0.3} 

{0.7, 0.3} 

3 

2 

 

These data can be loaded to LINDO API as in the following code snippet in C language. See 

lindoapi/samples/c/ex_sp_newsboy directory for the complete application modeling this case. 
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{ /* Load discrete independent variables */ 

  int      errorcode = 0; 

  int      iRow      = -99; 

  int      jCol      = -99; 

 

  // declarations for stochastic parameter D (index=0) 

  int      iStv0     = 0;                 // index of stoc. param. 

  int      nRealizations0 = 3;           // size of event space 

  double   padVals0[]  = {90,      60,    30};    // event space 

double   padProbs0[] = {0.4,    0.3,    0.3};   // probabilities of  

                                                //events 

 

  // declarations for stochastic parameter R (index=1) 

  int      iStv1      = 1;               // index of stoc. param. 

  int      nRealizations1 = 2;           // size of event space 

  double   padVals1[]  = {9,      -15};  // event space 

  double   padProbs1[] = {0.3,    0.7};  // probabilities of events 

 

  // load stoc. param. 0 

  errorcode=LSaddDiscreteIndep(pModel,iRow,jCol,iStv0,                               

nRealizations0,padProbs0,padVals0,LS_REPLACE); 

  if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode); 

exit(1);} 

 

  // load stoc. param. 1 

  errorcode=LSaddDiscreteIndep(pModel,iRow,jCol,iStv1,                               

nRealizations1,padProbs1,padVals1,LS_REPLACE); 

  if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode); 

exit(1);} 

 

}  

 

Case 2:  Let D and R be independently normal distributed with distribution parameters (μ = 45, σ = 10) 

and (μ = -3, σ =2), respectively.  

Random 

Param. 

Index Distribution |Ω| 

D 

R 

0 

1 

    NORMAL(45,10) 

    NORMAL(-3,2) 

+inf 

+inf 

 

This data can be loaded to LINDO API as in the following code snippet in C language. See 

lindoapi/samples/c/ex_sp_newsboy directory for the complete application which models this case. 
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{ /* Load discrete independent variables */ 

  int      errorcode = 0; 

  int      iRow      = -99; 

  int      jCol      = -99; 

 

  // declarations for stochastic parameter D (index=0) 

  int      iStv0     = 0;                    // index of stoc. param. 

  int      nDistType0 = LSDIST_TYPE_NORMAL;  // type of distribution 

  int      nDistParams0 = 2;           // number of distrib. params. 

  double   padParams0[] = {45,     10}; //distrib. params (mu, sigma) 

 

  // declarations for stochastic parameter R (index=1) 

  int      iStv1      = 1;                // index of stoc. param. 

  int      nDistType1 = LSDIST_TYPE_NORMAL; // type of distribution 

  int      nDistParams1 = 2;           // number of distrib. params. 

  double   padParams1[] = {-3,    2}; // distrib. params (mu, sigma) 

 

  // load stoc. param. 0 

  errorcode=LSaddParamDistIndep(pModel,iRow,jCol,iStv0,                               

nDistType0,nDistParams0,padParams0,LS_REPLACE); 

  if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode); 

exit(1);} 

 

  errorcode=LSaddParamDistIndep(pModel,iRow,jCol,iStv1,                               

nDistType1,nDistParams1,padParams1,LS_REPLACE); 

  if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode); 

exit(1);} 

 

}  

 

Note:  It is possible to have a mixed case, where D is discrete and R is continuous. In such a case, 

declarations for D from case 1 and declarations for R from case 2 will be used along with 

associated function calls. 

 

Case 3:  Consider a case where probabilities of R are dependent of the observed value of D in the 

previous stage. This is a situation where D and R are distributed with interstage dependency.  For the 

Newsvendor problem, suppose we have the following joint distribution table. 
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Stage-1 Stage-2   

D R   Prob(D,R) 

  (P)ositive (9) 0.12 

(H)igh (90)    

  (N)egative (-15) 0.28 

     

  (P)ositive (9) 0.15 

(M)edium (60)    

  (N)egative (-15) 0.15 

     

  (P)ositive (9) 0.27 

(L)ow (30)    

  (N)egative (-15) 0.03 

      

 

 

An equivalent scenario tree will look like: 
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In such a case, the scenarios should be explicitly loaded to LINDO API as in the following code 

snippet in C language. See lindoapi/samples/c/ex_sp_newsboy directory for the complete application 

which models this case. 

/* Load scenario 1 */ 

{ int      errorcode   = 0;       

  int      iStage    = 1   , jScenario = 0     , iParentScen=-1; 

  int      nElems    = 2   , paiStvs[] = {0, 1}; 

  double   dProb     = 0.12, padVals[] = {90, 9}; 

  errorcode=LSaddScenario(pModel,jScenario,iParentScen, 

       iStage,dProb,nElems,NULL,NULL,paiStvs,padVals,LS_REPLACE); 

} 

 

/* Load scenario 2 */ 

{ int      errorcode   = 0;       

  int      iStage    = 2   , jScenario = 1     , iParentScen=0; 

  int      nElems    = 1   , paiStvs[] = {1}; 

  double   dProb     = 0.28, padVals[] = {-15}; 

  errorcode=LSaddScenario(pModel,jScenario,iParentScen, 

       iStage,dProb,nElems,NULL,NULL,paiStvs,padVals,LS_REPLACE); 

} 

 

: 

: 

: 

 

/* Load scenario 6 */ 

{ int      errorcode   = 0;       

  int      iStage    = 2   , jScenario = 0     , iParentScen=-1; 

  int      nElems    = 1   , paiStvs[] = {1}; 

  double   dProb     = 0.03, padVals[] = {-15}; 

  errorcode=LSaddScenario(pModel,jScenario,iParentScen, 

       iStage,dProb,nElems,NULL,NULL,paiStvs,padVals,LS_REPLACE); 

 

  if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode); 

exit(1);} 

} 

 

 

Case 4:  Consider a new case where the Newsvendor model has two stages and the random parameters 

D and R belong to the same stage with the following time structure  

Variables Index Time Stage Stage Index 

    X          

    I   

    L   

    S      

    Y          

    E          

    Z        

   0 

   1 

   2 

   3 

   4 

   5 

   6 

TIME1    

TIME2    

TIME2 

TIME2 

TIME2 

TIME2 

TIME2 

   0 

   1 

   1 

   1 

   1 

   1 

   2 

Constraints    

    Row1          

    Row2 

    Row3 

   0 

   1 

   2 

TIME1    

TIME2    

TIME2 

   0 

   1 

   1 
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    Row4 

    Profit  

   3 

   4 

TIME2 

TIME2 

   1 

   1 

Random Par.    

    D 

    R          

   0 

   1 

TIME2    

TIME2 

   1 

   1 

 

 

After the new time structure is loaded to LINDO API, we can work out the loading of the stochastic 

data as follows. Suppose the joint distribution probabilities are the same as case 3. This leads to the 

following scenario tree. 

 

 

 
 

Note:  This new version of Newsvendor problem is actually a special case of the original problem, 

where stage 1 and stage 2 (TIME2 and TIME3) are aggregated into a single stage which is 

now called stage 1 (TIME2). The consequences of this aggregation are that all random 

parameters, constraints and variables that belonged to stage 1 and stage 2 in the original 

problem now belong to stage 1 in the aggregated version. 

 

As it can be seen in the scenario tree, each outcome in stage 1 corresponds to a block realization of a 

vector of random parameters, namely D and R. The associated stochastic data can be loaded to LINDO 

API as in the following code snippet in C language. See lindoapi/samples/c/ex_sp_newsboy directory 

for the complete application modeling this case.  
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Note:  Case 4 is a relaxation of case 3 because of the (implicit) non-anticipativity constraints in case 

3.  In terms of this particular example, case 4 imposes no extra restrictions on stage 1 

variables (quantity returned to the vendor) because the refund price is announced prior to 

stage 1 decisions are taken. 

 

 

{ /* Load a single block */ 

  int      errorcode   = 0; 

  int      iStage      = 1; 

  int      nBlockEvents= 6;  

  int      pakStart[] =  { 0,      2,      4,      6,      8,     10,   

12};  

  int      paiStvs[]  =  { 0, 1,   0, 1,   0, 1,   0, 1,   0, 1,   0, 

1};      

  double   padVals[]  =  { 90,9,  90,-15,  60,9,  60,-15,  30,9,  

30,-15}; 

 

  double   padProb[]  =  { 0.12,  0.28,    0.15,  0.15,    0.27,  

0.03 }; 

 

  errorcode=LSaddDiscreteBlocks(pModel,iStage,nBlockEvents, 

        padProb,pakStart,NULL,NULL,paiStvs,padVals,LS_REPLACE); 

  if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode); 

exit(1);} 

} // end-block 

Decision Making under Chance-Constraints  
The second major class of models in stochastic programming is chance-constrained programs (CCP). 

A CCP model is a) similar to general stochastic programs in that model contains random quantities 

with known distributions, but b) simpler in that the model has just a single decision stage and a single 

random outcome stage. 

 The goal in CCP is to make an optimal decision prior to realization of random data while controlling 

the chances of violations of constraints.  Consider an LP with random matrix Ξ and right-hand-side ω, 

 Min c x 

     Ξ x ≥ ω  i =1...m 
 

If we required all possible realizations of Ξ x ≥ ω to be satisfied, then we would get a very conservative 

solution x or no feasibile solutions at all.  The distinctive feature of CCP is that we require that Ξ x ≥ 

ω be satisfied with some prespecified probability 0 < p < 1 as opposed for all possible realizations of  

(Ξ,ω).  

Individual and Joint Chance-Constraints: 
A CCP can be expressed in one of the following forms: 

Joint-chance constraints: require the constraints involved be satisfied with a given probability 

simultaneously. 
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 Min f(x) 

 Prob(gi(x, ω) ≥ 0, i=1...m) ≥ p 

 

Individual chance-constraints: require each constraint be satisfied with a given probabilitiy 

independent of other constraints.  

 Min f(x) 

 Prob(gi(x, ω) ≥ 0) ≥ pi  i=1...m 

 

Each form has its own benefits and the choice depends on the system being modeled. It can be 

observed that individual chance-constraints are weaker than joint chance-constraints. This is because 

the former doesn’t impose any restrictions on which realizations of the constraint would be violated in 

regards to the realizations of other constraints.  

Illustrative Example for Invididual vs Joint Chance-Constraints: 
Consider a 2-variable, 2-constraint example where the random data follow discrete uniform 

distributions. 

MIN   x1 +   x2  

    ω1x1 +   x2 ≥ 7 

    ω2x1 +  3x2 ≥ 12 

      x1 , x2 ≥ 0 

with ω1 ~ DU[1,4], ω2 ~ DU[1,3], namely  

  Prob(ω1)=1/4  for all ω1 Є Ω1 = {1, 2, 3, 4}  

  Prob(ω2)=1/3  for all ω2 Є Ω2 = {1, 2, 3}  

The individual chance-constrained program (ICCP) is 

MIN   x1 +   x2  

Prob (ω1x1 +   x2 ≥ 7 ) ≥ p1,  ω1 Є { 1, 2, 3, 4} 

 Prob (ω2x1 +  3x2 ≥ 12) ≥ p2, ω2 Є { 1, 2, 3} 

x1, x2 ≥ 0 

 

The joint distribution can be derived from the Cartesian product of individual distributions;  

  Prob(ω1,ω2) = 1/12 for all (ω1,ω2)Є Ω 

where Ω = { (1,1), (1,2), (1,3), (2,1), (2,2), (2,3),  

      (3,1), (3,2), (3,3), (4,1), (4,2), (4,3)} 

and, the joint chance-constrained program (JCCP) becomes 

MIN   x1 +   x2  

Prob (ω1x1 +   x2 ≥ 7; ω2x1 +  3x2 ≥ 12) ≥ p,  (ω1,ω2)Є Ω 

x1 ,   x2 ≥ 0 

 

The deterministic equivalents with p =1.0 are given below to show the difference between two forms. 

It shows why ICCP has a larger feasible set than JCCP for any 1≥ p >0. 
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 ICCPp=1.0 

MIN  z = x1 +   x2  

1 x1 +   x2 ≥ 7 (ω1) = 1 

2 x1 +   x2 ≥ 7 (ω1) = 2 Ω1 ≥ 1-p1 

3 x1 +   x2 ≥ 7 (ω1) = 3 

4 x1 +   x2 ≥ 7 (ω1) = 4 

1 x1 +  3x2 ≥ 12 (ω2) = 1 

2 x1 +  3x2 ≥ 12 (ω2) = 2 Ω2 ≥ 1-p2 
3 x1 +  3x2 ≥ 12 (ω2) = 3 

       x1, x2 ≥ 0 

 

JCCPp=1.0 

MIN  z = x1 +   x2  

1 x1 + 1 x2 >= 7    (ω1,ω2) = (1,1)  

1 x1 + 3 x2 >= 12  

1 x1 + 1 x2 >= 7    (ω1,ω2) = (1,2) 

2 x1 + 3 x2 >= 12 

1 x1 + 1 x2 >= 7    (ω1,ω2) = (1,3) 

3 x1 + 3 x2 >= 12 

2 x1 + 1 x2 >= 7    (ω1,ω2) = (2,1) 

1 x1 + 3 x2 >= 12  

2 x1 + 1 x2 >= 7 (ω1,ω2) = (2,2) 

2 x1 + 3 x2 >= 12  

2 x1 + 1 x2 >= 7 (ω1,ω2) = (2,3) 

3 x1 + 3 x2 >= 12    Ω ≥ 1- p 

3 x1 + 1 x2 >= 7 (ω1,ω2) = (3,1) 

1 x1 + 3 x2 >= 12  

3 x1 + 1 x2 >= 7 (ω1,ω2) = (3,2) 

2 x1 + 3 x2 >= 12  

3 x1 + 1 x2 >= 7 (ω1,ω2) = (3,3) 

3 x1 + 3 x2 >= 12 

4 x1 + 1 x2 >= 7 (ω1,ω2) = (4,1) 

1 x1 + 3 x2 >= 12  

4 x1 + 1 x2 >= 7 (ω1,ω2) = (4,2) 

2 x1 + 3 x2 >= 12  

4 x1 + 1 x2 >= 7 (ω1,ω2) = (4,3) 

3 x1 + 3 x2 >= 12 

         x1, x2 ≥ 0 

 

Notice that there are duplicate constraints in JCCP - these are listed for the sake of completeness to 

illustrate the 1-to-1 relationship between the constraints and elements of the set Ω. The solver will 

eliminate all such redundancies during the solution process.  

For practical instances with p < 1.0, the problem becomes equivalent to requiring only (1-pi) fraction 

of the constraints induced by |Ωi| realizations be satisfied. Solving each problem for p=0.4, we get 

z(ICCPp) = 4.75 

z(JCCPp) = 5.20 

These sample models are provided in SMPS format with LINDO API’s installation. 
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Monte Carlo Sampling  
In stochastic programming where one or more stochastic parameters have continuous or discrete but 

infinite event space, there will be too many scenarios, thus making the model computationally 

intractable. For such cases Monte Carlo sampling (also called pre-sampling) can be used to 

approximate the problem to work with a finite scenario tree. As illustrated in the figure below, if the 

model has a single stochastic parameter with a continuous distribution such as the Normal 

Distribution; one can discretize the event space simply by generating N sample points and construct a 

finite and tractable scenario tree.  This is also true for discrete distributions with infinite event space 

like the Poisson distribution. 

Note:  Sampling a scenario tree prior to the optimization process is also called pre-sampling.  This is 

to distinguish this type of sampling from the one that is used during optimization process. In 

LINDO API, sampling refers to pre-sampling unless otherwise is stated. 

 

 

 

Note:  Since the point probability of each scenario in the original model is zero, it is customary to 

set the probabilities of sampled scenarios to 1/N. However, the user can always define 

customized sampling approaches to work with different scenario probabilities. 

 

Given the parametric distribution of each stochastic parameter, LINDO API’s sampling routines can be 

used to generate univariate samples from these distributions efficiently. The user has the option to use 

antithetic-variates or Latin-hyper-square sampling to reduce the sample variance. See Appendix 8c at 

the end of this chapter for a brief definition of these techniques. Appendix 8b gives a general account 

of pseudo-random number generation in LINDO API.  
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After the samples are created, the sample points could be used to define discrete distributions, which 

will approximate the original distribution. Repeating this for all continuous stochastic parameters, one 

could reformulate the model as in case 1 or extend it to cases 3 and 4 discussed above.  

1. Sampling from a univariate distribution should follow the steps below. Create a sample object 

by calling LSsampCreate()function specifying the parametric distribution type. See 

Chapter 2 for a list of supported distributions. 

2. Set the parameters of the distribution associated with the sample object. 

3. Create a pseudorandom generator object by calling LScreateRG() function and specify its 

seed for initialization. 

4. Assign the random generator to the sample object by calling LSsampSetRG() function. 

5. Generate desired number of sample points by calling LSsampGenerate()  specifying the 

variance reduction method to be used. 

6. Retrieve the sample points generated by calling LSsampGetPoints(). 

The following code snippet illustrates this process in C language. See lindoapi/samples/c/ex_dist_gen 

directory for the complete application.  

{ 

   pSample = LSsampCreate(pEnv, LSDIST_TYPE_NORMAL, &nErrorCode);    

    

   // Set two parameters to define the normal distribution 

   nErrorCode = LSsampSetDistrParam(pSample, 0,dMean); 

   nErrorCode = LSsampSetDistrParam(pSample, 0,dSigma); 

    

   // Create and assign a random number generator (RG) 

   pRG = LScreateRG(pEnv, LS_RANDGEN_FREE); 

   nErrorCode = LSsampSetRG(pSample,pRG); 

   LSsetRGSeed(pRG, 1031);  

   

   // Generate 30 random points with LHS variance reduction in charge 

   fprintf(stdout,"\nGenerating %d random variables...\n",30); 

   nErrorCode = LSsampGenerate(pSample, LS_LATINSQUARE, 30); 

   nErrorCode = LSsampGetPoints(pSample,&i,&pX); 

 

} 

Generating dependent samples 
In certain situations, the modeler may require some of the samples to be dependent to each other. It is 

common to characterize such dependencies by standard correlation measures, like  

 Pearson’s linear correlation. 

 Spearman’s rank correlation. 

 Kendall’s rank correlation. 

For definitions of these correlation types, refer to Appendix 8a at the end of this chapter.  

LINDO API allows the users to generate dependent samples by the simple steps below. 
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1. Create independent univariate sample objects and generate samples of equal size as described 

above. The sample size should be greater than or equal to the number of sample objects. 

2. Define the lower or upper triangular part of the target correlation matrix Q in sparse form. Its 

size should be equal to the number of sample objects (i.e. the dimension of the multivariate 

sample). 

3. Load the target correlation matrix by calling LSsampInduceCorrelation() function.  

For a short overview of inducing correlations , see Appendix 8e at the end of this chapter. 

4. Retrieve the correlation induced (CI) sample points by LSsampGetCIPoints() function. 

The following code snippet illustrates this process in C language. See lindoapi/samples/c/ex_sp_corr 

directory for its application in SP context.   
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{ 

   nDim = 3; 

   // Create a common random number generator. 

   pRG = LScreateRG(pEnv, LS_RANDGEN_FREE); 

   LSsetRGSeed(pRG, 1031);  

 

   // Create nDim sample objects and generate 30 sample points for 

   // each. 

   for (i=0; i< nDim; i++) 

   { 

paSample[i] = LSsampCreate(pEnv, LSDIST_TYPE_NORMAL, 

&nErrorCode);    

    

     // Set two parameters to define the normal distribution 

     nErrorCode = LSsampSetDistrParam(pSample[i], 0,dMean); 

     nErrorCode = LSsampSetDistrParam(pSample[i], 0,dSigma); 

    

     // Assign the common random number generator (RG) 

     nErrorCode = LSsampSetRG(pSample[i],pRG); 

   

     // Generate 30 random points with LHS variance reduction in  

     // charge 

     fprintf(stdout,"\nGenerating %d random variables...\n",30); 

     nErrorCode = LSsampGenerate(pSample[i], LS_LATINSQUARE, 30); 

   } 

 

   // Induce Pearson correlations to the original sample 

   { 

     int TargetQCnonzeros = 6; 

     int TargetQCvarndx1[] = {0, 0, 0, 1, 1, 2}; 

     int TargetQCvarndx2[] = {0, 1, 2, 1, 2, 2}; 

     double TargetQCcoef[] = {1, 0.2, 0.5, //param0 

                              1, 0.7,      //param1 

                              1};          //param2 

       

nErrorCode = LSsampInduceCorrelation(paSample,nDim, 

LSCORR_PEARSON, TargetQCnonzeros, TargetQCvarndx2, 

TargetQCvarndx1, TargetQCcoef);       

      APIERRORCHECK; 

   } 

 

   // Retrieve sample points into local arrays pCIX[][] 

   for (i=0; i< nDim; i++)  

     LSsampGetCIPoints(paSample[i],&nSampSize,&pCIX[i]); 

    

} 
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Automatic Sampling of Scenario Trees    
As an alternative to generation of explicit sample points to be used for setting up explicit scenarios, 

LINDO API offers an easy to use function LSloadSampleSizes() to create finite scenario trees 

implicitly with user-specified dimensions. This is especially handy when there are several stochastic 

parameters and the task of explicit sampling becomes tedious. In this context, the user can specify the 

dimensions of a scenario tree by either of the following methods: 

 Specify the number of nodes per stage: In this method, the user should provide an integer 

array of length T (number of stages in the model) and give in each position the number of 

nodes to be created in that stage. By default stage-0 will always one node, thus the 0
th

 index in 

the array will be one. Other positions in the array, corresponding to the number of nodes in 

stages 1,2,…T-1, may take any positive integer values. In this framework, each node 

represents a block realization of all the stochastic parameters in that stage and  will have a 

conditional probability of 1/Nt, where Nt represents the number of nodes in stage t. 

 Specify the sample size per stochastic parameter: In this method, the user should provide 

an integer array of length S (the number stochastic parameters in the model), and give in each 

position the samples size for that stochastic parameter.   

In either case, LINDO API will automatically construct a finite scenario tree with specified 

dimensions. The user can optionally specify the variance reduction technique with 

LS_IPARAM_STOC_VARCONTROL_METHOD parameter (the default variance reduction/control method is 

LS_LATINSQUARE). The following code snippet illustrates the first method for the Newsvendor 

problem (case 2) in C language. 

 

   {  

     int   panSampleSize[]   = {1, 6, 6}; 

 

     errorcode=LSsetModelIntParameter(pModel,  

                          LS_IPARAM_STOC_VARCONTROL_METHOD,  

                          LS_ANTITHETIC); 

 

     errorcode=LSloadSampleSizes(pModel,panSampleSize); 

 

     if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode);   

     exit(1);} 

 

   } 

 

In the Newsvendor problem under case 2, both stochastic parameters are normally distributed each 

belonging to a different stage. Therefore, creating N nodes per stage has the same effect as creating N 

samples per stochastic parameter whenever there is a single stochastic parameter per stage.  

Limiting Sampling to Continuous Parameters 
In many cases, the user might want to take into account all possible outcomes of all discretely 

distributed random parameters, thus enable sampling only on continuous distributions. This is achieved 

by LS_IPARAM_STOC_SAMP_CONT_ONLY parameter. 
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Suppose you have two random parameters (R1 and R2) in a 3-stage model, and 

   

 R1 ~ Normal(0,1) with uncountably many outcomes (stage-1) 

 R2 ~ 10 outcomes with a discrete uniform (0.1, .., 0.1) (stage-2) 

   

Here, if sampling on R2 may not be desired and setting LS_IPARAM_STOC_SAMP_CONT_ONLY 

parameter to 1 will limit the sampling of the scenarios to stochastic parameters with continuous 

distributions only, while incorporating all outcomes of R1 into the scenario tree. 

 

If there are no continuous random parameters and yet the user still requests a sampled scenario tree be 

generated while LS_IPARAM_STOC_SAMP_CONT_ONLY is 1, LINDO API returns an error message. In 

such a case, the user would either a) not generate a sample (because all random parameters are already 

discrete) or b) convert one of the random parameters to a suitable continuous parameter or c) set 

LS_IPARAM_STOC_SAMP_CONT_ONLY to 0. 

Essentially, in neither of the cases, the user will have a direct say in the total number of scenarios in 

the tree. The user can only specify  

1. the total number of nodes (discretized joint distribution of all random parameters) per stage, or .. 

2. the number of outcomes per random parameter (discrete or continuous) 

The LINDO API will then use these input to construct a scenario tree, the number of leaves of which 

will coincide the number of scenarios. Again, a scenario in this context represents a full path from the 

leaf to the root containing a set of realization of all random parameters. 

Note:  Sampling a scenario tree is not limited to stochastic parameters that follow parametric 

distributions. It is also possible to use sampling for models, which already have a finite 

scenario tree. This is especially useful when the original tree is finite but still too big to 

handle computationally. Consider a model with 30 stochastic parameters with two outcomes 

each. This will correspond to a scenario tree with 2
30

 = 1.0737e+009 scenarios. Sampling will 

be essential for models with scenario trees this big. For such cases the parameter 
LS_IPARAM_STOC_SAMP_CONT_ONLY should be set to 0. 

Using Nested Benders Decomposition Method  
Nested Benders Decomposition (NBD) method is an extension of the classical Benders Method to 

solve multistage SPs. The workings of these are beyond the scope of this section. Interested reader 

should consult standard textbooks on the topic.  In this section, we describe how and when this method 

could be used and point out some limitations.  

As of LINDO API version 9.0, Nested Benders Decomposition (NBD Method) can be used for 

linear/quadratic SPs. Versions prior to v9.0 can solve only linear SPs.  

To enable it, simply designate the NBD solver as the SP method and call LSsolveSP(). This could be 

achieved by the following code snippet: 

nErr = 

LSsetModelIntParameter(pModel,LS_IPARAM_STOC_METHOD,LS_METH

OD_STOC_NBD); 

nErr = LSsolveSP(pModel,&nStatus); 
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This solver requires the SP model to be setup using the matrix-style interface. If the instruction-style 

interface was used to set up the model, LSsolveSP() will return LSERR_STOC_BAD_ALGORITHM 

error. 

LINDO API offers a parameter LS_IPARAM_STOC_MAP_MPI2LP  which removes this limitation 

partly.  When the parameter is set to 1, the solver converts the model from  instruction-style format 

into matrix-style format. However, for this conversion to be successful, it is required that expressions 

that involve stochastic parameters are simple univariate linear functions like (α.r + β) where α and β 

are scalars and r is the random parameter. To give an example for admissible forms, consider a model 

with 3 stochastic parameters r1, r2, and r3 which are used in the model as functions of r1,r2 and r3, 

respectively, with α1, α2,.., β1,.., β3 being scalars. 

Constraint2]   ( α1.r1+ β1) x + ...  

Constraint3]   ( α2.r2+ β2) y + ...  

Constraint4]   ( α3.r3+ β3) z + ...  

This case could be solved with this code snippet: 

nErr = 

LSsetModelIntParameter(pModel,LS_IPARAM_STOC_MAP_MPI2LP,1); 

nErr = 

LSsetModelIntParameter(pModel,LS_IPARAM_STOC_METHOD,LS_METHOD_STOC_NB

D); 

nErr = LSsolveSP(pModel,&nStatus); 

While these forms above can be correctly converted, the following  (nonlinear or multivariate linear) 

forms cannot be converted.  

Constraint5]   ( α1.r1+ α2.r2+ β3) x + ...  

Constraint6]   exp(r2) y + ...  

For these cases, the user should pre-compute the random parameters (or their distributions if they 

belong to continuous distribution)  

R1 ~ ( α1.r1+ α2.r2+ β3) 

R2 ~  exp(r2) 

 
and write the model constraints w.r.t. newly defined random parameters R1 and R2 as follows: 

Constraint5]  ( R1 ) x + ...  

Constraint6]  ( R2 ) y + ...  

Note 1:  As a byproduct, LINDO API can build the *implicit* deterministic equivalent model (as 

opposed to the *explicit* deterministic equivalent) of the underlying model. It is useful to 

work with implicit model because it is much smaller than the explicit model -- the NAC (non-

anticipative constraints) are eliminated from the model. One can observe this effect by 

looking at the difference in the size of the model passed to the solver under two settings of 

'LS_IPARAM_STOC_MAP_MPI2LP'. 
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Note 2:  For stochastic LPs, the LP presolver can reduce the size of the 'Explicit' model to the same 

size as the 'Implicit' model. Therefore, STOC_MAP_MPI2LP setting does not make much 

difference for this model class. However, in quadratic/nonlinear SPs, however, it could help 

to turn on this parameter. 

Sample Multistage SP Problems 

An Investment Model to Fund College Education: 
We consider a four-period investment planning model to fund college education, based on the book 

Introduction to Stochastic Programming,  by J. Birge and F. Louveaux. There are two investment 

types at each stage, Stocks (S) and Bonds (B). The objective is to maximize the wealth (Z) at the end 

of period 4.  

 

Stochastic Parameters: 

Rtk : random return from investment type k=B,S in stage, t =1, 2, 3.  

 

Deterministic Parameters: 

  Initial wealth: $55,000 

Target wealth: $80,000 

 

Decision Variables: 

  Xtk: Amount invested on investment type k=B,S in stage t, t =1, 2, 3; 

  Z: total wealth ($1000) at the end of period 4; 

Y: amount fell short from target wealth at the end of period 4; 

CORE Model: 
The CORE model has the following formulation. Refer to sample application under 

samples/c/ex_sp_putoption directory for its representation in MPI format. 

 
 [ COST]       MIN = 4 * Y - Z; 

 [ STAGE1A]  + X1B + X1S = 55; 

 [ STAGE2A]  - R1B * X1B - R1S * X1S + X2B + X2S = 0; 

 [ STAGE3A]  - R2B * X2B - R2S * X2S + X3B + X3S = 0; 

 [ STAGE4A]  + R3B * X3B + R3S * X3S - Z = 0; 

 [ STAGE4B]  + R3B * X3B + R3S * X3S + Y >= 80; 

 

TIME Structure: 
The time structure of constraints, variables and stochastic parameters are as follows: 

 
Variables Variable 

Index 

Stage 

Index 

    X1B          

    X1S         

    X2B          

    X2S  

    X3B          

   0 

   1 

   2 

   3 

   4 

   0 

   0 

   1 

   1 

   2 
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    X3S     

    Z 

    Y           

   5 

   6 

   7 

   2 

   3 

   3 

Constraints Constraint 

Index 

Stage 

Index 

STAGE1A          

STAGE2A 

STAGE2A 

STAGE3A 

STAGE4A 

STAGE4B 

   0 

   1 

   2 

   3 

   4 

   5 

   0 

   1 

   1 

   2 

   3 

   3 

Random 

Parameters 

Parameter 

Index 

Stage 

Index 

    R1B          

    R1S         

    R2B          

    R2S  

    R3B          

  R3S     

   0 

   1 

   2 

   3 

   4 

   5 

   1 

   1 

   2 

   2 

   3 

   3 

 

Refer to the sample application for the steps taken to load this time structure to LINDO API.  
 

Stochastic Structure: 
The joint distribution of investment returns remain unchanged across stages and have the following 

form: 

 

 

 

 
 

This stochastic structure can be loaded as block realizations of Rtk for each stage with 

LSaddDiscreteBlocks function. This is illustrated in sample application under 

samples/c/ex_sp_bondstok directory on your installation directory.  

 

Running the application yields the following first stage decisions 

 
X1B =   13.520727707 

X1S =   41.479272293 

 

, with the expected value of the objective function being 

 
E[4Y – Z] = 1.514084643 

 

For a detailed output, see the log produced by the sample application. 

Outcomes Returns  

(Stocks, Bonds) 

Probability 

High Performance (25%, 14%) 0.5 

Low Performance (6%, 12%) 0.5 
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An American Put-Options Model: 
This is a stochastic programming version of an American Put-Option as a six period model.  The 

holder of the option has the right to sell a specified stock at any time (the feature of American options) 

between now and a specified expiration date at a specified strike price. The holder makes a profit in 

the period of exercise if the strike price exceeds the market price of the stock at the time of sale.  

Wealth is invested at the risk free rate. The objective is to maximize the wealth at the end of planning 

horizon. 

Initial Price  = $100 

Strike price   = $99 

Risk free rate = 0.04% 

Stochastic Parameters: 

  RVt : random return in the end of period t, for t = 0..4 

Decision Variables: 

  Pt: Price of option in the beginning of period t, for t = 0…5 

  Wt: Wealth at the beginning of period t, for t = 0…5 

  Yt: 1 if sold in the beginning of period t, 0 otherwise, for t = 0…5 

CORE Model: 
The CORE model has the following formulation. Refer to sample application under 

samples/c/ex_sp_putoption directory for its representation in MPI format. 

 
   [OBJ] MAX= W5 ; 

    

   [PRICE0]       P0 = 100 ;    !price at t=0; 

   [PRICE1] RV0 * P0 = P1  ;    !price at t=1;  

   [PRICE2] RV1 * P1 = P2  ;    !price at t=2; 

   [PRICE3] RV2 * P2 = P3  ;    !price at t=3; 

   [PRICE4] RV3 * P3 = P4  ;    !price at t=4; 

   [PRICE5] RV4 * P4 = P5  ;    !price at t=5; 

 

   [WEALTH0]           + Y0 * ( 99 - P0) = W0  ;  !wealth at t=0; 

   [WEALTH1] 1.04 * W0 + Y1 * ( 99 - P1) = W1  ;  !wealth at t=1; 

   [WEALTH2] 1.04 * W1 + Y2 * ( 99 - P2) = W2  ;  !wealth at t=2; 

   [WEALTH3] 1.04 * W2 + Y3 * ( 99 - P3) = W3  ;  !wealth at t=3; 

   [WEALTH4] 1.04 * W3 + Y4 * ( 99 - P4) = W4  ;  !wealth at t=4; 

   [WEALTH5] 1.04 * W4 + Y5 * ( 99 - P5) = W5  ;  !wealth at t=5; 

 

   [SellOnce] Y0 + Y1+ Y2+ Y3 + Y4 +  Y5 <= 1 ; ! sell only once; 

 

   @FREE(Wt); t=0..5; 

   @FREE(Pt); t=0..5; 

   @BIN(Yt); t=0..5; 

 



STOCHASTIC PROGRAMMING     567 

 

Note:  If your SP model has any variable, say X,  that is a function of random parameters and this 

function may legitimately take on negative values, then you should add the declaration 

@FREE(X) to your model. 

TIME Structure: 
The time structure of constraints, variables and stochastic parameters are as follows: 

 
Variables Variable 

Index 

Stage 

Index 

    Pt          

    Wt         

    Yt          

   t 

   t+6 

   t+12 

   t=0…5 

   t=0…5 

   t=0…5 

Constraints Constraint 

Index 

Stage 

Index 

PRICEt 

WEALTHt 

SellOnce 

   t 

   t+6 

   12 

   t=0…5 

   t=0…5 

   5 

Random 

Parameters 

Parameter 

Index 

Stage 

Index 

    RVt             t-1    t=1…5 

 

Refer to the sample application for the steps taken to load this time structure to LINDO API.  

Stochastic Structure: 
The discrete independent distribution of the returns for each stage is as follows: 

 

 

 

 
 

 

 

This stochastic structure can, too, be expressed with block realizations of RVt for each stage 

LSaddDiscreteBlocks  as given in sample application under samples/c/ex_sp_putoption directory 

on your installation directory. Note, it is also possible to use LSaddParamDistIndep to load this 

structure. 

 

Running the application yields the following first stage decision 

 
Y0 =   0 (don’t sell),  

 

with the expected value of the objective function being 

 
E[W5] = 3.807665 

 

For a detailed output, see the log produced by the sample application. 

Stages Returns  Probabilities 

1 (-8%, 1%, 7%, 11%) (0.25,0.25,0.25,0.25) 

2 (-8%, 1%) (0.5,0.5) 

3 (7%, 11%) (0.5,0.5) 

4 (1%, 11%) (0.5,0.5) 

5 (-8%, 7%) (0.5,0.5) 
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Sample Chance-Constrainted Problems 

A Production Planning Problem: 
In this example (Kall, P. 1999), we aim to minimize the total production cost of two products, p1 and 

p2, which require two types of raw materials, x1 and x2. The unit costs of raw materials, c = (2, 3), the 

expected value of product demands, h = (180, 162), and the processing capacity for raw materials is b 

= (100).  Unit raw matrial requirements for each product are (2,6) for product 1, and (3,3.4) for product 

2.  

 

 CORE Model: 
The CORE model has the following formulation.  

 
MODEL: 

[OBJ] min = 2*x1 + 3*x2; 

[CAPACITY]  x1 +     x2 < 100; 

[DEMAND1] 2*x1 + 6.0*x2 > 180; 

[DEMAND2] 3*x1 + 3.4*x2 > 162; 

END 

 

In order to maintain client satisfaction high, management requires that demand be satisfied of 95% of 

the time. In this scenario, we formulate the following stochastic program with joint probabilistic 

constraints. 

 TIME Structure: 
This model is a single stage problem, but a time structure is needed to construct a stochastic program 

with LINDO API. Therefore we set up a dummy time structure assigning all constraints and variables 

to stage-0. This step is identical to those in previous examples. 

 Stochastic Structure: 
The stochastic structure imposed on the deterministic model leads to the following formulation.  

 
 MODEL: 

 [OBJ] min = 2*x1 + 3*x2; 

 [CAPACITY]       x1 +          x2  < 100; 

 [DEMAND1] (2+η1)*x1 +        6*x2  > 180 + ξ1; 

 [DEMAND2]     3 *x1 + (3.4-η2)*x2  > 162 + ξ2; 

 END 

 

The random parameters η1, η2, ξ1 and ξ2 are mutually independent and have the following 

distributions 

 
ξ1 ~ Normal(0,12) 

ξ2 ~ Normal(0,9) 
η1 ~ Uniform(-0.8, 0.8) 

η2 ~ Exp(2.5) 
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Each of these random parameters should be loaded by calling LSaddParamDistIndep. Finally, the 

joint probabilitstic formulation, expressed as 

  
 Prob (DEMAND1, DEMAND2) > 0.95 

 

should be loaded to the solver with a call to LSaddChanceConstraint.  

 

Note, this model contains continuous random parameters and needs  to be discretized before 

attempting a solution. A joint sample size of 100 (i.e. each random parameter having 100 independent 

iid observations)  leads to the following sets of facets defining the boundaries of 100 feasible regions. 
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An optimal solution at p=95% will satisfy at least 95 out of the 100 feasible regions. At p=90%, 90 out 

of 100 will be satisfied and so on. Typically, for lower levels of p, one can expect the objective value 

to improve at the expense of degrading robustness. 

 

An SMPS version of this model is provided in the “lindoapi/samples/data/products” folder. 

Models with User-defined Distribution:  
Some stochastic models involve stochastic parameters that have a) arbitrary relationships with a set of 

independent stochastic parameters or b) distributions that cannot be expressed in closed form. For such 

cases, a user-defined (distribution) function needs to be used to model the underlying stochastic 

phenomena.  This requires the use of LSaddUserDistr() interface to associate randomness in the model 

with a user-defined function. This is a callback function, similar to the one used in black-box NLP 

interface,  and has the following form.  
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UserPDF()  

Description:  
 

This function name used here, UserPDF(), is arbitrary, and is merely for illustration. This 

function will reside in your calling application, you may choose any name you wish. But, the 

interface described below must be duplicated.  
 

This function should be provided for all stochastic models with user-defined distributions or 

general functions of random input. You should use the LSaddUserDistr () routine to 

identify your UserPDF() routine to LINDO API. 

Returns:  

Returns a value greater than 0 if a numerical error occurred while computing the function 

value (e.g., square root of a negative number). Otherwise, return 0. 

Prototype:  

int  UserPDF (pLSsample pSample, int nFuncType, double 

*padInput, int nInput, double *pdOutput, void *pUserData);  

Input Arguments:  

Name  Description  

pSample Pointer to an instance of LSsample.  

nFuncType An integer specifying the type of computation required. The 

user can use this flag in diverting the program control to 

different blocks with a switch. Possible values are:  

 LS_PDF: probability density function. 

 LS_CDF: cummulative density function. 

 LS_CDFINV: inverse of cummulative density 

function.. 

 LS_PDFDIFF: derivative of the probability 

density function. 

 LS_USER: user-defined computation. 

padInput A pointer to a double array containing the values of the 

arguments that will be used to evaluate the function. The size 

of this array is specified by nInput.  

nInput The number of arguments the function requires to evaluate the 

function value.   

pUserData Pointer to a user data area or structure in which any other data 

needed to calculate function values can be stored (e.g., input 

for a simulation experiment). LINDO API obtains the value of 

this pointer when the UserPDF() routine is established through 

a call to LSaddUserDistr () (see below). Subsequently, 

whenever LINDO API calls your UserPDF() routine, it passes 

the same pointer value through pUserData. Any data that 

UserPDF() needs to compute the function value could be stored 

in the data structure pointed to by pUserData. 
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Output Arguments:  

Name  Description  

pdOutput *pdOutput returns the value of the function. 

Remark:  

 pSample argument is populated by the values returned by this function, thus you can access 

its contents via calls to LSsampGetPoints function.  

 LSsampSetUserDistr can be used to install a user-defined function for general sampling 

purposes. 

A Farming Problem: 
In this example, we setup and solve a CCP model, which involves random parameters whose 

computation relies on a user-defined function.  This requires generating samples for the independent 

parameters and computing the dependent variables explicitly from the independent parameters using 

LSaddUserDistr routine.  

A Kilosa farmer can grow maize and sorghum on his land, and needs to decide how many hectares to 

allocate to each satisfying calorie and protein requirements.  

 CORE Model: 
Decision Variables: 

xm : acreage of maize in hectares 

xs : acreage of sorghum in hectares 

It is known that 

100 kgs of maize contains 2.8 × 105 Kcal and 6.4 kg of protein. 

100 kgs of sorghum contains 2.8 × 105 Kcal and 8 kg of protein. 

The yields are uncertain due to rainfall as well as white noise. We define them as dependent stochastic 

parameters; 

ym: random yield per hectare of maize (in 100 Kgs) 

ys: random yield per hectare of sorghum (in 100 Kgs) 

The objective is to minimize total hectares allocated for farming while satisfying each constraint with 

p=0.90. 

 STOC Model: 
[OBJ] Min =       xm +        xs; 

[CALORIES] 2.8*ym*xm + 2.8*ys*xs > 44; 

[PROTEIN ] 6.4*ym*xm + 8.0*ys*xs > 89; 

 

Now since the constraints CALORIES and PROTEIN are required to be satisfied independently with 

p=0.90, we have the following probabilistic requirements. 
Prob (CALORIES) > 0.90 

Prob (PROTEIN ) > 0.90 

 

Independent stochastic parameters which affect random yields (ym, ys) are: 
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ξ   ~ Normal(515.5,137.0): random rainfall during the growing season (mm) 

εm ~ Normal(  0.0, 10.0): white noise in the yield of maize    

εs  ~ Normal(  0.0, 10.0): white noise in the yield of sorghum. 

An earlier regression analysis suggests the following relationship between yields and independent 

random factors. 

ym = 0.020*ξ - 1.65 + εm;  

ys = 0.008*ξ + 5.92 + εs; 

 

According to this relationship, it is possible to have negative values ym and ym for some realizations of 

(ξ, εm, εs). This would imply negative yields, which would be unrealistic. Therefore, we use a user-

defined distribution function to sample realizations for ym and ys and  truncating any negative 

realizations to zero. The truncation process is performed by the user-defined callback function on-the-

fly during sampling. The callback function is given below and conforms with the prototype of 

UserPDF() given above .  

 
 

int LS_CALLTYPE UserDistr(pLSsample pSample, int nFuncType,  

double *padInput, int nInput, double *pdOutput,                               

void *userData) 

{ 

  int errorcode = 0; 

  static pLSsample pSamp = NULL; 

  double ksi_r, eps_m, eps_s; 

  int iStv = (*((int *) userData)); 

 

  if (nInput<2) { errorcode = LSERR_INTERNAL_ERROR; goto ErrReturn; } 

  if (nFuncType != LS_USER) {errorcode = LSERR_INTERNAL_ERROR; goto 

ErrReturn; } 

 

  if (iStv==0) { 

    ksi_r = padInput[0]; 

    eps_m = padInput[1]; 

    *pdOutput = 0.020*ksi_r - 1.65 + eps_m; 

    //yields cannot be negative, set them to zero 

    if ((*pdOutput)<0) *pdOutput=0; 

  } else if (iStv==1) { 

    ksi_r = padInput[0]; 

    eps_s = padInput[1]; 

    *pdOutput = 0.008*ksi_r + 5.92 + eps_s; 

    //yields cannot be negative, set them to zero 

    if ((*pdOutput)<0) *pdOutput=0; 

  } 

ErrReturn: 

  return errorcode; 

} 

 

We also need to set up LSsample objects, which will be used to express yields (ym, ys) through the 

callback function above. 

 
{ 

   // Rainfall affecting both ym and ys 
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   pSample_KSI_R = LSsampCreate(pEnv, LSDIST_TYPE_NORMAL, &errorcode); 

APIERRORCHECK;    

   errorcode = LSsampSetDistrParam(pSample_KSI_R, 0, 515.5); APIERRORCHECK; 

// mu 

   errorcode = LSsampSetDistrParam(pSample_KSI_R, 1, 137.0); APIERRORCHECK; 

// std 

 

   // White-noise for ym 

   pSample_EPS_M = LSsampCreate(pEnv, LSDIST_TYPE_NORMAL, 

&errorcode);APIERRORCHECK; 

   errorcode = LSsampSetDistrParam(pSample_EPS_M, 0, 0.0); APIERRORCHECK;  

// mu 

   errorcode = LSsampSetDistrParam(pSample_EPS_M, 1,10.0); APIERRORCHECK;  

// std 

 

   // White-noise for ym 

   pSample_EPS_S = LSsampCreate(pEnv, LSDIST_TYPE_NORMAL, &errorcode); 

APIERRORCHECK; 

   errorcode = LSsampSetDistrParam(pSample_EPS_S, 0, 0.0); APIERRORCHECK;  

// mu 

   errorcode = LSsampSetDistrParam(pSample_EPS_S, 1,10.0); APIERRORCHECK;  

// std  
} 

 

Finally, the user-defined function would be installed with LSaddUserDist function for each dependent 

parameter. 
   

   {// begin user-defined event for random yield ym 

     int      errorcode = 0; 

     int      iRow      = 0; 

     int      jCol      = -8; 

     int      iStv      = 0; 

     int      iModifyRule = LS_REPLACE; 

 

     // pass the samples set up above to the event 

     paSampleBuf[0] = pSample_KSI_R; 

     paSampleBuf[1] = pSample_EPS_M; 

     userData_M = iStv; 

     errorcode=LSaddUserDist(pModel,iRow,jCol,iStv,UserDistr,2,  

paSampleBuf, &userData_M, iModifyRule); 

     APIERRORCHECK; 

   } // end user-defined event 

 

 

   {// begin user-defined event for random yield ys 

     int      errorcode = 0; 

     int      iRow      = 1; 

     int      jCol      = -8; 

     int      iStv      = 1; 

     int      iModifyRule = LS_REPLACE; 

 

     // pass the samples set up above to the event 

     paSampleBuf[0] = pSample_KSI_R; 

     paSampleBuf[1] = pSample_EPS_S; 

     userData_S = iStv; 

     errorcode=LSaddUserDist(pModel,iRow,jCol, iStv,UserDistr,2,  
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 paSampleBuf,&userData_S,iModifyRule); 

     APIERRORCHECK; 

   } // end user-defined event 

 

The independent chance-constraints (ICC) are expressed as in the previous example.  Solving the 

model in given form with a sample size of N=30 leads to the following solution.  
Objective Value = 5.17789 

 

Primal Solution 

 

      Period         Variable   Value/Activity     Reduced Cost 

 

    TIME0000               XM     3.0599545643     0.0000000000 

    TIME0000               XS     2.1179365996     0.0000000000 

 

You may refer to the application under samples/c/ex_ccp_kilosa directory for details of the 

implementation and full output.  

About alternative formulations: 
1. A simple alternative would be to substitute ym and ys with the associated expressions involving (ξ, 

εm, εs) and formulate the problem with these stochastic parameters. Unfortunately, this would likely 

lead to negative ym and ys during which would invalidate the overall model.  

2. An alternative approach would be to fit a multivariate distribution for (ym,ys) directly such that 

nonnegative values for ym and ys are (almost) zero. Correlations between ym and ys can be handled by 

inducing correlations as in sample application 'ex_sp_corr'. 

3. Another alternative would be to assume ym and ys to be independent in which case a conic 

formulation would be possible, but this may not be as realistic as the core case. 

Ref:  

  1) Schweigman, C.: 1985, `OR in development countries'. Khartoum University Press, Khartoum. 

  2) van der Vlerk, M. http://mally.eco.rug.nl/lnmb/cases.pdf. 

Appendix 8a: Correlation Specification 
The LINDO API supports three different ways of computing the correlation of two random variables:  

Pearson correlation, Spearman rank correlation, or Kendall-tau rank correlation.  To describe them, 

first define: 
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Pearson correlation is computed by the formula:  

 
Spearman Rank correlation is computed in the same way as Pearson, except xi and yi are replaced by 

their ranks, with special adjustments when there are ties. 

 

 

Kendall Tau Rank 

    The Kendall-tau rank correlation is calculated by the formula: 

 
 

where the sign( ) function is either +1, 0, or -1 depending upon whether its argument is either  

> 0, = 0, or < 0. 

 

The advantage of the Spearman and Kendall tau correlation coefficient is that rank correlations are 

non-parametric. E.g., if you compute the Spearman or Kendall tau correlation for a set of uniform 

random variables, and then transform these uniforms into some other distribution, e.g., Normal, using 

monotonic increasing transformations, the Spearman and Kendall tau correlation remains unchanged. 

 

Example: 

  Consider the data set: 

        X          Y 
   2    1.2 

   1    2.3 

   4    3.1 

   3    4.1 

 

 

The Pearson, Kendall tau, and Spearman correlations between X and Y are respectively: 0.4177,  

0.3333, and 0.4500. 

 

There are limitations on what kinds of correlation are achievable. First the correlation matrix must be 

positive semi-definite. Secondly, if the random variables are discrete, then it may be that not all 

correlations between -1 and +1 are possible. For example, if X and Y are both Bernoulli (0 or 1) 

random variables, each with mean 0.3, then the most negative Pearson correlation possible is -3/7. 

 

Inducing a Desired Correlation Matrix 

The LINDO API offers a method for imposing user-specified correlation structures among samples. 

The technique is based on Iman-Conover’s method, which approximates the target correlation matrix 

by reordering the points in each sample. Local improvement techniques are then employed to improve 

the accuracy of the final approximation. The following example illustrates how to induce the identity 

matrix (I3) as the correlation among 3 samples. This approach is commonly used in obtaining 

uncorrelated samples in arbitrary dimensions.  

 

Suppose we generated three samples from NORMAL(0,1) of size 20 and request a correlation of zero 

between each sample pair . Due small sample size, the actual correlations will not necessarily be close 
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to zero. We use LSinduceSampleCorrelation function to induce the identity matrix I to specify as 

the target correlation structure to reduce pairwise correlations. The main steps for the task involves 

1. Generating Xi for i=1..3 by calling LSsampGenerate 

2. Specifing T = I3 as the target (Pearson) correlation matrix and loading it with  
        LSsampInduceCorrelation. 

3. Retrieving correlation-induced samplesYi for i=1..3 by calling LSsampGetCIPoints 

 
 

X1 X2 X3      Y1 Y2 Y3 

1.037 -0.718 -1.389      1.037 -0.954 -1.389 

0.220 -0.639 -0.119      0.220 -0.639 0.120 

-0.761 -1.407 -1.149      -0.761 -1.407 -0.734 

-0.245 0.432 1.344      -0.245 0.545 1.239 

0.017 -0.483 -0.132      0.017 -0.483 -0.119 

-2.704 -1.762 0.210      -2.704 -1.259 0.210 

0.815 0.291 -0.372      0.815 0.201 -0.423 

-0.463 -0.326 -2.326   T   -0.463 -0.213 -2.326 

-0.627 1.267 -0.734  1      -0.627 1.267 -0.988 

0.272 -0.213 0.591  0 1    0.272 -0.326 0.591 

1.658 1.864 -0.988  0 0 1  1.658 1.864 -1.149 

1.594 -1.259 -0.596      1.594 -1.762 -0.372 

-0.926 -0.954 0.265      -0.926 -0.718 0.265 

0.639 0.008 1.239      0.639 0.008 1.344 

-1.510 0.780 0.120      -1.510 0.780 -0.132 

-0.279 1.441 0.984      -0.279 1.441 0.805 

-1.172 0.975 -0.423      -1.172 0.975 -0.596 

0.436 -0.067 0.805      0.436 -0.067 0.984 

0.903 0.545 0.437      0.903 0.432 0.437 

-0.034 0.201 2.645      -0.034 0.291 2.645 

 

Let  Sij = corr(Xi,Xj) and Cij=corr(Yi,Yj), observe that we have the following correlation matrices 

 
 

 S       
 

 C  

 
X1 X2 X3      

 
Y1 Y2 Y3 

x1 
1.000          

Y

1 1.000     

X2 
0.205 1.000        

Y

2 0.059 1.000   

X3 -

0.063 0.147 1.000      

Y

3 -0.030 0.069 1.000 
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It can be verified that the deviation of S from T is ||S-T|| = 0.221826, whereas deviation of C 

from T is only ||C-T|| = 0.081104, which is a reduction about 300%. The deviation is measured 

as the norm of the difference between matrices.  

In the following, emprical results from an experiment inducing independence among various 

distributions are given. In this experiment, 20 samples of sizes 100, 200, 300 are generated and  the 

20x20 identity matrix is used as the target correlation structure to induce independence among 

samples.  See lindoapi/matlab/LMtestSampCorr.m script for a quick overview of the steps 

involved. The matrices S, T and C are as defined above; NO, BE, GA and U refer to Normal, Beta, 

Gamma and Uniform distributions, respectively, with the values in the paranthesis specifying the 

distribution parameters. The value specified by ‘reduction’ refers to the reduction in deviation from the 

target correlation T  before and after  inducing the correlation. The test for each distribution and 

sample size is repeated for Pearson, Kendall and Spearman correlations. 

 

Normal Dist 

  Pearson, NO(0,1), N:100, |T-S|: 0.324072, |T-C|: 0.043502, reduction:   745.0% 

  Pearson, NO(0,1), N:200, |T-S|: 0.218323, |T-C|: 0.020076, reduction:  1087.5% 

  Pearson, NO(0,1), N:300, |T-S|: 0.191623, |T-C|: 0.010360, reduction:  1849.6% 

 

  Kendall, NO(0,1), N:100, |T-S|: 0.225455, |T-C|: 0.062222, reduction:   362.3% 

  Kendall, NO(0,1), N:200, |T-S|: 0.130854, |T-C|: 0.045025, reduction:   290.6% 

  Kendall, NO(0,1), N:300, |T-S|: 0.123835, |T-C|: 0.040892, reduction:   302.8% 

 

 Spearman, NO(0,1), N:100, |T-S|: 0.329817, |T-C|: 0.086817, reduction:   379.9% 

 Spearman, NO(0,1), N:200, |T-S|: 0.197370, |T-C|: 0.061394, reduction:   321.5% 

 Spearman, NO(0,1), N:300, |T-S|: 0.179198, |T-C|: 0.060258, reduction:   297.4% 

 

 

Beta Dist 

  Pearson, BE(1,2), N:100, |T-S|: 0.343788, |T-C|: 0.042635, reduction:   806.4% 

  Pearson, BE(1,2), N:200, |T-S|: 0.203274, |T-C|: 0.022548, reduction:   901.5% 

  Pearson, BE(1,2), N:300, |T-S|: 0.190010, |T-C|: 0.019834, reduction:   958.0% 

 

  Kendall, BE(1,2), N:100, |T-S|: 0.225455, |T-C|: 0.062222, reduction:   362.3% 

  Kendall, BE(1,2), N:200, |T-S|: 0.130854, |T-C|: 0.045025, reduction:   290.6% 

  Kendall, BE(1,2), N:300, |T-S|: 0.123835, |T-C|: 0.040892, reduction:   302.8% 

 

 Spearman, BE(1,2), N:100, |T-S|: 0.329817, |T-C|: 0.086817, reduction:   379.9% 

 Spearman, BE(1,2), N:200, |T-S|: 0.197370, |T-C|: 0.061394, reduction:   321.5% 

 Spearman, BE(1,2), N:300, |T-S|: 0.179198, |T-C|: 0.060258, reduction:   297.4% 

 

 

Gamma Dist 

  Pearson, GA(2,2), N:100, |T-S|: 0.320340, |T-C|: 0.058134, reduction:   551.0% 

  Pearson, GA(2,2), N:200, |T-S|: 0.209847, |T-C|: 0.029014, reduction:   723.2% 

  Pearson, GA(2,2), N:300, |T-S|: 0.208332, |T-C|: 0.046580, reduction:   447.3% 

 

  Kendall, GA(2,2), N:100, |T-S|: 0.225455, |T-C|: 0.062222, reduction:   362.3% 

  Kendall, GA(2,2), N:200, |T-S|: 0.130854, |T-C|: 0.045025, reduction:   290.6% 

  Kendall, GA(2,2), N:300, |T-S|: 0.123835, |T-C|: 0.040892, reduction:   302.8% 

 

 Spearman, GA(2,2), N:100, |T-S|: 0.329817, |T-C|: 0.086817, reduction:   379.9% 

 Spearman, GA(2,2), N:200, |T-S|: 0.197370, |T-C|: 0.061394, reduction:   321.5% 

 Spearman, GA(2,2), N:300, |T-S|: 0.179198, |T-C|: 0.060258, reduction:   297.4% 

 

Uniform Dist 

  Pearson, U(0,1), N:100, |T-S|: 0.330391, |T-C|: 0.040821, reduction:   809.4% 

  Pearson, U(0,1), N:200, |T-S|: 0.197696, |T-C|: 0.030350, reduction:   651.4% 

  Pearson, U(0,1), N:300, |T-S|: 0.179028, |T-C|: 0.014361, reduction:  1246.7% 



578 CHAPTER 8 

  

 

  Kendall, U(0,1), N:100, |T-S|: 0.225455, |T-C|: 0.062222, reduction:   362.3% 

  Kendall, U(0,1), N:200, |T-S|: 0.130854, |T-C|: 0.045025, reduction:   290.6% 

  Kendall, U(0,1), N:300, |T-S|: 0.123835, |T-C|: 0.040892, reduction:   302.8% 

 

 Spearman, U(0,1), N:100, |T-S|: 0.329817, |T-C|: 0.086817, reduction:   379.9% 

 Spearman, U(0,1), N:200, |T-S|: 0.197370, |T-C|: 0.061394, reduction:   321.5% 

 Spearman, U(0,1), N:300, |T-S|: 0.179198, |T-C|: 0.060258, reduction:   297.4% 

 

The quality of the approximation is observed to increase with increased sample size for Pearson 

correlation, whereas it remained about the same for Kendall and Spearman type correlations. 

Appendix 8b:  Random Number Generation 
The LINDO API allows the user to specify one of six random number generators:  

1) LS_RANDGEN_LINDO1: Composite of linear congruentials with a long 

period,(default),  

2) LS_RANDGEN_LINDO2: Linear congruential (31-bit),  

3) LS_RANDGEN_MERSENNE: Mersenne Twister with long period. 

4) LS_RANDGEN_SYSTEM: Built-in generator based on C functions rand() and 

srand(). 

5) LS_RANDGEN_LIN1: An alternative linear congruential generator. 

6) LS_RANDGEN_MULT1: A multiplicative generator. 

 

The 31-bit linear congruential generator (LS_RANDGEN_LINDO2) uses the recursion: 

      IU(t) = 742938285 * IU(t-1) MOD 2147483647  

       U(t) = IU(t) /2147483647.0  

This generator has a cycle length of (2^31)-1, or about 2.147*10^9. 

 

The composite generator (LS_RANDGEN_LINDO1) uses the recursion, see L’Ecuyer et al.:  

    x(t) =(1403580*x(t-2) -  810728*x(t-3)) mod 4294967087;  

    y(t) =( 527612*y(t-1) - 1370589*y(t-3)) mod 4294944443;  

    z(t) = (x(t) - y(t)) mod 4294967087;  

    U(t) = z(t)/4294967088 if z(t) > 0;  

         = 4294967087/4294967088 if z(t) = 0;  

 

Although this generator is slower, it has the advantages that it has a cycle length of about 2^191 = 

3.14*10^57.  It has been shown to have good high dimension uniformity in up to 45 dimensional 

hypercubes. 

 

The univariate distributions supported are Beta, Binomial, Cauchy, Chisquare, exponential, F, Gamma, 

Geometric, Gumbel, Hypergeometric, Laplace, Logarithmic, Logistic, Lognormal, Negativebinomial, 

Normal, Pareto, Poisson, Student-t, Uniform, Weibull. 

 

Generating internally a random number from an arbitrary distribution, e.g., Normal, Poisson, Negative 

binomial follow the following simple steps. 

1) Generate a uniform random number in (0, 1) with one of the available generators. 

2) Convert the uniform to the desired distribution via the inverse transform of the cdf (cumulative 

distribution function).  
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Appendix 8c:  Variance Reduction 
The LINDO API provides two methods for reducing the variance of results:  Latin Hyper Cube 

Sampling (LHS), and Antithetic Variates (ATV).  Assume we want n random variables drawn from the 

interval (0, 1), with all outcomes equally likely, i.e., uniformly distributed. 

LHS will partition the interval (0, 1) into n intervals, each of length 1/n, and then draw one sample 

uniformly from each interval.  For example, if n = 10, you might get the following sample. 

 

0.002773  0.279945 

0.789123  0.941034 

0.554321  0.837275 

0.376877  0.133699 

0.430992  0.672890 

 

Notice that there is exactly one number with a fraction starting with .0, one starting with .1, etc.  This 

is extended to arbitrary distributions so that there is exactly one number drawn from the lowest 1/n 

fractile, one from the second lowest fractile, etc. 

 

ATV sampling assumes that n is an even number.  Again, assuming we want n random numbers 

uniform in (0, 1),  ATV, ATV first draws n/2 numbers, xu1, xu2,… xun/2 uniform in (0, 1).  ATV then 

generates the remaining n/2 numbers by the rule:  For k = n/2+1, to n:  xuk = 1- xuk –n/2.  For example, 

the following n = 10 numbers satisfy that feature: 

 

0.002773  0.997227 

0.789123  0.210877 

0.554321  0.445679 

0.376877  0.623123 

0.430992  0.569008 

 

Appendix 8d:  The Costs of Uncertainty: EVPI and EVMU  
We   should  always be concerned with how much uncertainty is costing us. There are three general 

approaches we can take in the face of uncertainty: 

1) Disregard uncertainty.  Act as if each stochastic parameter is a constant. E.g., at the beginning 

of each day, assume it will be partly cloudy. 

2) Take uncertainty into account and prepare for it, i.e., make decisions that better take into 

account the possible uncertain future outcomes. E.g., Carry a small umbrella in case it is 

really cloudy. 

3) Eliminate uncertainty. In addition to (2), do better forecasting so that uncertainty is less of an 

issue. E.g., subscribe to a super accurate weather forecasting service and take along a sturdy 

umbrella on those days when you know it will rain. 

 

In terms of expected profit, if it costs us nothing to do the better information processing of approaches 

(2) and (3), then it is clear that the least profitable approach is (1), and the most profitable approach is 

(3). 

 

There are two measures of the cost of uncertainty corresponding to differences in the above three: 

1) EVPI  (Expected Value of Perfect Information) : Expected increase in profit if we know the 

future in advance. 
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2) EVMU (Expected Value of Modeling Uncertainty) : Expected decrease in profit if we 

replaced each stochastic parameter by a single estimate and act as if this value is certain. 

EVMU is sometimes also called VSS (Value of the Stochastic Solution). 

   

Graphically EVMU and EVPI can be described as the differences in profits for three different ways of 

making our decision: 

                                                                Profit   

 
                                        EVMU                                                             EVPI 

 

      Disregard                                                   Use SP                                                                     Perfect 

      uncertainty                                                                                                                                forecast  

      by basing 

      decision on 

      a benchmark scenario 

      (e.g. average scenario). 

 

Typically, the benchmark scenario is the average-scenario obtained by taking the mean of all 

stochastic parameters, but there may be reasons to use the median, or some other scenario. We discuss 

this issue later. 

EVPI and EVMU  Example 
Consider the plant location with random demand. Each plant, if we install or keep it, has a specified 

capacity. For each plant customer combination there is an net revenue contribution per unit. The 

complete data are specified below. 

 
 DATA: 
  PLANT = ATL  STL  CIN;  ! The 3 plants; 

    CAP =  22   22   15;  ! Capacities; 

  FCOST =  20   20   20 ; ! Fixed costs; 

  CUST =  

    CHI   SAN   NYC  MIA; ! The 4 customers; 

 

 

  REV =                    

      8     6    7    8   ! Revenues per unit for each; 

      9     7    1    1   ! combination of ; 

      7     6    8    9;  ! plant & customer ; 

  SCENE = 1   2    3;     ! There are 3 scenarios...; 

  PWT = 0.3  0.3  0.4;    !  with probabilities...; 

  DEM =  

       10   10    1   1   ! Demand scenario 1; 

        1    1    5   5   ! Demand scenario 2; 

        2    2    3   3;  ! Demand scenario 3; 

 ENDDATA  

 

Below we give details on the calculations. 

 

EVPI Example Computations 
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If we know future only probabilistically it can be shown that the optimal policy is to open the plant in 

Atlanta.  In this case, expected total profit =   82.40 

If we know in advance that the scenario will be  1,  then Expected Profit=  142.00  (Probability=0.3) 

        Plants to open:   STL      

If we know in advance that the scenario will be 2,   then Expected Profit=   78.00  (Probability=0.3) 

        Plants to open:         CIN 

If we know in advance that the scenario will be 3,   then Expected Profit=   57.00  (Probability=0.4) 

        Plants to open:       CIN 

So the expected Profit with Perfect Information  0.3*142 + 0.3*78 + 0.4*57  =   88.80 

Recall that the Expected Profit without perfect information was  82.40. 

So Expected Value of Perfect Information(EVPI)= 88.80 – 82.40 = 6.40 

Notice Atlanta not optimal for any scenario! 

 

EVMU Example Computations 

  If we act as if mean demand is certain... 

 The demand vector is:  

    4.1    4.1     3     3.   

If we thought that the demand would be exactly ( ), then the optimal set of  plants to open is  CIN. 

If we force the solution: CIN to be the only plant open, with all other plants closed, then in the face of 

the actual demand distribution, the actual expected profit with this configuration= 71.7.  So doing the 

calculations: 

 
     Expected Profit Modeling uncertainty    =    82.40 

     Expected Profit using expected values   =  - 71.70 

     Expected Value of Modeling Uncertainty  =    10.70 

 

EVMU,  When is it zero? 

    Can we predict when EVMU  = 0? 

   E.g., 

    Situation 1: 

        The price we get for our products are stochastic parameters. 

    Situation 2: 

        The demands for our products are stochastic parameters. 

 

EVMU and EVPI, True vs. Estimatied 

A fine point:  If the true number of scenarios is large, or infinite, and we use sampling, then the values 

for EVPI and EVMU reported are estimates rather than true values.  

 

EVMU: Choosing the Benchmark 

  EVMU is the expected opportunity cost of using a policy based on a single outcome forecast of the 

future, relative to using a policy that is optimal taking into account the distribution of possible future 

outcomes. The EVMU provides a measure of how much it is costing the decision maker to not 

properly take into account uncertainty.  Four possible single outcome forecasts come to mind. Each 

has its own problems. Some possible single forecast choices are: 

1) Choose the policy that is optimal assuming the future outcome is always the mean outcome. 

This is the default benchmark scenario used in EVMU computations with LINDO API. 

2) Choose the policy that is optimal assuming the future outcome is always the median outcome. 

3) Choose the policy that is optimal assuming the future outcome is always the most likely 

outcome. 
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4) The user arbitrarily specifies either a point forecast or a policy, e.g. stock enough inventory so 

that the probability of stock out is 0.05. 

 

Some problems with each the user should be aware of are: 

1)  

a. The mean may not be defined for certain distributions, e.g., the Cauchy, 

            or more generally the class of fat tailed "Stable Paretian" distributions popular in finance. 

b. The mean (with a fractional value) may not make sense for discrete distributions in  

            certain situations.  E.g., We are playing  Rock-Paper-Scissors or some  

      Heads-or-Tails game, and the user models the recourse decision with IF statements or a 

            VLOOKUP. The median and most likely do not have this problem. 

2)  

a. The median is ambiguous if there are an equal number of equally likely outcomes. 

b. The median is not obviously defined for a multi-dimensional stochastic 

parameter/vector. 

3)  

a. The most likely outcome may be ambiguous, e.g., for a uniform distribution. 

b. The most likely outcome may be a nonsensical choice for a highly skewed 

distribution.   

             E.g. the most likely outcome for an exponential distribution is 0, even though the mean 

             may be 100. 

 

 What to do? 

   The following “repair” actions seem appropriate for first two cases. 

1) User specifies the mean, however, 

a. the mean does not exist. The typical distributions for which the mean does not exist 

are  symmetric, so automatically switching to the median seems reasonable. 

b. there is no feasible solution to the model when a fractional value (which is usually 

the case for the mean) is specified for a  stochastic parameter but the model expects 

to be integer valued.  Simply report that EVMU = +. Alternatively, one could 

round the mean to the nearest value that corresponds to a draw from the true 

population. This is easy for a univariate distribution. Not so easy for a multivariate 

distribution.  

c. Theoretically, the EVMU is undefined if the original SP is infeasible. For example, 

suppose the user  says the cost of not satisfying all demand is infinite and there is an 

upper bound on how much can be stocked and there happens to be a possible 

demand greater than this upper bound.  The EVMU in this case is  – , which is 

“undefined”. However, LINDO API adopts   –  = 0,  implying that stochastic 

modeling of uncertainity did not lead to any additional benefits over using the 

benchmark scenario. 

 

2) When using the median, 

a. Resolve the ambiguity by defining the median as the first outcome for which 

thecumulative sum of probabilities is equal to or greater than 0.5. This is the default 

strategy adopted by LINDO API when using the median as the benchmark scenario. 

A slightly fancier choice would be the outcome for which |cum_sum – 0.5| is 

smaller, breaking ties by choosing the larger cum_sum. 

b. For a vector of discrete stochastic parameters, assume the user has input the 

scenarios in a  reasonable order. Sum up the probabilities of the scenarios starting 
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with the first.  Define the median scenario as the one for which | cum_sum – 0.5| is 

smaller. 

 

Appendix 8e:  Introducing Dependencies between Stages  
The simplest assumption in SP modeling with LINDO API is that random parameters in one stage are 

independent of decisions and random parameters in other stages. One can in fact relax this assumption 

in several ways.  The simplest way is to use the correlation feature in LINDO API. This allows you to 

have nonzero correlation between random parameters in different stages.  LINDO API supports two 

other general types of dependencies; blocks and scenarios. A block is a random vector whose elements 

are jointly realized in a single, fixed stage. In this type of dependency, a block cannot contain random 

parameters from different stages. A scenario is a more a general construct where dependencies across 

stages can also be modeled. Working with blocks and scenarios require the user to generate all 

possible realizations and feed them into the solver with LSaddDiscreteBlocks and 

LSaddScenario functions, respectively.  Some users may find working with explicit blocks and 

scenarios not as intuitive as the independent case. In particular, explicit generation of blocks and 

scenarios may require performing complex sampling tasks on user's end. LINDO API offers a versatile 

sampling API to allow the user to perform such tasks in a straightforward manner. Nonetheless, the 

user might be compelled to handle the dependency-issue on the modeling side due to one or more of 

the following: 

 

1. The user might simply prefer to avoid getting involved with sampling directly and hence 

blocks and scenarios.  

2. Dependencies between random parameters are more complicated than correlation matrices, 

which make it difficult to adopt a viable sampling methodology. 

3. Explicit block and/or scenario generation is not sufficient to model the underlying stochastic 

phenomenon (e.g. dependency between a random parameter in one stage and a decision 

variable in an earlier stage) 

 

In this section, we introduce some formulation tricks to establish different forms of dependencies. 

These tricks should not be perceived as comprehensive but rather supplementary to the existing 

methods, which rely on using blocks, scenarios and correlation-matrices, to model dependencies. The 

user should also be aware that such tricks, like many others, could affect the performance of the solver.  

 

We will use the following general notation: 

 

     rt = random variable in stage t of the core model, dependent on an earlier stage, 

     xt = a decision variable in stage t of the core model, 

     ut = an independent random variable used in stage t of the core model, 

 

 

Example 1, Dependency between rt and rt-1: 

    In fact, rather arbitrary dependences between rt and rt-1 can be represented. Suppose that random 

variable r2  in stage 2 is Normal distributed with standard deviation 12 and mean equal to the square of 

the outcome of random variable r1 in stage 1. In setting up the SP model we would declare u2 to be a 

stage 2 Normal random variable with mean zero and standard deviation 1. Then in stage 2 we 

introduce another variable r2  with the constraint: 

r2  = r1
2
 + 12*u2. 
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That is, given r1, the variable r2 is a Normal random variable with mean r1
2
 and standard deviation 12. 

A useful and interesting result is that inserting dependencies between just random parameters such as 

this does not change the computational difficulty of the model.  If the original deterministic equivalent 

(DETEQ) model was linear if r1 and r2 were independent, then the more complicated version where r2 

depends upon r1, is also linear. This is because random parameters, and all variables that depend only 

upon random parameters, reduce to constants in the DETEQ model. 

 

Example 2, Linear dependency between rt and xt-1: 

       Suppose that, now using scalar decision variables, x1t-1 and x2t-1, we may "buy" in stage t-1, the 

mean and standard deviation of rt in stage t.  For example, x1t-1 might be how much we spend on 

advertising in stage t-1, and x2t-1 might be how much we spend on forecasting in stage t-1.  A model of 

how rt depends upon x1t-1 and x2t-1 might be a simple linear one so that:  

              r2  = 50 + x11  + (12 - x21)*u2. 

Thus, if we spend nothing on advertising and forecasting, the mean and standard deviation of r2 are 50 

and 12 respectively.  If we spend 5 units each on advertising and forecasting, the mean and standard 

deviation are 55 and 7. A useful and interesting result is that inserting dependencies between a random 

variable and a decision variable in an earlier stage may not change the computational difficulty of the 

model if:  a) the relationship is just a scaling as above, and b) the random variable appears only as a 

right hand side constant in the original core model.  If the original deterministic equivalent (DETEQ) 

model was linear if  r2  did not depend upon x1t-1 and x2t-1,  and r2 appeared only on the constant right 

hand side of the constraints in the core model, then the more complicated version where r2  depends 

upon x1t-1 and x2t-1, is also linear.  

 

 Example 3 Nonlinear discrete dependency between rt and rt-1: 

 

 Suppose that x1t-1 and x2t-1, are binary variables that allow us to "buy" in stage t-1, a mean of either 7  

or a mean of 11 for a Poisson random variable rt in stage t. Proceed as follows: 

    Declare u1t to be a stage t Poisson random variable with mean 7 and  

                 u2t to be a stage t Poisson random variable with mean 11.  

In stage t-1 of the core model we insert the “choose one or the other” constraint: 

         x1t-1 + x2t-1 = 1; 

In stage t of the core model we insert the “use the one you choose” constraint:  

         rt = x1t-1*u1t  + x1t-1*u1t ; 

A useful and interesting result is that inserting a discrete dependency between a random variable and a 

decision variable in an earlier stage as above, although it introduces integer variables, does not change 

a linear DETEQ model to a nonlinear one if the associated random variable appears only as a right 

hand side constant in the original core model.  

 

 

 

 

 



 

 

Chapter 9:  

Using Callback Functions 
In many instances, solving a model can be a lengthy operation. Given this, it may be useful to monitor 

the progress of the optimization. This is particularly true when building a comprehensive user 

interface. You may wish to display a window for the user that summarizes the solver’s progress. This 

can be accomplished with a callback function—so named because the code calls the solver, and the 

solver periodically calls back to your supplied callback routine. 

This chapter illustrates the use of callback functions in conjunction with LINDO API. In this section, 

the C and VB code samples presented in the previous chapter will be modified in order to incorporate a 

simple callback function. LINDO API also supports a special callback routine for integer models, 

where the routine is called every time the solver finds a new integer solution. This chapter is concluded 

with a brief discussion on the use of this integer programming callback function. 

Specifying a Callback Function 
To specify a callback function, call the LSsetCallback() routine before calling the LSoptimize() or the 

LSsolveMIP() solution routines. Using C programming conventions, the calling sequence for 

LSsetCallback() is:  

int LSsetCallback(  

   pLSmodel  pModel,  

   cbFunc_t  pCallback,  

   void*  pUserData 

) 

where, 

pModel – is a pointer to the model object you wish to monitor with your callback routine. 

pCallback – is a function pointer, which points to the callback routine you are supplying. To 

cancel an existing callback function, set pCallback to NULL. The callback function type 

cbFunc_t is defined in the lindo.h file. 

pUserData – can point to whatever data you want. LINDO API merely passes this pointer 

through to your callback routine. You may then reference this pointer in your callback routine 

in order to access your data areas. Passing this pointer allows you to avoid the use of global 

data, thus allowing your application to remain thread safe. 
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The callback function you create must have the following interface: 

int CALLBACKTYPE MyCallback(  

   pLSmodel  pModel,  

   int  nLocation,  

   void*  pUserData 

) 

where, 

pModel – is a pointer to the model object you passed to the solver. You will need to pass this 

pointer when retrieving information about the status of the solver. Details on retrieving 

information are discussed below. 

nLocation – indicates the solver’s current location. Its value is of no particular interest to your 

application. However, you may need to know the current location of the solver since there 

may be several different optimizers involved while solving a specific problem. For instance, 

in solving a nonlinear mixed-integer model, the solver will deploy both the nonlinear and 

MIP optimizer, and at consecutive callback times the solver may be at another location. 

pUserData – is the pointer to your data area, which you originally passed to the 

LSsetCallback() routine. This can be referenced here to gain access to your data. 

Return Value – is the return value of the callback function, which is used to indicate 

whether the solver should be interrupted or continue processing the model. To 

interrupt the solver, return a –1. To have the solver continue, return a 0. 

The CALLBACKTYPE macro is declared in the lindo.h header file. Under Windows, CALLBACKTYPE 

is simply defined as “_stdcall_”, which forces the callback function to use the standard function calling 

protocol rather than the C-style “cdecl” protocol. VB users don’t need to worry about this aspect of the 

callback function because VB automatically uses standard calls. 

The callback function will be called on a regular basis by the LINDO API solver. The frequency of 

callbacks can be controlled through the parameter LS_DPARAM_CALLBACKFREQ, which may be set 

through calls to LSsetEnvDouParameter(). The default value for this parameter is .5, which means the 

solver will callback the code approximately once every ½ second.  

Once the callback function has control, you will most likely want to retrieve information regarding the 

solver’s status. The function LSgetCallbackInfo() is designed for this purpose. Note that inside the 

callback routine, any queries directed to LINDO API must be done through LSgetCallbackInfo(). 

Other LINDO API query routines may not return valid results while the solver is invoked. Here is the 

interface for LSgetCallbackInfo(): 

int LSgetCallbackInfo(  

   pLSmodel pModel,  

   int nLocation, 

   int nQuery,  

   void* pResult 

) 

where, 

pModel – is the model object pointer that was passed to your callback routine. 

nLocation – is the integer value indicating the solver’s current location that was passed to the 

callback routine. The following callback locations are possible: 
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Solver Location Names 

Primal Simplex Optimizer LSLOC_PRIMAL 

Dual Simplex Optimizer LSLOC_DUAL 

Barrier Optimizer LSLOC_BARRIER 

Barrier Crossover Process LSLOC_CROSSOVER 

MIP Optimizer LSLOC_MIP 

Standard Nonlinear Optimizer LSLOC_CONOPT 

Multistart Nonlinear 

Optimizer at a Local Optimal 

LSLOC_LOCAL_OPT 

Start of Instruction list-based 

model generation  

LSLOC_GEN_START 

Processing Instruction list-

based model generation 

LSLOC_GEN_PROCESS

ING 

End of Instruction list-based 

model generation  

LSLOC_GEN_END 

Global Optimizer LSLOC_GOP 

Multistart Solver LSLOC_MSW 

Function Evaluation LSLOC_FUNC_CALC 

Presolver LSLOC_PRESOLVE 

Exiting the Solver LSLOC_EXIT_SOLVER 

Calling user defined nonlinear 

callback functions. 

LSLOC_FUNC_CALC 

Infeasibility and unbounded 

set finder 

LSLOC_IISIUS 

Stochastic solver LSLOC_SP 

Start of instruction list 

generation for the 

deterministic equivalent 

representing a stochastic 

program 

LSLOC_GEN_SP_STAR

T 

Instruction list generation for 

the deterministic equivalent 

representing a stochastic 

program 

LSLOC_GEN_SP 

End of instruction list 

generation for the 

deterministic equivalent 

LSLOC_GEN_SP_END 
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representing a stochastic 

program 

Solving Wait-See model of 

the underlying stochastic 

program 

LSLOC_SP_WS 

Solving the LSQ model LSLOC_LSQ 

BNP solver LSLOC_BNP 

nQuery – is the code for the object whose value you wish to retrieve. The possible values for 

this argument are listed in Callback Management Routines section under LSgetCallbackInfo 

description on page 312. 

pResult – is a pointer to the memory location where LINDO API should store the value for 

the requested object. Be sure to allocate enough space for the object. Objects whose names 

begin with “LS_I” (e.g., LS_IINFO_SIM_ITER) return an integer quantity, while those 

beginning with “LS_D” return a double precision quantity. 

Return Value – is the function’s return value, which will be 1 if the parameter code was not 

recognized, else 0. 

A Callback Example Using C 
In this section, we will illustrate the use of a callback function written in C. The sample C application 

in Chapter 3, Solving Linear Programs, has been modified, so that it now incorporates a simple 

callback function. If you are not familiar with the C example in Chapter 3, Solving Linear Programs, 

review it now before proceeding with this example. The code for this example is contained in the file 

\lindoapi\samples\c\ex_samp2\ex_samp2.c. The contents of this file are reproduced below. Changes 

added to the file presented in Chapter 3, Solving Linear Programs, are displayed in bold type: 

/* ex_samp2.c 

A C programming example of interfacing with the  

  LINDO API that employs a callback function. 

  The problem: 

     MAX = 20 * A + 30 * C 

     S.T.       A +  2 * C  <= 120 

                A           <=  60 

                         C  <=  50 

   Solving such a problem with the LINDO API involves 

   the following steps: 

      1. Create a LINDO environment. 

      2. Create a model in the environment. 

      3. Specify the model. 

      4. Perform the optimization. 

      5. Retrieve the solution. 

      6. Delete the LINDO environment. 

*/ 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

/* LINDO API header file */ 
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#include "lindo.h" 

 

/* Define a macro to declare variables for 

    error checking */ 

#define APIERRORSETUP   

   int nErrorCode;  

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]  

 

/* Define a macro to do our error checking */ 

#define APIERRORCHECK   

   if (nErrorCode)  

   {  

      if ( pEnv)  

      {  

         LSgetErrorMessage( pEnv, nErrorCode,  

          cErrorMessage);  

         printf("Errorcode=%d:  %s\n", nErrorCode,  

          cErrorMessage);  

      } else { 

         printf( "Fatal Error\n");  

      }  

      exit(1);  

   }  

 

/* A callback function that will be called by the LINDO 

    solver */ 

int CALLBACKTYPE MyCallback( pLSmodel pMod, int nLocation, 

 void* pMyData) 

{ 

/* Display the string we passed to LSsetCallback() */ 

   printf( "In MyCallback: %s\n", pMyData); 

/* Display current iteration count and objective value */ 

   { 

      int nIter; 

      double dObj; 

      LSgetCallbackInfo( pMod, nLocation, LS_IINFO_SIM_ITER, 

       &nIter); 

      LSgetCallbackInfo( pMod, nLocation, LS_DINFO_POBJ, 

       &dObj); 

      printf( "In MyCallback, Iters, Obj: %d %g\n", 

       nIter, dObj); 

   } 

   return( 0); 

} 

 

/* main entry point */ 

int main() 

{ 

   APIERRORSETUP; 

   int i, j; 

   char strbuffer[255]; 

   char MY_LICENSE_KEY[1024]; 

/* Number of constraints */ 

   int nM = 3; 

/* Number of variables */ 

   int nN = 2; 
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/* declare an instance of the LINDO environment object */ 

   pLSenv pEnv; 

/* declare an instance of the LINDO model object */ 

   pLSmodel pModel; 

/* >>> Step 1 <<< Create a LINDO environment. */ 

   nErrorCode = LSloadLicenseString( 

"../../../license/lndapi100.lic",MY_LICENSE_KEY); 

   APIERRORCHECK; 

   pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

   if ( nErrorCode == LSERR_NO_VALID_LICENSE) 

   { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

/* >>> Step 2 <<< Create a model in the environment. */ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   APIERRORCHECK; 

   { 

/* >>> Step 3 <<< Specify the model. 

 To specify our model, we make a call to LSloadLPData, 

  passing it: 

 - A pointer to the model which we are specifying(pModel) 

 - The number of constraints in the model 

 - The number of variables in the model 

 - The direction of the optimization (i.e. minimize or 

 -  maximize) 

 - The value of the constant term in the objective (may be zero) 

 - The coefficients of the objective function 

 - The right-hand sides of the constraints 

 - The types of the constraints 

 - The number of nonzeros in the constraint matrix 

 - The indices of the first nonzero in each column 

 - The length of each column 

 - The nonzero coefficients 

 - The row indices of the nonzero coefficients 

 - Simple upper and lower bounds on the variables 

*/ 

/* The direction of optimization */ 

      int nDir = LS_MAX; 

/* The objective's constant term */ 

      double dObjConst = 0.; 

/* The coefficients of the objective function */ 

      double adC[2] = { 20., 30.}; 

/* The right-hand sides of the constraints */ 

      double adB[3] = { 120., 60., 50.}; 

/* The constraint types */ 

      char acConTypes[3] = {'L', 'L', 'L'}; 

/* The number of nonzeros in the constraint matrix */ 

      int nNZ = 4; 

/* The indices of the first nonzero in each column */ 

      int anBegCol[3] = { 0, 2, nNZ}; 

/* The length of each column.  Since we aren't leaving 

    any blanks in our matrix, we can set this to NULL */ 

      int *pnLenCol = NULL; 

/* The nonzero coefficients */ 
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      double adA[4] = { 1., 1., 2., 1.}; 

/* The row indices of the nonzero coefficients */ 

      int anRowX[4] = { 0, 1, 0, 2}; 

/* Simple upper and lower bounds on the variables. 

    By default, all variables have a lower bound of zero 

    and an upper bound of infinity.  Therefore pass NULL 

    pointers in order to use these default values. */ 

      double *pdLower = NULL, *pdUpper = NULL; 

/* Variable and constraint names */ 

      char **paszVarnames, **paszConnames; 

      char *pszTitle = NULL, *pszObjname = NULL, *pszRhsname = NULL, 

        *pszRngname = NULL, *pszBndname = NULL; 

      paszConnames = (char **) malloc(nM*sizeof(char *)); 

      for (i=0; i < nM; i++) 

      { 

        paszConnames[i] = (char *) malloc(255*sizeof(char)); 

        sprintf(strbuffer,"CON%02d",i); 

        strcpy(paszConnames[i],strbuffer); 

      } 

      paszVarnames = (char **) malloc(nN*sizeof(char *)); 

      for (j=0; j < nN; j++) 

      { 

        paszVarnames[j] = (char *) malloc(255*sizeof(char)); 

        sprintf(strbuffer,"VAR%02d",j); 

        strcpy(paszVarnames[j],strbuffer); 

      } 

/* We have now assembled a full description of the model. 

    We pass this information to LSloadLPData with the 

    following call. */ 

      nErrorCode = LSloadLPData( pModel, nM, nN, nDir, 

       dObjConst, adC, adB, acConTypes, nNZ, anBegCol, 

       pnLenCol, adA, anRowX, pdLower, pdUpper); 

      APIERRORCHECK; 

/* Load name data */ 

      nErrorCode = LSloadNameData(pModel, pszTitle, 

        pszObjname, pszRhsname, pszRngname,pszBndname, 

        paszConnames, paszVarnames); 

   } 

   { 

 /* Establish the callback function */ 

      char* pMyData = "My string!"; 

      nErrorCode = LSsetCallback( pModel, 

       (cbFunc_t) MyCallback, pMyData); 

      APIERRORCHECK; 

 /* >>> Step 4 <<< Perform the optimization */ 

      nErrorCode = LSoptimize( pModel, 

       LS_METHOD_PSIMPLEX, NULL); 

      APIERRORCHECK; 

   } 

   { 

 /* >>> Step 5 <<< Retrieve the solution */ 

      double adX[ 2], adY[3],dObj; 

 /* Get the value of the objective */ 

      nErrorCode = LSgetInfo( pModel, LS_DINFO_POBJ, &dObj) ; 

      APIERRORCHECK; 

      printf( "Objective Value = %g\n", dObj); 
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 /* Get the primal and dual values */ 

      nErrorCode = LSgetPrimalSolution ( pModel, adX); 

      APIERRORCHECK; 

      nErrorCode = LSgetDualSolution ( pModel, adY); 

      APIERRORCHECK; 

      printf ("Primal values:\n"); 

      for (j = 0; j < nN; j++) 

      { 

        LSgetVariableNamej(pModel,j,strbuffer); 

        printf( "%s = %g\n", strbuffer, adX[j]); 

      } 

      printf ("\n"); 

      printf ("Dual values:\n"); 

      for (i = 0; i < nM; i++) 

      { 

        LSgetConstraintNamei(pModel,i,strbuffer); 

        printf( "%s = %g\n", strbuffer, adY[i]); 

      } 

   } 

 /* >>> Step 6 <<< Delete the LINDO environment */ 

   LSdeleteModel( &pModel); 

   LSdeleteEnv( &pEnv); 

 

  /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   getchar(); 

} 

\lindoapi\samples\c\ex_samp2\ex_samp2.c 

There were two primary changes made to incorporate the callback function. The first change involved 

including the callback function with the following code: 

/* A callback function that will be called by the LINDO  

    solver */ 

int CALLBACKTYPE MyCallback( pLSmodel pMod, int nLocation,  

 void* pMyData) 

{ 

/* Display the string we passed to LSsetCallback() */ 

   printf( "In MyCallback: %s\n", pMyData);  

/* Display current iteration count and objective value */ 

   { 

      int nIter; 

      double dObj; 

      LSgetCallbackInfo( pMod, nLocation, LS_IINFO_SIM_ITER,  

       &nIter); 

      LSgetCallbackInfo( pMod, nLocation, LS_DINFO_POBJ,  

       &dObj); 

      printf( "In MyCallback, Iters, Obj: %d %g\n",  

       nIter, dObj); 

   } 

   return( 0); 

} 

Your callback function must have the exact same interface as presented here. If the interface is 

different, then the application will in all likelihood crash once the LINDO API solver is called.  
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This particular callback function displays the string that was passed when it was declared with a call to 

LSsetCallback(). This pointer can be used to point to whatever data structure you’d like access to in the 

callback function. Use of the passed pointer allows you to avoid using global data. The callback 

function then makes two calls to LSgetCallbackInfo() to retrieve the current iteration count and 

objective value from the solver. These two values are then written to the standard output device. 

You can build this application using the Microsoft C/C++ nmake utility in conjunction with the 

makefile.win file included in the same directory as the source. Refer to the discussion of the C example 

in Chapter 3, Solving Linear Programs, for detailed build instructions.  

When this application is run, the following will be displayed on the screen: 

C:\lindoapi\samples\c\ex_samp2>ex_samp2 

In MyCallback: My string! 

In MyCallback, Iters, Obj: 2 2100 

In MyCallback: My string! 

In MyCallback, Iters, Obj: 3 2100 

In MyCallback: My string! 

In MyCallback, Iters, Obj: 3 2100 

Objective Value = 2100 

Primal values = 60 30 

Because this is a relatively small model, the callback function only gets called three times. Larger 

models will receive many callbacks from the solver. 

A Callback Example Using Visual Basic 
This section will illustrate the use of a callback function written in Visual Basic. The sample VB 

application in Chapter 3, Solving Linear Programs, has been modified, so that it now incorporates a 

simple callback function. If you are not familiar with the VB example in Chapter 3, Solving Linear 

Programs, you should review it now before proceeding with this example.  

If you are using Visual Basic 5 or later, a callback function can be implemented. The ability to use a 

callback function relies on the Visual Basic AddressOf operator, which can return the address of a 

function. This operator does not exist in Visual Basic 4 or earlier, nor does it exist in Visual Basic for 

Applications.  

Your VB callback functions must be placed within standard VB modules. If you place your callback 

function in a form or class module, LINDO API will not be able to callback correctly. 

The code for this example is contained in the files \lindoapi\samples\vb\samp2\samplevb.frm and 

\lindoapi\samples\vb\samp2\callback.bas.  

The following two lines in bold type were added to samplevb.frm presented in Chapter 3, Solving 

Linear Programs, to identify the callback function to LINDO API: 
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                . 

                . 

                . 

  errorcode = LSloadLPData(prob, m, n, LS_MAX, 0, _ 

   c(0), b(0), con_type, nz, Abegcol(0), ByVal 0, _ 

   Acoef(0), Arowndx(0), ByVal 0, ByVal 0) 

  Call CheckErr(env, errorcode) 

  'Establish the callback function 

  errorcode = LSsetCallback(prob, AddressOf MyCallback, ByVal 0) 

  '>>> Step 4 <<<:  Perform the optimization. 

  errorcode = LSoptimize(prob, LS_METHOD_PSIMPLEX, ByVal 0) 

  Call CheckErr(env, errorcode) 

                . 

                . 

                . 

Additions to samplevb.frm  

Note that the AddressOf operator is used to pass the address of our callback function to 

LSsetCallback(). The callback function, MyCallback, was placed in a separate file, so it could be 

included as a standard module. Placing the callback function in samplevb.frm with the rest of the code 

would not have worked because samplevb.frm is a form module. As mentioned above, callback 

functions must be placed in standard modules.  

The code for MyCallback may be found in callback.bas, which is displayed below. 

Public Function MyCallback(ByVal model As Long, _ 

 ByVal loc As Long, ByRef myData As Long) As Long 

   Dim it As Long 

   Dim ob As Double 

   Call LSgetCallbackInfo(model, loc, LS_IINFO_SIM_ITER, it) 

   Call LSgetCallbackInfo(model, loc, LS_DINFO_POBJ, ob) 

   MsgBox "In MyCallback" & vbCrLf & "Iteration: " _ 

    & it & vbCrLf & "Objective value:  " & ob 

   MyCallback = 0 

End Function 

\lindoapi\samples\vb\samp2\callback.bas 

This file was included to the project by issuing the Project|Add Module command in Visual Basic. As 

with the previous C example, this callback function makes two calls to the LINDO API routine 

LSgetCallbackInfo() to retrieve the current iteration number and the objective value. The callback 

function returns a 0 to indicate the solver is to continue. Alternatively, a –1 may be returned to 

interrupt the solver.  

When this application is run, the callback function should display a dialog box as follows: 
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Integer Solution Callbacks  
In addition to the standard callback routine discussed above, LINDO API also has the ability to 

callback your code each time a new integer solution is found. Among other things, this will allow you 

to keep users of your application posted on the current best integer solution found so far. Given that 

large integer models can take quite some time to solve, you may want to use the callback function’s 

ability to interrupt the solver. When LINDO API is interrupted on an integer model, it will restore the 

best integer solution before returning to your code. The incumbent solution may then be retrieved 

using normal means. 

The technique for setting up your MIP callback function should look familiar because it is very similar 

to the technique used above for setting up a standard callback function. To set up your MIP callback, 

you pass its address to LSsetMIPCallback(). Using C programming conventions, the calling sequence 

for LSsetMIPCallback() is:  

void LSsetMIPCallback(  

   pLSmodel pModel,  

   MIP_callback_t pMIPCallback,  

   void* pUserData 

) 

 

where, 

pModel – is a pointer to the model object you wish to monitor with your callback routine. 

pMIPCallback – is a function pointer, which points to the callback routine being supplied. To 

cancel an existing callback function, set pMIPCallback to NULL. The MIP_callback_t 

function type is defined in the lindo.h header file. 

pUserData – can point to any data desired. LINDO merely passes this pointer through to the 

callback routine. This pointer can then be referenced in the callback routine in order to access 

data areas. Passing this pointer avoids the use of global data, thus allowing the application to 

remain thread safe. 

The MIP callback function created is somewhat different from the standard callback interface and must 

be declared as follows: 

int CALLBACKTYPE MyMIPCallback( 

   pLSModel pModel,  

   void*  pUserData, 

   double  dObjective,  

   double*  dPrimals  

) 

where,  

pModel – is a pointer to the model object passed to the solver. This pointer will need to be 

passed to the solver when retrieving information about the status of the solver. Details on 

retrieving information are discussed below. 

pUserData – is the pointer to the data area, which was originally passed to the 

LSsetMIPCallback() routine. It can be referenced here to gain access to the data. 

dObjective – contains the objective value for the incumbent solution. 

dPrimals – is a pointer to a double precision array containing the values of all the variables at 

the incumbent solution point. 

Return Value – is the return value of the MIP callback function, which is presently 

not used and is reserved for future use. For now, this should always return a 0 value. 
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Once your MIP callback function has control, additional information regarding the solver’s status may 

be retrieved. In addition to calling LSgetCallbackInfo() as was done from the standard callback 

function, LSgetMIPCallbackInfo() may also be called. This will return solver status information 

pertinent to MIP models. Here is the interface for LSgetMIPCallbackInfo(): 

int LSgetMIPCallbackInfo(  

   pLSmodel pModel,  

   int  nQuery,  

   void*  pResult 

) 

where, 

pModel – is the model object pointer that was passed to the MIP callback routine. 

nQuery – is the code for the object whose value to retrieve. The following objects may be 

retrieved: 

Solver Data Data Type Name 

Simplex iteration count int LS_IINFO_MIP_SIM_ITER 

Barrier iteration count int LS_IINFO_MIP_BAR_ITER 

Nonlinear iteration count int LS_IINFO_MIP_NLP_ITER 

Objective bound double LS_DINFO_MIP_BESTBOUND 

Branch count int LS_IINFO_MIP_BRANCHCOUNT 

Active node count int LS_IINFO_MIP_ACTIVENODES 

Number of relaxed 

problems solved 

int LS_IINFO_MIP_LPCOUNT 

Returns true if an integer 

solution was just found. 

int LS_IINFO_MIP_NEWIPSOL 

How the last integer 

solution was found. 

int LS_IINFO_MIP_LTYPE 

Optimal objective value double LS_DINFO_MIP_OBJ 

Solver status int LS_IINFO_MIP_STATUS 

Objective value in the last 

branch solved 

double  LS_DINFO_MIP_SOLOBJVAL_LA

ST_BRANCH 

Solver status in the last 

branch solved 

int LS_IINFO_MIP_SOLSTATUS_LA

ST_BRANCH 

pResult – is a pointer to the memory location LINDO API should store the value for the 

requested object. Be sure to allocate enough space for the object. Objects whose names begin 

with “LS_I” (e.g., LS_IINFO_MIP_SIM_ITER) return an integer quantity, while those 

beginning with “LS_D” return a double precision quantity. 

Return Value – is the function’s return value, which will be 1 if the parameter code was not 

recognized, else 0. 
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The mechanics of adding a MIP callback to your application are identical to what was done in the 

examples at the beginning of the chapter where a standard callback function was added. Users 

interested in adding MIP callbacks should review the next chapter to become familiar with integer 

modeling with LINDO API. The final section in the next chapter will direct you to specific examples 

that include MIP callbacks.  





 

 

Chapter 10: Analyzing 
Models and Solutions   

Sometimes after solving an optimization problem, it may be desired to get additional information 

beyond the standard primal and dual values of the solution. Here, two situations are considered: 

1. We are unsure about the input values used. The dual prices tell us how sensitive the solution 

is to small changes in the input values. Over what ranges can inputs be changed without 

causing major changes in the solution (i.e., causing the dual prices to change)? 

2. The solution was surprising. In particular, the model was infeasible or unbounded. What 

might be the cause of this infeasibility or unboundedness? 

Sensitivity and Range Analysis of an LP 

LINDO API provides three function calls that allow users to examine the sensitivity of the optimal 

solution of an LP to changes in model input such as right-hand side values of constraints or objective 

function coefficients of variables. These tools can be useful in responding better to the solution 

produced when model data are subject to uncertainty including, measurement errors, lack of 

information, and poor or partial interpretation of prices and resources. 

The three function calls are: 

 LSgetConstraintRanges ( pLSmodel prob, double *rhsdec, double *rhsinc); 

 LSgetObjectiveRanges ( pLSmodel prob, double *objdec, double *objinc); 

 LSgetBoundRanges ( pLSmodel prob, double *boudec, double *bouinc); 

The following example LP illustrates: 

max= 20*x0 + 30*x1 + 46*x2; 

 [c0]   x0            + x2 <=  60; 

 [c1]           x1    + x2 <=  50; 

 [c2]   x0 + 2* x1 + 3* x2 <= 120; 

When solved, the solution is: 

                  Primal 

Variable           Value        Reduced Cost 

      X0        60.00000            0.00000 

      X1        30.00000            0.00000 

      X2         0.00000            4.00000 

     Row    Slack or Surplus      Dual Price 

      C0         0.00000            5.00000 

      C1        20.00000            0.00000 

      C2         0.00000           15.00000
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If LSgetConstraintRanges() is called, the values in the vectors rhsdec and rhsinc will be as follows: 

Constraint        rhsdec       rhsinc           

        C0       40.00000     60.00000          

        C1       20.00000     LS_INFINITY          

        C2       60.00000     40.00000         

The interpretation of these numbers is as follows. The value in: 

 rhsinc[i] is the amount by which the right-hand side (RHS) of constraint i can be 

increased without causing any change in the optimal values of the dual prices or reduced 

costs. 

 rhsdec[i] is the amount by which the RHS of constraint i can be decreased without 

causing any change in the optimal values of the dual prices or reduced costs. 

For example, the allowable decrease of 20 on constraint C1 means the RHS of 50 could be reduced by 

almost 20, to say 30.001, without causing any of the reduced costs or dual prices to change from (0, 0, 

4, 5, 0, 15). 

These are one-side guarantees in the following sense: decreasing the RHS of C1 by more than 20 does 

not mean that some of the reduced costs and dual prices must change. Similarly, these are 

one-at-a-time guarantees. In other words, if you change multiple RHS’s by less than their range limits, 

there is no guarantee that the reduced costs and dual prices will not change. There is, nevertheless, a 

100% rule at work. Namely, if several coefficients are changed simultaneously, such that the 

percentage of the ranges used up is less than 100% in total, then the original guarantee still applies. For 

example, if the RHS of C0 is decreased by 10 and the RHS of C2 is decreased by 30, then the total 

percentage of ranges used up is 10/40 + 30/60 = 75%. Therefore, the reduced costs and dual prices 

would not be affected by these simultaneous changes. 

If LSgetObjectiveRanges() is called, the values in the vectors objdec and objinc will be as follows: 

Variable      objdec      objinc           

      X0     4.00000     LS_INFINITY              

      X1     4.00000     10.00000          

      X2    LS_INFINITY   4.00000          

The interpretation of these numbers is as follows. The value in:  

 objinc[j] is the amount by which the objective coefficient of variable j can be increased 

without causing any change in the optimal values of the primal values, slacks, or 

surpluses. 

 objdec[j] is the amount by which the objective coefficient of variable j can be decreased 

without causing any change in the optimal values of the primal values, slacks, or 

surpluses. 

For example, the allowable increase of 10 on variable X1 means that its objective coefficient of 30 

could be increased by almost 10, to say 39.999, without causing any of the primal values, slacks, or 

surplus values to change. 

These are one-side guarantees. In other words, increasing the objective coefficient of X1 by more than 

10 does not mean that some of the primal values, slacks, or surpluses must change. Similarly, these are 

one-at-a-time guarantees. If you change several objective coefficients by less than their range limits, 

there is no guarantee that the primal values, slacks, or surpluses will not change. The 100% rule 

mentioned above, however, also applies here. 
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The function LSgetBoundRanges() behaves much like LSgetConstraintRanges(). Bounds, such as non-

negativity, are just another form of constraints. For the above example, the vectors boudec and bouinc 

will be as follows:  

Variable        boudec      bouinc          

      X0       LS_INFINITY  60.00000        

      X1       LS_INFINITY  30.00000        

      X2          0         30.00000        

The interpretation of these numbers is as follows. The value in:  

 bouinc[j] is the amount by which the lower and upper bounds of variable j can be 

increased without causing any change in the optimal values of the reduced costs and dual 

prices. 

 boudec[j] is the amount by which the lower and upper bounds of variable j can be 

decreased without causing any change in the optimal values of the reduced costs and dual 

prices. 

For example, the allowable increase of 60 on variable X0 means that its lower bound of zero could be 

increased by almost 60, to say 59.999, without causing any of the reduced costs or dual prices to 

change. The allowable increase of 30 on variable X2 means that its lower bound of zero could be 

increased by almost 30. If X2 is forced to be greater-than-or-equal-to 30, then variable X2 would be 

forced out of the solution. 

Diagnosis of Infeasible or Unbounded Models 
LINDO API contains two diagnostic tools,  LSfindIIS() and LSfindIUS(), that can help users debug 

infeasible or unbounded optimization models. These tools can be called after the solver reports an 

infeasible or unbounded status for the model. LSfindIIS() finds an irreducible infeasible set (IIS) of 

constraints, whereas LSfindIUS(), finds an irreducible unbounded set (IUS) of variables. An IIS is a set 

of constraints that are infeasible taken together, but every strict subset is feasible. Similarly, an IUS is 

a set of variables that are unbounded taken together. However, if any one of these variables are fixed, 

then these variables are not unbounded. The IIS or IUS portion of the model will generally be much 

smaller than the original model. Thus, the user can track down formulation or data entry errors 

quickly. By isolating of the source of the errors, the user can correct the model data such as right-hand 

side values, objective coefficients, senses of the constraints, and column bounds. 

Note:  With LINDO API 4.0, debugging capabilities of LSfindIIS() have been extended beyond 

linear programs. It can now debug infeasible quadratic, conic, integer and general nonlinear 

models, too.  

Infeasible Models 
LSfindIIS() assumes that the user has recently attempted optimization on the model and the solver 

returned a “no feasible solution” message.  For an LP, if an infeasible basis is not resident in the 

solver, LSfindIIS() cannot initiate the process to isolate an IIS. This can occur if the infeasibility is 

detected in the pre-solver before a basis is created, or the barrier solver has terminated without 

performing a basis crossover. To obtain an IIS for such cases, the pre-solve option should be turned off 

and the model must be optimized again. 
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The constraints and bounds in the IIS are further classified into two disjoint sets: a necessary set and a 

sufficient set. The sufficient set refers to a crucial subset of the IIS in the sense that removing any one 

of its members from the entire model renders the model feasible. Note that not all infeasible models 

have sufficient sets. The necessary set contains those constraints and bounds that are likely to 

contribute to the overall infeasibility of the entire model. Thus, the necessary set requires a correction 

in at least one member to make the original model feasible.  

Example: 

C1) x   6; 

C2)  y  6; 

C3) x + y  5; 

 x, y  0; 

The set C2 and C3 (as well as the non-negativity bound on x) are a necessary set. That is, some 

constraint in this set must be dropped or corrected. Otherwise, the model will continue to be infeasible. 

Note that C1 and C3 are also a necessary set. However, LINDO API will identify only one IIS set at a 

time. The constraint C3 will be marked as a sufficient set. That is, dropping it will make the entire 

model feasible. Note that dropping C2 will not make the entire model feasible, even though C2 is a 

member of a necessary set. It follows that a constraint that is marked sufficient is a member of every 

possible necessary set. Thus, a constraint that has been marked as sufficient has a high probability of 

containing an error. In fact, if the model contains only one bad coefficient, the constraint containing it 

will be marked as sufficient. 

 

To control the level of analysis when locating an IIS, one should pass the level (mode) of the analysis 

to LSfindIIS() as the second argument. Possible bit-mask values are:  

LS_NECESSARY_ROWS= 1, 

LS_NECESSARY_COLS = 2, 

LS_SUFFICIENT_ROWS= 4, 

LS_SUFFICIENT_COLS = 8. 

For instance,  to isolate only necessary and sufficient rows as the IIS,  the associated level to pass to 

LSfindIIS() would be LS_NECESSARY_ROWS+ LS_SUFFICIENT_ROWS = 5.  

 

Finally, the following methods are available to perform IIS search. 

 

IIS Methods   

LS_IIS_DEFAULT 0 Use default filter in IIS analysis. 

LS_IIS_DEL_FILTER 1 Use the standard deletion filter in IIS analysis. 

LS_IIS_ADD_FILTER 2 Use the standard additive filter in IIS analysis 

(direct use is reserved for future releases). 

LS_IIS_GBS_FILTER 3 Use generalized-binary-search filter in IIS 

analysis. This is a new method combining (1) 

and (2) with binary search.  

LS_IIS_DFBS_FILTER 4 Use depth-first-binary-search filter in IIS 

analysis. This is an other method combining (1) 

and (2) using depth-first during binary search. 

LS_IIS_FSC_FILTER 5 Use fast-scan filter in IIS analysis. This method 

deduces the IIS from the nonzero structure of the 
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dual extreme ray and is more prone to numerical 

errors than others. 

LS_IIS_ELS_FILTER 6 Use the standard elastic filter in IIS analysis. Not 

guaranteed to produce an IIS. 

 

Prior to the analysis, the user can specify the norm that measures the infeasibilities with the following 

options. 

 

Norm Options   

LS_IIS_NORM_FREE 0 Solver decides the infeasibility norm for IIS 

analysis. 

LS_IIS_NORM_ONE 1 Solver uses L-1 norm for IIS analysis. 

LS_IIS_NORM_INFINITY 2 Solver uses L-∞ norm for IIS analysis 

Workings of the IIS Finder:  
Step 1: IIS-Finder routine (LSfindIIS) starts by finding a single necessary set of infeasible rows and/or 

column-bounds. A model may have more than one of these sets, but the solver will simply find one of 

them. Note that this necessary set is irreducible, in the sense that removing any row from the set makes 

the entire set feasible. Necessary Rows/Cols are reported back to the user with designated output 

arrays. 

 

Step 2: Optionally, pass through the row members of the necessary set to see if any of the 

rows/column-bounds are sufficient, such that when it is deleted the entire model becomes feasible. 

Such sufficient rows/cols are reported back to the user with separate output arrays. 

 

Notice that all the rows/column-bounds in the original necessary set may be sufficient, or a subset of 

them may be sufficient, or none of them may be sufficient. The end result of this is that the IIS report 

will fall into one of three cases: 
 

Case         Suff Sets     Nec Sets 

----------------------------------- 

All Suff        1            0 

Subset Suff     1            1 

All Nec         0            1 

 

So, having both a necessary and a sufficient will occur whenever a subset of the rows are sufficient. 
 

This also means that some sufficient rows may not be reported in the debug report. Some sufficient 

rows may not be revealed until one or more other necessary sets are repaired. 
 

In the presence of sufficient sets, a common pitfall is to focus solely on the members of the sufficient 

set as the source of infeasibility. Unfortunately, this is not always the case. Members of the sufficient 

set might all be legitimate and well-defined constraints and the modeler might be forced to keep them 

unchanged. It is important that the modeler treats the members of the necessary set with equal care and 

consider the possibility that several necessary sets might exist in the model with their members 

contributing to the infeasibility collectively. In such situations, the IIS-finder will be required to run 

repeatedly following each correction the modeler makes to the model. 
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Unbounded Linear Programs 
LSfindIUS() is similar to LSfindIIS( ), except that if is used to track down the source of an unbounded 

solution in a linear program. This tool analyzes the model and isolates an irreducibly unbounded set 

(IUS) of columns. As in the infeasibility case, the IUS is partitioned into sufficient and necessary sets 

to indicate the role of the member columns in the unboundedness of the overall model.  

The columns in the sufficient set are crucial in the sense that fixing any of these columns makes the 

overall model bounded. However, fixing the columns in the necessary set makes the IUS found a 

bounded set. There may still be some other unbounded set of columns in the model. 

The dual of the earlier infeasibility bug example (shown above) is as follows. 

Example: 

Min 5 u – 6 v – 6 w; 

 Subject to: 

 u - v    4; 

 u   – w  4; 

   u, v, w,  0 

The variables u and v constitute a necessary, or irreducible unbounded set. If no coefficients are 

changed in either of these columns, the model will remain unbounded. The variables u and w also 

constitute a necessary set.  

The variable u constitutes a sufficient set. If you change its objective coefficient from 5 to 7, then the 

entire model becomes bounded.  

 

Controling of the analysis level is done in a similar fashion as in previous section.  For instance,  to 

isolate only necessary and sufficient variables as the IUS,  the associated level to pass to LSfindIUS() 

would be LS_NECESSARY_COLS+ LS_SUFFICIENT_COLS = 5.  Currently, there is only a single 

method available to perform IUS analysis. Therefore, no other options are required to control the 

solver in analyzing unbounded models.  

Note:  Dualizing an unbounded LP would allow the user to deduce IUS results through an IIS 

analysis on the explicit dual model.  

Infeasible Integer Programs 
Infeasible integer programs with infeasible linear relaxations can be easily debugged as an infeasible 

LP using the standard LSfindIIS() for LPs. However, when the LP relaxation is feasible, the infeasible 

IP needs to be debugged explicitly.  With the release of LINDO API 4.0,  LSfindIIS() is also able to 

debug infeasible IPs.  In the current implementation, variable bounds and integrality restrictions are 

left out of the analysis, and only structural constraints are considered. The constraints in the IIS are 

classified into necessary and sufficient sets just as in LP debugging. 

Infeasible Nonlinear Programs 
Recent enhancements in LSfindIIS() also make debugging of infeasible nonlinear models possible. 

Although, it is generally more difficult to determine the source of infeasibility in NLPs, LSfindIIS() 

performs reasonably well on a wide class of nonlinear models,  particularly on quadratic and second-

order-cone models.  For general nonlinear models, the performance generally dependents on factors 

like  (i) model scaling, (ii) infeasibility tolerance settings, (iii) presence of mathematical errors (e.g. 
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log(.) of negative numbers), (iv) numerical errors (e.g. exp(.) of large numbers), (v) the initial solution 

selected, and (vi) convexity.  For cases when it is difficult (or even impossible) to determine the 

feasibility status of an NLP in practical run-times, the diagnosis could lead to the isolation of a 

Minimally Intractable Subsystem (MIS), which is a small subset of the original constraint set that 

contributes to the intractability of the original NLP.  

An Example for Debugging an Infeasible Linear 
Program  
In this section, an application in Visual C++ 6.0 will be built that reads an infeasible linear program 

from an MPS file and then debugs it using LINDO API’s analyze routines. A complete version of this 

project may be found in \lindoapi\samples\c\ex_iis.c. 

/* 

############################################################# 

#                       LINDO-API 

#                    Sample Programs 

# 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

############################################################# 

  File   : ex_iis.c 

  Purpose: Analyze an infeasible (unbounded) LP to isolate the 

  constraints (variables) causing the infeasibility (unboundedness) 

  of the model. 

*/ 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

/* LINDO API header file */ 

#include "lindo.h" 

/* Define a macro to declare variables for 

    error checking */ 

#define APIERRORSETUP   

   int nErrorCode;  

   char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]  

 

/* Define a macro to do our error checking */ 

#define APIERRORCHECK   

   if (nErrorCode)  

   {  

      if ( pEnv)  

      {  

         LSgetErrorMessage( pEnv, nErrorCode,  

          cErrorMessage);  

         printf("Errorcode=%d:  %s\n", nErrorCode,  

          cErrorMessage);  

      } else { 

         printf( "Fatal Error\n");  
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      }  

      exit(1);  

   }  

 

int CALLBACKTYPE MyCallback( pLSmodel pMod, int nLocation, 

 void* pMyData) 

{ 

   int *status = (int *) pMyData; 

/* Display current iteration count and objective value */ 

   { 

      int nIter,nNec=0,nSuf=0, 

         nErr,nErr1,nErr2; 

      double dObj, dInf; 

      nErr=LSgetCallbackInfo(pMod,nLocation,LS_IINFO_SIM_ITER,&nIter); 

      nErr=LSgetCallbackInfo(pMod,nLocation,LS_DINFO_POBJ,&dObj); 

      nErr=LSgetCallbackInfo(pMod,nLocation,LS_DINFO_PINFEAS,&dInf); 

      if (status && *status == LS_STATUS_INFEASIBLE) 

      { 

       nErr1=LSgetCallbackInfo(pMod,nLocation,LS_IINFO_NUM_IIS_ROWS,&nNec); 

       nErr2=LSgetCallbackInfo(pMod,nLocation,LS_IINFO_NUM_SUF_ROWS,&nSuf); 

      } 

      else if (status && *status == LS_STATUS_UNBOUNDED) 

      { 

nErr1=LSgetCallbackInfo(pMod,nLocation,LS_IINFO_NUM_IUS_COLS,&nNec); 

       nErr2=LSgetCallbackInfo(pMod,nLocation,LS_IINFO_NUM_SUF_COLS,&nSuf); 

      } 

      printf( "@MyCallback %8d, %8d, %16g, %16g, %8d (%d)\n", 

        nLocation,nIter,dObj,dInf,nNec,nSuf); 

   } 

   return( 0); 

} 

 

static void LS_CALLTYPE print_line_log(pLSmodel pModel, char *line, 

void *userdata) 

{ 

  if (line) 

  { 

    printf("\n%s",line); 

  } /*if*/ 

} /*print_line*/ 

 

 /* main entry point */ 

int main(int argc, char **argv) 

{ 

   APIERRORSETUP; 

   /* model data objects */ 

   int n; /* number of variables */ 

   int m; /* number of constraints */ 

   int solstatus;/*solution status (see lindo.h for possible 

values)*/ 

   int prep_level; 

   char *mpsfile = NULL; 

   char MY_LICENSE_KEY[1024]; 

 

   /* IIS related data objects */ 

   int nLevel,   /* level of analysis */ 
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       nSuf_r,   /* number of sufficient rows     */ 

       nSuf_c,   /* number of sufficient columns  */ 

       nIIS_r,   /* number of rows in the IIS     */ 

       nIIS_c;   /* number of columns in the IIS  */ 

   int *aiRows = NULL, /* index set of rows in the IIS     */ 

       *aiCols = NULL, /* index set of columns in the IIS  */ 

       *anBnds = NULL; /* bound type of columns in the IIS */ 

   int j; 

   char bndtype[255], oufname[255], varname[255]; 

 

   /* declare an instance of the LINDO environment object */ 

   pLSenv pEnv; 

   /* declare an instance of the LINDO model object */ 

   pLSmodel pModel; 

   /******************************************************** 

    * Init: Command prompt calling sequence 

    ********************************************************/ 

   { 

     char szVer[255], szBld[255]; 

     LSgetVersionInfo(szVer,szBld); 

     printf("\nAN APPLICATION FOR ANALYZING & DEBUGGING LPs\n"); 

     printf("\nusing LINDO API Version %s (Built 

%s)\n\n",szVer,szBld); 

   } 

   if (argc == 1) 

   { 

     printf("\nUsage: ex_iis filename\n\n"); 

     goto Terminate; 

   } 

   else if (argc == 2) 

   { 

     mpsfile = argv[1]; 

   } 

  /********************************************************** 

   * Step 1: Create a LINDO environment. 

   **********************************************************/ 

   nErrorCode = 

LSloadLicenseString("../../../license/lndapi100.lic",MY_LICENSE_KEY); 

   APIERRORCHECK; 

   pEnv = LScreateEnv ( &nErrorCode, MY_LICENSE_KEY); 

   if ( nErrorCode == LSERR_NO_VALID_LICENSE) 

   { 

      printf( "Invalid License Key!\n"); 

      exit( 1); 

   } 

   APIERRORCHECK; 

   /******************************************************** 

    * Step 2: Create a model in the environment. 

    ********************************************************/ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   APIERRORCHECK; 

   /******************************************************** 

    * Step 3: Read the model from an MPS file and 

    ********************************************************/ 

   nErrorCode = LSreadMPSFile(pModel,mpsfile,LS_UNFORMATTED_MPS); 

   if (nErrorCode != LSERR_NO_ERROR) 
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   { 

     printf("\nBad MPS format... Trying LINDO format.\n"); 

     nErrorCode =LSreadLINDOFile(pModel,mpsfile); 

     APIERRORCHECK; 

     printf("\nLINDO format OK!\n\n"); 

   } 

   else 

   { 

     printf("\nMPS format OK!\n\n"); 

   } 

   nErrorCode = LSgetInfo(pModel, LS_IINFO_NUM_VARS, &n); 

   APIERRORCHECK; 

   nErrorCode = LSgetInfo(pModel, LS_IINFO_NUM_CONS, &m); 

   APIERRORCHECK; 

   /******************************************************** 

    * Step 4: Set Model parameters 

    ********************************************************/ 

   /* Turn off the LP preprocessor. This is required if the model 

   is infeasible and the user wishes to debug it. */ 

   nErrorCode = LSgetModelIntParameter(pModel,LS_IPARAM_LP_PRELEVEL, 

     &prep_level); 

   APIERRORCHECK; 

   if (prep_level > 0) 

     printf("The LP presolver has been turned off. Solving ...\n\n"); 

   nErrorCode = 

LSsetModelIntParameter(pModel,LS_IPARAM_LP_PRELEVEL,0); 

   /* set LP solver type for optimizations (cold start) */ 

   nErrorCode = LSsetModelIntParameter(pModel,LS_IPARAM_IIS_TOPOPT, 

     LS_METHOD_FREE); 

   /* set LP solver type for reoptimizations (warm start)*/ 

   nErrorCode = LSsetModelIntParameter(pModel,LS_IPARAM_IIS_REOPT, 

     LS_METHOD_FREE); 

#if 0 

   nErrorCode = LSsetCallback( pModel,(cbFunc_t) MyCallback, NULL); 

   APIERRORCHECK; 

   printf( "            %8s, %8s, %16s, %16s, %8s (%s)\n", 

   "LOCATION","ITERS","OBJECTIVE","INFEASIBILITY","NNEC","NSUF"); 

#endif 

   /* Install a log function to display solver's progress 

   as reported by the internal solver */ 

   nErrorCode = LSsetModelLogfunc(pModel, (printModelLOG_t) 

print_line_log, NULL); 

   nErrorCode = 

LSsetModelDouParameter(pModel,LS_DPARAM_CALLBACKFREQ,0.5); 

   APIERRORCHECK; 

   /******************************************************** 

    * Step 5: Optimize the model 

    ********************************************************/ 

   nErrorCode = LSoptimize( pModel,LS_METHOD_FREE, &solstatus); 

   APIERRORCHECK; 

#if 0 

   /* set callback and solution status */ 

   nErrorCode = LSsetCallback( pModel,(cbFunc_t) MyCallback, 

&solstatus); 

#endif 
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    if (solstatus == LS_STATUS_BASIC_OPTIMAL) 

    { 

      printf("\tThe model is solved to optimality.\n"); 

    } 

   /******************************************************** 

    * Step 6: Debug the model if unbounded or infeasible 

    ********************************************************/ 

    else if (solstatus == LS_STATUS_UNBOUNDED) 

    { 

      APIERRORCHECK; 

      printf("\nThe model is unbounded.. Analyzing...\n\n"); 

      nLevel = LS_NECESSARY_COLS + LS_SUFFICIENT_COLS; 

 

      /*** Step 6.1: Find IIS ***/ 

      nErrorCode = LSfindIUS(pModel,nLevel); 

      APIERRORCHECK; 

 

      strcpy(oufname,"findius.ltx"); 

      nErrorCode = LSwriteIUS(pModel,oufname); 

      printf("\n\n IUS is written to %s !!\n",oufname); 

    } 

    else if (solstatus == LS_STATUS_INFEASIBLE) 

    { 

      printf("\nThe model is infeasible.. Analyzing...\n\n"); 

      aiRows = (int *) malloc(m*sizeof(int)); 

      aiCols = (int *) malloc(n*sizeof(int)); 

      anBnds = (int *) malloc(n*sizeof(int)); 

 

      /*** Step 6.1: Find IIS ***/ 

      nLevel = LS_NECESSARY_ROWS + LS_SUFFICIENT_ROWS; 

 

      nErrorCode = LSfindIIS(pModel,nLevel); 

      APIERRORCHECK; 

      nErrorCode = LSgetIIS(pModel,&nSuf_r,&nIIS_r,aiRows, 

                                   &nSuf_c,&nIIS_c,aiCols,anBnds); 

      APIERRORCHECK; 

      printf("\n\t ***  LSfindIIS Summary ***\n\n"); 

      printf("\t Number of Sufficient Rows = %u\n",nSuf_r); 

      printf("\t Number of Sufficient Cols = %u\n",nSuf_c); 

      printf("\t Number of Necessary  Rows = %u\n",nIIS_r - nSuf_r); 

      printf("\t Number of Necessary  Cols = %u\n",nIIS_c - nSuf_c); 

      printf("\n"); 

 

      /*** Step 6.2: Display row index sets ***/ 

      printf("\n IIS Rows\n"); 

      for (j=0; j<nIIS_r; j++) 

      { 

        nErrorCode = LSgetConstraintNamei(pModel,aiRows[j],varname); 

        APIERRORCHECK; 

        if (j<nSuf_r) 

          printf("%2d] (%-8s) is" 

          " in the sufficient set.\n",j,varname); 

        else 

          printf("%2d] (%-8s) is" 

          " in the necessary set.\n",j,varname); 

      } 



610 CHAPTER 10 

  

      /*** Step 6.3: Display column index sets ***/ 

      printf("\n IIS Column Bounds\n"); 

      for (j=0; j<nIIS_c; j++) 

      { 

        if (anBnds > 0) 

          strcpy(bndtype,"Lower"); 

        else 

          strcpy(bndtype,"Upper"); 

 

        nErrorCode = LSgetVariableNamej(pModel,aiCols[j],varname); 

        APIERRORCHECK; 

        if (j<nSuf_r) 

          printf("%2d] %s bound of (%-8s) is" 

          " in the sufficient set.\n",j,bndtype,varname); 

        else 

          printf("%2d] %s bound of (%-8s) is" 

          " in the necessary set.\n",j,bndtype,varname); 

      } 

      strcpy(oufname,"findiis.ltx"); 

      LSwriteIIS(pModel,oufname); 

      printf("\n\n IIS is written to %s !!\n",oufname); 

 

      free(aiRows); 

      free(aiCols); 

      free(anBnds); 

    } 

 /********************************************************** 

  * Step 7: Terminate 

  **********************************************************/ 

   nErrorCode = LSdeleteModel( &pModel); 

   nErrorCode = LSdeleteEnv( &pEnv); 

Terminate: 

  /* Wait until user presses the Enter key */ 

   printf("Press <Enter> ..."); 

   getchar(); 

} 

After building this application, you can run it from the DOS-prompt to debug the model in 

lindoapi\samples\mps\testilp.mps. This should produce the following summary report on your screen. 

MPS format OK! 

***  LSfindIIS Summary *** 

Number of Sufficient Rows = 0 

Number of Sufficient Cols = 0 

Number of Necessary  Rows = 2 

Number of Necessary  Cols = 2 

*** Rows Section *** 

0] Row  4 (ROW5    ) is in the necessary set. 

1] Row  0 (ROW1    ) is in the necessary set. 

*** Column Bounds Section *** 

0] Lower bound of Col  1 (X2      ) is in the necessary set. 

1] Lower bound of Col  2 (X3      ) is in the necessary set. 

IIS is written to findiis.ltx ! 
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Block Structured Models 
Many large-scale linear and mixed integer problems have constraint matrices that are extremely sparse. 

In practice, the ratio of the number of nonzeros to the total is so small (less than 0.05 %) that the 

underlying model generally has a structure that could be exploited in solving the model. Such models 

are often seen in airline scheduling, multi-period production planning, planning under uncertainty,  and 

other logistics problems. There are four types of possible decomposition schemes for a constraint 

matrix.  

Independent Block Structure  
In this type of decomposition, the underlying model has a constraint matrix that is totally 

decomposable. As illustrated in Figure 9.1, this implies that the blocks forming the constraint matrix 

are independent from each other. Each block can be associated to a sub-problem that can be solved 

independently. An optimal solution to the overall problem can then be obtained by taking the union of 

the solutions to the sub-problems. A hypothetical case would be the minimization of operating costs of 

a company who owns three plants, which do not share any resources. The company can make the 

decisions pertaining to each plant independently. 

X X      

X X      

  X X X   

  X X X   

  X X X   

     X X 

     X X 

Figure 9.1 Independent Block Structure 

Block Angular Structure with Linking Rows 
In this type of decomposition, the blocks forming the constraint matrix are linked by a number of 

constraints (rows) as illustrated in Figure 9.2. Note that when all linking rows are eliminated from the 

constraint matrix, the remaining rows and columns form independent blocks. Therefore, the model is 

totally decomposable. It is always possible to transform a sparse matrix into one that has block angular 

structure. However, the advantages may not be available in the presence of many linking rows. 

Building on the hypothetical example described above, this structure can be associated to the case 

when there are a small number of resources that are common to all plants. In this case, the decisions 

involve optimal splitting of these resources among the plants efficiently.  

X X      

X X      

  X X X   

  X X X   

  X X X   

     X X 

     X X 

Y Y Y Y Y Y Y 

Figure 9.2 Block Angular Structure  
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Dual Angular Structure with Linking Columns 
In this type of decomposition, the blocks forming the constraint matrix are linked by a number of 

variables (columns) as illustrated in Figure 9.3. This structure has a primal-dual relationship with the 

Block Angular Structure described above. Again, for our hypothetical plant example, a structure of this 

form can be associated to the case when there are a few variable outside factors that effect all plants.  

X X      Z 

X X      Z 

  X X X   Z 

  X X X   Z 

  X X X   Z 

     X X Z 

     X X Z 

Figure 9.3 Dual Angular Structure. 

Block and Dual Angular Structures 
This is the most general form of decomposition where the blocks forming the constraint matrix have 

both linking rows and columns as illustrated in Figure 9.4. The decisions involved for the hypothetical 

plant example now include both resource sharing and external factors. 

X X      Z 

X X      Z 

  X X X   Z 

  X X X   Z 

  X X X   Z 

     X X Z 

     X X Z 

Y Y Y Y Y Y Y  A 

Figure 9.4 Block and Dual Angular Structure 
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Determining Total Decomposition Structures 
Given a linear or mixed-integer program, the user can determine the decomposition structure by 

calling the LSfindBlockStructure() routine.  In a typical call, the user has to specify as input (i) the 

number-of-blocks requested to decompose the model into and (ii) the target decomposition structure 

(e.g. total-decomposition, or, block-angular-decomposition or dual-angular-decomposition as 

discussed above). If total-decomposition is sought, the number-of-blocks is not required as input (any 

value input will be ignored for this case). LSfindBlockStructure will find all independent blocks, if they 

exist.  

Given a target decomposition structure, LSfindBlockStructure will compute 

i.  A scalar of value N+1, with N representing the total number of independent blocks. The 

increment ‘1’ stands for the linking block (the set of linking rows or/and columns).  

ii. An integer array with values in [0,N] range, indicating assignments of the constraints to the 

blocks, and  

iii. An integer array with values in [0,N] range, indicating the assignments of the variables to the 

blocks.  

The linking block has index ‘0’ and independent blocks have indices in the [1,N] range. Subsequently, 

a call to LSgetBlockStructure function is used to retrieve the computed values. 

The following piece of C code demonstrates how LSfindBlockStructure() can be used to check if a 

model that has 100 constraints and 200 variables is totally decomposable: 

{ 

   pLSmodel model; 

   int nblock, type, err; 

   int rblock[100], cblock[200]; 

   : 

   : 

   type = LS_LINK_BLOCKS_NONE; // try total decomposition 

   err = LSfindBlockStructure(model, -1, type); //2
nd
 arg is ignored 

   err = LSgetBlockStructure(model, &nblock, &rblock, &cblock, type); 

   if (nblock > 1) 

     printf(“ The model has %d independent blocks\n”,nblock-1); 

   else 

     printf(“ The model is not totally decomposable\n”); 

   : 

   : 

} 

On return, the k
th

 entry of array cblock (rblock) will indicate the index of the block that the k
th

 variable 

(constraint) belongs to. If the model does not have a total-decomposition structure, then the variable 

nblock will take a value of 1 and both arrays would have all of their elements set to 0. This would 

imply all constraints and variables are part of the linking block. 
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Note:  Many large scale linear (LP) and mixed integer problems (MIP) have constraint matrices that 

are totally decomposable into a series of independent block structures. The user adjustable 

parameter (LS_IPARAM_DECOMPOSITION_TYPE) can be set, so the solver checks if a 

model can be broken into smaller independent models. If total decomposition is possible, it will 

solve the independent problems sequentially to reach a solution for the original model. This 

may result in dramatic speed improvements.  

Determining Angular Structures 
If the matrix is not found to be totally decomposable, then other decomposition schemes can be 

pursued. For any constraint matrix, block-angular, dual-angular, or block-and-dual decompositions can 

always be achieved for a given number-of-independent blocks (N>1). As illustrated previously, 

models with block- (dual-) angular decomposition, some of the rows (columns) will not belong to any 

of the independent blocks. Such rows (columns) are regarded as linking or coupling rows (columns), 

since they establish a dependence relationship among the independent blocks constituting the original 

matrix. From the perspective of API functions, these rows (columns) are considered to belong to a 

pseudo block called the linking-block. As described in the previous section, LSfindBlockStructure() 

will label rows (columns) in this block with a ‘0’ on return.  

The C code above can be modified as follows to use decomposition schemes other than total 

decomposition:  

{ 

   pLSmodel model; 

   int nblkTarget, nblkOut, type, err, ncons=100, nvars=200; 

   int rblock[100], cblock[200]; 

   : 

   : 

   // perform dual angular decomposition 

   type = LS_LINK_BLOCKS_COLS;    

   // specify the number of blocks to decompose the model (required) 

   nblkTarget = 3;    

   // perform decomposition 

   err = LSfindBlockStructure(model, nblkTarget, type); 

   err = LSgetBlockStructure(model, &nblkOut, &rblock, &cblock,type); 

   // print block memberships 

   for (j=0; j< nvars; j++)  

      if (cblock[j] > 0) 

        printf(“ Variable %d belongs to block %d\n”,j,cblock[j]);  

      else 

        printf(“ Variable %d is a linking column\n”,j);  

   for (i=0; i< ncons; i++)  

      printf(“ Constraint %d belongs to block %d\n”,j,rblock[j]); 

   : 

   : 

} 

Note: In decomposing a constraint matrix into one that has a block and/or dual angular structure, the 

user needs to specify the number of blocks requested explicitly. This is because the matrix 

can be decomposed into as many blocks as possible when linking rows or columns are 

allowed. 
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Techniques Used in Determining Block Structures 
LINDO API uses two different methods in determining the block strucutures. Each method uses ideas 

from the heuristics available for the hypergraph partititioning problem. They differ in the way they 

conceptualize the underlying partitioning problem.  The user can switch between these methods by 

setting the LS_IPARAM_FIND_BLOCK parameter to 0 or 1 (default is 0) prior to calling 

LSfindBlockStructure routine. Note that when this parameter is set to 1, LSfindBlockStructure will find 

a block structure which tries to minimize the total number of linking columns and linking rows 

ignoring the block-structure-type argument.  

 

If users have other means to determine the model structure (e.g. via other methods outside LINDO API 

or simply by construction), the resulting structures can be loaded by calling the LSloadBlockStructure 

routine. There are several model classes which already possess one of the structures discussed above. 

Some examples are 

 

 Generalized Assignment Problem (linking rows), 

  Deterministic equivalent of stochastic programming problems (linking columns), 

 Multi-item scheduling over a time horizon (linking columns or rows).  

 Financial pricing models (linking rows) 

 Multi echelon inventory management problems. 

 

In the following, an illustration of the Generalized Assignment Problem (GAP) is given 

Generalized Assignment Problem 
The standard GAP formulation in LINGO format is as follows. 

 

MODEL: 

 

SETS: 

   AGENTS  /1..5/: R; 

   JOBS  /1..15/; 

   ASSIGN( AGENTS, JOBS): C, W, X; 

ENDSETS 

 

DATA: 

! Cost of assignments (5x15 elements); 

C = 25 23 20 16 …; 

! Weights of assignments (5x15 elements); 

W = 8 18 22 5 …; 

! Capacity of agents (5 elements); 

R = 36 35 38 …; 

ENDDATA 

 

MIN = @SUM( ASSIGN: C * X); 

! Blocks (subproblems); 

@FOR( AGENTS(I): @SUM( JOBS(J): W(I,J)*X(I,J)) <= R(I);); 

! Linking rows; 

@FOR( JOBS(J): @SUM( AGENTS(I): X(I,J)) = 1;);  

! Integrality; 

@FOR( JOBS(J): @FOR( AGENTS(I): @BIN(X(I,J)); )); 

END 
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Figure 10.5 Structure of the sample GAP formulation 

 

In Figure 10.5, the nonzero structure of the GAP formulation is given. The objective function is 

labeled as row 1, rows labeled K1 to K5 are the knapsack constraints constituting the sub-problems 

and rows labeled A1 to A15 are the linking constraints. The LINDO file of the original model and 

TIME file specifying the structure are in the following files 

 

 lindoapi/samples/data/gap1_5_5_15.ltx  

 lindoapi/samples/data/gap1_5_5_15.tim 

  

The TIME file keeps the assignment of row and columns to blocks (see Chapter 4, section Solving 

MIPs using BNP for a brief overview).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

         Chapter 11:  

 Parallel Optimization  
LINDO API offers multi-cpu optimization extensions to its solvers to take advantage of computers 

with multicore processors. For the typical user, one need be aware of but one parameter, 

LS_IPARAM_NUM_THREADS. It can be used to specify the the number of threads used by every 

solver. For the sophisticated user hoping to achieve additional performance from multiple cores, there 

additional parameters available, described below. 

Thread Parameters 
 

There are additional parameters that allow one to make the exploitation of multiple cores solver 

dependent. The following table summarizes these parameters. 

 

Optimizer Routine Solver Specific Threading Parameter 

LSsolveMIP LS_IPARAM_MIP_NUM_THREADS 

LSoptimize 

(NLP/Multistart) LS_IPARAM_NLP_MSW_NUM_THREADS 

LSoptimize 

(LP+QP/Barrier) LS_IPARAM_IPM_NUM_THREADS   

LSoptimize 

(LP/Simplex) LS_IPARAM_SOLVER_CONCURRENT_OPTMODE 

LSsolveGOP LS_IPARAM_GOP_NUM_THREADS 

LSsolveMipBnp LS_IPARAM_BNP_NUM_THREADS 

LSsolveHS LS_IPARAM_GA_NUM_THREADS 

LSsolveHS LS_IPARAM_MIP_ NUM_THREADS 

LSsolveSP LS_IPARAM_STOC_NUM_THREADS 

LSsolveSBD LS_IPARAM_SBD_NUM_THREADS 

Optimizer Routine Generic Threading Parameter 

Any of the above LS_IPARAM_NUM_THREADS 

 

The generic multithreading parameter LS_IPARAM_NUM_THREADS is a short-hand for all other 

thread parameters for a given solver type. It works by setting the solver-specific thread-parameter 

internally when a solver routine is invoked. All thread parameters are 1 by default, which implies the 

model will be solved by the serial optimizer on a single thread. When solving a model with a meta-

solver like LSsolveGOP or LSsolveHS, any thread parameter associated with a subsolver, e.g. 

LSoptimize or LSsolveMIP, will be ignored and treated as 1 (serial optimization).  For example,  if 

you set LS_IPARAM_GOP_NUM_THREADS to 2 on a 4-core machine, setting barrier solver’s 
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thread parameter LS_IPARAM_IPM_NUM_THREADS  to 2 or higher will not have any effect on 

internal calls made to LSoptimize by LSsolveGOP. In other words, the barrier solver will continue to 

run in serial optimization mode. Setting LS_IPARAM_IPM_NUM_THREADS to 2 will only be 

effective when LSoptimize is called as a standalone solver.  

 

When the generic threading parameter LS_IPARAM_NUM_THREADS is set to 4 and subsequently  

LSsolveGOP is called, the solver will internally set LS_IPARAM_GOP_NUM_THREADS to 4 global 

optimization  will proceed over 4 threads in the usual sense.  In a separate run, for instance, calling the 

multistart solver with LSoptimize with LS_IPARAM_NUM_THREADS set to 4, will behave exactly 

the same as setting LS_IPARAM_NLP_MSW_NUM_THREADS to 4. 

Concurrent vs. Parallel Parameters 
 

The multicore extensions are of  two types: concurrent optimizers and parallel optimizers.  

Concurrent optimizers run two or more different serial solvers on multiple copies of the same model, 

using a separate thread for each solver, terminating as soon as the winner thread finishes. These 

“different solvers” may in fact be the same solver type but using different  search strategies and/or 

subsolvers. Parallel optimizers, on the other hand, use built-in parallel algorithms on the original 

model by parallelizing computationally intensive portions of the serial algorithm to distribute the 

workload across multiple threads. . 

 

In LINDO API, the following multicore extensions are available for each  optimizer type. 

 

Optimizer Routine Model Class 

Parallel  

Optimizer 

Concurrent 

Optimizer 

LSsolveMIP 

Mixed Integer  

Programs Yes Yes 

LSoptimize 

Linear and Quadratic  

Programs 

Yes 

(Barrier/Multistart) 

Yes 

(Barrier/Simplex) 

LSsolveGOP Nonlinear Programs Yes No 

LSsolveMipBnp Mixed Integer Programs Yes No 

LSsolveHS 

Mixed Integer and  

Nonlinear Programs Yes No 

LSsolveSP Stochastic Programs Yes No 

LSsolveSBD Linear Programs Yes No 

 

The choice, whether the concurrent or parallel optimizer will be used, is controlled by the value of 

LS_IPARAM_MULTITHREAD_MODE parameter. By default, 

LS_IPARAM_MULTITHREAD_MODE is set to -1, which indicates the solver will choose the best 

performing type.  
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Solving MIPs Concurrently  
 

MIP models can be solved concurrently either by using built-in strategies or defining custom search-

strategies via a specific callback function.  The choice is controlled by 

LS_IPARAM_MIP_CONCURRENT_STRATEGY parameter. This parameter controls the concurrent 

MIP strategy. Possible values are: 

 LS_STRATEGY_PRIMIP  Use built-in priority lists to use a different branching  rule on each 

thread. 

 LS_STRATEGY_USER Use the custom search strategy defined via a callback function for 

each thread. 

The default is LS_STRATEGY_PRIMIP. The following code snippet illustrates the use of built-in 

strategies.       

_________________________________________________________________ 
 

{ 

/*  Insert code to set up a MIP model */ 

 

 // Set number of threads to 4 

LSsetModelIntParameter(pModel, 

LS_IPARAM_MIP_NUM_THREADS,4); 

 // Note: LS_IPARAM_NUM_THREADS can also be used 

 

 // Set threading to concurrent mode 

LSsetModelIntParameter(pModel, 

LS_IPARAM_MULTITHREAD_MODE, LS_MTMODE_CC); 

 

 // Select LS_STRATEGY_PRIMIP strategy  

LSsetModelIntParameter(pModel, 

LS_IPARAM_MIP_CONCURRENT_STRATEGY,LS_STRATEGY_PRIMIP); 

 

 // Start the concurrent run 

 nErr = LSsolveMIP(pModel,&nMIPstatus); 

 

  /* Insert code to handle status and access to solution vectors */ 

} 

_________________________________________________________________ 
 

 

Note: In runlindo, the same effect can be achieved with the following command when solving 

mipmodel.mps instance. 

 
 $ runlindo mipmodel.mps –ccstrategy 1 –nthreads 4 

 

The concurrent MIP optimizer allows the use of user-defined strategies with LS_STRATEGY_USER 

option. The use of this option requires the user to define a callback function, which turns the program 

control back to the user to define a strategy for each model instance on each thread.   

 

Note:  In this context, a strategy constitutes a set of parameter settings selected by the user and set by 

LSsetModelIntParameter or LSsetModelDouParameter calls. It may also constitute user-

defined branching priorities loaded with LSloadVarPriorities.  
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In order to specify a strategy-defining callback function, call the LSsetMIPCCStrategy routine before 

calling LSsolveMIP(). The callback function has the following interface. 

pFunStrategy() 

Description:  

This is a user/frontend supplied routine to define custom search strategies for a concurrent 

MIP run. Use the LSsetMIPCCStrategy() routine (see Chapter 2) to identify your 

pFunStrategy() routine to LINDO API. 

Returns:  

Returns a value greater than 0 if a numerical error occurred while defining the strategy. 

Otherwise, returns 0. 

Prototype:  

int  pFunStrategy (pLSmodel model,int nRunId, void * pUserData) 

Input Arguments:  

Name  Description  

pModel  Pointer to an instance of LSmodel.  

nRunId The index of a particular run running on a thread. 

pUserData Pointer to a user data area or structure in which any data 

needed to define a strategy. LINDO API obtains the value of 

this pointer when the pFunStrategy() routine is established 

through a call to LSsetMIPCCStrategy(). Subsequently, 

whenever LINDO API calls your pFunStrategy () routine, it 

passes the same pointer value through pUserData.  

 

In order to define customized strategies, MIP_CONCURRENT_STARTEGY should normally be set 

to LS_STRATEGY_USER. But even if it is set to another option, callback functions could still be 

used allowing the user to overwrite the internal strategy associated with that option.  The following 

code snippet illustrates its usage with LS_STRATEGY_USER. 
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_________________________________________________________________ 

 
{ 

/*  Insert code to set up a MIP model */ 

 

// Set number of threads to 4 

LSsetModelIntParameter(pModel, 

LS_IPARAM_MIP_NUM_THREADS,4); 

 // Note: LS_IPARAM_NUM_THREADS can also be used 

 

 // Set threading to concurrent mode 

LSsetModelIntParameter(pModel, 

LS_IPARAM_MULTITHREAD_MODE, LS_MTMODE_CC); 

 

 // Select LS_STRATEGY_USER strategy  

LSsetModelIntParameter(pModel, 

LS_IPARAM_MIP_CONCURRENT_STRATEGY,LS_STRATEGY_USER); 

 

// Install the callback function to each thread/model 

for (iThread=0; iThread<4; iThread++) { 

LSsetMIPCCStrategy(pModel,pFunStrategy,  

  iThread,NULL,NULL); 

} 

 

 // Start the concurrent run 

 nErr = LSsolveMIP(pModel,&nMIPstatus); 

 

  /* Insert code to handle status and access to solution vectors */ 

} 

 

// callbback function defining a strategy for a thread/run 
int LS_CALLTYPE pFunStrategy(pLSmodel pModel,int nRunId,  

                         void *pvUserData) 

{ 

  extern int priArray[][]; 

 

 // priArray[][] is a collection of vectors 

 // keeping user-defined priorities for each thread 

 LSloadVarPriorities(pModel, priArray[nRunId]) 

 

 /* Insert calls to LSsetModelIntParameter or  

         LSsetModelDouParameter to make each thread 

         run under different MIP parameter settings. */ 

 

 // E.g. use different heuristic levels across threads 

 LSsetModelIntParameter(pModel,  

  LS_IPARAM_MIP_HEULEVEL, 2*nRunId); 

 // E.g. use different strongbranching levels across threads 

 LSsetModelIntParameter(pModel,  

LS_IPARAM_MIP_STRONGBRANCHLEVEL, 5*nRunId); 

} 

_________________________________________________________________ 
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LSsetMIPCCStrategy accepts an string argument (#4) to specify a chain of parameter files to be read 

by each thread.  This feature is used in runlindo to define parameter settings for each thread 

convenientlty, e.g. without requiring a callback function implementation.  This is achieved by the 

command-line option '-ccparchain <root-name >' as described in the following: 
 
$ runlindo mipmodel.mps -ccstrategy 0 -ccparchain ccpar/lindo –nthreads 3 

 

The option "-ccparchain ccpar/lindo" translates into reading 3 parameter files, one file per thread, from 

a relative-path with the following names  

 

./ccpar/lindo-cc-0.par 

./ccpar/lindo-cc-1.par 

./ccpar/lindo-cc-2.par 

Solvers with built-in Parallel Algorithms  
 

As displayed in above table,  global-optimization, multistart, stochastic, and branch-price solvers have 

built-in parallel versions. To run the parallel version of each solver, simply set the associated 

parameter (e.g. LS_IPARAM_GOP_NUM_THREADS for global-optimization or 

LS_IPARAM_IPM_NUM_THREADS for linear-optimization with barrier solver) to 2 or more. See 

the code snippet below for starting the parallel GOP solver over 3 threads. 

 
{ 

/*  Insert code to set up a nonlinear model */ 

 

 // Set number of parallel threads to 3 

LSsetModelIntParameter(pModel,LS_IPARAM_GOP_NUM_THREADS,3); 

 

 // Set threading to parallel mode 

LSsetModelIntParameter(pModel, 

LS_IPARAM_MULTITHREAD_MODE, LS_MTMODE_PP); 

 

 // Start the parallel global optimizer 

 nErr = LSsolveGOP(pModel,&nGOPstatus); 

 

  /*  Insert code to handle status and access to solution vectors */ 

} 
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The runlindo session with “–gop –nthreads 3” options invokes the parallel GOP solver on a sample 

problem and produces the following trace log. The cummulative workloads of threads in seconds, 

along with their shares in the total in percentages, are displayed at termination.  

 

 
#NODEs  BOXES   LOWER BOUND     UPPER BOUND      RGAP   TIME(s) 

 

     1       1  -5.873680e+001  -1.146802e+000  9.8e-001      0 (*N)  

    15      13  -2.647840e+001  -1.020879e+001  6.1e-001      4 (*N)  

    21      17  -2.633181e+001  -1.020879e+001  6.1e-001      7 (*I)  

    24      16  -2.275840e+001  -1.020879e+001  5.5e-001      7 (*I)  

    47       0  -1.020881e+001  -1.020879e+001  2.0e-006      9 (*F)  

 

GOP thread workload: 13.75 secs |36%|38%|26%| 

 

Terminating global search ... 

 

 Global optimum found 

 Objective value              :         -10.2087927922 

 Best Bound                   :         -10.2088130442 

 … 

 … 

 Total time (sec.)            :                     10 

 

 

Note that for mixed-integer solver, multithreading by default will invoke the MIP concurrent solver. 

To invoke the parallel solver, one may make the 

following call LSsetModelIntParameter(pModel, LS_IPARAM_MULTITHREAD_MODE, 

LS_MTMODE_PP). In 'runlindo', this corresponds to using option "-threadmode 2". 
 

Reproducibility 
 

 We say a solution method is reproducible if when you apply the solution method a second time to the 

same problem, you get the same answer as in the first run. This is of particular interest if  your model 

has multiple optimal solutions.  A reproducible method will always give you the same optimal solution 

every time you  solve the problem on the same computer system using the same parameter settings. 

You may not get reproducibility if a) you set time limits of any sort, or b) use a concurrent solver.





 

 

Appendix A: Error Codes 
Below is a listing of the various error codes that are returned by LINDO API along with a brief 

description of the error condition and possible remedies. These codes are defined in the header files 

(e.g. lindo.h) under lindoapi/include directory. 

LSERR_BAD_CONSTRAINT_TYPE 

Constraint types are expected to be ‘G’, ‘L’, ‘E’, or ‘N’ corresponding to greater-than-or-

equal-to, less-than-or-equal-to, equal-to, and neutral. Correct and retry. 

LSERR_BAD_DECOMPOSITION_TYPE 

The specified decomposition type is invalid. 

LSERR_BAD_LICENSE_FILE 

The specified license file does not exist or contains a corrupt license key. 

LSERR_BAD_MODEL 

There is an error in your formulation. Correct and retry. 

LSERR_BAD_MPI_FILE 

LINDO API was unable to parse your MPI file for some reason. Check to be sure that the file 

format follows the rules of the MPI file format and the expressions representing the linear or 

nonlinear relationships conform to the postfix notation. 

LSERR_BAD_MPS_FILE 

LINDO API was unable to parse your MPS file for some reason. Check to be sure that the file 

is truly an MPS file. Review the MPS file format in Appendix B, MPS File Format, to see 

that your file conforms. Try reading the file as an unformatted MPS file. 

LSERR_BAD_OBJECTIVE_SENSE 

Your objective sense argument was not correctly specified. 

LSERR_BAD_SOLVER_TYPE 

You’ve requested an incorrect solver type. Please make sure you have specified one from the 

supported list of solvers. 

LSERR_BAD_VARIABLE_TYPE 

The specified variable type is invalid. 

LSERR_BASIS_BOUND_MISMATCH 

The specified value for basis status does not match to the  upper or lower bound the variable 

can attain.  

LSERR_BASIS_COL_STATUS 

The specified basis status for a column is invalid. 

LSERR_BASIS_INVALID 

  The given basis is invalid. 

LSERR_BASIS_ROW_STATUS 

  The specified basis status for  a constraint’s slack/surplus is invalid.
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LSERR_BLOCK_OF_BLOCK 

The specified model is already a block of a decomposed model.  

LSERR_BOUND_OUT_OF_RANGE 
The input values fall out side allowed range. E.g. a negative value was input while expecting 

a nonnegative value. 

LSERR_CANNOT_OPEN_FILE 

LINDO API couldn’t open a specified file. Check the spelling of the file name, be sure that 

the file exists, and make sure you have read access to the file. 

LSERR_CHECKSUM 

  A checksum operation has failed during license checking. 

LSERR_COL_BEGIN_INDEX 

The index vector that mark the beginning of structural columns in three (or four) vector 

representation of the underlying model is invalid.  

LSERR_COL_INDEX_OUT_OF_RANGE 

The specified column index is out of range for the underlying model. 

LSERR_COL_NONZCOUNT 

The number of nonzeros in one or more columns specified is invalid or inconsistent with 

other  input vectors. 

LSERR_ERRMSG_FILE_NOT_FOUND 

The specified file was not found. 

LSERR_ERROR_IN_INPUT 

There was an error in the input.  

LSERR_GOP_BRANCH_LIMIT 

The GOP solver has reached the branch limit in branch and bound before solving to 

optimality. 

LSERR_GOP_FUNC_NOT_SUPPORTED 

The specified function is not supported with GOP solver 

LSERR_ILLEGAL_NULL_POINTER 

LINDO API was expecting a pointer as an argument, but found NULL instead. 

LSERR_INDEX_DUPLICATE 

The specified index set contains duplicate index values. 

LSERR_INDEX_OUT_OF_RANGE 

The specified index is out of range.  

LSERR_INSTRUCT_NOT_LOADED 

The instruction list has not yet been loaded into the model specified by a pLSmodel type 

pointer. 

LSERR_INTERNAL_ERROR 

An unanticipated internal error has occurred. Please report this problem to LINDO Systems 

Technical Support. 

LSERR_INFO_NOT_AVAILABLE 

You have posed a query to LINDO API for which no information is available. 
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LSERR_INVALID_ERRORCODE 

The error code inquired about is invalid. 

LSERR_ITER_LIMIT 

The solver reached the iteration limit before solving to optimality. 

LSERR_LAST_ERROR 

This error code marks the last valid error code in LINDO API and is for internal use only.   

LSERR_MIP_BRANCH_LIMIT 

The solver has reached the branch limit in branch and bound before solving to optimality.  

LSERR_MODEL_ALREADY_LOADED 

The problem data has already been loaded into the model specified by a pLSmodel type 

pointer. 

LSERR_MODEL_NOT_LINEAR 

The underlying model is not linear. 

LSERR_MODEL_NOT_LOADED 

The problem data has not yet been loaded into the model specified by a pLSmodel type 

pointer. 

LSERR_NO_ERROR 

The LINDO API function called has terminated without any errors. 

LSERR_NO_LICENSE_FILE 

No license file that contains a valid license could be found on the system. 

LSERR_NO_METHOD_LICENSE 

Your license key doesn’t allow for the solver method you’ve chosen. To check the capacity of 

your version, call LSgetModelIntParameter() with license information access macros. Try a 

different solver method or upgrade your license to include the desired method. 

LSERR_NO_VALID_LICENSE 

The license key passed to LScreateEnv() was not valid. Please check that you have correctly 

typed in your license key, preserving capitalization and including all hyphens. 

LSERR_NOT_CONVEX 

The underlying model is not convex. This implies that the model could not be solved using 

the standard barrier solver. 

LSERR_NOT_SUPPORTED 

You have tried to use a feature that is not currently supported. 

LSERR_NUMERIC_INSTABILITY 

The solver encountered a numeric error and was unable to continue. Please report this 

problem to LINDO Systems Technical Support. 

LSERR_OLD_LICENSE 

The license is valid for an older version. 

LSERR_OUT_OF_MEMORY 

You don’t have adequate memory for the operation. Add more RAM and/or free disk space to 

allow the operating system more swap space.  
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LSERR_PARAMETER_OUT_OF_RANGE 

The specified parameter was out of range. 

LSERR_ROW_INDEX_OUT_OF_RANGE 

The specified row index is out of range for the underlying model. 

LSERR_STEP_TOO_SMALL 

The solver halted because of failing to take sufficiently large steps to the solution set. 

LSERR_TIME_LIMIT 

The solver reached the time limit before solving to optimality. 

LSERR_TOO_SMALL_LICENSE 

Your license key doesn’t allow for enough capacity to solve the model you’ve built. To check 

the capacity of your version, call LSgetModelIntParameter() with license information access 

macros. You’ll need to reduce the size of your model or upgrade to a larger license. 

LSERR_TOTAL_NONZCOUNT 

The total number of nonzeros specified is invalid or inconsistent with other input. 

LSERR_TRUNCATED_NAME_DATA 

The solver exported the specified model in a portable file format, however,  some variables or 

constraints had very long names which have been truncated to a fixed length while exporting. 

LSERR_UNABLE_TO_SET_PARAM 

The parameter you are attempting to set is not user configurable. 

LSERR_USER_FUNCTION_NOT_FOUND 

Model contains user function that is not supplied. 

LSERR_USER_INTERRUPT 

The solver was interrupted by the user’s callback function. 

LSERR_VARIABLE_NOT_FOUND 

The specified variable was not found in the model. 

LSERR_DATA_TERM_EXIST 

The row already has a quadratic (or nonlinear) term loaded.   

LSERR_NOT_SORTED_ORDER 

The index vector is required to be sorted but it is not.  

LSERR_INST_MISS_ELEMENTS 

Instruction list has incorrect numbers of elements. 

LSERR_INST_TOO_SHORT 

Instruction list has too short a length. 

LSERR_INST_INVALID_BOUND 

Instruction list has conflicting variable bounds. For example, the lower bound is greater than 

the upper bound. 

LSERR_INST_SYNTAX_ERROR 

Instruction list contains at least one syntax error. 

LSERR_LAST_ERROR 

Marker for the last error code. Internal use only. 
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LSERR_BAD_SMPS_CORE_FILE   

Core MPS file/model has an error.  

LSERR_BAD_SMPS_TIME_FILE   

Time file/model has an error.  

LSERR_BAD_SMPS_STOC_FILE   

Stoc file/model has an error.  

LSERR_BAD_SMPI_CORE_FILE   

Core MPI file/model has an error.  

LSERR_BAD_SMPI_STOC_FILE   

Stoc file associated with Core MPI file has an error.  

LSERR_CANNOT_OPEN_CORE_FILE   

Unable to open Core file.  

LSERR_CANNOT_OPEN_TIME_FILE   

Unable to open Time file.  

LSERR_CANNOT_OPEN_STOC_FILE   

Unable to open Stoc file.  

LSERR_STOC_MODEL_NOT_LOADED   

Stochastic model/data has not been loaded yet.  

LSERR_STOC_SPAR_NOT_FOUND   

Stochastic parameter specified in Stoc file has not been found .  

LSERR_TIME_SPAR_NOT_FOUND   

Stochastic parameter specified in Time file has not been found .  

LSERR_SCEN_INDEX_OUT_OF_SEQUENCE   

Specified scenario index is out of sequence.  

LSERR_STOC_MODEL_ALREADY_PARSED   

Stochastic model/data has already been loaded.  

LSERR_STOC_INVALID_SCENARIO_CDF   

Specified scenario CDF is invalid, e.g. scenario probabilities don't sum to 1.0  

LSERR_CORE_SPAR_NOT_FOUND   

No stochastic parameters was found in the Core file.  

LSERR_CORE_SPAR_COUNT_MISMATCH   

Number of stochastic parameters found in Core file don't match to that of Time file.  

LSERR_CORE_INVALID_SPAR_INDEX   

Specified stochastic parameter index is invalid.  

LSERR_TIME_SPAR_NOT_EXPECTED   

A stochastic parameter was not expected in Time file.  

LSERR_TIME_SPAR_COUNT_MISMATCH   

Number of stochastic parameters found in Time file don't match to that of Stoc file.  
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LSERR_CORE_SPAR_VALUE_NOT_FOUND   

Specified stochastic parameter doesn't have a valid outcome value.  

LSERR_INFO_UNAVAILABLE   

Requested information is unavailable. 

LSERR_STOC_MISSING_BNDNAME   

Core file doesn't have a valid bound name tag. 

LSERR_STOC_MISSING_OBJNAME  

 Core file doesn't have a valid objective name tag.  

LSERR_STOC_MISSING_RHSNAME  

 Core file doesn't have a valid right-hand-side name tag. 

LSERR_STOC_MISSING_RNGNAME  

 Core file doesn't have a valid range name tag.  

LSERR_MISSING_TOKEN_NAME  

 Stoc file doesn't have an expected token name.  

LSERR_MISSING_TOKEN_ROOT   

Stoc file doesn't have a 'ROOT' token to specify a root scenario.  

LSERR_STOC_NODE_UNBOUNDED  

 Node model is unexpectedly unbounded.  

LSERR_STOC_NODE_INFEASIBLE   

Node model is unexpectedly infeasible.  

LSERR_STOC_TOO_MANY_SCENARIOS  

 Stochastic model has too many scenarios to solve with specified solver.  

LSERR_STOC_BAD_PRECISION   

One or more node-models have irrecoverable numerical problems.  

LSERR_CORE_BAD_ AGGREGATION 

 Specified aggregation structure is not compatible with model's stage structure.  

LSERR_STOC_NULL_EVENT_TREE  

 Event tree is either not initialized yet or was too big to create.  

LSERR_CORE_BAD_STAGE_INDEX   

Specified stage index is invalid.  

LSERR_STOC_BAD_ALGORITHM  

 Specified algorithm/method is invalid or not supported.  

LSERR_CORE_BAD_NUMSTAGES  

 Specified number of stages in Core model is invalid.  

LSERR_TIME_BAD_TEMPORAL_ORDER   

Underlying model has an invalid temporal order.  

LSERR_TIME_BAD_NUMSTAGES  

 Number of stages specified in Time structure is invalid.  

LSERR_CORE_TIME_MISMATCH   

Core and Time data are inconsistent.  



ERROR CODES     631 

 

LSERR_STOC_INVALID_CDF   

Specified stochastic structure has an invalid CDF.  

LSERR_BAD_DISTRIBUTION_TYPE   

Specified distribution type is invalid or not supported.  

LSERR_DIST_SCALE_OUT_OF_RANGE  

 Scale parameter for specified distribution is out of range.  

LSERR_DIST_SHAPE_OUT_OF_RANGE  

 Shape parameter for specified distribution is out of range.  

LSERR_DIST_INVALID_PROBABILITY   

Specified probabability value is invalid.  

LSERR_DIST_NO_DERIVATIVE  

 Derivative information is unavailable.  

LSERR_DIST_INVALID_SD  

 Specified standard deviation is invalid.  

LSERR_DIST_INVALID_X   

Specified value is invalid.  

LSERR_DIST_INVALID_PARAMS  

 Specified parameters are invalid for the given distribution.  

LSERR_DIST_ROOTER_ITERLIM  

 Iteration limit has been reached during a root finding operation.  

LSERR_ARRAY_OUT_OF_BOUNDS  

 Given array is out of bounds.  

 LSERR_DIST_NO_PDF_LIMIT    

Limiting PDF does not exist  

LSERR_RG_NOT_SET  

 A random number generator is not set.  

LSERR_DIST_TRUNCATED  

 Distribution function value was truncated during calculations.  

LSERR_STOC_MISSING_PARAM_TOKEN   

Stoc file has a parameter value missing.  

LSERR_DIST_INVALID_NUMPARAM   

Distribution has invalid number of parameters.  

LSERR_CORE_NOT_IN_TEMPORAL_ORDER   

Core file/model is not in temporal order.  

LSERR_STOC_INVALID_SAMPLE_SIZE   

Specified sample size is invalid.  

LSERR_STOC_NOT_DISCRETE   

Node probability cannot be computed due to presence of continuous stochastic parameters.  

LSERR_STOC_SCENARIO_LIMIT  

 Event tree exceeds the maximum number of scenarios allowed to attempt an exact solution.  
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LSERR_DIST_BAD_CORRELATION_TYPE   

Specified correlation type is invalid.  

LSERR_TIME_NUMSTAGES_NOT_SET   

Number of stages in the model is not set yet.     

LSERR_STOC_SAMPLE_ALREADY_LOADED 

Model already contains a sampled tree           

LSERR_STOC_EVENTS_NOT_LOADED      

Stochastic events are not loaded yet .  

 LSERR_STOC_TREE_ALREADY_INIT      

 Stochastic tree already initialized.         

 LSERR_RG_SEED_NOT_SET                        

Random number generator seed not initialized.  

 LSERR_STOC_OUT_OF_SAMPLE_POINTS   

All sample points in the sample has been used. Resampling may be required.         

 LSERR_STOC_SCENARIO_SAMPLING_NOT_SUPPORTED    

All sample points in the sample has been used. Resampling may be required.  

 LSERR_STOC_SAMPLE_NOT_GENERATED             

Sample points are not yet generated for a stochastic parameter.  

 LSERR_STOC_SAMPLE_ALREADY_GENERATED         

 Sample points are already generated for a stochastic parameter.     

 LSERR_STOC_SAMPLE_SIZE_TOO_SMALL            

Sample sizes selected are too small.  

LSERR_RG_ALREADY_SET            

A random number generator is already set. 

LSERR_STOC_BLOCK_SAMPLING_NOT_SUPPORTED            

Sampling is not allowed for block/joint distributions. 

LSERR_EMPTY_ROW_STAGE            

No rows were assigned to one of the stages. 

LSERR_EMPTY_COL_STAGE               

No columns were assigned to one of the stages. 

 LSERR_STOC_CONFLICTING_SAMP_SIZES         

    Default sample sizes per stoc.pars and stage are in conflict.  

 LSERR_STOC_EMPTY_SCENARIO_DATA            

 Empty scenario data.  

 LSERR_STOC_CORRELATION_NOT_INDUCED        

A correlation structure has not been induced yet.  

  LSERR_STOC_PDF_TABLE_NOT_LOADED           

A discrete PDF table has not been loaded.  

  LSERR_COL_TOKEN_NOT_FOUND  

Reserved for future use.               



ERROR CODES     633 

 

    LSERR_ROW_TOKEN_NOT_FOUND      

Reserved for future use.           

    LSERR_NAME_TOKEN_NOT_FOUND    

Reserved for future use.                

    LSERR_STOC_NO_CONTINUOUS_SPAR_FOUND   

No continously distributed random parameters are found.    

    LSERR_STOC_ROW_ALREADY_IN_CC 

One or more rows already belong to another chance constraint.  

    LSERR_STOC_CC_NOT_LOADED   

No chance-constraints were loaded. 

    LSERR_STOC_CUT_LIMIT    

Cut limit has been reached.                   

   LSERR_MIP_PRE_RELAX_ILLEGAL_PROBLEM  

Reserved for future use.                

   LSERR_MIP_PRE_RELAX_NO_FEASIBLE_SOL        

Reserved for future use.                

   LSERR_SPRINT_MISSING_TAG_ROWS       

Reserved for future use.                

   LSERR_SPRINT_MISSING_TAG_COLS   

Reserved for future use.                

   LSERR_SPRINT_MISSING_TAG_RHS      

Reserved for future use.                

   LSERR_SPRINT_MISSING_TAG_ENDATA        

Reserved for future use.               

   LSERR_SPRINT_MISSING_VALUE_ROW         

Reserved for future use                

   LSERR_SPRINT_EXTRA_VALUE_ROW            

Reserved for future use.                

   LSERR_SPRINT_MISSING_VALUE_COL    

Reserved for future use.                

   LSERR_SPRINT_EXTRA_VALUE_COL     

Reserved for future use.                

   LSERR_SPRINT_MISSING_VALUE_RHS   

Reserved for future use                

   LSERR_SPRINT_EXTRA_VALUE_RHS     

Reserved for future use.                

   LSERR_SPRINT_MISSING_VALUE_BOUND  

Reserved for future use.                

   LSERR_SPRINT_EXTRA_VALUE_BOUND 

Reserved for future use.                
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   LSERR_SPRINT_INTEGER_VARS_IN_MPS 

Reserved for future use.                

   LSERR_SPRINT_BINARY_VARS_IN_MPS  

Reserved for future use.                

   LSERR_SPRINT_SEMI_CONT_VARS_IN_MPS   

Reserved for future use.             

   LSERR_SPRINT_UNKNOWN_TAG_BOUNDS   

Reserved for future use.                

   LSERR_SPRINT_MULTIPLE_OBJ_ROWS     

Reserved for future use.                

   LSERR_SPRINT_COULD_NOT_SOLVE_SUBPROBLEM  

Reserved for future use.               

   LSERR_COULD_NOT_WRITE_TO_FILE    

Reserved for future use.                

   LSERR_COULD_NOT_READ_FROM_FILE  

Reserved for future use.                

   LSERR_READING_PAST_EOF                      

Reserved for future use.                

   LSERR_NOT_LSQ_MODEL 

The given model is not a least squares formulation. 

   LSERR_INCOMPATBLE_DECOMPOSITION    

 Specified decomposition type is not compatible with the structure of the model.       

   LSERR_STOC_GA_NOT_INIT   

GA object has not been initialized yet.                 

   LSERR_STOC_ROWS_NOT_LOADED_IN_CC          

   There exists stochastic rows not loaded to any chance constraints yet.    

   LSERR_SAMP_ALREADY_SOURCE    

Specified sample is already assigned as the source for the target sample.  

   LSERR_SAMP_USERFUNC_NOT_SET        

  No user-defined distribution function has been set for the specified sample.  

   LSERR_SAMP_INVALID_CALL       

  Specified sample does not support the function call or it is incompatible with the argument 

list.  

   LSERR_NO_MULTITHREAD_SUPPORT              

Parallel threads are not supported for the specified feature. 

   LSERR_INVALID_PARAMID                     

Specified parameter is invalid. 

   LSERR_INVALID_NTHREADS                    

Specified value is not valid for number of parallel threads. 
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   LSERR_COL_LIMIT                           

The BNP solver has reached the column-generation limit before 

solving to optimality. 

   LSERR_QCDATA_NOT_LOADED                           

Quadratic data has not been loaded yet. 

   LSERR_NO_QCDATA_IN_ROW                           

  Specified row does not have any quadratic terms. 

   LSERR_CLOCK_SETBACK     

  Clock setback was detected                       

   LSERR_LDL_FACTORIZATION     

  Error in LDLt factorization                   

   LSERR_LDL_EMPTY_COL      

  Empty column detected in LDLt factorization                     

   LSERR_LDL_BAD_MATRIX_DATA      

  Matrix data is invalid or has bad input in LDLt factorization              

   LSERR_LDL_INVALID_DIM     

  Invalid matrix or vector dimension  

   LSERR_LDL_EMPTY_MATRIX     

  Matrix or vector is empty  

   LSERR_LDL_MATRIX_NOTSYM      

  Matrix is not symmetric  

   LSERR_LDL_ZERO_DIAG    

Matrix has zero diagonal                    

   LSERR_LDL_INVALID_PERM      

   Invalid permutation 

   LSERR_LDL_DUPELEM     

  Duplicate elements detected in LDLt factorization                       

   LSERR_LDL_RANK        

  Detected rank deficiency in LDLt factorization  

   LSERR_ZLIB_LOAD 

Reserved for future use. 

   LSERR_STOC_INVALID_INPUT 

Specified stochastic input is invalid. 
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Appendix B:  

MPS File Format 
This appendix describes the file format that can be read with LSreadMPSFile(), or written with 

LSwriteMPSFile(). The MPS format for describing an LP or a quadratic program is a format 

commonly used in industry. It is a text file format, so one of the reasons for using it is to move an 

LP/IP model from one machine to another machine of a different type or manufacturer. It is not a very 

compact format (i.e., MPS format files tend to be large and wasteful of space).  

Every MPS file has at least the two sections: 

ROWS             (List the row names and their type: L, E, G, or N) 

COLUMNS       (List by column, nonzero elements in objective and constraints) 

The optional sections in an MPS file are : 

  RHS                     (Specify nonzero right hand sides for constraints.) 

BOUNDS         (Specify bounds on variables.) 

RANGES          (Specify the bounds on a RHS.) 

QMATRIX        (Specify a quadratic portion of a row or the objective function) 

QSECTION       (Synonym for QMATRIX) 

              CSECTION       (Specify second-order cone constraints) 

Any line with an asterisk (*) in the first position is treated as a comment line and is disregarded. 

LINDO API understands the most commonly used features of the MPS format subject to: 

1. Leading blanks in variable and row names are disregarded. All other characters, including 

embedded blanks, are allowed. 

2. Only one free row (type N row) is retained from the ROWS section after input is complete, 

specifically the one selected as the objective. 

3. Only one BOUNDS set is recognized in the BOUNDS section. Recognized bound types are: 

UP (upper bound) 

LO (lower bound) 

FR (free variable) 

FX  (fixed variable) 

BV (bivalent variable, i.e., 0/1 variables) 

UI (upper-bounded integer variable) 

LI (lower-bounded integer variable) 

SC (semi-continuous variable) 

4. Only one RANGES set is recognized in the RANGES section. 

6. MODIFY sections are not recognized. 

7. SCALE lines are accepted, but have no effect.
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Even though embedded blanks are allowed in names in an MPS file, they are not recommended. For 

example, even though “OK NAME” is an acceptable name for a row in an MPS file, it is not 

recommended. 

Similarly, lowercase names are accepted, but for consistency—also for ease of distinguishing between 

1 (one) and l (L)—it is recommended that only uppercase names be used. 

To illustrate an MPS format file, consider the following equation style model in LINGO format: 

[PROFIT] MAX = 500*LEXUS + 1600*CAMARO + 4300* BEETLE + 

1800*BMW; 

[MIX]      12*LEXUS          -4*BEETLE –  2*BMW  >= 0; 

[SPORT]       CAMARO                      + BMW  <= 2000; 

[SMALL]                         BEETLE    + BMW  <= 1500; 

[TOTAL]     LEXUS + CAMARO + BEETLE   + BMW      <= 3000; 

! This lower bound on the SMALL constraint can be represented 

    by an entry in the RANGES section of an MPS file; 

[SMALLR]                     BEETLE   + BMW      >= 1500-700; 

! This upper bound on a variable can be represented by an 

    entry in the BOUNDS section of an MPS file; 

@BND(0, LEXUS, 250); 

The equivalent MPS file looks like: 

NAME          CAFEMODL 

ROWS 

 N  PROFIT 

 G  MIX 

 L  SPORT 

 L  SMALL 

 L  TOTAL 

COLUMNS 

    LEXUS     PROFIT           -500 

    LEXUS     MIX                12 

    LEXUS     TOTAL               1 

    CAMARO    PROFIT          -1600 

    CAMARO    SPORT               1 

    CAMARO    TOTAL               1 

    BEETLE    PROFIT          -4300 

    BEETLE    TOTAL               1 

    BEETLE    MIX                -4 

    BEETLE    SMALL               1 

    BMW       PROFIT          -1800 

    BMW       MIX                -2 

    BMW       TOTAL               1 

    BMW       SMALL               1 

    BMW       SPORT               1 

RHS 

    RHS1      SPORT            2000 

    RHS1      SMALL            1500 

    RHS1      TOTAL            3000 

RANGES 

    ROWRNG1   SMALL             700 

BOUNDS 

 UP BND1      LEXUS             250 

ENDATA 
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Notice that there are two major types of lines in an MPS file: (1) header lines such as ROWS, 

COLUMNS, RHS, etc., and (2) data lines, which immediately follow each header line. The fields in a 

data line are as follows: 

Field Character Position Contents 

1 2 to 3 Row type or bound type 

2 5 to 12 Name of column, bound or range 

3 15 to 23 Row name 

4 25 to 37 Numerical value 

5 40 to 47 Row name 

6 50 to 62 Numerical value 

Two features of an MPS file are worth noting at this point: (1) It is allowed to have several non-

constrained rows (i.e., type N) any one of which could be the objective and (2) There is nothing in the 

file to indicate whether it is a MIN or a MAX problem.  The default is that it is MIN,  so in our 

example, the signs have been reversed in the MPS file on the coefficients in the MAX objective.  

Integer Variables 

The standard way of designating integer variables in an MPS file is to place them between ‘INTORG’, 

‘INTEND’ marker cards in the COLUMNS section.  Integer variables may alternatively be designated 

with either the BV, UI, or LI type in a BOUNDS section.  Consider the following model in LINGO 

equation style. 

   ! Example: EXAMINT; 

   [OBJ] MIN = 38*X1   + 42*X2 + 14*X3 + 28*X4; 

   [NEED]   12*X1 + 14*X2 + 6*X3 + 12*X4 >=  78; 

   @GIN(X1); @GIN(X2); @GIN(X3);  

   @BND(0,X3,2); 

   @BIN(X4); 

An MPS file describing the above model is: 

NAME          EXAMINT 

ROWS 

 N  OBJ 

 G  NEED 

COLUMNS 

    MYINTS1   'MARKER'                 'INTORG' 

    X1  OBJ                38 

    X1  NEED               12 

    X2  OBJ                42 

    X2  NEED               14 

    MYINTS1   'MARKER'                 'INTEND' 

    X3  OBJ                14 

    X3  NEED                6 

    X4  OBJ                28 

    X4  NEED               12 

RHS 
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    RHS1      NEED         78 

BOUNDS 

 UP BND1      X1         9999 

 UP BND1      X2         9999 

 UI BND1      X3            2 

 BV BND1      X4 

ENDATA 

Some software systems assume an upper bound of 1.0 on any variable appearing in an INTORG, 

INTEND section,  so the safe approach is to always explicitly list the intended upper bound of an 

integer variable in the BOUNDS section. 

Semi-continuous Variables 
A semi-continuous variable is one that is constrained to be either 0 or strictly positive over a range.  

Such a semi-continuous variable is indicated by using the SC bound type in the BOUNDS section.  

The following equation form model illustrates. 

TITLE SEMICONT; 

 [ OBJ] MIN = - 20 * A - 38 * C - 44 * R; 

 [ALINE]             A              +  R <= 60; 

 [CLINE]                      C +      R <= 50; 

 [LABOR]             A  + 2 * C  + 3 * R <= 119; 

 @GIN( C); @GIN( R); 

 @BND( 0, C, 45); @BND( 0, R, 999); 

! Additionally, we want either C = 0, or 35 <= C <= 45; 

The above model does not enforce the semi-continuous feature on C.  In the MPS format you can 

easily enforce the feature by using the SC bound type in the BOUNDS section.  See below. 

NAME          SEMICONT Illustrate semi-continuous variables 

ROWS 

 N  OBJ 

 L  ALINE 

 L  CLINE 

 L  LABOR 

COLUMNS 

    A  OBJ                -20 

    A  LABOR                1 

    A  ALINE                1 

    INT0000B  'MARKER'                 'INTORG' 

    C  OBJ                -38 

    C  LABOR                2 

    C  CLINE                1 

    R  OBJ                -44 

    R  ALINE                1 

    R  LABOR                3 

    R  CLINE                1 

    INT0000E  'MARKER'                 'INTEND' 

RHS 

    RHS1      ALINE        60 

    RHS1      CLINE        50 

    RHS1      LABOR       119 

BOUNDS 

 SC BND1      C            45 
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 LO BND1      C            35 

 UP BND1      R           999 

* We must have either C = 0 or 35 <= C <= 45 

* If the LO bound does not appear for an SC variable 

*  then it is assumed to be 1. 

* Appearance of both SC and UP for a variable is an error. 

ENDATA 

SOS Sets 
SOS(Special Ordered Sets) provide a compact way of specifying multiple choice type conditions.  The 

LINDO API recognizes three types of SOS sets.  A set of variables defined to be in an SOS will be 

constrained in the following ways. 

 Type 1: At most one of the variables in the set will be allowed to be nonzero. 

 Type 2: At most two variables in the set will be allowed to be nonzero. If two, they must be 

adjacent.   

 Type 3: At most one of the variables in the set will be nonzero.  If one, its value must be 1. 

Consider the following example. 

[ OBJ] MIN = -3*X1 -2*X2 -4*X3; 

 [ R2]  X1 +  X2 +  X3 <= 5; 

 [ R3]  X1             <= 2; 

 [ R4]        X2       <= 2; 

 [ R5]              X3 <= 2; 

The following MPS file will cause X1, X2, and X3 to be in a type 1 SOS set. 

NAME           S3TEST 

ROWS 

 N  OBJ 

 L  R2 

 L  R3 

 L  R4 

 L  R5 

COLUMNS 

 S1 JUNK      'MARKER'                 'SOSORG' 

    X1        OBJ         -3 

    X1        R2           1 

    X1        R3           1 

    X2        OBJ         -2 

    X2        R2           1 

    X2        R4           1 

    X3        OBJ         -4 

    X3        R2           1 

    X3        R5           1 

 S1 JUNK      'MARKER'                 'SOSEND' 

RHS 

    RHS1      R2           5 

    RHS1      R3           2 

    RHS1      R4           2 

    RHS1      R5           2 

ENDATA 
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The optimal solution will be X1 = X2 = 0,  X3 = 2. 

If you change the S1 to S2 in the MPS file,  then the optimal solution will be X1 = 0, X2 = X3 = 2. 

If you change the S1 to blanks, e.g., the start marker line is simply:  

JUNK      'MARKER'                 'SOSORG' 

then X1, X2, and X3 will be interpreted as a type 3 SOS set and the optimal solution will be:  

The optimal solution will be X1 = X2 = 0,  X3 = 1. 

SOS2 Example 

An SOS2 set is an ordered  set of variables which are required to satisfy the conditions: a) at most two 

variables in the set may be nonzero,  and b) if two, then they must be adjacent.  This feature is useful 

for modeling piecewise linear continuous curves.  The following example illustrates. 

! Cost of production is a piecewise linear, continuous 

function of 4 segments given by the 5 points: 

      cost:   0  1500 15500 41500 77500 

    volume:   0   100  1100  3100  6100. 

We have 3 customers who are willing to buy  

at a given price/unit up to a maximum. 

Maximize revenues minus cost of production; 

   Max = 20*SELL1 + 14*SELL2 + 13*SELL3 - COST; 

! How much each customer will buy; 

   @BND(0,SELL1,300); @BND(0,SELL2,900); @BND(0,SELL3,2000); 

! Wj =weight given to each point on cost curve; 

   W0 + W0100      + W1100      + W3100      + W6100= 1; 

    100*W0100 + 1100*W1100 + 3100*W3100 + 6100*W6100= VOL; 

   1500*W0100 +15500*W1100 +41500*W3100 +77500*W6100= COST; 

! If we sell it, we have to make it; 

   SELL1 + SELL2 + SELL3 = VOL; 

! Additionally, we need the SOS2 condition that at most 

   2 W's are > 0, and they must be adjacent; 

! Soln: Obj=1900, W3100=0.9666667, W6100= 0.0333333, VOL= 

3200; 

The above model does not enforce the SOS2 feature on W0,…,W6100.  An MPS file for this model 

that enforces the SOS2 condition is: 

NAME           SOS3EXAM  Illustrate use of SOS2 set 

ROWS 

 N  OBJ 

 E  CNVX 

 E  CVOL 

 E  CCST 

 E  BALN 

COLUMNS 

    SELL1     OBJ          -20 

    SELL1     BALN           1 

    SELL2     OBJ          -14 

    SELL2     BALN           1 

    SELL3     OBJ          -13 

    SELL3     BALN           1 
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    COST      OBJ            1 

    COST      CCST          -1 

 S2 SET2      'MARKER'                 'SOSORG' 

    W0        CNVX           1 

    W0100     CNVX           1 

    W0100     CCST        1500 

    W0100     CVOL         100 

    W1100     CNVX           1 

    W1100     CVOL        1100 

    W1100     CCST       15500 

    W3100     CNVX           1 

    W3100     CVOL        3100 

    W3100     CCST       41500 

    W6100     CNVX           1 

    W6100     CVOL        6100 

    W6100     CCST       77500 

 S2 SET2      'MARKER'                 'SOSEND' 

    VOL       CVOL          -1 

    VOL       BALN          -1 

RHS 

    RHS1      CNVX           1 

BOUNDS 

 UP BND1      SELL1        300 

 UP BND1      SELL2        900 

 UP BND1      SELL3       2000 

ENDATA 

Quadratic Objective 

A quadratic objective function may be input via the MPS format by entering the coefficients of the 

quadratic function.  Consider the following equation form model. 

[VAR] MIN=  

   X1*X1 * 0.01080754 + X1*X2 * 0.01240721 + X1*X3 * 0.01307513 

 + X2*X1 * 0.01240721 + X2*X2 * 0.0583917  + X2*X3 * 0.05542639  

 + X3*X1 * 0.01307513 + X3*X2 * 0.05542639 + X3*X3 * 0.09422681 ; 

 [BUDGET] X1 + X2 + X3 = 1 ; 

 [RETURN] 1.0890833 * X1 + 1.213667 * X2 + 1.234583 * X3 >= 

1.15 ; 

A quadratic objective can be described in an MPS file by a QMATRIX section as shown below.  The 

second field VAR in QMATRIX header must correspond to the objective function name listed in the 

ROWS section. 
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       NAME          PORTQP   Markowitz's portfolio problem 

*  [VAR] MIN=  

*   X1*X1 * 0.01080754 + X1*X2 * 0.01240721 + X1*X3 * 0.01307513 

* + X2*X1 * 0.01240721 + X2*X2 * 0.0583917  + X2*X3 * 0.05542639  

* + X3*X1 * 0.01307513 + X3*X2 * 0.05542639 + X3*X3 * 0.09422681 ; 

* [BUDGET] X1 + X2 + X3 = 1 ; 

* [RETURN] 1.0890833 * X1 + 1.213667 * X2 + 1.234583 * X3 >= 1.15 ; 

*   

* Input to QP optimizers assume quadratic has been divided by 2.0, 

* so when first derivatives are taken the 2's cancel.        

ROWS 

 N  VAR      

 E  BUDGET       

 G  RETURN       

COLUMNS 

    X1        BUDGET               1  

    X1        RETURN               1.0890833 

    X2        BUDGET               1 

    X2        RETURN               1.213667 

    X3        BUDGET               1 

    X3        RETURN               1.234583 

RHS 

    rhs       BUDGET               1  

    rhs       RETURN               1.15 

QMATRIX       VAR 

    X1        X1                  0.02161508 

    X1        X2                  0.02481442 

    X1        X3                  0.02615026 

    X2        X1                  0.02481442 

    X2        X2                  0.1167834 

    X2        X3                  0.11085278 

    X3        X1                  0.02615026 

    X3        X2                  0.11085278 

    X3        X3                  0.18845362 

* The upper triangular is input. 

ENDATA 

Quadratic Constraints 

A quadratic constraint may be input via the MPS format by entering the coefficients of the quadratic 

function.  Consider the following equation form model. 

[RETURN] MAX  

   = 1.0890833 * X1 + 1.213667 * X2 + 1.234583 * X3 ; 

 [VAR] 

   X1*X1 * 0.01080754 + X1*X2 * 0.01240721 + X1*X3 * 0.01307513 

 + X2*X1 * 0.01240721 + X2*X2 * 0.0583917  + X2*X3 * 0.05542639  

 + X3*X1 * 0.01307513 + X3*X2 * 0.05542639 + X3*X3 * 0.09422681 <= 

0.02241375 ; 

 [BUDGET] X1 + X2 + X3 = 1 ; 

A quadratic constraint is described in an MPS file by a QMATRIX section as shown below. The second 

field VAR in QMATRIX header must be the associated constraint name listed in the ROWS section. 
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NAME          PORTQPC 

ROWS 

 N  RETURN 

 L  VAR 

 E  BUDGET 

COLUMNS 

    X1        RETURN      -1.0890833 

    X1        BUDGET       1 

    X2        RETURN      -1.213667 

    X2        BUDGET       1 

    X3        RETURN      -1.234583 

    X3        BUDGET       1 

QMATRIX       VAR 

    X1        X1           0.02161508 

    X1        X2           0.02481442 

    X1        X3           0.02615026 

    X2        X1           0.02481442 

    X2        X2           0.1167834 

    X2        X3           0.11085278 

    X3        X1           0.02615026 

    X3        X2           0.11085278 

    X3        X3           0.18845362 

RHS 

    RHS1      BUDGET       1 

    RHS1      VAR          0.02241375  

ENDATA 

The quadratic matrix must be symmetric.  If the barrier solver is used, the quadratic matrix must be 

positive semi-definite. 

Second-Order Cone Constraints 

The LINDO API supports two types of second-order cone constraints: a) simple quadratic cones, 

denoted by QUAD,  and b) rotated quadratic cones, denoted by RQUAD.   A simple quadratic cone 

constraint is of the form:  

-x0
2
 + x1

2
 + x2

2
  +… + xn

2
  0;  

x0   0; 

A rotated quadratic cone constraint is of the form:  

-2x0 x1 + x2
2
 + x3

2
  +… + xn

2
  0;  

x0, x1  0; 

Consider the following example of a simple cone constraint in equation form. 

[OBJ] MIN = -4*X1 - 5*X2 - 6*X3; 

[CAP] 8*X1 + 11*X2 + 14*X3 + 1.645*SD <= 34.8; 

[S1] SD1 - 2*X1 = 0; 

[S2] SD2 - 3*X2 = 0;  

[S3] SD3 - 4.1*X3 = 0; 

[CONE1] SD1^2 + SD2^2 + SD3^2 - SD^2 <= 0; 

  @BND(0,X1,1); @BND(0,X2,1); @BND(0,X3,1); 
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The MPS file describing this model is: 

NAME          CONE2EX1  Model with a single QUADratic cone 

ROWS 

 N  OBJ 

 L  CAP 

 E  S1 

 E  S2 

 E  S3 

COLUMNS 

    X1        OBJ         -4 

    X1        CAP          8 

    X1        S1          -2 

    X2        OBJ         -5 

    X2        CAP         11 

    X2        S2          -3 

    X3        OBJ         -6 

    X3        CAP         14 

    X3        S3          -4.1 

    SD        CAP          1.645 

    SD1       S1           1 

    SD2       S2           1 

    SD3       S3           1 

RHS 

    RHS1      CAP              34.8 

BOUNDS 

 UP BND1      X1                 1 

 UP BND1      X2                 1 

 UP BND1      X3                 1 

CSECTION      CONE1      0.0           QUAD 

    SD 

    SD1 

    SD2 

    SD3 

ENDATA 

We illustrate a rotated quadratic cone constraint with the following model in equation form: 

[OBJ] MIN = 2*HGT + 1.5*WID  

  - 5*RADIUS1 - 4*RADIUS2 - 3.5*RADIUS3; 

[TPI1] R1 - 1.77245385*RADIUS1 = 0; 

[TPI2] R2 - 1.77245385*RADIUS2 = 0; 

[TPI3] R3 - 1.77245385*RADIUS3 = 0; 

[WGT1] 3.5*RADIUS1 + 3*RADIUS2 + 2.5*RADIUS3 <=  6; 

[WGT2]   4*RADIUS1 + 6*RADIUS2   + 5*RADIUS3 <= 11; 

[CONE2] R1^2 + R2^2 + R3^2 - 2*HGT*WID <= 0; 
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The corresponding MPS file is: 

NAME           CONE2EX2 Rotated cone example 

ROWS 

 N  OBJ 

 E  TPI1 

 E  TPI2 

 E  TPI3 

 L  WGT1 

 L  WGT2 

COLUMNS 

    HGT       OBJ                 2 

    WID       OBJ               1.5 

    RADIUS1   OBJ                -5 

    RADIUS1   TPI1      -1.77245385 

    RADIUS1   WGT1              3.5 

    RADIUS1   WGT2                4 

    RADIUS2   OBJ                -4 

    RADIUS2   TPI2      -1.77245385 

    RADIUS2   WGT1                3 

    RADIUS2   WGT2                6 

    RADIUS3   OBJ              -3.5 

    RADIUS3   TPI3      -1.77245385 

    RADIUS3   WGT1              2.5 

    RADIUS3   WGT2                5 

    R1        TPI1                1 

    R2        TPI2                1 

    R3        TPI3                1 

RHS 

    RHS1      WGT1                6 

    RHS1      WGT2               11 

CSECTION      CONE2            0.0     RQUAD 

    HGT 

    WID 

    R1 

    R2 

    R3 

ENDATA 
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A cone constraint need not be defined in the ROWS section.  There are some restrictions on the usage 

of cone constraints:  a) If there are any cone constraints, then there cannot be any quadratic terms,  i.e.,  

if a CSECTION appears in a model,  then there can be no QMATRIX or QSECTION  sections,  b) a 

variable can appear in at most one CSECTION. However, these limitations need not be tight provided 

that correct formulation is used. For instance, general convex quadratically constrained models can be 

easily cast as conic models by simple change of variables. Similarly, by using auxiliary variables, 

arbitrary conic constraints can be formulated with where any variable appears in at most one 

CSECTION. 

Ambiguities in MPS Files 

An MPS file is allowed to specify a constant in the objective. Some solvers will disregard this 

constant. LINDO API does not. This may cause other solvers to display a different optimal objective 

function value than that found by LINDO API. 

If a variable is declared integer in an MPS file but the file contains no specification for the bounds of 

the variable, LINDO API assumes the lower bound is 0 and the upper bound is infinity. Other solvers 

may in this case assume the upper bound is 1.0. This may cause other solvers to obtain a different 

optimal solution than that found by LINDO API. 

 



 

 

Appendix C:  

LINDO File Format 
The MPS file format is a column-oriented format. If a row-oriented format is more convenient, then 

the LINDO file format is of interest. This section details the syntax required in a model imported from 

a text file with LSreadLINDOFile(). The list of rules is rather short and easy to learn.  

Flow of Control 
The objective function must always be at the start of the model and is initiated with any of the 

following keywords: 

MAX   MIN 

MAXIMIZE  MINIMIZE 

MAXIMISE  MINIMISE  

The end of the objective function and the beginning of the constraints are signified with any of the 

following keywords: 

SUBJECT TO 

SUCH THAT 

S.T. 

ST 

The end of the constraints is signified with the word END. 

Formatting 
Variable names are limited to eight characters. Names must begin with an alphabetic character (A to 

Z), which may then be followed by up to seven additional characters. These additional characters may 

include anything with the exception of the following: ! ) + - = < >. As an example, the following 

names are valid: 

XYZ MY_VAR A12 SHIP.LA 

whereas the following are not: 

THISONEISTOOLONG  A-HYPHEN  1INFRONT 

The first example contains more than eight characters, the second contains a forbidden hyphen, and the 

last example does not begin with an alphabetic character. 

You may, optionally, name constraints in a model. Constraint names must follow the same 

conventions as variable names. To name a constraint, you must start the constraint with its name 

terminated with a right parenthesis. After the right parenthesis, you enter the constraint as before. As 

an example, the following constraint is given the name XBOUND: 

XBOUND) X < 10
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Only five operators are recognized: plus (+), minus (-), greater than (>), less than (<), and equals (=). 

When you enter the strict inequality operators greater than (>) and less than (<), they will be 

interpreted as the loose inequality operators greater-than-or-equal-to () and less-than-or-equal-to (), 

respectively. This is because many keyboards do not have the loose inequality operators. Even for 

systems having the loose operators, they will not be recognized. However, if you prefer, you may enter 

“>=” (and “<=”) in place of “>” (and “<”). 

Parentheses as indicators of a preferred order of precedence are not accepted. All operations are 

ordered from left to right. 

Comments may be placed anywhere in a model. A comment is denoted by an exclamation mark. 

Anything following an exclamation mark on the current line will be considered a comment. For 

example: 

MAX 10 STD + 15 DLX   ! Max profit 

SUBJECT TO 

! Here are our factory capacity constraints 

! for Standard and Deluxe computers 

 STD < 10 

 DLX < 12 

! Here is the constraint on labor availability 

 STD + 2 DLX < 16 

END 

LSreadLINDOFile() allows you to input comments, but they will not be stored with the model. The 

call to LSreadLINDOFile() does not store these comment. Therefore, if LSwriteLINDOFile() is called 

later, an equivalent model will be written, but the comments will be removed. 

Constraints and the objective function may be split over multiple lines or combined on single lines. 

You may split a line anywhere except in the middle of a variable name or a coefficient. The following 

would be mathematically equivalent to our example (although not quite as easy to read): 

MAX 

 10 

 STD  + 15 DLX  SUBJECT TO 

STD 

< 

10 

dlx < 12  STD + 2 

dlx < 16 end 

However, if the objective function appeared as follows: 

MAX 10 ST 

D + 1 

5 DLX  

SUBJECT TO 

then LSreadLINDOFile() would return an error because the variable STD is split between lines and the 

coefficient 15 is also. 

Only constant values—not variables—are permitted on the right-hand side of a constraint equation. 

Thus, an entry such as: 

X > Y 
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would be rejected. Such an entry could be written as: 

X - Y > 0 

Conversely, only variables and their coefficients are permitted on the left-hand side of constraints. For 

instance, the constraint: 

3X + 4Y - 10 = 0 

is not permitted because of the constant term of -10 on the left-hand side. The constraint may be recast 

as: 

3X + 4Y = 10 

By default, all variables have lower bounds of zero and upper bounds of infinity. 

 

Note:     There is a "1024 characters per line" limit for LINDO formatted files. Expressions with more 

characters should be split with a newline char '\n'. Also note, LINDO API never checks if this 

limit is exceeded or not. The behavior of the parser is undetermined when the limit is 

exceeded. 

Optional Modeling Statements 
In addition to the three required model components of an objective function, variables, and constraints, 

a number of other optional modeling statements may appear in a model following the END statement. 

These statements and their functions appear in the table below:  

Model Statement Function 

FREE <Variable> Removes all bounds on <Variable>, allowing <Variable> to 

take on any real value, positive or negative. 

GIN <Variable> Makes <Variable> a general integer (i.e., restricts it to the 

set of nonnegative integers). 

INT <Variable> Makes <Variable> binary (i.e., restricts it to be either 0 or 

1). 

SLB <Variable> <Value> Places a simple lower bound on <Variable> of <Value>. 

Use in place of constraints of form X = r. 

SUB <Variable> <Value> Places a simple upper bound on <Variable> of <Value>. 

Use in place of constraints of form X = r. 

TITLE <Title>  Makes <Title> the title of the model. 

Next, we will briefly illustrate the use of each of these statements. 
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FREE Statement 
The default lower bound for a variable is 0. In other words, unless you specify otherwise, variables are 

not allowed to be negative. The FREE statement allows you to remove all bounds on a variable, so it 

may take on any real value, positive or negative. 

The following small example illustrates the use of the FREE statement: 

MIN 5X + Y 

ST 

  X+Y>5 

  X-Y>7 

END 

FREE Y 

Had we not set Y to be a free variable in this example, the optimal solution of X = 6 and Y = -1 would 

not have been found. Instead, given the default lower bound of 0 on Y, the solution X = 7 and Y = 0 

would be returned. 

GIN Statement 
By default, all variables are assumed to be continuous. In other words, unless told otherwise, variables 

are assumed to be any nonnegative fractional number. In many applications, fractional values may be 

of little use (e.g., 2.5 employees). In these instances, you will want to make use of the general integer 

statement, GIN. The GIN statement followed by a variable name restricts the value of the variable to 

the nonnegative integers (0,1,2,…). 

The following small example illustrates the use of the GIN statement: 

MAX 11X + 10Y 

ST 

2X + Y < 12 

X - 3Y > 1 

END 

GIN X 

GIN Y 

Had we not specified X and Y to be general integers in this model, the optimal solution of X = 6 and 

Y = 0 would not have been found. Instead, X and Y would have been treated as continuous and returned 

the solution of X = 5.29 and Y = 1.43. 

Note also that simply rounding the continuous solution to the nearest integer values does not yield the 

optimal solution in this example. In general, rounded continuous solutions may be nonoptimal and, at 

worst, infeasible. Based on this, one can imagine that it can be very time consuming to obtain the 

optimal solution to a model with many integer variables. In general, this is true, and you are best off 

utilizing the GIN feature only when absolutely necessary. 

INT Statement 
Using the INT statement restricts a variable to being either 0 or 1. These variables are often referred to 

as binary variables. In many applications, binary variables can be very useful in modeling all-or-

nothing situations. Examples might include such things as taking on a fixed cost, building a new plant, 

or buying a minimum level of some resource to receive a quantity discount.  
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The following small example illustrates the use of the INT statement: 

MAX -100X + 20A + 12B 

ST 

  A - 10X < 0 

  A + B < 11 

  B < 7 

END 

INT X     !Make X 0/1 

Had we not specified X to be binary in this example, a solution of X = .4, A = 4, and B = 7 for an 

objective value of 124 would not have been returned. Forcing X to be binary, you might guess that the 

optimal solution would be for X to be 0 because .4 is closer to 0 than it is to 1. If we round X to 0 and 

optimize for A and B, we get an objective of 84. In reality, a considerably better solution is obtained at 

X = 1, A = 10, and B = 1 for an objective of 112. 

In general, rounded continuous solutions may be nonoptimal and, at worst, infeasible. Based on this, 

one can imagine that it can be very time consuming to obtain the optimal solution to a model with 

many binary variables. In general, this is true and you are best off utilizing the INT feature only when 

absolutely necessary. 

SUB and SLB Statements 
If you do not specify otherwise, LINDO API assumes variables are continuous (bounded below by 

zero and unbounded from above). That is, variables can be any positive fractional number increasing 

indefinitely. In many applications, this assumption may not be realistic. Suppose your facilities limit 

the quantity produced of an item. In this case, the variable that represents the quantity produced is 

bounded from above. Or, suppose you want to allow for backordering in a system. An easy way to 

model this is to allow an inventory variable to go negative. In which case, you would like to 

circumvent the default lower bound of zero. The SUB and SLB statements are used to alter the bounds 

on a variable. SLB stands for Simple Lower Bound and is used to set lower bounds. Similarly, SUB 

stands for Simple Upper Bound and is used to set upper bounds. 

The following small example illustrates the use of the SUB and SLB: 

MAX 20X + 30Y 

ST 

  X + 2Y < 120 

END 

SLB X 20 

SUB X 50 

SLB Y 40 

SUB Y 70 

In this example, we could have just as easily used constraints to represent the bounds. Specifically, we 

could have entered our small model as follows: 

max 20x + 30y 

st 

   x + 2y < 120 

   x > 20 

   x < 50 

   y > 40 

   y < 70 

end 
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This formulation would yield the same results, but there are two points to keep in mind. First, SUBs 

and SLBs are handled implicitly by the solver, and, therefore, are more efficient from a performance 

point of view than constraints. Secondly, SUBs and SLBs do not count against the constraint limit, 

allowing you to solve larger models within that limit. 

TITLE Statement 
This statement is used to associate a title with a model. The title may be any alphanumeric string of up 

to 74 characters in length. Unlike all the other statements that must appear after the END statement, 

the TITLE statement may appear before the objective or after the END statement of a model. 

Here is an example of a small model with a title: 

TITLE Your Title Here 

MAX 20X + 30Y 

ST 

  X < 50 

  Y < 60 

  X + 2Y < 120 

END 
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MPI File Format 
The MPI (math program instructions) file format is a low level format for describing arbitrary 

nonlinear mathematical models. Expression of all relationships (linear or nonlinear) follows the same 

rules of instruction-list style interface described in Chapter 7, Solving Nonlinear Programs. The 

following example illustrates this: 

* minimize= 2 * x0 + x1 

* s.t.    -16 * x0       * x1   + 1 <= 0  

*         - 4 * x0^2 - 4 * x1^2 + 1 <= 0  

*          0 <= x0 <= 1 

*                      0 <= x1 <= 1 

BEGINMODEL  LSNLP1 

VARIABLES 

    X0  0.5  0.0  1.0  C 

    X1  0.5  0.0  1.0  C 

OBJECTIVES 

  LSNLP1 LS_MIN 

    EP_PUSH_NUM  2.0 

    EP_PUSH_VAR  X0 

    EP_MULTIPLY 

    EP_PUSH_VAR  X1  

    EP_PLUS 

CONSTRAINTS 

  R001 L 

    EP_PUSH_NUM  -16.0 

    EP_PUSH_VAR    X0 

    EP_MULTIPLY 

    EP_PUSH_VAR    X1 

    EP_MULTIPLY 

    EP_PUSH_NUM    1.0 

    EP_PLUS 

  R002 L 

    EP_PUSH_NUM  -4.0 

    EP_PUSH_VAR   X0 

    EP_PUSH_NUM   2.0 

    EP_POWER 

    EP_MULTIPLY 

    EP_PUSH_NUM  -4.0 

    EP_PUSH_VAR   X1 

    EP_PUSH_NUM   2.0 

    EP_POWER 

    EP_MULTIPLY 

    EP_PLUS 

    EP_PUSH_NUM   1.0 

    EP_PLUS 

ENDMODEL 
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Observe that an MPI file has the following structure: 

1. Comment lines start with an “*” (asterisk), 

2. There is a VARIABLES section that lists one line for each variable: 

3. Its name, lower bound, an initial value, its upper bound, and its type, C(ontinuous), B(inary), 

I(nteger) or S(emi-continuous). A variable name must start with one of A-Z.  Remaining characters 

must be one of A-Z, 0-9. Case does not matter (e.g., X1 is the same as x1). Names may have up to 255 

characters. 

4. There is an OBJECTIVES section that lists the name for the objective row and its type, LS_MIN 

or LS_MAX. This section also lists the instructions to compute the objective in postfix or Reverse 

Polish notation. 

5. There is a CONSTRAINTS section that lists the name of each constraint and its type, L, G, E, or 

N for less-than-or-equal-to, greater-than-or-equal-to, equal-to, or not-constrained, respectively. This 

section also lists the instructions to compute the constraint in postfix or reverse Polish notation. Name 

conventions for constraints and objectives are the same as for variable names. 

The instructions specify the operations to be performed on a LIFO(Last In First Out) stack of numbers. 

The instructions are of three main types: 

6. Put(PUSH) a number on to the top of the stack, 

7. Put(PUSH) the current value of a variable on to the top of the stack, 

8. Perform some arithmetic operation on the top k elements of the stack and replace these k numbers 

with the result.  

Refer to Chapter 7, Solving Nonlinear Programs, for more information on supported operators and 

functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix E:  

SMPS File Format 
The SMPS (stochastic mathematical programming standard) file format is an extension of the MPS 

format, described in Appendix B, for representing multistage stochastic linear programs. This format 

requires three files to completely define a stochastic multistage model.   

CORE File 
This is a standard MPS file to specify the deterministic version of the model, which is also called the 

base model. This file serves as the blueprint of the underlying model’s nonzero structure when 

imposing stage information and stochasticity. This file generally has the extension ‘.mps’. Refer to 

Appendix B for details on MPS format. 

TIME File  
This file specifies the stage of each variable and constraint in the base model. The format of this file is 

similar to the MPS file where the information is provided in sections.  

 TIME  Specifies the name of the problem. 

 PERIODS   Specifies the stages in ascending order. 

 ROWS   Specifies the time stages of constraints.  

 COLUMNS Specifies the time stages of variables. 

 ENDATA  Marks the end of staging data. 

We call the base model (core-file), to be in temporal order if the variables and constraints are ordered 

with respect to their stage indices. Depending on whether the base model is in temporal order, time file 

can provide stage information implicitly or explicitly. The time-file usually has the extension ‘.time’.
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Explicit 
If the core model is not in temporal order, the stage information should be given in an extended format. 

In PERIODS section, stage names should be given in ascending order of their indices. The keyword 

EXPLICIT is required in the second field of the PERIOD header. The stage information for variables 

and constraints are given in COLUMNS and ROWS sections, respectively. The following is the time-

file associated with the Newsvendor model’s in Chapter 8. 

 

*0000000011111111112222222222333333333344444444445555555555 

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789 

TIME          NEWSVENDOR 

PERIODS       EXPLICIT 

    TIME1    

    TIME2    

    TIME3    

COLUMNS 

    X         TIME1    

    I         TIME2    

    L         TIME2 

    S         TIME2 

    Y         TIME3 

    E         TIME3     

    Z         TIME3 

ROWS 

    ROW1      TIME1 

    ROW2      TIME2 

    ROW3      TIME2  

    ROW4      TIME2  

    ROW5      TIME3 

    PROFIT    TIME3          

ENDATA 

Implicit 
If the core model is in temporal order, then the stage information can be given in a compact way by 

simply specifying the first variable and constraint in each stage, where stage names are specified in 

ascending order of their indices.  Optionally, the keyword IMPLICIT can be placed in the second field 

of the PERIOD header. The following is the time file associated with the Newsvendor model’s in 

Chapter 8. 

 

*0000000011111111112222222222333333333344444444445555555555 

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789 

TIME          NEWSVENDOR 

PERIODS       IMPLICIT 

    X         ROW1       TIME1    

    I         ROW2       TIME2    

    Y         ROW5       TIME3    
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STOCH File 
This file identifies the stochastic elements in the base model, represented with the core-file, and the 

characteristics of their randomness (e.g. distribution type, distribution parameters, etc.). The format of 

this file is similar to the MPS file where the information is provided in sections.  

 STOCH  Specifies the name of the problem. 

 INDEP    Specifies the stage and univariate distribution of each independent random 

parameter. 

 BLOCK  Specifies the stage and joint distribution of random parameters.  

 SCENARIOS Specifies an explicit scenario by identifying its parent scenario, how and 

when it differs from its parent and the stage at which it branched from its parent. 

 CHANCE Specifies the chance-constraints 

 ENDATA  Marks the end of stochastic data. 

Independent Distributions: 
Independent distribution are identified with INDEP section, with the second field in the header being a 

keyword representing the distribution type, which can either be a parametric or a finite discrete 

distribution.  

 

In the parametric case, such as the Normal distribution, the second field in INDEP header has to have 

the keyword NORMAL. Inside the INDEP section, the distribution of the parameters is represented as 

follows: 

 

*0000000011111111112222222222333333333344444444445555555555 

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789 

STOCH         NEWSVENDOR2 

INDEP         NORMAL 

* 

    RHS1      ROW2           45.00000   TIME2     10 

*     

    Y         PROFIT         -3.00000   TIME3     2 

ENDATA  
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In this example, the right-hand-side value in constraint [ROW2] takes a random value which is 

normally distributed with parameters μ=45, and σ=10. Similarly, variable [Y] in constraint [PROFIT] 

takes a random value which is normally distributed with parameters μ=-3, and σ=2. 

In the finite discrete case, the second field of INDEP header should have the keyword DISCRETE. 

Inside the INDEP section, outcomes of each random parameter should be listed explicitly, where the 

sum of outcome probabilities should sum up to 1.0.   

*0000000011111111112222222222333333333344444444445555555555 

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789 

STOCH         NEWSVENDOR2 

INDEP         DISCRETE 

* 

    RHS1      ROW2           90.00000   TIME2     0.4 

    RHS1      ROW2           60.00000   TIME2     0.3 

    RHS1      ROW2           30.00000   TIME2     0.3 

*     

    Y         PROFIT          9.00000   TIME3     0.3 

    Y         PROFIT        -15.00000   TIME3     0.7 

ENDATA  
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In this example, the right-hand-side value in constraint [ROW2] takes a random value from {90,60,30} 

with probabilities {0.4,0.3,0.3}. Similarly, variable [Y] in constraint [PROFIT] takes a random value 

from {9,-15} with probabilities {0.3,0.7}. 

Joint Distributions with Intrastage Dependence: 
Dependent distributions are identified with BLOCK sections, where each block corresponds to a vector 

of random parameters taking specified values jointly with a specified probabilitiy. The dependence is 

implicit in the sense of joint distributions. The subsection BL within each BLOCK section marks each 

event (with its probability) listing the outcomes for a vector of random parameters.  

 

*0000000011111111112222222222333333333344444444445555555555 

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789 

STOCH         NEWSVENDOR 

BLOCKS        DISCRETE 

 BL BLK0      TIME2     0.1200000000 

    RHS1      ROW2      90.000000000  

    Y         PROFIT    9.0000000000 

 BL BLK0      TIME2     0.2800000000 

    RHS1      ROW2      90.000000000  

    Y         PROFIT    -15.00000000 

 BL BLK0      TIME2     0.1500000000 

    RHS1      ROW2      60.000000000  

    Y         PROFIT    9.0000000000 

 BL BLK0      TIME2     0.1500000000 

    RHS1      ROW2      60.000000000  

    Y         PROFIT    -15.00000000 

 BL BLK0      TIME2     0.2700000000 

    RHS1      ROW2      30.000000000  

    Y         PROFIT    9.0000000000 

 BL BLK0      TIME2     0.0300000000 

    RHS1      ROW2      30.000000000  

    Y         PROFIT    -15.00000000 

ENDATA  

 

In this example, the block called BLK0 lists the outcomes of the right-hand-side of constraints 

[ROW2] and [PROFIT]. Possible values are { (90,9),  (90,-15), (60,9),  (60,-15), (30,9),  (30,-15)} 

with probabilities {0.12,0.28,0.15,0.15,0.27,0.03}. 

Scenarios - Joint Distributions with Interstage Dependence: 
For models where discrete random parameters that belong to different stages are dependent, it is not 

possible to use the BLOCK structure to specify joint outcomes. This is because BLOCK structure 

requires the dependent random parameters to belong to the same stage. In such cases, it is required to 

input the stochastic data by specifying all scenarios explicitly with SCENARIOS section. For discrete 

distributions, this is the most general form for inputting a multistage SP because SCENARIOS section 

casts the entire scenario tree, irrespective of the type of dependence among randoms. 
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It could be a tedious task to enumerate all scenarios, therefore it is necessary to use a programming 

language or a script to generate scenarios programmatically writing them to a file in SCENARIOS 

format.  

 

In a scenario tree, like the one given in Chapter 8, a scenario corresponds to a path from the root of the 

tree to one of the leaves. For each scenario, there is a one-to-one correspondence between each node 

on the path and a stage. One could think of a node as the point in time where decisions that belong to a 

stage are taken following the random outcomes that occur in that stage. The branches that emanate 

from a node represents the events associated with the next stage. Consequently, the set of all paths that 

branch from a node  in a stage represents the future outcomes of all random parameters beyond that 

stage, namely the future as seen with respect to that node.  

 

Given two scenarios A and B where they share the same path from the root up to (and including) stage 

t, we call  

 The stage t+1 to be the “branching stage” of scenario B from A,  

 The scenario A to be the parent of scenario B. 

 The outcomes of all random parameters up to (and including) stage t to be the same for both 

scenarios 

 

 
 

The SCENARIOS section lists scenarios in a compact form, specifying how and when it differs from 

its parent scenario. The SC keyword marks the beginning of a scenario, which is followed by the name 

of the scenario, its parent’s name and its probability . The probability of the scenario is to be computed 

by multiplying the conditional probabilities of all the nodes that resides on the path defining the 

scenario. The conditional probability of a node is the probability that the end-node occurs given the 

initial-node has occurred. 
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Consider the example from case 4 in the Newsvendor problem in Chapter 8, whose scenario tree is 

given as 

 

 

 

This scenario tree can be represented in the following format using SCENARIOS section. 

 

*0000000011111111112222222222333333333344444444445555555555 

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789 

STOCH         NEWSVENDOR 

SCENARIOS     DISCRETE 

 SC SCEN01    ROOT      0.1200000000   TIME1 

    RHS1      ROW2      90.000000000 

    Y         PROFIT    9.0000000000     

 SC SCEN02    SCEN01    0.2800000000   TIME3 

    Y         PROFIT    -15.00000000 

 SC SCEN03    SCEN01    0.1500000000   TIME2  

    RHS1      ROW2      60.000000000 

 SC SCEN04    SCEN03    0.1500000000   TIME3 

    Y         PROFIT    -15.00000000 

 SC SCEN05    SCEN01    0.2700000000   TIME2  

    RHS1      ROW2      30.000000000 

 SC SCEN06    SCEN05    0.0300000000   TIME3  

    Y         PROFIT    -15.00000000 

ENDATA 
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In this example, the scenario tree is initiated by the base scenario called SCEN01, which lists inside its 

SC block a particular realization of all random parameters, namely the right-hand-side values for 

constraints [ROW2] and [PROFIT] to take values 90 and 9 respectively. The probability of the 

scenario is given as 0.12 and branching stage to be TIME1 (stage index 0). The parent of the base 

scenario is by default designated as the ROOT. This implies that this scenario has no parents and that it 

is the first scenario in the tree. The second scenario is SCEN02 and its parent is SCEN01, which was 

specified in the previous step. The scenario SCEN02 has a probability of 0.28 and branches of its 

parent SCEN01 at stage TIME2 (stage index 1). Inside its SC block, it only gives the random 

parameter and its value which makes SCEN02 different from SCEN1. This is the compact form 

described earlier, i.e. specifying a scenario’s outcomes only by how and when it differs from its parent 

scenario. Continuing in this fashion, we achieve the complete representation of the scenario tree.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix F:  

SMPI File Format 
The SMPI (stochastic mathematical programming instructions) file format is an extension of the SMPS 

format, described in Appendix E, for representing multistage stochastic programs using an instruction 

list. While the SMPS format can only express linear and integer models, SMPI format can express all 

types of models including quadratic and general nonlinear stochastic models.  

At the heart of the SMPI format lies the MPI format, which  

 represents the core model using general mathematical expressions, and 

 allows all random parameters in the SP to be referred with symbolically with 

EP_PUSH_SPAR macro. 

The following illustrates a typical core-file for an SP model. Its only difference from a deterministic 

MPI file is in the use of EP_PUSH_SPAR macro, which marks each stochastic parameter in the model 

and allows them to be part of general mathematical expressions just like regular numeric constants or 

decision variables. 

BEGINMODEL   newsboy_v5   

! Number of Objective Functions:         1 

! Number of Constraints        :         6 

! Number of Variables          :         7 

VARIABLES 

!Name         Lower Bound       Initial Point         Upper Bound    

Type 

X 0  1.2345678806304932  1e+030        C 

I 0  1.2345678806304932  1e+030        C 

L 0  1.2345678806304932  1e+030        C 

S 0  1.2345678806304932  1e+030        C 

Y 0  1.2345678806304932  1e+030        C 

E 0  1.2345678806304932  1e+030        C 

Z 0  1.2345678806304932  1e+030        C 

OBJECTIVES 

  OBJ00000    MAXIMIZE   

    EP_PUSH_VAR  Z 

CONSTRAINTS 

  ROW1    G          

    EP_PUSH_VAR  X 

    EP_PUSH_NUM       1  

    EP_MINUS     

  ROW2    E          

    EP_PUSH_VAR  X 

    EP_PUSH_VAR  I 

    EP_MINUS     

    EP_PUSH_VAR  L 

    EP_PLUS      

    EP_PUSH_SPAR     D 
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    EP_MINUS     

  ROW3    E          

    EP_PUSH_VAR  X 

    EP_PUSH_VAR  I 

    EP_MINUS     

    EP_PUSH_VAR  S 

    EP_MINUS     

    EP_PUSH_NUM       0  

    EP_MINUS     

  ROW4    G          

    EP_PUSH_VAR  X 

    EP_PUSH_VAR  S 

    EP_MINUS     

    EP_PUSH_NUM       0  

    EP_MINUS     

  ROW5    E          

    EP_PUSH_VAR  Y 

    EP_PUSH_VAR  I 

    EP_MINUS     

    EP_PUSH_VAR  E 

    EP_PLUS      

    EP_PUSH_NUM       0  

    EP_MINUS     

  PROFIT    E          

    EP_PUSH_NUM       60  

    EP_PUSH_VAR  S 

    EP_MULTIPLY  

    EP_PUSH_NUM       30  

    EP_PUSH_VAR  X 

    EP_MULTIPLY  

    EP_MINUS     

    EP_PUSH_NUM       10  

    EP_PUSH_VAR  I 

    EP_MULTIPLY  

    EP_MINUS     

    EP_PUSH_NUM       5  

    EP_PUSH_VAR  L 

    EP_MULTIPLY  

    EP_MINUS     

    EP_PUSH_VAR  Y 

    EP_PUSH_SPAR      R 

    EP_MULTIPLY  

    EP_PLUS      

    EP_PUSH_NUM       10  

    EP_PUSH_VAR  E 

    EP_MULTIPLY  

    EP_MINUS     

    EP_PUSH_VAR  Z 

    EP_MINUS     

    EP_PUSH_NUM       0  

    EP_MINUS     

ENDMODEL 
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Like with SMPS format, the user has to define the time structure of the model with a TIME file. The 

TIME file in SMPI format uses an additional section, identified with keyword SVARS or SPARS, 

where time structure of random parameters are explicitly specified. The time structure of constraints 

and variables should also be specified explicitly. Implicit specification is currently not supported in 

SMPI format. 

 

*0000000011111111112222222222333333333344444444445555555555

66 

*>>4>678901<34>678901<34>6789012345<789>123456<89>1234567890< 

TIME          NEWSVENDOR 

PERIODS       EXPLICIT 

    TIME1    

    TIME2    

    TIME3    

COLUMNS 

    X         TIME1    

    I         TIME2    

    L         TIME2 

    S         TIME2 

    Y         TIME3 

    E         TIME3     

    Z         TIME3 

ROWS 

    ROW1      TIME1 

    ROW2      TIME2 

    ROW3      TIME2  

    ROW4      TIME2  

    ROW5      TIME3 

    PROFIT    TIME3        

SPARS 

    D         TIME2       63 

    R         TIME3       9     

ENDATA 

 

Each random parameter that was referred in the Core-file should be listed in the TIME file along with 

their stage memberships and optionally a default value as the third field. 

Finally, the user needs a STOCH file to specify the stochastic information for the SP model. In SMPS 

format, the random parameters was expressed by their location in the core model. In SMPI format, 

each random parameter has a unique name (a.k.a. an internal index), which can be used to refer each 

when specifying the information associated with it. Consequently, the STOCH file, whose format was 

laid out when explaining the SMPS format, can suitably be extended to support the indices of random 

parameters when expressing stochastic information using INDEP, BLOCK and SCENARIO sections.  

The keyword INST is used in field 1 of the line identifying the random parameter about which 

information is to be given.  

A typical INDEP section in a STOCH file in SMPI format will be in the following 
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*0000000011111111112222222222333333333344444444445555555555 

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789 

STOCHI        NEWSVENDOR 

INDEP         NORMAL 

* 

    INST      D             45.00000   TIME2     10 

*     

    INST      R             -3.00000   TIME3     2 

 

ENDATA 

 

Similarly, the SCENARIOS section will be in the following form 

 

*0000000011111111112222222222333333333344444444445555555555 

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789 

STOCHI        NEWSVENDOR 

SCENARIOS     DISCRETE 

 SC SCEN01    ROOT      0.1200000000   TIME1 

    INST      D         90.000000000 

    INST      R         9.0000000000     

 SC SCEN02    SCEN01    0.2800000000   TIME3 

    INST      R         -15.00000000 

 SC SCEN03    SCEN01    0.1500000000   TIME2  

    INST      D         60.000000000 

 SC SCEN04    SCEN03    0.1500000000   TIME3 

    INST      R         -15.00000000 

 SC SCEN05    SCEN01    0.2700000000   TIME2  

    INST      D         30.000000000 

 SC SCEN06    SCEN05    0.0300000000   TIME3  

    INST      R         -15.00000000 

ENDATA 

 

As it can be seen from sample STOCH files, INST keyword identifies the keyword in the next field to 

be a random element and the stochastic information is provided in the same way as in SMPS format.

 

 

 

 

 



 

 

Appendix G: mxLINDO  

A MATLAB Interface 
Introduction 
MATLAB is a technical-computing and problem-solving environment that combines numerical 

analysis, matrix manipulation, and graphics tools in a user-friendly environment. This environment has 

a built-in high-level programming language that allows the development of special algorithms without 

much programming. 

mxLINDO is a MATLAB executable (MEX-file) to establish an interface to LINDO API from within 

MATLAB. It provides MATLAB users direct access to several LINDO API routines for developing 

higher-level MATLAB functions (m-functions) to solve various kinds of optimization problems. The 

interface is particularly useful if you are solving very large or very difficult linear and integer 

programs, or implementing an optimization algorithm with MATLAB’s programming language. 

This release of the interface works with MATLAB Version 2009 or later. The precompiled binary 

mxlindo.mexw32 (or mxlindo.mexw64) for the 32-bit (or 64-bit) Windows platform is located under 

the lindoapi\bin\win32 (or lindoapi\bin\win64) folder.  

Setting up MATLAB to Interface with LINDO  
Use the following instructions to establish an interface with MATLAB: 

1. Edit the C:\MATLAB\TOOLBOX\LOCAL\STARTUP.M file that came with your 

MATLAB distribution using your favorite text editor. Typically, your MATLAB 

installation is under C:\MATLAB. For MATLAB Release 2009a, the default directory is 

R2009a. In more recent versions of MATLAB, the path may start with C:\Program 

Files\MATLAB\.   If you do not have the STARTUP.M file, then create it from 

STARTUPSAV.M. 

2. Append the following lines to the end of your STARTUP.M file to update your 

MATLAB environment-path. It is assumed that your LINDO API installation is under 

‘C:\LINDOAPI’. If the last line in STARTUPSAV.M is “load matlab.mat”, then delete 

that line. 

global MY_LICENSE_FILE 

MY_LICENSE_FILE = ‘C:\LINDOAPI\LICENSE\LNDAPI50.LIC’; 

path(‘C:\LINDOAPI\BIN\WIN32’,path); 

path(‘C:\LINDOAPI\INCLUDE\’,path); 

path(‘C:\LINDOAPI\MATLAB\’,path); 

3. Start a MATLAB session and try the sample m-functions to use the interface. 
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Using the mxLINDO Interface 
The quickest way of trying out the mxLINDO interface is to use one of the m-functions provided with 

mxLINDO.  is version of the interface supports a subset of the available functions and routines in 

LINDO API.  Here we demonstrate the LMsolve.m function supplied with mxLINDO. 

 

Suppose, using matrix notation, we wish to solve: 
Minimize c

T
x 

S.t.  Ax  b 

      u  x  l 

Define the objects A, b, c, l, u, and csense in the MATLAB as in Figure 10.1. 

» A = [ 

    1.0000    1.0000    1.0000    1.0000; 

    0.2000    0.1000    0.4000    0.9000; 

    0.1500    0.1000    0.1000    0.8000; 

  -30.0000  -40.0000  -60.0000 -100.0000 ] 

» b = [ 4000 3000 2000 -350000]’ 

» c = [ 65   42   64   110]’ 

» csense = 'GGGG'; 

» l=[]; u=[]; 

Figure 10.1 

Setting l and u to empty vectors causes all lower and upper bounds to be at their default values (0 and 

LS_INFINITY, respectively). The sense of the constraints is stored in the string variable csense. To 

solve this LP, the following command should be issued at the MATLAB command prompt:  

>> [x, y, s, dj, obj, solstat] = LMsolvem(A, b, c, csense, l, u) 
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As illustrated in Figure 10.2, the function returns the primal and dual solutions (x,s) and (y,dj), the 

optimal objective value obj, and the optimization status flag solstat. LSsolveM.m may be modified in 

several ways to change the output returned. 

» [x, y, s, dj, obj, solstat] = LMsolvem(A, b, c, csense, l, u) 

x = 

  1.0e+003 * 

    0.1429 

         0 

    1.0000 

    2.8571 

y = 

   66.0000 

  202.8571 

         0 

    1.3857 

s = 

         0 

         0 

 -407.1429 

         0 

dj = 

   -0.0000 

   11.1429 

   -0.0000 

   -0.0000 

obj = 

  3.8757e+005 

solstat = 

     2 

Figure 10.2  
 

Further examples of this high-level use of mxLINDO and the LMsolveM.m furnction are given at the 

end of this chapter.  LMsolve.m was built using low level calls that can be made from MATLAB to the 

LINDO API via the mxLINDO interface.  The following section describes all the low level calls that 

are available in mxLINDO. 



672 APPENDIX G 

 

Calling Conventions 
This version of the interface supports a subset of the available functions and routines in LINDO API. 

The calling conventions used to access these routines within MATLAB are quite similar to the C/C++ 

prototypes described above (see Chapter 2, Function Definitions). The main difference is that, when 

accessing any external routine within MATLAB, all arguments modified by the external routine (the 

output-list) appear as left-hand side (LHS) arguments, whereas the constant arguments (the input-list) 

appear as right-hand side (RHS) arguments.  

For example, consider a LINDO API routine that has the following C/C++ prototype calling sequence: 

int LSroutine(a1,a2,…,ak, z1,z2, …, zn) 

Assume that this function retrieves (or modifies) the values for z1,z2, …, zn using the input list 

a1,a2,…,ak. The calling convention mxLINDO uses to access this routine within MATLAB is: 

>> [z1,z2, …, zn] = mxlindo(‘LSroutine’,a1,a2,…,ak) 

where mxlindo is the MATLAB executable function that calls LINDO API. The first input (right-hand 

side) argument of the mxlindo function is required to be a string that corresponds to the name of the 

LINDO API routine that the user wishes to access. Note that the subroutine names are case sensitive. 

The arguments a1,a2,…,ak are the constant (RHS) arguments and z1,z2, …, zn are the variable (LHS) 

arguments required by this routine. In naming RHS and LHS arguments, a dialect of the so-called 

Hungarian Notation is adopted. See Chapter 1, Introduction, to review the details of this naming 

convention.  

mxLINDO Routines 
In the following sections, we describe the calling sequence for all of the supported LINDO API 

routines. See Chapter 2, Function Definitions, above to review the standard calling conventions and 

their argument lists. Observe that the input and output arguments of mxLINDO follow the definitions 

therein with a few exceptions. 

Note: All the parameter macros described in Chapter 2, Function Definitions, are also available 

from within MATLAB via the lindo.m script file located in lindoapi\include\ directory. 

Structure Creation and Deletion Routines  
In a standard C/C++ application that calls LINDO API, an environment or a model instance is 

referenced with a pointer. In MATLAB, we identify each environment and model with the integer cast 

of its pointer created during the call to LScreateEnv() or LScreateModel(). 



mxLINDO A MATLAB INTERFACE     673 

 

LScreateEnv() 

Description:  

Creates a new instance of LSenv, which is an environment used to maintain one or more 

models.  

MATLAB Prototype:  
>> [iEnv ,nStatus] = mxlindo('LScreateEnv', MY_LICENSE_KEY) 

RHS Arguments:  

Name  Description  

MY_LICENSE_KEY A string containing the license key file.  

LHS Arguments:  

Name  Description  

iEnv An integer cast to the instance of LSenv created. 

nStatus  An integer error code. If successful, nStatus will be 0 on 

return. A list of possible error codes may be found in Appendix 

A, Error Codes. 

Remarks: 

 This variable can be set by calling the LSloadLicenseString() function.  

LScreateModel() 

Description:  

Creates a new instance of LSmodel.  

MATLAB Prototype:  
>> [iModel, nStatus] = mxlindo('LScreateModel', iEnv) 

RHS Arguments:  

Name  Description  

iEnv A user assigned integer referring to an instance of LSenv. 

LHS Arguments:  

Name  Description  

iModel An integer cast to the instance of LSmodel created. 

nStatus  An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A, 

Error Codes. 
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LSdeleteEnv() 

Description:  

Deletes an instance of LSenv.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSdeleteEnv', iEnv) 

RHS Arguments:  

Name  Description  

iEnv A user assigned integer referring to an instance of LSenv.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A, 

Error Codes. 

LSdeleteModel() 

Description:  

Deletes an instance of LSmodel.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSdeleteModel', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel.  

LHS Arguments:  

Name  Description  

nStatus  An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A, 

Error Codes. 
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License Information Routines 
The routine in this section allows you to read a license key from a license file (e.g. 

\Lindoapi\License\lndapi100.lic) and load it into a local string buffer (e.g., MY_LICENSE_KEY).  

LSgetVersionInfo() 

Description:  

Returns the version and build information of the LINDO API on your system.  

MATLAB Prototype:  
>> [szVersion, szBuildDate, nStatus] = mxlindo('LSgetVersionInfo') 

LHS Arguments:  

Name  Description  

szVersion A null terminated string that keeps the version information of 

the LINDO API on your system. 

szBuildDate A null terminated string that keeps the build date of the LINDO 

API library on your system. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A, 

Error Codes. 

LSloadLicenseString() 

Description:  

Reads the license string from the specified file in text format. 

MATLAB Prototype:  
>> [MY_LICENSE_KEY, nStatus] = mxlindo('LSloadLicenseString', 

MY_LICENSE_FILE) 

RHS Arguments:  

Name  Description  

MY_LICENSE_FILE The global string containing the full name of the license key 

file. 

LHS Arguments:  

Name  Description  

MY_LICENSE_KEY A string containing the license key file.  

nStatus  An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A, 

Error Codes. 
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Remarks: 

 MY_LICENSE_FILE is the string variable that keeps the name of your LINDO API 

license file and is loaded during startup. Please see Lindoapi\Matlab\Readme.txt for setup 

instructions. 

Input-Output Routines 
The routines in this section provide functionality for reading and writing model formulations to and 

from disk files into LINDO API. 

LSreadLINDOFile() 

Description:  

Reads the model in LINDO (row) format from the given file and stores the problem data in 

the given model structure.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSreadLINDOFile', iModel, szFname) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the model. 

szFname A string containing the path and name of the LINDO format 

file. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A, 

Error Codes. 
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LSreadMPIFile() 

Description:  

Reads the model in MPI format from the given file and stores the problem data in the given 

model structure.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSreadMPIFile', iModel, szFname) 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel in which to 

place the model. 

szFname A string containing the path and name of the MPI format file. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSreadMPSFile() 

Description:  

Reads a model in MPS format from the given file into the given problem structure.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSreadMPSFile', iModel, szFname, nFormat) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the model. 

szFname A string containing the path and name of the basis file. 

nFormat An integer parameter indicating whether the MPS file is 

formatted or not. The parameter value should be either 

LS_FORMATTED_MPS or LS_UNFORMATTED_MPS 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A, 

Error Codes. 
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LSreadBasis() 

Description:  

Reads an initial basis from the given file in the specified format.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSreadBasis', iModel, szFname, nFormat) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the model. 

szFname A string containing the path and name of the basis file. 

nFormat An integer parameter indicating the format of the file to be 

read. Possible values are 

 LS_BASFILE_BIN : Binary format (default) 

 LS_BASFILE_MPS : MPS file format 

 LS_BASFILE_TXT : Space delimited text format 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSwriteDualLINDOFile() 

Description:  

Writes the dual of a given problem to a file in LINDO format.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSwriteDualLINDOFile', iModel, szFname, 

nObjsense) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the model. 

szFname A string containing the path and name of the file to which the 

model should be written. 

nObjsense An integer indicating the sense of the dual objective function.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 
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A list of possible error codes may be found in Appendix A.  

LSwriteDualMPSFile() 

Description:  

Writes the dual of a given problem to a file in MPS format. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSwriteDualMPSFile', iModel, szFname, 

nFormat, nObjsense) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the model. 

szFname A string containing the path and name of the MPS format file. 

nFormat An integer parameter indicating whether the MPS file is 

formatted or not.  

nObjsense An integer indicating the sense of the dual objective function.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSwriteIIS() 

Description:  

Writes the IIS of an infeasible LP to a file in LINDO file format. 

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSwriteIIS', iModel, szFname) 

RHS Arguments: 

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

szFname A string containing the path and name of the file to which the 

solution should be written. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A, 

Error Codes. 

LSwriteIUS() 

Description:  

Writes the IUS of an unbounded LP to a file in LINDO file format. 

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSwriteIUS', iModel, szFname) 

RHS Arguments: 

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

szFname A string containing the path and name of the file to which the 

solution should be written. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A, 

Error Codes. 
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LSwriteLINDOFile() 

Description:  

Writes the given problem to a file in LINDO format. Model must be linear. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSwriteLINDOFile', iModel, szFname) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the model. 

szFname A string containing the path and name of the file to which the 

model should be written. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A.  

LSwriteLINGOFile() 

Description:  

Writes the given problem to a file in LINGO format. Model must be linear. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSwriteLINGOFile', iModel, szFname) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel containing the 

model to be written to a LINGO file.  

szFname A string containing the path and name of the file to which the 

model should be written. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSwriteMPIFile() 

Description:  

Writes the given model in MPI format.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSwriteMPIFile', iModel, szFname) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the model. 

szFname A string containing the path and name of the file to which the 

model should be written. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSwriteMPSFile() 

Description:  

Writes the given problem to a specified file in MPS format.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSwriteMPSFile', iModel, szFname, nFormat) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the model. 

szFname A string containing the path and name of the file to which the 

model should be written. 

nFormat An integer indicating the format of the file to be written. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSwriteBasis() 

Description:  

Reads an initial basis from the given file in the specified format.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSwriteBasis', iModel, szFname, nFormat) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the model. 

szFname A string containing the path and name of the file to which the 

model should be written. 

nFormat An integer parameter indicating the format of the file to be 

written. Possible values are 

 LS_BASFILE_BIN : Binary format (default) 

 LS_BASFILE_MPS : MPS file format  

 LS_BASFILE_TXT : Space delimited text format 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSwriteSolution() 

Description:  

Writes the LP solution to a file . 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSwriteSolution', iModel, szFname) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

szFname A string containing the path and name of the file to which the 

solution should be written. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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Error Handling Routines 
The following command can be used to print the description of an error message to your screen.  

LSgetErrorMessage() 

Description:  

Returns an error message for the given error code. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSgetErrorMessage', nErrorcode)  

RHS Arguments:  

Name  Description  

nErrorcode The error code associated with the error message for which you 

want a description.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetErrorRowIndex() 

Description:  

Retrieves the index of the row where a numeric error has occurred. 

MATLAB Prototype:  
>> [iRow, nStatus] = mxlindo(‘LSgetErrorRowIndex’, iModel); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel in which to 

place the problem data. 

LHS Arguments:  

Name  Description  

iRow An integer variable to return the row index with numeric error. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetFileError() 

Description:  

Provides the line number and text of the line in which an error occurred while reading or 

writing a file. 

MATLAB Prototype:  
>> [nLinenum, szLinetxt, nStatus] = mxlindo(‘LSgetFileError’, 

iModel); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel in which to 

place the problem data. 

LHS Arguments:  

Name  Description  

nLinenum An integer that returns the line number in the I/O file where the 

error has occurred. 

szLinetxt A string that returns the text of the line where the error has 

occurred. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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Parameter Setting and Retrieving Routines  
The following routines are used to set and get various model and environment parameters with 

mxLINDO. Please refer to the parameter macro list given in Chapter 2, Function Definitions, for their 

definitions. 

LSgetEnvParameter() 

Description:  

Retrieves a parameter for a specified environment. 

MATLAB Prototype:  
>> [dValue, nStatus] = mxlindo(‘LSgetEnvParameter’, iEnv, 

nParameter); 

RHS Arguments:  

Name  Description  

iEnv  An integer referring to an instance of LSenv.  

nParameter An integer macro. 

LHS Arguments:  

Name  Description  

dValue  On return, dValue will contain the parameter’s value. The user 

is responsible for allocating sufficient memory to store the 

parameter value. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetEnvDouParameter() 

Description:  

Gets or retrieves a double precision parameter for a specified environment.  

MATLAB Prototype: 
>>[dVal, nStatus] = mxlindo('LSgetEnvDouParameter', iEnv, nParameter) 

RHS Arguments:  

Name  Description  

iEnv  An integer referring to an instance of LSenv.  

nParameter An integer referring to a double precision parameter.  

LHS Arguments:  

Name  Description  

dVal A double precision variable. On return, dVal will contain the 

parameter’s value. 
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nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetEnvIntParameter() 

Description:  

Gets or retrieves an integer parameter for a specified environment.  

MATLAB Prototype: 
>>[nVal, nStatus] = mxlindo('LSgetEnvIntParameter', iEnv, nParameter) 

RHS Arguments:  

Name  Description  

iEnv  An integer referring to an instance of LSenv.  

nParameter An integer referring to an integer parameter.  

LHS Arguments:  

Name  Description  

nVal An integer variable. On return, nVal will contain the 

parameter’s value. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetModelParameter() 

Description:  

Retrieves a parameter or status variable for a specified model. 

MATLAB Prototype:  
>> [dValue, nStatus] = mxlindo('LSgetModelParameter', iModel, 

nParameter) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nParameter An integer macro. 

LHS Arguments:  

Name  Description  

dValue  On return, dValue will contain the parameter’s value. The user 

is responsible for allocating sufficient memory to store the 

parameter value. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetModelDouParameter()  

Description:  

Gets or retrieves a double precision parameter for a specified model.  

MATLAB Prototype: 
>> [dVal, nStatus] = mxlindo('LSgetModelDouParameter', iModel, 

nParameter) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel.  

nParameter An integer referring to a double precision parameter.  

LHS Arguments:  

Name  Description  

dVal A double precision variable. On return, dVal will contain the 

parameter’s value. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetModelIntParameter() 

Description:  

Gets or retrieves an integer parameter for a specified model.  

MATLAB Prototype: 
>> [nVal, nStatus] = mxlindo('LSgetModelIntParameter', iModel, 

nParameter) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nParameter An integer referring to an integer parameter. 

LHS Arguments:  

Name  Description  

nVal An integer variable. On return, nVal will contain the 

parameter’s value. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSsetEnvParameter () 

Description:  

Sets a parameter for a specified environment. 

MATLAB Prototype:  
>>[nStatus] = mxlindo('LSsetEnvParameter', iEnv, nParameter, dValue) 

RHS Arguments:  

Name  Description  

iEnv An integer referring to an instance of LSenv. 

nParameter An integer macro. 

dValue A variable containing the parameter’s new value. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSsetEnvDouParameter() 

Description:  

Sets a double precision parameter for a specified environment.  

MATLAB Prototype: 
>>[nStatus] = mxlindo('LSsetEnvDouParameter', iEnv, nParameter, dVal) 

RHS Arguments:  

Name  Description  

iEnv  An integer referring to an instance of LSenv.  

nParameter An integer referring to a double precision parameter.  

dVal A double precision variable.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSsetEnvIntParameter() 

Description:  

Sets an integer parameter for a specified environment.  

MATLAB Prototype: 
>>[nStatus] = mxlindo('LSsetEnvIntParameter', iEnv, nParameter, nVal) 

RHS Arguments:  

Name  Description  

iEnv  An integer referring to an instance of LSenv.  

nParameter An integer referring to an integer parameter. 

nVal An integer variable.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSsetModelParameter() 

Description:  

Sets a parameter for a specified model. 

MATLAB Prototype:  
>>[nStatus] = mxlindo('LSsetModelParameter', iModel, nParameter, 

dValue) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nParameter An integer macro. 

dValue A variable containing the parameter’s new value.   

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 



mxLINDO A MATLAB INTERFACE     691 

 

LSsetModelDouParameter() 

Description:  

Sets a double precision parameter for a specified model.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSsetModelDouParameter', iModel, nParameter, 

dVal) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nParameter An integer referring to a double precision parameter. 

dVal A double precision variable.  

LHS Arguments:  

Name  Description  

nStatus 0 if successful, else one of the error codes listed in Appendix 

A. 

LSsetModelIntParameter() 

Description:  

Sets an integer parameter for a specified model.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSsetModelIntParameter', iModel, nParameter, 

nVal) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel.  

nParameter An integer referring to an integer parameter. 

nVal An integer variable.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSreadEnvParameter() 

Description:  

Reads environment parameters from a parameter file.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSreadEnvParameter', iEnv , szFname) 

RHS Arguments: 

Name  Description  

iEnv A user assigned integer referring to an instance of LSenv. 

szFname The name of the file from which to read the environment 

parameters. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSreadModelParameter() 

Description:  

Reads model parameters from a parameter file.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSreadModelParameter', iModel, szFname) 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel. 

szFname The name of the file from which to read the model parameters. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSwriteModelParameter() 

Description:  

Writes model parameters to a parameter file.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSwriteModelParameter', iModel, szFname) 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel. 

szFname The name of the file from which to read the model parameters. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

Model Loading Routines 
The routines in this section allow you to pass a model to LINDO API directly through memory. 

LINDO API expects the formulation to be in sparse format. In other words, only nonzero coefficients 

are passed. For details on sparse representation, see the section titled Sparse Matrix Representation in 

Chapter 1, Introduction. 

Note: LINDO API uses the C-language type indexing of arrays. Therefore, when loading an index 

vector into LINDO API by using mxLINDO, make sure that the index set is a C based index 

set (i.e., zero is the base index). 

LSloadConeData() 

Description:  

Loads quadratic cone data into a model structure. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSloadConeData', iModel , nCone , 

szConeTypes, aiConebegcone, aiConecols) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

nCone Number of cones to add. 

szConeTypes A character vector containing the type of each cone being 

added. Valid values for each cone are ‘Q’ and ‘R’. The length 

of this vector is equal to nCone. 
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aiConebegcone An integer vector containing the index of the first variable that 

appears in the definition of each cone. This vector must have 

nCone+1 entries. The last entry will be the index of the next 

appended cone, assuming one was to be appended. If 

aiConebegcone [i] < aiConebegcone [i-1], then 

LSERR_ERROR_IN_INPUT is returned. 

aiConecols An integer vector containing the indices of variables 

representing each cone. The length of this vector is equal to 

aiConebegcone[nCone].  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSloadInstruct() 

Description:  

Loads an instruction lists into a model structure.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSloadInstruct', iModel , nCons , nObjs 

,nVars , nNums , anObjSense , acConType , acVarType , anCode , nCode 

, aiVars , adVals , adX0 , aiObj , anObj , aiRows , anRows , adL ) 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nCons Number of constraints in the model. 

nObjs Number of objectives in the model. Currently, only a single 

objective function is supported. (i.e., nObjs = 1) 

nVars Number of variables in the model. 

nNums Number of real numbers in the model. 

anObjSense An integer vector containing the indicator stating whether the 

objective is to be maximized or minimized. Valid values are 

LS_MAX or LS_MIN, respectively. The length of this vector 

is equal to nObjs.  

acConType A character vector containing the type of each constraint. Each 

constraint is represented by a single byte in the array. Valid 

values for each constraint are ‘L’, ‘E’, ‘G’, or ‘N’ for less-than-

or-equal-to, equal to, great-than-or-equal-to, or neutral, 

respectively. The length of this vector is equal to nCons. 

acVarType A character vector containing the type of each variable. Valid 
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values for each variable are ‘C’, ‘B’, or ‘I’, for continuous, 

binary, or general integer, respectively. The length of this 

vector is equal to nVars. This value may be ‘[]’ on input, in 

which case all variables will be assumed to be continuous. 

anCode An integer vector containing the instruction list. The length of 

this vector is equal to nCode. 

nCode Number of items in the instruction list. 

aiVars An integer vector containing the variable index. The length of 

this vector is equal to nVars. This value may be set to ‘[]’ if the 

variable index is consistent with the variable position in the 

variable array. 

adVals A double precision vector containing the value of each real 

number in the model. The length of this vector is equal to 

nNums. 

adX0 A double precision vector containing starting values for each 

variable in the given model. The length of this vector is equal 

to nVars. 

aiObj An integer vector containing the beginning positions on the 

instruction list for each objective row. The length of this vector 

is equal to nObjs. Currently, there is only support for a single 

objective. 

anObj An integer vector containing the length of instruction code 

(i.e., the number of individual instruction items) for each 

objective row. The length of this vector is equal to nObjs. 

Currently, only a single objective function is allowed. 

aiRows An integer vector containing the beginning positions on the 

instruction list for each constraint row. The length of this 

vector is equal to nCons. 

anRows An integer vector containing the length of instruction code 

(i.e., the number of individual instruction items) for each 

constraint row. The length of this vector is equal to nCons. 

adL A double precision vector containing the lower bound of each 

variable. 

adU A double precision vector containing the upper bound of each 

variable. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSloadLPData() 

Description:  

Loads the given LP data into the LSmodel data structure.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSloadLPData', iModel, nCons, nVars, 

nObjsense, dObjconst, adC, adB, achContypes, nAnnz, aiAcols, acAcols, 

adCoef, aiArows, adL, adU) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the problem data.  

nCons Number of constraints in the model. 

nVars Number of variables in the model. 

nObjsense  An integer indicator stating whether the objective is to be 

maximized or minimized.  

dObjconst  A double precision value to be added to the objective value.  

adC  A double precision vector containing the objective coefficients.  

adB A double vector containing the constraint right-hand side 

coefficients.  

achContypes  A character vector containing the type of each constraint.  

nAnnz The number of nonzeros in the constraint matrix. 

aiAcols  An integer vector containing the index of the first nonzero in 

each column.  

acAcols An integer vector containing the length of each column.  

adACoef A double precision vector containing the nonzero coefficients 

of the constraint matrix.  

aiArows  An integer vector containing the row indices of the nonzeros in 

the constraint matrix.  

adL A double precision vector containing the lower bound of each 

variable. 

AdU A double precision vector containing the upper bound of each 

variable.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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Remark:  

 LSXloadLPData(), which admits the coefficient matrix in MATLAB’s sparse form, can 

also be used as an alternative.   

LSloadNameData() 

Description:  

Loads the given name data (e.g., row and column names), into the LSmodel data structure. 

MATLAB Prototype:  

>> [nStatus] = mxlindo('LSloadNameData', iModel, szTitle, szObjName, szRhsName, 

szRngName, szBndname, aszConNames, aszVarNames, aszConeNam 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the problem data. 

szTitle  A string containing the title of the problem.  

szObjName  A string containing the name of the objective.  

szRhsName  A string containing the name of the right-hand side vector.  

szRngName  A string containing the name of the range vector.  

szBndname  A string containing the name of the bounds vector.  

aszConNames  Reserved for future use. Currently, should be an empty vector.  

aszVarNames  Reserved for future use. Currently, should be an empty vector.  

aszConeNames Reserved for future use. Currently, should be an empty vector.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSloadNLPData() 

Description:  

Loads a nonlinear program’s data into the model data structure.  

MATLAB Prototype: 
>> "[nErrorCode] = mxLINDO('LSloadNLPData', iModel, aiCols, acCols, 

adCoef, aiRows, nObjcnt, aiObjndx, adObjcoef) 

 RHS Arguments:   

Name  Description  

iModel An integer referring to an instance of LSmodel in which to 

place the problem data.  

aiCols An integer vector containing the index of the first nonlinear 

nonzero in each column. This vector must have nVars+1 

entries, where nVars is the number of variables. The last entry 

will be the index of the next appended column, assuming one 

was to be appended. 

acCols An integer vector containing the number of nonlinear elements 

in each column.  

adCoef A double precision vector containing initial values of the 

nonzero coefficients in the (Jacobian)  matrix. It may be set to 

[ ], in which case, LINDO API will compute an initial matrix.  

aiRows An integer vector containing the row indices of the nonlinear 

elements. 

nObjcnt An integer containing the number of nonlinear variables in the 

objective. 

aiObjndx An integer vector containing the column indices of nonlinear 

variables in the objective function. 

adObjCoef A double precision vector containing the initial nonzero 

coefficients in the objective. It may be set to [ ], in which case, 

LINDO API will compute an initial gradient vector.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSloadQCData() 

Description:  

Loads quadratic program data into the LSmodel data structure.  

Returns:  

0 if successful, else one of the error codes listed in Appendix A, Error Codes.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSloadQCData', iModel, nQCnnz, aiQCrows, 

aiQCvars1, aiQCvars2, adQCcoef) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel in which to 

place the quadratic data.  

nQCnnz The total number of nonzeros in quadratic coefficient matrices.  

aiQCrows A vector containing the index of the constraint associated with 

each nonzero quadratic term. This vector must have nQCnnz 

entries.  

aiQCvars1 A vector containing the index of the first variable defining each 

quadratic term. This vector must have nQCnnz entries. 

aiQCvars2 A vector containing the index of the second variable defining 

each quadratic term. This vector must have nQCnnz entries. 

adQCcoef A vector containing the nonzero coefficients in the quadratic 

matrix. This vector must also have nQCnnz entries. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSloadSemiContData() 

Description:  

Loads semi-continuous data into the Lsmodel data structure. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSloadSemiContData', iModel, nSC, iVarndx, 

ad1, adu) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the semi-continuous data. 

nSC The number of semi-continuous variables. 

iVarndx A vector containing the indices of  semi-continuous variables. 

This vector must have nSC entries. 

ad1 A vector containing the lower bound associated with each 

semi-continuous variable. This vector must also have nSC 

entries. 

adu  A vector containing the upper bound associated with each 

semi-continuous variable. This vector must also have nSC 

entries. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on 

return. A list of possible error codes may be found in Appendix 

A. 
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LSloadSETSData() 

Description:  

Loads special sets data into the Lsmodel data structure. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSloadSETSData', iModel, nSETS, szSETStype, 

aiCARDnum, aiSETSbegcol, aiSETScols) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the set data. 

nSETS Number of sets to load. 

szSETStype A character vector containing the type of each set. Valid values 

for each set are  

  LS_MIP_SET_CARD 
  LS_MIP_SET_SOS1 
  LS_MIP_SET_SOS2 
  LS_MIP_SET_SOS3 

aiCARDnum An integer vector containing set cardinalities. This vector must 

have nSETS entries. The set cardinalities are taken into account 

only for sets with  szSETStype[i] = LS_MIP_SET_CARD. 

aiSETSbegcol An integer vector containing the index of the first variable in 

each set. This vector must have nSETS+1 entries. The last 

entry will be the index of the next appended set, assuming one 

was to be appended. If aiSETSbegcol[i]  <  aiSETSbegcol 

[i-1], then LSERR_ERROR_IN_INPUT is returned. 

aiSETScols An integer vector containing the indices of variables in each 

set. If any index is not in the range [ 0, nVars -1], 

LSERR_INDEX_OUT_OF_RANGE is returned. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSloadVarType() 

Description:  

Loads the variable types data into the LSmodel data structure. This replaces the routine 

previously named LSloadMIPData(). 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSloadVarType', iModel, achVartypes) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel in which to 

place the MIP data.  

achVartypes  A character vector containing the type of each variable.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSloadStringData() 

Description:  

Loads a vector of strings into the LSmodel data structure.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSloadStringData', iModel, nStrings, 

vStrings) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

nStrings An integer indicating the number of strings to be loaded. 

vStrings A vector containing the strings to be loaded. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSbuildStringData() 

Description:  

Finalizes the loading of the string data and build the string values. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSbuildStringData', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSdeleteStringData() 

Description:  

Deletes the string values data. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSdeleteStringData', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSloadString() 

Description:  

Loads a single string into the LSmodel data structure.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSloadString', iModel, szString) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

szString  A variable containing the string to be loaded.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSdeleteString() 

Description:  

Deletes the complete string data, including the string vector and values. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSdeleteString', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetStringValue() 

Description:  

Retrieves a string value for a specified string index. 

MATLAB Prototype:  
>> [szValue, nStatus] = mxlindo('LSgetStringValue', iModel, 

nStringIdx) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

nStringIdx  An integer containing the index of the string whose value you 

wish to retrieve.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

szValue A string variable containing the string value. 
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Solver Initialization Routines 
The following commands can be used to initialize the linear and mixed integer solvers. 

LSloadBasis() 

Description:  

Provides a starting basis for the simplex method. A starting basis is frequently referred to as 

being a “warm start”. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSloadBasis', iModel, anCstatus, anRstatus) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel containing the 

model for which you are providing the basis. 

anCstatus  An integer vector containing the status of each column in the 

given model.  

anRstatus  An integer vector in which information about the status of the 

rows is to be placed.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSloadVarPriorities()  

Description:  

Provide priorities for each variable for use in branch-and-bound. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSloadVarPriorities', iModel, anCprior) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

anCprior An integer vector containing the priority of each column in the 

given model.  

 LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSloadVarStartPoint()  

Description:  

Provide initial guesses for variable values. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSloadVarStartPoint', iModel, adPrimal) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

adPrimal A double precision vector containing starting values for each 

variable in the given model.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSloadBlockStructure()  

Description:  

Provides a block structure for the constraint matrix by specifying block memberships of each 

variable and constraint. 

MATLAB Prototype: 
>> [nBlock, anRblock, anCblock, nType, nStatus] = 

mxlindo(‘LSloadBlockStructure’, iModel)) 

RHS Arguments: 

Name  Description  

iModel A user assigned integer referring to an instance of LSenv. 

LHS Arguments:  

Name  Description  

nBlock An integer scalar that contains the number of blocks to 

decompose the model matrix into (Sensible only if nType = 

LS_LINK_BLOCKS_NONE).  

anRblock 

 

An integer vector in which information about the block 

membership of the constraints is to be placed. The i-th element 

of this array returns information on the i-th constraint as 

follows: 

 0:    The row is a member of the linking (row) block.  

k>0:  The row is a member of the k-th block.  

Where 1 <= k <= nBlock. 

anCblock 

 

An integer vector in which information about the block 

membership of the variables is to be placed. The j-th element 

of this array contains information on the j-th column as 

follows: 

 0:    The column is a member of the linking (column) block.  

k>0:  The column is a member of the k-th block.  

where 1 <= k <= nBlock. 

nType An integer returning the type of the decomposition. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 



mxLINDO A MATLAB INTERFACE     709 

 

LSreadVarPriorities()  

Description:  

Provide branching priorities for integer variables from a disk file. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSreadVarPriorities', iModel, szFname) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

szFname The name of the file from which to read the variable priorities.  

 LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSreadVarStartPoint()  

Description:  

Provides initial values for variables from a file. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSreadVarStartPoint', iModel, szFname) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

szFname The name of the file from which to read the initial values for 

the variables.  

 LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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Optimization Routines 
The following commands can be used to optimize a linear or mixed-integer program. 

LSoptimize() 

Description:  

Optimizes a continuous model by a given method.  

MATLAB Prototype:  
>> [nSolStat, nStatus] = mxlindo('LSoptimize', iModel, nMethod) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel you wish to 

optimize. 

nMethod An integer to specify the type of solver to use. See the 

definition of LSoptimize() in Chapter 2, Function Definitions. 

LHS Arguments:  

Name  Description  

nSolStat An integer indicating the status of the solution. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSsolveGOP() 

Description:  

Optimizes a GOP model.  

MATLAB Prototype:  
>> [nSolStat, nStatus] = mxlindo('LSsolveGOP', iModel) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel you wish to 

optimize. 

LHS Arguments:  

Name  Description  

nSolStat An integer indicating the status of the GOP solution. 

nStatus0 An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSsolveMIP() 

Description:   

Optimizes a mixed-integer programming model using branch-and-bound.  

MATLAB Prototype:  
>> [nSolStat, nStatus] = mxlindo('LSsolveMIP', iModel) 

RHS Arguments:   

Name  Description  

iModel An integer referring to an instance of LSmodel you wish to 

optimize. 

LHS Arguments:  

Name  Description  

nSolStat An integer indicating the status of the MIP solution. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

Solution Query Routines 
The following commands can be issued to retrieve information on the solution of the specified model:  

Note: LINDO API uses the C-language type indexing of arrays. Therefore, any index set retrieved 

will start with zero. 

LSgetBasis() 

Description:  

Gets information about the basis that was found after optimizing the given model.  

MATLAB Prototype:  
>> [anCstatus, anRstatus, nStatus] = mxlindo('LSgetBasis', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel containing the 

model for which you are retrieving the basis. 

LHS Arguments:  

Name  Description  

anCstatus  An integer vector containing the status of each column in the 

given model.  

anRstatus  An integer vector in which information about the status of the 

rows is to be placed.  
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nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetDualSolution() 

Description:  

Returns the value of the dual variables for a given model. 

MATLAB Prototype:  
>> [adDual, nStatus] = mxlindo('LSgetDualSolution', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adDual  A double precision vector in which the dual solution is to be 

placed.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetInfo() 

Description:  

Returns model or solution information about the current state of the LINDO API solver after 

model optimization is completed. This function cannot be used to access callback 

information. 

MATLAB Prototype: 
>> [dValue, nStatus] = mxlindo('LSgetInfo', iModel, nQuery); 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nQuery The information desired from LINDO API. For possible 

values, see the definition of this function in Chapter 2, 

Function Definitions. 

LHS Arguments:  

Name  Description  

dValue  A double precision scalar or a vector depending on the type of 

query.   

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetMIPBasis() 

Description:  

Gets information about the basis that was found after optimizing the LP relaxation of the node 

that yielded the optimal solution of a given MIP model.  

MATLAB Prototype:  
>> [anCstatus, anRstatus, nStatus] = mxlindo('LSgetMIPBasis', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel containing the 

model for which you are retrieving the basis. 

LHS Arguments:  

Name  Description  

anCstatus  An integer vector containing the status of each column in the 

given model.  

anRstatus  An integer vector in which information about the status of the 

rows is to be placed.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetMIPDualSolution()  

Description:  

Returns the value of the dual variables for a given MIP model. 

MATLAB Prototype:  
>> [adDual, nStatus] = mxlindo('LSgetMIPDualSolution', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adDual  A double precision vector in which the dual solution is to be 

placed.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetMIPPrimalSolution()  

Description:  

Gets the current solution for a MIP model.  

MATLAB Prototype:  
>>[ adPrimal, nStatus] = mxlindo('LSgetMIPPrimalSolution', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adPrimal A double precision vector in which the primal solution is to be 

placed.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A, 

Error Codes. 

LSgetMIPReducedCosts() 

Description:  

Gets the current reduced cost for a MIP model. 

MATLAB Prototype:  
>>[ adRedCost, nStatus] = mxlindo('LSgetMIPReducedCosts', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adRedCost A double precision vector in which the reduced cost is to be 

placed.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetMIPSlacks() 

Description:  

Gets the slack values for a MIPmodel. 

MATLAB Prototype:  
>> [adSlacks, nStatus] = mxlindo('LSgetMIPSlacks', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adSlacks  A double precision vector in which the MIP slacks are to be 

placed.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetPrimalSolution() 

Description:  

Returns the value of the primal variables for a given model. 

MATLAB Prototype:  
>> [adPrimal, nStatus] = mxlindo('LSgetPrimalSolution', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adPrimal  A double precision vector in which the primal solution is to be 

placed.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

Remarks:  

 Error code LSERR_INFO_NOT_AVAILABLE -the requested info not available- is 

returned if any solution access routines are called after the optimization halts without 

computing a solution. The most common causes for not having a solution after the 

optimization are: 

Optimization halted due to a time or iteration limit, 

Optimization halted due to numerical errors, 

Optimization halted due to CTRL-C (user break),  

Presolver has determined the problem to be infeasible or unbounded. 
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In all these cases, the optimizer will return an associated error code ( e.g., 

LSERR_ITER_LIMIT). During subsequent steps of user's application the type of the last 

error code returned by the optimizer can be accessed via LSgetInfo() function. 

LSgetReducedCosts() 

Description:  

Returns the value of the reduced costs for a given model. 

MATLAB Prototype:  
>> [adRedcosts, nStatus] = mxlindo('LSgetReducedCosts', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adRedcosts A double precision vector in which the reduced costs are to be 

placed.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetReducedCostsCone() 

Description:  

Returns the reduced cost of all cone variables of a given model. 

MATLAB Prototype:  
>> [adRedcosts, nStatus] = mxlindo('LSgetReducedCostsCone', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adRedcosts A double precision vector in which the reduced costs of the 

variables are to be returned.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetSlacks() 

Description:  

Returns the value of the primal slacks for a given model. 

MATLAB Prototype:  
>> [adSlacks, nStatus] = mxlindo('LSgetSlacks', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adSlacks  A double precision vector in which the primal slacks are to be 

placed.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetSolution() 

Description: 

Gets the solution specified by the third argument. 

MATLAB Prototype: 
>> [adValues, nStatus] = mxlindo('LSgetSolution', iModel, nWhich); 

RHS Arguments: 

Name   Description  

iModel  An integer referring to an instance of LSmodel. 

nWhich An integer parameter specifying the solution to be retrieved. 

Refer to Chapter 2 for possible values. 

LHS Arguments: 

Name   Description  

adValues  A double precision vector in which the specified solution is to 

be placed. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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Model Query Routines 
The following commands can be issued to retrieve information on the specified model:  

Note: LINDO API uses the C-language type indexing of arrays. Therefore, index set retrieved may 

contain zero as index value. 

LSgetConeDatai() 

Description:  

Retrieve data for cone i. 

MATLAB Prototype:  
>> [achConeType, iNnz, iCols, nStatus] = mxlindo('LSgetConeDatai', 

iModel, iCone); 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

iCone The index of the cone to retrieve the data for. 

LHS Arguments:  

Name  Description  

achConeType A character variable that returns the constraint’s type. The 

returned value will be ‘'Q', or ‘R’. 

iNnz An integer variable that returns the number of variables 

characterizing the cone. 

iCols An integer vector that returns the indices of variables 

characterizing the cone. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetConeIndex() 

Description:  

Gets the index of a cone with a specified name. 

MATLAB Prototype:  
>> [iCone, nStatus] = mxlindo('LSgetConeIndex', iModel, szConeName); 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

szConeName A string containing the name of the cone for which the index is 

requested. 

LHS Arguments:  

Name  Description  

iCone An integer scalar that returns the index of the cone requested. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetConeNamei() 

Description:  

Gets the name of a cone with a specified index. 

MATLAB Prototype:  
>> [achConeName, nStatus] = mxlindo('LSgetConeNamei', iModel, iCone); 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

iCone Index of the cone whose name is to be retrieved. 

LHS Arguments:  

Name  Description  

achConeName A character array that contains the cone’s name with a null 

terminator. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetConstraintDatai() 

Description:  

Gets data on a specified constraint. 

MATLAB Prototype: 
>> [chContype, chIsNlp, dB, nStatus] = 

mxlindo('LSgetConstraintDatai', iModel , iCon); 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

iCon An integer containing the index of the constraint whose name 

you wish to retrieve. 

LHS Arguments:  

Name  Description  

chContype A character variable that returns the constraint’s type. The 

returned value will be ‘'L', 'E', 'G', or ‘N’, for less-than-or-

equal-to, equal to, greater-than-or-equal-to, or neutral, 

respectively. 

chIsNlp A character that returns 0 if the constraint is linear and 1 if it is 

nonlinear.  

dB A double precision variable that returns the constraint’s right-

hand side value. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetConstraintIndex() 
Description:  

Retrieves the internal index of a specified constraint name.  

Prototype:  
>> [iCon, nStatus] = mxlindo('LSgetConstraintIndex', iModel, 

szConname) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

szConname A character string containing the name of the constraint. 

LHS Arguments:  

Name  Description  

iCon An integer that returns the constraint’s index. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetConstraintNamei() 
Description:  

Retrieves the name of a constraint, given its index number.  

Prototype:  
>> [szConname, nStatus] = mxlindo('LSgetConstraintNamej', iModel, 

iCon) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

iCon An integer containing the index of the constraint whose name 

you wish to retrieve. 

LHS Arguments:  

Name  Description  

szConname A character string that returns the constraint’s name. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetLPConstraintDatai() 

Description:  

Retrieves the formulation data for a specified constraint in a linear or mixed integer linear 

program. Individual LSH entries may be set to ‘[]’ if associated items are not required. 

MATLAB Prototype: 
>> [chContype, dB, nNnz, aiVar, adAcoef, nStatus] = 

mxlindo('LSgetLPConstraintDatai', iModel , iCon); 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

iCon An integer containing the index of the constraint whose name 

you wish to retrieve. 

LHS Arguments:  

Name  Description  

chContype A character that returns the constraint’s type. Values returned 

are 'L' for less-than-or-equal-to, 'E' for equal-to, 'G' for 

greater-than-or-equal-to, or ‘N’ for neutral. 

dB A double precision quantity that returns the constraint’s right-

hand side coefficient. 

nNnz An  integer that returns the number of nonzero coefficients in 

the constraint. 

aiVar An integer vector that contains the indices of the variables to 

compute the partial derivatives for. 

adAcoef A vector containing nonzero coefficients of the new 

constraints. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetLPData() 

Description:  

Returns the formulation data for a given linear programming model. 

MATLAB Prototype: 
>> [nCons, nVars, nObjsense, dObjconst, adC, adB, achContypes, 

aiAcols, acAcols, adCoef, aiArows, adL , adU, nStatus] = 

mxlindo('LSgetLPData', iModel) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

LHS Arguments:  

Name  Description  

nCons Number of constraints in the model. 

nVars Number of variables in the model. 

nObjsense  An indicator stating whether the objective is to be maximized 

or minimized.  

dObjconst  A constant value to be added to the objective value.  

adC  A double precision vector containing the objective coefficients.  

adB A double vector containing the constraint right-hand side 

coefficients.  

achContypes  A character vector containing the type of each constraint.  

aiAcols  An integer vector containing the index of the first nonzero in 

each column.  

acAcols An integer vector containing the length of each column.  

adCoef A double precision vector containing the nonzero coefficients 

of the constraint matrix.  

aiArows  An integer vector containing the row indices of the nonzeros in 

the constraint matrix.  

adL A double precision vector containing the lower bound of each 

variable. 

adU A double precision vector containing the upper bound of each 

variable.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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Remark: 

 LSXgetLPData(), which retrieves the coefficient matrix in MATLAB’s sparse form, can 

also be used as an alternative. 

LSgetLPVariableDataj() 

Description:  

Retrieves the formulation data for a specified variable. Individual LHS entries may be set to 

‘[]’ if associated items are not required. 

MATLAB Prototype: 
>> [chVarType, dC, dL, dU, nAnnz, aiArows, nStatus] = 

mxlindo('LSgetLPVariableDataj', iModel, iVar) 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

iVar An integer containing the index of the variable whose name 

you wish to retrieve. 

LHS Arguments:  

Name  Description  

chVarType A character that returns the variable’s type. Values returned are 

'B' for binary, 'C' for continuous, or 'I' for general integer. 

dC A double precision quantity that returns the variable’s 

objective coefficient. 

dL A double precision quantity that returns the variable’s lower 

bound. 

dU A double precision quantity that returns the variable’s upper 

bound. 

nAnnz An integer that returns the number of nonzero constraint 

coefficients in the variable’s column. 

aiArows An integer vector containing the row indices of the nonzeros in 

the new columns.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetNameData() 

Description:  

Returns the names—objective, right-hand side vector, range vector, bound vector, constraints, 

and variables—of a given model. 

MATLAB Prototype:  
>> [szTitle, szObjname, szRhsname, szRngname, szBndname, aszConnames, 

achConNameData, aszVarnames, achVarNameData, nStatus] = 

mxlindo('LSgetNameData', iModel) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

szTitle  A character array that returns the title of the problem. A 

model’s title can be of any length, so be sure to allocate 

sufficient space to store the title you originally passed to 

LINDO API. The returned title will be null terminated. 

szObjname A character array that will return the name of the objective, 

null terminated.  

szRhsname A character array that returns the name of the right-hand side 

vector, null terminated.  

szRngname A character array that returns the name of the range vector, null 

terminated. 

szBndname A character array that returns the name of the bound vector, 

null terminated.  

aszConnames Reserved for future use. Currently, should be an empty vector. 

achConNameData Reserved for future use. Currently, should be an empty vector. 

aszVarnames Reserved for future use. Currently, should be an empty vector. 

achVarNameData Reserved for future use. Currently, should be an empty vector. 
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LSgetNLPConstraintDatai() 

Description:  

Gets data about the nonlinear structure of a specific row of the model. 

MATLAB Prototype:  
>> [nColcnt,aiColndx,adCoef,nErrorCode] = mxLINDO( 

'LSgetNLPConstraintDatai', iModel, iCon) 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

iCon An integer referring to the index of the constraint whose NLP 

data will be retrieved.  

LHS Arguments: 

Name  Description  

nColcnt An integer vector returning the number of nonlinear columns in 

the specified row.   

aiColndx An integer vector returning the column indices of the nonlinear 

nonzeros in the specified row. 

adCoef A double precision vector returning the current values of the 

nonzero coefficients of the specified row in the (Jacobian) 

matrix.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetNLPData() 

Description:  

Gets data about the nonlinear structure of a model, essentially the reverse of 

LSloadNLPData().  

MATLAB Prototype:  
>> [aiCols, acCols, adCoef, aiRows, nObj, aiObj, adObjCoef, 

achConType, nStatus] = mxLINDO('LSgetNLPData',iModel) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

LHS Arguments: 

Name  Description  

aiCols An integer vector returning the index of the first nonlinear 

nonzero in each column. The last entry will be the index of the 

next appended column, assuming one was to be appended. 

acCols An integer vector returning the number of nonlinear elements 

in each column.   

adCoef A double precision vector returning the current values of the 

nonzero coefficients in the (Jacobian) matrix.  

aiRows An integer vector returning the row indices of the nonlinear 

nonzeros in the coefficient matrix. 

nObj An integer returning the number of nonlinear variables in the 

objective function. 

aiObj An integer vector returning column indices of the nonlinear 

terms in the objective. 

adObjCoef A double precision vector returning the current partial 

derivatives of the objective corresponding to the variables 

aiObj [ ]. 

achConType A character array whose elements indicate whether a constraint 

has nonlinear terms or not. If achConType [i] > 0, then 

constraint i has nonlinear terms.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 



728 APPENDIX G 

 

LSgetNLPObjectiveData() 

Description:  

Gets data about the nonlinear structure of the objective function of the model. 

MATLAB Prototype:  
>> [nObjcnt,aiColndx,adCoef,nErrorCode] = mxLINDO( 

'LSgetNLPConstraintDatai', iModel) 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

LHS Arguments: 

Name  Description  

nObjcnt An integer vector returning the number of nonlinear columns in 

the objective row.   

aiColndx An integer vector returning the column indices of the nonlinear 

nonzeros in the objective row. 

adCoef A double precision vector returning the current values of the 

nonzero coefficients of the gradient of the objective.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetNLPVariableDataj() 

Description:  

Gets data about the nonlinear structure of a specific column of the model. 

MATLAB Prototype:  
>> [nRowcnt,aiRowndx,adCoef,nErrorCode] = mxLINDO( 

'LSgetNLPVariableDataj', iModel, iVar) 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

iVar An integer referring to the index of the variable whose NLP 

data will be retrieved.  

LHS Arguments: 

Name  Description  

nRowcnt An integer vector returning the number of nonlinear rows in 

the specified variable’s column.   

aiRowndx An integer vector returning the row indices of the nonlinear 

nonzeros in the specified variable’s column. 

adCoef A double precision vector returning the current values of the 

nonzero coefficients of the specified column in the (Jacobian) 

matrix.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetQCData() 

Description:  

Retrieves quadratic program data in a given model.  

MATLAB Prototype:  
>> [nQCnnz, aiQCrows, aiQCvars1, aiQCvars2, adQCcoef, nStatus] = 

mxlindo('LSgetQCData', iModel) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

LHS Arguments:  

Name  Description  

nQCnnz The total number of nonzeros in quadratic coefficient matrices.  

aiQCrows A vector containing the index of the constraint associated with 

each nonzero quadratic term.  

aiQCvars1 A vector containing the index of the first variable defining each 

quadratic term.  

aiQCvars2 A vector containing the index of the second variable defining 

each quadratic term. This vector will have nQCnnz entries. 

adQCcoef A vector containing the nonzero coefficients in the quadratic 

matrix. This vector will also have nQCnnz entries. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetQCDatai() 

Description:  

Retrieves quadratic program data of a single constraint in a given model.  

MATLAB Prototype:  
>> [nQCnnz, aiQCvars1, aiQCvars2, adQCcoef, nStatus] = 

mxlindo('LSgetQCDatai', iModel, iCon) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

iCon An integer referring to the index of the constraint whose 

quadratic data will be retrieved.  

LHS Arguments:  

Name  Description  

nQCnnz The number of nonzeros in the quadratic coefficient matrix of 

the specified constraint. 

aiQCvars1 A vector containing the index of the first variable defining the 

quadratic term. This vector will have nQCnnz entries. 

aiQCvars2 A vector containing the index of the second variable defining 

the quadratic term. This vector will have nQCnnz entries. 

adQCcoef A vector containing the nonzero coefficients in the quadratic 

matrix. This vector will have nQCnnz entries. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetSemiContData() 

Description:  

Retrieves the semi-continuous data from an LSmodel data structure. 

MATLAB Prototype:  
>> [iNvars, iVarndx, ad1, adu, nStatus] = 

mxlindo('LSgetSemiContData', iModel) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

LHS Arguments:  

Name  Description  

iNvars  An integer variable to return the number of semi-continuous 

variables. 

iVarndx An integer vector to return the indices of semi-continuous 

variables. 

ad1 A vector to return the lower bounds of semi-continuous 

variables. 

adu A vector to return the upper bounds of semi-continuous 

variables. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetSETSData() 

Description:  

Retrieves sets data from an LSmodel data structure. 

MATLAB Prototype:  
>> [iNsets, iNtnz, achSETtype, iCardnum, iNnz, iBegset, iVarndx, 

nStatus] = mxlindo('LSgetSETSData', iModel) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

LHS Arguments:  

Name  Description  

iNsets An integer variable to return the number of sets in the model. 

iNtnz An integer variable to return the total number of variables in 

the sets. 

achSETtype A character array to return the type of sets in the model. The 

size of this array should be at least  (iNsets) 

iCardnum An integer array to return the cardinalities of sets in the model. 

The size of this array should be at least  (iNsets) 

iNnz An integer array to return the number of variables in each set in 

the model. The size of this array should be at least  (iNsets)  

iBegset An integer array returning the index of the first variable in each 

set. This vector must have (iNsets + 1) entries, where iNsets is 

the number of sets in the model. The last entry will be the 

index of the next appended set, assuming one was to be 

appended. 

iVarndx An integer vector returning the indices of the variables in the 

sets. You must allocate at least one element in this vector for 

each <variable,set> tuple (i.e. at least iNtnz elements are 

required.) 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetSETSDatai() 

Description:  

Retrieves the data for set i from an LSmodel data structure. 

MATLAB Prototype:  
>> [achSETType, iCardnum, iNnz, iVarndx, nStatus] = 

mxlindo('LSgetSETSDatai', iModel, iSet) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

iSet The index of the set to retrieve the data for. 

LHS Arguments:  

Name  Description  

achSETType A character variable to return the set type. 

iCardnum An integer variable to return the set cardinality. 

iNnz An integer variable to return the number of variables in the set. 

iVarndx An integer vector to return the indices of the variables in the 

set. This vector should have at least (iNnz) elements. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetVariableIndex() 

Description:  

Retrieves the internal index of a specified variable name.  

Prototype:  
>> [iVar, nStatus] = mxlindo('LSgetVariableIndex', iModel, szVarname) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

szVarname A character string containing the name of the variable. 

LHS Arguments:  

Name  Description  

iVar An integer that returns the variable’s index. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 



mxLINDO A MATLAB INTERFACE     735 

 

LSgetVariableNamej() 

Description:  

Retrieves the name of a variable, given its index number.  

Prototype:  
>> [szVarname, nStatus] = mxlindo('LSgetVariableNamej', iModel, iVar) 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of Lsmodel. 

iVar An integer containing the index of the variable whose name 

you wish to retrieve. 

LHS Arguments:  

Name  Description  

szVarname A character string that returns the variable’s name. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetVarStartPoint() 

Description:  

Retrieves the values of the initial primal solution. 

MATLAB Prototype: 
>> [adPrimal, nStatus] = mxlindo('LSgetVarStartPoint', iModel); 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

LHS Arguments:  

Name  Description  

adPrimal A double precision vector that contains the primal solution at 

which the objective function will be evaluated. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetVarType() 

Description:  

Gets the variable type for a MIP model.  

MATLAB Prototype:  
>> [achVartypes,nCont,nBin,nGin,nStatus] = mxlindo('LSgetVarType', 

iModel) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data.  

LHS Arguments:  

Name  Description  

achVartypes  A character vector containing the type of each variable.  

nCont A scalar indicating the number of continuous variables in the 

model. 

nBin A scalar indicating the number of binary variables in the 

model. 

nGin A scalar indicating the number of general integer variables in 

the model. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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Model Modification Routines 
The following commands can be issued to modify an existing model iModel in several ways. Since the 

modification routines reset the solution status of the model to its default, the resident solution may not 

be optimal.  

LSaddCones () 

Description:  

Adds cones to a given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSaddCones', iModel, nCone, szConeTypes, 

cConenames, aiConebegcol, aiConecols) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel from which to 

retrieve the problem data. 

nCone An integer containing the number of cones to append. 

szConeTypes A character array containing the type of each cone to be added 

to the model. 

cConenames Reserved for future use. Currently, should be empty vector. 

aiConebegcol An integer vector containing the index of the first variable in 

each new cone. This vector must have nCone +1 entries. The 

last entry should be equal to the number of variables in the 

added cones. 

aiConecols An integer vector containing the indices of the variables in the 

new cones. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSaddConstraints() 

Description:  

Adds constraints to a given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSaddConstraints', iModel, nCons, 

achContypes, aszConnames, aiArows, adAcoef, aiAcols, adB) 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nCons An integer containing the number of constraints to append.  

achContypes A character vector containing the type of each constraint to be 

added to the model.  

aszConnames A vector of null terminated strings containing the name of each 

new constraint.  

aiArows An integer vector containing the index of the first nonzero 

element in each new constraint.  

adAcoef A vector containing nonzero coefficients of the new 

constraints. 

aiAcols An integer vector containing the column indices of the 

nonzeros in the new constraints.  

adB A double precision vector containing the right-hand side 

coefficients for each new constraint.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSaddSETS() 

Description:  

Adds sets to a given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSaddSETS', iModel, nSETS, szSETStypes, 

aiCARDnum, aiSETSbegcol, aiSETScols) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nSETS An integer containing the number of sets to add. 

szSETStypes A character array containing the type of each set to be added to 

the model. 

aiCARDnum An integer array containing the cardinalities of the sets to be 

added. 

aiSETSbegcol An integer vector containing the index of the first variable in 

each new set. This vector must have nSETS +1 entries. The last 

entry should be equal to the total number of variables in the 

new sets. 

aiSETScols An integer vector containing the indices of the variables in the 

new sets.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSaddVariables() 

Description:  

Adds variables to a given model. If both constraints and variables need to be added to a model 

and adding the new information in column format is preferred, then this routine can be called 

after first calling LSaddConstraints().  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSaddVariables', iModel, nVars, achVartypes, 

aszVarnames, aiAcols, acAcols, adAcoef, aiArows, adC, adL, adU) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nVars The number of variables to append to the model.  

achVartypes A character vector indicating the types of each variable to be 

added to the model.  

aszVarnames A vector of null terminated strings containing the name of each 

new variable.  

aiAcols An integer vector containing the index of the first nonzero 

element in each new column.  

acAcols An integer vector containing the length of each column.  

adAcoef A double precision vector containing the nonzero coefficients 

of the new columns.  

aiArows An integer vector containing the row indices of the nonzeros in 

the new columns.  

adC A double precision vector containing the objective coefficients 

for each new variable.  

adL A double precision vector containing the lower bound of each 

new variable.  

adU A double precision vector containing the upper bound of each 

new variable.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSaddQCterms() 

Description:  

Adds quadratic elements to the given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSaddQCterms', iModel, nQCnonzeros, 

vaiQCconndx, vaiQCvarndx1, vaiQCvarndx2, vadQCcoef) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nQCnonzeros The total number of nonzeros in quadratic coefficient matrices 

to be added. 

vaiQCconndx A vector containing the index of the constraint associated with 

each nonzero quadratic term. This vector must have 

nQCnonzeros entries. 

vaiQCvarndx1 A vector containing the indices of the first variable defining 

each quadratic term. This vector must have nQCnonzeros 

entries. 

vaiQCvarndx2 A vector containing the indices of the second variable defining 

each quadratic term. This vector must have nQCnonzeros 

entries. 

vadQCcoef A vector containing the nonzero coefficients in the quadratic 

matrix. This vector must also have nQCnonzeros entries. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSaddNLPAj() 

Description:  

Adds NLP elements to the specified column for the given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSaddNLPAj', iModel, iVar1, nRows, vaiRows, 

vadAj) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

iVar1 The index of the variable to which NLP elements will be 

added. 

nRows The total number of constraints for which NLP elements will 

be added. 

vaiRows An integer vector containing the row indices of the nonlinear 

elements. The indices are required to be in ascending order. 

vadAj A double vector containing the initial nonzero coefficients of 

the NLP elements. If vadAj is NULL, the solver will set the 

initial values. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSaddNLPobj() 

Description:  

Adds NLP elements to the objective function for the given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSaddNLPobj', iModel, nCols, vaiCols, 

vadColj) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nCols The total number of variables for which NLP elements will be 

added. 

vaiCols A integer vector containing the variable indices of the 

nonlinear elements. 

vadColj A double vector containing the initial the initial nonzero 

coefficients of the NLP elements. If vadColj is NULL, the 

solver will set the initial values. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSdeleteCones() 

Description:  

Deletes a set of cones in the given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSdeleteCones', iModel, nCones, aiCones) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nCones The number of cones in the model to delete. 

aiCones A vector containing the indices of the cones that are to be 

deleted. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSdeleteConstraints() 

Description:  

Deletes a set of constraints in the given model.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSdeleteConstraints', iModel, nCons, aiCons)  

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nCons The number of constraints in the model to delete.  

aiCons A vector containing the indices of the constraints that are to be 

deleted.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSdeleteQCterms() 

Description:  

Deletes the quadratic terms in a set of constraints in the given model.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSdeleteQCterms', iModel, nCons, aiCons)  

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nCons The number of constraints in the model for which the quadratic 

terms will be deleted.  

aiCons A vector containing the indices of the constraints whose 

quadratic terms are to be deleted.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSdeleteSemiContVars() 

Description:  

Deletes a set of semi-continuous variables in the given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSdeleteSemiContVars', iModel, nSC, SCndx) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nSC The number of semi-continuous variables in the model to 

delete.  

SCndx A vector containing the indices of the semi-continuous 

variables that are to be deleted.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSdeleteSETS() 

Description:  

Deletes the sets in the given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSdeleteSETS', iModel, nSETS, SETSndx) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nSETS The number of sets  in the model to delete.  

SETSndx A vector containing the indices of the sets that are to be 

deleted.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSdeleteVariables() 

Description:  

Deletes a set of variables in the given model.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSdeleteVariables', iModel, nVars, aiVars) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nVars The number of variables in the model to delete.  

aiVars A vector containing the indices of the variables that are to be 

deleted.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSdeleteAj() 

Description:  

Deletes all the elements in the specified column for the given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSdeleteAj', iModel, iVar1, nRows, vaiRows) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

iVar1 The index of the variable whose lements will be deleted. 

nRows The number of constraints at which elements will be deleted. 

vaiRows An integer vector containing the row indices of the elements to 

be deleted. The indices are required to be in ascending order. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSdeleteNLPobj() 

Description:  

Deletes NLP elements from the objective function for the given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSdeleteNLPobj', iModel, nCols, vaiCols) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nCols The number of variables for which NLP elements will be 

deleted. 

vaiCols A vector containing the indices of the variables whose NLP 

elements are to be deleted. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSmodifyAj() 

Description:  

Modifies the coefficients for a given column at specified constraints. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSmodifyAj', iModel, iVar1, nCons, aiCons, 

adAj) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel.  

iVar1 The index of the variable to modify the constraint coefficients. 

nCons Number of constraints to modify. 

aiCons An array of the indices of the constraints to modify. 

adAj A double precision array containing the values of the new 

coefficients. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSmodifyCone() 

Description:  

  Modifies the data for the specified cone. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSmodifyCone', iModel, cConeType, iConeNum, 

iConeNnz, aiConeCols) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

cConeType A character variable specifying the new type of the cone. 

iConeNum An integer scalar that refers to the index of the cone to modify. 

iConeNnz An integer scalar that refers to the number of variables 

characterizing the cone. 

aiConeCols An integer vector that keeps the indices of the variables 

characterizing the cone. Its size should be iConeNnz. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSmodifyConstraintType() 

Description:  

Modifies the senses of the selected constraints of a given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSmodifyConstraintType', iModel, nCons, 

aiCons, achContypes)  

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nCons The number of constraint senses to modify.  

aiCons An integer vector containing the indices of the constraints 

whose senses are to be modified.  

achContypes A character vector in which each element is either: ‘L’, ‘E’, 

‘G’, or ‘N’ indicating each constraint's type. 
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LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSmodifyLowerBounds() 

Description:  

Modifies selected lower bounds in a given model.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSmodifyLowerBounds', iModel, nVars, aiVars, 

adL) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nVars The number of bounds in the model to modify.  

aiVars An integer vector containing the indices of the variables for 

which to modify the lower bounds.  

adL A double precision vector containing the new values of the 

lower bounds on the variables.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSmodifyObjConstant() 

Description:  

Modifies the objective’s constant term for a specified model. 

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSmodifyObjConstant', iModel , dObjconst); 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

dObjconst The new objective constant term. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSmodifyObjective() 

Description:  

Modifies selected objective coefficients of a given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSmodifyObjective', iModel, nVars, aiVars, adC) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nVars Number of objective coefficients to modify. 

aiVars An integer vector containing a list of the indices of the 

objective coefficients to modify.  

adC A double precision vector containing the new values for the 

modified objective coefficients. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSmodifyRHS() 

Description:  

Modifies selected constraint right-hand sides of a given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSmodifyRHS', iModel, nCons, aiCons, adB)  

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nCons The number of constraint right-hand sides to modify.  

aiCons An integer vector containing the indices of the constraints 

whose right-hand sides are to be modified.  

adB A double precision vector containing the new right-hand side 

values for the modified right-hand sides.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSmodifySemiContVars() 

Description:  

Modifies data of a set of semi-continuous variables in the given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSmodifySemiContVars', iModel, nSC, iVarndx, 

ad1, adu)  

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nSC The number of semi-continuous variables to modify.  

iVarndx An integer vector containing the indices of the variables whose 

data are to be modified.  

ad1 A double precision vector containing the new lower bound 

values for the semi-continuous variables. 

adu A double precision vector containing the new upper bound 

values for the semi-continuous variables. 
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LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSmodifySET() 

Description:  

Modifies set data in the given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSmodifySET', iModel, cSETtype, iSETnum, 

iSETnnz, aiSETcols)  

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

cSETtype A character variable containing the new type for the specified 

set. 

iSETnum An integer variable containing the index of the set to apply the 

modification. 

iSETnnz An integer variable containing the number of variables in the 

set specified with iSETnum. 

aiSETcols An integer array containing the indices of variables in the set 

specified with iSETnum. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSmodifyUpperBounds() 

Description:  

Modifies selected upper bounds in a given model.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSmodifyUpperBounds', iModel, nVars, aiVars, adU) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nVars The number of bounds in the model to modify.  

aiVars A vector containing the indices of the variables for which to 

modify the upper bounds.  

adU A double precision vector containing the new values of the 

upper bounds on the variables.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSmodifyVariableType() 

Description:  

Modifies the types of the selected variables of a given model. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSmodifyVariableType', iModel, nVars, aiVars, 

achVartypes)  

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel.  

nVars The number of variable types to modify.  

aiVars An integer vector containing the indices of the variables whose 

types are to be modified.  

achVartypes A character vector containing strings of length nVars 

specifying the types of the specified variables. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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Model and Solution Analysis Routines 
The routines in the section below allow you to analyze models and their solutions. For a more detailed 

overview, see the Chapter 10, Analyzing Models and Solutions. 

LSfindBlockStructure () 

Description:  

Examines the nonzero structure of the constraint matrix and tries to identify block structures 

in the model.. 

MATLAB Prototype:  
>> [nStatus] = mxlindo(‘LSfindBlockStructure’, iModel, nBlock, nType) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nBlock An integer scalar that contains the number of blocks to 

decompose the model matrix into. (Sensible only if nType <> 

LS_LINK_BLOCKS_NONE.) 

nType 

 

An integer scalar indicating the type of decomposition 

requested. The possible values are identified with the following 

macros: 

LS_LINK_BLOCKS_NONE: Try total decomposition (no 

linking rows or columns). 

LS_LINK_BLOCKS_COLS: The decomposed model will have 

dual angular structure (linking columns). 

LS_LINK_BLOCKS_ROWS: The decomposed model will 

have block angular structure (linking rows). 

LS_LINK_BLOCKS_BOTH: The decomposed model will 

have both dual and block angular structure (linking rows 

and columns). 

LS_LINK_BLOCKS_FREE: Solver decides which type of 

decomposition to use. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A 
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LSfindIIS() 

Description:  

Determines an irreducibly inconsistent set (IIS) of constraints for an infeasible linear 

program. Any of the RHS arguments can be set to empty vectors if the corresponding 

information is not required.  

MATLAB Prototype:  
>> [nStatus] = mxlindo(‘LSfindIIS’, iModel, nLevel); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nLevel An integer indicating the level of detail of the analysis in 

finding the IIS. Possible values are:  

LS_NECESSARY_ROWS = 1, 

LS_NECESSARY_COLS = 2, 

LS_SUFFICIENT_ROWS = 4, 

LS_SUFFICIENT_COLS = 8. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSfindIUS()  

Description:  

Determines an irreducibly unbounded set (IUS) of columns for an unbounded linear program.  

MATLAB Prototype:  
>> [nStatus) = mxlindo(‘LSfindIUS’, iModel, nLevel); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nLevel  An integer indicating the level of detail of the analysis in 

finding the IUS. Possible values are: 

LS_NECESSARY_COLS = 2, 

LS_SUFFICIENT_COLS = 8. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetBestBounds () 

Description:  

Finds the best-implied variable bounds for the specified model by improving the original 

bounds using extensive preprocessing and probing. 

MATLAB Prototype:  
>> [adBestL, adBestU, nStatus] = mxlindo(‘LSgetBestBounds’, iModel); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adBestL A double precision vector containing the best-implied lower 

bounds.  

adBestU A double precision vector containing the best implied upper 

bounds. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetBlockStructure () 

Description:  

Retrieves the block structure, identified by LSfindBlockStructure(), in the model.. 

MATLAB Prototype:  
>> [nBlock, anRblock, anCblock, nType, nStatus] = 

mxlindo(‘LSgetBlockStructure’, iModel)) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

nBlock An integer scalar that contains the number of blocks to 

decompose the model matrix into (Sensible only if nType = 

LS_LINK_BLOCKS_NONE).  

anRblock 

 

An integer vector in which information about the block 

membership of the constraints is to be placed. The i-th element 

of this array returns information on the i-th constraint as 

follows: 

 0:   The row is a member of the linking (row) block.  

k>0:  The row is a member of the k-th block.  

where 1 <= k <= nBlock. 

anCblock 

 

An integer vector in which information about the block 

membership of the variables is to be placed. The j-th element 

of this array contains information on the j-th column as 

follows: 

 0:   The column is a member of the linking (column) block.  

k>0:  The column is a member of the k-th block.  

where 1 <= k <= nBlock. 

nType An integer returning the type of the decomposition. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

Remarks: 

 For a brief overview on decomposition and linking structures, refer to Chapter 10, 

Analyzing Models and Solutions. 
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LSgetBoundRanges () 

Description:  

Retrieves the maximum allowable decrease and increase in the primal variables for which the 

optimal basis remains unchanged.  

MATLAB Prototype:  
>> [adDec, adInc, nStatus] = mxlindo(‘LSgetBoundRanges’, iModel); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adDec A double precision vector that keeps the maximum allowable 

decrease in the lower and upper bounds. 

adInc A double precision vector that keeps the maximum allowable 

increase in the lower and upper bounds. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetConstraintRanges () 

Description:  

Retrieves the maximum allowable decrease and increase in the right-hand side values of 

constraints for which the optimal basis remains unchanged.  

MATLAB Prototype:  
>> [adDec, adInc, nStatus] = mxlindo(‘LSgetConstraintRanges’, iModel); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adDec A vector that keeps the maximum allowable decrease in the 

right-hand sides of constraints.  

adInc A vector that keeps the maximum allowable increase in the 

right-hand sides of constraints.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetIIS() 

Description:  

Retrieves the irreducibly inconsistent set (IIS) determined by LSfindIIS(). Any of the RHS 

arguments can be set to empty vectors if the corresponding information is not required.  

MATLAB Prototype:  
>> [nSuf_r, nIIS_r, aiCons, nSuf_c, nIIS_c, aiVars, anBnds, nStatus] 

= mxlindo(‘LSgetIIS’, iModel); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

nSuf_r The number of constraints in the sufficient set. 

nIIS_r The number of rows in the IIS. 

aiCons A vector of size nIIS_r containing the indices of the rows in the 

IIS. The locations aiCons[1] to aiCons[nSuf_r] keep the 

indices of the sufficient rows.  

nSuf_c The number of column bounds in the sufficient set. 

nIIS_c The number of column bounds in the IIS. 

aiVars A vector of size nIIS_c containing the indices of the column 

bounds in the IIS. The locations aiVars[1] to aiVars[nSuf_c] 

store the indices of the members of the sufficient column 

bounds. Passing an empty matrix forces the algorithm to ignore 

the column bounds as the source of infeasibility. 

anBnds A vector of size nIIS_c indicating whether the lower or the 

upper bound of the variable is in the IIS. Its elements are –1 for 

lower bounds and +1 for upper bounds. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetIUS()  

Description:  

Retrieves the irreducibly unbounded set (IUS) of columns determined by a call to 

LSfindIUS().  

MATLAB Prototype:  
>> [nSuf, nIUS, aiVars, nStatus) = mxlindo(‘LSgetIUS’, iModel); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

nSuf The number of columns in the sufficient set. 

nIUS The number of columns in the IUS. 

aiVars A vector of size nIUS containing the indices of the columns in 

the IUS. The locations aiVars[1] to aiVars[nSuf ] store the 

indices of the members of the sufficient set. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSgetObjectiveRanges () 

Description:  

Retrieves the maximum allowable decrease and increase in objective function coefficients for 

which the optimal basis remains unchanged.  

MATLAB Prototype:  
>> [adDec, adInc, nStatus] = mxlindo(‘LSgetObjectiveRanges’, iModel); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

LHS Arguments:  

Name  Description  

adDec A vector that keeps the maximum allowable decrease in the 

objective function coefficients.  

adInc A vector that keeps the maximum allowable increase in the 

objective function coefficients.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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Advanced Routines 
The routines in this section perform specialized functions for users who are developing customized 

solution procedures. 

LSdoBTRAN() 

Description:  

Does a so-called backward transformation. That is, the function solves the linear system 

B
T
X = Y, where B

T
 is the transpose of the current basis of the given linear program and Y is a 

user specified vector.  

MATLAB Prototype:  
>> [cXnz, aiX, adX, nStatus] = mxlindo('LSdoBTRAN', iModel, cYnz, 

aiY, adY) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

cYnz An integer containing the number of nonzeros in the right-hand 

side vector Y. 

aiY An integer vector containing the positions of the nonzeros in Y. 

adY A double precision vector containing the coefficients of the 

nonzeros in Y. 

LHS Arguments:  

Name  Description  

cXnz An integer containing the number of nonzeros in the solution 

vector X.  

aiX An integer vector containing the positions of the nonzeros in X.  

adX A double precision vector containing the coefficients of the 

nonzeros in X.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSdoFTRAN() 

Description:  

Does a so-called forward transformation. That is, the function solves the linear system 

BX = Y, where B is the current basis of the given linear program, and Y is a user specified 

vector. 

MATLAB Prototype:  
>> [cXnz, aiX, adX, nStatus] = mxlindo('LSdoFTRAN', iModel, cYnz, 

aiY, adY) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

cYnz An integer containing the number of nonzeros in the right-hand 

side vector Y. 

aiY An integer vector containing the positions of the nonzeros in Y. 

adY A double precision vector containing the coefficients of the 

nonzeros in Y.  

LHS Arguments:  

Name  Description  

cXnz An integer containing the number of nonzeros in the solution 

vector X.  

aiX An integer vector containing the positions of the nonzeros in X. 

adX A double precision vector containing the coefficients of the 

nonzeros in X.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LScalcConFunc() 

Description:  

Calculates the constraint activity at a primal solution . 

MATLAB Prototype:  
>> [dValue, nStatus] = mxlindo(‘LScalcConFunc’, iModel, iCon, 

adPrimal); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

iCon  An integer containing the index of the constraint whose activity 

is requested. 

adPrimal A double precision vector that contains the primal solution at 

which the constraint activity will be computed. 

LHS Arguments:  

Name  Description  

dValue A double precision variable that returns the constraint activity 

at the given primal solution. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LScalcObjFunc() 

Description:  

Calculates the objective function value at a primal solution . 

MATLAB Prototype:  
>> [dPobjval, nStatus] = mxlindo(‘LScalcObjFunc’, iModel,adPrimal); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

adPrimal A double precision vector that contains the primal solution at 

which the objective function will be evaluated. 

LHS Arguments:  

Name  Description  

dPobjval A double precision variable that returns the objective value for 

the given primal solution. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LScalcConGrad() 

Description:  

Calculates the partial derivatives of the function representing a constraint with respect to a set 

of primal variables. 

MATLAB Prototype:  
>> [adVar, nStatus] = mxlindo(‘LScalcConGrad’, iModel, iCon, 

adPrimal, nVar, aiVar); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

iCon  An integer containing the index of the constraint whose partial 

derivatives is requested. 

adPrimal A double precision vector that contains the primal solution at 

which the partial derivatives of the constraint will be evaluated. 

nVar An integer scalar indicating the number of variables to 

compute the partial derivatives. 

aiVar An integer vector that contains the indices of the variables to 

compute the partial derivatives for. 

LHS Arguments:  

Name  Description  

adVar A double precision vector that returns the partial derivatives of 

the variables indicated by aiVar[]. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LScalcObjGrad() 

Description:  

Calculates the partial derivatives of the objective function with respect to a set of primal 

variables. 

MATLAB Prototype:  
>> [adVar, nStatus] = mxlindo(‘LScalcObjGrad’, iModel, adPrimal, 

nVar, aiVar); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

adPrimal A double precision vector that contains the primal solution at 

which the partial derivatives of the objective function will be 

evaluated. 

nVar An integer scalar indicating the number of variables to 

compute the partial derivatives. 

aiVar An integer vector that contains the indices of the variables to 

compute the partial derivatives for. 

LHS Arguments:  

Name  Description  

adVar A double precision vector that returns the partial derivatives of 

the variables indicated by aiVar[]. 

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

 

 

 



766 APPENDIX G 

 

Callback Management Routines 
The routines in this section allow the user to set callback m-functions and manage callback 

information.  

LSgetCallbackInfo() 

Description:  

Returns information about the current state of the LINDO API solver during model 

optimization. This routine is to be called from your user supplied callback m-function that 

was set with LSsetCallback().  

MATLAB Prototype:  
>> [dValue, nStatus] = mxlindo('LSgetCallbackInfo', iModel, 

nLocation, nQuery); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. This should be 

the same instance as was passed to your user callback function 

from LINDO API.  

nLocation The solver’s current location. This parameter is passed to your 

callback function by LINDO API.  

nQuery  The information desired from LINDO API. For possible 

values, see the definition of this function in Chapter 2, 

Function Definitions.  

LHS Arguments:  

Name  Description  

dValue  A double precision scalar or a vector depending on the type of 

query.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSgetMIPCallbackInfo() 

Description:  

Returns information about the MIP solver. This routine is to be called from your user supplied 

callback functions that were established with calls LSsetCallback() and LSsetMIPCallback(). 

MATLAB Prototype:  
>> [dValue, nStatus] = mxlindo('LSgetMIPCallbackInfo', iModel, 

nQuery); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. This should be 

the same instance as was passed to your user callback function 

from the LINDO API solver.  

nQuery The information requested from LINDO API. See the function 

definition in Chapter 2, Function Definitions, for the 

information available through this routine.  

LHS Arguments:  

Name  Description  

dValue A double precision scalar or a vector depending on the type of 

query.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSsetCallback() 

Description:  

Supplies LINDO API with the name of a user-supplied m-function that will be called at 

various points during the solution process. The user-supplied m-function can be used to report 

the progress of the solver routines to a user interface, interrupt the solver, etc. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSsetCallback', iModel, szCbfunc, szData); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

szCbfunc  A character string referring to the name of the user supplied 

callback m-function. 

szData A dummy character string. Reserved for future use. 
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LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

Remarks: 

 The m-function szCbfunc.m should have the following MATLAB calling sequence:  

function retval = szCbfunc(iModel, loc, szData) 

 The user need not be concerned about the types and values of the RHS arguments. 

mxLINDO will ensure that correct types and values are passed. 

 The value returned by the callback function, retval, specifies if the solver should be 

interrupted or not. A return value different than zero will interrupt the solver. 

 See LMreadF.m and the sample callback function LMcback.m that came with your 

mxLINDO distribution. 

LSsetFuncalc() 

Description:  

Supplies LINDO API with a) the user-supplied M-function szFuncalc (see Chapter 7) that 

will be called each time LINDO API needs to compute a row value, and b) reference to the 

user data area to be passed through to the szFuncalc function.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSsetFuncalc', iModel , szFuncalc , iUserData 

); 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

szFuncalc The name of  the M-function that computes the value of a 

specified nonlinear row. See the definition of pFuncalc() in 

Chapter 7, Solving Nonlinear Programs, for details of this 

function’s prototype in C calling conventions. 

iUserData A reference to a “pass through” data area in which your calling 

application may place information about the functions to be 

calculated.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSsetGradcalc() 

Description:  

Supplies LINDO API with a)  the user-supplied M-function szGradcalc (see Chapter 7, 

Solving Nonlinear Programs) that will be called each time LINDO API needs a gradient (i.e., 

vector of partial derivatives), and b) the reference to data area to be passed through to the 

gradient computing routine. This data area may be the same one supplied to LSsetFuncalc(). 

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSsetGradcalc', iModel , szGradcalc, 

iUserData, nLenUseGrad, aiUseGrad); 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

szGradcalc A string containing the name of the M-function that computes 

the gradients for specified nonlinear rows. See the definition of 

pGradcalc() in Chapter 7, Solving Nonlinear Programs, for 

details on this function’s interface in C calling conventions . 

iUserData A reference to a “pass through” data area in which your calling 

application may place information about the functions to be 

calculated.  

nLenUseGrad An integer indicating how many nonlinear rows will make use 

of the szGradcalc function. 0 is interpreted as meaning that no 

functions use szGradcalc function, thus meaning that partials 

on all functions are computed with finite differences. A value 

of -1 is interpreted as meaning the partials on all nonlinear 

rows will be computed through the szGradcalc function. A 

value greater than 0 and less-than-or-equal-to the number of 

nonlinear rows is interpreted as being the number of nonlinear 

rows that make use of the szGradcalc function. And, the list of 

indices of the rows that do so is contained in the following 

array, aiUseGrad. 

aiUseGrad An integer array containing the list of nonlinear rows that make 

use of the szGradcalc function. You should set this value to 

‘[]’ if nLenUseGrad is 0 or -1. Otherwise, it should be an array 

of dimension nLenUseGrad, where aiUseGrad[j] is the index 

of the j-th row whose partial derivatives are supplied through 

the szGradcalc function. A value of -1 indicates the objective 

row. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSsetMIPCallback() 

Description:  

Supplies LINDO API with the address of the callback m-function that will be called each time 

a new integer solution has been found to a mixed-integer model.  

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSsetMIPCallback', iModel, szMIPCbfunc, 

szData); 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

szMIPCbfunc  A character string referring to the name of the user supplied 

callback m-function. 

szData A dummy character string. Reserved for future use. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

Remarks: 

 The m-function szMIPCbfunc.m should have the following calling sequence:  

function retval = szMIPCbfunc(iModel, szData, pdObjval, adPrimal) 

 The MIP callback functions cannot be used to interrupt the solver, instead the general 

callback function set by LSsetCallback() routine should be used.  

 See LMreadF.m and the sample callback function LMcbMLP.m that came with your 

mxLINDO distribution. 
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LSsetModelLogFunc() 

Description:  

Supplies the specified model with a) the user-supplied M-function szLogfunc  that will be 

called each time LINDO API logs a message and b) the reference to the user data area to be 

passed through to the szLogfunc function.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSsetModelLogFunc', iModel, szLogfunc, 

iUserData); 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

szLogfunc A string containing the name of  the M-function that will be 

called to log messages. 

iUserData A reference to a “pass through” data area in which your calling 

application may place information about the functions to be 

calculated. 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

LSsetUsercalc() 

Description:  

Supplies LINDO API with the addresses of a) the pUsercalc() that will be called each time 

LINDO API needs to compute the value of the user-defined function and b) the address of the 

user data area to be passed through to the pUsercalc() routine. 

MATLAB Prototype:  
>> [nStatus] = mxlindo('LSsetUsercalc', iModel, iUsercalc, 

iUserData); 

RHS Arguments:  

Name  Description  

iModel  An integer referring to an instance of LSmodel. 

iUsercalc The subroutine that computes the value of a user-defined 

function. 

iUserData A “pass through” data area in which your calling application 

may place information about the functions to be calculated. 



772 APPENDIX G 

 

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 

Auxiliary Routines 
Two auxiliary routines have been added to the MATLAB interface in order to allow the users to load 

or retrieve linear and mixed integer models without being concerned about the sparse representation of 

the coefficient matrix as required by LINDO API. These routines are not part of LINDO API. 

LSXgetLPData() 

Description:  

This routine is for accessing the data of model iModel. Its difference from “LSgetLPData” is 

that, it does not return the additional vectors aiAcols, acAcols, and aiArows used for sparse 

representation of the coefficient matrix. On return, the coefficient matrix is already in 

MATLAB’s sparse form. The calling sequence is: 

MATLAB Prototype: 
>> [nObjsense, dObjconst, adC, adB, achContypes, adA, adL, adU, 

nStatus] = mxlindo('LSXgetLPData', iModel) 

RHS Arguments: 

Name  Description  

iModel An integer referring to an instance of LSmodel.  

LHS Arguments:  

Name  Description  

nObjsense  An indicator stating whether the objective is to be maximized 

or minimized.  

dObjconst  A constant value to be added to the objective value.  

adC A double precision vector containing the objective coefficients. 

adB A double precision vector containing the RHS coefficients. 

achContypes A character vector containing the type of constraints.  

adA A matrix in MATLAB’s sparse format representing the LP 

coefficient matrix. 

adL A double precision vector containing the lower bounds. 

adU A double precision vector containing the upper bounds.  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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LSXloadLPData() 

Description:  

The routine “LSXloadLPData” loads the data of a linear model iModel into LINDO API. It is 

different from “LSloadLPData” in the sense that the additional vectors aiAcols, acAcols, and 

aiArows are not required as input for sparse representation of the coefficient matrix. This 

routine already admits the coefficient matrix in MATLAB’s sparse form.  

MATLAB Prototype: 
>> [nStatus] = mxlindo('LSXloadLPData', iModel, nObjsense, dObjconst, 

adC, adB, achContypes, adA, adL, adU) 

RHS Arguments:  

Name  Description  

iModel An integer referring to an instance of LSmodel. 

nObjsense  An indicator stating whether the objective is to be maximized 

or minimized.  

dObjconst  A constant value to be added to the objective value.  

adC A double precision vector containing the objective coefficients. 

adB A double precision vector containing the RHS coefficients. 

achContypes A character vector containing the type of constraints.  

adA A matrix in MATLAB’s sparse format representing the LP 

coefficient matrix. 

adL A double precision vector containing the lower bounds. 

adU A double precision vector containing the upper bounds.  

LHS Arguments:  

Name  Description  

nStatus An integer error code. If successful, nStatus will be 0 on return. 

A list of possible error codes may be found in Appendix A. 
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Sample MATLAB Functions  
M-functions using mxLINDO 
The LINDO API distribution package contains a number of sample m-functions that demonstrate how 

mxLINDO can be used in MATLAB to set up, solve, and query linear and nonlinear mixed-integer 

models with LINDO API.  At the beginning of the chapter we gave an example of solving a linear 

program using the LMsolveM.m m file.  We continue with some additional illustrations of using 

mxLINDO based m files. 

Solving Quadratic Programs with LMsolveM.m 
LMsolvem has an extended argument list for solving quadratically constrained quadratic programs 

(QCP) and retrieving their solutions using mxLINDO. Suppose, the data objects illustrated in Figure 

10.3 have been constructed. 

» A = [0         0         0         0  

       1         1         1         1 ]; 

» b = [0.2000    1.0000]’; 

» c = [0.3000    0.2000   -0.4000    0.2000]’; 

» csense = 'LE'; 

» vtype  = 'CCCC'; 

» l=[]; u=[]; 

» QCrows = [0       0       0       0       0       0       0   ]; 

» QCvars1 = [0       0       0       1       1       2       3   ]; 

» QCvars2 = [0       1       2       1       2       2       3   ]; 

» QCCoef = [1.00    0.64    0.27    1.00    0.13    1.00    1.00]; 

Figure 10.3 

These objects represent a QCP instance of the form: 

Minimize c
T
x + ½ x

T
Q
0
x 

S.t.  aix + ½ x
T
Q
i
x  b   for i=1,..,m 

           u  x  l 

To solve this QCP, issue the following command at the MATLAB prompt:  

>> [x, y, s, dj, obj, solstat] = LMsolvem(A, b, c, csense, l, u, 

vtype, QCrows, QCvars1, QCvars2, QCcoef) 
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As illustrated in Figure 10.4, the function returns the primal and dual solutions (x,s) and (y,dj), the 

optimal objective value obj, and the optimization status flag solstat.  

» [x, y, s, dj, pobj, solstat] = LMsolvem(A, b, adC, csense, l, u, 

vtype, QCrows, QCvars1, QCvars2, QCcoef) 

x = 

    0.0000 

    0.2239 

    0.4887 

    0.2874 

y = 

   -2.6045 

    0.9486 

s = 

    1.0e-009 * 

 

    0.1169 

         0 

dj = 

    0.0683 

    0.0000 

    0.0000 

    0.0000 

pobj = 

   -0.0932 

solstat = 

     1 

Figure 10.4 

Reading from Input Files with LMreadf.m 
This m-function interfaces with LINDO API to read a model instance in supported file formats and 

retrieves the problem data into the MATLAB environment.  

Run the m-function by invoking the following at the command prompt. This will retrieve the model 

data of a problem in MPS format into the MATLAB variables specified by LHS arguments of the m-

function. Make sure to pass the full path name of the MPS file to the function.  

>>[c, A, b, l, u, csense, vtype, QCrows, QCvars1, QCvars2, QCcoef] = 

LMreadf(‘c:\lindoapi\samples\mps\testlp.mps’); 

See Appendix B, MPS File Format, for general information on MPS files. Also, refer to the 

description of LSreadMPSFile() in Chapter 2, Function Definitions, to see different formatting 

conventions LINDO API supports when reading MPS files.  
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Column Generation with LMBinPack.m  
This function uses a set of LINDO API routines to compute a set-partitioning relaxation to the bin-

packing problem based on Dantzig-Wolfe (DW) decomposition.  

Suppose n objects with weights wj, j=1,…,n are given, and the objective is to find the minimum 

number of bins, each with capacity b, required to pack all n objects. LMbinpack.m computes a tight 

lower bound on the minimum number of bins required using DW-decomposition.  

The problem data was represented by a column vector w = (w1,w2,…,wn) and a scalar b. To see how the 

function works, read the sample bin-packing instance ‘bin25_150.mat’ that came with the distribution 

package. This is a small instance with n=25 and b=150. Assuming that your files reside under 

‘c:\lindoapi’, the following commands can be issued to read and run this sample: 

>> load(‘bin25_150’, ‘w’, ‘b’) 

>> [E, eb, ec, x, z, how] = LMbinpack(w, b) 

The output will look like Figure 10.5. The variable z returned by the function is a lower bound on the 

minimum number of bins required to pack the n objects. The other LHS arguments E, eb, and ec 

represent the LP data of the set-partitioning formulation of the bin-packing problem. 

» [E, eb, ec, x, z, how] = LMbinpack(w, b); 

      Num cols       Obj of DW    Reduced cost  

      generated      relaxation   of new column 

      ---------      ----------   ------------- 

              5          12.000           3.000 

             10          12.000           3.588 

             15          12.000           9.500 

             20          10.879           1.672 

             25          10.095           0.429 

             30           9.534           0.397 

             35           9.100           0.100 

             40           9.071           0.071 

             45           9.012           0.118 

             50           8.976           0.088 

             55           8.922           0.047 

             55           8.909           0.000 

Elapsed time  =      3.324 secs 

Minimum bins >=      8.909 

Figure 10.5  
To solve the relaxed set-partitioning formulation as an integer problem, try using LMsolvem.m by 

entering: 

>> csense = []; vtype = [III…I];  

>> l=[]; u = []; 

>> [x, y, s, dj, obj, solstat] = LMsolvem(E, eb, ec,csense,l,u,vtype)

  

 



 

 

Appendix H:  

An Interface to Ox 
Introduction  
Ox is an object-oriented programming environment equipped with a comprehensive set of statistical 

and mathematical functions. In Ox, matrices can be used in expressions with references to their 

symbolic names providing a particularly attractive medium for modeling and solving optimization 

problems. Ox’s versatile matrix manipulation functions allow users to develop special purpose 

optimization algorithms quickly and efficiently.   

OxLINDO extends the standard capabilities of Ox to include an optimization toolbox by providing an 

interface to LINDO API’s powerful optimizers. In particular, this interface provides Ox users the 

ability to call LINDO API’s functions the same way they call native Ox functions. This offers greater 

flexibility in developing higher-level Ox routines that can set up and solve different kinds of large-

scale optimization problems, testing new algorithmic ideas or expressing new solution techniques. 

This release of the interface works with Ox Version 3.x and later. The precompiled binary for 

OxLINDO can be found in the \lindoapi\ox folder.  For more information on Ox see 

http://www.nuff.ox.ac.uk/users/doornik/. 

Setting up Ox Interface 
For the Windows platform, follow the instructions below to set up the interface. For other platforms, 

modify the steps accordingly. It is assumed that your LINDO API installation folder is 

C:\Lindoapi. 

1. Locate the Ox installation folder on your machine. In a typical Windows 

installation, it is C:\Program Files\Ox. 

2. Copy C:\Lindoapi\Ox folder to C:\Program 

Files\Ox\Packages\Lindoapi\Ox folder. 

3. Copy C:\Lindoapi\License folder to C:\Program 

Files\Ox\Packages\ Lindoapi\License folder. 

4. Start an Ox session and try out some of the samples located at 

C:\lindoapi\samples\ox.  
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Calling Conventions 
The interface supports all available functions in LINDO API. Because the syntax of Ox’s 

programming language is very similar to the C language, it follows the calling conventions given in 

Chapter 2 very closely.   

Besides the interface functions making native LINDO API calls, OxLINDO has two specific helper 

functions, that facilitate environment creation and error checking:  

1. OxLScreateEnv( );           

Check the license and create a LINDO environment. If successful, return an 

integer referring to a LINDO API environment variable. If unsuccessful, a zero 

value is returned.  

2. LSerrorCheck(const penv, const nerrorcode);  

Check the returned error code. If it is nonzero then display the error message 

associated with specified error code, otherwise do nothing.  

These functions are provided for user’s convenience and their source codes are available in 

oxlindo.ox file under \lindoapi\ox directory.  The following code fragment illustrates how 

these functions are used in a typical Ox optimization session. 

{ 

   /* a reference to an instance of the LINDO API environment */ 

   decl pEnv;        

   /* a reference to an instance of the LINDO API model       */ 

   decl pModel;        

  /* Step 1: Create a LINDO environment.                      */ 

   pEnv = OxLScreateEnv(); 

   /* Step 2: Create a model in the environment.               */ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   LSerrorCheck(pEnv, nErrorCode); 

} 
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The following table summarizes the rules for converting a C type into an equivalent Ox type. 

C input type C description Ox equivalent 

pLSenv Pointer to Structure  Integer (created with LScreateEnv) 

pLSmodel Pointer to Structure  Integer (created with LScreateModel) 

Int Integer Integer 

double Double Double 

Int * Integer vector Row vector 

double * Double vector Row vector 

char * Character string String 

char ** Character string array Array of strings 

void * Pointer to double or integer Integer or double (LSget..., LSset...) 

void * Pointer to void Not used (substitute 0 as argument) 

NULL Macro for Null or zero <> 

C output type C description Ox equivalent 

Int * Pointer to integer Address of variable 

Int * Pointer to integer vector Address of variable 

double * Pointer to double Address of variable 

double * Pointer to double vector Address of variable 

char * Pointer to characters Address of variable 

void * Pointer to double or integer Integer or double (LSget..., LSset...) 

void * Pointer to void Not used (substitute 0 as argument) 

Table 10.1 Conversion from C types to Ox 

Recall from Chapter 2 that some LINDO API functions accept NULL (in C-style) as one or 

more of their arguments. In Ox, the <> symbol should replace NULL when necessary in 

calling such functions.  Do not confuse the <> symbol with the <0> expression. The latter 

corresponds to a constant 1x1 matrix that has a zero value and it cannot substitute the NULL 

value. 

In model or solution access routines, the output arguments should be prefixed with the C-style 

address-of operator “&”. This tells Ox that the associated argument is an output argument and ensures 

that the correct calling convention is used when communicating with LINDO API. For instance, in the 

following code fragment written in Ox, the output argument MipObj of LSgetInfo is prefixed with  

“&” operator. 
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{ 

      decl MipObj; 

      decl adX; 

      decl nErrorCode; 

 

     /* Retrieve the MIP objective value */ 

      nErrorCode = LSgetInfo(pModel, LS_DINFO_MIP_OBJ, &MipObj); 

      LSerrorCheck(pEnv, nErrorCode); 

 

     /* Retrieve the MIP solution */ 

      LSgetMIPPrimalSolution( pModel, &adX) ; 

      LSerrorCheck(pEnv, nErrorCode); 

} 

Example. Portfolio Selection with Restrictions on the Number 
of Assets Invested 
In the following example, we illustrate how these rules are applied in writing up an equivalent model 

in Ox to the portfolio selection problem given in Chapter 5. The source codes in C and Ox languages 

are located under C:\lindoapi\samples\c\port and C:\lindoapi\samples\ox\ folders, respectively. 

/* port.ox 

################################################################ 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

################################################################ 

  File   : port.ox 

  Purpose: Solve a quadratic mixed integer programming problem. 

  Model  : Portfolio Selection Problem with a Restriction on 

           the Number of Assets 

           MINIMIZE   0.5 w'Q w 

           s.t.   sum_i  w(i)              =  1 

                  sum_i  r(i)w(i)         >=  R 

                  for_i  w(i) - u(i) x(i) <=  0   i=1...n 

                  sum_i  x(i)             <=  K 

                  for_i  x(i) are binary          i=1...n 

           where 

           r(i)  : return on asset i. 

           u(i)  : an upper bound on the proportion of total budget 

                   that could be invested on asset i. 

           Q(i,j): covariance between the returns of i^th and j^th 

                   assets. 

           K     : max number of assets allowed in the portfolio 

           w(i)  : proportion of total budget invested on asset i 

           x(i)  : a 0-1 indicator if asset i is invested on. 
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  Data: 

  Covariance Matrix: 

               A1      A2      A3      A4      A5      A6      A7 

       A1 [  1.00    0.11    0.04    0.02    0.08    0.03    0.10 ] 

       A2 [  0.11    1.00    0.21    0.13    0.43    0.14    0.54 ] 

       A3 [  0.04    0.21    1.00    0.05    0.16    0.05    0.20 ] 

   Q = A4 [  0.02    0.13    0.05    1.00    0.10    0.03    0.12 ] 

       A5 [  0.08    0.43    0.16    0.10    1.00    0.10    0.40 ] 

       A6 [  0.03    0.14    0.05    0.03    0.10    1.00    0.12 ] 

       A7 [  0.10    0.54    0.20    0.12    0.40    0.12    1.00 ] 

  Returns Vector: 

               A1      A2      A3      A4      A5      A6      A7 

    r =   [  0.14    0.77    0.28    0.17    0.56    0.18    0.70 ] 

  Maximum Proportion of Total Budget to be Invested on Assets 

               A1      A2      A3      A4      A5      A6      A7 

    u =   [  0.04    0.56    0.37    0.32    0.52    0.38    0.25 ] 

  Target Return: 

  R = 0.30 

  Maximum Number of Assets: 

  K = 3 

*/ 

#include <oxstd.h> 

/* LINDO API header file is located under lindoapi\ox */ 

#import <packages/lindoapi/ox/oxlindo> 

/* main entry point */ 

main() 

{ 

   decl nErrorCode; 

/* Number of constraints */ 

   decl nM = 10; 

/* Number of assets (7) plus number of indicator variables (7) */ 

   decl nN = 14; 

/* declare an instance of the LINDO environment object */ 

   decl pEnv; 

/* declare an instance of the LINDO model object */ 

   decl pModel; 

  /********************************************************* 

   * Step 1:Create a LINDO environment.MY_LICENSE_KEY in  

   * lndapi100.lic must be defined using the key shipped with  

   * your software. 

   *********************************************************/ 

   pEnv = OxLScreateEnv(); 

  /********************************************************* 

   * Step 2: Create a model in the environment. 

   *********************************************************/ 

   pModel = LScreateModel ( pEnv, &nErrorCode); 

   LSerrorCheck(pEnv, nErrorCode); 

   { 

  /********************************************************** 

   * Step 3: Specify and load the LP portion of the model. 

   **********************************************************/ 

     /* The maximum number of assets allowed in a portfolio */ 

      decl K = 3; 
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     /* The target return */ 

      decl R = 0.30; 

     /* The direction of optimization */ 

      decl objsense = LS_MIN; 

      /* The objective's constant term */ 

      decl objconst = 0.; 

      /* There are no linear components in the objective function.*/ 

      decl c =       < 0., 0., 0., 0., 0., 0.,0., 

                       0., 0., 0., 0., 0., 0.,0.>; 

      /* The right-hand sides of the constraints */ 

      decl rhs = 1.0 ~ R ~ 0. ~ 0. ~ 0. ~ 0. ~ 0. ~ 0. ~ 0. ~ K; 

      /* The constraint types */ 

      decl contype = "EGLLLLLLLL"; 

      /* The number of nonzeros in the constraint matrix */ 

      decl Anz = 35; 

      /* The indices of the first nonzero in each column */ 

      decl Abegcol =    < 0,  3,  6,  9, 12, 15, 18, 

                         21, 23, 25, 27, 29, 31, 33> ~ Anz; 

      /* The length of each column. Since we aren't leaving 

       * any blanks in our matrix, we can set this to NULL */ 

      decl Alencol = <>; 

      /* The nonzero coefficients */ 

      decl A =       <  1.00, 0.14, 1.00, 

                        1.00, 0.77, 1.00, 

                        1.00, 0.28, 1.00, 

                        1.00, 0.17, 1.00, 

                        1.00, 0.56, 1.00, 

                        1.00, 0.18, 1.00, 

                        1.00, 0.70, 1.00, 

                        -0.04, 1.00, 

                        -0.56, 1.00, 

                        -0.37, 1.00, 

                        -0.32, 1.00, 

                        -0.52, 1.00, 

                        -0.38, 1.00, 

                        -0.25, 1.00 >; 

      /* The row indices of the nonzero coefficients */ 

      decl Arowndx =    < 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 

                          0, 1, 6, 0, 1, 7, 0, 1, 8, 2, 9, 3, 

                          9, 4, 9, 5, 9, 6, 9, 7, 9, 8, 9    >; 

      /* By default, all variables have a lower bound of zero 

       * and an upper bound of infinity. Therefore pass NULL 

       * pointers in order to use these default values. */ 

      decl lb = <>, ub = <>; 

  /********************************************************** 

   * Step 4: Specify and load the quadratic matrix 

   **********************************************************/ 

   /* The number of nonzeros in the quadratic matrix */ 

      decl Qnz = 28; 

   /* The nonzero coefficients in the Q-matrix */ 

   decl Q =       < 1.00,  0.11,  0.04,  0.02,  0.08,  0.03,  0.10, 

                    1.00,  0.21,  0.13,  0.43,  0.14,  0.54, 

                    1.00,  0.05,  0.16,  0.05,  0.20, 

                    1.00,  0.10,  0.03,  0.12, 

                    1.00,  0.10,  0.40, 

                    1.00,  0.12, 
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                    1.00 >; 

    /* The row indices of the nonzero coefficients in the Q-matrix*/ 

    decl  Qrowndx =    < -1, -1, -1, -1, -1, -1, -1, 

                         -1, -1, -1, -1, -1, -1, 

                         -1, -1, -1, -1, -1, 

                         -1, -1, -1, -1, 

                         -1, -1, -1, 

                         -1, -1, 

                         -1 >; 

    /* The indices of the first nonzero in each column in the Q-

matrix */ 

    decl Qcolndx1 =    <  0, 1, 2, 3, 4, 5, 6, 

                          1, 2, 3, 4, 5, 6, 

                          2, 3, 4, 5, 6, 

                          3, 4, 5, 6, 

                          4, 5, 6, 

                          5, 6, 

                          6 >; 

    decl Qcolndx2 =    <  0, 0, 0, 0, 0, 0, 0, 

                          1, 1, 1, 1, 1, 1, 

                          2, 2, 2, 2, 2, 

                          3, 3, 3, 3, 

                          4, 4, 4, 

                          5, 5, 

                          6 >; 

    /* Pass the linear portion of the data to problem structure 

     * by a call to LSloadLPData() */ 

     nErrorCode = LSloadLPData( pModel, nM, nN, objsense, objconst, 

                                c, rhs, contype, 

                                Anz, Abegcol, Alencol, A, Arowndx, 

                                lb, ub); 

     LSerrorCheck(pEnv, nErrorCode); 

    /* Pass the quadratic portion of the data to problem structure 

     * by a call to LSloadQCData()  */ 

     nErrorCode = LSloadQCData(pModel, Qnz, Qrowndx, 

                               Qcolndx1, Qcolndx2, Q); 

     LSerrorCheck(pEnv, nErrorCode); 

    /* Pass the integrality restriction to problem structure 

     * by a call to LSloadVarData()  */ 

     { 

       decl vartype =  "CCCCCCC"    /* w(j) */ 

                       "BBBBBBB"  ; /* x(j) */ 

       nErrorCode = LSloadVarType(pModel, vartype); 

       LSerrorCheck(pEnv, nErrorCode); 

     } 

   } 

  /********************************************************** 

   * Step 5: Perform the optimization using the MIP solver 

   **********************************************************/ 

   decl nStatus; 

   nErrorCode = LSsolveMIP( pModel, &nStatus); 

   LSerrorCheck(pEnv, nErrorCode); 

   { 

  /********************************************************* 

   * Step 6: Retrieve the solution 

   *********************************************************/ 
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      decl i; 

      decl x, MipObj; 

      /* Get the value of the objective and solution */ 

      nErrorCode = LSgetInfo(pModel, LS_DINFO_MIP_OBJ, &MipObj); 

      LSerrorCheck(pEnv, nErrorCode); 

 

      LSgetMIPPrimalSolution( pModel, &x) ; 

      LSerrorCheck(pEnv, nErrorCode); 

      println("*** Optimal Portfolio Objective = ", MipObj); 

      for (i = 0; i < nN/2; i++) 

        println( "Invest ", "%5.2f", 100*x[i], " percent of total 

budget in asset ", 

                i+1 ); 

      print("\n"); 

   } 

  /********************************************************** 

   * Step 7: Delete the LINDO environment 

   *********************************************************/ 

   nErrorCode = LSdeleteEnv( &pEnv); 

} /*main*/ 

After running this program with Ox’s console version, we obtain the output depicted in Figure 11.1.  

 

Figure 11.1 Output for Port.ox 
 

 

 



 

 

          Appendix I:  

List of Abbreviations in 
Progress Logs 

LINDO API's solver routines,  LSsolveMIP and LSsolveGOP in particular, produce progress logs with 

certain abbreviations. These correspond to events where the best-known solution (incumbent) or the 

best-bound is updated with a better value. The following is the list of these events and the 

abbreviations associated with them. Please refer to LSsetModelLogfunc to install a log function to 

enable the displaying of progress logs. 

(*FP): found a new MIP solution with feasibility pump. 

(*AHI):reserved for future use. 

(*SBB):found a new MIP solution in tree reorder. 

(*SE): found a new MIP solution in simple enumeration. 

(*AB): found a new MIP solution in advanced branching. 

(*AH): found a new MIP solution with advanced heuristics. 

(*C):  found a new MIP solution after cuts added. 

(*T):  found a new MIP solution on the top. 

(*SRH): found a new MIP solution in simple rounding heuristics. 

(*SB): found a new MIP solution in strong branching. 

(*K):  found a new MIP solution in knapsack enumerator. 

(*):   found a new MIP solution normal branching. 

(*?-): found a new MIP solution with advanced heuristics (level>10). 

(*N):  found a new incumbent GOP solution. 

(*I):  stored a box with the incumbent solution into the GOP solution list. 

(*F):  determined the final GOP status. 
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Appendix J:  

An R Interface 
Introduction 
R is an open source software for statistical computing and graphics. It is widely used for developing 

statistical software and data analysis, in which optimization problems (e.g. linear and nonlinear 

regression, least square minimization) sometimes also need to be solved.  

rLindo is an R interface to LINDO API. It provides R users the capability to call LINDO API 

functions from R directly so that users can solve relatively arbitrary optimization problems, e.g., linear, 

quadratic, conic, nonlinear, and integer. By combining the power of LINDO API and R, rLindo also 

provides users an easier way for problem data analysis. 

The rLindo package is packed as a .tar.gz file, which is shipped within the LINDO API package under 

the folder /R. Users can also download rLindo from CRAN website:  

http://cran.r-project.org/web/packages/rLindo/index.html. 

Installation 
rLindo currently supports Windows and Linux operating systems. To install the package,  users first 

should have LINDO API 10.0 and R installed. Environment variable LINDOAPI_HOME must be set 

to the installation path of LINDO API (e.g. /opt/lindoapi), and there must be a valid license file, named 

lndapi100.lic, under the folder LINDOAPI_HOME/license, otherwise rLindo will give a “Failed to 

load license key” error. For detailed instruction of the installation, users may  refer to file HOW-TO-

INSTALL-RLINDO.txt, which can be found under folder /R of the LINDO API package.  

Calling Conventions 
rLindo supports most public functions in LINDO API. Function names use the convention of  'r' + 

name of LINDO API function, e.g. rLScreateEnv in the R interface corresponds to LScreateEnv in 

LINDO API. However, all LINDO parameters and constants in rLindo use the same names as in 

LINDO API. Detailed usage of the functions and parameters can be found under folder rLindo/man/. 

Example. Least Absolution Deviation Estimation 
In the following we illustrate the detailed usage of rLindo by giving an example for solving a least 

absolution deviation (LAD) estimation problem, note that the italic part is the output of R. 
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____________________________________________________________________ 

#LAD.R 

################################################################ 

#                       LINDO-API 

#                    Sample Programs 

#                  Copyright (c) 2007 by LINDO Systems, Inc 

# 

#         LINDO Systems, Inc.           312.988.7422 

#         1415 North Dayton St.         info@lindo.com 

#         Chicago, IL 60622             http://www.lindo.com 

################################################################ 

# We have five observations on a dependent variable d and a single 

# explanatory variable e, 

# di   ei 

#  2    1 

#  3    2 

#  4    4 

#  5    6 

#  8    7 

# The LAD problem can be written as a Linear Programming model: 

#    Minimize   U1 + V1 + U2 + V2 + U3 + V3 + U4 + V4 + U5 + V5 

#    Subject to 

#              U1 – V1 = 2 – X0 – 1X1 

#              U2 – V2 = 3 – X0 – 2X1 

#              U3 – V3 = 4 – X0 – 4X1 

#              U4 – V4 = 5 – X0 – 6X1 

#              U5 – V5 = 8 – X0 – 7X1 

#    The U and V variables are nonnegative, X0 and X1 unconstrained. 

 

#load the package 

library(rLindo) 

 

#create LINDO environment object 

rEnv <- rLScreateEnv() 

 

#create LINDO model object within/under the environment 

rModel <- rLScreateModel(rEnv) 

 

#number of variables 

nVars <- 12 

 

#number of constraints 

nCons <- 5 

 

#maximize or minimize the objective function 

nDir <- LS_MIN 

 

#objective constant 

dObjConst <- 0. 

 

#objective coefficients for U1, V1, ..., U5, V5, X0, X1 

adC <- c(1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0.) 

 

#right hand side coefficients of the constraints 

adB <- c( 2., 3., 4., 5., 8.) 
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#constraint types are all Equality 

acConTypes <- "EEEEE" 

 

#number of nonzeros in LHS of the constraints 

nNZ <- 20 

 

#index of the first nonzero in each column 

anBegCol <- c( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20) 

 

#nonzero coefficients of the constraint matrix by column 

adA <- c(1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0, 

         1.0,1.0,1.0,1.0,1.0,1.0,2.0,4.0,6.0,7.0) 

 

#row indices of the nonzeros in the constraint matrix by column 

anRowX <- c(0,0,1,1,2,2,3,3,4,4,0,1,2,3,4,0,1,2,3,4) 

 

#lower bound of each variable (X0 and X1 are unconstrained) 

pdLower <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -LS_INFINITY, -LS_INFINITY) 

 

#load the data into the model object 

rLSloadLPData(rModel, nCons, nVars, nDir, dObjConst, adC, adB, acConTypes,  

              nNZ, anBegCol, NULL, adA, anRowX, pdLower, NULL) 

Number of constraints:       5    le:       0, ge:       0, eq:       5, rn:       

0 (ne:0) 

Number of variables  :      12    lb:      10, ub:       0, fr:       2, bx:       

0 (fx:0) 

Number of nonzeroes  :      20    density:  0.0033(%)     , sb:      10 

 

Abs. Ranges     :         Min.          Max.    Condition. 

Matrix Coef. (A):      1.00000       7.00000       7.00000  

Obj. Vector  (c):      1.00000       1.00000       1.00000  

RHS Vector   (b):      2.00000       8.00000       4.00000  

Lower Bounds (l):  1.0000e-100   1.0000e-100       1.00000  

Upper Bounds (u):  1.0000e+030   1.0000e+030       1.00000  

BadScale Measure: 0 

 

$ErrorCode 

[1] 0 

 

#solve the model. LS_METHOD_FREE means solver chooses the algorithm 

rLSoptimize(rModel, LS_METHOD_FREE) 

Used Method        = 2  

Used Time          = 0  

Refactors (ok,stb) = 3 (100.00,100.00)  

Simplex   Iters    = 5  

Barrier   Iters    = 0  

Nonlinear Iters    = 0  

Primal Status      = 2  

Dual   Status      = 1  

Basis  Status      = 2  

Primal Objective   = 2.6666666666666661  

Dual   Objective   = 2.6666666666666661  

Duality Gap        = 0.000000e+000  

Primal Infeas      = 0.000000e+000  

Dual   Infeas      = 1.110223e-016  
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Basic solution is optimal. 

$ErrorCode 

[1] 0 

 

$pnStatus 

[1] 2 

 

#retrieve value of the objective and display it 

rLSgetDInfo(rModel,LS_DINFO_POBJ) 

$ErrorCode 

[1] 0 

 

$pdResult 

[1] 2.666667 

 

#get primal solution and display it 

rLSgetPrimalSolution(rModel) 

$ErrorCode 

[1] 0 

 

$padPrimal 

 [1] 0.0000000 0.0000000 0.3333333 0.0000000 0.0000000 0.0000000 0.0000000 

 [8] 0.3333333 2.0000000 0.0000000 1.3333333 0.6666667 

 

#get dual solution and display it 

rLSgetDualSolution(rModel) 

 

$ErrorCode 

[1] 0 

 

$padDual 

[1] -0.3333333  1.0000000 -0.6666667 -1.0000000  1.0000000 

 

#delete enviroment and model objects to free memory 

rLSdeleteModel(rModel) 

$ErrorCode 

[1] 0 

 

rLSdeleteEnv(rEnv) 

$ErrorCode 

[1] 0 

_______________________________________________________________________  
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A Python Interface 
Introduction 
Python  is a widely used object-oriented, high-level programming language. Its dynamic semantics, 

simple syntax, high-level data structure, and increased productivity make it very attractive for 

application development.  

pyLindo is a Python interface to LINDO API. It provides Python users the capability to call LINDO 

API functions from Python directly so that users can solve relatively arbitrary optimization problems, 

e.g., linear, quadratic, conic, nonlinear, and integer. The pyLindo package is shipped within the 

LINDO API package under the folder /python.  

Installation 
pyLindo currently supports Windows and Linux operating systems. To install the package, users first 

should have LINDO API 10.0 and Python installed. Environment variable LINDOAPI_HOME must 

be set to the installation path of LINDO API (e.g. /opt/lindoapi), and there must be a valid license file, 

named lndapi100.lic, under the folder LINDOAPI_HOME/license. For detailed instruction of the 

installation, users may refer to file INSTALL, which can be found in the pyLindo package.  

Calling Conventions 
pyLindo supports most public functions in LINDO API. Function names use the convention of 'py' + 

name of LINDO API function, e.g. pyLScreateEnv in the python interface corresponds to LScreateEnv 

in LINDO API. However, all LINDO parameters and constants in pyLindo use the same names as in 

LINDO API. For more details on LINDO API calling conventions and parameters, please refer to 

Chapter 2. 
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Example. Solving an LP model with pyLindo 
In the following we illustrate the detailed usage of pyLindo by giving an example for solving an LP 

model. 

____________________________________________________________________ 

#  A Python programming example of interfacing with LINDO API. 

# 

# 

#  The problem: 

# 

#      Minimize x1 + x2 + x3 + x4 

#      s.t. 

#              3x1              + 2x4   = 20 

#                    6x2        + 9x4  >= 20 

#              4x1 + 5x2 + 8x3          = 40 

#                    7x2 + 1x3         >= 10 

# 

#               2 <= x1 <= 5 

#               1 <= x2 <= +inf 

#            -inf <= x3 <= 10 

#            -inf <= x4 <= +inf 

# 

 

from pyLindo import * 

#model data 

nCons = 4 

nVars = 4 

nDir = 1 

dObjConst = 0.0 

adC = N.array([1.,1.,1.,1.],dtype=N.double) 

adB = N.array([20.0,20.0,40.0,10.0],dtype=N.double) 

acConTypes = N.array(['E','G','E','G'],dtype=N.character) 

nNZ = 9; 

anBegCol = N.array([0,2,5,7,9],dtype=N.int32) 

pnLenCol = N.asarray(None) 

adA = N.array([3.0,4.0,6.0,5.0,7.0,8.0,1.0,2.0,9.0],dtype=N.double) 

anRowX = N.array([0,2,1,2,3,2,3,0,1],dtype=N.int32) 

pdLower = N.array([2,1,-LSconst.LS_INFINITY,-

LSconst.LS_INFINITY],dtype=N.double) 

pdUpper = 

N.array([5,LSconst.LS_INFINITY,10,LSconst.LS_INFINITY],dtype=N.double) 

 

#create LINDO environment and model objects 

LicenseKey = N.array('',dtype='S1024') 

lindo.pyLSloadLicenseString('c:/lindoapi/license/lndapi80.lic',LicenseKey) 

pnErrorCode = N.array([-1],dtype=N.int32) 

pEnv = lindo.pyLScreateEnv(pnErrorCode,LicenseKey) 

 

pModel = lindo.pyLScreateModel(pEnv,pnErrorCode) 

geterrormessage(pEnv,pnErrorCode[0]) 

 

#load data into the model 

print("Loading LP data...") 

errorcode = lindo.pyLSloadLPData(pModel,nCons,nVars,nDir, 

                                 dObjConst,adC,adB,acConTypes,nNZ,anBegCol, 
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                                 pnLenCol,adA,anRowX,pdLower,pdUpper) 

geterrormessage(pEnv,errorcode) 

 

#solve the model 

print("Solving the model...") 

pnStatus = N.array([-1],dtype=N.int32) 

errorcode = lindo.pyLSoptimize(pModel,LSconst.LS_METHOD_FREE,pnStatus) 

geterrormessage(pEnv,errorcode) 

 

#retrieve the objective value 

dObj = N.array([-1.0],dtype=N.double) 

errorcode = lindo.pyLSgetInfo(pModel,LSconst.LS_DINFO_POBJ,dObj) 

geterrormessage(pEnv,errorcode) 

print("Objective is: %.5f" %dObj[0]) 

print("") 

 

#retrieve the primal solution 

padPrimal = N.empty((nVars),dtype=N.double) 

errorcode = lindo.pyLSgetPrimalSolution(pModel,padPrimal) 

geterrormessage(pEnv,errorcode) 

print("Primal solution is: ") 

for x in padPrimal: print("%.5f" % x) 

 

#delete LINDO model pointer 

errorcode = lindo.pyLSdeleteModel(pModel) 

geterrormessage(pEnv,errorcode) 

 

#delete LINDO environment pointer 

errorcode = lindo.pyLSdeleteEnv(pEnv) 

geterrormessage(pEnv,errorcode) 

______________________________________________________________________ 

 

The python output of the above sample will be: 
____________________________________________________________________ 

>>>  

Loading LP data... 

Solving the model... 

Objective is: 10.44118 

 

Primal solution is:  

5.00000 

1.17647 

1.76471 

2.50000 

>>>  

______________________________________________________________________ 

 

Please refer to python/example folder for other model classes and samples.  



 

 



REFERENCES    795 

 

References  
 

Birge, J. and F. Louveaux(1997), Introduction to Stochastic Programming, Springer. 

 

L'Ecuyer, P., R. Simard, E. Chen, and W. Kelton(2002), "An Object-Oriented Random-Number 

Package  with Many Long Streams and Substreams", Operations Research, vol. 50, no. 6, pp. 1073-

1075. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



796  

 

 



 

 

Acknowledgements 
 

Portions of LINDO Systems products are based on the independent work of: 

 

LAPACK Users' Guide, E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du 

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.  

LAPACK Users' Guide. SIAM, third edition, 1999, Philadelphia, PA, ISBN 0-89871-447-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

INDEX 
1 

100% rule, 600 

A 

absolute optimality tolerance, 92 

absolute value, 454, 494, 512 

Add Module command, 363, 594 

adding 
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D 
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loading, 184 
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E 
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variables, 361 
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EP_PSN, 455 
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EP_RADIANS, 469 
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EP_SETS, 471 
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EP_TANH, 461 

EP_TDENS, 469 

EP_TRIADENS, 469 

EP_TRIAINV, 459 
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EP_UNIFM, 466 
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EP_USRCOD, 459 
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EP_WBDENS, 469 
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EP_XEXPNAX, 462 
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constraints, 157, 219, 220, 257, 722 

error messages, 625 

operators, 454, 650 

quadratic programs, 405 

Erlang loss, 456 

error codes, 288, 289, 625, 684 

error handling routines, 61, 288, 367, 684 
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debugging, 605 
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MATLAB, 774 
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F 

F density, 467 

F distribution, 457, 578 

false, 455 

farming problem, 571 

feasibility tolerance, 63, 77 

fields, 388 

file formats, 28 

ASCII text format, 29 

column format, 260, 261, 740 

error messages, 625 

LINDO, 649 

LINGO, 28, 36, 681 

MPI, 30, 519, 625, 655, 657, 665, 677 

MPS, 28, 29, 224, 637 

row format, 257, 649 

file input, 8 

fileLP, 373 

finance, 410 

financial portfolio, 431 

finite differences, 488 

black-box interface, 499 

coefficients, 160 

derivatives, 74, 78, 319, 769 

gradients, 320, 489 

instruction-list interface, 493 

finite source queue, 457 

first order approximations, 74 

fixed variables, 91, 99, 637 

flow cover, 88, 312 

forcing constraints, 495 

form module, 593 

formatted MPS file, 29 

formulation data, 219, 220, 222, 722, 723, 724 

forward transformation, 291, 762 

four vector representation, 14 

FREE, 651, 652 

free variables, 637, 651, 652 

frequency of callbacks, 61 

frequency of cuts, 89 

frontend, 451 

FTRAN, 291, 762 

full rank, 405 

Funcalc(), 487 

functions 

definitions, 19 

objective, 65, 397, 649, 650 

postfix notation, 454 

prefixes, 19 

prototypes, 356 

functions to callback, 499, 585 

definitions, 312, 766 

frequency, 61 

MIPs, 320, 385, 770 

G 

Gamma density, 467 

Gamma distribution, 463, 578 

gamma function, 455 

Gamma inverse, 463 

gaussian distributions, 497 

GCD cuts, 88, 312 

general integers, 222, 385, 651, 652, 724 

general model and solution information, 134 

generalized upper bound, 88 

geometric distribution, 467 

Geometric distribution, 464, 578 

geometric distribution inverse, 464 

getting 

constraints, 217, 219, 720, 722 

data, 217, 585, 720 

parameters, 47, 48, 166, 686, 687, 688 

variable types, 736 

GIN, 222, 385, 651, 652, 724 

global data, 24, 585, 593, 595 

global optimality, 76 

global optimization 

cuts, 312 

non-convex models, 497 

nonlinear models, 494, 498 

parameters, 106, 116 

quadratic programs, 405 

solving, 188, 710 

global optimization information, 142 

global solver, ix, 3, 117, 498, 519 

Gomory cuts, 88, 312 

Gradcalc(), 489 

gradient, 3, 77, 159, 451, 489, 515, 698 

greater than, 157, 219, 220, 257, 722 

constraints, 204 

errors, 625 

example, 358, 391, 397 

operator, 650 

postfix notation, 454 

grey-box interface, 452, 490 

example, 525, 532 

GUB cuts, 88, 312 

Gumbel distribution, 464, 578 

Gumbel inverse, 464 

H 

handler code, 388 

hashing, 325 

header file, 24, 61, 356, 357, 362, 672 
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here-and-now, 145 

heuristic, 91, 93 

histogram, 246 

Hungarian notation, 19, 672 

Hyper geometric, 457, 468 

Hyper geometric inverse, 464 

Hypergeometric distribution, 578 

I 

IF( ) function, 455 

IIS, 35, 601, 680 

finding, 278 

getting, 283, 759 

MATLAB, 755 

Iman-Conover method, 575 

incumbent solution, 107, 108, 312, 595 

indefinite, 405 

independent block structure, 611 

index 

of a row, 221, 231, 261, 370, 724, 733, 740 

of constraints, 166, 219, 292, 293, 297, 298, 763, 

764 

inequality operators, 650 

infeasibilities, 312 

MATLAB, 755, 759 

primal infeasibility, 587, 766 

rounded solutions, 652, 653 

solver status, 599 

infeasible solution, 35, 283, 284, 601, 680 

infinity, 651 

infix notation, 452 

inheriting, 46 

initial values, 181, 185, 234, 706, 707, 709, 735 

initialization of solver, 181, 706 

inner product, 460 

Input/Output, of models, 28 

instruction list, 424 

instruction-list interface, 154, 155, 452, 694 

example, 505 

instructition format, 492 

INT, 651, 652 

integer optimization information, 138 

integer part, 455 

integer programming. See also mixed-integer 

programming 

callback functions, 320, 595, 596, 770 

constraint cuts, 91 

cut level, 88, 89 

examples, 385, 599 

getting, 48, 50 

heuristics, 93 

internal index, 233, 721, 734 

loading, 163 

optimality tolerance, 92 

setting, 53, 54 

slack values, 202, 204, 717 

integer variables 

binary, 651, 652 

block structure, 184 

bounded, 637 

branching priorities, 182, 709 

general, 222, 385, 651, 652, 724 

integer feasible tolerance, 92, 96 

limit, 116 

parameters, 46 

solving for, 186, 200, 210, 212 

variable status, 195, 199, 280 

integrality, 88, 393, 399 

interface, 451, 585 

black-box, 452, 483, 497, 499 

callback function, 592 

grey-box, 490, 525, 532 

instruction list, 452, 505 

java, xi 

MATLAB, xi, 669 

nonlinear, 451 

interior point algorithm, 405 

interior point solver, 66, 74, 97, 117, 186, 359 

Interior-Point Solver Programs 

parameters, 83 

internal error, 626 

internal index 

constraints, 721 

getting, 219, 222 

variables, 233, 234, 734, 735 

interrupt solver, 61, 586, 594, 595, 628 

inverse of distribution, 459 

inverse of standard Normal, 459, 461 

inverse transform of cdf, 578 

investing, 414 

irreducibly inconsistent set, 35, 601, 680 

finding, 278 

getting, 283, 759 

MATLAB, 755 

irreducibly unbounded set, 35, 604, 680 

finding, 279 

getting, 285, 760 

MATLAB, 755 

parameters, 119 

iterations, 312 

barrier, 596 

callback functions, 593, 594 

iteration limit, 64, 78, 80, 627 

nonlinear, 596 

simplex, 596 

IUS, 35, 601, 604, 680 

finding, 279 

getting, 285, 760 

MATLAB, 755 
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J 

Jacobian, 224, 225, 227, 493, 698, 726, 727, 729 

java interface, xi 

JNI, xi 

joint chance constraints, 554 

K 

Kall, P., 568 

K-best solutions, 210 

Kendall rank correlation, 558 

Kendall tau, 575 

Kilosa farmer, 571 

knapsack cuts, 88, 312 

knapsack solver, 93 

L 

LAD estimation, 787 

Lagrangean relaxation, 400 

Laplace density, 468 

Laplace distribution, 464, 578 

Laplace distribution inverse, 464 

Latin hypercube sampling, 124, 338, 557, 558, 560, 

579 

Latin square sampling, 124, 338, 557, 558, 560, 579 

lattice cuts, 88, 312 

leading blanks, 637 

least absolution deviation, 787 

least squares, 462 

left-hand sides, 651 

arguments, 672 

length of column, 14, 261, 391, 399 

length of objective, 513 

less than, 157, 219, 220, 257, 722 

constraints, 204 

errors, 625 

example, 358, 369 

operator, 650 

postfix notation, 454 

license 

barrier, 117, 359, 407, 425 

C++ example, 7 

educational, 117 

error messages, 627, 628 

expiration, 116 

global, 117 

license key, 24, 26 

MATLAB, 673, 675 

nonlinear, 117, 407, 425 

reading, 27 

runtime, 117 

trial, 116 

license key, 7 

lifting cuts, 88 

limits 

branch-and-bound, 100 

constraints, 654 

integer variables, 116 

iteration, 64, 78, 80, 627 

license expiration, 116 

time limit, 89, 97, 113, 116, 628 

variables, 116 

LINDO contact information, xii 

LINDO format, 28, 649 

reading, 28, 676 

writing, 33, 36, 678, 681 

lindo.bas, 363 

lindo.h, 356, 362, 363, 595 

lindo.par, 10 

linear loss function, 455, 456 

linear models, 497 

linear programming, 1, 96, 353 

getting data, 723 

loading, 696 

linear solver, 2 

linearity, 76, 452, 495 

linearization, xi, 3, 89, 494, 513 

LINGO format, 28, 36 

writing, 681 

linking, 360 

linking constraints, 401 

linking variables, 401 

Linux, 10, 787, 791 

LMBinPack.m, 776 

LMreadf.m, 775 

lndapi40.lic, 7, 27 

loading 

models, 156, 696 

variables, 702, 703, 704, 705 

Loading Core Model, 542 

Loading the Stochastic Structure, 547 

Loading the Time Structure, 545 

locally optimal, 496, 515 

location, 586 

logarithm, 454, 488 

Logarithmic distribution, 464, 578 

Logarithmic inverse, 464 

Logarithmic mass function, 468 

logical operators, 494 

Logistic density, 468 

Logistic distribution, 465, 578 

Logistic inverse, 465 

Lognormal density, 468 

Lognormal distribution, 465, 578 

Lognormal inverse, 465 

long variable, 363 
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loose inequality operators, 650 

Louveaux, F., 564 

lower bounds 

adding, 261, 740 
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LSsetModelDouParameter(), 54, 495, 691 

LSsetModelIntParameter(), 54, 493, 495, 691 

LSsetModelLogFunc(), 771 

LSsetModelParameter(), 53, 690 

LSsetNumStages (), 167 

LSsetObjPoolInfo(), 180 

LSsetRGSeed (), 330 

LSsetUsercalc(), 323, 491, 570, 771 

LSsetxxxyyyParameter(), 61 

LSsolveFileLP, 373 

LSsolveFileLP(), 187 

LSsolveGOP(), 186, 188, 192, 710 

LSsolveHS(), 193 

LSsolveMIP(), 186, 190, 191, 258, 385, 711 

C++ example, 393 

nonlinear programming, 514 

quadratic programming, 407, 426, 443 

Visual Basic example, 399 

LSsolveMipBnp(), 194 

LSsolveSP (), 191 

LSstocInfo 

LS_IINFO_STOC_SIM_ITER, 145 

LSwriteBasis(), 32 

LSwriteDeteqLINDOFile (), 41 

LSwriteDeteqMPSFile (), 41 

LSwriteDualLINDOFile(), 33, 678 

LSwriteDualMPSFile(), 34, 679 

LSwriteEnvParameter(), 56 

LSwriteIIS(), 35, 680 

LSwriteIUS(), 35, 680 

LSwriteLINDOFile(), 36, 650, 681 

LSwriteLINGOFile(), 36, 681 

LSwriteModelParameter(), 56 

LSwriteMPIFile(), 30 

LSwriteMPSFile(), 37, 637, 682 

LSwriteNodeSolutionFile (), 43 

LSwriteScenarioLINDOFile (), 45 

LSwriteScenarioMPIFile (), 44 

LSwriteScenarioMPSFile (), 44 

LSwriteScenarioSolutionFile (), 43 

LSwriteSMPIFile(), 40 

LSwriteSMPSFile (), 40 

LSwriteSolution(), 38, 683 

LSXgetLPData(), 772 

LSXloadLPData(), 773 

lump sum, 456 

M 

Macintosh, 10 

macros, 356 

_LINDO_DLL_, 362 

APIERRORSETUP, 357 

LS_DINFO_POBJ, 359 

makefile.win, 361, 593 

market effect, 431 

Markowitz model, 410 

mathematical guarantee, 495 

MATLAB, xi, 669 

matrix, 12, 157, 221, 359, 392, 398, 696, 723 

block structured, 183, 611, 708 

covariance, 410 

nonlinear, 160 

quadratic, 160, 229, 262 
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sparse, 451 

Matrix Operations, 299 

maximization, 65, 156, 220, 494, 696, 723, 772, 

773 

memory, 315, 326, 327, 588, 627 

memory management routines, 325 

MEX-file, 669 

Microsoft Foundation Class, 386 

minimization, 65, 156, 220, 494, 696, 723, 772, 773 

minus, 650 

mixed-integer programs, 200, 210, 212 

branch-and-bound, 190, 711 

callback functions, 320, 385, 770 

cut level, 88, 89 

data loading, 163 

example, 385, 599 

parameters, 86 

query routines, 393, 400 

solution, 714 

mixed-integer solver, 2 

mod function, 455, 456 

model 

analyzing, 599 

block structured, 277, 280, 611 

continuous, 186, 204, 710 

convex, 494, 515 

creating, 25, 353, 367, 673 

data, 24 

deleting, 25, 26, 674 

dimensions, 46, 369 

dual, 33, 34, 679 

I/O routines, 28 

loading routines, 153, 156, 693 

modification routines, 256, 737 

monitoring, 585, 595 

nonlinear, 451 

primal, 33 

query routines, 215, 718 

reading, 28 

smooth, 494 

writing, 28 

model analysis information, 144 

model and solution analysis routines, 754 

modification routines, 256, 737 

modifying variable types, 753 

modules, 593 

modulo, 392, 398 

Monte Carlo Sampling, 557 

MPI, 424 

MPI format, 30, 452, 519, 625, 655, 657, 665, 677 

SOCP, 471, 474 

MPS file ambiguities, 648 

MPS format, 28, 637 

debugging, 601–10 

error messages, 625 

extended, 406 

LMreadf.m, 775 

names, 224 

reading, 29, 677 

SOCP, 424, 439 

writing, 34, 37, 678, 682, 683 

MS Windows, 10 

multicore, 617 

multinomial distribution, 459 

multinomial inverse, 466 

Multiobjective Linear Programs and Alternative 

Optima, 380 

multiple choice, 641 

multiple threads, 618 

multiplication, 454 

multistart solver, ix, 3, 74, 78, 312, 494, 496, 497, 

515, 587 

mxLINDO, 669 

routines, 672 

N 

names 

column, 158, 697 

constraints, 158, 223, 649, 721 

data, 158, 223, 697, 725 

getting, 223, 233, 234, 734, 735 

hashing, 325 

LINDO files, 649 

loading, 158, 164 

MATLAB, 734 

MPS files, 637 

row, 158, 697 

natural logarithm, 454 

necessary set, 602, 604 

negation, 454, 493 

Negative binomial, 465, 468 

Negative binomial distribution, 578 

Negative binomial inverse, 465 

negative semi-definite, 405 

negative variables, 637, 651, 652 

Nested Benders Decomposition, 562 

New Project command, 393 

newsvendor problem, 540, 542, 548 

nmake, 360, 361, 593 

node selection rule, 94, 110 

non-convex models, 494, 498 

nonlinear programs, ix, 76, 451 

constraint data, 224, 726, 728, 729 

getting data, 225, 727 

iterations, 312 

loading data, 159, 698 

objective data, 226 

optimization, 186 

parameters, 74, 116, 117 
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variable data, 227 

nonlinear solver, 3, 405 

nonoptimal solutions, 652, 653 

non-smooth models, xi, 494, 498 

nonzero coefficients 

adding, 257, 722, 738 

C++ example, 392 

coefficient matrix, 221, 392, 398 

columns, 261, 391, 392, 397, 398, 740 

getting, 219, 723 

loading, 157, 696 

number of, 219, 222, 359, 696, 722, 724 

sparse format, 153, 693 

storing, 370 

variables, 222 

vectors, 290, 761, 762 

Visual Basic example, 398 

norm minimization, 426 

Normal cdf, 455 

normal density, 459 

Normal density, 468 

Normal distribution, 578 

Normal inverse, 466 

not equal to, 454 

notation 

Hungarian, 19, 672 

postfix, 452, 512 

Reverse Polish, 452 

NP-hard, 498 

numeric error, 111, 627 

O 

object oriented, 386 

objective 

adding, 261, 740 

bounds, 222, 596, 724 

C++ example, 358, 391 

constant value, 154, 156, 220, 270, 271, 694, 

696, 723, 750, 772, 773 

cuts, 312 

direction, 358, 391, 397 

displaying, 359 

dual value, 312, 587 

function, 65, 397, 649, 650 

getting, 220, 222, 723, 724, 772 

integrality, 88 

length, 513 

loading, 156, 696, 773 

modifying, 272, 750 

name, 223, 725 

nonlinear data, 226 

parameters, 91 

primal value, 312 

printing, 65 

ranges, 286, 599, 760 

row, 391 

sense, 625 

Visual Basic example, 397 

operators, 452, 650 

optimal solution, 353, 393, 405, 714 

optimality tolerance, 91, 92 

optimization, 186, 353, 585, 710 

optimization method, LP, 97 

optimization routines, 186, 710 

options, supported, 26 

order of precedence, 650 

Ox statistical functions, 777 

oxLINDO, 777 

P 

parallel, 618 

parallel processing, 400 

parameters, 46, 61, 133, 586, 628 

getting, 49, 686, 687, 688 

setting, 52, 686 

parentheses, 452, 496, 650 

Pareto distribution, 465, 469, 578 

Pareto inverse, 465 

partial derivatives 

calculating, 293, 295, 489 

getting, 225, 226, 727 

setting, 319, 769 

partial pricing, 65 

passing data, 370 

password. See license key 

Pearson correlation, 558, 575 

percent function, 454 

pFunStrategy(), 620 

PI, 455 

piecewise linear, 642 

plant location, 88, 312 

plus, 650 

Pluto Dogs, 386 

Poisson, 456 

Poisson distribution, 578 

Poisson inverse, 466 

Poisson probability, 469 

portfolio selection, 410, 780 

POSD, 471 

positive definite, 405 

positive semi-definite, 405, 471, 575 

postfix notation, 452, 512 

post-solving, 109 

power function, 454 

precedence order, 452, 496, 650 

prefixes, 19 

preprocessing, 67, 75, 92, 95, 99, 109 

pre-sampling, 557 
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present value, 456, 458 

pricing, 65, 66 

primal 

infeasibility, 312, 587, 766 

model, 33, 34 

objective value, 312 

simplex, 65, 74, 88, 186, 359 

solution, 200, 202, 763 

values, 203, 715 

print level, 76, 95 

printing objective value, 65 

priorities, 182, 185, 706, 709 

probability, 455 

probing, 75, 95, 99 

product form inverse, 2 

product mix, 363 

progress of solver, 585 

protocol cdecl, 586 

prototypes, 356 

PSL, 455 

PUSH instruction, 459, 462 

put option, 566 

Python, 791 

Q 

QMATRIX section, 406, 424 

QSECTION, 406 

quadratic constraint, 644 

quadratic objective, 643 

quadratic program, 265, 437, 637, 699, 730, 731, 

744 

constraints, 405 

data, 228, 229 

examples, 405 

loading, 160, 164 

MATLAB, 774 

multistart, 497 

quadratic programs as SOCP, 437 

quadratic recognition, x, 78 

quadruplet entry for QC models, 407 

QUADS, 406 

query routines, 195 

callback functions, 312, 766 

errors, 626 

MIP models, 393, 400 

mxLINDO, 718 

solver status, 586 

R 

R  interface, 787 

radians, 455 

radians to degrees, 469 

random, 328 

random number, 457 

ranges 

analysis, 282, 286, 599, 758 

bounds, 281 

names, 223, 725 

vectors, 158, 697 

rank correlation, 558 

reading 

LINDO format, 676 

MATLAB, 775 

models, 28 

MPS format, 677 

real bounds, 96 

real numbers, 154, 694 

recourse models, 539 

reduced costs, 91, 99, 203, 716 

reduced gradient solver, 74 

reduction, 77 

cuts, 312 

dual, 75, 95, 99 

of coefficients, 75, 88, 95, 99 

refactorization, 61 

reformulation, algebraic, 110 

relative optimality tolerance, 91, 92 

reproducibility, 623 

retrieving parameters, 46, 686 

Reverse Polish notation, 452 

right-hand side 

adding, 257, 738 

arguments, 672 

constraints, 358, 650, 751 

getting, 166, 219, 220, 722, 723 

increase/decrease, 282 

loading, 157, 696 

modifying, 272 

names, 223, 725 

values, 291 

vector, 158, 164, 697 

Visual Basic example, 369 

rLindo, 787 

rotated quadratic cone, 645 

round, 469 

rounded solutions, 111, 652, 653 

routines 

auxiliary, 772 

callback management, 312, 766 

creation, 24 

deletion, 24, 265, 268, 744, 746 

errors, 626 

memory management, 325 

MIP models, 393, 400 

model loading, 153, 693 

model modification, 256, 737 

mxLINDO, 672 

optimization, 186, 710 
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query, 195, 215, 718 

random number generation, 328 

sampling routines, 334 

solver status, 586 

row 

format, 257, 649 

index vector, 13, 14 

indices, 221, 231, 261, 370, 724, 733, 740 

names, 158, 697 

nonlinear, 159, 225, 698, 727 

objective, 391 

separable, 488 

runlindo, 8 

running an application, 361 

runtime license, 117 

S 

sampl.c, 361 

sampl.exe, 361, 362 

sampl.obj, 362 

Sample Chance-Constrainted Problems, 568 

Sample SP Problems, 554, 564 

sample without replacement, 468 

samplec.mak, 361 

samplevb.frm, 593, 594 

sampling, 557 

sampling routines, 334 

SC bound type, 640 

scatter search, 496 

scenario tree, 561 

Scenario Tree, 540 

SDP, 471 

SDP constraint, 471 

second order cone, 645 

second-order cone 

examples, 421 

second-order-cone optimization, 421 

selective constraint evaluation, 75 

semi-continuous variable, 640 

semi-definite program, 471 

sense, of objective, 625 

sensitivity analysis, 599 

separable, 488 

serial number, 26 

setting parameters, 46, 52, 686 

Setting up SP Models, 542 

sifting, 372 

sign function, 455 

simple lower bound, 203 

simple lower/upper bound, 651, 653 

simplex method, 88, 181, 706 

dual, 66, 186, 359 

iterations, 312 

primal, 65, 186, 359 

Simplex method, 2 

sine, 455 

size of version, 26, 116, 627, 628 

slack values, 202, 204, 717 

SLB, 651, 653 

SLP pricing, 75, 183 

smooth models, xi, 494, 498 

SOCP 

MPI format, 471, 474 

MPS format, 424, 439 

SOCP Constraints, 433 

SOCP Form, 431 

Solaris, 10 

solution, 353, 393, 714 

analyzing, 599 

dual, 200 

incumbent, 107, 108, 312, 595 

infeasible, 35, 283, 284, 601, 680 

nonoptimal, 652, 653 

primal, 200, 202, 763 

query routines, 195, 711 

rounded, 652, 653 

unbounded, 35, 601, 604, 680 

writing, 38, 683 

solver, 451 

barrier, 61, 66, 74, 97, 117, 186, 359 

branch-and-bound, 190, 191, 315, 393, 399, 519, 

711, 767 

enumeration, 93 

global solver, ix, 188, 192, 498, 519, 710 

initialization, 181, 706 

interrupt, 61, 586, 594, 595, 628 

knapsack, 93 

multistart, ix, 3 

multistart solver, 515 

nonlinear, ix, 76, 186, 405 

progress, 585 

quadratic, x 

solver status, 385, 586, 596, 599 

type, 625 

Solvers with built-in Parallel Algorithms, 622 

Solving large linear programs using Sprint, 372 

Solving MIPs Concurrently, 619 

Solving MIPs using BNP, 400 

SOS, 641 

SOS2 set, 642 

sparse matrix representation, 12–14, 153, 451, 693 

Spearman rank correlation, 558, 575 

Special Ordered Sets, 641 

splitting lines, 650 

sprint, 372 

square root, 454 

stable distribution, 470 

stack based computer, 453 

staffing model, 385 
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stage, 42, 43, 123, 146, 147, 167, 168, 169, 173, 

206, 210, 235, 236, 241, 244, 245, 561 

standard deviation, 458 

standard Normal cdf, 455 

standard Normal inverse, 459, 461 

standard Normal pdf, 462 

start, column, 13, 14, 391, 397 

starting basis, 78, 181, 706 

starting points, 155, 186, 497, 695, 707, 709 

statistical computing, 787 

status of variables, 195, 199, 280 

stdev, 458 

steepest edge pricing, 66, 75 

stochastic information, 145 

stochastic programming, 497, 537 

Stochastic Programming, 537 

stochastic solver, x 

storing data, 24 

strong branching, 96 

structure creation/deletion routines, 24, 672 

Student-t distribution, 578 

Student-t inverse, 466 

SUB, 651, 653 

subtraction, 454 

successive linear programming, 3 

sufficient set, 283, 285, 602, 604, 759, 760 

summation, 458 

supported options, 26 

symmetric, 645 

symmetric matrix., 408 

symmetric stable distribution, 470 

syntax, 363, 649 

T 

t distribution, 456, 469 

tangent, 455 

text format (ASCII), 29 

Thread Parameters, 617, 618 

thread safe, 585, 595 

threads, 403 

three vector representation, 13 

time limit, 89, 97, 113, 116, 120, 628 

title, 158, 223, 651, 654, 697, 725 

tolerances, 63, 77, 91, 92, 96, 107 

traffic delay, 432 

transformation 

backward, 290, 761 

forward, 291, 762 

trial license, 116 

triangular density, 469 

triangular distribution, 459 

Triangular distribution, 466 

triangular inverse, 466 

true, 455 

types of constraints 

adding, 257, 738 

C++ example, 358 

errors, 625 

getting, 215, 217, 219, 220, 718, 720, 722, 723, 

772 

loading, 157, 696, 773 

modifying, 748 

types of cuts, 88, 89, 91 

types of data, 19, 46, 357 

U 

unbounded, 35, 599, 601, 604, 653, 680 

MATLAB, 755, 760 

unformatted MPS file, 29, 625 

uniform density, 469 

uniform distribution, 466 

Uniform distribution, 578 

uniform distribution inverse, 459 

unsupported features, 627 

upper bounds 

adding, 261 

best, 279 

getting, 221 

LINDO files, 651 

loading, 157 

MATLAB, 695, 696, 723, 740, 772, 773 

MIPs, 90 

modifying, 274, 753 

MPS files, 637 

nonlinear programs, 156, 489 

objective, 222, 724 

SUB, 651, 653 

Visual Basic example, 370 

upper triangle, 408 

USER function, 457 

user interface, 451, 585, 592 

Usercalc(), 491 

user-defined function, 525 

V 

value vector, 13 

Value-At-Risk, 437 

variables 

adding, 257, 260, 740 

artificial, 63, 77 

binary, 29, 222, 651, 652, 724 

block structure, 184 

bounded, 157, 221, 261 

bounded, MATLAB, 695, 696, 723, 740, 772, 

773 

branch-and-bound, 186 

branching on, 96, 163, 706 
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branching priorities, 182, 709 

coefficients, 222, 724 

continuous, 186, 200, 210, 496, 653 

decision, 391, 397 

defining, 511 

deleting, 268, 746 

discrete, 496 

displaying, 359 

dual, 196, 712, 713 

environment, 361 

errors, 628 

fixed, 91, 99, 637 

free, 637, 651, 652 

general integer, 222, 385, 651, 652, 724 

getting, 222, 724 

index of, 222 

initial values, 185, 707, 709 

integer, 200, 210, 212, 637 

integer feasible tolerance, 92, 96 

internal index, 233, 234, 268, 734, 735, 746 

left-hand sides, 651 

limit, 116 

loading, 702, 703, 704, 705 

long, 363 

MIPs, 385, 393 

modifying, 274 

name hashing, 325 

names, 158, 164, 223, 233, 234, 637, 649, 725, 

734, 735 

negative, 637, 651, 652 

nonlinear, 116, 159, 225, 227, 698, 727 

number of, 154, 156, 693, 694, 696, 723 

primal, 203, 715 

priorities, 182 

quadratic, 160, 262 

reduced costs, 203, 204, 716 

slack/surplus values, 63, 77, 202, 204, 717 

splitting lines, 650 

status, 195, 199, 280 

types of, 162, 163, 222, 235, 701, 702, 704, 705, 

724, 736, 753 

values, 371 

variance reduction, 579 

VB, 371 

VB modules, 593 

vcvars32.bat, 361 

Vector OR, 458 

Vector Push, 461 

vectors, 13, 14, 158, 164, 290, 451, 452, 697, 740 

versions, 26, 67, 116, 407, 425, 627, 628 

violated constraints, 63, 77 

Visual Basic, 318, 320 

Visual Basic example, 363, 393, 593 

Visual Basic for Applications, 593 

Visual C++ 6, 360 

Visual C++ example, 386 

W 

wait-see, 124, 145, 588 

warm start, 326, 327, 497, See also initial values 

Weibull density, 469 

Weibull distribution, 466, 578 

Weibull distribution inverse, 466 

wizard, 388 

Workings of the IIS Finder, 603 

wrap function, 456 

wrapping, 392, 398 

writing 

dual, 678, 679 

LINDO format, 650, 681 

LINGO format, 681 

models, 28 

MPS format, 678, 682, 683 

solutions, 38, 683 
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