

LINDO

API 10.0
User Manual

LINDO Systems, Inc.
1415 North Dayton Street, Chicago, Illinois 60642

Phone: (312)988-7422 Fax: (312)988-9065
E-mail: info@lindo.com

COPYRIGHT
LINDO API and its related documentation are copyrighted. You may not copy the LINDO API

software or related documentation except in the manner authorized in the related documentation or

with the written permission of LINDO Systems, Inc.

TRADEMARKS
LINDO is a registered trademark of LINDO Systems, Inc. Other product and company names

mentioned herein are the property of their respective owners.

DISCLAIMER
LINDO Systems, Inc. warrants that on the date of receipt of your payment, the disk enclosed in the

disk envelope contains an accurate reproduction of LINDO API and that the copy of the related

documentation is accurately reproduced. Due to the inherent complexity of computer programs and

computer models, the LINDO API software may not be completely free of errors. You are advised to

verify your answers before basing decisions on them. NEITHER LINDO SYSTEMS INC. NOR

ANYONE ELSE ASSOCIATED IN THE CREATION, PRODUCTION, OR DISTRIBUTION OF

THE LINDO SOFTWARE MAKES ANY OTHER EXPRESSED WARRANTIES REGARDING

THE DISKS OR DOCUMENTATION AND MAKES NO WARRANTIES AT ALL, EITHER

EXPRESSED OR IMPLIED, REGARDING THE LINDO API SOFTWARE, INCLUDING THE

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

OR OTHERWISE. Further, LINDO Systems, Inc. reserves the right to revise this software and related

documentation and make changes to the content hereof without obligation to notify any person of such

revisions or changes.

Copyright 2016 by LINDO Systems, Inc. All rights reserved.

Printing 1

Published by

1415 North Dayton Street

Chicago, Illinois 60642

Technical Support: (312) 988-9421

E-mail: tech@lindo.com

http://www.lindo.com

http://www.lindo.com/

iii

TABLE OF CONTENTS
TABLE OF CONTENTS .. iii
Preface .. ix
Chapter 1: .. 1
Introduction .. 1

What Is LINDO API? .. 1
Linear Solvers ... 2
Mixed-Integer Solver... 2
Nonlinear Solver ... 3
Global Solver .. 3
Stochastic Solver .. 3

Installation .. 3
Windows Platforms ... 4
Unix-Like Platforms ... 4

Updating License Keys ... 7
Solving Models from a File using Runlindo .. 8
Sample Applications ... 11
Array Representation of Models ... 11

Sparse Matrix Representation .. 12
Simple Programming Example ... 15

Chapter 2: .. 19
Function Definitions ... 19

Common Parameter Macro Definitions .. 20
Structure Creation and Deletion Routines .. 24
License and Version Information Routines .. 26
Input-Output Routines .. 28
Parameter Setting and Retrieving Routines ... 46

Available Parameters.. 61
Available Information .. 133

Model Loading Routines ... 153
Solver Initialization Routines .. 181
Optimization Routines .. 186
Solution Query Routines .. 195
Model Query Routines .. 215
Model Modification Routines .. 256
Model and Solution Analysis Routines ... 277
Error Handling Routines ... 288
Advanced Routines .. 290

Matrix Operations ... 299
Callback Management Routines .. 312
Memory Management Routines ... 325
Random Number Generation Routines .. 328
Sampling Routines ... 334
Date and Time Routines ... 349

Chapter 3: .. 353
Solving Linear Programs ... 353

iv TABLE OF CONTENTS

A Programming Example in C .. 353
A Programming Example in Visual Basic ... 363
VB and Delphi Specific Issues ... 371
Solving Large Linear Programs using Sprint .. 372

Solving Linear Programs using the –fileLP option in Runlindo 373
A Programming Example in C .. 374

Multiobjective Linear Programs and Alternative Optima .. 380
Chapter 4: Solving Mixed-Integer Programs ... 385

Staffing Example Using Visual C++ ... 386
Staffing Example Using Visual Basic ... 393
Solving MIPs using BNP .. 400
Solving MIPs using the –bnp option in Runlindo .. 400
A Programming Example in C .. 402

Chapter 5: Solving Quadratic Programs ... 405
Setting up Quadratic Programs .. 406

Loading Quadratic Data via Extended MPS Format Files .. 406
Loading Quadratic Data via API Functions .. 407

Sample Portfolio Selection Problems ... 410
Example 1. The Markowitz Model: ... 410
Example 2. Portfolio Selection with Restrictions on the Number of Assets Invested: .. 414

Chapter 6: Solving Conic Programs .. 421
Second-Order Cone Programs... 421
Setting up Second-Order Cone Programs ... 424

Loading Cones via Extended MPS Format Files .. 424
Loading Cones via API Functions .. 426
Example 3: Minimization of Norms: .. 426
Converting Models to SOCP Form ... 431
Example 4: Ratios as SOCP Constraints: .. 433
Quadratic Programs as SOCP ... 437

Semi-Definite Programs ... 438
Loading SDP via SDPA Format Files ... 439
Loading SDPs via API Functions .. 443

Chapter 7: Solving Nonlinear Programs .. 451
Instruction-List/MPI Style Interface .. 452

Postfix Notation in Representing Expressions ... 452
Supported Operators and Functions .. 454
Inputting SDP/POSD Constraints via MPI File/Instruction List 471
Inputting SDP/POSD Constraints via a C Program .. 474

Black-Box Style Interface ... 483
Loading Model Data.. 484
Evaluating Nonlinear Terms via Callback Functions .. 486

Grey-Box Style Interface .. 490
Instruction Format ... 492
Example 1 ... 492
Example 2 ... 492
Example 3 ... 493

Differentiation ... 493
Solving Non-convex and Non-smooth models ... 494

Linearization ... 494
Multistart Scatter Search for Difficult Nonlinear Models ... 496

TABLE OF CONTENTS v

Global Optimization of Difficult Nonlinear Models .. 498
Sample Nonlinear Programming Problems .. 499

Example 1: Black-Box Style Interface: ... 499
Example 2: Instruction-List Style Interface ... 505
Example 3: Multistart Solver for Non-Convex Models ... 515
Example 4: Global Solver with MPI Input Format ... 519
Example 5: Grey-Box Style Interface ... 525
Example 6: Nonlinear Least-Square Fitting .. 532

Chapter 8: .. 537
Stochastic Programming ... 537

Multistage Decision Making Under Uncertainty .. 537
Multistage Recourse Models .. 539
Scenario Tree ... 540
Setting up SP Models: .. 542

Loading Core Model: .. 542
Loading the Time Structure: ... 545
Loading the Stochastic Structure: ... 547

Decision Making under Chance-Constraints .. 554
Individual and Joint Chance-Constraints: ... 554

Monte Carlo Sampling .. 557
Automatic Sampling of Scenario Trees .. 561
Limiting Sampling to Continuous Parameters .. 561
Using Nested Benders Decomposition Method .. 562

Sample Multistage SP Problems .. 564
An Investment Model to Fund College Education: ... 564
An American Put-Options Model: ... 566

Sample Chance-Constrainted Problems .. 568
A Production Planning Problem: ... 568
Models with User-defined Distribution: ... 569
A Farming Problem: .. 571
About alternative formulations: ... 574
Appendix 8a: Correlation Specification... 574
Appendix 8b: Random Number Generation .. 578
Appendix 8c: Variance Reduction ... 579
Appendix 8d: The Costs of Uncertainty: EVPI and EVMU .. 579
Appendix 8e: Introducing Dependencies between Stages .. 583

Chapter 9: .. 585
Using Callback Functions .. 585

Specifying a Callback Function .. 585
A Callback Example Using C ... 588
A Callback Example Using Visual Basic .. 593
Integer Solution Callbacks .. 595

Chapter 10: Analyzing Models and Solutions ... 599
Sensitivity and Range Analysis of an LP .. 599
Diagnosis of Infeasible or Unbounded Models... 601

Infeasible Models .. 601
Workings of the IIS Finder: ... 603
Unbounded Linear Programs ... 604
Infeasible Integer Programs ... 604
Infeasible Nonlinear Programs ... 604

vi TABLE OF CONTENTS

An Example for Debugging an Infeasible Linear Program ... 605
Block Structured Models .. 611

Determining Total Decomposition Structures ... 613
Determining Angular Structures ... 614
Techniques Used in Determining Block Structures .. 615
Generalized Assignment Problem .. 615

Chapter 11: .. 617
Parallel Optimization ... 617

Thread Parameters .. 617
Concurrent vs. Parallel Parameters ... 618
Solving MIPs Concurrently ... 619
Solvers with built-in Parallel Algorithms ... 622
Reproducibility .. 623

Appendix A: Error Codes .. 625
Appendix B: ... 637
MPS File Format ... 637

Integer Variables .. 639
Semi-continuous Variables ... 640
SOS Sets .. 641
SOS2 Example ... 642
Quadratic Objective .. 643
Quadratic Constraints ... 644
Second-Order Cone Constraints .. 645
Ambiguities in MPS Files .. 648

Appendix C: ... 649
LINDO File Format .. 649

Flow of Control ... 649
Formatting .. 649
Optional Modeling Statements ... 651

FREE Statement ... 652
GIN Statement .. 652
INT Statement ... 652
SUB and SLB Statements .. 653
TITLE Statement ... 654

Appendix D: ... 655
MPI File Format ... 655
Appendix E: ... 657
SMPS File Format ... 657

CORE File ... 657
TIME File .. 657
STOCH File .. 659

Appendix F: ... 665
SMPI File Format .. 665
Appendix G: mxLINDO .. 669
A MATLAB Interface.. 669

Introduction ... 669
Setting up MATLAB to Interface with LINDO ... 669
Using the mxLINDO Interface .. 670
Calling Conventions ... 672
mxLINDO Routines .. 672

TABLE OF CONTENTS vii

Structure Creation and Deletion Routines .. 672
License Information Routines ... 675
Input-Output Routines... 676
Error Handling Routines ... 684
Parameter Setting and Retrieving Routines ... 686
Model Loading Routines ... 693
Solver Initialization Routines .. 706
Optimization Routines... 710
Solution Query Routines ... 711
Model Query Routines .. 718
Model Modification Routines .. 737
Model and Solution Analysis Routines ... 754
Advanced Routines... 761
Callback Management Routines ... 766
Auxiliary Routines ... 772

Sample MATLAB Functions ... 774
M-functions using mxLINDO ... 774

Appendix H: ... 777
An Interface to Ox ... 777

Introduction ... 777
Setting up Ox Interface ... 777
Calling Conventions ... 778

Example. Portfolio Selection with Restrictions on the Number of Assets Invested 780
Appendix I: .. 785
List of Abbreviations in Progress Logs .. 785
Appendix J: .. 787
An R Interface ... 787

Introduction ... 787
Installation .. 787
Calling Conventions ... 787

Example. Least Absolution Deviation Estimation ... 787
Appendix K: ... 791
A Python Interface ... 791

Introduction ... 791
Installation .. 791
Calling Conventions ... 791

Example. Solving an LP model with pyLindo ... 792
References .. 795
Acknowledgements ... 797
INDEX ... 799

ix

Preface
LINDO Systems is proud to introduce LINDO API 10.0. The general features include a) stochastic

optimization b) global and multistart solvers for global optimization, c) nonlinear solvers for general

nonlinear optimization, d) simplex solvers for linear optimization e) barrier solvers for linear,

quadratic and second-order-cone optimization f) mixed-integer solvers for linear-integer and

nonlinear-integer optimization, g) tools for analysis of infeasible linear, integer and nonlinear models,

h) features to exploit parallel processing on multi-core computers, i) interfaces to other systems such as

MATLAB, Ox, Java and .NET and j) support of more platforms

(see below). The primary solvers in LINDO API 10.0 are:

 Global Solver:

The global solver combines a series of range bounding (e.g., interval analysis and convex

analysis) and range reduction techniques (e.g., linear programming and constraint

propagation) within a branch-and-bound framework to find proven global solutions to non-

convex NLPs. Traditional nonlinear solvers can get stuck at suboptimal, local solutions.

Version 10.0 incorporates substantial improvements in a) finding good feasible solutions

quickly and b) constructing bounds on both convex and nonconvex functions so optimality

can be proven more quickly.

 Mixed Integer Solver:

The mixed integer solver of LINDO API 10.0 solves linear, quadratic, and general nonlinear

integer models. It contains advanced techniques such as a) cut generation b) tree reordering

to reduce tree growth dynamically, and c) advanced heuristic and presolve strategies.

Substantial improvements in 10.0 include: a) heuristics for finding good solutions quickly,

and b) identifying certain model structures and exploiting for much faster solution.

 General Nonlinear Solver:

LINDO API is the first full-featured solver callable library to offer general nonlinear and

nonlinear/integer capabilities. This unique feature allows developers to use a single general

purpose solver into custom applications. As with its linear and integer capabilities, LINDO

API provides the user with a comprehensive set of routines for formulating, solving, and

modifying nonlinear models. Version 10.0 supports several dozen additional nonlinear

functions, mainly in the area of probability distributions, pdf’s, cdf’s, and their inverses.

 Multistart Nonlinear Solver:

The multistart solver intelligently generates a sequence of candidate starting points in the

solution space of NLP and mixed integer NLPs. A traditional NLP solver is called with each

starting point to find a local optimum. For non-convex NLP models, the quality of the best

solution found by the multistart solver tends to be superior to that of a single solution from a

traditional nonlinear solver. A user adjustable parameter controls the maximum number of

multistarts to be performed. See Chapter 7, Solving Nonlinear Models, for more information.

x PREFACE

 Simplex Solvers:

LINDO API 10.0 offers two advanced implementations of the primal and dual simplex

methods as the primary means for solving linear programming problems. Its flexible design

allows the users to fine tune each method by altering several of the algorithmic parameters.

The Sprint method uses the standard simplex solvers efficiently to handle “skinny” LP’s,

those having millions of variables, but a modest number of constraints.

 Barrier (Interior-Point) Solver:

Barrier solver is an alternative way for solving linear and quadratic programming problems.

LINDO API’s state-of-the-art barrier solver offers great speed advantages for large scale

sparse models. LINDO API 10.0 also includes a special variant of the barrier solver

specifically designed to solve Second-Order-Cone (SOC) problems, including Semi-Definite

Programs (SDP). See Chapter 6, Solving Second-Order-Cone Models, for more information.

Version 10.0 includes improved techniques for automatically identifying models than can be

solved as SOC.

 Stochastic Solver, Multistage and Chance Constrained:

LINDO API 10.0 supports decision making under uncertainty. Its powerful stochastic solver

offers the ability to solve:

a) chance-constrained models,

b) multistage stochastic models with recourse.

For both types, the user expresses the uncertainty by providing distribution functions, either

built-in or user-defined. In multistage models, the stochastic solver optimizes the model to

minimize the cost of the initial stage plus the expected value of recourse over all future

stages. In chance-constrained models, the solver finds the best solution that satisfies

constraints with a specified probability.

 Parallel Extensions:

LINDO API 10.0 includes multi-cpu optimization extensions to its solvers to take advantage

of computers with multicore processors. The multicore extensions are of two types:

concurrent optimizers and parallel optimizers (using built-in parallel algorithms). Parallel

versions of random number generators and sampling features are also provided.

 Statistical Sampling Tools:

LINDO API 10.0 offers extensive set of API functions for sampling from various statistical

distributions. Sampling error can be reduced by using variance reduction methods such as

Latin-Hyper-Square sampling and Antithetic variates. Generation of correlated (dependent)

samples based on Pearson, Spearman or Kendall’s correlation measures is provided. A

pseudo-random number generation API offers advanced generators with long cycles.

 Model and Solution Analysis Tools:

LINDO API 10.0 includes a comprehensive set of analysis tools for a) debugging of

infeasible linear, integer and nonlinear programs using series of advanced techniques to

isolate the source of infeasibilities to smaller subset of the original constraints, b) performing

sensitivity analysis to determine the sensitivity of the optimal basis to changes in certain data

components (e.g. objective vector, right-hand-size values etc..).

 Quadratic Recognition Tools:

The QP recognition tool is a useful algebraic pre-processor that automatically determines if

an arbitrary NLP is actually a quadratic or SOC model. These models may then be passed to

the faster quadratic solver, which is available as part of the barrier solver option.

PREFACE xi

 Linearization Tools:

Linearization is a comprehensive reformulation tool that automatically converts many non-

smooth functions and operators (e.g., max and absolute value) to a series of linear,

mathematically equivalent expressions. Many non-smooth models may be entirely linearized.

This allows the linear solver to quickly find a global solution to what would have otherwise

been an intractable nonlinear problem.

 Decomposition Solvers and Tools:

Many large scale linear and mixed integer problems have constraint matrices that are

decomposable into certain forms that could offer computational advantage when solving. For

instance, some models decompose into a series of totally independent subproblems. A user

adjustable parameter can be set, so the solver checks if a model possesses such a structure. If

total decomposition is possible, it will solve the independent problems sequentially to reach a

solution for the original model. This may result in dramatic speed improvements. In other

cases, the model could have dual-angular structure with few linking columns, in which case

Benders decomposition solver may be useful. Models with primal-angular structure with a

few linking row can exploit the BNP solver. BNP solver can also be helpful in determining

very tight bounds to MIP problems using the built-in Lagrangean relaxation procedure. To

help identify different decomposition structures, special tools are provided to determine lower

triangular, dual-angular and primal-angular structures. Refer to the Block Structured Models

section in Chapter 10, Analyzing Models and Solutions, for more information.

 Java Native Interface:

LINDO API includes Java Native Interface (JNI) support for Windows, Solaris, and Linux

platforms. This new feature allows users to call LINDO API from Java applications, such as

applets running from a browser.

 MATLAB Interface:

The Matlab interface allows using LINDO API functions from within MATLAB. Using

MATLAB’s modeling and programming environment, you can build and solve linear,

nonlinear, quadratic, and integer models and create custom algorithms based upon LINDO

API’s routines and solvers.

 .NET Interface:

LINDO API includes C# and VB.NET interfaces that allow it to be used from within .NET's

distributed computing environment (including Windows Forms, ADO.NET, and ASP.NET).

The interfaces are in the form of classes that allow managed .NET code to interact with

unmanaged LINDO API code via the "System.Runtime.InteropServices" namespace.

 Ox Interface:

This interface provides users of the Ox statistical package, the ability to call LINDO API’s

functions the same way they call native Ox functions. This offers greater flexibility in

developing higher-level Ox routines that can set up and solve different kinds of large-scale

optimization problems, testing new algorithmic ideas or expressing new solution techniques.

 Python Interface:

The Python interface allows using LINDO API from within applications written in Python

language. Using Python’s extensive programming environment, you can build and solve all

model types supported by the C API. The Python interface is particularly suited for fast

development and testing of algorithmic ideas.

xii PREFACE

 R Interface:

The R interface allows using LINDO API from within applications written in R-language.

Coupled with R’s extensive statistical and data-mining tools, the LINDO API's R interface

offers seamless possibilities in statistical analysis and optimization. All model types

supported by the C API are available in the R interface.

 Platforms:

LINDO API 10.0 is currently available on Windows 32/64 bit, Linux 32/64-bit, OSX 64-bit

platforms. For availability of LINDO API 10.0 on all other platforms, you may wish to

contact LINDO Systems, Inc.

LINDO Systems, Inc

 1415 N. Dayton

 Chicago, Illinois

 (312) 988 9421

 info@lindo.com

 http://www.lindo.com

February 2016

Chapter 1:

Introduction
What Is LINDO API?
The LINDO Application Programming Interface (API) provides a means for software developers to

incorporate optimization into their own application programs. LINDO API is designed to solve a wide

range of optimization problems, including linear programs, mixed integer programs, quadratic

programs, and general nonlinear non-convex programs. These problems arise in areas of business,

industry, research, and government. Specific application areas where LINDO API has proven to be of

great use include product distribution, ingredient blending, production and personnel scheduling,

inventory management… The list could easily occupy the rest of this chapter.

Optimization helps you find the answer that yields the best result; attains the highest profits, output, or

happiness; or achieves the lowest cost, waste, or discomfort. Often these problems involve making the

most efficient use of your resources—including money, time, machinery, staff, inventory, and more.

Optimization problems are often classified as linear or nonlinear, depending on whether the

relationships in the problem are linear with respect to the variables.

The most fundamental type of optimization problems is the linear program (LP) of the form:

Minimize (or maximize) c1x1 + c2x2 + … + cnxn

Such that

 A11x1 + A12x2 + … + A1nxn ? b1

 A21x1 + A22x2 + … + A2nxn ? b2

 : … :

 Am1x1 + Am2x2 + … + Amnxn ? bm

 L1  x1  U1

 L2  x2  U2

 :

 Ln  xn  Un

where Aij, cj, bi, Lj, Uj are known real numbers; ? is one of the relational operators ‘’, ‘=’, or ‘’; and

x1,x2,…,xn are the decision variables (unknowns) for which optimal values are sought.

The expression being optimized is called the objective function and c1,c2,…,cn are the objective

coefficients. The relationships whose senses are expressed with ? are the constraints; Ai1,Ai2,…,Ain are

the coefficients; and bi is the right-hand side value for the i
th

 constraint. Lj and Uj represent lower and

upper bounds for the j
th

 decision variable and can be finite or infinite.

2 CHAPTER 1

At the core of LINDO API’s optimizers are the linear solvers, which solve problems of this form. On

top of the linear solvers are other solver types. These can be used to solve generalizations of LPs, such

as problems containing integer variables or quadratic or nonlinear expressions.

The problem of mixed-integer linear programs (MILP) is an extension of LPs where some of the

decision variables are required to take integer (whole number) values. Another extension of LPs is

when the expressions in the objective function or the constraints are nonlinear functions of decision

variables, such as logarithms or products of variables. Such problems are called nonlinear programs

(NLPs). A special case of NLPs is quadratic programs (QPs) where the only nonlinear relationships

among variables are products of two variables. NLPs and QPs with integrality restrictions on some

variables are called mixed-integer nonlinear programs (MINLP) and mixed-integer quadratic

programs (MIQP), respectively.

Linear Solvers
There are three linear solvers—the Primal Simplex, Dual Simplex, and the Barrier Methods. The

simplex method (primal or dual) solves the LP by moving along the edges of the feasible region

defined by the constraint set. By contrast, the barrier method walks through the interior of the feasible

region while searching an optimal solution. All three methods either terminate with an optimal solution

or return a flag indicating that the LP is infeasible or unbounded.

In general, it is difficult to say which algorithm will be fastest for a particular model. A rough

guideline is Primal Simplex tends to do better on sparse models with fewer rows than columns. Dual

Simplex tends to do well on sparse models with fewer columns than rows or models that are primal

and/or dual degenerate, while Barrier works best on structured models or very large models. The

simplex methods use a state-of-the-art implementation of the revised simplex method with product

form inverse. The barrier solver uses a homogeneous self-dual algorithm. All three use extensive

preprocessing to help reduce the complexity of the LP and improve its numerical properties. See

Chapter 3, Solving Linear Programs, for examples of solving linear programs with the LINDO API.

Mixed-Integer Solver
LINDO API solves the mixed-integer models with the branch-and-cut method. It is an iterative method

that uses either the linear or nonlinear solver as a subsolver, depending on the nature of the problem.

The mixed-integer solver is equipped with advanced preprocessing, heuristic and cut generation tools.

Preprocessing generally reduces the problem size to a manageable size and offers great computational

savings, especially for large problems. Addition of “cuts” helps eliminate the noninteger feasible

regions quickly and provides improved bounds during the branch-and-bound. For many classes of

MILP problems, heuristic algorithms quickly find good integer solutions and lead to improved bounds.

All these techniques lead to improved solution times for most integer programming models. See

Chapter 2, Function Definitions, for more information of optimization functions and related

parameters. See Chapter 4, Solving Mixed-integer Programs, for examples of solving mixed integer

programs with LINDO API.

INTRODUCTION 3

Nonlinear Solver
LINDO API’s nonlinear solver employs both successive linear programming (SLP) and generalized

reduced gradient (GRG) methods. Under certain conditions, QPs, which are special cases of NLPs, can

be solved more efficiently via the barrier method.

The nonlinear solver returns a local optimal solution to the underlying problem. If local optimality

cannot be achieved, then a feasible solution is reported if one had been found. In case no feasible

solutions were found or the problem was determined to be unbounded or numerical problems have

been encountered, then an appropriate flag is returned.

LINDO API can automatically linearize a number of nonlinear relationships through the addition of

constraints and integer variables, so the transformed linear model is mathematically equivalent to the

original nonlinear model. Keep in mind, however, that each of these strategies will require additional

computation time. Thus, formulating models, so they are convex and contain a single extremum, is

desirable.

Global Solver
The standard nonlinear solver returns a local optimal solution to the NLP. However, many practical

nonlinear models are non-convex and have more than one local optimal solution. In some applications,

the user may want to find a global optimal solution.

The optional global solver available in LINDO API employs branch-and-cut methods to break an NLP

model down into many convex sub-regions and returns a provably global optimal solution. See

Chapter 7, Solving Nonlinear Programs, for examples of solving nonlinear programs with LINDO

API.

LINDO API also has a multistart feature that restarts the standard (non-global) nonlinear solver from a

number of intelligently generated points. This allows the solver to find a number of locally optimal

points and report the best one found. This alternative could be used when global optimization is costly.

Stochastic Solver
LINDO API’s stochastic solver can solve multistage linear, nonlinear and integer models where some

of the model parameters are not known with certainty but can be expressed probabilistically. Integer

and nonlinear stochastic models are solved by transforming the model into the so-called deterministic-

equivalent model. Linear models can be solved either with the nested Benders method or through the

deterministic equivalent. For models with parametric distributions, Monte-Carlo sampling is available

for finite approximations. Standard variance reduction strategies like Latin-hypersquare sampling and

antithetic control variates are also available during sampling. Advanced tools, like inducing a

correlation structure among random parameters based on various measures, are also provided. See

Chapter 8, Stochastic Programming, for a detailed coverage of the topic and illustrative examples.

Installation
Installing the LINDO API software is relatively straightforward. To run LINDO API, we recommend a

computer running Linux, Solaris, or a 32-bit or 64-bit version of Windows. In general, you will need

at least 32Mb of RAM and 20Mb of free disk space. A faster processor and additional memory may

allow LINDO API to solve tougher problems and/or improve performance. It should be noted that

these are minimums. Solving big models may require more resources.

4 CHAPTER 1

Windows Platforms
To install a Windows version (95/98/NT/XP/Vista/7), simply insert the LINDO API installation CD,

double-click on the LINDO API folder to open the directory, and then double-click on the setup icon

to run the LINDO API setup program. For a downloaded version of LINDO API, simply extract the

executable file (.exe) from the (.zip) archive and run it (double-click the setup icon) to launch the

installation process. Setup will do all the required work to install LINDO API on your system and will

prompt you for any required information.

After the installation process is complete, the following directory structure will be available.

LINDOAPI\ ' Installation directory

LINDOAPI\BIN\WIN32 ' Executables, dynamic libraries

LINDOAPI\LIB ' Import library, Java class library

LINDOAPI\MATLAB ' Matlab scripts, functions, etc..

LINDOAPI\OX ' OX library

LINDOAPI\INCLUDE ' Header files

LINDOAPI\LICENSE ' License files

LINDOAPI\DOC ' User manual in PDF format

LINDOAPI\SAMPLES ' Samples directory

LINDOAPI\SAMPLES\C\ ' C/C++ samples

LINDOAPI\SAMPLES\DELPHI\ ' Delphi samples

LINDOAPI\SAMPLES\JAVA\ ' Java samples (J2SDK and J++)

LINDOAPI\SAMPLES\VB\ ' Visual Basic samples (Windows only)

LINDOAPI\SAMPLES\DOTNET\VB' Visual Basic .NET samples

LINDOAPI\SAMPLES\DOTNET\CS' C# .NET samples

LINDOAPI\SAMPLES\FORT\ ' F90 samples (Windows only)

LINDOAPI\SAMPLES\MPS\ ' Test problems in MPS format

Note: The binaries in your installation are located under ‘lindoapi\bin\<platform>’ directory, where

<platform> refers to the platform (or operating system) you are working on. For instance, on

x86 platform running 32-bit Windows, the binaries are located at ‘lindoapi\bin\win32’, similarly

on x64 platform running 64-bit Linux, the binaries are at ‘lindoapi\bin\linux64’.

Unix-Like Platforms
Follow the steps below to complete the installation on Unix-like platforms. It is assumed that the

Linux 32-bit version of LINDO API is being installed. For Solaris and other platforms, these steps

would be identical except for the installation file name.

Step 1. Locate the LAPI-LINUX-IA32-10.0.tar.gz file on your CD.

Step 2. Copy this file into an installation directory of your choice (e.g. /opt):

%> cp LAPI-LINUX-IA32-10.0.tar.gz /opt

Step 3. Change working directory to '/opt' and uncompress the file using ‘gzip –d’ command as

below. This operation creates LAPI-LINUX-IA32-10.0.tar.

 %> gzip –d LAPI-LINUX-IA32-10.0.tar.gz

INTRODUCTION 5

Step 4. Uncompress that file using ‘tar –xvf’ command as below. This will create the LINDO API

directory ‘lindoapi/’.

 %> tar –xvf LAPI-LINUX-IA32-10.0.tar

Step 5. Set $LINDOAPI_HOME environment variable to point to the installation directory.

LINDOAPI_HOME=/opt/lindoapi

export LINDOAPI_HOME

Step 6. Change file permissions and create symbolic links as needed.

Change working directory to ‘$LINDOAPI_HOME/bin/linux32’ and check if LINDO

API’s shared libraries (.so files) and the driver program ‘runlindo’ are all in executable mode. If not,

either run the script 'lsymlink.sh' or change the mode manually by typing the following commands:

 %> chmod 755 liblindo.*

 %> chmod 755 liblindojni.*

 %> chmod 755 libmosek.so.*

 %> chmod 755 runlindo

Create symbolic links to the following library files – symbolic links are required for makefiles in

samples directory.

For Unix-like systems,

 %> ln -sf liblindo.so.10.0 liblindo.so

 %> ln -sf liblindojni.so.10.0 liblindojni.so

 %> ln -sf libmosek.so.7.0 libmosek.so

For Mac-OSX

 %> ln -sf liblindo.10.0.dylib liblindo.dylib

 %> ln -sf libmosek.7.0.dylib libmosek.dylib

These steps can be performed using the script ‘$LINDOAPI_HOME/bin/<platform>/lsymlink.sh’.

Step 7. (Optional) You can update your library path environment variable although it is not the

recommended way to specify search directories. LINDO API already have the run-time search paths

(RPATH) hardcoded into its libraries. LD_LIBRARY_PATH might only be appropriate as a short

term solution during testing or development. For example, a developer might use it to point to

older versions (prior to v8) of the LINDO API library. Older versions of LINDO API rely on this

environment variable.

LD_LIBRARY_PATH=$LINDOAPI_HOME/bin/<platform>:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH

Note: Mac-OSX, AIX and HP-UX do not use LD_LIBRARY_PATH. Users of these systems

should apply the following equivalent changes.

6 CHAPTER 1

 Mac-OSX:
DYLD_LIBRARY_PATH=$LINDOAPI_HOME/bin/<platform>:$DYLD_LIBRARY_PATH

export DYLD_LIBRARY_PATH

 AIX:
LIBPATH=$LINDOAPI_HOME/bin/<platform>:$LIBPATH

export LIBPATH

 HP-UX:
SHLIB_PATH=$LINDOAPI_HOME/bin/<platform>:$SHLIB_PATH

export SHLIB_PATH

Step 8. (Optional) You can set $LINDOAPI_LICENSE_FILE environment variable to refer to

the license file in your installation.

 LINDOAPI_LICENSE_FILE = “$LINDOAPI_HOME/license/lndapi100.lic”

 export LINDOAPI_LICENSE_FILE

Alternatively, you can execute the shell script ‘lindoapivars.sh’ to perform the required updates in

these environment variables.

To execute this script manually, enter the following at command line:

source $LINDOAPI_HOME/bin/<platform>/lindoapivars.sh

To execute this script automatically at logon, append this line to the end of your startup script

(.bashrc or .bash_profile for bash shell).

Step 8. If you received a license file (lndapi100.lic) with your installation CD, copy this file into the

‘$LINDOAPI_HOME/license’ directory.

Step 9. You can test your installation by changing directory to $LINDOAPI_HOME/bin/<platform>

and type the following. This should display the version info on your LINDO API installation.

 %> ./runlindo –v

Optionally, you can add “./” to your $PATH variable to avoid having to type "./" in front of program

runlindo from the current working directory.

INTRODUCTION 7

Updating License Keys
In a default installation, the license file (lndapi100.lic) is located under LINDOAPI\LICENSE

directory. The license file initially contains a demo license, which allows full access to LINDO API

with limited problem capacity.

The contents of lndapi100.lic are as follows:

LINDO API Demo 10.00

1

None

Nonlinear Global Barrier

Educational

All platforms

Eval Use Only

>

** place your license key here **

>

Modify this file by placing the license key you received with your copy of the software between the

“>” characters. Be sure to preserve capitalization and include all hyphens. For instance, suppose your

license key is: AT3x-5*mX-6d9J-v$pG-TzAU-D2%. Then, modify lndapi100.lic, so it appears

exactly as follows:

LINDO API Demo 10.00

1

None

Nonlinear Global Barrier

Educational

All platforms

Eval Use Only

>

AT3x-5*mX-6d9J-v$pG-TzAU-D2%

>

Note: If you purchased a license, you should update the license file with the license key you obtained

from your sales representative.

 If you were e-mailed your license key, simply cut the license key from the e-mail that contains

it and paste it into the lndapi100.lic file replacing the existing demo license key.

Your license key is unique to your installation and contains information regarding your version's serial

number, size, and supported options. The license key is case sensitive, so be sure to enter it exactly as

listed, including all hyphens. Given that your license key is unique to your installation, you can not

share it with any user not licensed to use your copy of the LINDO API.

8 CHAPTER 1

Solving Models from a File using Runlindo
LINDO API distribution contains a simple program, runlindo.exe that allows you to solve models from

a file after installation. In a 32-bit Windows installation, runlindo.exe is in the \lindoapi\bin\win32

directory. Runlindo is intended to be run from a command line prompt. To see command line options,

type at the command line prompt:

runlindo –help

in which case the following command line options will be listed:

Usage: RUNLINDO filename [options]

General options:

 -max { Solve the problem as a maximization problem }

 -min { Solve the problem as a minimization problem }

 -print [n] { Set print level to [n] }

 -decomp [n] { Set decomposition type to 'n' when solving

LP/MIPs (2)}

 -iisfind [n] { Find IIS with search level 'n'

 -iisnorm [n] { Set infeasibility norm to 'n' in IIS search

(1).

 -iismeth [n] { Use method 'n' with IIS finder (1).

 -iusfind [n] { Find IUS with search level 'n'

 -iusmeth [n] { Use method 'n' with IUS finder (1).

 -nblocks [n] { Set number of blocks in a decomposed model to

'n' (1)

 -bnd, -b [n] { Truncate infinite bounds with 1e+n (15)

 -linfo { Display license information }

 -uinfo { Display user information }

 -licfile { Read license file }

 -tlim [n] { Set time limit to 'n' secs. }

 -ilim [n] { Set iter limit to 'n'. }

 -pftol [eps] { Set primal feasibility tolerance to 'eps'.}

 Defaults for LP: 1e-7, NLP: 1e-6

 -dftol [eps] { Set dual feasibility tolerance to 'eps'.}

 Defaults for LP: 1e-7, NLP: 1e-7.

 -aoptol [eps] { Set absolute optimality tolerance to 'eps'.}

 Defaults for MILP: 0.0, GOP:1e-6, SP:1e-7

 -roptol [eps] { Set relative optimality tolerance to 'eps'.}

 Defaults for MILP:1e-6, GOP:1e-6, SP:1e-7

 -poptol [eps] { Set percent optimality tolerance to 'eps'.}

 Defaults for MILP:1e-5

 -ver,-v { Display version and build date }

 -help,-h { Help }

 -nthreads [n] { Set number of parallel threads. }

 -ccstrategy [n] { Set concurrent strategy to n. }

 -xsolver [n] { Enable external LP solver #n. }

 -threadmode [n] { Multithread mode for supported solvers. }

INTRODUCTION 9

Linear optimization options:

 -lp { Solve the problem as an LP problem }

 -psim { Use the primal simplex method for LP problems }

 -dsim { Use the dual simplex method for LP problems }

 -bar { Use the barrier method for LP problems }

 -noscale { Set scaling off }

 -dual { Solve the dual model implicitly }

 -tpos { Solve the dual model explicitly }

 -novertex { No crossover with barrier method }

 -iusol { Force the solver to return some solution

 when the model is infeasible or unbounded. }

 -pre_lp [n] { Set presolve level to 'n' for LP problems

(126)}

 -fileLP { Solve specified LP model with sprint }

 -refact [n] { Refactor frequency (250) }

Mixed integer optimization options:

 -mip { Solve the problem as a MIP problem }

 -pri { Read the priority file 'filename.ord' }

 -pre_root [n] { Set presolve level to 'n' for root node (510).}

 -pre_leaf [n] { Set presolve level to 'n' for leaf nodes

(174).}

 -cut_root [n] { Set cut level to 'n' for root node (22526).}

 -cut_leaf [n] { Set cut level to 'n' for leaf nodes (20478).}

 -ord_tree [n] { Set tree reorder level to 'n' (10).}

 -heuris [n] { Set heuristic level to 'n' (3).}

 -strongb [n] { Set strongbranch level to 'n' (10).}

 -kbest [k] { Find k best MIP solutions }

 -bnp [n] { Solve MIP with branch and price method of level

n}

 -fblock [n] { Find block for bnp with level n (1 to 3)}

 -colmt [n] { Limit for colums generated in bnp solver

 -hsearch [n] { Solve MIP using heuristic-search using

method/mode [n]}

 -fp [n] { Set feasibility pump level (-1 to 2)}

 -rootlp [n] { Set the method for solving root LP relaxation

(0 to 4)}

 -nodelp [n] { Set the method for solving node LP relaxation

(0 to 4)}

Nonlinear optimization options:

 -nlp { Use the nonlinear solver for QP problems}

 -multis [n] { Set number of multistarts to [n] for NLP

problems}

 -conopt [n] { Use Conopt version 'n' for NLP problems (3)}

 -lnz [n] { Set linearization level for NLP problems to 'n'

(0)}

 -pre_nlp [n] { Set presolve level to 'n' for NLP problems (0)}

 -derv [n] { Set derivative type 'n' for NLP problems (0)}

 -qp { Solve QP problem}

 -hessian { Enable usage of Hessian (2nd order) matrix}

 -lcrash [n] { Set advanced NLP crash mode to n (1)}

 -filtmode[n] { Set multistart filter mode (0) }

 -prepmode[n] { Set multistart prep mode (0) }

Global optimization options:

10 CHAPTER 1

 -gop { Solve the problem as a GOP problem }

I/O options:

 -par <parfile> { Read parameters from <parfile>}

 -ini <inifile> { Read initial solution from <inifile> or

'filename.sol'}

 -sol { Write solution to file 'filename.sol' }

 -sol_ipm { Write IPM solution to file 'filename.sol' }

 -fmps { Read formatted MPS files (old MPS format)}

 -cmps { Read MPS compatible mode files (can combine

with -fmps) }

 -wmps { Export the input model in MPS format }

 -wmpi { Export the input model in MPI format }

 -wltx { Export the input model in LINDO format }

 -wlng { Export the input model in LINGO format }

 -wiis { Export the IIS in LINDO format }

 -wset { Export the input model with sets/sc in MPS

format}

 -wbas { Export the final basis into 'filename.bas'}

 -smps { Read SMPS/SMPI formatted SP model. }

 -rtim { Read time/block structure from 'filename.tim'}

 -wtim { Export time/block structure to 'filename.tim'}

 -wpar <parfile> { Write parameters to <parfile>}

 -ccpar <base> { Read parameters for concurrent solve from

 file-chain <base>}

For example, to solve a linear program in MPS format in a file called “mymodel.mps”, you might type:

runlindo mymodel.mps -sol

The option “-sol” causes a solution report to be written to the file “mymodel.sol”. To learn more about

the file formats recognized, see the appendices.

The ability to set parameters is not limited to command line arguments. Before initializing each

optimization session, runlindo reads optionally specified parameters from a file named “lindo.par”.

All LINDO API parameters can be set through this simple interface. Parameter values set through

command line arguments have precedence over those set through “lindo.par”. An example “lindo.par”

can be found in:

lindoapi/bin/$PLATFORM

where $PLATFORM refers to one of the following

win32 for 32-bit MS Windows on x86,

win64 for 64-bit MS Windows on x64,

osx32x86 for 32-bit Macintosh OSX on x86

osx32ppc for 32-bit Macintosh OSX on PowerPC

linux32 for 32-bit Linux on x86

linux64 for 64-bit Linux on x64

solaris32 for 32-bit Sun Solaris

solaris64 for 64-bit Sun Solaris

For details, on available parameters in LINDO API and their usage through API calls and parameter-

files, see "Parameter Setting and Retrieving Routines" in Chapter 2."

INTRODUCTION 11

Sample Applications
The distribution package contains several sample application programs that illustrate the use of

LINDO API using a high level programming language. The majority of the examples provided are in

C/C++. Sample applications in other languages, such as Visual Basic, C#, Delphi, Fortran 90, and

Java/J++ are also given.

Note: The header files required by each programming language are located in LINDOAPI\INCLUDE

directory. These headers contain macro definitions and function prototypes (calling sequences)

for each programming language. For a detailed description of available LINDO API functions,

please refer to Chapter 2, Function Definitions.

Each sample is located in a separate directory along with a MAKEFILE and/or an IDE Project (for

Windows only) to build the application. Depending on your platform, use MAKEFILE.UNX (for

Solaris and Linux) or MAKEFILE.WIN (for Windows).

Now, let’s illustrate how to get started using LINDO API by setting up and solving a small LP using a

programming language.

Array Representation of Models
From within a programming environment, models can be entered into LINDO API in either of two

ways: 1) characterize the model using data structures (array representation) and pass the associated

data objects to LINDO API via model loading routines in LINDO API, or 2) read the model from a file

directly into LINDO API via input/output routines available. Supported file formats are MPS, LINDO,

MPI, SMPS, and SMPI formats, which are described in Appendices B, C, D, E, and F respectively.

Here, we focus on the first alternative, which we have referred to as array representation, and describe

how to characterize an LP model within a programming environment. In our discussion, the terms

‘array’ and ‘vector’ are used interchangeably.

We will use a small LP with four decision variables x1, x2, x3, x4 (n=4) and four constraints (m=4) for

our example. The lower and upper bounds are specified for each variable explicitly. If neither bounds

are given, it would be assumed the variable is continuous, bounded below by zero and bounded from

above by infinity. The model appears as follows:

Minimize x1 + x2 + x3 + x4

S.t.

 3x1 + 2x4 = 20

 6x2 + 9x4  20

 4x1 + 5x2 + 8x3 = 40

 7x2 + 1x3  10

 2  x1  5

 1  x2  +

 -  x3  10

 -  x4  +

12 CHAPTER 1

The diagram below shows how each component of LP data, except the coefficients of the constraint

matrix, can be trivially represented by vectors (arrays). The circled elements labeled A,B,C,D, and E in

the following figure symbolize these components and refer to objective coefficients, constraint senses,

right-hand sides, lower-bounds, and upper-bounds, respectively.

In this small example, these vectors translate to the following:

A = [1 1 1 1].

B = [E G E G].

C = [20 20 40 10].

D = [2 1 -LS_INFINITY -LS_INFINITY].

E = [5 LS_INFINITY 10 LS_INFINITY].

Each of these vectors can be represented with an array of appropriate type and passed to LINDO API

via model loading routines. Although it is also possible to represent the coefficients of the constraint

matrix with a single vector, a different representation, called the sparse matrix representation, has

been adopted. This is discussed in more detail below.

Sparse Matrix Representation
LINDO API uses a sparse matrix representation to store the coefficient matrix of your model. It

represents the matrix using three (or optionally four) vectors. This scheme is utilized, so it is

unnecessary to store zero coefficients. Given that most matrix coefficients in real world math

programming models are zero, this storage scheme proves to be very efficient and can drastically

reduce storage requirements. Below is a brief explanation of the representation scheme.

We will use the coefficients of the constraint matrix in our sample LP from above. These are as

follows:

 x1 x2 x3 x4

 3 0 0 2

 0 6 0 9

 4 5 8 0

 0 7 1 0

INTRODUCTION 13

Three Vector Representation
Three vectors can represent a sparse matrix in the following way. One vector will contain all of the

nonzero entries from the matrix, ordered by column. This is referred to as the Value vector. In our

example, this vector has 9 entries and looks like:

 Value = [3 4 6 5 7 8 1 2 9].

Note that all of the entries from the first column appear first, then the entries from the second column,

and so on. All of the zeros have been stripped out.

In the second vector, which we call the Column-start vector, we record which points in the Value

vector represent the start of a new column from the original matrix. The n
th

 entry in the Column-start

vector tells us where in the Value vector to find the beginning of the n
th

 column. For instance, the

column starts for the Value vector of our small example are underlined in the following diagram. Note

that LINDO API uses zero-based counting, so the Column-start vector is as follows:

Note that the Column-start vector has one more entry than there are columns in our matrix. The extra

entry tells LINDO where the last column ends. It will always be equal to the length of the Value

vector.

From the Column-start vector, we can deduce which column is associated with each entry in our Value

vector. The only additional information that we need is the row numbers of the entries. We store this

information in a third vector, the Row-index vector. This vector is the same length as the Value vector.

Each entry in the Row-index vector tells which row the corresponding entry from the Value vector

belongs to. In our example, the number 3 belongs to the first row, which we call row 0, so the first

entry in the Row-index vector is 0. Similarly, the second entry in the Value vector (4), belongs to the

third row (row 2 when starting from zero), so the second entry of the Row-index vector is 2.

Continuing in this way through the rest of the entries of the Value vector, the resulting Row-index

vector appears as follows:

 0 1 2 3 4 5 6 7 8

Row-index = [0 2 1 2 3 2 3 0 1].

In summary, our transformation from a matrix into 3 vectors is:

 3 0 0 2

 0 6 0 9

 4 5 8 0

 0 7 1 0

 Column-starts: [0 2 5 7 9]

 Value: [3 4 6 5 7 8 1 2 9]

 Row-index: [0 2 1 2 3 2 3 0 1]

14 CHAPTER 1

Four Vector Representation
The four vector representation allows more flexibility than the three vector representation. Use it when

you expect to add rows to your original matrix (i.e., if you will be adding additional constraints to your

model).

The four vector representation uses the same three vectors as above. However, it allows you to have

“blanks” in your Value vector. Because of this, you must also pass a vector of column lengths, since

the solver doesn’t know how many blanks there will be.

For example, suppose we wish to leave room for one additional row. Then, our Value vector becomes:

Value = [3 4 X 6 5 7 X 8 1 X 2 9 X]

where the X’s represent the blanks. The blanks may be nulls or any other value, since they will be

ignored for the time being.

Our Column-start vector becomes:

Our new vector is the Column-length vector. It will contain the length of each column (i.e., the number

of nonzeros in each column). This allows the solver to skip the blanks (X’s) in the Value vector. In our

small example, since the first column contains two nonzero and nonblank entries, the first element of

the Column-length vector will be 2. Continuing through the remaining columns, the Column-length

vector and its corresponding entries from the Value vector are as follows:

Column-length = [2 3 2 2].

Value = [3 4 X 6 5 7 X 8 1 X 2 9 X].

Our Row-index vector is as before, except we add a blank for each blank in the Value vector. As with

the Value vector, these blanks will be ignored, so they can contain any value. Thus, the Row-index

vector becomes:

 0 1 2 3 4 5 6 7 8 9 10 11 12

Row-index = [0 2 X 1 2 3 X 2 3 X 1 2 X].

In summary, the four vector transformation is:

 3 0 0 2 Column lengths: [2 3 2 2]

 0 6 0 9


Column starts: [0 3 7 10 13]

 4 5 8 0 Values: [3 4 X 6 5 7 X 8 1 X 2 9 X]

 0 7 1 0 Row indexes: [0 2 X 1 2 3 X 2 3 X 0 1 X]

INTRODUCTION 15

Simple Programming Example
Up to this point, we have seen that the objective function coefficients, right-hand side values,

constraint senses, and variable bounds can be stored in vectors of appropriate dimensions and the

constraint matrix can be stored in three or four vectors using the sparse matrix representation. In this

section, we show how these objects should be declared, assigned values, and passed to LINDO API to

complete the model setup phase and invoke optimization.

Recall the small LP example model from the array representation section above:

Minimize x1 + x2 + x3 + x4

S.t.

 3x1 + 2x4 = 20

 6x2 + 9x4  20
 4x1 + 5x2 + 8x3 = 40

 7x2 + 1x3  10

 2  x1  5

 1  x2  +

 -  x3  10

 -  x4  +

It is easy to verify that the model has 4 variables, 4 constraints, and 7 nonzeros. As determined in the

previous section, its constraint matrix has the following (three-vector) sparse representation:

Column-start = [0 2 5 7 9]

Values = [3.0 4.0 6.0 5.0 7.0 8.0 1.0 2.0 9.0]

Row-index = [0 2 1 2 3 2 3 0 1]

Other components of the LP data, as described above, are:

Right-hand side values = [20 20 40 10].

Objective coefficients = [1 1 1 1].

Constraint senses = [E G E G].

Lower bounds = [2 1 -LS_INFINITY -LS_INFINITY].

Upper bounds = [5 LS_INFINITY 10 LS_INFINITY].

Create an Environment and Model
Before any data can be input to LINDO API, it is necessary to request LINDO API to initialize the

internal solvers by checking the license this user has and to get handles of the required resources

(e.g., pointers to internal memory areas). This is achieved by creating a LINDO environment object

and creating a model object within the environment. These reside at the highest level of LINDO API’s

internal object oriented data structure. In this structure, a model object belongs to exactly one

environment object. An environment object may contain zero or more model objects.

The following code segment does this:

/* declare an environment variable */

pLSenv pEnv;

/* declare a model variable */

pLSmodel pModel;

/* Create the environment */

pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

/* Create the model */

pModel = LScreateModel (pEnv, &nErrorCode);

16 CHAPTER 1

The environment data type, pLSenv, and the model data type, pLSmodel, are both defined in the lindo.h

header file. A call to LScreateEnv() creates the LINDO environment. Finally, the model object is

created with a call to LScreateModel(). For languages other than C/C++ pLSenv and pLSmodel objects

refer to integer types. The associated header files are located in the ‘lindoapi/include’ directory.

Load the Model
The next step is to set up the LP data and load it to LINDO API. This is generally the most involved of

the steps.

Objective

The following code segment is used to enter the direction of the objective. The possible values for the

direction of the objective are LS_MAX and LS_MIN, which are predefined macros that stand for

maximize or minimize. For our sample problem, the objective direction is given as maximization with

the following code:

int nDir = LS_MIN;

The constant terms in the objective function are stored in a double scalar with the following:

double dObjConst = 0.0;

Finally, the objective coefficients are placed into an array with the following:

double adC[4] = { 1., 1., 1., 1.};

Constraints

The following code segment is used to enter the number of constraints:

int nM = 4;

The constraint right-hand sides are place into an array with the following:

double adB[4] = { 20., 20., 40., 10. };

The constraint types are placed into an array with the following:

char acConTypes[4] = {‘E’, ‘G’, ‘E’ , ‘G’ };

The number of nonzero coefficients in the constraint matrix is stored:

int nNZ = 9;

Finally, the length of each column in the constraint matrix is defined. This is set to NULL in this

example, since no blanks are being left in the matrix:

int *pnLenCol = NULL;

The nonzero coefficients, column-start indices, and the row indices of the nonzero coefficients are put

into arrays with the following:

int anBegCol[5] = { 0 , 2 , 5 , 7 , 9 };

double adA[9] = { 3.0, 4.0, 6.0, 5.0, 7.0, 8.0, 1.0, 2.0, 9.0 };

int anRowX[9] = { 0 , 2 , 1 , 2 , 3 , 2 , 3 , 0 , 1 };

Note: Refer to the section Sparse Matrix Representation above for more information on

representing a matrix with three or four vectors.

INTRODUCTION 17

Variables

The following code segment is used to declare the number of variables:

int nN = 4;

The upper and lower bounds on the variables are defined with the following:

double pdLower[4] = {2, 1, -LS_INFINITY, -LS_INFINITY};

double pdUpper[4] = {5, LS_INFINITY, 10, LS_INFINITY};

Then, the variable types are placed into an array with the following:

char acVarTypes[4] = {‘C’,‘C’,‘C’,‘C’};

The variable types could actually be omitted and LINDO API would assume that the variables were

continuous.

We have now assembled a full description of the model and pass this information to LINDO API with

the following:

nErrorCode = LSloadLPData(pModel, nM, nN, nDir, dObjConst, adC, adB,

acConTypes, nNZ, anBegCol, pnLenCol, adA, anRowX, pdLower, pdUpper);

All LINDO API functions return an error code indicating whether the call was successful or not. If the

call was successful, then the error code is zero. Otherwise, an error has occurred and its type could be

looked up in Appendix A, Error Codes. It is imperative that the error code returned is always checked

to verify that the call was successful.

Note: If there is a nonzero error code, the application program should stop, since the results would

be unpredictable and it may cause the program to crash.

Solve
Since the model is an LP, a linear solver, such as the primal simplex method, can be used. The model

is solved with the following call:

nErrorCode = LSoptimize(pModel, LS_METHOD_PSIMPLEX, &nSolStat);

Alternative solvers available for linear models include dual simplex and barrier (if licensed). When the

second argument in the function call is set to LS_METHOD_FREE, LINDO API will decide the solver

to use by examining its structure and mathematical content. See the Common Macro Definitions

section of Chapter 2, Function Definitions, for more information on the predefined macros

LS_METHOD_PSIMPLEX and LS_METHOD_FREE.

Retrieve the Solution
The next step is to retrieve the solution using solution query functions. Many of the LINDO API query

functions need to have space allocated before calling the routine. You must be sure to allocate

sufficient space for query routines that include a pointer to a string, an integer vector, a double

precision vector, or character vector. If sufficient memory is not initially allocated, the application will

crash once it is built and executed. See Solution Query Routines in Chapter 2, Function Definitions, for

more information on which routines require space to be allocated for them. Refer to Chapter 3, Solving

Linear Programs, for more details on building and solving the model and a programming example in

Visual Basic.

18 CHAPTER 1

Here, the objective value and optimal variable values will be displayed. The objective value is

retrieved and printed with the following:

double adX[4];

nErrorCode = LSgetInfo(pModel, LS_DINFO_POBJ, &dObj);

printf("Objective Value = %g\n", dObj);

See the context of the LSgetInfo() function in Chapter 2, Function Definitions, for more information on

the predefined macro LS_DINFO_POBJ. It tells LINDO API to fetch the value of the primal objective

value via the LSgetInfo() function. The optimal variable values are retrieved and printed with the

following:

nErrorCode = LSgetPrimalSolution (pModel, adX);

printf ("Primal values \n");

for (i = 0; i < nN; i++) printf(" x[%d] = %g\n", i, adX[i]);

printf ("\n");

The output of this program would appear as follows:

Objective Value = 10.44118

Primal values

 x[0] = 5

 x[1] = 1.176471

 x[2] = 1.764706

 x[3] = 2.5

Clear Memory
A last step is to release the LINDO API memory by deleting the LINDO environment with the

following call:

nErrorCode = LSdeleteEnv(&pEnv);

This frees up all data structures LINDO API allocated to the environment and all of the environment’s

associated models.

Chapter 2:

Function Definitions
In this section, we give "header" definitions of all user callable functions in LINDO API. Most of the

functions return error or information codes. For a complete listing of the codes, see Appendix A, Error

Codes.

The general form of functions in LINDO API is:

LSverbObject(specific_object)

Typical verbs are: create, delete, get, set, and optimize. Typical objects are: environment, model, and

parameter. LINDO API assumes typical default values (e.g., zero or infinity (LS_INFINITY) for most

of the specific objects). If you are happy with these defaults, then you can simply pass NULL for these

arguments in a function call.

In describing the callable functions, we have adopted a variable-naming convention, which is

commonly referred to as Hungarian notation. Several versions of Hungarian notation have evolved

over the years and all its dialects are intended to be mnemonic (easy to remember) for your

convenience. The version used here is dictated mainly by the data structure definitions that arise in the

representation of mathematical models. In building your own applications, you may follow or alter

them as desired.

In Hungarian notation, variable names begin with one or more lowercase letters that denote the

variable type, thus providing an inherent identification. For example, the prefix ad is used to identify a

double precision array, as in adVal. In like fashion, the prefix psz identifies a pointer to a

null-terminated string, as in *pszFilename. The following table summarizes the Hungarian notation

conventions for the commonly used data types in LINDO API:

Prefix Data type

a Array
c Integer (count)

ch Character

d Double

f Float

i Integer (index into arrays)
n Integer
p A pointer variable containing the address of a variable
sz Null-terminated string (ASCIIZ)

20 CHAPTER 2

Common Parameter Macro Definitions
Macro symbols are extensively used in LINDO API as arguments during function calls or as a

parameter to specify a choice or value. The macros can take integer, double, or character values. In the

following table, the most common ones are listed. The first column gives the name of the macro, the

second column refers to the value it refers to, and the third column gives a brief description.

Symbol Value Description

Model Types

LS_LP 10 Linear programs

LS_QP 11 Quadratic programs

LS_SOCP 12 Conic programs

LS_SDP 13 Semidefinite programs

LS_NLP 14 Nonlinear programs

LS_MILP 15 Mixed-integer linear programs

LS_MIQP 16 Mixed-integer quadratic programs

LS_MISOCP 17 Mixed-integer conic programs

LS_MISDP 18 Mixed-integer semidefinite programs

LS_MINLP 19 Mixed-integer nonlinear programs

LS_CONVEX_QP 20 Convex QP

LS_CONVEX_NLP 21 Convex NLP

LS_CONVEX_MIQP 22 Convex MIQP

LS_CONVEX_MINLP 23 Convex MINLP

LS_UNDETERMINED -1 Undetermined

Model Status

LS_STATUS_OPTIMAL 1 An optimal solution is found

LS_STATUS_BASIC_OPTIMAL 2 An optimal basic solution is found

LS_STATUS_INFEASIBLE 3 The model is infeasible

LS_STATUS_UNBOUNDED 4 The model is unbounded

LS_STATUS_FEASIBLE 5 The model is feasible

LS_STATUS_INFORUNB 6 The solution is infeasible or unbounded. In order

to determine the actual status, primal simplex

method should be run on the model with

presolver off.

LS_STATUS_NEAR_OPTIMAL 7 A near optimal solution is found (for

FUNCTION DEFINITIONS 21

nonlinear problems only)

LS_STATUS_LOCAL_OPTIMAL 8 A local optimal solution is found (for

nonlinear problems only)

LS_STATUS_LOCAL_INFEASIBLE 9 A locally infeasible solution is found

(for nonlinear problems only)

LS_STATUS_CUTOFF 10 The solver found an optimal solution worse than

the cutoff

LS_STATUS_NUMERICAL_ERROR 11 The solver encountered a numerical error during

a function evaluation (e.g., square root of a

negative number)

LS_STATUS_UNKNOWN 12 Model was attempted to be solved, but the

optimization session terminated without

producing any useful information as to what

the actual status of the model is. So, the status of

the model is remains unknown.

LS_STATUS_UNLOADED 13 No model is loaded

LS_STATUS_LOADED 14 Model is loaded, but it has not been attempted to

be solved yet.

Optimization Direction

LS_MIN 1 Minimization type model.

LS_MAX -1 Maximization type model.

Numerical Infinity

LS_INFINITY 1.E30 Numeric infinity for variable bounds. All bounds

whose absolute value is larger than

LS_INFINITY is truncated.

Constraint Types (Senses)

LS_CONTYPE_LE ‘L’ Less than equal to.

LS_CONTYPE_EQ ‘E’ Equal to.

LS_CONTYPE_GE ‘G’ Greater than equal to.

LS_CONTYPE_FR ‘N’ Free (or neutral).

Cone Types

LS_CONETYPE_QUAD ‘Q’ Quadratic cone

LS_CONETYPE_RQUAD ‘R’ Rotated quadratic cone

Variable Types

LS_VARTYPE_CONT ‘C’ Continuous variable.

LS_VARTYPE_BIN ‘B’ Binary variable.

LS_VARTYPE_INT ‘I’ General integer variable.

LS_VARTYPE_SC ‘S’ Semi-continuous variable.

Solver Types

LS_METHOD_FREE 0 Solver decides.

22 CHAPTER 2

LS_METHOD_PSIMPLEX 1 Primal simplex method.

LS_METHOD_DSIMPLEX 2 Dual simplex method.

LS_METHOD_BARRIER 3 Barrier method.

LS_METHOD_NLP 4 Nonlinear Solver.

LS_METHOD_GA 13 Genetic optimization solver

LS_METHOD_HEUMIP 15 Use different heuristic algorithms to find a

feasible MIP solution.

LS_METHOD_PRIMIP 16 Use different starting priorities to find a feasible

MIP solution.

Basis Status

LS_BASTYPE_BAS 0 Basic.

LS_BASTYPE_ATLO -1 Non-basic at lower bound.

LS_BASTYPE_ATUP -2 Non-basic at upper bound.

LS_BASTYPE_FNUL -3 Free and non-basic at zero value.

LS_BASTYPE_SBAS -4 Fixed and non-basic at both lower and upper

bounds.

Solution File Format and Types

LS_SOLUTION_OPT 0 Default solution file format.

LS_SOLUTION_MIP 1 Solution file format for MIP solutions.

LS_SOLUTION_OPT_IPM 2 Solution file format for interior point solutions.

LS_SOLUTION_OPT_OLD 3 Solution file format in LINDO API version 1.x.

LS_SOLUTION_MIP_OLD 4 Solution file format for MIP solutions in LINDO

API version 1.x

Set Types

LS_MIP_SET_SOS1 1 Special ordered set of type-1

LS_MIP_SET_SOS2 2 Special ordered set of type-2

LS_MIP_SET_SOS3 3 Special ordered set of type-3

LS_MIP_SET_CARD 4 Set cardinality.

Norm Options

LS_IIS_NORM_FREE 0 Solver decides the infeasibility norm for IIS

analysis.

LS_IIS_NORM_ONE 1 Solver uses L-1 norm for IIS analysis.

LS_IIS_NORM_INFINITY 2 Solver uses L-∞ norm for IIS analysis

IIS Methods

LS_IIS_DEFAULT 0 Use default filter in IIS analysis.

LS_IIS_DEL_FILTER 1 Use deletion filter in IIS analysis.

LS_IIS_ADD_FILTER 2 Use additive filter in IIS analysis.

LS_IIS_GBS_FILTER 3 Use generalized-binary-search filter in IIS

analysis.

FUNCTION DEFINITIONS 23

LS_IIS_DFBS_FILTER 4 Use depth-first-binary-search filter in IIS

analysis.

LS_IIS_FSC_FILTER 5 Use fast-scan filter in IIS analysis.

 LS_IIS_ELS_FILTER 6 Use elastic filter in IIS analysis.

Stochastic Optimization Methods

 LS_METHOD_STOC_FREE -1 Solve with the method chosen by the solver.

 LS_METHOD_STOC_DETEQ 0 Solve the deterministic equivalent (DETEQ).

 LS_METHOD_STOC_NBD 1 Solve with the Nested Benders Decomposition

(NBD) method.

 LS_METHOD_STOC_ALD 2 Solve with the Augmented Lagrangian

Decomposition (ALD) method.

 LS_METHOD_STOC_HS 4 Solve with the Heuristic-Search (HS) method.

Stochastic Data Types

 LS_JCOL_INST -8 Stochastic parameter is an instruction code

 LS_JCOL_RUB -7 Stochastic parameter is an upper bound for RHS

(reserved for future use)

 LS_JCOL_RLB -6 Stochastic parameter is a lower bound for RHS

(reserved for future use)

 LS_JCOL_RHS -5 Stochastic parameter is a RHS value (belongs to

RHS column)

 LS_IROW_OBJ -4 Stochastic parameter is an objective coefficient

(belongs to OBJ row)

 LS_IROW_VUB -3 Stochastic parameter is a lower bound (belongs

to LO row)

 LS_IROW_VLB -2 Stochastic parameter is an upper bound (belongs

to UP row)

 LS_IROW_VFX -1 Stochastic parameter is a fixed bound (belongs

to FX row)

 LS_IMAT_AIJ 0 Stochastic parameter is an LP matrix entry.

Property

 LS_PROPERTY_CONST 1 Constraint function is a constant

 LS_PROPERTY_LINEAR 2 Constraint function is linear

 LS_PROPERTY_CONVEX 3 Constraint function is convex

 LS_PROPERTY_CONCAVE 4 Constraint function is concave

 LS_PROPERTY_QUASI_CONVEX 5 Constraint function is quasi-convex

 LS_PROPERTY_QUASI_CONCAVE 6 Constraint function is quasi-concave

 LS_PROPERTY_MAX 7 Reserved for future use

 LS_PROPERTY_MONO_INCREASE 8 Reserved for future use

 LS_PROPERTY_MONO_DECREASE 9 Reserved for future use

 LS_PROPERTY_UNKNOWN 0 Undetermined or general contraint classification

24 CHAPTER 2

Structure Creation and Deletion Routines
The routines in this section are used to create and destroy the basic data structures used within LINDO

API to manage your mathematical programming models.

In order to solve a model, you must begin by allocating a modeling environment. This is done through

a call to LScreateEnv(). LINDO API uses the environment space to store global data pertaining to all

models belonging to the environment. Once an environment has been created, you allocate space for

one or more models within the environment. Models are allocated by calls to LScreateModel(). The

model structure holds all model specific data and parameters.

LScreateEnv()

Description:

Creates a new instance of LSenv, which is an environment used to maintain zero or more

models. The LSenv data structure is defined in the lindo.h header file.

Returns:

If successful, a pointer to the newly created instance of LSenv is returned. If unsuccessful,

NULL is returned.

Prototype:

pLSenv LScreateEnv(int *pnErrorcode, char *pszPassword)

Input Arguments:

Name Description

pszPassword A pointer to a character string containing a license key for

LINDO API.

Output Arguments:

Name Description

pnErrorcode A pointer to the error code. If successful, *pnErrorcode will be

0 on return. A list of possible error codes may be found in

Appendix A, Error Codes.

Remarks:

 Your license key is printed on the sleeve containing the distribution CD.

 You can call LSloadLicenseString() to read the license key from a text file.

 Be sure to call LSdeleteEnv (see below) once for each environment created when they are

no longer needed. This will allow LINDO API to free all memory allocated to the

environments.

FUNCTION DEFINITIONS 25

LScreateModel()

Description:

Creates a new instance of LSmodel.

Returns:

If successful, a pointer to the newly created instance of LSmodel is returned. If unsuccessful,

NULL is returned.

Prototype:

pLSmodel LScreateModel(pLSenv pEnv, int *pnErrorcode)

Input Arguments:

Name Description

pEnv Pointer to the current LINDO environment established via a

call to LScreateEnv().

Output Arguments:

Name Description

pnErrorcode A pointer to the error code. If successful, *pnErrorcode will be

0 on return. A list of potential error codes is listed in

Appendix A, Error Codes.

Remarks:

 LScreateEnv() must be called before this function is called in order to obtain a valid

environment pointer.

 Be sure to call LSdeleteModel() (see below) once for each model created when they are

no longer needed. This will allow LINDO API to free all memory allocated to the

models.

LSdeleteEnv()

Description:

Deletes an instance of LSenv. The memory used by the LSenv instance is freed and the pointer

to the instance is set to NULL. Each model created under this environment will also be

deleted by calls to LSdeleteModel().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteEnv(pLSenv *pEnv)

Input Arguments:

Name Description

pEnv A pointer to a pointer of an instance of LSenv.

26 CHAPTER 2

LSdeleteModel()

Description:

Deletes an instance of LSmodel. The memory used by the LSmodel instance is freed and the

pointer to this instance is set to NULL.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteModel(pLSmodel *pModel)

Input Arguments:

Name Description

pModel A pointer to a pointer of an instance of LSmodel.

License and Version Information Routines
The first routine in this section allows you to read a license key from a file and load it into a local

string buffer. Your license key is unique to your installation and contains information regarding your

version’s serial number, size, and supported options. The license key is case sensitive, so be sure to

enter it exactly as listed, including all hyphens. Given that your license key is unique to your

installation, you should not share it with any user not licensed to use your copy of LINDO API. The

second routine allows you to access the version and build date of LINDO API.

LSgetVersionInfo()

Description:

Returns the version and build information of the LINDO API on your system.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetVersionInfo(char *pszVersion, char *pszBuildData)

Output Arguments:

Name Description

pszVersion A pointer to a null terminated string that keeps the version

information of the LINDO API on your system.

pszBuildDate A pointer to a null terminated string that keeps the build date of

the LINDO API library on your system.

LSloadLicenseString()

Description:

Reads the license string from the specified file in text format.

FUNCTION DEFINITIONS 27

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadLicenseString(char *pszFname, char *pszLicense)

Input Arguments:

Name Description

pszFname A pointer to a null terminated string that refers to the name of

the file that contains your license key. Typically, the license

key is placed in the lndapi100.lic file.

Output Arguments:

Name Description

pszLicense A pointer to a null terminated string that keeps the license key.

28 CHAPTER 2

Input-Output Routines
The routines in this section provide functionality for reading and writing model formulations to and

from disk files. Loading a model from a file will generally not be as efficient as passing the nonzero

structure directly via the routines discussed in the Model Loading Routines section below. However,

some may find files more convenient.

LINDO API currently supports four file formats: LINDO, MPS, LINGO, and MPI. LINDO format is

identical to the format used by the interactive version of LINDO and is very straightforward to use.

The LINDO format is discussed in detail in Appendix C, LINDO File Format. MPS format, although

not as easy to deal with as LINDO format, is an industry standard and can be processed by most

commercial solvers. The details of the MPS format are given in Appendix B, MPS File Format. The

LINGO format is similar to the LINDO format and was originally developed for use with the LINGO

modeling language. For details on the LINGO format, refer to the LINGO User’s Manual, available

through LINDO Systems. MPI format is for representing nonlinear models, which is described in

detail in Appendix D, MPI File Format. LINDO API can read and write both LINDO and MPS files.

At present, LINGO files may only be written and may not be read, and MPI files can only be read.

LSreadLINDOFile()

Description:

Reads the model in LINDO format from the given file and stores the problem data in the

given model structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadLINDOFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

model. To obtain a pointer to a model structure, see

LScreateModel().

pszFname A pointer to a null terminated string containing the path and

name of the LINDO file.

Remarks:

 Details for the LP file format are given in Appendix C, LINDO File Format.

 To write a model in LINDO format, see LSwriteLINDOFile().

 To read a model in MPS format, see LSreadMPSFile().

FUNCTION DEFINITIONS 29

LSreadMPSFile()

Description:

Reads a model in MPS format from the given file and stores the problem data in the given

problem structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadMPSFile(pLSmodel pModel, char *pszFname, int

nFormat)

Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

model. To obtain a pointer to a model structure, see

LScreateModel().

pszFname A pointer to a null terminated string containing the path and

name of the MPS file.

nFormat

An integer parameter indicating whether the MPS file is

formatted or not. The parameter value should be either

LS_FORMATTED_MPS or LS_UNFORMATTED_MPS.

Remarks:

 All memory for the passed LSmodel structure will be allocated in this routine. Therefore,

all pointers in the given structure are assumed to be NULL when this function is called.

A call to both LScreateEnv() and LScreateModel(), however, must have been made first

to properly establish the structure.

 When reading a formatted MPS file, all text is read literally, including spaces, in the

columns of that field. For example, if “ABC DEF” is the text provided in the field for

row names in the ROWS section of the MPS file, then this is taken as the row name. If

“ ABC DEF” (note the initial space) appears as another row name, then this name is

treated literally as the text between the quotes and is therefore different from

“ABC DEF”. MPS file format details are given in Appendix B, MPS File Format.

 When reading an unformatted MPS file, the row and column names should not contain

spaces. Spaces within the names will tend to generate errors and any leading or trailing

spaces will be ignored (making “ ABC” equivalent to “ABC”). Note, "unformatted" in

the sense used here, does not mean binary format as used by some compilers. The low

level file format is still standard ASCII text.

 When the file type is set to LS_FORMATTED_MPS, all names will have 8 characters.

When the file type is set to LS_UNFORMATTED_MPS, the length of a name is only

restricted by the maximum length of a line, which is 256 characters.

 To minimize the probability of a file open error, it is useful to give the fully specified file

path name (e.g., c:\mydir\myfile.mps) rather than just myfile.mps.

 An MPS file is allowed to specify a constant in the objective. Some solvers will disregard

this constant. LINDO API does not. This may cause other solvers to display different

optimal objective function values than that found by LINDO API.

30 CHAPTER 2

 If a variable is declared integer in an MPS file but the file contains no specification for

the bounds of the variable, LINDO API assumes the lower bound is 0 and the upper

bound is infinity. Other solvers may in this case assume the upper bound is 1.0. This

may cause other solvers to obtain a different optimal solution than that found by LINDO

API.

Description:

Reads the model in MPI format from the given file and stores the problem data in the given

model structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadMPIFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

model. To obtain a pointer to a model structure, see

LScreateModel().

pszFname A pointer to a null terminated string containing the path and

name of the MPI format file.

Remarks:

 Details for the MPI file format are given in Appendix D, MPI File Format.

LSwriteMPIFile()

Description:

Writes the given model in MPI format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteMPIFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

model.

pszFname A pointer to a null terminated string containing the path and

name of the MPI format file.

Remarks:

 The model must have been loaded via LSloadInstruct call previously.

FUNCTION DEFINITIONS 31

 Details for the MPI file format are given in Appendix D, MPI File Format.

32 CHAPTER 2

LSreadBasis()

Description:

Reads an initial basis from the given file in the specified format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadBasis(pLSmodel pModel, char *pszFname, int

nFormat)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

model

pszFname A pointer to a null terminated string containing the path and

name of the basis file.

nFormat An integer parameter indicating the format of the file to be

read. Possible values are

 LS_BASFILE_BIN : Binary format (default)

 LS_BASFILE_MPS : MPS file format.

 LS_BASFILE_TXT : Space delimited text format.

Remarks:

 LS_BASFILE_MPS option requires the variable and constraint names in the resident

model and the basis MPS file to match.

LSwriteBasis()

Description:

 Writes the resident basis to the given file in the specified format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteBasis(pLSmodel pModel, char *pszFname, int

nFormat)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

model

pszFname A pointer to a null terminated string containing the path and

name of the basis file.

FUNCTION DEFINITIONS 33

nFormat An integer parameter indicating the format of the file to be

written. Possible values are

 LS_BASFILE_BIN : Binary format (default)

 LS_BASFILE_MPS : MPS file format.

 LS_BASFILE_TXT : Space delimited text format.

Remarks:

 LS_BASFILE_MPS option requires the variable and constraint names in the resident

model and the basis MPS file to match.

LSwriteDualLINDOFile()

Description:

Writes the dual of a given problem to a file in LINDO format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteDualLINDOFile(pLSmodel pModel, char *pszFname,

int nObjsense)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to be

written to a LINDO format file.

pszFname A pointer to a null terminated character string containing the

path and name of the file to which the dual model should be

written.

nObjsense An integer specifying if the dual problem will be posed as a

maximization or minimization problem. The possible values

are LS_MAX and LS_MIN.

Remarks:

 The primal model is assumed to be a linear model. Presence of integrality restrictions and

quadratic terms will be ignored when writing the dual problem.

34 CHAPTER 2

LSwriteDualMPSFile()

Description:

Writes the dual of a given problem to a file in MPS format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteDualMPSFile(pLSmodel pModel, char *pszFname, int

nFormat, int nObjsense)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to be

written to a MPS format file.

pszFname A pointer to a null terminated character string containing the

path and name of the file to which the dual model should be

written.

nFormat An integer parameter indicating the format of the file to be

written. LS_FORMATTED_MPS indicates the file is to be

formatted, while LS_UNFORMATTED_MPS indicates

unformatted output.

nObjsense An integer specifying if the dual problem will be posed as a

maximization or minimization problem. The possible values

are LS_MAX and LS_MIN.

Remarks:

 The primal model is assumed to be a linear model. Presence of integrality restrictions and

quadratic terms in the primal model will be ignored when creating the dual problem.

FUNCTION DEFINITIONS 35

LSwriteIIS()

Description:

Writes the IIS of an infeasible LP to a file in LINDO file format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteIIS(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the infeasible

model for which the IIS has already been computed.

pszFname A character string containing the path and name of the file to

which the IIS should be written.

Remarks:

 LSfindIIS() can be used to find the IIS of an infeasible LP.

LSwriteIUS()

Description:

Writes the IUS of an unbounded LP to a file in LINDO file format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteIUS(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the unbounded

model for which the IUS has already been computed.

pszFname A character string containing the path and name of the file to

which the IUS should be written.

Remarks:

 LSfindIUS() can be used to find IUS of an unbounded linear model.

36 CHAPTER 2

LSwriteLINDOFile()

Description:

Writes the given problem to a file in LINDO format. Model must be linear.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteLINDOFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to be

written to a LINDO format file.

pszFname A pointer to a null terminated character string containing the

path and name of the file to which the model should be written.

Remarks:

 Details for the LINDO file format are given in Appendix C, LINDO File Format.

 To read a model in LINDO format, see LSreadLINDOFile().

 To write a model in MPS format, see LSwriteMPSFile().

LSwriteLINGOFile()

Description:

Writes the given problem to a file in LINGO format. Model must be linear.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteLINGOFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to be

written to a LINGO file.

pszFname A pointer to a null terminated string containing the path and

name of the file to which the model should be written.

Remarks:

 To write a model in LINDO format, see LSwriteLINDOFile().

 To write a model in MPS format, see LSwriteMPSFile().

FUNCTION DEFINITIONS 37

LSwriteMPSFile()

Description:

Writes the given problem to a specified file in MPS format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteMPSFile(pLSmodel pModel, char *pszFname, int

nFormat)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to be

written to an MPS file.

pszFname A pointer to a null terminated string containing the path and

name of the file to which the model should be written.

nFormat An integer parameter indicating the format of the file to be

written. LS_FORMATTED_MPS indicates the file is to be

formatted, while LS_UNFORMATTED_MPS indicates

unformatted output.

Remarks:

 If the name vectors in the model are not set, then the problem title will be "NO_TITLE";

the objective name will be "OBJ"; the column names will be "C0000001", "C0000002",

etc.; and the row names will be "R0000001", "R0000002", etc. The name vectors may be

set via a call to LSloadNameData().

 When using formatted output, this routine writes in the standard MPS format using 8

character names. Longer names are truncated to 8 characters. Therefore, care must be

taken when using longer names, since two unique names such as "012345678" and

"012345679" will both be treated as "01234567". If your model has names longer than

eight characters, you should use unformatted output.

 Details for the MPS file format are given in Appendix B, MPS File Format.

 To read a model in MPS format, see LSreadMPSFile().

 To write a model in LINDO format, see LSwriteLINDOFile().

38 CHAPTER 2

LSwriteSolution()

Description:

Writes the LP solution to a file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteSolution(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to

write the LP solution for.

pszFname A character string containing the path and name of the file to

which the solution should be written.

LSreadSMPSFile ()

Description:

This subroutine is the top level input routine. It first reads a core-file in the MPS format. It

then calls further subroutines to read time and stoch files whose format are laid out in

Appendix E.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadSMPSFile (pLSmodel pModel, char * coreFile, char *

timeFile, char * stocFile, int nMPStype)

FUNCTION DEFINITIONS 39

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

coreFile A string specifying the name of the CORE file in MPS format.

timeFile A string specifying the name of the TIME file.

stocFile A string specifying the name of the STOCH file.

nMPStype An integer parameter indicating whether the MPS file is

formatted or not. Possible values are:

 LS_FORMATTED_MPS

 LS_UNFORMATTED_MPS

 LS_FORMATTED_MPS_COMP

Remarks:

Refer to appendix for details on SMPS format.

LSreadSMPIFile()

Description:

Read an SP model in SMPI file format in to the given model instance. . It first reads a core-

file in the MPI format. It then calls further subroutines to read time and stoch files whose

format are laid out in Appendix F.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadSMPIFile (pLSmodel pModel, char *coreFile, char

*timeFile, char *stocFile)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

coreFile A string specifying the name of the CORE file in MPS format.

timeFile A string specifying the name of the TIME file.

stocFile A string specifying the name of the STOCH file.

Remarks:

Refer to appendix for details on SMPI format.

40 CHAPTER 2

LSwriteSMPIFile()

Description:

Writes the CORE,TIME,STOCH files for SP models in SMPI format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteSMPIFile (pLSmodel pModel, char * coreFile, char *

timeFile, char * stocFile)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

coreFile A string specifying the name of the CORE file in MPI format.

timeFile A string specifying the name of the TIME file.

stocFile A string specifying the name of the STOCH file.

LSwriteSMPSFile ()

Description:

Writes the CORE,TIME,STOCH files for SP models in SMPS format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteSMPSFile (pLSmodel pModel, char * coreFile, char *

timeFile, char * stocFile, int nMPStype)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

coreFile A string specifying the name of the CORE file in MPS format.

timeFile A string specifying the name of the TIME file.

stocFile A string specifying the name of the STOCH file.

nMPStype An integer parameter indicating whether the MPS file is

formatted or not. Possible values are:

LS_FORMATTED_MPS

LS_UNFORMATTED_MPS

LS_FORMATTED_MPS_COMP

FUNCTION DEFINITIONS 41

LSwriteDeteqMPSFile ()

Description:

Writes the deterministic equivalent for the SP model in MPS format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteDeteqMPSFile (pLSmodel pModel, char * mpsFile, int

nMPStype, int iDeqType)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

mpsFile A string specifying the name of the MPS file

nMPStype An integer parameter indicating whether the MPS file is

formatted or not. Possible values are:

 LS_FORMATTED_MPS

 LS_UNFORMATTED_MPS

 LS_FORMATTED_MPS_COMP

iDeqType An integer specifying the type of the deterministic equivalent.

Possible values are

 LS_DETEQ_IMPLICIT

 LS_DETEQ_EXPLICIT (default).

LSwriteDeteqLINDOFile ()

Description:

Writes the deterministic equivalent (DEQ) of the SP models in LINDO format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteDeteqLINDOFile (pLSmodel pModel, char * ltxFile,

int iDeqType)

42 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

ltxFile An string specifying the name of the LINDO file.

iDeqType Type of the the deterministic equivalent. Possible values are

 LS_DETEQ_IMPLICIT

 LS_DETEQ_EXPLICIT (default).

LSgetNodeReducedCost ()

Description:

Returns the reduced cost for the specified node.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetNodeReducedCost (pLSmodel pModel, int iScenario, int

iStage, double * padD)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario the node belongs to.

iStage An integer specifying the stage the node belongs to.

padD A double array to return specified nodes's dual solution The

length of this vector is equal to the number of variables in the

stage associated with the node. It is assumed that memory has

been allocated for this vector.

Remarks:

The number of variables or constraints in a stage can be accessed via LSgetStocInfo().

FUNCTION DEFINITIONS 43

LSwriteScenarioSolutionFile ()

Description:

Writes the scenario solution to a file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteScenarioSolutionFile (pLSmodel pModel, int

iScenario, char * szFname)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario to write the solution for.

szFname A null terminated string containing the file name. If set to

NULL, then the results are printed to stdout

LSwriteNodeSolutionFile ()

Description:

Writes the node solution to a file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteNodeSolutionFile (pLSmodel pModel, int iScenario,

int iStage, char * szFname)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario number the node belongs to.

iStage An integer specifying the stage the node belongs to.

szFname A null terminated string containing the file name. If set to

NULL, then the results are printed to stdout.

44 CHAPTER 2

LSwriteScenarioMPIFile ()

Description:

Write scenario model in MPI format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteNodeSolutionFile (pLSmodel pModel, int iScenario,

int iStage, char * szFname)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario to write in MPI format..

scenFile A null terminated string specifying file to write the scenario

model..

LSwriteScenarioMPSFile ()

Description:

Write a specific scenario model in MPS format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteScenarioMPSFile (pLSmodel pModel, int iScenario,

char * scenFile, int nMPStype)

 Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario to write in MPS format..

scenFile A null terminated string specifying file to write the scenario

model.

nMPStype An integer parameter indicating whether the MPS file is

formatted or not. Possible values are:

 LS_FORMATTED_MPS

 LS_UNFORMATTED_MPS

 LS_FORMATTED_MPS_COMP

FUNCTION DEFINITIONS 45

LSwriteScenarioLINDOFile ()

Description:

Write scenario model in LINDO format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteScenarioLINDOFile (pLSmodel pModel, int iScenario,

char * scenFile)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario to write in MPI format..

scenFile A null terminated string specifying file to write the scenario

model.

46 CHAPTER 2

Parameter Setting and Retrieving Routines
The routines in this section allow you to set and retrieve system parameter values. Each of these

routines is distinguished on three dimensions:

1. The parameter being dealt with is void, double precision, or integer.

2. The routine either gets or sets the specified parameter’s value.

3. The parameter being dealt with is in either a model space or an environment space.

The various permutations of these three options result in a total of fifteen routines. A brief listing of

these routines and their usage is listed in the following table:

Routine Parameter Type Action Location

LSgetEnvParameter() Void Gets Environment

LSgetEnvDouParameter() Double Gets Environment

LSgetEnvIntParameter() Integer Gets Environment

LSgetModelParameter() Void Gets Model

LSgetModelDouParameter() Double Gets Model

LSgetModelIntParameter() Integer Gets Model

LSsetEnvParameter() Void Sets Environment

LSsetEnvDouParameter() Double Sets Environment

LSsetEnvIntParameter() Integer Sets Environment

LSsetModelParameter() Void Sets Model

LSsetModelDouParameter() Double Sets Model

LSsetModelIntParameter() Integer Sets Model

LSreadEnvParameter() N/A Reads Environment

LSwriteEnvParameter() N/A Writes Environment

LSreadModelParameter() N/A Reads Model

LSwriteModelParameter() N/A Writes Model

These fifteen functions are documented in detail immediately below. The list of parameters that may

be referenced through these routines is given in the section Available Parameters. This lists, each of

the parameter’s data type (integer or double) and whether they are available as part of the environment

or model. The parameters available to be set for the environment are also available to be set for the

model. However, some of the parameters available to be set for the model are not available to be set

for the environment.

All parameters are assigned default (initial) values during environment and model creation. These

defaults work best for general purpose. However, there may be cases where users prefer to work with

different settings for a subset of the available parameters. When a model is created, it inherits the

parameter values in the environment it belongs to. Changes to the parameter values in the model do not

affect the parameter values currently set in the environment. Similarly, once a model is created in an

FUNCTION DEFINITIONS 47

environment, subsequent changes in the environment parameters do not affect the parameter settings in

the model. During the optimization process, the solver uses the parameter settings in the model space.

If a parameter is not part of the model space, then the solver uses the value in the environment space.

LSgetEnvParameter()

Description:

Retrieves a parameter for a specified environment.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetEnvParameter(pLSenv pEnv, int nParameter, void

*pvValue)

Input Arguments:

Name Description

pEnv Pointer to an instance of LSenv.

nParameter An integer macro (e.g., LS_IPARAM_STATUS).

Output Arguments:

Name Description

pvValue On return, *pvValue will contain the parameter’s value. The

user is responsible for allocating sufficient memory to store the

parameter value.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For retrieving model parameters, use LSgetModelParameter().

48 CHAPTER 2

LSgetEnvDouParameter()

Description:

Retrieves a double precision parameter for a specified environment.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetEnvDouParameter(pLSenv pEnv, int nParameter, double

*pdVal)

Input Arguments:

Name Description

pEnv Pointer to an instance of LSenv.

nParameter An integer macro referring to a double precision parameter

(e.g., LS_DPARAM_SOLVER_FEASTOL).

Output Arguments:

Name Description

pdVal A pointer to a double precision variable. On return, *pdVal

will contain the parameter’s value.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For retrieving double precision model parameters, use LSgetModelDouParameter().

 For retrieving integer environment parameters, use LSgetEnvIntParameter().

LSgetEnvIntParameter()

Description:

Retrieves an integer parameter for a specified environment.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetEnvIntParameter(pLSenv pEnv, int nParameter, int

*pnVal)

Input Arguments:

Name Description

pEnv Pointer to an instance of LSenv.

nParameter An integer macro referring to an integer parameter (e.g.,

LS_IPARAM_LP_ITRLMT).

FUNCTION DEFINITIONS 49

Output Arguments:

Name Description

pnVal A pointer to an integer variable. On return, *pnVal will contain

the parameter’s value.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For retrieving integer model parameters, use LSgetModelIntParameter().

 For retrieving double precision environment parameters, use LSgetEnvDouParameter().

LSgetModelParameter()

Description:

Retrieves a parameter or status variable for a specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetModelParameter(pLSmodel pModel, int nParameter,

void *pvValue)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nParameter An integer macro (e.g., LS_IPARAM_STATUS).

Output Arguments:

Name Description

pvValue On return, *pvValue will contain the parameter’s value. The

user is responsible for allocating sufficient memory to store the

parameter value.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For retrieving environment parameters, use LSgetEnvParameter().

50 CHAPTER 2

LSgetModelDouParameter

Description:

Retrieves a double precision parameter for a specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetModelDouParameter(pLSmodel pModel, int

nParameter, double *pdVal)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nParameter An integer macro referring to a double precision parameter

(e.g., LS_DPARAM_MIP_RELOPTTOL).

Output Arguments:

Name Description

pdVal A pointer to a double precision variable. On return, *pdVal

will contain the parameter’s value.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For retrieving double precision environment parameters, use LSgetEnvDouParameter().

 For retrieving integer model parameters, use LSgetModelIntParameter().

LSgetModelIntParameter()

Description:

Retrieves an integer parameter for a specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetModelIntParameter(pLSmodel pModel, int nParameter,

int *pnVal)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nParameter An integer macro referring to an integer parameter (e.g.,

LS_IPARAM_LP_ITRLMT).

FUNCTION DEFINITIONS 51

Output Arguments:

Name Description

pnVal A pointer to an integer variable. On return, *pnVal will contain

the parameter’s value.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For retrieving integer environment parameters, use LSgetEnvIntParameter().

 For retrieving double precision model parameters, use LSgetModelDouParameter().

LSsetEnvParameter()

Description:

Sets a parameter for a specified environment.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetEnvParameter(pLSenv pEnv, int nParameter, void

*pvValue)

Input Arguments:

Name Description

pEnv Pointer to an instance of LSenv.

nParameter An integer macro (e.g., LS_DPARAM_SOLVER_FEASTOL).

pvValue A variable containing the parameter’s new value.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For setting model parameters, use LSsetModelParameter().

52 CHAPTER 2

LSsetEnvDouParameter()

Description:

Sets a double precision parameter for a specified environment.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetEnvDouParameter(pLSenv pEnv, int nParameter, double

dVal)

Input Arguments:

Name Description

pEnv Pointer to an instance of LSenv.

nParameter An integer macro referring to a double precision parameter

(e.g., LS_DPARAM_SOLVER_FEASTOL).

dVal A double precision variable containing the parameter’s new

value.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For setting integer environment parameters, use LSsetEnvIntParameter().

 For setting double precision model parameters, use LSsetModelDouParameter().

FUNCTION DEFINITIONS 53

LSsetEnvIntParameter()

Description:

Sets an integer parameter for a specified environment.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetEnvIntParameter(pLSenv pEnv, int nParameter, int

nVal)

Input Arguments:

Name Description

pEnv Pointer to an instance of LSenv.

nParameter An integer macro referring to an integer parameter (e.g.,

LS_IPARAM_LP_PRELEVEL).

nVal An integer variable containing the parameter’s new value.

Remarks:

 The available parameters are described in Available Parameters below.

 For setting double precision environment parameters, use LSsetEnvDouParameter().

 For setting integer model parameters, use LSsetModelIntParameter().

LSsetModelParameter()

Description:

Sets a parameter for a specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetModelParameter(pLSmodel pModel, int nParameter,

void *pvValue)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nParameter An integer macro (e.g., LS_IPARAM_LP_ITRLMT).

PvValue A variable containing the parameter’s new value.

Remarks:

 The available parameters are described in Available Parameters below.

 For setting environment parameters, use LSsetEnvParameter().

54 CHAPTER 2

LSsetModelDouParameter()

Description:

Sets a double precision parameter for a specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetModelDouParameter(pLSmodel pModel, int nParameter,

double dVal)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nParameter An integer macro referring to a double precision parameter

(e.g., LS_DPARAM_SOLVER_FEASTOL).

dVal A double precision variable containing the parameter’s new

value.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For setting integer model parameters, use LSsetModelIntParameter().

 For setting double precision environment parameters, use LSsetEnvDouParameter().

LSsetModelIntParameter()

Description:

Sets an integer parameter for a specified environment.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetModelIntParameter(pLSmodel pModel, int nParameter,

int nVal)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nParameter An integer macro referring to an integer parameter (e.g.,

LS_IPARAM_TIMLIM).

nVal An integer variable containing the parameter’s new value.

FUNCTION DEFINITIONS 55

Remarks:

 The available parameters are described in the Available Parameters section below.

 For setting double precision model parameters, use LSsetModelDouParameter().

 For setting integer environment parameters, use LSsetEnvIntParameter().

LSreadEnvParameter()

Description:

Reads environment parameters from a parameter file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadEnvParameter(pLSenv pEnv, char *pszFname)

Input Arguments:

Name Description

pEnv Pointer to an instance of LSenv.

pszFname A null-terminated string containing the path and name of the

file from which parameters will be read.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For retrieving environment parameters, use LSgetModelParameter().

 For an example parameter file, see lindo.par in the distribution.

LSreadModelParameter()

Description:

Reads model parameters from a parameter file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadModelParameter(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

pszFname A null-terminated string containing the path and name of the

file from which parameters will be read.

Remarks:

 The available parameters are described in the Available Parameters section below.

 For retrieving environment parameters, use LSgetEnvParameter().

56 CHAPTER 2

LSwriteEnvParameter()

Description:

Writes environment parameters to a parameter file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteEnvParameter(pLSenv pEnv, char *pszFname)

Input Arguments:

Name Description

pEnv Pointer to an instance of LSenv.

pszFname A null-terminated string containing the path and name of the

file to which parameters will be written.

Remarks:

 LSmodel objects inherit default parameter values from the LSenv object they belong.

LSwriteModelParameter()

Description:

Writes model parameters to a parameter file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteModelParameter(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

pszFname A null-terminated string containing the path and name of the

file to which parameters will be written.

Remarks:

 LSmodel objects inherit default parameter values from the LSenv object they belong.

FUNCTION DEFINITIONS 57

LSgetParamShortDesc()

Description:

Get the specified parameter's short description.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetParamShortDesc(pLSenv pEnv, int nParam,

char *szDescription)

Input Arguments:

Name Description

pEnv An instance of LSenv.

nParam An integer parameter identifier.

szDescription A string buffer to copy the parameter's description. This buffer

should be sufficiently long (e.g. 256 characters or more).

LSgetParamLongDesc()

Description:

Get the specified parameter's long description, which is also the entry in the user manual for

the parameter.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetParamLongDesc(pLSenv pEnv, int nParam,

char *szDescription)

Input Arguments:

Name Description

pEnv An instance of LSenv.

nParam An integer parameter identifier.

szDescription A string buffer to copy the parameter's description. This buffer

should be sufficiently long (e.g. 1024 characters or more).

58 CHAPTER 2

LSgetParamMacroName()

Description:

Get the specified parameter's macro name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetParamMacroName(pLSenv pEnv, int nParam, char

*szMacro)

Input Arguments:

Name Description

pEnv An instance of LSenv.

nParam An integer parameter identifier.

szMacro A string buffer to return the name.

LSgetParamMacroID()

Description:

Get the integer identifier and the data type of parameter specified by its name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetParamMacroID(pLSenv pEnv, char *szParam, int

*pnParamType, int *pnParam)

Input Arguments:

Name Description

pEnv An instance of LSenv.

szParam A parameter macro name.

pnParamType An integer pointer to return the data type.

pnParam An inter pointer to return the integer identifier of the

parameter.

Remark:

A typical call in C/C++ is:

LSgetParamMacroID(pEnv,"LS_DPARAM_SOLVER_TIMLMT",&nParamType,&nParam);

assert(nParam==LS_DPARAM_SOLVER_TIMLMT);

assert(nParamType==LS_DOUBLE_PARAMETER_TYPE);

FUNCTION DEFINITIONS 59

LScopyParam()

Description:

Copy model parameters to another model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LScopyParam(pLSmodel sourceModel, pLSmodel

targetModel, int mSolverType)

Input Arguments:

Name Description

sourceModel Pointer to an instance of LSmodel to copy the parameters from.

targetModel Pointer to an instance of LSmodel to copy the parameters to.

mSolverType An integer specifying the solver type to copy the parameters

for. Reserved for future use.

LSgetCLopt()

Description:

Get command line options.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetCLOpt(pLSenv pEnv, int nArgc, char **pszArgv, char

*pszOpt)

Input Arguments:

Name Description

pEnv An instance of LSenv.

nArgc Number of command line arguments.

pszArgv Argument list.

pszOpt Option list.

60 CHAPTER 2

LSgetCLoptArg()

Description:

Retrieve option argument.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetCLOptArg(pLSenv pEnv, char **pszOptArg)

Input Arguments:

Name Description

pEnv An instance of LSenv.

pszOptArg Option arguments returned.

LSgetCLoptInd()

Description:

Retrieve option argument.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetCLOptInd(pLSenv pEnv, int *pnOptInd);

Input Arguments:

Name Description

pEnv An instance of LSenv.

pnOptInd Option indices returned.

FUNCTION DEFINITIONS 61

Available Parameters
In this section, a detailed description of all the parameters available through the

LSgetxxxyyyParameter() and LSsetxxxyyyParameter() routines are described. These parameters are

defined in the lindo.h header file in the LSparameter enumerated type definition. The parameters that

start with LS_IPARAM corresponds to integer type parameters. Similarly, parameters that start with

LS_DPARAM correspond to double type parameters.

Note: For details on the relationship between environment and model parameters, see the Parameter

Setting and Retrieving Routines section above.

General Solver Parameters
Name Available for Description

LS_IPARAM_CHECK_FOR_ERRORS Environment,

Model

This is a flag indicating if the loaded

model will be checked for errors.

Possible values are 0 and 1. 1 means

that the loaded model will be checked

for errors. 0 means it will not. The

default is 0.

LS_IPARAM_SPLEX_REFACFRQ Environment,

Model

This is a positive integer scalar referring

to the simplex iterations between two

consecutive basis re-factorizations. For

numerically unstable models, setting

this parameter to smaller values may

help. Range for possible values is

(0,inf). The default is 200.

 LS_IPARAM_BARRIER_SOLVER Environment,

Model

This is the type of barrier method to be

used for solving the referred model.

This macro is reserved for future use.

The default is 4.

LS_IPARAM_ALLOW_CNTRLBREAK Environment,

Model

This flag controls if the user can

interrupt the solver using the CTRL+C

keys. Possible values are 0 (off) and 1

(on). The default is 1 (on).

LS_IPARAM_SOL_REPORT_STYLE Model This controls the solution report style

produced. Possible values are 0 (default)

and 1. The latter produces solution

reports in LINDO API 1.x style.

LS_DPARAM_CALLBACKFREQ Environment,

Model

This controls the frequency with which

the solver calls back to your optionally

supplied callback routine. Range for

possible values is [0,inf). The default

value for this option is 0.5, meaning the

solver calls back once every 0.5

seconds.

62 CHAPTER 2

LS_IPARAM_INSTRUCT_LOADTYPE Model This is reserved for internal use only.

The default is 0.

LS_DPARAM_SOLVER_CUTOFFVAL Environment,

Model

If the optimal objective value of the LP

being solved is shown to be worse than

this (e.g., if the dual simplex method is

being used), then the solver will exit

without finding a feasible solution. This

is a way of saving computer time if

there is no sufficiently attractive

solution. Range for possible values is (-

inf,inf). Default is -1e+30.

LS_IPARAM_MPS_OBJ_WRITESTYLE Environment,

Model
Standard MPS format assumes that the

underlying model is of minimization

type. This flag indicates how to handle

‘maximization’ type models when

exporting in MPS format. Possible

values are:

LS_MPS_USE_MAX_NOTE (0):

Export the model as minimization type

without flipping the objective function

but a comment is printed in the file that

the model is of maximization type.

LS_MPS_USE_MAX_CARD (1):

Export the model using the non-

standard ‘MAX’ operator. Some MPS

parsers, including LINDO API can

process MAX operator.

LS_MPS_USE_MAX_FLIP (2):

Export the model as a minimization

problem after flipping the sign of the

objective. This is the default.

The default value is:

LS_MPS_USE_MAX_FLIP (2).

LS_IPARAM_FMT_ISSQL Environment,

Model
Reserved for internal use.

The default is 0.

FUNCTION DEFINITIONS 63

LS_IPARAM_DECOMPOSITION_TYPE Environment,

Model

This refers to the type of decomposition

to be performed on a linear or mixed

integer model. The possible values are

identified with the following macros:

LS_LINK_BLOCKS_FREE (0): The

solver decides which type of

decomposition to use.

LS_LINK_BLOCKS_SELF (1): The

solver does not perform any

decompositions and uses the original

model. This is the default.

LS_LINK_BLOCKS_NONE (2):

Attempt total decomposition (no linking

rows or columns).

LS_LINK_BLOCKS_COLS (3): The

decomposed model will have dual

angular structure (linking columns).

LS_LINK_BLOCKS_ROWS (4): The

decomposed model will have block

angular structure (linking rows).

LS_LINK_BLOCKS_BOTH (5): The

decomposed model will have both dual

and block angular structure (linking

rows and columns).

For more information on decomposing

models, refer to Chapter 10, Analyzing

Models and Solutions.

LS_DPARAM_SOLVER_FEASTOL Environment,

Model

This is the feasibility tolerance. A

constraint is considered violated if the

artificial, slack, or surplus variable

associated with the constraint violates

its lower or upper bounds by the

feasibility tolerance. Range for possible

values is [1e-16,inf). The default value

is 1.0e-7.

LS_DPARAM_SOLVER_OPTTOL Environment,

Model

This is the optimality tolerance. It is

also referred to as the dual feasibility

tolerance. A dual slack (reduced cost) is

considered violated if it violates its

lower bound by the optimality tolerance.

Range for possible values is [1e-16,inf).

The default value is 1.0e-7.

64 CHAPTER 2

LS_IPARAM_LP_SCALE Environment,

Model

This is the scaling mode for linear

models, applies to both simplex

methods as well as the barrier and

mixed-integer solver. Scaling multiplies

the rows and columns of the model by

appropriate factors so as to reduce the

range of coefficients. This tends to

reduce numerical difficulties. Possible

values are:

-1 Solver decides

0 Scaling is off

1 Scale rows and columns

2 Scale rows only

3 Scale columns only

The default is -1.

LS_IPARAM_LP_ITRLMT Environment,

Model

This is a limit on the number of

iterations the solver will perform before

terminating. If this value is a

nonnegative integer, then it will be used

as an upper bound on the number of

iterations the solver will perform. If this

value is -1, then no iteration limit will

be used. The solution may be infeasible.

Range for possible values is [-

1,INT_MAX].

The default is INT_MAX

(2147483647).

Remark: Deprecated name

LS_IPARAM_SPLEX_ITRLMT

LS_DPARAM_LP_ITRLMT Environment,

Model

This is a limit on the number of

iterations (stored as a double) the solver

will perform before terminating. If this

value is a nonnegative double, then it

will be used as an upper bound on the

number of iterations the solver will

perform. If this value is -1.0, then no

iteration limit will be used. The solution

may be infeasible. Range for possible

values is [-1.0,inf). The default is -1.0.

FUNCTION DEFINITIONS 65

LS_IPARAM_SOLVER_IUSOL Environment,

Model

This is a flag that, when set to 1, will

force the solver to compute a basic

solution to an infeasible model that

minimizes the sum of infeasibilities and

a basic feasible solution to an

unbounded problem from which an

extreme direction originates. When set

to 0, the solver will return with an

appropriate status flag as soon as

infeasibility or unboundedness is

detected. If infeasibility or

unboundedness is declared with

presolver's determination, no solution

will be computed. The default is 0.

LS_IPARAM_LP_PRINTLEVEL Environment,

Model

This controls the level of trace output

printed by the simplex and barrier

solvers. 0 means no trace output.

Higher values lead to more trace output.

Range for possible values is [0,inf). The

default is 0.

LS_DPARAM_OBJPRINTMUL Model When printing the objective value, it

will first be multiplied by the value of

this parameter. For example, you may

wish to set it to -1.0 if the original

problem was a maximization problem,

but it is being solved as a minimization

problem. Range for possible values is (-

inf,inf). The default value is 1.0.

LS_IPARAM_OBJSENSE Model Use this parameter to set the sense of

the objective function. The default value

is LS_MIN for minimization. Set this

parameter to LS_MAX if you want to

maximize the objective.

LS_IPARAM_SPLEX_PPRICING Environment,

Model

This is the pricing option to be used by

the primal simplex method. Possible

values are:

-1: Solver decides the primal pricing

method (default).

0: Partial pricing.

1: Devex

66 CHAPTER 2

LS_IPARAM_SPLEX_DPRICING Environment,

Model

This is the pricing option to be used by

the dual simplex method. Possible

values are:

-1: Solver decides (Default).

0: Dantzig’s rule (partial pricing).

1: Dantzig’s rule (full pricing with

fallback to partial).

2: Steepest edge rule.

3: Dual Devex rule.

4: Approximate dual Devex rule.

LS_IPARAM_SOLVER_RESTART Environment,

Model

This is the starting basis flag. Possible

values are 1 or 0. 1 means LINDO API

will start from a cold basis discarding

any basis resident in memory. 0 means

LINDO API will perform warm starts

using any basis currently in memory.

The default is 0.

LS_IPARAM_PROB_TO_SOLVE Environment,

Model

This controls whether the explicit

primal or dual form of the given LP

problem will be solved. Possible values

are:

0: Solver decides (default).

1: Explicit primal form.

2: Explicit dual form.

LS_IPARAM_SOLVER_IPMSOL Environment,

Model

This flag controls whether a basis

crossover will be performed when

solving LPs with the barrier solver. A

value of 0 indicates that a crossover to a

basic solution will be performed. If the

value is 1, then the barrier solution will

be left intact. For example, if alternate

optima exist, the barrier method will

return a solution that is, loosely

speaking, the average of all alternate

optima. The default is 0.

LS_DPARAM_SOLVER_TIMLMT Environment,

Model

This is a time limit in seconds for the

LP solver. The default value of -1

imposes no time limit. If

LS_DPARAM_TIMLMT < -1, then an

error is returned. Range for possible

values is [-1, inf).

Remark: Deprecated name

LS_IPARAM_TIMLMT (integer typed)

FUNCTION DEFINITIONS 67

LS_IPARAM_SOLVER_TIMLMT Environment,

Model

This specifies an integer valued time

limit in seconds for the LP solver. The

default value of -1 imposes no time

limit. If LS_IPARAM_TIMLMT < -1,

then an error is returned. Range for

possible values is [-1, INT_MAX].

Remark: Deprecated name

LS_IPARAM_TIMLMT (integer typed)

LS_IPARAM_SOLVER_USECUTOFFVAL Environment,

Model

This is a flag for the parameter

LS_DPARAM_SOLVER_CUTOFFVA

L. The possible value of 0 means

LS_DPARAM_SOLVER_CUTOFFVA

L is not used, else it is used as defined.

Possible values are 0 (no), 1 (yes) and -

1 (the solver decides). The default is 0.

LS_IPARAM_VER_NUMBER Environment,

Model

This is the version number of LINDO

API. This value cannot be set.

LS_IPARAM_VER_MAJOR Environment,

Model

This is the major version number of

LINDO API. This value cannot be set.

LS_IPARAM_VER_MINOR Environment,

Model

This is the minor version number of

LINDO API. This value cannot be set.

LS_IPARAM_VER_BUILD Environment,

Model

This is the build number of LINDO

API. This value cannot be set.

LS_IPARAM_VER_REVISION Environment,

Model

This is the revision number of LINDO

API. This value cannot be set.

LS_IPARAM_LP_PRELEVEL

Environment,

Model

This controls the amount and type of LP

pre-solving to be used. Possible values

in bit-mask form are:

Simple pre-solving +2

Primal based +4

Coefficient reduction +8

Elimination +16

Dual column based +32

Dual row based +64

Use Max pass limit +128

The default value is:

126 = 2+4+8+16+32+64.

68 CHAPTER 2

LS_IPARAM_SOLVER_PRE_ELIM_FILL Environment,

Model

This is a nonnegative value that controls

the fill-in introduced by the eliminations

during pre-solve. Smaller values could

help when the total nonzeros in the

presolved model is significantly more

than the original model. Range for

possible values is [0,inf). The default is

1000.

LS_IPARAM_SPLEX_DUAL_PHASE Environment,

Model

This controls the dual simplex strategy,

single-phase versus two-phase. The

possible values are 0,1 and 2. The

default is 0, i.e. the solver decides.

FUNCTION DEFINITIONS 69

LS_IPARAM_COPY_MODE Environment,

Model

This value specifies the mode when

copying a model object. Bitmasks to

define possible values are:

LS_RAW_COPY 0

LS_DEEP_COPY 1

LS_TIME_COPY 2

LS_STOC_COPY 4

LS_SNGSTG_COPY 8

The default is LS_RAW_COPY (0).

LS_IPARAM_SBD_NUM_THREADS Environment,

Model

This value specifies the number of

parallel threads to be used when solving

a model with SBD method. Possible

values are positive integers. The default

is 1.

LS_DPARAM_SOLVER_PERT_FEASTOL Environment,

Model

Reserved for future use.

Default is 1.0e-12.

LS_IPARAM_SOLVER_PARTIALSOL_LEV

EL

Environment,

Model

Reserved for future use. Default is 0.

LS_IPARAM_MULTITHREAD_MODE Environment,

Model

This parameter controls the threading

mode for solvers with multithreading

support. Possible values are:

LS_MTMODE_FREE = -1, solver

decides.

LS_MTMODE_EXPLCT = 0,

reserved for future.

LS_MTMODE_PPCC = 1, try parallel

mode (PP), but if it is not available try

concurrent mode (CC).

LS_MTMODE_PP = 2, try parallel

mode (PP) only.

LS_MTMODE_CCPP = 3, try

concurrent mode (CC), but if it is not

available try parallel mode (PP).

LS_MTMODE_CC = 4, try

concurrent mode (CC) only.

The default is LS_MTMODE_FREE,

implying the best performing mode will

be used.

70 CHAPTER 2

LS_IPARAM_FIND_BLOCK Environment,

Model

Specifies the graph partitioning method

to find block structures. Possible values

are:

0: Use an edge-weight minimizing

graph partitioning heuristic.

1: Use a vertex-weight minimizing

graph partitioning heuristic.

The default is 0.

LS_IPARAM_NUM_THREADS Environment,

Model

Number of threads to use in the solver

routine to be called.

It is a solver-independent parameter

which internally sets solver-specific

threading parameters automatically.

Possible values are positive integers.

The default is 1.

LS_IPARAM_INSTRUCT_SUBOUT Environment,

Model

This is a flag indicating whether 1)

fixed variables are substituted out of the

instruction list,

2) performing numerical calculation on

constant numbers and replacing with the

results.

Possible values are:

-1: Solver decides (default)

0: substitutions will not be performed

1: substitutions will be performed

LS_IPARAM_STRING_LENLMT

Model This specifies the maximum number of

characters of strings in an instruction

lists.

Possible values are positive integers.

The default is 20.

LS_IPARAM_USE_NAMEDATA Model This specifies whether to use name data

or not when exporting models in a

portable file format.

Possible values are:

0: do not use name data

1: use name data

The default is 1.

LS_IPARAM_SPLEX_USE_EXTERNAL Environment,

Model

This specifies whether to use an external

simplex solver or not.

Possible values are:

0: do not use external simplex solver

1: use external simplex solver

The default is 0.

FUNCTION DEFINITIONS 71

LS_IPARAM_PROFILER_LEVEL Environment,

Model

Specifies the profiler level to break

down the total cpu time into.

Possible values are:

0: Profiler is off.

1: Enable for simplex solver.

2: Enable for integer solver.

4: Enable for multistart solver.

8: Enable for global solver.

The default is 0.

LS_IPARAM_INSTRUCT_READMODE Environment,

Model

This controls the input mode when

reading from MPI file.

Possible values are the following

0: High memory utilization, fast

access speed

1: Low memory utilization, moderate

access speed (default)

2: Conservative memory utilization,

slow access speed

3: Reserved for future use

LS_DPARAM_LP_MIN_FEASTOL Environment,

Model

Minimum feasibility tolerance for LPs.

Possible values are (0,inf).

Default is 1e-009. Reserved for future

use.

LS_DPARAM_LP_MAX_FEASTOL Environment,

Model

Maximum feasibility tolerance for LPs.

Possible values are (0,inf).

Default is 1e-005. Reserved for future

use.

LS_DPARAM_LP_MIN_OPTTOL Environment,

Model

Minimum optimality tolerance for LPs.

Possible values are (0,inf).

Default is 1e-009. Reserved for future

use.

LS_DPARAM_LP_MAX_OPTTOL Environment,

Model

Maximum optimality tolerance for LPs.

Possible values are (0,inf).

Default is 1e-005. Reserved for future

use.

LS_DPARAM_LP_AIJ_ZEROTOL Environment,

Model

Coefficient matrix zero tolerance.

Possible values are (0,inf).

Default is 2.22045e-016.

LS_DPARAM_LP_PIV_ZEROTOL Environment,

Model

Simplex pivot zero tolerance. Possible

values are (0,inf).

Default is 1e-008.

LS_DPARAM_LP_PIV_BIGTOL Environment,

Model

Simplex maximum pivot tolerance.

Possible values are (0,inf).

Default is 1e-005.

LS_DPARAM_LP_BIGM Environment,

Model

Big-M for phase-I. Possible values are

(0,inf).

Default is 1e6.

72 CHAPTER 2

LS_DPARAM_LP_BNDINF Environment,

Model

Big-M to truncate lower and upper

bounds in single phase dual-simplex.

Possible values are (0,inf).

Default is 1e+015.

LS_DPARAM_LP_INFINITY Environment,

Model

Numeric infinity used by LP solvers.

This value cannot be set. It is 1e+030.

LS_IPARAM_LP_PPARTIAL Environment,

Model

Primal simplex partial pricing method.

Possible values are:

0 : solver decides (default)

1 : use method 1

2 : use method 2

3 : use method 3

LS_IPARAM_LP_DPSWITCH Environment,

Model

Flag specifies whether LP primal-dual

simplex switch is enabled or not.

Default is 1.

LS_IPARAM_LP_PALLOC Environment,

Model

Reserved for internal use.

Default is 5.

LS_IPARAM_LP_PRTFG Environment,

Model

LP Simplex print level. Possible values

are nonnegative integers. Default is 0.

LS_IPARAM_LP_OPRFREE Environment,

Model

Reserved for internal use.

Default is 33.

LS_IPARAM_LP_SPRINT_SUB Environment,

Model

LP method for subproblem in Sprint

method. Possible values are macros for

available LP solvers.

Default is 0.

LS_IPARAM_LU_NUM_CANDITS Environment,

Model

Number of pivot candidates in LU

decomposition. Possible values are

positive integers. Default is 4.

LS_IPARAM_LU_MAX_UPDATES Environment,

Model

Number of maximum updates in LU

decomposition. Possible values are

positive integers. Default is 500.

LS_IPARAM_LU_PRINT_LEVEL Environment,

Model

Print level for LU decomposition.

Possible values are positive integers.

Default is 0.

LS_IPARAM_LU_UPDATE_TYPE Environment,

Model

Basis update type in simplex. Possible

values are

0: Eta updates

1: Forrest-Tomlin updates.

Default is 1.

LS_IPARAM_LU_USE_PIVCOL Environment,

Model

Reserved for internal use. Default is 0.

LS_IPARAM_LU_PIVMOD Environment,

Model

LU pivot mode. Reserved for internal

use. Default is 0.

LS_DPARAM_LU_EPS_DIAG Environment,

Model

LU Pivot tolerance. Possible values are

(0,1). Default is 2.22045e-016.

FUNCTION DEFINITIONS 73

LS_DPARAM_LU_EPS_NONZ Environment,

Model

LU Nonzero tolerance. Possible values

are (0,1). Default is 2.22045e-016.

LS_DPARAM_LU_EPS_PIVABS Environment,

Model

Absolute pivot tolerance. Possible

values are (0,1). Default is 1e-008.

LS_DPARAM_LU_EPS_PIVREL Environment,

Model

LU Relative pivot tolerance. Possible

values are (0,1). Default is 0.01

LS_DPARAM_LU_INI_RCOND Environment,

Model

LU Initial reciprocal condition estimator

tolerance.

Possible values are (0,1).

Default is 0.01.

LS_DPARAM_LU_SPVTOL_UPDATE Environment,

Model

LU Threshold for sparse update.

Reserved for internal use.

Default is 0.001.

LS_DPARAM_LU_SPVTOL_FTRAN Environment,

Model

LU threshold for sparse FTRAN.

Reserved for internal use.

Default is 0.2.

LS_DPARAM_LU_SPVTOL_BTRAN Environment,

Model

LU threshold for sparse BTRAN.

Reserved for internal use.

Default is 0.1.

LS_IPARAM_LP_RATRANGE Environment,

Model

This controls the number of pivot-

candidates to consider when searching

for a stable pivot in LU decomposition.

Range for possible values is [1,inf). The

default is 4.

LS_DPARAM_LP_MAX_PIVTOL Environment,

Model

Reserved for future use.

The default is 0.00001.

LS_DPARAM_LP_MIN_PIVTOL Environment,

Model

Reserved for future use.

The default is 1e-10.

LS_IPARAM_LP_DPARTIAL Environment,

Model

Reserved for future use.

LS_IPARAM_LP_DRATIO Environment,

Model

This controls the dual min-ratio

strategy. Possible values are 0,1 and 2.

The default is 1.

LS_IPARAM_LP_PRATIO Environment,

Model

Reserved for future use.

LS_IPARAM_LP_PERTMODE Environment,

Model

This specifies the perturbation mode in

simplex solvers. Reserved for future

use.

LS_IPARAM_LP_PCOLAL_FACTOR Environment,

Model

Reserved for future use.

74 CHAPTER 2

Nonlinear Optimization Parameters
LS_IPARAM_NLP_SOLVE_AS_LP Environment,

Model

This is a flag indicating if the nonlinear model

will be solved as an LP. Possible values are 0

and 1. 1 means that an LP using first order

approximations of the nonlinear terms in the

model will be used when optimizing the model

with the LSoptimize() function. The default is

0.

LS_IPARAM_NLP_SOLVER Environment,

Model

This refers to the type of nonlinear solver. The

possible values are:

LS_NMETHOD_FREE(4): solver decides,

LS_NEMTHOD_LSQ(5): uses Levenberg-

Marquardt method to solve nonlinear least-

squares problem.

LS_NMETHOD_QP(6): uses Barrier solver

for convex QCP models.

LS_NMETHOD_CONOPT(7): uses

CONOPT’s reduced gradient solver. This is

the default.

LS_NEMTHOD_SLP(8): uses SLP solver.

LS_NMETHOD_MSW_GRG(9): uses

CONOPT with multistart feature enabled.

LS_IPARAM_NLP_SUBSOLVER Environment,

Model

This controls the type of linear solver to be

used for solving linear sub problems when

solving nonlinear models. The possible values

are:

LS_METHOD_FREE (0)

LS_METHOD_PSIMPLEX (1): primal

simplex method.

LS_METHOD_DSIMPLEX(2): dual

simplex method,

LS_METHOD_BARRIER(3): barrier solver

with or without crossover.

The default is LS_METHOD_FREE.

LS_DPARAM_NLP_PSTEP_FINITEDI

FF

Environment,

Model

This controls the value of the step length in

computing the derivatives using finite

differences. Range for possible values is (0,

inf). The default value is 5.0e-07.

LS_IPARAM_NLP_USE_CRASH Environment,

Model

This is a flag indicating if an initial solution

will be computed using simple crash routines.

Possible values are 0 (no), 1 (yes) and -1 (the

solver decides). The default is 0.

FUNCTION DEFINITIONS 75

LS_IPARAM_NLP_USE_STEEPEDGE Environment,

Model

This is a flag indicating if steepest edge

directions should be used in updating the

solution. Possible values are 0 (no), 1 (yes) and

-1 (the solver decides). The default value is 0.

LS_IPARAM_NLP_USE_SLP Environment,

Model

This is a flag indicating if sequential linear

programming step directions should be used in

updating the solution. Possible values are 0

(no), 1 (yes) and -1 (the solver decides). The

default value is 1.

LS_IPARAM_NLP_USE_SELCONEVA

L

Environment,

Model

This is a flag indicating if selective constraint

evaluations will be performed in solving a

nonlinear model. Possible values are 0 (no), 1

(yes) and -1 (the solver decides). The default

value is 0.

LS_IPARAM_NLP_PRELEVEL

Environment,

Model

This controls the amount and type of NLP pre-

solving. Possible options are:

Simple pre-solving +2

Probing +4

Coefficient reduction +8

Elimination +16

#Dual reductions +32

Use dual information +64

Maximum pass +512

The default value is: 0

LS_IPARAM_NLP_AUTODERIV

Environment,

Model

This is a flag to indicate if automatic

differentiation is the method of choice for

computing derivatives and select the type of

differentiation. If the value is 0, then the Finite

Differences approach will be used. If the value

is 1, then the forward type of Automatic

Differentiation will be used. If the value is 2,

then the backward type of Automatic

Differentiation will be used. The default is 2.

Note: Automatic Differentiation can be used

only with Instruction style input. It is only

useful when the instructions are loaded.

76 CHAPTER 2

LS_IPARAM_NLP_LINEARZ

Environment,

Model

This determines the extent to which the solver

will attempt to linearize nonlinear models. The

available options are

0: Solver decides.

1: No linearization occurs.

2: Linearize ABS, MAX, and MIN functions.

3: Same as option 2 plus IF, AND, OR,

NOT, and all logical operators (i.e., , = , ,

and <>) are linearized.

The default is 0.

LS_IPARAM_NLP_LINEARITY Environment,

Model

This is used to check the linearity

characteristic of the solved model. If the

returned value equals 1, then the model is

linear or has been completely linearized in the

linearization step. Thus, the global optimality

of the solution can be ensured. This parameter

cannot be set. This parameter will be

deprecated in future versions.

LS_IPARAM_NLP_PRINTLEVEL Environment,

Model

This controls the level of trace output printed

by the nonlinear solver. 1 means normal trace

output. Higher values for this parameter lead to

more trace output. Range for possible values

is [0,inf). The default is 1.

FUNCTION DEFINITIONS 77

LS_IPARAM_NLP_FEASCHK Environment,

Model

This input parameter specifies how the NLP

solver reports the results when an optimal or

local-optimal solution satisfies the feasibililty

tolerance (LS_DPARAM_NLP_FEASTOL) of

the scaled model but not the original (descaled)

one. Possible values for

LS_IPARAM_NLP_FEASCHK are

0 - Perform no action, accept the final

solution and model status.

1 - Declare the model status as

LS_STATUS_FEASIBLE if maximum

violation in the unscaled model is not higher

than 10 times of the current feasibililty

tolerance (LS_DPARAM_NLP_FEASTOL),

otherwise declare the status as

LS_STATUS_UNKNOWN.

2 - Declare the model status as

LS_STATUS_UNKNOWN if maximum

violation in the unscaled model is higher than

the current feasibililty tolerance

(LS_DPARAM_NLP_FEASTOL). The default

is (0).

LS_DPARAM_NLP_FEASTOL Environment,

Model

This is the feasibility tolerance for nonlinear

constraints. A constraint is considered violated

if the artificial, slack, or surplus variable

associated with the constraint violates its lower

or upper bounds by the feasibility tolerance.

Range for possible values is (0,1). The default

value is 1.0e-6.

LS_DPARAM_NLP_REDGTOL Environment,

Model

This is the tolerance for the gradients of

nonlinear functions. The (projected) gradient

of a function is considered to be the zero-

vector if its norm is below this tolerance.

Range for possible values is (0,1). The default

value is 1.0e-7.

78 CHAPTER 2

LS_IPARAM_NLP_DERIV_DIFFTYPE Environment,

Model

This is a flag indicating the technique used in

computing derivatives with Finite Differences.

The possible values are:

LS_DERIV_FREE: the solver decides,

LS_DERIV_FORWARD_DIFFERENCE:

use forward differencing method,

LS_DERIV_BACKWARD_DIFFERENCE:

use backward differencing method,

LS_DERIV_CENTER_DIFFERENCE: use

center differencing method.

The default value is 0.

LS_IPARAM_NLP_ITRLMT Environment,

Model

This controls the iteration limit on the number

of nonlinear iterations performed. Range for

possible values is [-1,INT_MAX]. The default

is INT_MAX (2147483647).

LS_IPARAM_NLP_STARTPOINT Environment,

Model

This is a flag indicating if the nonlinear solver

should accept initial starting solutions.

Possible values are 0 (no), 1 (yes). The default

is 1.

LS_IPARAM_NLP_CONVEXRELAX Environment,

Model

This is reserved for internal use only.

The default is 0.

LS_IPARAM_NLP_CR_ALG_REFOR

M

Environment,

Model

This is reserved for internal use only.

The default is 0.

LS_IPARAM_NLP_QUADCHK Environment,

Model

This is a flag indicating if the nonlinear model

should be examined to check if it is a quadratic

model. . Possible values are 0 (no), 1 (yes).

The default value is 1.

LS_IPARAM_NLP_MAXLOCALSEAR

CH

Environment,

Model

This controls the maximum number of local

searches (multistarts) when solving a NLP

using the multistart solver. Range for possible

values is [0,inf). The default value is 5.

LS_IPARAM_NLP_CONVEX Environment,

Model

This is a flag indicating if the quadratic model

is convex or not. If the value is 1, the

minimization (maximization) model is convex

(concave). This value cannot be set. Default is

1.

LS_IPARAM_NLP_CONOPT_VER Environment,

Model

This specifies the CONOPT version to be used

in NLP optimizations. Possible values are 2

and 3 (default).

FUNCTION DEFINITIONS 79

LS_IPARAM_NLP_USE_LINDO_CRA

SH

Environment,

Model

This is a flag indicating if an initial solution

will be computed using advanced crash

routines. Possible values are 0 (no), 1 (yes) and

-1 (the solver decides). The default is 0.

LS_IPARAM_NLP_STALL_ITRLMT Environment,

Model

This specifies the iteration limit before a

sequence of non-improving NLP iterations is

declared as stalling, thus causing the solver to

terminate. The default is 100.

LS_IPARAM_NLP_AUTOHESS Environment,

Model

This is a flag to indicate if Second Order

Automatic Differentiation will be performed in

solving a nonlinear model. The second order

derivatives provide an exact/precise Hessian

matrix to the SQP algorithm, which may lead

to less iterations and better solutions, but may

also be quite expensive in computing time for

some cases. If the value is 1, then the Second

Order Automatic Differentiation will be used.

The default is 0.

Note: Automatic Differentiation can be used

only with Instruction style input. It is only

useful when the instructions are loaded.

80 CHAPTER 2

LS_IPARAM_NLP_MSW_SOLIDX Environment,

Model

Index of the multistart solution to be loaded

main solution structures Range of possible

values are [0,+inf]. Default is 0.

LS_IPARAM_NLP_ITERS_PER_LOGL

INE

Environment,

Model

Number of nonlinear iterations to elapse before

next progress message. Range of possible

values are [1,+inf]. Default is 50.

LS_IPARAM_NLP_MAX_RETRY Environment,

Model

Maximum number refinement retries to purify

the final NLP solution. Range of possible

values are [-1,+inf]. Default is 5.

LS_IPARAM_NLP_MSW_NORM Environment,

Model

Norm to measure the distance between two

points in multistart search. Range of possible

values are [-1,+inf]. Default is 2.

LS_IPARAM_NLP_MSW_POPSIZE Environment,

Model

Maximum number of reference points in the

solution space to generate trial points in

multistart search. Range of possible values are

[-1,+inf]. Default is -1 (solver decides).

LS_IPARAM_NLP_MSW_MAXPOP Environment,

Model

Maximum number of populations to generate

in multistart search. Range of possible values

are [-1,+inf].

Default is -1 (solver decides).

LS_IPARAM_NLP_MSW_MAXNOIM

P

Environment,

Model

Maximum number of consecutive populations

to generate w/o any improvements. Range of

possible values are [-1,+inf]. Default is -1

(solver decides).

LS_DPARAM_NLP_ITRLMT Environment,

Model

This controls the iteration limit (stored as a

double) on the number of nonlinear iterations

performed. Range for possible values is [-

1,INT_MAX]. The default is INT_MAX

(2147483647).

FUNCTION DEFINITIONS 81

LS_IPARAM_NLP_MSW_FILTMODE Environment,

Model

Filtering mode to exclude certain domains

during sampling in multistart search. Bitmasks

for possible values are

-1 - Solver decides

1 - filter-out the points around known KKT

or feasible points previously visited.

2 - filter-out the points whose p() are in the

vicinity of p(x), where x is an initial point of a

previous local optimizations with p() being an

internal merit function.

4 - filter-out the points in the vicinity of x,

where x are initial points of all previous local

optimizations.

8 - filter-out the points whose p(.) values are

below a dynamic threshold tolerance, which is

computed internally.

Default is -1.

LS_DPARAM_NLP_MSW_POXDIST_

THRES

Environment,

Model

Penalty function neighborhood threshold in

multistart search. Possible values are (0,inf).

Default is 0.01.

LS_DPARAM_NLP_MSW_EUCDIST_

THRES

Environment,

Model

Euclidean distance threshold in multistart

search. Possible values are (0,inf). Default is 0.001.

LS_DPARAM_NLP_MSW_XNULRAD

_FACTOR

Environment,

Model

Initial solution neighborhood factor in

multistart search. Possible values are (0,inf).

Default is 0.5.

LS_DPARAM_NLP_MSW_XKKTRAD

_FACTOR

Environment,

Model

KKT solution neighborhood factor in

multistart search. Possible values are (0,inf).

Default is 0.85.

LS_IPARAM_NLP_MAXLOCALSEAR

CH_TREE

Environment,

Model

Maximum number of multistarts (at tree

nodes). Possible values are positive integers.

Default is 1.

LS_IPARAM_NLP_MSW_NUM_THRE

ADS

Environment,

Model

This value specifies the number of parallel

threads to be used when solving an NLP model

with the multistart solver. Possible values are

positive integers. The default is 1.

LS_IPARAM_NLP_MSW_RG_SEED Environment,

Model

This value specified the random number

generator seed for the multistart solver.

Possible values are nonnegative integers. The

default is 1019.

82 CHAPTER 2

LS_IPARAM_NLP_MSW_PREPMODE Environment,

Model

This value specifies the preprocessing

strategies in multistart solver. Bitmasks

defining possible values are:

-1: Solver decides

LS_MSW_MODE_TRUNCATE_FREE:

Truncate free variables

LS_MSW_MODE_SCALE_REFSET: Scale

reference points to origin

LS_MSW_MODE_EXPAND_RADIUS:

Enable expansive scaling of radius[k] by hit[k]

LS_MSW_MODE_SKEWED_SAMPLE:

Skewed sampling allowing values in the

vicinity of origin.

LS_MSW_MODE_BEST_LOCAL_BND:

Get best bounds by presolver

LS_MSW_MODE_BEST_GLOBAL_BND:

Get best bounds using GOP

LS_MSW_MODE_SAMPLE_FREEVARS:

Enable sampling of free variables (not

recommended)

LS_MSW_MODE_PRECOLLECT:

Collect sufficiently many trial points prior to

local solves

LS_MSW_MODE_POWER_SOLVE:

Enable power solver, trying several different

local strategies

The default is : -1

LS_IPARAM_NLP_MSW_RMAPMOD

E

Environment,

Model

This value specifies the mode to map reference

points in the unit cube into the original space.

Possible values are:

-1 Solver decides

0 Use original variable bounds

1 Use min-max values over all sample points

per each dimension

2 Use min-max values over all sample points

over all dimensions.

The default value is -1.

LS_IPARAM_NLP_XSMODE Environment,

Model

This value controls the bitmask for advanced

local optimization modes. Reserved for future

use. Default value is: 197152.

FUNCTION DEFINITIONS 83

LS_DPARAM_NLP_MSW_OVERLAP

_RATIO

Environment,

Model

This value specifies the rate of replacement in

successive populations. Higher values favors

survival of points in the parent population.

Possible values are (0,1). The default value is

0.1.

LS_DPARAM_NLP_INF Environment,

Model

Specifies the numeric infinity for nonlinear

models. Possible values are positive real

numbers.

Default is 1e30. Smaller values could cause

numerical problems.

LS_IPARAM_NLP_USE_SDP Environment,

Model

This is a flag to use SDP solver for POSD

constraint. Possible values are 0 and 1. The

default is 1 (yes).

LS_IPARAM_NLP_MAXSUP Environment,

Model

This specifies the superbacic variable limit in

nonlinear solver. Range for possible values is

[-1,INT_MAX]. The default is INT_MAX

(2147483647).

LS_IPARAM_NLP_IPM2GRG Environment,

Model

This is a flag to switch from IPM solver to the

standard NLP (GRG) solver when IPM fails

due to numerical errors. Possible values are 0

and 1. The default is 1.

Interior-Point (Barrier) Solver Parameters
LS_DPARAM_IPM_TOL_INFEAS Environment,

Model

This is the tolerance to declare the

model primal or dual infeasible using

the interior-point optimizer. A smaller

number means the optimizer gets more

conservative about declaring the model

infeasible. Range for possible values is

(0,inf). The default is 1e-10.

LS_DPARAM_IPM_CO_TOL_INFEAS Environment,

Model
This controls when the conic optimizer

declares the model primal or dual

infeasible. Smaller values mean the

optimizer gets more conservative about

declaring the model infeasible.

The default is 1e-10

84 CHAPTER 2

LS_DPARAM_IPM_TOL_PATH Environment,

Model

Controls how close the interior-point

optimizer follows the central path. A

large value of this parameter means the

central path is followed very closely.

For numerically unstable problems it

might help to increase this parameter.

Range for possible values is (0,0.5). The

default is 1e-08.

LS_DPARAM_IPM_TOL_PFEAS Environment,

Model

Primal feasibility tolerance used for

linear and quadratic optimization

problems. Range for possible values is

(0,inf). The default is 1e-8.

LS_DPARAM_IPM_TOL_REL_STEP Environment,

Model

Relative step size to the boundary for

linear and quadratic optimization

problems. Range for possible values is

(0,9.99999e-1). The default is 0.9999.

LS_DPARAM_IPM_TOL_PSAFE Environment,

Model

Controls the initial primal starting point

used by the interior-point optimizer. If

the interior-point optimizer converges

slowly and/or the constraint or variable

bounds are very large, then it might be

worthwhile to increase this value. Range

for possible values is [1e-2,inf). The

default is 1.0.

LS_DPARAM_IPM_TOL_DFEAS Environment,

Model

Dual feasibility tolerance used for linear

and quadratic optimization problems.

Range for possible values is (0,inf). The

default is 1e-8.

LS_DPARAM_IPM_TOL_DSAFE Environment,

Model

Controls the initial dual starting point

used by the interior-point optimizer. If

the interior-point optimizer converges

slowly and/or the dual variables

associated with constraint or variable

bounds are very large, then it might be

worthwhile to increase this value. Range

for possible values is [1e-4,inf). The

default is 1.0.

LS_DPARAM_IPM_TOL_MU_RED Environment,

Model

Relative complementarity gap tolerance.

Range for possible values is (0,inf). The

default is 1e-16.

LS_DPARAM_IPM_BASIS_REL_TOL_S Environment,

Model

Maximum relative dual bound violation

allowed in an optimal basic solution.

Range for possible values is (0,inf). The

default is 1e-12.

FUNCTION DEFINITIONS 85

LS_DPARAM_IPM_BASIS_TOL_S Environment,

Model

Maximum absolute dual bound violation

in an optimal basic solution. Range for

possible values is (0,inf). The default is

1e-07.

LS_DPARAM_IPM_BASIS_TOL_X Environment,

Model

Maximum absolute primal bound

violation allowed in an optimal basic

solution. Range for possible values is

(0,inf). The default is 1e-07.

LS_DPARAM_IPM_BI_LU_TOL_REL_PIV Environment,

Model

Relative pivot tolerance used in the LU

factorization in the basis identification

procedure. Range for possible values is

(0,9.99999e-1). 0.01.

LS_IPARAM_IPM_MAX_ITERATIONS Environment,

Model

Controls the maximum number of

iterations allowed in the interior-point

optimizer. Range for possible values is

[0,inf). The default is 1000.

LS_IPARAM_IPM_OFF_COL_TRH Environment,

Model

Controls the extent for detecting the

offending columns in the Jacobian of

the constraint matrix. Range for possible

values is [0,inf). 0 means no offending

columns will be detected. 1 means

offending columns will be detected. In

general, increasing the parameter value

beyond the default value of 40 does not

improve the result.

LS_IPARAM_IPM_NUM_THREADS Environment,

Model

Number of threads to run the interior-

point optimizer on.

Possible values are positive integers.

The default is 1.

LS_IPARAM_IPM_CHECK_CONVEXITY Environment,

Model

This is a flag to check convexity of a

quadratic program using barrier solver.

Possible values are:

-1: check convexity only without

solving the model.

0: use barrier solver to check

convexity.

1: do not use barrier solver to check

convexity.

The default is 1.

LS_IPARAM_SOLVER_CONCURRENT_OP

TMODE

Environment,

Model

Controls if simplex and interior-point

optimizers will run concurrently, 0

means no concurrent runs will be

performed,1 means both optimizers will

run concurrently if at least two threads

exist in system, 2 means both optimizers

will run concurrently. The default is 0.

86 CHAPTER 2

LS_DPARAM_IPM_CO_TOL_PFEAS Environment,

Model

Primal feasibility tolerance for Conic

solver.

Range for possible values is (0,inf). The

default is 1e-008.

LS_DPARAM_IPM_CO_TOL_DFEAS Environment,

Model

Dual feasibility tolerance for Conic

solver.

Range for possible values is (0,inf). The

default is 1e-008.

LS_DPARAM_IPM_CO_TOL_MU_RED Environment,

Model

Optimality tolerance for Conic solver.

Range for possible values is (0,inf). The

default is 1e-008.

Mixed-Integer Optimization Parameters
LS_IPARAM_MIP_USE_INT_ZERO_TOL Environm

ent,

Model

This flag controls if all MIP calculations

would be based on the integrality tolerance

specified by

LS_DPARAM_MIP_INTTOL. The flag

will be disregarded if the following

conditions fail to hold

All coefficients of the coefficient matrix

and the right-hand side vector are integers

Any continuous variable that is not yet

proved to be an implied integer has

coefficients all -1 or +1.

All continuous variables have integer

bounds or, –inf or +inf

All continuous variables have only one

nonzero in each constraint.

 Possible values are 0 (no), 1 (yes) and -1

(the solver decides). The default for this

flag is 0.

LS_IPARAM_MIP_USE_CUTS_HEU Environm

ent,

Model

This flag controls if cut generation is

enabled during MIP heuristics. Possible

values are 0 (no), 1 (yes) and -1 (the solver

decides). The default is -1.

LS_DPARAM_MIP_BIGM_FOR_INTTOL Environm

ent,

Model

This value specifies the threshold for which

the coefficient of a binary variable would

be considered as big-M (when applicable).

Range for possible values is (0,inf). The

default is 1.0e8.

FUNCTION DEFINITIONS 87

LS_IPARAM_MIP_STRONGBRANCHDONU

M

Environm

ent,

Model

This value specifies the minimum number

of variables, among all the candidates, to

try the strong branching on. Range for

possible values is [0,inf). The default is 3.

LS_IPARAM_MIP_MAKECUT_INACTIVE_

COUNT

Environm

ent,

Model

This value specifies the threshold for the

times a cut could remain active after

successive reoptimization during branch-

and-bound. If the count is larger than the

specified level the solver will inactive the

cut. Range for possible values is [0,inf).

The default is 20.

LS_IPARAM_MIP_PRE_ELIM_FILL Environm

ent,

Model

This is a nonnegative value that controls the

fill-in introduced by the eliminations during

pre-solveSmaller values could help when

the total nonzeros in the presolved model is

significantly more than the original model.

Range for possible values is [0,inf). The

default is 100.

LS_IPARAM_MIP_HEU_MODE Environm

ent,

Model

This controls the MIP heuristic mode.

Possible values are:

≤0 solver is free to decide when to stop the

heuristic (default),

≤1 solver uses a pre-specified time limit to

stop the heuristic.

≤2 solver uses a pre-specified iteration limit

to stop the heuristic.

The default is 0.

LS_IPARAM_MIP_FP_MODE Environm

ent,

Model

Controls the mode for the feasibility pump

heuristic. Possible values are:

-1: Solver decides

0: Off,

1: Solver decides,

2: On until the first solution,

3: Try to get more than one solutions.

The default is -1.

LS_DPARAM_MIP_FP_WEIGHT Environm

ent,

Model

Controls the weight of the objective

function in the feasibility pump. Possible

values are in the closed interval [0,1]. The

default is 1.0.

88 CHAPTER 2

LS_IPARAM_MIP_FP_OPT_METHOD Environm

ent,

Model

This specifies optimization and

reoptimization method for feasibility pump

heuristic. Possible values are:

0: Solver decides (default).

1: Use primal method.

2: Use dual simplex.

3: Use barrier solver (with or without

basis crossover, depending on

LS_IPARAM_SOLVER_IPMSOL

parameter setting described above)

LS_DPARAM_MIP_FP_TIMLIM Environm

ent,

Model

This is the time limit in seconds for

feasibility pump heuristic. A value of -1

implies no time limit is imposed. Range for

possible values is [-1,inf). The default value

is 1800.

LS_IPARAM_MIP_FP_ITRLIM Environm

ent,

Model

This is the iteration limit for feasibility

pump heuristic. A value of -1 means no

iteration limit is imposed. Range for

possible values is [-1,inf). The default value

is 500.

LS_IPARAM_MIP_CUTLEVEL_TOP Environm

ent,

Model

This controls the combination of cut types

to try at the root node when solving a MIP.

Bit settings are used to enable the various

cut types. Add the following values to

enable the specified cuts:

GUB cover +2

Flow cover +4

Lifting +8

Plant location +16

Disaggregation +32

Knapsack cover +64

Lattice +128

Gomory +256

Coefficient reduction +512

GCD +1024

Obj integrality +2048

Basis Cuts +4096

Cardinality Cuts +8192

Disjunctive Cuts +16384

Soft Knapsack Cuts +32768

The default is 57342 which means all cut

types except cardinality cuts are generated.

FUNCTION DEFINITIONS 89

LS_IPARAM_MIP_CUTLEVEL_TREE Environm

ent,

Model

This controls the combination of cut types

to try at child nodes in the B&B tree when

solving a MIP. The bit settings to enable

cuts at child nodes are the same as those

used to enable cuts at the root node. The

default is 53246.

LS_DPARAM_MIP_CUTTIMLIM Environm

ent,

Model

This controls the total time to be spent in

cut generation throughout the solution of a

MIP. Range for possible values is [0,inf).

The default value is -1.0 indicating that no

time limits will be imposed when

generating cuts.

LS_IPARAM_MIP_CUTFREQ Environm

ent,

Model

This controls the frequency of invoking cut

generation at child nodes. Range for

possible values is [0,inf). The default value

is 10, indicating that the MIP solver will try

to generate cuts at every 10 nodes.

LS_IPARAM_MIP_CUTDEPTH Environm

ent,

Model

This controls a threshold value for the

depth of nodes in the B&B tree, so cut

generation will be less likely at those nodes

deeper than this threshold. Range for

possible values is [0,inf). The default is 5.

LS_DPARAM_MIP_LBIGM Environm

ent,

Model

This refers to the Big-M value used in

linearizing nonlinear expressions. Range

for possible values is (0,inf). The default

value is 1.0e+5.

LS_DPARAM_MIP_DELTA Environm

ent,

Model

This refers to a near-zero value used in

linearizing nonlinear expressions. Range

for possible values is (0,inf). The default

value is 1.0e-6.

90 CHAPTER 2

LS_IPARAM_MIP_BRANCH_PRIO Environm

ent,

Model

This controls how variable selection

priorities are set and used. Possible values

are:

0: If user has specified priorities, then

use them. Otherwise, let LINDO API

decide.

1: If user has specified priorities, then

use them. However, also allow overwriting

user’s choices if necessary.

2: If user has specified priorities, then

use them. Otherwise, do not use any

priorities.

3: Let LINDO API set the priorities and

ignore any user specified priorities.

4: Binaries always have higher priority

over general integers.

The default is 0.

LS_IPARAM_MIP_SCALING_BOUND Environm

ent,

Model

This controls the maximum difference

between the upper and lower bounds of an

integer variable that will enable the scaling

in the simplex solver when solving a sub

problem in the branch-and-bound tree.

Range for possible values is [-1,inf). The

default value is 10000.

LS_IPARAM_MIP_MAXCUTPASS_TOP Environm

ent,

Model

This controls the number passes to generate

cuts on the root node. Each of these passes

will be followed by a re-optimization and a

new batch of cuts will be generated at the

new solution. Range for possible values is

[0,inf). The default value is 100.

LS_IPARAM_MIP_MAXCUTPASS_TREE Environm

ent,

Model

This controls the number passes to generate

cuts on the child nodes. Each of these

passes will be followed by a re-

optimization and a new batch of cuts will

be generated at the new solution. Range for

possible values is [0,inf). The default value

is 2.

LS_IPARAM_MIP_MAXNONIMP_CUTPASS Environm

ent,

Model

This controls the maximum number of

passes allowed in cut-generation that does

not improve the current relaxation. Range

for possible values is [0,inf). The default

value is 3.

FUNCTION DEFINITIONS 91

LS_DPARAM_MIP_ADDCUTOBJTOL Environm

ent,

Model

This specifies the minimum required

change in the objective function for the cut

generation phase to continue generating

cuts. Range for possible values is [0,1]. The

default, based on empirical testing, is set at

1.5625e-5.

LS_DPARAM_MIP_HEUMINTIMLIM Environm

ent,

Model

This specifies the minimum time in seconds

to be spent in finding heuristic solutions to

the MIP model.

LS_IPARAM_MIP_HEULEVEL (below)

controls the heuristic used to find the

integer solution. Range for possible values

is [0,inf). The default is 0.

LS_DPARAM_MIP_REDCOSTFIX_CUTOFF Environm

ent,

Model

This specifies the cutoff value as a

percentage of the reduced costs to be used

in fixing variables when using the reduced

cost fixing heuristic. Range for possible

values is [0,9.9e-1]. The default is 0.99.

LS_DPARAM_MIP_ADDCUTPER Environm

ent,

Model

This determines how many constraint cuts

can be added as a percentage of the number

of original rows in an integer programming

model. Range for possible values is [0,100).

0.75 is the default value, which means the

total number of constraint cuts LINDO API

adds will not exceed 75% of the original

row count.

LS_DPARAM_MIP_ADDCUTPER_TREE Environm

ent,

Model

This determines how many constraint cuts

can be added at child nodes as a percentage

of the number of original rows in an integer

programming model. Range for possible

values is [0,100). 0.75 is the default value,

which means the total number of constraint

cuts LINDO API adds will not exceed 75%

of the original row count.

LS_DPARAM_MIP_AOPTTIMLIM Environm

ent,

Model

This is the time in seconds beyond which

the relative optimality tolerance,

LS_DPARAM_MIP_PEROPTTOL, will

be applied. Range for possible values is [-

1,inf). The default value is 100 seconds.

LS_IPARAM_MIP_BRANCHDIR Environm

ent,

Model

This specifies the direction to branch first

when branching on a variable. Possible

values are:

0: Solver decides (default),

1: Always branch up first,

2: Always branch down first.

92 CHAPTER 2

LS_DPARAM_MIP_INTTOL Environm

ent,

Model

An integer variable is considered integer

feasible if the absolute difference from the

nearest integer is smaller than this. Range

for possible values is (0,0.5). The default

value is 0.000001. Note, this is similar to

the tolerance

LS_DPARAM_MIP_RELINTTOL, but it

uses absolute differences rather than

relative differences.

LS_IPARAM_MIP_KEEPINMEM Environm

ent,

Model

If this is set to 1, the integer pre-solver will

try to keep LP bases in memory. This

typically gives faster solution times, but

uses more memory. Setting this parameter

to 0 causes the pre-solver to erase bases

from memory. The default is 1.

LS_DPARAM_MIP_ABSOPTTOL Environm

ent,

Model

This is the MIP absolute optimality

tolerance. Solutions must beat the

incumbent by at least this absolute amount

to become the new, best solution. Range for

possible values is [0,inf). The default value

is 0.

LS_DPARAM_MIP_RELOPTTOL Environm

ent,

Model

This is the MIP relative optimality

tolerance. Solutions must beat the

incumbent by at least this relative amount

to become the new, best solution. Range for

possible values is (0,1). The default value is

1e-6.

LS_DPARAM_MIP_PEROPTTOL Environm

ent,

Model

This is the MIP relative optimality

tolerance that will be in effect after T

seconds following the start. The value T

should be specified using the

LS_DPARAM_MIP_AOPTTIMLIM

parameter. Range for possible values is

(0,1). The default value is 1e-5.

FUNCTION DEFINITIONS 93

LS_IPARAM_MIP_HEULEVEL Environm

ent,

Model

This specifies the heuristic used to find the

integer solution. Possible values are:

0: No heuristic is used.

1: A simple heuristic is used. Typically,

this will find integer solutions only on

problems with a certain structure. However,

it tends to be fast.

>2: This is an advanced heuristic that

tries to find a "good" integer solution fast.

In general, a value of 2 will not increase the

total solution time and will find an integer

solution fast on many problems.

A higher value may find an integer solution

faster, or an integer solution where none

would have been found with a lower level.

Try level 3 or 4 on "difficult" problems

where 2 does not help.

Higher values cause more time to be spent

in the heuristic. The value may be set

arbitrarily high. However, >20 is probably

not worthwhile.

The default is 3.

LS_DPARAM_MIP_HEUMINTIMLIM

(above) controls the time to be spent in

searching heuristic solutions.

LS_IPARAM_MIP_SOLVERTYPE Environm

ent,

Model

This specifies the optimization method to

use when solving mixed-integer models.

Possible values are:

0: Solver decides (default).

1: Use B&B only.

2: Use Enumeration and Knapsack

solver only.

94 CHAPTER 2

LS_IPARAM_MIP_NODESELRULE Environm

ent,

Model

This specifies the node selection rule for

choosing between all active nodes in the

branch-and-bound tree when solving

integer programs. Possible selections are:

0: Solver decides .

1: Depth first search.

2: Choose node with worst bound.

3: Choose node with best bound.

4: Start with best bound. If no

improvement in the gap between best

bound and best integer solution is obtained

for some time, switch to:

if (number of active nodes<10000)

Best estimate node selection (5).

else

Worst bound node selection (2).

5: Choose the node with the best

estimate, where the new objective estimate

is obtained using pseudo costs.

6: Same as (4), but start with the best

estimate.

The default value is 4.

LS_IPARAM_MIP_BRANCHRULE Environm

ent,

Model

This specifies the rule for choosing the

variable to branch on at the selected node.

Possible selections are:

0: Solver decides (default).

1: Basis rounding with pseudo reduced

costs.

2: Maximum infeasibility.

3: Pseudo reduced costs only.

4: Maximum coefficient only.

5: Previous branching only.

FUNCTION DEFINITIONS 95

LS_IPARAM_MIP_PRELEVEL Environm

ent,

Model

This controls the amount and type of MIP

pre-solving at root node. Possible options

are:

Simple pre-solving +2

Probing +4

Coefficient reduction +8

Elimination +16

Dual reductions +32

Use dual information +64

Binary row presolving +128

Row aggregation +256

Coefficient lifting +512

Maximum pass +1024

Similar row +2048

The default value is:

3070 = 2+4+8+16+32+64+128+256+

512+2048.

LS_IPARAM_MIP_PREPRINTLEVEL Environm

ent,

Model

This specifies the trace print level for the

MIP presolver. Possible selections are:

0: Do not print anything (default).

1: Print summary of preprocessing.

LS_IPARAM_MIP_PRINTLEVEL Environm

ent,

Model

This specifies the amount of printing to do.

Possible values are:

0: Do not print anything.

1: Print most basic information for

branch-and-bound iterations.

2: Level 1 plus print information

regarding addition of cuts, etc (default).

LS_DPARAM_MIP_CUTOFFOBJ Environm

ent,

Model

If this is specified, then any part of the

branch-and-bound tree that has a bound

worse than this value will not be

considered. This can be used to reduce the

running time if a good bound is known. Set

to a large positive value (LS_INFINITY) to

disable if a finite value had been specified.

Range for possible values is (-inf,inf).

Default is LS_INFINITY.

96 CHAPTER 2

LS_IPARAM_MIP_USECUTOFFOBJ Environm

ent,

Model

This is a flag for the parameter

LS_DPARAM_MIP_CUTOFFOBJ. The

value of 0 means that the current cutoff

value is ignored, else it is used as defined.

If you don’t want to lose the value of the

parameter

LS_DPARAM_MIP_CUTOFFOBJ, this

provides an alternative to disabling the

cutoff objective. Possible values are 0 (no),

1 (yes) and -1 (the solver decides). The

default is 0.

LS_DPARAM_MIP_RELINTTOL Environm

ent,

Model

An integer variable is considered integer

feasible if the difference between its value

and the nearest integer value divided by the

value of the nearest integer is less than this.

Range for possible values is (0,0.5). The

default value is 8e-6. Note this is a relative

version of the

LS_DPARAM_MIP_INTTOL tolerance.

LS_IPARAM_MIP_REOPT Environm

ent,

Model

This specifies which optimization method

to use when doing reoptimization from a

given basis. Possible values are:

LS_METHOD_FREE (default)

LS_METHOD_PSIMPLEX

LS_METHOD_DSIMPLEX

LS_METHOD_BARRIER

LS_METHOD_NLP

LS_IPARAM_MIP_STRONGBRANCHLEVE

L

Environm

ent,

Model

This specifies the depth from the root in

which strong branching is used. Range for

possible values is [0,inf). The default value

of 10 means that strong branching is used

on a level of 1 to 10 measured from the

root. Strong branching finds the real bound

for branching on a given variable, which, in

most cases, requires a solution of a linear

program and may therefore also be quite

expensive in computing time. However, if

used on nodes close to the root node of the

tree, it also gives a much better bound for

that part of the tree and can therefore

reduce the size of the branch-and-bound

tree.

LS_IPARAM_MIP_TREEREORDERLEVEL Environm

ent,

Model

This specifies the tree reordering level.

Range for possible values is [0,inf). The

default is 10.

FUNCTION DEFINITIONS 97

LS_IPARAM_MIP_ANODES_SWITCH_DF Environm

ent,

Model

This specifies the threshold on active nodes

for switching to depth-first search rule.

Range for possible values is [-1,inf). The

default is 50,000.

LS_DPARAM_MIP_SWITCHFAC_SIM_IPM

_ITER

Environm

ent,

Model

This specifies the (positive) factor that

multiplies the number of constraints to

impose an iteration limit to simplex method

and trigger a switch over to the barrier

method. Range for possible values is [-

1,inf).

The default value is –1, which means that

no iteration limit is imposed.

LS_DPARAM_MIP_TIMLIM Environm

ent,

Model

This is the time limit in seconds for MIP

solver.

Range for possible values is [-1.0, inf). The

default value is -1, which means no time

limit is imposed. If the time limit,

LS_DPARAM_MIP_TIMLIM, is reached

and a feasible integer solution was found, it

will be installed as the incumbent (best

known) solution.

LS_IPARAM_MIP_BRANCH_LIMIT Environm

ent,

Model

This is the limit on the total number of

branches to be created during branch-and-

bound. Range for possible values is [-1,inf).

The default value is –1, which means no

limit is imposed.

If the branch limit,

LS_IPARAM_MIP_BRANCH_LIMIT, is

reached and a feasible integer solution was

found, it will be installed as the incumbent

(best known) solution.

LS_IPARAM_MIP_TOPOPT Environm

ent,

Model

This specifies which optimization method

to use when there is no previous basis.

Possible values are:

LS_METHOD_FREE (default)

LS_METHOD_PSIMPLEX

LS_METHOD_DSIMPLEX

LS_METHOD_BARRIER

LS_METHOD_NLP

LS_DPARAM_MIP_LSOLTIMLIM Environm

ent,

Model

This value controls the time limit until

finding a new integer solution since the last

integer solution found. Range for possible

values is [-1,inf). The default value is -1,

which means no time limit is imposed.

98 CHAPTER 2

LS_IPARAM_MIP_DUAL_SOLUTION Environm

ent,

Model

This flag controls whether the dual solution

to the LP relaxation that yielded the optimal

MIP solution will be computed or not.

Possible values are 0 (no), 1 (yes). The

default is 0.

LS_IPARAM_MIP_AGGCUTLIM_TOP Environm

ent,

Model

This specifies an upper limit on the number

of constraints to be involved in the

derivation of an aggregation cut at the root

node. Range for possible values is [-1,inf).

The default is –1, which means that the

solver will decide.

LS_IPARAM_MIP_AGGCUTLIM_TREE Environm

ent,

Model

This specifies an upper limit on the number

of constraints to be involved in the

derivation of an aggregation cut at the tree

nodes. Range for possible values is [-1,inf).

The default is 3.

LS_DPARAM_MIP_MINABSOBJSTEP Environm

ent,

Model

This specifies the value to update the cutoff

value each time a mixed integer solution is

found. Range for possible values is (-

inf,inf). The default is 0.0

LS_IPARAM_MIP_PSEUDOCOST_RULE Environm

ent,

Model

This specifies the rule in pseudocost

computations for variable selection.

Possible values are

0: solver decides (default).

1: only use min pseudo cost.

2: only use max pseudo cost.

3: use quadratic score function and the

pseudo cost weigth.

4: same as 3 without quadratic score.

LS_IPARAM_MIP_ENUM_HEUMODE Environm

ent,

Model

This specifies the frequency of enumeration

heuristic. Possible values are

0: off

1: only at top (root) node without cuts.

2: both at top (root) and tree nodes

without cuts.

3: same as 1 with cuts.

4: same as 2 with cuts (default).

FUNCTION DEFINITIONS 99

LS_IPARAM_MIP_PRELEVEL_TREE Environm

ent,

Model

This controls the amount and type of MIP

pre-solving at tree nodes. Possible options

are:

Simple pre-solving +2

Probing +4

Coefficient reduction +8

Elimination +16

Dual reductions +32

Use dual information +64

Binary row presolving +128

Row aggregation +256

Maximum pass +512

The default value is:

686 = 2+4+8+32+128+512.

LS_DPARAM_MIP_PSEUDOCOST_WEIGT Environm

ent,

Model

This specifies the weight in pseudocost

computations for variable selection. Range

for possible values is (0,inf). The default is

6.25.

LS_DPARAM_MIP_REDCOSTFIX_CUTOFF

_TREE

Environm

ent,

Model

This specifies the cutoff value as a

percentage of the reduced costs to be used

in fixing variables when using the reduced

cost fixing heuristic at tree nodes. Range for

possible values is [0,9.9e-1]. The default is

0.9.

LS_DPARAM_MIP_OBJ_THRESHOLD Environm

ent,

Model

This value specifies the threshold of

objective value in the MIP solver.

For min problem, if current incurmbent

solution is less than the threshold MIP

solver will stop.

Range for possible values is (-inf, inf).

The default value is -inf.

LS_IPARAM_MIP_LOCALBRANCHNUM Environm

ent,

Model

Reserved for future use. Default is 0.

LS_DPARAM_MIP_SWITCHFAC_SIM_IPM

_TIME

Environm

ent,

Model

This specifies the (positive) factor that

multiplies the number of constraints to

impose a time limit to simplex method and

trigger a switch over to the barrier method.

Range for possible values is [-1.0,inf). The

default value is –1.0, which means that no

time limit is imposed.

100 CHAPTER 2

LS_DPARAM_MIP_ITRLIM Environm

ent,

Model

This is the total LP iteration limit (stored as

a double variable) summed over all

branches for branch-and-bound. Range for

possible values is [-1,inf). The default value

is –1, which means no iteration limit is

imposed. If this iteration limit is reached,

branch-and-bound will stop and the best

feasible integer solution found will be

installed as the incumbent (best known)

solution.

Remark: Deprecated name

LS_IPARAM_MIP_ITRLIM (integer

typed)

LS_IPARAM_MIP_MAXNUM_MIP_SOL_ST

ORAGE

Environm

ent,

Model

This specifies the maximum number of k-

best solutions to store. Possible values are

positive integers. Default is 10.

LS_IPARAM_MIP_FP_HEU_MODE Environm

ent,

Model

This specifies the feasibility-pump (FP)

heuristic mode. Possible values are :

0 : FP is disabled.

1 : Solver decides.

2 : Enable FP if no cutoff value or initial

mip solution was defined

3 : Enable FP independent of cutoff

values and initial mip solutions

4 : Same as 2 but also enable FP on child

nodes in branch-bound tree.

5 : Same as 3 but also enable FP on child

nodes in branch-bound tree.

The default is 0.

LS_DPARAM_MIP_ITRLIM_SIM Environm

ent,

Model

This specifies the simplex-iteration limit for

the MIP solver. Possible values are

nonnegative integers and -1 (no limit). The

default is -1.

LS_DPARAM_MIP_ITRLIM_NLP Environm

ent,

Model

This specifies the nonlinear-iteration limit

for the MIP solver. Possible values are

nonnegative integers and -1 (no limit). The

default is -1.

FUNCTION DEFINITIONS 101

LS_DPARAM_MIP_ITRLIM_IPM Environm

ent,

Model

This specifies the barrier-iteration limit for

the MIP solver. Possible values are

nonnegative integers and -1 (no limit). The

default is -1.

LS_IPARAM_MIP_PREHEU_LEVEL Environm

ent,

Model

The heuristic level for the prerelax solver. -

1 is for solver decides, 0 is for nothing. 1 is

for one-change, 2 is for one-change and

two-change, and 3 is for depth first

enumeration. Default is -1.

LS_IPARAM_MIP_PREHEU_VAR_SEQ Environm

ent,

Model

The sequence of the variable considered by

the prerelax heuristic. If 1, then forward; if

-1, then backward. Default is -1.

LS_IPARAM_MIP_PREHEU_TC_ITERLIM Environm

ent,

Model

Iteration limit for the two change heuristic.

Default is 20000000.

LS_IPARAM_MIP_PREHEU_DFE_VSTLIM Environm

ent,

Model

Limit for the variable visit in depth first

enumeration. Default is 200.

LS_IPARAM_MIP_CONCURRENT_TOPOPT

MODE

Environm

ent,

Model

This value specifies the concurrent

optimization mode with cold start.

See:

LS_IPARAM_SOLVER_CONCURRENT

_OPTMODE for possible values. The

default is 0

LS_IPARAM_MIP_CONCURRENT_STRATE

GY

Environm

ent,

Model

Environment, Model This parameter

controls the concurrent MIP strategy.

Possible values are:

LS_MTMODE_FREE = -1, Solver

decides

LS_STRATEGY_USER = 0, Use the

custom search strategy defined via a

callback function for each thread.

LS_STRATEGY_PRIMIP = 1, Defines

built-in priority lists for each thread.

LS_STRATEGY_NODEMIP = 2,

Reserved for future use

LS_STRATEGY_HEUMIP = 3, Defines

heuristic based strategies for each thread.

Default is -1.

102 CHAPTER 2

LS_IPARAM_MIP_CONCURRENT_REOPT

MODE

Environm

ent,

Model

This value specifies the concurrent

optimization mode with warm start.

See:

LS_IPARAM_SOLVER_CONCURRENT

_OPTMODE for possible values. The

default is 0

LS_IPARAM_MIP_NUM_THREADS Environm

ent,

Model

This parameter specifies the number of

parallel threads

 to use by the parallel MIP solver. Possible

values are positive

 integers. The default is 1 implying that the

parallel solver is disabled.

LS_IPARAM_MIP_PREHEU_PRE_LEVEL Environm

ent,

Model

This values specifies the presolver level for

the prerelax MIP solver.

See: LS_IPARAM_LP_PRELEVEL for

possible values. The default is 10.

LS_IPARAM_MIP_PREHEU_PRINT_LEVEL Environm

ent,

Model

This value specifies the print level for the

prerelax MIP solver. Possible values are

nonnegative integers. The default is 0.

LS_IPARAM_MIP_BASCUTS_DONUM Environm

ent,

Model

Reserved for future use. Default is 3.

FUNCTION DEFINITIONS 103

LS_IPARAM_MIP_USE_PARTIALSOL_LEV

EL

Environm

ent,

Model

Reserved for future use. Default is 2.

LS_IPARAM_MIP_GENERAL_MODE Environm

ent,

Model

This value specifies the general strategy in

solving MIPs. Bitmasks defining possible

values are:

LS_MIP_MODE_NO_TIME_EVENTS:

Disable all time-driven events for

reproducibility of runs.

LS_MIP_MODE_FAST_FEASIBILITY:

Favor finding feasible solutions quickly

(reserved for future use).

LS_MIP_MODE_FAST_OPTIMALITY:

Favor proving optimality quickly (reserved

for future use).

LS_MIP_MODE_NO_BRANCH_CUTS:

Disable cut generation before branching.

The default is 0.

LS_IPARAM_MIP_POLISH_NUM_BRANCH

_NEXT

Environm

ent,

Model

This value specifies the number of branches

to polish in the next round. Possible values

are nonnegative integers. The default is

4000.

LS_IPARAM_MIP_POLISH_MAX_BRANCH

_COUNT

Environm

ent,

Model

This value specifies the maximum number

of branches to polish. Possible values are

nonnegative integers. The default is 2000.

LS_DPARAM_MIP_POLISH_ALPHA_TARG

ET

Environm

ent,

Model

This value specifies the proportion

solutions in the pool to initiate a polishing-

task at the current node.

Possible values are:

In the range of [0.01,0.99].

The default is 0.6.

LS_DPARAM_MIP_BRANCH_TOP_VAL_DI

FF_WEIGHT

Environm

ent,

Model

Reserved for future use.

The default is 1.0.

LS_IPARAM_MIP_PARA_SUB Environm

ent,

Model

This is a flag for whether to use MIP

parallelization on subproblems solved in

MIP preprocessing.

0: do not use

1: use (default)

104 CHAPTER 2

LS_DPARAM_MIP_PARA_RND_ITRLMT Environm

ent,

Model

This value specifies the iteration limit of

each round in MIP parallelization, it is a

weighted combination of simplex and

barrier iterations.

Possible values are positive integers. The

default is 2.0.

LS_DPARAM_MIP_PARA_INIT_NODE Environm

ent,

Model

This value specifies the number of initial

nodes for MIP parallelization.

Possible values are nonnegative integers

and -1 (solver decides).

The default is -1.

LS_IPARAM_MIP_PARA_ITR_MODE Environm

ent,

Model

This is a flag for iteration mode in MIP

parallelization.

Possible values are:

0: each thread terminates as soon as

it reaches the iteration limit.

1: each thread waits until all threads

reach their iteration limit (default).

LS_IPARAM_MIP_HEU_DROP_OBJ Environm

ent,

Model

This specifies whether to use without OBJ

heu.

Possible values are:

0 : Not Use

1: Use.

The default value is 0.

LS_DPARAM_MIP_ABSCUTTOL Environm

ent,

Model

This specifies the MIP absolute cut

tolerance.

Possible values are:

< 0: Internally decided tolerance.

>= 0: User defined tolerance.

The default value is -1.0.

LS_IPARAM_MIP_PERSPECTIVE_REFORM Environm

ent,

Model

This specifies whether to use Perspective

Reformulation.

Possible values are:

0: Off.

1: on.

The default value is 1.

FUNCTION DEFINITIONS 105

LS_IPARAM_MIP_TREEREORDERMODE Environm

ent,

Model

This specifies the tree reordering mode.

Possible values are:

1: Use tree reordering only for

subproblems.

2: Use tree reordering for subproblems

and the main bnb loop only when LP status

is infeasible.

3: Not use tree reordering.

4: Use tree reordering based on

LS_IPARAM_MIP_TREEREORDERLEV

EL.

The default value is 1.

LS_IPARAM_MIP_PARA_FP Environm

ent,

Model

This is a flag for whether to use

parallelization on the feasibility pump

heuristic.

Possible options are:

0: not use

1: use

The default value is 1.

LS_IPARAM_MIP_PARA_FP_MODE Environm

ent,

Model

This specifies the mode of parallel

feasibility pump.

Possible options are:

0: terminate when all threads finish

1: terminate as soon as the master thread

finishes

The default value is 0.

LS_IPARAM_MIP_TIMLIM Environm

ent,

Model

This is the time limit in seconds (integer)

for MIP solver. Range for possible values is

[-1, inf). The default value is -1, which

means no time limit is imposed. However,

the value of

LS_DPARAM_SOLVER_TIMLMT will

be applied to each continuous sub problem

solve.

If the value of this parameter is greater than

0, then thevalue of

LS_DPARAM_SOLVER_TIMLMT will

be disregarded.

If the time limit,

LS_DPARAM_MIP_TIMLIM, is reached

and a feasible integer solution was found, it

will be installed as the incumbent (best

known) solution.

106 CHAPTER 2

LS_IPARAM_MIP_AOPTTIMLIM Environm

ent,

Model

This is the time in seconds (integer) beyond

which the relative optimality tolerance,

LS_DPARAM_MIP_PEROPTTOL, will

be applied. Range for possible values is [-

1,inf). The default value is 100 seconds.

LS_IPARAM_MIP_LSOLTIMLIM Environm

ent,

Model

This value controls the time limit until

finding a new integer solution since the last

integer solution found. Range for possible

values is [-1,inf). The default value is -1,

which means no time limit is imposed.

LS_IPARAM_MIP_CUTTIMLIM Environm

ent,

Model

This controls the total time to be spent in

cut generation throughout the solution of a

MIP. Range for possible values is [0,inf).

The default value is -1, indicating that no

time limits will be imposed when

generating cuts.

LS_IPARAM_MIP_HEUMINTIMLIM Environm

ent,

Model

This specifies the minimum time in seconds

to be spent in finding heuristic solutions to

the MIP model.

LS_IPARAM_MIP_HEULEVEL (below)

controls the heuristic used to find the

integer solution. Range for possible values

is [0,inf).

The default is 0.

LS_IPARAM_MIP_REP_MODE Environm

ent,

Model

Reserved for future use.

LS_IPARAM_MIP_BNB_TRY_BNP Environm

ent,

Model

Reserved for future use.

Global Optimization Parameters
LS_DPARAM_GOP_ABSOPTTOL Environment,

Model

This is the GOP absolute optimality

tolerance. Solutions must beat the

incumbent by at least this absolute

amount to become the new, best

solution. Range for possible values is

[0,inf). The default value is 1e-6.

FUNCTION DEFINITIONS 107

LS_DPARAM_GOP_RELOPTTOL Environment,

Model

This value is the GOP optimality

tolerance. Solutions must beat the

incumbent by at least this amount to

become the new best solution. Range

for possible values is [0,1].

The default value is 1e-5.

Remark: Deprecated name

LS_DPARAM_GOP_OPTTOL

LS_DPARAM_GOP_BOXTOL Environment,

Model

This value specifies the minimal width

of variable intervals in a box allowed to

branch. Range for possible values is

[0,1]. The default value is 1.0e-6.

LS_DPARAM_GOP_WIDTOL Environment,

Model

This value specifies the maximal width

of variable intervals for a box to be

considered as an incumbent box

containing an incumbent solution. It is

used when

LS_IPARAM_GOP_MAXWIDMD is

set at 1. Range for possible values is

[0,1]. The default value is 1e-4.

LS_DPARAM_GOP_DELTATOL Environment,

Model

This value is the delta tolerance in the

GOP convexification. It is a measure of

how closely the additional constraints

added as part of convexification should

be satisfied. Range for possible values is

[0,1]. The default value is 1e-7.

LS_DPARAM_GOP_BNDLIM Environment,

Model

This value specifies the maximum

magnitude of variable bounds used in

the GOP convexification. Any lower

bound smaller than the negative of this

value will be treated as the negative of

this value. Any upper bound greater

than this value will be treated as this

value. This helps the global solver focus

on more productive domains. Range for

possible values is [0,inf). The default

value is 1e10.

LS_IPARAM_GOP_TIMLIM Environment,

Model

This is the integer time limit in seconds

for GOP branch-and-bound. Range for

possible values is [-1, INT_MAX). The

default value is -1, which means no time

limit is imposed.

108 CHAPTER 2

LS_IPARAM_GOP_OPTCHKMD Environment,

Model

This specifies the criterion used to

certify the global optimality. Possible

values are:

0: the absolute deviation of objective

lower and upper bounds should be

smaller than

LS_DPARAM_GOP_RELOPTTOL at

the global optimum.

1: the relative deviation of objective

lower and upper bounds should be

smaller than

LS_DPARAM_GOP_RELOPTTOL at

the global optimum.

2: which means either absolute or

relative tolerance is satisfied at global

optimum (default).

LS_IPARAM_GOP_MAXWIDMD Environment,

Model

This is the maximum width flag for the

global solution. The GOP branch-and-

bound may continue contracting a box

with an incumbent solution until its

maximum width is smaller than

LS_DPARAM_GOP_WIDTOL.

The possible value are:

0: the maximum width criterion is

suppressed (default).

1: the maximum width criterion is

performed.

FUNCTION DEFINITIONS 109

LS_IPARAM_GOP_BRANCHMD Environment,

Model

This specifies how the branching

variable is selected in GOP. The branch

variable is selected as the one that holds

the largest magnitude in the measure.

Possible values are:

0: Absolute width of interval.

1: Locally relative width.

2: Globally relative width.

#3: Globally relative distance from

the convex minimum to the bounds.

4: Absolute violation between the

function and its convex envelope at the

convex minimum.

5: Relative violation between the

function and its convex envelope at the

convex minimum.

The default value is 5.

LS_IPARAM_GOP_PRELEVEL Environment,

Model

This controls the amount and type of

GOP pre-solving. Possible options are:

Initial model reduction +1

Initial local optimization +2

Initial linear constraint

propagation +4

Recursive linear constraint

propagation +8

Recursive nonlinear constraint

propagation +16

Search for good near feasible

solutions. +32

Check for unboundedness +64

Alter derivative methods +128

MIP pre-optimizations +256

NLP pre-optimizations +512

The default value is 1022 =

2+4+8+16+32+64+128+256+512

LS_IPARAM_GOP_POSTLEVEL Environment,

Model

This controls the amount and type of

GOP post-solving. Possible options are:

Apply LSgetBestBound() +2

Reoptimize variable bounds +4

Reoptimize variable bounds on

selected node only +8

The default value is: 14 = 2+4+8

110 CHAPTER 2

LS_IPARAM_GOP_BBSRCHMD Environment,

Model

This specifies the node selection rule for

choosing between all active nodes in the

GOP branch-and-bound tree when

solving global optimization programs.

Possible selections are:

0: Depth first search.

1: Choose node with worst bound.

The default value is 1.

LS_IPARAM_GOP_DECOMPPTMD Environment,

Model

This specifies the decomposition point

selection rule. In the branch step of

GOP branch-and-bound, a branch point

M is selected to decompose the selected

variable interval [Lb, Ub] into two sub-

intervals, [Lb, M] and [M, Ub]. Possible

options are:

0: mid-point.

1: local minimum/convex minimum.

The default value is 1.

LS_IPARAM_GOP_ALGREFORMMD Environment,

Model

This controls the algebraic

reformulation rule for a GOP. The

algebraic reformulation and analysis is

very crucial in building a tight convex

envelope to enclose the nonlinear/non-

convex functions. A lower degree of

overestimation on convex envelopes

helps increase the convergence rate to

the global optimum. Possible options

are:

Rearrange and collect terms +2

Expand all parentheses +4

Retain nonlinear functions +8

Selectively expand parentheses +16

The default value is: 18 = 2+16

LS_IPARAM_GOP_PRINTLEVEL Environment,

Model

This specifies the amount of print to do

for the global solver. Possible selections

are:

0: Do not print anything.

1: Print information for GOP branch-

and-bound iterations (default).

LS_IPARAM_GOP_CORELEVEL Environment,

Model

Reserved for future use. The default is

30.

FUNCTION DEFINITIONS 111

LS_IPARAM_GOP_RELBRNDMD Environment,

Model

This controls the reliable rounding rule

in the GOP branch-and-bound. The

global solver applies many sub-

optimizations to estimate the lower and

upper bounds on the global optimum. A

rounding error or numerical instability

could unintentionally cut off a good

solution. A variety of reliable

approaches are available to improve the

precision. Possible values are:

No rounding 0

Use smaller optimality/feasibility

tolerances and appropriate pre-solving

options +2

Apply interval arithmetic to re-verify

the solution feasibility +4

The default value is 0.

LS_IPARAM_GOP_BNDLIM_MODE Environment,

Model

This value is associated with the

parameter

LS_DPARAM_GOP_BNDLIM and

determines the mode how the specified

bound limit will be used.

Possible values are:

 # 0:Do not use the bound limit on the

variables.

 # 1: Use the bound limit right at the

beginning of global optimization.

 # 2: Use the bound limit after the initial

local optimization, if selected. This

properly sets the bound limit for each

variable to include the initial solution, if

any, within the range.

The default is 2.

LS_IPARAM_GOP_OPT_MODE Environment,

Model

This specifies the mode for global

search. Possible values are

0: global search for a feasible solution

(thus a feasibility certificate).

1: global search for an optimal

solution (default).

2: global search for an unboundedness

certificate.

The default value is 1.

112 CHAPTER 2

LS_IPARAM_GOP_BRANCH_LIMIT Environment,

Model

This is the integer limit on the total

number of branches to be created during

branch-and-bound in GOP tree. Range

for possible values is [-1,INT_MAX].

The default is INT_MAX

(2147483647). If the branch limit,

LS_IPARAM_GOP_BRANCH_LIMIT,

is reached and a feasible solution was

found, it will be installed as the

incumbent (best known) solution.

FUNCTION DEFINITIONS 113

 LS_IPARAM_GOP_CORELEVEL Environment,

Model

This controls the strategy of GOP

branch-and-bound procedure.

Possible options are:

LP convex relaxation +2

Honor NLP solutions +4

Box Branching +8

Honor IPM solutions +16

 The default is 30.

 LS_IPARAM_GOP_HEU_MODE Environment,

Model

This specifies the heuristic used in the

global solver to find good solution.

Possible values are:

0: No heuristic is used.

1: A simple heuristic is used.

Typically, this will put more efforts in

searching for good solutions, and less in

bound tightening. The default is 0.

 LS_IPARAM_GOP_SUBOUT_MODE Environment,

Model

This is a flag indicating whether fixed

variables are substituted out of the

instruction list used in the global solver.

Possible values are 0 (no), 1 (yes). The

default is 1.

 LS_IPARAM_GOP_USE_NLPSOLVE Environment,

Model

This is reserved for internal use only.

The default value is 1.

 LS_IPARAM_GOP_LSOLBRANLIM Environment,

Model

This value controls the branch limit until

finding a new nonlinear solution since

the last nonlinear solution is found.

Range for possible values is [-1,inf). The

default value is –1, which means no

branch limit is imposed.

LS_IPARAM_GOP_LPSOPT Environment,

Model

This is reserved for internal use only.

The default is 2.

LS_DPARAM_GOP_TIMLIM Environment,

Model

This is the time limit in seconds for GOP

branch-and-bound. Range for possible

values is [-1.0,inf). The default value is

-1.0, which means no time limit is

imposed.

114 CHAPTER 2

LS_DPARAM_GOP_BRANCH_LIMIT Environment,

Model

This is the limit on the total number of

branches (stored as a double) to be

created during branch-and-bound in

GOP tree. Range for possible values is [-

1, +inf).The default value is –1, which

means no limit is imposed. If the branch

limit,

LS_DPARAM_GOP_BRANCH_LIMIT

, is reached and a feasible solution was

found, it will be installed as the

incumbent (best known) solution.

LS_IPARAM_GOP_QUADMD Environment,

Model

This is a flag indicating if GOP exploits

quadratic feature. Possible values are:

0 (no) and 1 (yes). The default is 0.

LS_IPARAM_GOP_LIM_MODE Environment,

Model

This is a flag indicating which heuristic

limit on sub-solver in GOP is based.

Possible values are:

0: No limit.

1: time based limit.

2: iteration based limit.

3: both time and iteration based limit.

The default value is 1 (time based limit).

LS_DPARAM_GOP_ITRLIM Environment,

Model

This is the total iteration limit (including

simplex, barrier and nonlinear iteration)

summed over branches in GOP. Range

for possible values is [-1, inf). The

default value is -1, which means no

iteration limit is imposed. If this limit is

reached, GOP will stop.

LS_DPARAM_GOP_ITRLIM_SIM Environment,

Model

This is the total simplex iteration limit

summed over all branches in GOP.

Range for possible values is [-1, inf).

The default value is -1, which means no

iteration limit is imposed. If this limit is

reached, GOP will stop.

LS_DPARAM_GOP_ITRLIM_IPM Environment,

Model

This is the total barrier iteration limit

summed over all branches in GOP.

Range for possible values is [-1, inf).

The default value is -1, which means no

iteration limit is imposed. If this limit is

reached, GOP will stop.

FUNCTION DEFINITIONS 115

LS_DPARAM_GOP_ITRLIM_NLP Environment,

Model

This is the total nonlinear iteration limit

summed over all branches in GOP.

Range for possible values is [-1, inf).

The default value is -1, which means no

iteration limit is imposed. If this limit is

reached, GOP will stop.

LS_DPARAM_GOP_PEROPTTOL Environment,

Model

Reserved for future use.

LS_DPARAM_GOP_AOPTTIMLIM Environment,

Model

Reserved for future use.

LS_IPARAM_GOP_LINEARZ Environment,

Model

This is a flag indicating if GOP exploits

lineariable model.Possible values are 0

(no) and 1 (yes).The default value is 1.

LS_IPARAM_GOP_NUM_THREADS Environment,

Model

This value specifies the number of

parallel threads to be used when solving

a nonlinear model with the global

optimization solver. Possible values are

positive integers. The default is 1.

LS_DPARAM_GOP_FLTTOL Environment,

Model

Option GOP floating-point tolerance.

The default is 1e-010.

LS_IPARAM_GOP_MULTILINEAR Environment,

Model

This is a flag indicating if GOP exploits

multi linear feature. Possible values are:

0 (no) and 1 (yes). The default is 1.

LS_DPARAM_GOP_OBJ_THRESHOLD Environment,

Model

This value specifies the threshold of

objective value in the GOP solver. For

min problem, if current incurmbent

solution is less than the threshold GOP

solver will stop. Range for possible

values is (-inf, inf).

The default value is -inf.

LS_DPARAM_GOP_QUAD_METHOD Environment,

Model

Reserved for future use.

116 CHAPTER 2

License Information Parameters
LS_IPARAM_LIC_PLATFORM Environment,

Model

This returns the platform identifier for a

given license key. This value cannot be

set.

LS_IPARAM_LIC_CONSTRAINTS Environment,

Model

This returns an integer containing the

number of constraints allowed for a

single model. It returns -1 if the number

is unlimited. This value cannot be set.

LS_IPARAM_LIC_VARIABLES Environment,

Model

This returns an integer containing the

maximum number of variables allowed

in a single model. It returns -1 if the

number is unlimited. This value cannot

be set.

LS_IPARAM_LIC_INTEGERS Environment,

Model

This returns an integer containing the

maximum number of integer variables

allowed in a single model. It returns -1

if the number is unlimited. This value

cannot be set.

LS_IPARAM_LIC_NONLINEARVARS Environment,

Model

This returns an integer containing the

maximum number of nonlinear

variables allowed in a single model. It

returns -1 if the number is unlimited.

This value cannot be set.

LS_IPARAM_LIC_GOP_INTEGERS Environment,

Model

This returns an integer containing the

maximum number of integer variables

allowed in a global optimization model.

It returns -1 if the number is unlimited.

This value cannot be set.

LS_IPARAM_LIC_GOP_NONLINEARVARS Environment,

Model

This returns an integer containing the

maximum number of nonlinear

variables allowed in a global

optimization model. It returns -1 if the

number is unlimited. This value cannot

be set.

LS_IPARAM_LIC_DAYSTOEXP Environment,

Model

This returns an integer containing the

number of days until the license expires.

It returns -2 if there is no expiration

date. This value cannot be set.

LS_IPARAM_LIC_DAYSTOTRIALEXP Environment,

Model

This returns an integer containing the

number of days until the trial features of

the license expires. It returns -2 if there

is no trial period. This value cannot be

set.

FUNCTION DEFINITIONS 117

LS_IPARAM_LIC_BARRIER Environment,

Model

This returns an integer containing a 1 if

the barrier solver option is available and

0 if it is not. The barrier solver, also

known as the “interior point” solver,

tends to be faster on some large models.

A license for the barrier solver may be

obtained through LINDO Systems. This

value cannot be set.

LS_IPARAM_LIC_NONLINEAR Environment,

Model

This returns an integer containing a 1 if

the nonlinear solver option is available

and 0 if it is not. A license for the

nonlinear solver may be obtained

through LINDO Systems. This value

cannot be set.

LS_IPARAM_LIC_GLOBAL Environment,

Model

This returns an integer containing a 1 if

the global solver option is available and

0 if it is not. A license for the global

solver may be obtained through LINDO

Systems. This value cannot be set.

LS_IPARAM_LIC_EDUCATIONAL Environment,

Model

This returns an integer containing a 1 or

a 0. 1 means that the current license is

for educational use only. This value

cannot be set.

LS_IPARAM_LIC_NUMUSERS Environment,

Model

This returns an integer specifying the

maximum number of concurrent users

allowed to use the current license. This

value cannot be set.

LS_IPARAM_LIC_RUNTIME Environment,

Model

This returns an integer containing a 1 or

a 0. 1 meaning the license is for runtime

use only. This value cannot be set.

LS_IPARAM_LIC_CONIC Environment,

Model

This returns an integer containing a 1 if

the conic solver option is available and

0 if it is not. A license for the conic

solver may be obtained through LINDO

Systems. This value cannot be set.

LS_IPARAM_LIC_MIP Environment,

Model

This returns an integer containing a 1 if

the mixed-integer solver option is

available and 0 if it is not. A license for

the mixed-integer solver may be

obtained through LINDO Systems. This

value cannot be set.

118 CHAPTER 2

LS_IPARAM_LIC_SP Environment,

Model

This returns an integer containing a 1 if

the stochastic-programming solver

option is available and 0 if it is not. A

license for the stochastic-programming

solver may be obtained through LINDO

Systems. This value cannot be set.

Model Analysis Parameters
LS_IPARAM_IIS_METHOD Environment,

Model

This specifies the method to use in

analyzing infeasible models to locate an

IIS. Possible values are:

LS_IIS_DEFAULT = 0,

LS_IIS_DEL_FILTER =1,

LS_IIS_ADD_FILTER =2,

LS_IIS_GBS_FILTER =3,

LS_IIS_DFBS_FILTER =4,

LS_IIS_FSC_FILTER =5,

LS_IIS_ELS_FILTER =6

The default is LS_IIS_DEFAULT

LS_IPARAM_IIS_USE_EFILTER Environment,

Model

This flag controls whether the Elastic

Filter should be enabled as the

supplementary filter in analyzing

infeasible models when the Elastic

Filter is not the primary method.

Possible values are 0 (no), 1 (yes) and -

1 (the solver decides). The default is 0.

LS_IPARAM_IIS_USE_GOP Environment,

Model

This flag controls whether the global

optimizer should be enabled in

analyzing infeasible NLP models.

Possible values are 0 (no), 1 (yes) and -

1 (the solver decides). The default is 0.

FUNCTION DEFINITIONS 119

LS_IPARAM_IIS_ANALYZE_LEVEL Environment,

Model

This controls the level of analysis when

locating an IIS to debug an infeasible

model. Bit mask values are:

LS_NECESSARY_ROWS= 1, Search

for necessary rows,

LS_NECESSARY_COLS = 2, Search

for necessary columns,

 # LS_SUFFICIENT_ROWS= 4,

Search for sufficient rows,

LS_SUFFICIENT_COLS = 8, Search

for sufficient columns ,

LS_IIS_INTS = 16, Consider

integrality restrictions as the potential

cause of infeasibilities and include it in

the analysis. If this option is disabled,

all integrality restrictions will be

considered permanent in the model and

will not be relaxes.

LS_IISRANK_LTF = 32, Compute

the underlying LTF matrix and use this

as the basis of a ranking score to guide

the IIS run. E.g. one could start from the

bottom of the triangulated matrix and

move up.

LS_IISRANK_DECOMP = 64, If the

underlying matrix is totally

decomposable, rank blocks w.r.t their

sizes and debug the smallest

independent infeasible block,

LS_IISRANK_NNZ = 128, Use the

nonzero structure of the underlying

matrix to compute a ranking score to

guide the IIS run. E.g. remove rows

with more nonzero first etc…

#LS_IISLIMIT_MIS = 256, Treat

iter/time limits as intractability.

LS_IPARAM_IUS_ANALYZE_LEVEL Environment,

Model

This controls the level of analysis when

locating an IUS to debug an unbounded

LP. Bit mask values are:

LS_NECESSARY_COLS = 2,

LS_SUFFICIENT_COLS = 8.

The default is 2.

120 CHAPTER 2

LS_IPARAM_IIS_REOPT

Environment,

Model

This specifies which optimization

method to use when starting from a

given basis. Possible values are:

LS_METHOD_FREE

LS_METHOD_PSIMPLEX

LS_METHOD_DSIMPLEX

LS_METHOD_BARRIER

LS_METHOD_NLP

The default is LS_METHOD_FREE.

LS_IPARAM_IIS_TOPOPT Environment,

Model

This specifies which optimization

method to use when there is no previous

basis. Possible values are:

LS_METHOD_FREE

LS_METHOD_PSIMPLEX

LS_METHOD_DSIMPLEX

LS_METHOD_BARRIER

LS_METHOD_NLP

The default is LS_METHOD_FREE.

LS_IPARAM_IIS_USE_SFILTER Environment,

Model

 This is a flag indicating is sensitivity

filter will be used during IIS search.

Possible values are 0 (no), 1 (yes) and -

1 (the solver decides). The default is 1.

LS_IPARAM_IIS_PRINT_LEVEL Environment,

Model

This specifies the amount of print to do

during IIS search. Possible values are:

0: Do not print anything (default).

>0: Print more information.

Default is 2.

LS_IPARAM_IIS_INFEAS_NORM Environment,

Model

This specifies the norm to measure

infeasibilities in IIS search. Possible

values are:

LS_IIS_NORM_FREE : Solver

decides

LS_IIS_NORM_ONE: Use L-1 norm.

LS_IIS_NORM_INFINITY: Use L-

infinity norm.

The default is 0.

LS_IPARAM_IIS_ITER_LIMIT Environment,

Model

This is the iteration limit for IIS search.

The default value is -1, which means no

iteration limit is imposed.

LS_IPARAM_IIS_TIME_LIMIT Environment,

Model

This is the time limit for IIS search. The

default value is -1, which means no time

limit is imposed.

FUNCTION DEFINITIONS 121

LS_IPARAM_IIS_NUM_THREADS Environment,

Model

This value specifies the number of

parallel threads to be used when using

the IIS finder. Possible values are

positive integers. Reserved for future

use.

LS_DPARAM_IIS_ITER_LIMIT Environment,

Model

This is the iteration limit (double

precision) for IIS search. The default

value is -1.0, which means no iteration

limit is imposed.

LS_IPARAM_IIS_GETMODE Environment,

Model

This flag controls whether LSgetIIS()

function should retrieve variable bounds

in the IIS or the integer restrictions. This

parameter is effective only for infeasible

integer models. For continuous models,

it will be ignored.

Possible values are:

 0 (variable bound), 1 (integer

restrictions).

The default is 0.

Stochastic Parameters
LS_IPARAM_STOC_NSAMPLE_SPAR Environment,

Model

Common sample size per stochastic

parameter. Possible values are positive

integers or -1. Default is -1, which

implies 'not specified'.

LS_IPARAM_STOC_NSAMPLE_STAGE Environment,

Model

Common sample size per stage. Possible

values are positive integers or -1.

Default is -1, which implies 'not

specified'.

LS_IPARAM_STOC_RG_SEED Environment,

Model

Seed to initialize the random number

generator. Possible values are positive

integers. The default is 1031.

LS_IPARAM_STOC_METHOD Environment,

Model

Stochastic optimization method to solve

the model. Possible values are:

LS_METHOD_STOC_FREE

LS_METHOD_STOC_DETEQ

LS_METHOD_STOC_NBD

LS_METHOD_STOC_ALD

The default is

LS_METHOD_STOC_FREE.

122 CHAPTER 2

LS_IPARAM_STOC_REOPT Environment,

Model

Reoptimization method to solve the

node-models. Possible values are:

LS_METHOD_FREE (default)

LS_METHOD_PSIMPLEX

LS_METHOD_DSIMPLEX

LS_METHOD_BARRIER

LS_METHOD_NLP

LS_IPARAM_STOC_TOPOPT

Environment,

Model

Optimization method to solve the root

problem. Possible values are:

LS_METHOD_FREE (default)

LS_METHOD_PSIMPLEX

LS_METHOD_DSIMPLEX

LS_METHOD_BARRIER

LS_METHOD_NLP

LS_METHOD_MULTIS

LS_METHOD_GOP

LS_IPARAM_STOC_ITER_LIM Environment,

Model

Iteration limit for stochastic solver.

Possible values are positive integers or

(-1) no limit. Default is -1.

LS_IPARAM_STOC_PRINT_LEVEL Environment,

Model

Print level to display progress

information during optimization.

Possible values are nonnegative

integers. Default is 2.

LS_IPARAM_STOC_DETEQ_TYPE Environment,

Model

Type of deterministic equivalent to be

used by the solver. Possible values are:

LS_DETEQ_FREE (-1)

LS_DETEQ_IMPLICIT (0)

LS_DETEQ_EXPLICIT (1)

LS_DETEQ_CHANCE (2)

LS_DETEQ_IMPLICIT is valid for

linear and integer models only.

Default value is LS_DETEQ_FREE(-1).

LS_IPARAM_STOC_CALC_EVPI Environment,

Model

Flag to enable/disable calculation of

lower bounds on EVPI. Possible values

are (0): disable, (1) enable. Default is 1.

LS_IPARAM_STOC_DEBUG_MASK Environment,

Model

Specifies the bitmask to export

stochastic model data for advanced

debugging. Possible values are 0, 1, 2, 4

and 8. Default is 0.

LS_IPARAM_STOC_SAMP_CONT_ONLY Environment,

Model

Flag to restrict sampling to continuous

stochastic parameters only or not.

Possible values are (0): disable, (1)

enable. Default is 0.

FUNCTION DEFINITIONS 123

LS_IPARAM_STOC_BUCKET_SIZE Environment,

Model

Bucket size in Benders decomposition.

Possible values are positive integers or

(-1) for solver decides. Default is -1.

LS_IPARAM_STOC_MAX_NUMSCENS Environment,

Model

Maximum number of scenarios allowed

when solving an SP. Possible values are

positive integers. Default is 40,000.

If the model contains stochastic

parameters from distributions with

infinite populations, the solver will

return error:

LSERR_STOC_SCENARIO_LIMIT

unless a sampling scheme is specified.

Sampling shemes can be specified either

parametrically (using

LS_IPARAM_STOC_NSAMPLE_STA

GE or

LS_IPARAM_STOC_NSAMPLE_SPA

R) or by calling LSloadSampleSizes()

function.

LS_IPARAM_STOC_SHARE_BEGSTAGE Environment,

Model

Stage beyond which node-models share

the same model structure. Possible

values are positive integers less than or

equal to number of stages in the model

or (-1) for solver decides. Default is -1.

LS_IPARAM_STOC_NODELP_PRELEVEL Environment,

Model

Presolve level solving node-models.

Possible values are bitmasks defined in

LS_IPARAM_LP_PRELEVEL.

Default is 0.

LS_DPARAM_STOC_TIME_LIM Environment,

Model

Time limit for stochastic solver.

Possible values are nonnegative real

numbers or -1.0 for solver decides.

Default is -1.0.

LS_DPARAM_STOC_RELOPTTOL Environment,

Model

Relative optimality tolerance (w.r.t

lower and upper bounds on the true

objective) to stop the solver. Possible

values are reals in (0,1) interval. Default

is 1e-7.

LS_DPARAM_STOC_ABSOPTTOL Environment,

Model

Absolute optimality tolerance (w.r.t

lower and upper bounds on the true

objective) to stop the solver. . Possible

values are reals in (0,1) interval. Default

is 1e-7.

124 CHAPTER 2

LS_IPARAM_STOC_VARCONTROL_METH

OD

Environment,

Model

Sampling method for variance

reduction. Possible values are:

LS_MONTECARLO (0)

LS_LATINSQUARE (1)

LS_ANTITHETIC (2)

LS_LATINSQUARE +

LS_ANTITHETIC (3)

LS_MONTECARLO implies the use of

standard sampling with no variance

reduction. LS_ANTITHETIC implies

the use of antithetic pairs of uniform

variates to control variance.

LS_LATINSQUARE implies the use of

basic Latin-hypercude sampling which

is known to be efficient for most

distributions. Default is

LS_LATINSQUARE.

LS_IPARAM_STOC_CORRELATION_TYPE Environment,

Model

Correlation type associated with the

correlation matrix. Possible values are:

LS_CORR_TARGET (-1)

LS_CORR_PEARSON (0)

LS_CORR_KENDALL (1)

LS_CORR_SPEARMAN (2)

Default is LS_CORR_PEARSON.

LS_IPARAM_STOC_WSBAS Environment,

Model

Warm start basis for wait-see model .

Possible values are:

LS_WSBAS_FREE = -1 Solver

decides (Default)

LS_WSBAS_NONE = 0, No warm-

starts

LS_WSBAS_AVRG = 1, Use the

optimal basis from Average (Expected

Value) model

LS_WSBAS_LAST = 2, Use the last

valid basis, typically the optimal basis

from the last scenario solved.

LS_IPARAM_STOC_ALD_OUTER_ITER_LI

M

Environment,

Model

Outer loop iteration limit for ALD.

Possible values are positive integers.

Default is 200.

LS_IPARAM_STOC_ALD_INNER_ITER_LI

M

Environment,

Model

Inner loop iteration limit for ALD.

Possible values are positive integers.

Default is 1000.

LS_DPARAM_STOC_ALD_DUAL_FEASTO

L

Environment,

Model

Dual feasibility tolerance for ALD.

Range for possible values is [1e-16,inf).

The default value is 0.0001.

FUNCTION DEFINITIONS 125

LS_DPARAM_STOC_ALD_PRIMAL_FEAST

OL

Environment,

Model

Primal feasibility tolerance for ALD.

Range for possible values is [1e-16,inf).

The default value is 0.0001.

LS_DPARAM_STOC_ALD_DUAL_STEPLE

N

Environment,

Model

Dual step length for ALD. Range for

possible values is [1e-16,inf). The

default value is 0.9.

LS_DPARAM_STOC_ALD_PRIMAL_STEPL

EN

Environment,

Model

Primal step length for ALD. Range for

possible values is [1e-16,inf). The

default value is 0.5.

LS_IPARAM_CORE_ORDER_BY_STAGE Environment,

Model

Flag to specify whether to order non-

temporal models or not. Default is 1.

LS_SPARAM_STOC_FMT_NODE_NAME Environment,

Model

Node name format. Reserved for

internal use.

LS_SPARAM_STOC_FMT_SCENARIO_NA

ME

Environment,

Model

Scenario name format. Reserved for

internal use.

LS_IPARAM_STOC_MAP_MPI2LP Environment,

Model

Flag to specify whether stochastic

parameters in MPI will be mapped as

LP matrix elements. Default is 0. It is

required to set this flag to 1 to use

Nested-Benders Method to solve linear

SPs.

Remark: This parameter is relevant only

when the underlying SP model is

formulated using the instruction-list

interface (MPI). When the parameter is

set to 1, the solver converts the model

into matrix format. For this conversion

to be successful, it is required that

expressions that involve stochastic

parameters are simple univariate linear

functions like (alpha*r+beta) where

alpha and beta are scalars and r is the

random parameter. See 'Using Nested-

Benders Method' section in Chapter 8.

LS_IPARAM_STOC_AUTOAGGR Environment,

Model

Flag to enable or disable

autoaggregation of stages. Default is 1.

126 CHAPTER 2

LS_IPARAM_STOC_BENCHMARK_SCEN Environment,

Model

Benchmark scenario to compare EVPI

and EVMU against. Possible values are:

LS_SCEN_ROOT (-1) Root

scenario, usually corresponds to the first

scenario.

LS_SCEN_AVRG (-2) Average

(expected value) scenario.

LS_SCEN_MEDIAN (-3) Median

scenario

LS_SCEN_USER (-4) User specified

scenario

LS_SCEN_NONE (-5) No

benchmark scenarios.

Default is LS_SCEN_AVRG.

LS_DPARAM_STOC_INFBND Environment,

Model
Value to truncate infinite bounds at non-

leaf nodes. Range for possible values is

(0,inf). Default is 1e+9.

LS_IPARAM_STOC_ADD_MPI Environment,

Model

Flag to use add-instructions mode when

building deteq. Default is 0.

LS_IPARAM_STOC_ELIM_FXVAR Environment,

Model

Flag to enable elimination of fixed

variables from deteq MPI. Default is 1.

LS_DPARAM_STOC_SBD_OBJCUTVAL Environment,

Model

RHS value of objective cut in SBD

master problem. . Range for possible

values is (-inf,inf). Default is -1e+30. If

this value is set to a finite value, then an

objective cut with specified RHS will be

added to the master problem.

LS_IPARAM_STOC_SBD_OBJCUTFLAG Environment,

Model

Flag to enable objective cut in SBD

master problem. Default is 1.

LS_IPARAM_STOC_SBD_NUMCANDID Environment,

Model

Maximum number of candidate

solutions to generate at SBD root .

Possible values are nonnegative integers

or -1 (solver decides). The default is -1.

LS_DPARAM_STOC_BIGM Environment,

Model

Big-M value for linearization and

penalty functions. Range for possible

values is (0,inf). Default is 1e+008.

FUNCTION DEFINITIONS 127

LS_IPARAM_STOC_NAMEDATA_LEVEL Environment,

Model

This value controls the creation and

loading of name-date in DETEQ and

SCENARIO models when working with

an SP model. Possible values are

positive integers. Default is 0, which

implies no name data will be generated

and the DETEQ and SCENARIO

models will have generic variable and

constraint names.

LS_IPARAM_STOC_SBD_MAXCUTS Environment,

Model

Max cuts to generate for master

problem. Possible values are non-

negative integers and -1. Default is -1,

which imples 'solver decides'.

LS_IPARAM_STOC_DEQOPT Environment,

Model

This specifies the method to use when

solving the deterministic equivalent.

Possible values are:

#LS_METHOD_FREE (0) Solver

decides.

#LS_METHOD_SBD (10) Use simple

Benders Decomposition.

The default is LS_METHOD_FREE (0)

LS_IPARAM_STOC_DS_SUBFORM Environment,

Model

This parameter specifies the type of

subproblem formulation to be used in

heuristic search.

Possible values are nonnegative integers

and -1.

0 - Perform heuristic search in the

original solution space.

1 - Perform heuristic search in the

space of discrete variables coupled with

optimizations in the linear space.

The default is -1 (solver decides).

LS_DPARAM_STOC_REL_PSTEPTOL Environment,

Model

This value specifies the primal-step

tolerance in decomposition based

algorithms. Possible values are in the

range of (0,1). The default is 1e-8.

LS_DPARAM_STOC_REL_DSTEPTOL Environment,

Model

This value specifies the dual-step

tolerance in decomposition based

algorithms. Possible values are in the

range of (0,1). The default is 1e-7.

128 CHAPTER 2

LS_IPARAM_STOC_NUM_THREADS Environment,

Model

This value specifies the number of

parallel threads to be used when solving

a stochastic programming model.

Possible values are positive integers.The

default is 0.

LS_IPARAM_STOC_DETEQ_NBLOCKS Environment,

Model

This value specifies the number of

implict blocks when exporting a

DETEQ model. Reserved for internal

use. Default is -1.

Sampling Parameters
LS_IPARAM_SAMP_NCM_ITERLIM Environment Iteration limit for NCM method.

Possible values are integers in [-1,inf).

The default is 100.

LS_DPARAM_SAMP_NCM_OPTTOL Environment Optimality tolerance for NCM method.

Possible values are (0,1).

Default is 1e-7.

LS_IPARAM_SAMP_NUM_THREADS Environment This value specifies the number of

parallel threads to be used when

sampling. Possible values are positive

integers. The default is 0.

LS_IPARAM_SAMP_RG_BUFFER_SIZE Environment This value specifies the buffer size for

random number generators in running in

parallel mode. Possible values are

nonnegative integers. The default is 0

(solver decides).

LS_IPARAM_SAMP_NCM_METHOD Environment Bitmask to enable available methods for

solving the nearest correlation matrix

(NCM) subproblem.

Possible values are :

Solver decides = 0

LS_NCM_STD = 1

LS_NCM_GA = 2

LS_NCM_ALTP = 4

LS_NCM_L2NORM_CONE = 8

LS_NCM_L2NORM_NLP = 16

Default is 5.

LS_DPARAM_SAMP_NCM_CUTOBJ Environment SP Objective cutoff (target) value to

stop the nearest correlation matrix

(NCM) subproblem.

Possible values are (-inf,inf). Default is

-1e+30 (for minimization type

problems).

FUNCTION DEFINITIONS 129

LS_IPARAM_SAMP_NCM_DSTORAGE Environment Level for using partial point in solver.

Possible values are nonnegative

integers.

Default is -1.

LS_DPARAM_SAMP_CDSINC Environment SP Correlation matrix diagonal shift

increment. Possible values are (-inf,inf).

Default is 1e-006.

LS_IPARAM_SAMP_SCALE Environment SP Flag to enable scaling of raw sample

data. Possible values are 0: don't scale,

1: scale. The default is 0.

BNP Parameters
LS_DPARAM_BNP_INFBND Environment,

Model

This parameter specifies the limited

bound for those unbounded continuous

variables.

Possible values are in (0, +Inf).

The default is 100000.

LS_IPARAM_BNP_LEVEL Environment,

Model

This parameter specifies the computing

level of BNP solver.

Possible values are integers in [0,4].

0 - A pure Lagrangean Relaxation

procedure.

1 - Best-First search branch and price

procedure.

2 - Worst-First search branch and

price procedure.

3 - Depth-First search branch and

price procedure.

4 - Breadth-First search branch and

price procedure.

The default is 1.

LS_IPARAM_BNP_PRINT_LEVEL Environment,

Model

This parameter speciefies the print level

for BNP solver.

Possible values are nonnegative

integers. The default is 2.

LS_DPARAM_BNP_BOX_SIZE

Environment,

Model

This parameter specifies the box size for

the Box-Step method used in BNP

solver.

Possible values are nonnegative real

numbers. The default is 0.0(no box).

LS_IPARAM_BNP_NUM_THREADS Environment,

Model

This parameter speciefies the number of

parallel threads used in BNP solver.

Possible values are positive integers.

The default is 1.

130 CHAPTER 2

LS_DPARAM_BNP_SUB_ITRLMT Environment,

Model

This parameter specifies iteration limit

when solving subproblems.

Possible values are -1 and nonnegative

real numbers. The default is -1.0.

LS_IPARAM_BNP_FIND_BLK Environment,

Model

This parameter specifies the method for

finding block structure in BNP solver.

Possible values are 1, 2, and 3.

1 - Use heuristic #1 to find block

structure.

2 - Use heuristic #2 to find block

structure.

3 - Read user defined block structure

from a .tim file.

The default is 1.

LS_IPARAM_BNP_PRELEVEL Environment,

Model

This parameter specifies the presolve

level for BNP solver. Possible values

are nonnegative integers. The default is

0 (no presolve).

LS_DPARAM_BNP_COL_LMT Environment,

Model

This parameter specifies the limit on the

number of generated columns in BNP

solver. Possible values are -1 and

nonnegative real numbers. The default

is -1.0 (no limit).

LS_DPARAM_BNP_TIMLIM Environment,

Model

This parameter specifies time limit for

BNP solver. Possible values are -1 and

nonnegative real numbers. The default

is -1.0 (no limit).

LS_DPARAM_BNP_ITRLIM_SIM Environment,

Model

This parameter specifeis the limit on

simplex iterations in BNP solver.

Possible values are -1 and nonnegative

real numbers. The default is -1.0 (no

limit).

LS_DPARAM_BNP_ITRLIM_IPM Environment,

Model

This parameter specifies the IPM limit

in BNP solver. Possible values are -1

and nonnegative real numbers. The

default is -1.0 (no limit).

LS_IPARAM_BNP_BRANCH_LIMIT Environment,

Model

This parameter specifies the limit on the

total number of branches in BNP solver.

Possible values are -1 and nonnegative

integers. The default is -1 (no limit).

LS_DPARAM_BNP_ITRLIM Environment,

Model

This parameter specifies the iteration

limit in BNP solver. Possible values are

-1 and nonnegative real numbers. The

default is -1.0 (no limit).

FUNCTION DEFINITIONS 131

GA Parameters
LS_DPARAM_GA_CXOVER_PROB Environment,

Model

This value specifies the probability of

crossover for continuous variables.

Possible values are in [0,1]. The default

is 0.8.

LS_DPARAM_GA_XOVER_SPREAD Environment,

Model

This value specifies the spreading factor

for crossover. Possible values are

positive integers. Higher values imply

lesser spread. The default is 10.

LS_DPARAM_GA_IXOVER_PROB Environment,

Model

This values specifies the probability of

crossover for integer variables. Possible

values are in [0,1]. The default is 0.8.

LS_DPARAM_GA_CMUTAT_PROB Environment,

Model

This value specifies the probability of

mutation for continuous variables.

Possible values are in [0,1]. The default

is 0.05.

LS_DPARAM_GA_MUTAT_SPREAD Environment,

Model

This value specifies the spreading factor

for mutation. Possible values are

positive integers. Higher values imply

lesser spread. The default is 20.

LS_DPARAM_GA_IMUTAT_PROB Environment,

Model

This values specifies the probability of

mutation for integer variables. Possible

values are in [0,1]. The default is 0.1.

LS_DPARAM_GA_TOL_ZERO Environment,

Model

This value specifies the zero tolerance.

Possible values are in (0,1). The default

is 1e-14

LS_DPARAM_GA_TOL_PFEAS Environment,

Model

This values specifies the primal

feasibility tolerance. Possible values are

in (0,1). The default is 0.0000001.

LS_DPARAM_GA_INF Environment,

Model

This values specifies the numeric

infinity. Possible values are positive real

numbers in (1e10, 1e30). The default is

1e15.

LS_DPARAM_GA_INFBND Environment,

Model

This values specifies the infinity

threshold for finite bounds. Possible

values are in (1e-6,1e12). The default is

100000000.

LS_DPARAM_GA_BLXA Environment,

Model

This values specifies the 'Alpha'

parameter in Blending Alpha Crossover

method. Possible values are in (0,+inf).

The default is 5.

132 CHAPTER 2

LS_DPARAM_GA_BLXB Environment,

Model

This values specifies the 'Beta'

parameter in Blending Alpha-Beta

Crossover method. Possible values are

in (0,+inf). The default is 5.

LS_IPARAM_GA_CXOVER_METHOD Environment,

Model

This values specifies the method of

crossover for continuous variables.

Possible values are:

-1 Solver decides

LS_GA_CROSS_BLXA : Blending

Alpha Crossover

LS_GA_CROSS_BLXAB : Blending

Alpha-Beta Crossover

LS_GA_CROSS_SBX : Simulated

(Binary) Crossover

The default is: -1.

LS_IPARAM_GA_IXOVER_METHOD Environment,

Model

This values specifies the method of

crossover for integer variables. Possible

values are:

-1 Solve decides

LS_GA_CROSS_TWOPOINT Two-

point Binary Crossover.

LS_GA_CROSS_ONEPOINT One-

point Binary Crossover.

The default is: -1

LS_IPARAM_GA_CMUTAT_METHOD Environment,

Model

This values specifies the method of

mutation for continuous variables.

Reserved for future use.

The default is -1.

LS_IPARAM_GA_IMUTAT_METHOD Environment,

Model

This values specifies the method of

mutation for integer variables. Reserved

for future use. The default is -1.

LS_IPARAM_GA_SEED Environment,

Model

This values specifies the random seed.

Possible values are nonnegative

integers. The default value is 1031.

LS_IPARAM_GA_NGEN Environment,

Model

This values specifies the number of

generations. Possible values are positive

integers. The default is 500.

LS_IPARAM_GA_POPSIZE Environment,

Model

This values specifies the population

size. Possible values are positive

integers. The default is 200.

FUNCTION DEFINITIONS 133

LS_IPARAM_GA_FILEOUT Environment,

Model

This values specifies the print level to

log files.

Possible values are positive integers.

The default is 0.

LS_IPARAM_GA_PRINTLEVEL

Environment,

Model

This values specifies the print level.

Possible values are positive integers.

The default is 1.

LS_IPARAM_GA_INJECT_OPT Environment,

Model
This values specifies the flag to specify

whether an optimum individual will be

injected. Possible values are:

0 - do not inject an optimum

individual

1 - inject an optimum individual

The default is 0.

LS_IPARAM_GA_NUM_THREADS Environment,

Model

This value specifies the number of

parallel threads to be used when solving

a model with genetic algorithm.

Possible values are positive integers.

The default is 1.

LS_IPARAM_GA_OBJDIR Environment,

Model

This values specifies the objective

function sense. Possible values are

LS_MIN and LS_MAX. The default is

1.

LS_DPARAM_GA_OBJSTOP Environment,

Model

This values specifies the target objective

function value. Possible values are real

numbers in (-1e30,+1e30). The default

is +1e30.

LS_DPARAM_GA_MIGRATE_PROB Environment,

Model

This values specifies the probability of

migration of individuals to the next

generation. Possible values are in [0,1].

The default is 0.0

LS_IPARAM_GA_SSPACE Environment,

Model

This values specifies the search space or

search mode. Reserved for future use.

The default is 0.

Available Information
These macros refer to available information about the model, solution or sample associated with the

specified object.

134 CHAPTER 2

General Model and Solution Information
LS_IINFO_METHOD Model Optimization method used.

LS_IINFO_NUM_CONES Model Number of cones.

LS_IINFO_NUM_CONE_NONZ Model Number of nonzeros in the conic

structure.

LS_IINFO_LEN_CONENAMES Model Length of cone names.

LS_DINFO_INST_VAL_MIN_COEF Model Minimum coefficient in instruction list.

LS_IINFO_INST_VARNDX_MIN_COEF Model Variable index of the minimum

coefficient.

LS_IINFO_INST_CONNDX_MIN_COEF Model Constraint index of the minimum

coefficient.

LS_DINFO_INST_VAL_MAX_COEF Model Maximum coefficient in instruction list.

LS_IINFO_INST_VARNDX_MAX_COEF Model Variable index of the maximum

coefficient.

LS_IINFO_INST_VARNDX_MAX_COEF Model Variable index of the maximum

coefficient.

LS_IINFO_INST_CONNDX_MAX_COEF Model Constraint index of the maximum

coefficient.

LS_IINFO_NUM_CALL_FUN Model Number of function evaluations.

LS_IINFO_NUM_CALL_DEV Model Number of first-derivative (Jacobian)

evaluations.

LS_IINFO_NUM_CALL_HES Model Number of second-derivative (Hessian)

evaluations.

LS_IINFO_ELAPSED_TIME Model Total CPU time elapsed solving the

continuous problem.

LS_IINFO_MODEL_STATUS Model The status of given model based on the

result of last optimization.

LS_IINFO_PRIMAL_STATUS Model The status of the primal model based on

the result of the last optimization.

LS_IINFO_IPM_STATUS Model The status of the interior-point solution

based on the barrier solver.

LS_IINFO_DUAL_STATUS Model Dual solution status.

LS_IINFO_BASIC_STATUS Model Basic solution status.

LS_IINFO_SIM_ITER Model Number of simplex iterations performed

when solving a continuous problem.

FUNCTION DEFINITIONS 135

LS_IINFO_BAR_ITER Model Number of barrier iterations performed

when solving a continuous problem.

LS_IINFO_NLP_ITER Model Number of nonlinear iterations

performed when solving a continuous

problem.

LS_DINFO_POBJ Model Primal objective value of a continuous

problem.

LS_DINFO_DOBJ Model Dual objective value of a continuous

problem.

LS_DINFO_PINFEAS Model Maximum primal infeasibility.

LS_DINFO_DINFEAS Model Maximum dual infeasibility.

LS_DINFO_MSW_POBJ Model Value of the incumbent objective value

when using the multistart solver.

LS_IINFO_MSW_PASS Model Number of multistart passes.

LS_IINFO_MSW_NSOL Model Number of distinct solutions found

when using the multistart solver.

LS_DINFO_IPM_POBJ Model Primal objective value w.r.t the

interior-point solution.

LS_DINFO_IPM_DOBJ Model Dual objective value w.r.t the interior-

point solution.

LS_DINFO_IPM_PINFEAS Model Primal infeasibility w.r.t the interior-

point solution.

LS_DINFO_IPM_DINFEAS Model Dual infeasibility w.r.t the interior-point

solution.

LS_IINFO_NUM_CONS Model Number of constraints in the model.

LS_IINFO_NUM_VARS Model Number of variables in the model.

LS_IINFO_NUM_NONZ Model Number of nonzeros in the linear

portion of the model.

LS_IINFO_NUM_NLP_CONS Model Number of NLP constraints in the

model.

LS_IINFO_NUM_NLP_VARS Model Number of NLP variables in the model.

LS_IINFO_NUM_QC_NONZ Model Number of nonzeros in the quadratic

matrices.

LS_IINFO_NUM_NLP_NONZ Model Number of nonzeros in the nonlinear

portion of the model.

LS_IINFO_NUM_NLPOBJ_NONZ Model Number of nonzeros in the nonlinear

objectives in the model.

136 CHAPTER 2

LS_IINFO_NUM_RDCONS Model Number of constraints in the presolved

(reduced) model.

LS_IINFO_NUM_RDVARS Model Number of variables in the presolved

(reduced) model.

LS_IINFO_NUM_RDNONZ Model Number of nonzeros in the linear

portion of the presolved (reduced)

model.

LS_IINFO_NUM_RDINT Model Number of integer (including binary)

variables in the presolved (reduced)

model.

LS_IINFO_LEN_VARNAMES Model Cumulative size of the variable names

in the model.

LS_IINFO_LEN_CONNAMES Model Cumulative size of the constraint names

in the model.

LS_IINFO_NUM_BIN Model Number of binary variables in the

model.

LS_IINFO_NUM_INT Model Number of general integer variables in

the model.

LS_IINFO_NUM_CONT Model Number of continuous variables in the

model.

LS_IINFO_PRE_NUM_RED Model Number of reductions in pre-solve.

LS_IINFO_PRE_TYPE_RED Model Type of last reduction.

LS_IINFO_PRE_NUM_RDCONS Model Number of constraints in the pre-solved

model.

LS_IINFO_PRE_NUM_RDVARS Model Number of variables in the pre-solved

model.

LS_IINFO_PRE_NUM_RDNONZ Model Number of nonzeros in the pre-solved

model.

LS_IINFO_PRE_NUM_RDINT Model Number of integer variables in the pre-

solved model.

LS_IINFO_NUM_SUF_ROWS Model Number of sufficient rows in IIS.

LS_IINFO_NUM_IIS_ROWS Model Number of necessary rows in IIS.

LS_IINFO_NUM_SUF_BNDS Model Number of sufficient variable bounds in

IIS.

LS_IINFO_NUM_IIS_BNDS Model Number of necessary variable bounds in

IIS.

LS_IINFO_NUM_SUF_COLS: Model Number of sufficient columns in IUS.

FUNCTION DEFINITIONS 137

LS_IINFO_NUM_IUS_COLS: Model Number of necessary columns in IUS.

LS_IINFO_ERR_OPTIM Model The error code produced at last

optimization session.

LS_DINFO_INST_VAL_MIN_COEF Model Values of the minimum matrix

coefficient in the model.

LS_IINFO_INST_VARNDX_MIN_COEF Model Variable index of the minimum matrix

coefficient in the model.

LS_IINFO_INST_CONNDX_MIN_COEF Model Constraint index of the minimum matrix

coefficient in the model.

LS_DINFO_INST_VAL_MAX_COEF Model Values of the maximum matrix

coefficient in the model.

LS_IINFO_INST_VARNDX_MAX_COEF Model Variable index of the maximum matrix

coefficient in the model.

LS_IINFO_INST_CONNDX_MAX_COEF Model Constraint index of the maximum

matrix coefficient in the model.

LS_IINFO_NUM_VARS_CARD Model Number of cardinality sets.

LS_IINFO_NUM_VARS_SOS1 Model Number of type-1 SOS variables.

LS_IINFO_NUM_VARS_SOS2 Model Number of type-2 SOS variables.

LS_IINFO_NUM_VARS_SOS3 Model Number of type-3 SOS variables.

LS_IINFO_NUM_VARS_SCONT Model Number of semi-continous variables.

LS_IINFO_NUM_CONS_L Model Number of ‘less-than-or-equal-to’

constraints.

LS_IINFO_NUM_CONS_E Model Number of ‘equality’ type constraints.

LS_IINFO_NUM_CONS_G Model Number of ‘greater-than-or-equal-to’

type constraints.

LS_IINFO_NUM_CONS_R Model Number of ranged constraints.

LS_IINFO_NUM_CONS_N Model Number of neutral (objective)

constraints.

LS_IINFO_NUM_VARS_LB Model Number of variables with only a lower

bound.

LS_IINFO_NUM_VARS_UB Model Number of variables with only an upper

bound.

LS_IINFO_NUM_VARS_LUB Model Number of variables with both lower

and upper bounds.

LS_IINFO_NUM_VARS_FR Model Number of free variables.

LS_IINFO_NUM_VARS_FX Model Number of fixed variables.

138 CHAPTER 2

LS_IINFO_MODEL_STATUS Model The status of given model based on the

result of last optimization.

LS_IINFO_PRIMAL_STATUS Model The status of the primal solution. If the

model is infeasible or unbounded, there

may be no solution available. In such

cases, solution status will not be

available. A typical case is when the

infeasibility or unboundedness is

determined by the presolver.

LS_IINFO_NUM_POSDS Model Number of POSD blocks in the SDP

model.

LS_DINFO_ACONDEST Model Approximate condition-estimate of the

basis matrix.

LS_DINFO_BCONDEST Model Reserved for internal use.

LS_IINFO_LPTOOL Model Reserved for internal use.

LS_IINFO_NUM_SUF_INTS Model Number of sufficient integer restrictions

in IIS.

LS_IINFO_NUM_IIS_INTS Model Number of necessary integer

restrictions in IIS.

Integer Optimization Information
LS_DINFO_MIP_OBJ Model MIP objective value.

LS_DINFO_MIP_BESTBOUND Model Best bound on MIP objective.

LS_DINFO_MIP_TOT_TIME Model Total CPU time spent for solving a MIP.

LS_DINFO_MIP_OPT_TIME Model CPU time spent for optimizing the MIP.

LS_DINFO_MIP_HEU_TIME Model CPU time spent in MIP presolver and

other heuristics.

LS_IINFO_MIP_LPCOUNT Model Number of LPs solved for solving a

MIP.

LS_IINFO_MIP_BRANCHCOUNT Model Number of branches generated for

solving a MIP.

LS_IINFO_MIP_ACTIVENODES Model Number of remaining nodes to be

explored.

FUNCTION DEFINITIONS 139

LS_IINFO_MIP_LTYPE Model Step at which the last integer solution

was found during the optimization of a

MIP. Possible values are:

10: backward strong branching or tree

reordering

9: simple enumerator

8: advanced branching

7: advanced heuristics

6: after adding cuts

5: on the top

4: simple rounding heuristic

3: strong branching

2: knapsack solver or enumerator

1: normal branching

LS_IINFO_MIP_AOPTTIMETOSTOP Model Time to approximate optimality.

LS_IINFO_MIP_STATUS Model Status of MIP solution.

LS_IINFO_MIP_SIM_ITER Model Number of simplex iterations performed

when solving a MIP.

LS_IINFO_MIP_BAR_ITER Model Number of barrier iterations performed

when solving a MIP.

LS_IINFO_MIP_NLP_ITER Model Number of nonlinear iterations

performed for solving a MIP.

LS_IINFO_MIP_NUM_TOTAL_CUTS Model Number of total cuts generated.

LS_IINFO_MIP_GUB_COVER_CUTS Model Number of GUB cover cuts generated.

LS_IINFO_MIP_FLOW_COVER_CUTS Model Number of flow cover cuts generated.

LS_IINFO_MIP_LIFT_CUTS Model Number of lifted knapsack covers

generated.

LS_IINFO_MIP_PLAN_LOC_CUTS Model Number of plant location cuts

generated.

LS_IINFO_MIP_DISAGG_CUTS Model Number of disaggregation cuts

generated.

LS_IINFO_MIP_KNAPSUR_COVER_CUTS Model Number of surrogate knapsack covers

generated.

LS_IINFO_MIP_LATTICE_CUTS Model Number of lattice cuts generated.

LS_IINFO_MIP_GOMORY_CUTS Model Number of Gomory cuts generated.

140 CHAPTER 2

LS_IINFO_MIP_COEF_REDC_CUTS Model Number of coefficient reduction cuts

generated.

LS_IINFO_MIP_GCD_CUTS Model Number of GCD cuts generated.

LS_IINFO_MIP_OBJ_CU Model Number of objective cuts generated.

LS_IINFO_MIP_BASIS_CUTS Model Number of basis cuts generated.

LS_IINFO_MIP_CARDGUB_CUTS Model Number of cardinality/GUB cuts

generated.

LS_IINFO_MIP_CONTRA_CUTS Model Number of contra cuts generated.

LS_IINFO_MIP_CLIQUE_CUTS Model Number of clique cuts generated.

LS_IINFO_MIP_GUB_CONS Model Number of GUB constraints in the

formulation.

LS_IINFO_MIP_GLB_CONS Model Number of GLB constraints in the

formulation.

LS_IINFO_MIP_PLANTLOC_CONS Model Number of plant location constraints in

the formulation.

LS_IINFO_MIP_DISAGG_CONS Model Number of disaggregation constraints in

the formulation.

LS_IINFO_MIP_SB_CONS Model Number of single bound constraints in

the formulation.

LS_IINFO_MIP_IKNAP_CONS Model Number of pure integer knapsack

constraints in the formulation.

LS_IINFO_MIP_KNAP_CONS Model Number of knapsack constraints in the

formulation.

LS_IINFO_MIP_NLP_CONS Model Number of nonlinear constraints in the

formulation.

LS_IINFO_MIP_CONT_CONS Model Number of objective constraints in the

formulation.

LS_DINFO_MIP_TOT_TIME Model Total MIP time including model I/O,

optimization, heuristics.

LS_DINFO_MIP_OPT_TIME Model Total MIP optimization time.

LS_DINFO_MIP_HEU_TIME Model Total MIP heuristic time.

LS_IINFO_MIP_SOLSTATUS_LAST_BRAN

CH

Model Solution status of the relaxation at the

last branch.

LS_DINFO_MIP_SOLOBJVAL_LAST_BRAN

CH

Model Objective value of the relaxation at the

last branch.

LS_IINFO_MIP_HEU_LEVEL Model The current level for MIP heuristic

engine.

FUNCTION DEFINITIONS 141

LS_DINFO_MIP_PFEAS Model Primal infeasibility of the resident

integer solution.

LS_DINFO_MIP_INTPFEAS Model Integer infeasibility of the resident

integer solution.

LS_IINFO_MIP_THREADS Model The number of parallel threads used in

MIP solver

LS_SINFO_MIP_THREAD_LOAD Model The string containing the thread

workload in the last LSsolveMIP call.

LS_IINFO_MIP_WHERE_IN_CODE Model The location macro specifying where

the program control is in LSsolveMIP.

LS_DINFO_MIP_ABSGAP Model Absolute gap at current MIP solution.

Also see:

LS_DPARAM_MIP_ABSOPTTOL.

LS_DINFO_MIP_RELGAP Model Relative gap at current MIP solution.

Also see:

LS_DPARAM_MIP_RELOPTTOL.

LS_IINFO_MIP_SOFTKNAP_CUTS Model Number of soft-knapsack cuts used.

142 CHAPTER 2

Global Optimization Information
LS_DINFO_GOP_OBJ Model Objective value of the global optimal

solution of a GOP.

LS_IINFO_GOP_SIM_ITER Model Number of simplex iterations performed

for solving a GOP.

LS_IINFO_GOP_BAR_ITER Model Number of barrier iterations performed

for solving a GOP.

LS_IINFO_GOP_NLP_ITER Model Number of NLP iterations performed

for solving a GOP.

LS_DINFO_GOP_BESTBOUND Model Best bound on the objective value of a

GOP.

LS_IINFO_GOP_STATUS Model Solution status of a GOP.

LS_IINFO_GOP_LPCOUNT Model Number of LPs solved for solving a

GOP.

LS_IINFO_GOP_NLPCOUNT Model Number of NLPs solved for solving a

GOP.

LS_IINFO_GOP_MIPCOUNT Model Number of MIPs solved for solving a

GOP.

LS_IINFO_GOP_NEWSOL Model Whether a new GOP solution has been

found or not.

LS_IINFO_GOP_BOX Model Number of explored boxes.

LS_IINFO_GOP_BBITER Model Number of iterations performed during

a major GOP iteration.

LS_IINFO_GOP_SUBITER Model Number of iterations performed during

a minor GOP iteration.

LS_IINFO_GOP_ACTIVEBOXES Model Number of active boxes at current state

for solving a GOP.

LS_IINFO_GOP_TOT_TIME Model Total CPU time spent for solving a

GOP.

LS_IINFO_GOP_MAXDEPTH Model Maximum depth of stack reached to

store active boxes.

LS_IINFO_GOP_MIPBRANCH Model Number of branches created for solving

a GOP.

LS_DINFO_GOP_TOT_TIME Model The total CPU time in GOP solver.

LS_IINFO_GOP_THREADS Model The number of parallel threads used in

GOP solver.

FUNCTION DEFINITIONS 143

LS_SINFO_GOP_THREAD_LOAD Model The string containing the thread

workload in the last LSsolveGOP call.

LS_DINFO_GOP_ABSGAP Model Absolute gap at current GOP solution.

Also see:

LS_DPARAM_GOP_ABSOPTTOL.

LS_DINFO_GOP_RELGAP Model Relative gap at current GOP solution.

Also see:

LS_DPARAM_GOP_ABSOPTTOL.

144 CHAPTER 2

Model Analysis Information
LS_IINFO_IIS_SIM_ITER Model Number of simplex iterations in IIS

search.

LS_IINFO_IIS_BAR_ITER Model Number of barrier iterations in IIS

search.

LS_IINFO_IIS_TOT_TIME Model Total CPU time spent for IIS search.

LS_IINFO_IIS_ACT_NODE Model Number of active sub problems

remaining to complete the IIS search.

LS_IINFO_IIS_LPCOUNT Model Number of LPs solved during IIS

search.

LS_IINFO_IIS_NLPCOUNT Model Number of NLPs solved during IIS

search.

LS_IINFO_IIS_MIPCOUNT Model Number of MIPs solved during IIS

search.

LS_IINFO_IUS_BAR_ITER Model Number of barrier iterations in IUS

search.

LS_IINFO_IUS_SIM_ITER Model Number of simplex iterations in IUS

search.

LS_IINFO_IUS_TOT_TIME Model Total CPU time spent for IIS search.

LS_IINFO_IUS_ACT_NODE Model Number of active sub problems

remaining to complete the IUS search.

LS_IINFO_IUS_LPCOUNT Model Number of LPs solved during IUS

search.

LS_IINFO_IUS_NLPCOUNT Model Number of NLPs solved during IUS

search.

LS_IINFO_IUS_MIPCOUNT Model Number of MIPs solved during IUS

search.

LS_IINFO_IIS_THREADS Model The number of parallel threads used in

IIS finder. Reserved for future use.

LS_SINFO_IIS_THREAD_LOAD Model The string containing the thread

workload in the last LSfindIIS call.

Reserved for future use.

LS_IINFO_IUS_THREADS Model The number of parallel threads used in

IUS finder. Reserved for future use.

LS_SINFO_IUS_THREAD_LOAD Model The string containing the thread

workload in the last LSfindIUS call.

Reserved for future use.

FUNCTION DEFINITIONS 145

Stochastic Information
LS_DINFO_STOC_EVOBJ Model Expected value of the SP objective

function, also called the Here-and-Now

(HN) objective.

LS_DINFO_STOC_EVWS Model Expected value of the Wait-and-See

(WS) model, which is a relaxation to the

SP obtained by dropping the

nonanticipativity restrictions.

LS_DINFO_STOC_EVPI Model Expected value of perfect information,

which is defined as the difference

between the expected value of the Wait-

and-See objective value and the Here-

and-Now objective function value.

LS_DINFO_STOC_EVAVR Model Optimal objective value of the restricted

WS model where all stage-0 decisions

are fixed at their respective values from

the optimal solution of the Average-

Model. The Average Model is the

deterministic version of the original

model constructed by replacing all

random parameters with their expected

values.

LS_DINFO_STOC_EVMU Model Expected value of modeling

uncertainity, which is defined as the

difference between the the Here-and-

Now objective and the optimal value of

the restricted-Wait-See objective. This

value is also called the ‘Value of

Stochastic Solution’.

LS_DINFO_STOC_PINFEAS Model Primal infeasibility of the first stage

solution.

LS_DINFO_STOC_DINFEAS Model Dual infeasibility of the first stage

solution.

LS_DINFO_STOC_RELOPT_GAP Model Relative optimality gap at current

solution.

LS_DINFO_STOC_ABSOPT_GAP Model Absolute optimality gap at current

solution.

LS_IINFO_STOC_SIM_ITER Model Number of simplex iterations

performed.

LS_IINFO_STOC_BAR_ITER Model Number of barrier iterations performed.

LS_IINFO_STOC_NLP_ITER Model Number of nonlinear iterations

performed.

146 CHAPTER 2

LS_IINFO_NUM_STOCPAR_RHS Model Number of stochastic parameters in the

RHS.

LS_IINFO_NUM_STOCPAR_OBJ Model Number of stochastic parameters in the

objective function.

LS_IINFO_NUM_STOCPAR_LB Model Number of stochastic parameters in the

lower bound.

LS_IINFO_NUM_STOCPAR_UB Model Number of stochastic parameters in the

upper bound.

LS_IINFO_NUM_STOCPAR_INSTR_OBJS Model Number of stochastic parameters in the

instructions constituting the objective.

LS_IINFO_NUM_STOCPAR_INSTR_CONS Model Number of stochastic parameters in the

instructions constituting the constraints.

LS_IINFO_NUM_STOCPAR_INSTR Model Total number of stochastic parameters

in the instructions constituting the

constraints and the objective.

LS_IINFO_NUM_STOCPAR_AIJ Model Number of stochastic parameters in the

LP matrix.

LS_DINFO_STOC_TOTAL_TIME Model Total time elapsed in seconds to solve

the model

LS_IINFO_STOC_STATUS Model Status of the SP model.

LS_IINFO_STOC_STAGE_BY_NODE Model Stage of the specified node.

LS_IINFO_STOC_NUM_SCENARIOS Model Number of scenarios (integer) in the

scenario tree.

LS_DINFO_STOC_NUM_SCENARIOS Model Number of scenarios (double) in the

scenario tree.

LS_IINFO_STOC_NUM_STAGES Model Number of stages in the model.

LS_IINFO_STOC_NUM_NODES Model Number of nodes in the scenario tree

(integer).

LS_DINFO_STOC_NUM_NODES Model Number of nodes in the scenario tree

(double).

LS_IINFO_STOC_NUM_NODES_STAGE Model Number of nodes that belong to

specified stage in the scenario tree

(integer).

LS_DINFO_STOC_NUM_NODES_STAGE Model Number of nodes that belong to

specified stage in the scenario tree

(double).

LS_IINFO_STOC_NUM_NODE_MODELS Model Number of node-models created or to be

created.

FUNCTION DEFINITIONS 147

LS_IINFO_STOC_NUM_COLS_BEFORE_N

ODE

Model Column offset in DEQ of the first

variable associated with the specified

node.

LS_IINFO_STOC_NUM_ROWS_BEFORE_N

ODE

Model Row offset in DEQ of the first variable

associated with the specified node.

LS_IINFO_STOC_NUM_COLS_DETEQI Model Total number of columns in the implicit

DEQ (integer).

LS_DINFO_STOC_NUM_COLS_DETEQI Model Total number of columns in the implicit

DEQ (double).

LS_IINFO_STOC_NUM_ROWS_DETEQI Model Total number of rows in the implicit

DEQ (integer).

LS_DINFO_STOC_NUM_ROWS_DETEQI Model Total number of rows in the implicit

DEQ (double).

LS_IINFO_STOC_NUM_COLS_DETEQE Model Total number of columns in the explicit

DEQ (integer).

LS_DINFO_STOC_NUM_COLS_DETEQE Model Total number of columns in the explicit

DEQ (double).

LS_IINFO_STOC_NUM_ROWS_DETEQE Model Total number of rows in the explicit

DEQ (integer).

LS_DINFO_STOC_NUM_ROWS_DETEQE Model Total number of rows in the explicit

DEQ (double).

LS_IINFO_STOC_NUM_COLS_NAC Model Total number of columns in non-

anticipativity block.

LS_IINFO_STOC_NUM_ROWS_NAC Model Total number of rows in non-

anticipativity block.

LS_IINFO_STOC_NUM_COLS_CORE Model Total number of columns in core model.

LS_IINFO_STOC_NUM_ROWS_CORE Model Total number of rows in core model.

LS_IINFO_STOC_NUM_COLS_STAGE Model Total number of columns in core model

in the specified stage.

LS_IINFO_STOC_NUM_ROWS_STAGE Model Total number of rows in core model in

the specified stage.

LS_IINFO_STOC_NUM_BENDERS_FCUTS Model Total number of feasibility cuts

generated during NBD iterations.

LS_IINFO_STOC_NUM_BENDERS_OCUTS Model Total number of optimality cuts

generated during NBD iterations.

LS_IINFO_DIST_TYPE Model Distribution type of the sample

LS_IINFO_SAMP_SIZE Model Sample size.

148 CHAPTER 2

LS_DINFO_SAMP_MEAN Model Sample mean.

LS_DINFO_SAMP_STD Model Sample standard deviation.

LS_DINFO_SAMP_SKEWNESS Model Sample skewness.

LS_DINFO_SAMP_KURTOSIS Model Sample kurtosis.

LS_IINFO_STOC_NUM_QCP_CONS_DETE

QE

Model Total number of quadratic constraints in

the explicit deterministic equivalent.

LS_IINFO_STOC_NUM_CONT_CONS_DET

EQE

Model Total number of continuous constraints

in the explicit deterministic equivalent.

LS_IINFO_STOC_NUM_INT_CONS_DETEQ

E

Model Total number of constraints with

general integer variables in the explicit

deterministic equivalent.

LS_IINFO_STOC_NUM_BIN_CONS_DETEQ

E

Model Total number of constraints with binary

variables in the explicit deterministic

equivalent.

LS_IINFO_STOC_NUM_QCP_VARS_DETE

QE
Model Total number of quadratic variables in

the explicit deterministic equivalent.

LS_IINFO_STOC_NUM_NONZ_DETEQE Model Total number of nonzeros in the explicit

deterministic equivalent.

LS_IINFO_STOC_NUM_BIN_DETEQE Model Total number of binaries in the explicit

deterministic equivalent.

LS_IINFO_STOC_NUM_INT_DETEQE Model Total number of general integer

variables in the explicit deterministic

equivalent.

LS_IINFO_STOC_NUM_CONT_DETEQE Model Total number of continuous variables in

the explicit deterministic equivalent.

LS_IINFO_STOC_NUM_QC_NONZ_DETEQ

E

Model Total number of quadratic nonzeros in

the explicit deterministic equivalent.

LS_IINFO_STOC_NUM_NLP_NONZ_DETE

QE

Model Total number of nonlinear nonzeros in

the constraints of explicit deterministic

equivalent.

LS_IINFO_STOC_NUM_NLPOBJ_NONZ_DE

TEQE

Model Total number of nonlinear nonzeros in

the objective function of explicit

deterministic equivalent.

LS_IINFO_STOC_NUM_QCP_CONS_DETE

QI
Model Total number of quadratic constraints in

the implicit deterministic equivalent.

LS_IINFO_STOC_NUM_CONT_CONS_DET

EQI
Model Total number of continuous constraints

in the implicit deterministic equivalent.

FUNCTION DEFINITIONS 149

LS_IINFO_STOC_NUM_INT_CONS_DETEQ

I

Model Total number of constraints with

general integer variables in the implicit

deterministic equivalent.

LS_IINFO_STOC_NUM_BIN_CONS_DETEQ

I

Model Total number of constraints with binary

variables in the implicit deterministic

equivalent.

LS_IINFO_STOC_NUM_QCP_VARS_DETE

QI
Model Total number of quadratic variables in

the implicit deterministic equivalent.

LS_IINFO_STOC_NUM_NONZ_DETEQI

Model Total number of nonzeros in the implicit

deterministic equivalent.

LS_IINFO_STOC_NUM_BIN_DETEQI

Model Total number of binaries in the implicit

deterministic equivalent.

LS_IINFO_STOC_NUM_INT_DETEQI Model Total number of general integer

variables in the implicit deterministic

equivalent.

LS_IINFO_STOC_NUM_CONT_DETEQI Model Total number of continuous variables in

the implicit deterministic equivalent.

LS_IINFO_STOC_NUM_QC_NONZ_DETEQI Model Total number of quadratic nonzeros in

the implicit deterministic equivalent.

LS_IINFO_STOC_NUM_NLP_NONZ_DETE

QI

Model Total number of nonlinear nonzeros in

the constraints of implicit deterministic

equivalent.

LS_IINFO_STOC_NUM_NLPOBJ_NONZ_DE

TEQI

Model Total number of nonlinear nonzeros in

the objective function of implicit

deterministic equivalent.

LS_IINFO_STOC_NUM_EVENTS_BLOCK Model Total number of block events.

LS_IINFO_STOC_NUM_EVENTS_DISCRET

E

Model Total number of independent events

with a discrete distribution.

LS_IINFO_STOC_NUM_EVENTS_PARAME

TRIC

Model Total number of independent events

with a parametric distribution.

LS_IINFO_STOC_NUM_EVENTS_SCENARI

OS

Model Total number of events loaded explicitly

as a scenario.

LS_IINFO_STOC_PARENT_NODE Model Index of a node's parent.

LS_IINFO_STOC_ELDEST_CHILD_NODE Model Index of a node's eldest child.

LS_IINFO_STOC_NUM_CHILD_NODES Model Total number of childs a node has.

LS_IINFO_INFORUNB_SCEN_IDX Model Index of the infeasible or unbounded

scenario.

LS_IINFO_DIST_NARG Model Number of arguments of a distribution

sample.

150 CHAPTER 2

LS_IINFO_SAMP_VARCONTROL_METHO

D
Model Variance reduction/control method used

in generating the sample.

LS_IINFO_STOC_NUM_NLP_VARS_DETE

QE
Model Total number of nonlinear variables in

the explicit deterministic equivalent.

LS_IINFO_STOC_NUM_NLP_CONS_DETE

QE
Model Total number of nonlinear constraints in

the explicit deterministic equivalent.

LS_DINFO_STOC_EVOBJ_LB Model Best lower bound on expected value of

the objective function.

LS_DINFO_STOC_EVOBJ_UB Model Best upper bound on expected value of

the objective function.

LS_DINFO_STOC_AVROBJ Model Expected value of average model's

objective.

LS_DINFO_SAMP_MEDIAN Model Sample median.

LS_DINFO_DIST_MEDIAN Model Distribution (population) median.

LS_IINFO_STOC_NUM_EQROWS_CC Model Number of equality type rows in all

chance-constraints.

LS_IINFO_STOC_NUM_ROWS Model Number of stochastic rows

LS_IINFO_STOC_NUM_CC_VIOLATED Model Number of chance sets violated over all

scenarios.

LS_IINFO_STOC_NUM_COLS_DETEQC Model Total number of columns in the chance

deterministic equivalent.

LS_IINFO_STOC_NUM_ROWS_DETEQC Model Total number of rows in the chance

deterministic equivalent.

LS_IINFO_STOC_NUM_QCP_CONS_DETE

QC
Model Total number of quadratic constraints in

the chance deterministic equivalent.

LS_IINFO_STOC_NUM_CONT_CONS_DET

EQC
Model Total number of continuous constraints

in the chance deterministic equivalent.

LS_IINFO_STOC_NUM_INT_CONS_DETEQ

C
Model Total number of constraints with

general integer variables in the chance

deterministic equivalent.

LS_IINFO_STOC_NUM_BIN_CONS_DETEQ

C
Model Total number of constraints with binary

variables in the chance deterministic

equivalent.

LS_IINFO_STOC_NUM_QCP_VARS_DETE

QC
Model Total number of quadratic variables in

the chance deterministic equivalent.

LS_IINFO_STOC_NUM_NONZ_DETEQC Model Total number of nonzeros in the chance

deterministic equivalent.

LS_IINFO_STOC_NUM_BIN_DETEQC Model Total number of binaries in the chance

deterministic equivalent.

FUNCTION DEFINITIONS 151

LS_IINFO_STOC_NUM_INT_DETEQC Model Total number of general integer

variables in the chance deterministic

equivalent.

LS_IINFO_STOC_NUM_CONT_DETEQC Model Total number of continuous variables in

the chance deterministic equivalent.

LS_IINFO_STOC_NUM_QC_NONZ_DETEQ

C
Model Total number of quadratic nonzeros in

the chance deterministic equivalent.

LS_IINFO_STOC_NUM_NLP_NONZ_DETE

QC
Model Total number of nonlinear nonzeros in

the constraints of chance deterministic

equivalent.

LS_IINFO_STOC_NUM_NLPOBJ_NONZ_DE

TEQC
Model Total number of nonlinear nonzeros in

the objective function of chance

deterministic equivalent.

LS_IINFO_STOC_NUM_NLP_CONS_DETE

QC
Model Total number of nonlinear constraints in

the constraints of chance deterministic

equivalent.

LS_IINFO_STOC_NUM_NLP_VARS_DETE

QC
Model Total number of nonlinear variables in

the constraints of chance deterministic

equivalent.

LS_IINFO_STOC_NUM_NONZ_OBJ_DETE

QC
Model Total number of nonzeros in the

objective of chance deterministic

equivalent.

LS_IINFO_STOC_NUM_NONZ_OBJ_DETE

QE
Model Total number of nonzeros in the

objective of explict deterministic

equivalent.

LS_DINFO_STOC_CC_PLEVEL Model P-level for chance constraint.

LS_IINFO_STOC_THREADS Model The number of parallel threads used in

stochastic solver.

LS_DINFO_STOC_THRIMBL Model The work imbalance across threads in

stochastic solver. Reserved for future

use.

LS_IINFO_STOC_NUM_EQROWS Model The number of EQ type stochastic rows

LS_SINFO_STOC_THREAD_LOAD Model The string containing the thread

workload in the last LSsolveSP call.

LS_SINFO_CORE_FILENAME Model The name of the file containing the core

model data.

LS_SINFO_STOC_FILENAME Model The name of the file containing the

stochastic data.

LS_SINFO_TIME_FILENAME Model The name of the file containing the time

data.

152 CHAPTER 2

BNP Information
LS_IINFO_BNP_SIM_ITER Model The number of simplex iterations in

BNP solver.

LS_IINFO_BNP_LPCOUNT Model The number of solved LPs in BNP

solver.

LS_IINFO_BNP_NUMCOL Model The number of generated columns in

BNP solver.

LS_DINFO_BNP_BESTBOUND Model Current best bound on objective in BNP

solver.

LS_DINFO_BNP_BESTOBJ Model Objevtive for current best solution.

Miscellaneous Information
LS_SINFO_MODEL_FILENAME Model The name of the file the model was

imported from.

LS_SINFO_MODEL_SOURCE Model The name of the path the model file.

 LS_IINFO_MODEL_TYPE Model An integer macro specifying the model

type. Possible values are given in

Common Parameter Macro Definitions

section under Model Types heading.

 LS_IINFO_ASSIGNED_MODEL_TYPE Model An integer macro specifying the derived

model type. Possible values are given in

Common Parameter Macro Definitions

section under Model Types heading.

FUNCTION DEFINITIONS 153

Model Loading Routines
The routines described in this section allow you to pass a model to LINDO API directly through

memory. LINDO API expects the formulation to be in sparse format. In other words, only nonzero

coefficients are passed. For details on sparse representation, see the section titled Sparse Matrix

Representation in Chapter 1, Introduction. Before using routines described in this section, be aware

that another way of passing a model to the LINDO API is by using one of the LSreadLINDOFile,

LSreadMPSFile, and LSreadMPIFile routines described earlier in this chapter. In fact, for debugging

reasons, you may want to consider passing your model to the LINDO API by file using the

LSreadXXFile routines rather than with the direct memory methods described below. If a model is not

behaving as you think it should, it is relatively easy to send a file to the Tech support people at

LINDO. If you are confident that your formulation is debugged, and you need high performance, or

the ability to run several models simultaneously, as in a web-based application, then you can always

switch to the direct memory transfer routines described below.

Note: LINDO API keeps its own copies of the data passed via the input arguments in the model

space. Therefore, the user can free the local copies after the call completes successfully.

LSloadConeData()

Description:

Loads quadratic cone data into a model structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

 int LSloadConeData (pLSmodel pModel, int nCone, char

*pszConeTypes, int *paiConebegcone, int *paiConecols)

154 CHAPTER 2

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

problem data.

nCone Number of cones to add.

pszConeTypes A pointer to a character vector containing the type of each cone

being added. Valid values for each cone are ‘Q’ and ‘R’. The

length of this vector is equal to nCone.

paiConebegcone A pointer to an integer vector containing the index of the first

variable that appears in the definition of each cone. This vector

must have nCone+1 entries. The last entry will be the index of

the next appended cone, assuming one was to be appended. If

paiConebegcone [i] < paiConebegcone [i-1], then

LSERR_ERROR_IN_INPUT is returned.

paiConecols A pointer to an integer vector containing the indices of

variables representing each cone. The length of this vector is

equal to paiConebegcone[nCone].

LSloadInstruct()

Description:

Loads instruction lists into a model structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadInstruct (pLSmodel pModel, int nCons, int nObjs, int

nVars, int nNums, int *panObjSense, char *pacConType, char

*pacVarType, int *panCode, int nCode, int *paiVars, double

*padVals, double *padX0, int *paiObj, int *panObj, int

*paiRows, int *panRows, double *padL, double *padU)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nCons Number of constraints in the model.

nObjs Number of objectives in the model. Currently, there is only

support for a single objective (i.e., nObjs = 1).

nVars Number of variables in the model.

nNums Number of real numbers in the model.

panObjSense A pointer to an integer vector containing the indicator stating

whether the objective is to be maximized or minimized. Valid

FUNCTION DEFINITIONS 155

values are LS_MAX or LS_MIN, respectively. The length of

this vector is equal to nObjs. Currently, there is only support

for a single objective.

pacConType A pointer to a character vector containing the type of each

constraint. Each constraint is represented by a single byte in the

array. Valid values for each constraint are ‘L’, ‘E’, ‘G’, or ‘N’

for less-than-or-equal-to, equal to, great-than-or-equal-to, or

neutral, respectively. The length of this vector is equal to

nCons.

pacVarType A pointer to a character vector containing the type of each

variable. Valid values for each variable are ‘C’, ‘B’, ‘I’, or ‘S’

for continuous, binary, general integer or semi-continuous

variables, respectively. The length of this vector is equal to

nVars. This value may be NULL on input, in which case all

variables will be assumed to be continuous.

panCode A pointer to an integer vector containing the instruction list.

The length of this vector is equal to nCode. For details on

instruction list representation, see the section titled Instruction-

List Style Interface in Chapter 7, Solving Nonlinear Programs.

nCode Number of items in the instruction list.

paiVars A pointer to an integer vector containing the variable index.

The length of this vector is equal to nVars. This pointer may be

set to NULL if the variable index is consistent with the variable

position in the variable array.

padVals A pointer to a double precision vector containing the value of

each real number in the model. The length of this vector is

equal to nNums.

padX0 A pointer to a double precision vector containing starting

values for each variable in the given model. The length of this

vector is equal to nVars.

paiObj A pointer to an integer vector containing the beginning

positions on the instruction list for each objective row. The

length of this vector is equal to nObjs. Currently, there is only

support for a single objective.

panObj A pointer to an integer vector containing the length of

instruction code (i.e., the number of individual instruction

items) for each objective row. The length of this vector is equal

to nObjs. Currently, there is only support for a single objective.

paiRows A pointer to an integer vector containing the beginning

positions on the instruction list for each constraint row. The

length of this vector is equal to nCons.

panRows A pointer to an integer vector containing the length of

instruction code (i.e., the number of individual instruction

156 CHAPTER 2

items) for each constraint row. The length of this vector is

equal to nCons.

padL A pointer to a double precision vector containing the lower

bound of each variable. If there is no lower bound on the

variable, then this value should be set to –LS_INFINITY. If

padL is NULL, then the lower bounds are internally set to zero.

padU A pointer to a double precision vector containing the upper

bound of each variable. If there is no upper bound on the

variable, then this value should be set to LS_INFINITY. If

padU is NULL, then the upper bounds are internally set to

LS_INFINITY.

Remarks:

 The instruction lists for the objective and constraints are all carried by the same code

vector, *panCode, to load into LINDO API model structure.

 The index vector *paiVars can be used to store the user-specified variable index.

Currently, the values supplied in paiVars[] are unimportant.

LSloadLPData()

Description: v

Loads the given LP data into the LSmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

 int

LSloadLPData (pLSmodel pModel, int nCons, int nVars, int

dObjsense, double dObjconst, double *padC, double *padB,

char *pachContypes, int nAnnz, int *paiAcols, int *pacAcols,

double *padAcoef, int *paiArows, double *padL, double

*padU)

Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

problem data.

nCons Number of constraints in the model.

nVars Number of variables in the model.

dObjsense An indicator stating whether the objective is to be maximized

or minimized. Valid values are LS_MAX or LS_MIN.

dObjconst A constant value to be added to the objective value.

padC A pointer to a double precision vector containing the objective

coefficients.

FUNCTION DEFINITIONS 157

padB A pointer to a double precision vector containing the constraint

right-hand side coefficients.

pachContypes A pointer to a character vector containing the type of each

constraint. Each constraint is represented by a single byte in the

array. Valid values for each constraint are 'L', 'E', 'G', or ‘N’ for

less-than-or-equal-to, equal-to, greater-than-or-equal-to, or

neutral, respectively.

nAnnz The number of nonzeros in the constraint matrix.

paiAcols A pointer to an integer vector containing the index of the first

nonzero in each column. This vector must have nVars+1

entries. The last entry will be the index of the next appended

column, assuming one was to be appended. If

paiAcols[i] < paiAcols[i-1], then LSERR_ERROR_IN_INPUT

is returned.

pacAcols A pointer to an integer vector containing the length of each

column. Note that the length of a column can be set to be

smaller than the values paiAcols would suggest (i.e., it is

possible for pacAcols[i] < paiAcols[i+1] – paiAcols[i]). This

may be desirable in order to prevent memory reallocations in

the event that any rows are added to the model. If the columns

are packed tight (i.e., the length of a column i is equal to

paiAcols[i+1] – paiAcols[i] for all i), then pacAcols can be set

to NULL on input.

padAcoef A pointer to a double precision vector containing the nonzero

coefficients of the constraint matrix.

paiArows A pointer to an integer vector containing the row indices of the

nonzeros in the constraint matrix. If any row index is not in the

range [0, nCons -1], LSERR_INDEX_OUT_OF_RANGE is

returned.

padL A pointer to a double precision vector containing the lower

bound of each variable. If there is no lower bound on the

variable, then this value should be set to -LS_INFINITY. If it

is NULL, then the lower bounds are internally set to zero.

padU A pointer to a double precision vector containing the upper

bound of each variable. If there is no upper bound on the

variable, then this value should be set to LS_INFINITY. If it is

NULL, then the upper bounds are internally set to

LS_INFINITY.

Remarks:

 The data from each of the arrays passed to this routine are actually copied into arrays

within the LSmodel structure. Therefore, the calling routine can free the memory if the

information is no longer needed.

 To retrieve the LP’s data from the model structure, see routine LSgetLPData().

158 CHAPTER 2

LSloadNameData()

Description:
Loads the given name data (e.g., row and column names), into the LSmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSloadNameData(pLSmodel pModel, char *pszTitle, char

*pszObjName, char *pszRhsName, char *pszRngName, char

*pszBndname, char **paszConNames, char **paszVarNames,

char **paszConeNames)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

problem data.

pszTitle A pointer to a null terminated string containing the title of the

problem.

pszObjName A pointer to a null terminated string containing the name of the

objective.

pszRhsName A pointer to a null terminated string containing the name of the

right-hand side vector.

pszRngName A pointer to a null terminated string containing the name of the

range vector.

pszBndname A pointer to a null terminated string containing the name of the

bounds vector.

paszConNames A pointer to an array of pointers to the null terminated

constraint names.

paszVarNames A pointer to an array of pointers to the null terminated variable

names.

paszConeNames A pointer to an array of pointers to the null terminated cone

names.

Remarks:

 The data from each of the arrays passed to this routine are actually copied into arrays

within the LSmodel structure. Therefore, the calling routine can free the memory if the

information is no longer needed.

 Any of the pointers to name data passed to this routine may be set to NULL if the

information is not relevant.

FUNCTION DEFINITIONS 159

LSloadNLPData()

Description:

Loads a nonlinear program’s data into the model data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadNLPData (pLSmodel pModel, int * paiCols,

int * pacCols, double * padCoef, int * paiRows, int nObj, int

*paiObj, double *padObjCoef)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

paiCols A pointer to an integer vector containing the index of the first

nonlinear nonzero in each column. This vector must have

nVars+1 entries, where nVars is the number of variables. The

last entry will be the index of the next appended column,

assuming one was to be appended.

pacCols A pointer to an integer vector containing the number of

nonlinear elements in each column.

padCoef A pointer to a double precision vector containing initial values

of the nonzero coefficients in the (Jacobian) matrix. It may be

set to NULL, in which case, LINDO API will compute an

initial matrix.

paiRows A pointer to an integer vector containing the row indices of the

nonlinear elements.

nObj An integer containing the number of nonlinear variables in the

objective.

paiObj A pointer to an integer vector containing the column indices of

nonlinear variables in the objective function.

padObjCoef A pointer to double precision vector containing the initial

nonzero coefficients in the objective. It may be set to NULL, in

which case, LINDO API will compute an initial gradient

vector.

160 CHAPTER 2

Remarks:

 Currently, the values supplied in padCoef are unimportant and can always be set to

NULL.

 Note, a nonzero constraint matrix must be established before calling LSloadNLPData().

This is accomplished through a call to LSloadLPData(). The subsequent call to

LSloadNLPData() simply identifies the nonzeros in the matrix that are nonlinear (i.e., not

constant). As an example, consider the nonlinear row: 3x + y^2 –1 ≤ 0. In this row, x

appears linearly and, therefore, has a fixed coefficient of value 3. The variable y, on the

other hand, appears nonlinearly and does not have a fixed coefficient. Its coefficient at

any given point must be determined through finite differences or a call to pGradcalc().

Note that a variable appearing in both linear and nonlinear terms should be treated

nonlinearly and has no fixed coefficient (e.g., x + x^2). Identifying the fixed coefficients

allows LINDO API to minimize the amount of work required to compute gradients.

LSloadQCData()

Description:

Loads quadratic program data into the LSmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSloadQCData(pLSmodel pModel, int nQCnnz, int

*paiQCrows, int *paiQCcols1, int *paiQCcols2, double

*padQCcoef)

Arguments:

Name Description

pModel An instance of LSmodel in which to place the problem data.

nQCnnz The total number of nonzeros in quadratic coefficient matrices.

paiQCrows

A pointer to a vector containing the index of the constraint

associated with each nonzero quadratic term. This vector must

have nQCnnz entries.

paiQCcols1 A pointer to a vector containing the index of the first variable

defining each quadratic term. This vector must have nQCnnz

entries.

paiQCcols2

A pointer to a vector containing the index of the second

variable defining each quadratic term. This vector must have

nQCnnz entries.

padQCcoef A pointer to a vector containing the nonzero coefficients in the

quadratic matrix. This vector must also have nQCnnz entries.

FUNCTION DEFINITIONS 161

Remarks:

 The data from each of the arrays passed to this routine are actually copied into arrays

within the LSmodel structure. Therefore, the calling routine can free the memory if the

information is no longer needed.

 The quadratic matrices are assumed to be symmetric.

 Only the upper triangular part of the quadratic matrices must be specified.

 For variations on the above, e.g. if a matrix is not naturally symmetric, see Chapter 5,

Solving Quadratic Programs, for more information.

LSloadSemiContData()

Description:

Loads semi-continuous data into the Lsmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadSemiContData(pLSmodel pModel, int nSC, int

*piVarndx, double *padl, double *padu)

Arguments:

Name Description

pModel An instance of LSmodel in which to place the problem data.

nSC The number of semi-continuous variables.

piVarndx A pointer to a vector containing the indices of semi-

continuous variables. This vector must have nSC entries.

padl A pointer to a vector containing the lower bound associated

with each semi-continuous variable. This vector must also have

nSC entries.

padu A pointer to a vector containing the upper bound associated

with each semi-continuous variable. This vector must also have

nSC entries.

162 CHAPTER 2

LSloadSETSData()

Description:

Loads special sets data into the Lsmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSloadSETSData(pLSmodel pModel, int nSETS, char

*pszSETStype, int *paiCARDnum, int *paiSETSbegcol, int

*paiSETScols)

Arguments:

Name Description

pModel An instance of LSmodel in which to place the problem data.

nSETS Number of sets to load.

pszSETStype A pointer to a character vector containing the type of each set.

Valid values for each set are :

 LS_MIP_SET_CARD

 LS_MIP_SET_SOS1

 LS_MIP_SET_SOS2

 LS_MIP_SET_SOS3

paiCARDnum A pointer to an integer vector containing set cardinalities. This

vector must have nSETS entries. The set cardinalities are taken

into account only for sets with pszSETStype[i] =

LS_MIP_SET_CARD.

paiSETSbegcol A pointer to an integer vector containing the index of the first

variable in each set. This vector must have nSETS+1 entries.

The last entry will be the index of the next appended set,

assuming one was to be appended. If paiSETSbegcol[i] <

paiSETSbegcol [i-1], then LSERR_ERROR_IN_INPUT is

returned.

paiSETScols A pointer to an integer vector containing the indices of

variables in each set. If any index is not in the range [0, nVars

-1], LSERR_INDEX_OUT_OF_RANGE is returned.

FUNCTION DEFINITIONS 163

LSloadVarType()

Description:

Loads the given MIP (mixed-integer program) data into the LSmodel data structure. The old

name for this function is LSloadMIPData().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadVarType(pLSmodel pModel, char *pachVartypes)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the MIP

data.

pachVartypes

A pointer to a character vector containing the type of each

variable. Valid values for each variable are ‘C’, ‘B’, ‘I’, or ‘S’

for continuous, binary, general integer or semi-continuous,

respectively.

This value may be NULL on input, in which case all variables

will be assumed to be continuous.

Remarks:

 The ability to solve mixed-integer programs is an optional feature. Not all installations

will have this capability. To determine if your license includes MIP functionality, use

LSgetModelIntParameter() with license information access macros.

 The data from each of the arrays passed to this routine are actually copied into arrays

within the LSmodel structure. Therefore, the calling routine can free the memory if the

information is no longer needed.

 LSloadLPData() must be called prior to calling this routine.

 LScreateModel() must be called prior to calling this routine.

 To load variable branching priorities, see LSloadVarPriorities().

 LSloadLPData must have been called previously.

164 CHAPTER 2

LSloadStringData()

Description:

Loads a vector of strings into the LSmodel data structure and gets sort order.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadStringData(pLSmodel pModel, int nStrings, char

**paszStrings)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

string data.

nStrings Number of strings to load

PaszStrings A pointer to an array of pointers to the null terminated strings..

Remarks:

 All strings to be used in a model need to be loaded into LINDO API with either a

sequence of calls to LSloadString followed by a final call to LSbuildStringData, or a

single call to LSloadStringData. These calls must be made before strings can be referred

to in the instruction list through the operators EP_PUSH_STR or EP_VPUSH_STR. The

vector of strings loaded is automatically sorted by finalizing the loading with a call to

LSbuildStringData. An index, starting from 1, is assigned to each unique string and this

index can be used to access the string values by a call to LSgetStringValue.

LSloadString()

Description:

Load a single string into the LSmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadString(pLSmodel pModel, char *szString)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

string data.

szString A pointer to a null terminated string .

Remarks:

 See also LSbuildStringData, and LSloadStringData.

FUNCTION DEFINITIONS 165

LSbuildStringData()

Description:

Gets sort order of all strings loaded by previous calls to LSloadString, and assigns a unique

value to each unique string.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSbuildStringData(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

string data.

Remarks:
See also, LSloadString and LSloadStringData.

LSdeleteStringData()

Description:

Delete the string values data

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteStringData(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

string data.

Remarks:

 Please refer to LSloadStringData for the detailed string support.

166 CHAPTER 2

LSdeleteString()

Description:

Delete the complete string data, including the string vector and values.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteString(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

string data.

Remarks:

 Please refer to LSloadStringData for the detailed string support.

LSgetStringValue()

Description:

Retrieve a string value for a specified string index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetStringValue(pLSmodel pModel, int nStringIdx, double

pdStrinVal)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the

string data.

nStringIdx An integer containing the index of the string whose value you

wish to retrieve.

pdStrinVal A pointer to a double precision quantity that returns the string

value.

Remarks:

 Please refer to LSloadStringData for the detailed string support.

FUNCTION DEFINITIONS 167

LSloadSampleSizes ()

Description:

Loads sample sizes per stage for the stochastic model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadSampleSizes (pLSmodel pModel, int * panSampleSize)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

panSampleSize An integer vector specifying the stage sample sizes. The length

of this vector should be at least the number of stages in the

model.

LSsetNumStages ()

Description:

Set number of stages in the model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsetNumStages (pLSmodel pModel, int numStages)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

numStages An integer specifying the number of stages in the model.

168 CHAPTER 2

LSloadConstraintStages ()

Description:

Load stage structure of the constraints in the model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadConstraintStages (pLSmodel pModel, int * panRstage)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

panRstage A vector in which information about the stage membership of

the constraints is held. The length of this vector is equal to the

number of constraints in the model. If constraint i belongs to

stage k , then panRstage[i] = k-1

LSloadVariableStages ()

Description:

Load stage structure of the variables in the model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadVariableStages (pLSmodel pModel, int * panCstage)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

panCstage A vector in which information about the stage membership of

the variables is held. The length of this vector is equal to the

number of variables in the model. If variable i belongs to stage

k , then panCstage[i] = k-1

FUNCTION DEFINITIONS 169

LSloadStocParData ()

Description:

Load stage structure of the stochastic parameters (SPARs) in the model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadStocParData (pLSmodel pModel, int * panSvarStage,

double * padSvarValue)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

panSvarStage An integer vector specifying the stages of SPARs. The length

of this vector is equal to the number of SPARs in the model. if

SPAR i belongs to stage k , then panSvarStage[i] = k-1

padSvarValue A double vector specifying the default values of SPARs. The

length of this vector is equal to the number of SPARs in the

model. If NULL, a value of zero is assumed for all SPARS.

Remarks:

 Length of SPARS can be retrieved with LS_IINFO_NUM_SPARS macro.

LSaddDiscreteIndep ()

Description:

Adds a new discrete independent stochastic parameter to the SP model. The positions of

stochastic parameters are specified with either (iRow,jCol) or iStv , but not with

both. For SP models where core model is described with an instruction list, iStv have to be

used.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSaddDiscreteIndep (pLSmodel pModel, int iRow, int jCol, int

iStv, int nRealizations, double * padProbs, double * padVals,

int iModifyRule)

170 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iRow An integer specifying the row index of the stochastic

parameter. It should be ignored if iStv will be specified.

jCol An integer specifying the column index of the stochastic

parameter. It should be ignored if iStv will be specified.

iStv An integer specifying the index of stochastic parameter in the

instruction list. It should ignored if (iRow,jCol) is specified.

nRealizations An integer specifying the number of all possible realizations

for the specified stochastic parameter.

padProbs A double vector of probabilities associated with the

realizations of the stochastic parameter. The length of this

vector should be nRealizations or more.

padVals A double vector of values associated with the probabilities.

The length of this vector should be nRealizations or more.

iModifyRule A flag indicating whether stochastic parameters update the core

model by adding or replacing.

LSaddParamDistIndep ()

Description:

Adds a new independent stochastic parameter with a parameteric distribution to the SP model.

The positions of stochastic parameters are specified with either (iRow, jCol) or

iStv , but not with both. For SP models where core model is described with an instruction

list, iStv have to be used.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSaddParamDistIndep (pLSmodel pModel, int iRow, int jCol,

int iStv, int nDistType, int nParams, double * padParams, int

iModifyRule)

FUNCTION DEFINITIONS 171

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iRow An integer specifying the row index of the stochastic

parameter. It should be ignored if iStv will be specified.

jCol An integer specifying the column index of the stochastic

parameter. It should be ignored if iStv will be specified.

iStv An integer specifying the index of stochastic parameter in the

instruction list. It should ignored if (iRow, jCol) is specified.

nDistType An integer specifying the parametric distribution type. See the

‘Distributions’ table for possible values.

padParams An double vector specifying the parameters of given

distribution.

nParams An integer specifying the length of padParams .

iModifyRule A flag indicating whether stochastic parameters update the core

model by adding or replacing. Possible values are:

 LS_REPLACE

 LS_ADD

LSaddDiscreteBlocks ()

Description:

Adds a new discrete stochastic block to the SP model. The positions of stochastic parameters

are specified with either (paiArows,paiAcols) or paiStvs , but not with both. For

SP models where core model is described with an instruction list, paiStvs have to be used.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSaddDiscreteBlocks (pLSmodel pModel, int iStage, int

nBlockEvents, double * padProb, int * pakEvent, int *

paiArows, int * paiAcols, int * paiStvs, double * padVals, int

iModifyRule)

172 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iStage An integer specifying the stage of the stochastic block.

nBlockEvents An integer specifying the number of discrete events in the

block.

padProb An double vector of event probabilities.

pakEvent An integer vector of starting positions of events in the sparse

matrix or instruction list. This vector should have

nBlockEvents+1 elements or more.

paiArows An integer vector of row indices of stochastic parameters. This

vector should have pakEvent[nBlockEvents] elements. It

should be NULL when paiStvs is specified.

paiAcols An integer vector of column indices of stochastic parameters.

This vector should have pakEvent[nBlockEvents] elements.

It should be NULL when paiStvs is specified.

paiStvs An integer vector of indices of stochastic parameters in the

instruction list. The length of this vector should be

pakEvent[nBlockEvents] or more. It should be NULL when

(paiArows,paiAcols) is specified.

padVals A double vector of stochastic values associated with the

stochastic parameters listed in paiStvs or (paiArows,paiAcols)

The length of this vector should be pakEvent[nBlockEvents]

or more.

iModifyRule A flag indicating whether stochastic parameters update the core

model by adding or replacing.

LSaddScenario ()

Description:

Adds a new scenario block to the SP model. The positions of the stochastic parameters are

specified with either (paiArows,paiAcols) or paiStvs , but not with both.

 For SP models where core model is described with an instruction list, paiStvs have to be

used.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSaddScenario (pLSmodel pModel, int jScenario, int

iParentScen, int iStage, double dProb, int nElems, int *

paiArows, int * paiAcols, int * paiStvs, double * padVals, int

iModifyRule)

FUNCTION DEFINITIONS 173

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the index of the new scenario to be

added.

iParentScen Index of the parent scenario.

iStage Index of the stage the new scenario branches from its parent.

dProb A double scalar specifying the scenario probability.

nElems The number of stochastic parameters realized at stage iStage

in the new scenario.

paiArows An integer vector of the row indices of stochastic parameters.

This vector should have nElems elements or more. It should

be NULL when paiStvs is specified.

paiAcols An integer vector of the column indices of stochastic

parameters. This vector should have nElems elements or more.

It should be NULL when paiStvs is specified.

paiStvs An integer vector of indices of stochastic parameters in

instruction list. This vector should have nElems elements or

more. It should be NULL when (paiArows,paiAcols) is

specified.

padVals A double vector of values of stochastic parameters. This vector

should have nElems elements or more.

iModifyRule A flag indicating whether stochastic parameters update the core

model by adding or replacing.

LSloadStocParNames ()

Description:

This routine loads name data for stochastic parameters into the specified LSmodel structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadStocParNames (pLSmodel pModel, int numVars, char

** stv_names)

174 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

numVars An integer specifying the number of stochastic parameters.

stv_names An array of pointers to the stochastic parameter names. This

value can be NULL.

Remarks:

The data from each of the arrays passed to this routine are actually copied into arrays within

the LSmodel structure. Therefore, the calling routine can free the memory if the information

is no longer needed.

LSloadCorrelationMatrix ()

Description:

Load a correlation matrix to be used by the sampling scheme in stochastic programming.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadCorrelationMatrix (pLSmodel pModel, int nDim, int

nCorrType, int QCnonzeros, int *QCvarndx1, int *QCvarndx2,

double *QCcoef)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

nDim An integer specifying the number of stochastic parameters

involved in the correlation structure. This value cannot be

larger than the number of stochastic parameters in the model.

nCorrType Correlation type. Possible values are:

 LS_CORR_PEARSON

 LS_CORR_SPEARMAN

 LS_CORR_KENDALL

QCnonzeros The number of nonzero correlation coefficients.

QCvarndx1 A vector containing the first index of variable the correlation

term belongs to (\c QCnonzeros long).

QCvarndx2 A vector containing the second index of variable the

correlation term belongs to (\c QCnonzeros long).

QCcoef A vector containing the correlation terms (\c QCnonzeros

long).

FUNCTION DEFINITIONS 175

Remarks:

 Suppose the correlation matrix, involving variables 2, 4, 5, and 7 is:

 (2) (4) (5) (7)

 1 0.5796 -0.953 0.5409 (2)

 0.5796 1 -0.4181 0.6431 (4)

 -0.953 -0.4181 1 -0.2616 (5)

 0.5409 0.6431 -0.2616 1 (7)

 The parameters would be:

 nDim = 4,

 QCnonzeros = 6; (in general for a dense matrix, nDim*(nDim - 1)/2)

 QCvarndx1= 2 2 2 4 4 5;

 QCvarndx2= 4 5 7 5 7 7;

 QCcoef = 0.5796 -0.953 0.5409 -0.4181 0.6431 -0.2616;

LSloadMultiStartSolution ()

Description:

Loads the multistart solution at specified index to the main solution structures for access with

solution query routines.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadMultiStartSolution(pLSmodel pModel, int nIndex)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel.

nIndex Index of the multistart solution

176 CHAPTER 2

LSloadVarStartPointPartial ()

Description:

Loads a partial initial point for NLP models.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadVarStartPointPartial(pLSmodel pModel, int nCols, int

*paiCols, double *padPrimal)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel.

nCols Number of variables in the partial solution.

paiCols A vector containing the indicies of variables in the partial

solution.

padPrimal A vector containing the values of the partial solution.

Remark:

Use LSloadBasis for LP models.

LSloadMIPVarStartPointPartial ()

Description:

Loads a partial MIP initial point for MIP/MINLP models.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadMIPVarStartPointPartial(pLSmodel pModel, int nCols,

int *paiCols, double *padPrimal)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel.

nCols Number of variables in the partial solution.

paiCols A vector containing the indicies of variables in the partial

solution.

padPrimal A vector containing the values of the partial solution.

FUNCTION DEFINITIONS 177

Remark:

Values for non-integer variables are ignored except for set-variables.

 In case of semi continuous variables, specify 0 or 1 to indicate whether the variable is zero or

greater-than zero.

LSreadSDPAFile ()

Description:

Read SDP model from an SDPA formatted file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSreadSDPAFile(pLSmodel pModel, char *pszFname);

Input Arguments:

Name Description

pModel An instance of LSmodel in which to place the model.

pszFname The name of the SDPA file.

178 CHAPTER 2

LSloadPOSDData ()

Description:

This routine loads the given POSD data into the LSmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadPOSDData(pLSmodel pModel, int nPOSD, int

*paiPOSDdim, int *paiPOSDbeg, int *paiPOSDrowndx, int

*paiPOSDcolndx, int *paiPOSDvarndx) ;

Input Arguments:

Name Description

pModel An instance of LSmodel in which to place the problem data.

nPOSD The number of PSD diagonal blocks to load.

paiPOSDdim A vector containing the dimensions of PSD diagonal blocks.

This vector should have at least nPOSD entries.

paiPOSDbeg A vector containing beginning position of each PSD matrix in

paiPOSDrowndx, paiPOSDcolndx and paiPOSDvarndx

vectors.

paiPOSDrowndx A vector specifying the row indices of variables within PSD

matrix blocks.

paiPOSDcolndx A vector specifying the column indices of variables within

PSD matrix blocks.

paiPOSDvarndx A vector specifying the original indices of variables within

PSD matrix blocks.

LSaddObjPool()

Description:

Add a new linear objective function to the objective pool.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSaddObjPool(pLSmodel pModel, double *padC, int

objSense, int nRank, double dRelOptTol)

Input Output Arguments:

Name Description

pModel An instance of LSmodel in which to load the new objective

function.

FUNCTION DEFINITIONS 179

padC A vector containing the linear objective coefficients.

objSense An indicator stating whether the objective is to be maximized

or minimized. Valid values are: LS_MAX or LS_MIN,

respectively.

nRank A positive integer specifying the rank of this objective function

relative to others in the pool. Ties are broken arbitrarily.

(Reserved for future)

Input Arguments:

Name Description

dRelOptTol Relative optimality tolerance in (0,1) range specifying the

maximum deviation allowed for this objective function from its

true optimum value. Higher values allow a wider range of

admissible solutions.

LSremObjPool()

Description:

Removes the specified linear objective vector from the objective pool.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSremObjPool(pLSmodel pModel, int iObj)

Input Output Arguments:

Name Description

pModel An instance of LSmodel from which the objective function will

be removed.

iObj Index specifying the objective function to remove from the

pool.

180 CHAPTER 2

LSFreeObjPool()

Description:

Frees objective pool.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSFreeObjPool(pLSmodel pModel)

Input Output Arguments:

Name Description

pModel An instance of LSmodel for which the objective pool will be

freed

LSsetObjPoolInfo()

Description:

Set specified info for the objective specified by its index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetObjPoolInfo(pLSmodel pModel, int iObj, int mInfo,

double dValue)

Input Output Arguments:

Name Description

pModel An instance of LSmodel for which the info (attribute) will be

specified.

iObj An index specifying the objective function.

Input Arguments:

Name Description

mInfo An integer macro specifying the info (attribute) to set for the

selected obj.

dValue Attribute value.

FUNCTION DEFINITIONS 181

Solver Initialization Routines
The routines in this section allow you to pass the internal solver starting-point information when

solving linear models and branching priorities when solving mixed-integer models.

LSloadBasis()

Description:

Provides a starting basis for the simplex method. A starting basis is frequently referred to as

being a “warm start”.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadBasis(pLSmodel pModel, int *panCstatus, int

*panRstatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model for

which you are providing the basis.

panCstatus

A pointer to an integer vector containing the status of each

column in the given model. The length of this vector is equal to

the number of variables in the model. The i-th element of the

array corresponds to the i-th variable in the model. Set each

variable’s element to 0, –1, –2, or –3 for Basic, Nonbasic at

lower bound, Nonbasic at upper bound, or Free and nonbasic at

zero value, respectively.

panRstatus

A pointer to an integer vector in which information about the

status of the rows is to be placed. The length of this vector is

equal to the number of constraints in the model. The i-th

element of the array corresponds to the i-th row in the model.

Set each row’s element to 0 or –1 if row’s associated slack

variable is basic or row’s associated slack variable is nonbasic

at zero, respectively.

Remarks:

 To retrieve a basis use LSgetBasis().

 LSloadBasis() does not require the row indices that the variables are basic in. Setting all

basic variables to a nonnegative integer is sufficient to specify a basis.

 LSgetBasis(), in addition to the indices of basic variables, returns also the indices of the

rows that variables are basic in.

182 CHAPTER 2

LSloadVarPriorities()

Description:

Provides priorities for each variable for use by mixed-integer and global solvers.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadVarPriorities(pLSmodel pModel, int *panCprior)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

panCprior A pointer to a vector containing the priority of each column in

the given model. The length of this vector is equal to the

number of variables in the model. A valid priority value is any

nonnegative integer value. Variables with higher priority

values are given higher branching priority.

Remarks:

 Although this routine requires priorities for all variables, the mixed-integer solver only

makes use of the priorities on the integer variables and ignores those of continuous

variables. The global solver makes use of priorities on both continuous and integer

variables.

 To read priorities from a disk file, see LSreadVarPriorities().

LSloadVarStartPoint()

Description:

Provides an initial starting point for nonlinear and mixed-integer solvers.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadVarStartPoint(pLSmodel pModel, double *padPrimal)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

padPrimal A pointer to a double precision vector containing starting

values for each variable in the given model. The length of this

vector is equal to the number of variables in the model.

FUNCTION DEFINITIONS 183

Remarks:

 The nonlinear solver may modify the initial solution to improve its quality if sequential

linear programming (SLP) step directions are allowed.

 Although this routine requires values for all variables, the mixed-integer solver will only

make use of the values for the integer variables.

LSloadMIPVarStartPoint()

Description:

Provides an initial starting point for LSsolveMIP.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadMIPVarStartPoint(pLSmodel pModel, double

*padPrimal)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

padPrimal A pointer to a double precision vector containing starting

values for each variable in the given model. The length of this

vector is equal to the number of variables in the model.

LSloadBlockStructure()

Description:

Provides a block structure for the constraint matrix by specifying block memberships of each

variable and constraint.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadBlockStructure(pLSmodel pModel, int nBlock, int

*panRblock, int *panCblock, int nType)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

184 CHAPTER 2

Output Arguments:

Name Description

nBlock An integer scalar that contains the number of blocks the model

matrix decomposes into.

panRblock

A pointer to an integer vector in which information about the

block membership of the constraints is placed. The length of

this vector must be  the number of constraints in the model.

The i-th element of this array keeps the information on the i-th

constraint as follows:

 0: The row is a member of the linking (row) block.

k>0: The row is a member of the k-th block.

where 1 <= k <= nBlock.

panCblock

A pointer to an integer vector in which information about the

block membership of the variables is placed. The length of this

vector must be  the number of variables in the model. The j-th

element of this array contains information on the j-th column

as follows:

 0: The column is a member of the linking (column) block.

k>0: The column is a member of the k-th block.

where 1 <= k <= nBlock.

nType

An integer scalar indicating the type of decomposition loaded.

The possible values are identified with the following macros:

 LS_LINK_BLOCKS_COLS: The decomposed model

has dual angular structure (linking columns).

 LS_LINK_BLOCKS_ROWS: The decomposed

model has block angular structure (linking rows).

 LS_LINK_BLOCKS_BOTH: The decomposed model

has both dual and block angular structure (linking

rows and columns)

Remarks:

 For more information on decomposition and linking structures, refer to Chapter 10,

Analyzing Models and Solutions.

 See also LSfindBlockStructure().

FUNCTION DEFINITIONS 185

LSreadVarPriorities()

Description:

Reads branching priorities of variables from a disk file. This information is used by mixed-

integer and global solvers.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadVarPriorities(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pszFname A pointer to a null terminated string containing the name of the

file from which to read the priorities.

Remarks:

 This routine expects one variable name and one integer priority value per record. The

variable name must appear first followed by a nonnegative integer priority value. You

need not specify priorities on all variables. If desired, you may specify priorities on only

a subset of the variables.

 To pass priorities directly through an array, see LSloadVarPriorities().

LSreadVarStartPoint()

Description:

Provides initial values for variables from a file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadVarStartPoint(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pszFname A pointer to a null terminated string containing the name of the

file from which to read the starting values.

Remarks:

 This routine expects one variable name and one value per record. The variable name

must appear first followed by a starting value. To pass initial values directly through an

array, see LSloadVarStartPoint().

186 CHAPTER 2

Optimization Routines
The routines in this section are called to invoke LINDO API’s solver. There are three routines—

LSsolveMIP(), LSoptimize(), and LSsolveGOP(). LSsolveMIP() should be called when the model has

one or more integer variables, while LSoptimize() should be called when all the variables are

continuous. LSsolveGOP() should be called for global optimization of nonlinear models.

LSoptimize()

Description:

Optimizes a continuous model by a given method.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSoptimize(pLSmodel pModel, int nMethod, int *pnStatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nMethod A parameter indicating the solver to be used in optimizing the

problem. Current options for this parameter are

 LS_METHOD_FREE: 0,

 LS_METHOD_PSIMPLEX: 1,

 LS_METHOD_DSIMPLEX: 2,

 LS_METHOD_BARRIER: 3,

 LS_METHOD_NLP: 4.

When the method is set to LS_METHOD_FREE, LINDO API

will decide the best solver to use. The remaining four methods

correspond to the primal simplex, dual simplex, barrier solver,

and nonlinear solvers, respectively. The barrier solver, also

known as the interior point solver, and the nonlinear solver are

optional features and require additional purchases.

Output Arguments:

Name Description

pnStatus A pointer to an integer variable containing the status of the

optimization. For possible values, refer to the Common Macro

Definitions table.

Remarks:

 The solver returns LS_STATUS_INFORUNB as solution status if primal or dual model is

found to be infeasible. This could be determined either by the presolver or by phase-1 of

dual simplex (LS_METHOD_DSIMPLEX) provided the dual is infeasible. In the former

case, the solver computes no solutions and hence all solution access routines, such as

LSgetPrimalSolution, returns an LSERR_NOT_AVAILABLE error. However, the solver

FUNCTION DEFINITIONS 187

can be forced to compute a basis by setting LS_IPARAM_SOLVER_IUSOL to 1. In the

second case, the actual status of the primal model can be found by re-optimizing the

model using the primal simplex method (LS_METHOD_PSIMPLEX).

 LINDO API is equipped with advanced recovery techniques that resolve numeric issues

stemming from

(a) Poor scaling,

(b) Linear dependency among model variables (columns).

(c) Degeneracy (redundancies in the formulation) in primal and or dual space.

In rare pathological instances, it is possible that the solver returns a

LSERR_NUMERIC_INSTABILITY error using the default tolerance setting. In this case,

accumulated errors that occurred during numeric computations were so severe that the

solver could not take further steps towards optimality. For all such cases, however, there

exist a certain tolerance settings that would render the model solvable. The main

tolerances that affect the numerical properties are primal and dual feasibility tolerances.

The latter is also known as the optimality tolerance.

 If the LS_METHOD_BARRIER is used, a crossover to a basic solution is done at the

end. If, instead, you want the nonbasic interior point solution, then use

LSsetModIntParameter() to set the parameter LS_IPARAM_SOLVER_IPMSOL=1.

 Prior to solving the problem, LS_IPARAM_DECOMPOSITION_TYPE parameter can

be set to LS_LINK_BLOCKS_NONE to force the linear solver to exploit total

decomposition.

 The solution process can be lengthy on large models. LINDO API can be set to

periodically callback to your code to allow you to monitor the solver’s progress. For

more information, see LSsetCallback().

 To solve mixed-integer models, see LSsolveMIP().

LSsolveFileLP()

Description:

Optimizes a large LP from an MPS file. This routine is appropriate only for LP models with

many more columns, e.g., millions, than rows. It is appropriate for LP’s that might otherwise

not easily fit into available memory.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsolveFileLP(pLSmodel pModel, szFileNameMPS, szFileNameSol,

 int nNoOfColsEvaluatedPerSet, int nNoOfColsSelectedPerSet,

int nTimeLimitSec, int *pnSolStatusParam, int *pnNoOfConsMps,

int *plNoOfColsMps, int *plErrorLine)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

sFileNameMPS The name of the input MPS file.

szFileNameSol The name of the output solution file.

188 CHAPTER 2

nNoOfColsEvaluatedPerSet The number of columns evaluated together in one set.

nNoOfColsSelectedPerSet The number of columns selected from one set.

nTimeLimitSec The time limit for the program in seconds

Output Arguments:

Name Description

pnSolStatusParam A pointer to an integer variable containing the status of the

optimization. For possible values, refer to the Common Macro

Definitions table.

pnNoOfConsMps The number of constraints in the problem.

plNoOfColsMps The number of variables (columns) in the problem.

plErrorLine The line number at which a structural error was found.

Remarks:

 LSsolveLP can solve an LP model that is stored in an MPS file.

LSsolveGOP()

Description:

Optimizes a global optimization problem.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsolveGOP(pLSmodel pModel, int *pnStatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pnStatus A pointer to an integer variable containing the status of the

optimization. For possible values, refer to the Common Macro

Definitions table.

Remarks:

 LINDO API’s global optimization solver is specifically designed to solve hard nonlinear

models with multiple local solutions.

 See the Global Optimization Parameters section above for available parameters that

could be used to fine tune the global optimizer to yield improved performance in solving

different problem classes.

FUNCTION DEFINITIONS 189

 The solution process can be lengthy on medium to large models with multiple extrema.

LINDO API can be set to periodically callback to your code to allow you to monitor the

solver’s progress. For more information, see LSsetCallback() and LSsetMIPCallback().

190 CHAPTER 2

LSsolveMIP()

Description:

Optimizes a mixed-integer programming model using branch-and-cut.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsolveMIP(pLSmodel pModel, int *pnStatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pnStatus A pointer to an integer variable containing the status of the

optimization. For possible values, refer to the Common Macro

Definitions table.

Remarks:

 To solve continuous models, see LSoptimize().

 To establish branching priority amongst the variable, see LSloadVarPriorities().

 The solution process can be lengthy on large models. LINDO API can be set to

periodically callback to your code to allow you to monitor the solver’s progress. For

more information, see LSsetCallback() and LSsetMIPCallback().

 Prior to solving the problem, LS_IPARAM_DECOMPOSITION_TYPE parameter can

be set to LS_LINK_BLOCKS_NONE to force the mixed-integer solver to exploit total

decomposition.

 LSbnbSolve(), from LINDO API 1.x, has been deprecated. LINDO API is equipped with

a state-of-the-art MIP (LP) presolver that performs a wide range of reduction and

elimination techniques that aims at reducing the size of a given problem before

optimizing it. The preprocessing phase terminates with one of the following outputs,

1) A reduced model ready to be submitted to the solver engine.

2) A solution status indicating infeasibility (LS_STATUS_INFEASIBLE)

3) A solution status indicating unboundedness (LS_STATUS_UNBOUNDED)

4) A solution status indicating infeasibility or unboundedness

(LS_STATUS_INFORUNB), but no certificate of which.

FUNCTION DEFINITIONS 191

LSsolveSP ()

Description:

Solves the SP models. All parameters controlling the solver should be set before calling the

routine.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsolveSP (pLSmodel pModel, int * pnStatus)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

pnStatus An integer reference for the status

LSoptimizeQP()

Description:

Optimizes a quadratic model with the best suitable solver.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSoptimizeQP(pLSmodel pModel, int *pnStatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pnStatus A pointer to an integer variable containing the status of the

optimization. For possible values, refer to the Common Macro

Definitions table.

LSPreRelaxMIP()

Description:

This method use the one-change, two-change, and the depth first enumeration heuristics to

find a feasible solution for 0-1 pure integer programs or 0-1 mixed integer programs with

only soft constraints.

192 CHAPTER 2

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSPreRelaxMIP(pLSmodel pModel, int nPreRelaxLevel, int

nPreLevel,int nPrintLevel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nPreRelaxLevel The heuristic level.

- Set to 1, try only one-change heuristic with all 0s initial

solution and reverse order.

-Set to 2, try level 1, and then try two-change heuristic.

- Set to 3, try depth-first enumeration heuristic.

nPreLevel Set an MIP presolve level, add flags.

nPrintLevel The print level for the solver.

Remarks:

 If the solver finds a feasible solution that is better than the current incumbent for the

MIP problem, then it will store the solution to pLSmodel->mipsol->primal.

LSsolveSBD()

Description:

Optimizes a given LP or MILP model with Benders’ decomposition. The model should have

dual angular block structure to be solved with this routine. The dual angular structure is

specified explicitly with the argument list.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsolveSBD(pLSmodel pModel, int nStages, int

*panRowStage, int *panColStage, int *pnStatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nStages An integer specifying the number of stages/blocks in the dual

angular model.

panRowStage An integer array specifying the stage indices of constraints.

Stage-0 indicates linking row or column.

FUNCTION DEFINITIONS 193

panColStage An integer array specifying the stage indices of variables.

Stage-0 indicates linking row or column.

Output Arguments:

Name Description

pnStatus A pointer to an integer variable containing the status of the

optimization. For possible values, refer to the Common Macro

Definitions table.

Remarks:

 Models with block angular structure (linking rows) can be dualized and solved with

this routine.

 If the model has too many linking columns, the efficiency would be diminished

substantially. This routine is best fitted to models with several explicit blocks and a few

linking variables (e.g. 5-10% of all variables).

LSsolveHS()

Description:

Solves the given model heuristically using the specified search method. All parameters

controlling the solver should be set before calling the routine.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsolveHS(pLSmodel pModel, int nSearchMethod, int

*pnStatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nSearchMethod An integer macro specifying the heuristic search method.

Output Arguments:

Name Description

pnStatus An integer reference for the status.

Remark:

The solutions found by this routine are not guaranteed to be globally optimal.

If any feasible solution is found, the solution status at termination would be

LS_STATUS_FEASIBLE.

194 CHAPTER 2

LSsolveMipBnp()

Description:

Solve the MIP model with the branch-and-price method..

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsolveMipBnp(pLSmodel pModel, int nBlock, char

*pszFname, int *pnStatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nBlock An integer specifying the number of blocks.

pszFname An input file specifying the block structure (optional).

pnStatus A pointer to an integer variable containing the status of the

optimization. For possible values, refer to the Common Macro

Definitions table.

FUNCTION DEFINITIONS 195

Solution Query Routines
The routines in this section allow you to retrieve information regarding a model’s solution values

following optimization.

Note: LINDO API requires that sufficient memory is allocated for each output argument of the

retrieving function.

LSgetBasis()

Description:

Gets information about the basis that was found after optimizing the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetBasis(pLSmodel pModel, int *panCstatus, int

*panRstatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

panCstatus

A pointer to an integer vector in which information about the

status of the variables is to be placed. The length of this vector

must be  the number of variables in the model. The i-th

element of this array returns information on the i-th variable as

follows:

≥0: Index of the row that variable is basic in

-1: Nonbasic at lower bound

-2: Nonbasic at upper bound

-3: Free and nonbasic at zero value

This value may be set to NULL if column basis information is

not needed.

panRstatus

A pointer to an integer vector in which information about the

status of the constraints is to be placed. The length of this

vector must be  the number of constraints in the model. The

i-th element of this array returns information on the i-th

constraint as follows:

 ≥0: Row’s associated slack variable is basic

-1: Row’s associated slack variable is nonbasic at zero

This value may be set to NULL if constraint information is not

needed.

196 CHAPTER 2

Remarks

 To load a basis, use LSloadBasis().

 LSloadBasis() does not require the row indices that the variables are basic in. Setting all

basic variables to a nonnegative integer is sufficient to specify a basis.

 LSgetBasis(), in addition to the indices of basic variables, returns also the indices of the

rows that variables are basic in.

 If the LP presolver was on during LP optimization, the column status of basic variables

that were eliminated from the original LP will not correspond to row indices. In order to

obtain the row indices of all the basic variables, you will need to turn off the LP

presolver and call LSoptimize() again. This reoptimization would normally take zero

iteration because the last basis is already optimal. Calling LSgetBasis() after the

reoptimization would return panCstatus with correct row indices for all basic columns.

Note: Solution query routines will return an error code of 2009 -the requested info not available-

whenever they are called after the optimization halts without a solution being computed. The

main reasons for not having a solution after optimization are

 1) optimization halts due to a time or iteration limit

 2) optimization halts due to numerical errors

 3) optimization halts due to CTRL-C (user break)

 4) presolver determines the problem to be infeasible or unbounded

 5) the solver used in current optimization session (e.g. LSsolveMIP) did not produce any

 results for the queried solution object (e.g. GOP solution).

 The last error code returned by the optimizer can be retrieved by calling LSgetInfo() function.

LSgetDualSolution()

Description:

Returns the value of the dual variables for a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetDualSolution(pLSmodel pModel, double *padDual)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padDual A pointer to a double precision vector in which the dual

solution is to be placed. The length of this vector must be equal

to or exceed the number of constraints in the model. It is

FUNCTION DEFINITIONS 197

assumed that sufficient memory has been allocated for this

vector.

Remarks:

 The dual variable associated with a constraint is the increase in the objective function

value per unit of increase in the right-hand side of the constraint, given the change is

within the sensitivity limits of that RHS. Thus, if the objective is MAX, then a “”

constraint has a nonnegative dual price and a “” constraint has a nonpositive dual price.

If the objective is MIN, then a “” constraint has a nonpositive dual price and a “”

constraint has a nonnegative dual price.

 To learn more about sensitivity analysis, see Chapter 10.

 To get slack values on the constraints, see LSgetSlacks().

LSgetInfo()

Description:

Returns model or solution information about the current state of the LINDO API solver after

model optimization is completed. This function cannot be used to access callback

information.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetInfo(pLSmodel pModel, int nQuery, void *pvValue)

Input Arguments:

Name Description

pModel A pointer to an instance of Lsmodel.

nQuery For possible values, refer to the tables under ‘Available

Information’ section.

Output Arguments:

Name Description

pvValue This is a pointer to a memory location where LINDO API will

return the requested information. You must allocate sufficient

memory for the requested information prior to calling this

function.

Remarks:

 This function cannot be used to access callback information. LSgetCallbackInfo() should

be used instead.

 Query values whose names begin with LS_IINFO return integer values, while those

whose names begin with LS_DINFO return double precision floating point values.

198 CHAPTER 2

LSgetProfilerInfo()

Description:

Get profiler info for the specified context.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetProfilerInfo(pLSmodel pModel, int mContext, int *pnCalls,

double *pdElapsedTime);

Input Arguments:

Name Description

pModel A pointer to an instance of Lsmodel.

mContext An integer macro specifying the profiler context.

pnCalls An integer reference to return the number of calls/hits to the

context.

pdElapsedTime A double reference to return the elapsed time in the context.

LSgetProfilerContext()

Description:

Return the profiler context description.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetProfilerContext(pLSmodel pModel, int mContext);

Input Arguments:

Name Description

pModel A pointer to an instance of Lsmodel.

mContext An integer macro specifying the profiler context.

FUNCTION DEFINITIONS 199

LSgetMIPBasis()

Description:

Gets information about the basis that was found at the node that yielded the optimal MIP

solution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMIPBasis(pLSmodel pModel, int *panCstatus, int

*panRstatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

panCstatus

A pointer to an integer vector in which information about the

status of the variables is to be placed. The length of this vector

must be  the number of variables in the model. The i-th

element of this array returns information on the i-th variable as

follows:

 ≥0: Index of row that variable is basic in

-1: Nonbasic at lower bound

-2: Nonbasic at upper bound

-3: Free and nonbasic at zero value

This value may be set to NULL if column basis information is

not needed..

panRstatus

A pointer to an integer vector in which information about the

status of the constraints is to be placed. The length of this

vector must be  the number of constraints in the model. The

i-th element of this array returns information on the i-th

constraint as follows:

0: Slack is basic

-1: Slack is nonbasic at zero

This value may be set to NULL if constraint information is not

needed.

Remarks:

 For information on loading a mixed-integer program’s formulation data into the system,

see LSloadVarType().

200 CHAPTER 2

LSgetMIPDualSolution()

Description:

Gets the current dual solution for a MIP model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMIPDualSolution(pLSmodel pModel, double *padDual)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padDual A pointer to a double precision vector containing the optimal

dual solution to the LP relaxation of a MIP model by fixing all

integer variables with respect to the resident MIP solution. The

number of elements in this vector must equal, or exceed, the

number of constraints in the model.

Remarks:

 For information on loading a mixed-integer program’s formulation data into the system,

see LSloadVarType().

LSgetMIPPrimalSolution()

Description:

Gets the current primal solution for a MIP model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMIPPrimalSolution(pLSmodel pModel, double

*padPrimal)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padPrimal A pointer to a double precision vector in which the primal

solution to the integer model is to be placed. The length of this

FUNCTION DEFINITIONS 201

vector is equal to or exceeds the number of variables in the

model—continuous and integer.

Remarks:

 For information on loading a mixed-integer program’s formulation data into the system,

see LSloadVarType().

 To get the solution for a continuous model, see LSgetPrimalSolution().

LSgetMIPReducedCosts()

Description:

Gets the current reduced cost for a MIP model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMIPReducedCosts(pLSmodel pModel, double

*padRedCostl)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padRedCostl A pointer to a double precision vector containing the optimal

reduced costs to the LP relaxation of a MIP model by fixing all

integer variables with respect to the resident MIP solution. The

number of elements in this vector must equal, or exceed, the

number of constraints in the model.

Remarks:

 For information on loading a mixed-integer program’s formulation data into the system,

see LSloadVarType().

202 CHAPTER 2

LSgetMIPSlacks()

Description:

Gets the slack values for a mixed-integer model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMIPSlacks(pLSmodel pModel, double *padSlacks)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padSlacks A pointer to a double precision vector in which the slack values

are to be placed. The number of elements in this vector must

equal, or exceed, the number of constraints in the model.

Remarks:

 The ability to solve mixed-integer programs is an optional feature. Not all installations

will have this capability. To determine if your license includes MIP functionality, use

LSgetModelIntParameter() with license information access macros.

 To get the slacks on a continuous LP model, see LSgetSlacks().

LSgetPrimalSolution()

Description:

Returns the primal solution values for a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetPrimalSolution(pLSmodel pModel, double *padPrimal)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padPrimal

A pointer to a vector in which the primal solution is to be

placed. The length of this vector must equal or exceed the

number of variables in the model.

FUNCTION DEFINITIONS 203

Remarks:

 To get reduced costs on the variables, see LSgetReducedCosts().

LSgetReducedCosts()

Description:

Returns the reduced cost of all variables of a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetReducedCosts(pLSmodel pModel, double

*padRedcosts)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padRedcosts

A pointer to a double precision vector in which the reduced

costs of the variables are to be returned. The vector length must

be equal to or exceed the number of variables in the model.

Remarks:

 The reduced cost is the dual price of the simple lower or upper bound constraint of a

variable. Thus, if the objective is MIN, then a binding lower bound will have a positive

reduced cost, and a binding upper bound will have a negative reduced cost. If the

objective is MAX, then a binding lower bound will have a negative reduced cost, and a

binding upper bound will have a positive reduced cost.

 To get primal values on the variables, see LSgetPrimalSolution().

LSgetReducedCostsCone()

Description:

Returns the reduced cost of all cone variables of a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetReducedCostsCone(pLSmodel pModel, double

*padRedcosts)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

204 CHAPTER 2

Output Arguments:

Name Description

padRedcosts

A pointer to a double precision vector in which the reduced

costs of the variables are to be returned. The vector length must

be equal to or exceed the number of variables in the model.

LSgetSlacks()

Description:

Returns the value of the slack variable for each constraint of a continuous model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetSlacks(pLSmodel pModel, double *padSlacks)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padSlacks

A pointer to a double precision vector in which the slack

variables are to be returned. The length of this vector must

equal or exceed the number of constraints in the model. Slack

values are computed using the formula: s = b – Ax, where s is

the vector of slacks, b is the right-hand side vector, A is the

nonzero matrix for the basic columns, and x is the solution

vector. Thus, less-than-or-equal-to constraints will return

nonnegative values when feasible, while

greater-than-or-equal-to constraints will return nonpositive

values when feasible.

Remarks:

 To get dual values of the constraints, see LSgetDualSolution().

 To get the slacks for a MIP model, see LSgetMIPSlacks().

FUNCTION DEFINITIONS 205

LSgetSolution()

Description:
 Gets the solution specified by the second argument,

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetSolution(pLSmodel pModel, int nWhich, double

*padValues)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nWhich An integer parameter specifying the solution to be retrieved.

Possible values are:

 LSSOL_BASIC_PRIMAL

 LSSOL_BASIC_DUAL

 LSSOL_BASIC_SLACK

 LSSOL_BASIC_REDCOST

 LSSOL_INTERIOR_PRIMAL

 LSSOL_INTERIOR_DUAL

 LSSOL_INTERIOR_SLACK

 LSSOL_INTERIOR_REDCOST

Output Arguments:

Name Description

padValues A pointer to a double precision vector in which the specified

solution is to be placed. The length of this vector must be equal

to or exceed the number of elements to be retrieved (e.g.

number of constraints or variables). It is assumed that

sufficient memory has been allocated for this vector.

206 CHAPTER 2

LSgetNodePrimalSolution ()

Description:

Returns the primal solution for the specified node.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetNodePrimalSolution (pLSmodel pModel, int iScenario,

int iStage, double * padX)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario the node belongs to.

iStage An integer specifying the stage the node belongs to.

padX A double array to return specified nodes's dual solution The

length of this vector is equal to the number of variables in the

stage associated with the node. It is assumed that memory has

been allocated for this vector.

Remarks:

The number of variables or constraints in a stage can be accessed via LSgetStocInfo().

LSgetScenarioObjective ()

Description:

Returns the objective value for the specified scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetScenarioObjective (pLSmodel pModel, int iScenario,

double * pObj)

FUNCTION DEFINITIONS 207

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario index.

pObj A reference to a double variable to return the result.

LSgetScenarioPrimalSolution ()

Description:

Returns the primal solution for the specified scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetScenarioPrimalSolution (pLSmodel pModel, int

iScenario, double * padX, double * pObj)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario index.

padX A double array to return scenario's primal solution. The length

of this vector is equal to the number of variables in the core

model. It is assumed that memory has been allocated for this

vector.

pObj A reference to a double to return the objective value for the

specified scenario.

LSgetScenarioReducedCost ()

Description:

Returns the reduced cost for the specified scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetScenarioReducedCost (pLSmodel pModel, int iScenario,

double * padD)

208 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario index.

padD A double array to return scenario's reduced cost. The length of

this vector is equal to the number of variables in the core

model. It is assumed that memory has been allocated for this

vector.

LSgetNodeDualSolution ()

Description:

Returns the dual solution for the specified node.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetNodeDualSolution (pLSmodel pModel, int iScenario, int

iStage, double * padY)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario the node belongs to

iStage An integer specifying the stage the node belongs to.

padY A double array to return specified nodes's dual solution The

length of this vector is equal to the number of constraints in the

stage associated with the node. It is assumed that memory has

been allocated for this vector.

LSgetNodeSlacks ()

Description:

Returns the dual solution for the specified node.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetNodeSlacks (pLSmodel pModel, int iScenario, int

iStage, double * padS)

FUNCTION DEFINITIONS 209

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario the node belongs to

iStage An integer specifying the stage the node belongs to.

padS a double array to return specified nodes's dual solution The

length of this vector is equal to the number of constraints in the

stage associated with the node. It is assumed that memory has

been allocated for this vector.

LSgetScenarioDualSolution ()

Description:

Returns the dual solution for the specified scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetScenarioDualSolution (pLSmodel pModel, int iScenario,

double * padY)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario index.

iStage An integer specifying the stage the node belongs to.

padY A double array to return scenario's dual solution The length of

this vector is equal to the number of constraints in the core

model. It is assumed that memory has been allocated for this

vector.

210 CHAPTER 2

LSgetScenarioSlacks ()

Description:

Returns the primal slacks for the specified scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetScenarioSlacks (pLSmodel pModel, int iScenario,

double * padS)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario index.

iStage An integer specifying the stage the node belongs to.

padS A double array to return scenario's primal slacks. The length of

this vector is equal to the number of constraints in the core

model. It is assumed that memory has been allocated for this

vector.

LSgetNextBestMIPSoln()

Description:

Generates the next best (in terms of objective value) solution for the current mixed-integer

model. Repeated calls to LSgetNextBestMIPSoln() will allow one to generate the so-called

K-Best solutions to mixed-integer model. This is useful for revealing alternate optima.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetNextBestMIPSoln(pLSmodel pModel, int

*pnIntModStatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pnIntModStatus A pointer to an integer varaible that will return the status on the

new, next-best solution.

FUNCTION DEFINITIONS 211

Remarks:

 LSgetNextBestMIPSoln() may not be used on models containing general integer

variables; all integer variables must be binary.

 LSgetNextBestMIPSoln() modifies the original, base model by adding one constraint to

the end of the model for each call to LSgetNextBestMIPSoln(). To return to the original

model, you must delete these additional constraints after the final call to

LSgetNextBestMIPSoln().

 To generate the K-Best solutions for a MIP, one would perform the following steps:

1. Generate the base MIP model.

2. Call LSsolveMIP() to optimize the base model.

3. Set i=0.

4. If current solution status is not optimal, go to step 10.

5. Call one or more model solution query routines to retrieve the current solution.

6. Set i=i+1.

7. If i>=K go to 10.

8. Call LSgetNextBestMIPSoln() to find the next best solution.

9. Go to step 4.

10. Exit.

LSreadSolutionFromSolFile()

Description:

This method reads the LP solution from a binary file. Since the number of columns can be too

large to handle in a single array, the method takes in two parameters, lBeginIndexPrimalSol

and lEndIndexPrimalSol and returns all the primal values for the columns whose index lies

between these two values.

212 CHAPTER 2

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadSolutionFileLP(char *szFileNameSol, int nFileFormat,

long long lBeginIndexPrimalSol, long long

lEndIndexPrimalSol, int *pnSolStatus, double *pdObjValue,

int *pnNoOfCons, long long *plNoOfCols, int

*pnNoOfColsEvaluated, int *pnNoOfIterations, double

*pdTimeTakenInSeconds, double *padPrimalValues, double

*padDualValues)

Input Arguments:

Name Description

szFileNameSol The name of the binary file from which the solution is to be

read.

nFileFormat The format of the binary file. We are currently supporting a

single format in which data is written to the file in the

following sequence:

 1) File format: Possible values are:

LS_SPRINT_OUTPUT_FILE_FREE (default)

LS_SPRINT_OUTPUT_FILE_BIN

LS_SPRINT_OUTPUT_FILE_TXT

2) Solution status

3) Objective value

4) No of constraints

5) No of columns (total)

6) No of columns (evaluated)

7) Primal solution

8) Dual solution

lBeginIndexPrimalSol The starting index for the set of columns whose primal value is

to be retuned.

lEndIndexPrimalSol The ending index of the set of columns whose primal value is

to be retuned.

Output Arguments:

Name Description

nSolStatus The status of the solution: feasible, infeasible,etc…

dObjValue Objective function value.

nNoOfCons Number of constraints.

lNoOfCols Number of columns in the MPS file.

FUNCTION DEFINITIONS 213

nNoOfColsEvaluated Number of columns that were evaluated and added to the LP at

some stage.

pnNoOfIterations Number of iterations.

pdTimeTakenInSeconds Time elapsed in seconds.

padPrimalValues Primal solution, this array must be assigned memory

equivalent to (lEndIndexPrimalSol - lBeginIndexPrimalSol +

1) doubles.

padDualValues Dual solution.

LSloadGASolution()

Description:

Loads the GA solution at specified index in the final population to the main solution

structures for access with solution query routines.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadGASolution(pLSmodel pModel, int nIndex);

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nIndex Index of the individual in the final population

214 CHAPTER 2

LSgetObjPoolNumSol()

Description:

Get the total number of alternative solutions found w.r.t the objective function at specified

index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int SgetObjPoolNumSol(pLSmodel pModel, int nObjIndex,

int *pNumSol)

Input Arguments:

Name Description

pModel An instance of LSmodel.

nObjIndex Index of the objective function for which the solution is

queried for.

Output Arguments:

Name Description

pNumSol An integer reference to return the number of solutions found.

LSloadSolutionAt()

Description:

Loads the solution at specified index and objective level to the main solution structures for

access with solution query routines.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadSolutionAt(pLSmodel pModel, int nObjIndex, int

nSolIndex)

Input Arguments:

Name Description

pModel An instance of LSmodel.

nObjIndex Index of the objective function for which the solution is

queried for.

nSolIndex Index of the alternative solution for the specified objective

function.

FUNCTION DEFINITIONS 215

Model Query Routines
The routines in this section allow you to retrieve the components of the model data.

LSgetConeDatai()

Description:

Retrieve data for cone i.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetConeDatai(pLSmodel pModel, int iCone, char

*pachConeType, int *piNnz, int *piCols)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iCone The index of the cone to retrieve the data for.

Output Arguments:

Name Description

pachConeType A pointer to a character variable that returns the constraint’s

type. The returned value will be ‘'Q', or ‘R’.

piNnz A pointer to an integer variable that returns the number of

variables characterizing the cone.

piCols A pointer to an integer vector that returns the indices of

variables characterizing the cone.

216 CHAPTER 2

LSgetConeIndex()

Description:

Gets the index of a cone with a specified name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetConeIndex(pLSmodel pModel, char *pszConeName, int

*piCone)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pszConeName A pointer to a null-terminated string containing the name of the

cone for which the index is requested.

Output Arguments:

Name Description

piCone A pointer to an integer scalar that returns the index of the cone

requested.

LSgetConeNamei()

Description:

Gets the name of a cone with a specified index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetConeNamei(pLSmodel pModel, int iCone, char

*pachConeName)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iCone Index of the cone whose name is to be retrieved.

Output Arguments:

Name Description

pachConeName A pointer to a character array that contains the cone’s name

with a null terminator.

FUNCTION DEFINITIONS 217

LSgetConstraintDatai()

Description:

Gets data on a specified constraint.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetConstraintDatai(pLSmodel pModel, int iCon, char

*pchContype, char *pchIsNlp, double *pdB)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iCon The index of the constraint you wish to receive information on.

Output Arguments:

Name Description

pchContype A pointer to a character variable that returns the constraint’s

type. The returned value will be ‘'L', 'E', 'G', or ‘N’, for less-

than-or-equal-to, equal to, greater-than-or-equal-to, or neutral,

respectively.

pchIsNlp A pointer to a character that returns 0 if the constraint is linear

and 1 if it is nonlinear.

pdB A pointer to a double precision variable that returns the

constraint’s right-hand side value.

218 CHAPTER 2

LSgetConstraintIndex()

Description:

Gets the index of a constraint with a specified name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetConstraintIndex(pLSmodel pModel, char *pszConname,

int *piCon)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pszConname A pointer to a character array that contains the constraint’s

name with a null terminator.

Output Arguments:

Name Description

piCon A pointer to an index of the constraint whose name is to be

retrieved.

LSgetConstraintNamei()

Description:

Gets the name of a constraint with a specified index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetConstraintNamei(pLSmodel pModel, int iCon, char

*pszConname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iCon Index of the constraint whose name is to be retrieved.

Output Arguments:

Name Description

pszConname A pointer to a character array that contains the constraint’s

name with a null terminator.

FUNCTION DEFINITIONS 219

LSgetLPConstraintDatai()

Description:

Retrieves the formulation data for a specified constraint in a linear or mixed integer linear

program. Individual pointers may be set to NULL if a particular item is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetLPConstraintDatai(pLSmodel pModel, int iCon, char

*pchContype, double *pdB, int *pnNnz, int *paiVar, double

*padAcoef)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iCon An integer containing the index of the constraint whose data

you wish to retrieve.

Output Arguments:

Name Description

pchContype A pointer to a character that returns the constraint’s type.

Values returned are 'L' for less-than-or-equal-to, 'E' for

equal-to, 'G' for greater-than-or-equal-to, or ‘N’ for neutral.

pdB A pointer to a double precision quantity that returns the

constraint’s right-hand side coefficient.

pnNnz A pointer to an integer that returns the number of nonzero

coefficients in the constraint.

paiVar A pointer to an integer array that returns the indices of the

variables with nonzero coefficients in the constraint. You must

allocate all required space for this array before calling this

routine.

padAcoef A pointer to a double precision array that returns the

constraint’s nonzero coefficients. You must allocate all

required space for this array before calling this routine.

Remarks:

 If you know a constraint’s name, but don’t know its internal index, you can obtain the

index with a call to LSgetConstraintIndex(). To get a constraint’s name, given its index,

see LSgetConstraintNamei().

220 CHAPTER 2

LSgetLPData()

Description:

Retrieves the formulation data for a given linear or mixed integer linear programming model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetLPData(pLSmodel pModel, int *pObjsense, double

*pdObjconst, double *padC, double *padB, char

*pachContypes, int *paiAcols, int *pacAcols, double

*padAcoef, int *paiArows, double *padL, double *padU)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pObjsense A pointer to an integer indicating whether the objective is to be

maximized or minimized. Valid values are LS_MAX or

LS_MIN, respectively.

pdObjconst A pointer to a double precision constant to be added to the

objective value.

padC A pointer to a double precision vector that returns the linear

program’s objective coefficients. This vector must have at least

one element for each variable in the model.

padB A pointer to a double precision vector that returns the

constraint right-hand side coefficients. This vector must have at

least one element for each constraint in the model.

pachContypes

A pointer to a character vector that returns the type of each

constraint. Values returned are 'L', 'E', 'G', or ‘N’ for

less-than-or-equal-to, equal-to, greater-than-or-equal-to, or

neutral, respectively. This array must contain at least one byte

for each constraint.

paiAcols

A pointer to an integer vector returning the index of the first

nonzero in each column. This vector must have n + 1 entries,

where n is the number of variables in the model. The last entry

will be the index of the next appended column, assuming one

was to be appended.

pacAcols

A pointer to an integer vector returning the length of each

column. Note that the length of a column can be set to be

greater than the values of paiAcols would suggest. In other

words, it is possible for pacAcols[i] < paiAcols[i+1] –

FUNCTION DEFINITIONS 221

paiAcols[i].

padAcoef A pointer to a double precision vector returning the nonzero

coefficients of the constraint matrix. This vector must contain

at least one element for each nonzero in the constraint matrix.

paiArows A pointer to an integer vector returning the row indices of the

nonzeros in the constraint matrix. You must allocate at least

one element in this vector for each nonzero in the constraint

matrix.

padL A pointer to a double precision vector containing the lower

bound of each variable. If there is no lower bound on the

variable, then this value will be equal to -LS_INFINITY. You

must allocate at least one element in this vector for each

variable in the model.

padU A pointer to a double precision vector containing the upper

bound of each variable. If there is no upper bound on the

variable, then this value will be equal to LS_INFINITY. You

must allocate at least one element in this vector for each

variable in the model.

Remarks:

 For information on loading a linear program’s formulation data into the system, see

LSloadLPData().

 Pointers may be set to NULL for any information not required.

222 CHAPTER 2

LSgetLPVariableDataj()

Description:

Retrieves the formulation data for a specified variable. Individual pointers may be set to

NULL if a particular item is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetLPVariableDataj(pLSmodel pModel, int iVar, char

*pchVartype, double *pdC, double *pdL, double *pdU, int

*pnAnnz, int *paiArows, double *padAcoef)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iVar An integer containing the index of the variable whose data you

wish to retrieve.

Output Arguments:

Name Description

pchVartype A pointer to a character that returns the variable’s type. Values

returned are 'B' for binary, 'C' for continuous, or 'I' for general

integer.

pdC A pointer to a double precision quantity that returns the

variable’s objective coefficient.

pdL A pointer to a double precision quantity that returns the

variable’s lower bound.

pdU A pointer to a double precision quantity that returns the

variable’s upper bound.

pnAnnz A pointer to an integer that returns the number of nonzero

constraint coefficients in the variable’s column.

paiArows A pointer to an integer array that returns the row indices of the

variable’s *pnAnnz nonzeros. You must allocate the required

space for this array before calling this routine.

padAcoef A pointer to a double precision array that returns the variable’s

nonzero coefficients. You must allocate all required space for

this array before calling this routine.

Remarks:

 If you know a variable’s name, but don’t know its internal index, you can obtain the

index with a call to LSgetVariableIndex(). To get a variable’s name given its index, see

LSgetVariableNamej().

FUNCTION DEFINITIONS 223

LSgetNameData()

Description:

Returns the names—objective, right-hand side vector, range vector, bound vector, constraints,

and variables—of a given model. Any of the pointers to the names can be input as NULL if

the corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetNameData(pLSmodel pModel, char *pszTitle, char

*pszObjname, char *pszRhsname, char *pszRngname, char

*pszBndname, char **paszConnames, char *

pachConNameData , char **paszVarnames, char

*pachVarNameData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pszTitle A pointer to a character array that returns the title of the

problem. A model’s title can be of any length, so be sure to

allocate sufficient space to store the title you originally passed

to LINDO API. The returned title will be null terminated.

pszObjname A pointer to a character array that will return the name of the

objective, null terminated.

pszRhsname A pointer to a character array that returns the name of the

right-hand side vector, null terminated.

pszRngname A pointer to a character array that returns the name of the range

vector, null terminated. This pointer is reserved for future use.

pszBndname A pointer to a character array that returns the name of the

bound vector, null terminated.

paszConnames A pointer to an array of pointers of length equal to or

exceeding the number of constraints. On return, these pointers

will point to the constraint names stored in the character array

pointed to by paszConNameData. You must allocate space for

m pointers, where m is the number of rows.

pachConNameData A pointer to an array of characters used to store the actual

constraint name data.

paszVarnames A pointer to an array of pointers of length equal to or

exceeding the number of variables. On return, the pointers will

224 CHAPTER 2

point to the variable names stored in the character array

pointed to by paszVarNameData. You must allocate space for

n pointers, where n is the number of variables.

pachVarNameData A pointer to an array of characters used to store the actual

variable name data.

Remarks:

 The right-hand side name, range name, and bound name are typically only used if the

model was read from an MPS file.

 You may set any of the pointers to NULL if the particular name data is not relevant.

 The constraint and variable name data in the output arguments pachConNameData and

pachVarNameData are created internally by LINDO API with LSloadNameData.

LSgetNLPConstraintDatai()

Description:

Gets data about the nonlinear structure of a specific row of the model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetNLPConstraintDatai (pLSmodel pModel, int i, int

*pnNnzi, int *paiColi, double *padCoefi);

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

i An integer indicating the constraint to retrieve the data for.

Output Arguments:

Name Description

pnNnzi A pointer to an integer returning the number of nonlinear

nonzeros in constraint i.

paiColi A pointer to an integer vector returning the column indices of

the nonlinear nonzeros in the i
th

 row of the constraint matrix.

padCoefi A pointer to a double precision vector returning the current

values of the nonzero coefficients in the i
th

 row of the coefficient

(Jacobian) matrix.

Remarks:

 It is the caller’s responsibility to make sure that the vectors paiColi and padCoefi have

room for at least *pnNnzi elements.

FUNCTION DEFINITIONS 225

LSgetNLPData()

Description:

Gets data about the nonlinear structure of a model, essentially the reverse of

LSloadNLPData().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetNLPData(pLSmodel pModel, int *paiCols, int *pacCols,

double *padCoef, int *paiRows, int *pnObj, int *paiObj,

double *padObjCoef, char *pachConType)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

Output Arguments:

Name Description

paiCols A pointer to an integer vector returning the index of the first

nonlinear nonzero in each column. This vector must have

nVars+1 entries, where nVars is the number of variables. The

last entry will be the index of the next appended column,

assuming one was to be appended.

pacCols A pointer to an integer vector returning the number of

nonlinear elements in each column.

padCoef A pointer to a double precision vector returning the current

values of the nonzero coefficients in the (Jacobian) matrix.

This can be NULL.

paiRows A pointer to an integer vector returning the row indices of the

nonlinear nonzeros in the coefficient matrix.

pnObj An integer returning the number of nonlinear variables in the

objective function.

paiObj A pointer to an integer vector returning column indices of the

nonlinear terms in the objective.

padObjCoef A pointer to a double precision vector returning the current

partial derivatives of the objective corresponding to the

variables paiObj [].

pachConType A pointer to a character vector whose elements indicate

whether a constraint has nonlinear terms or not. If

pachConType [i] > 0, then constraint i has nonlinear terms.

226 CHAPTER 2

LSgetNLPObjectiveData()

Description:

Gets data about the nonlinear structure of the objective row.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetNLPObjectiveData (pLSmodel pModel, int *pnObj, int

*paiObj, double *padObjCoef);

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pnObj A pointer to an integer returning the number of nonlinear

variables in the objective function.

paiObj A pointer to an integer vector returning column indices of the

nonlinear terms in the objective.

padObjCoef A pointer to a double precision vector returning the current

partial derivatives of the objective corresponding to the

variables in paiObj with respect to the last primal solution

computed during the iterations

Remarks:

 It is the caller’s responsibility to make sure that the vectors paiObj and padObjCoef have

room for at least *pnObj elements.

FUNCTION DEFINITIONS 227

LSgetNLPVariableDataj()

Description:

Gets data about the nonlinear structure of a specific variable of the model

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetNLPVariableDataj (pLSmodel pModel,int j, int

*pnNnzj, int *paiRowj, double * padCoefj);

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

j An integer indicating the column to retrieve the data for.

Output Arguments

Name Description

pnNnzj A pointer to an integer returning the number of nonlinear

nonzeros in column j.

paiRowj A pointer to an integer vector returning the row indices of the

nonlinear nonzeros in the j
th

 column of the constraint matrix.

padCoefj A pointer to a double precision vector returning the current

values of the nonzero coefficients in the j
th

 column of the

coefficient (Jacobian) matrix with respect to the last primal

solution computed during the iterations.

Remarks:

 It is the caller’s responsibility to make sure that the vectors paiRowj and padCoefj have

room for at least *pnNnzj elements.

228 CHAPTER 2

LSgetQCData()

Description:

Retrieves the quadratic data from an LSmodel data structure. Any of the pointers in the output

argument list can be set to NULL if the corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error codes.

Prototype:

int LSgetQCData(pLSmodel pModel, int *paiQCrows, int

*paiQCcols1, int *paiQCcols2, double *padQCcoef)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel from which to retrieve the

problem data.

Output Arguments:

Name Description

paiQCrows

A pointer to an integer vector containing the index of the

constraint associated with each quadratic term with a nonzero

coefficient. The objective row is indicated with an index of

-1.This vector must have room for all nonzero entries.

PaiQCcols1 A pointer to an integer vector containing the index of the first

variable defining each quadratic term. This vector must have

one element for each nonzero in the matrix.

paiQCcols2

A pointer to an integer vector containing the index of the second

variable defining each quadratic term. This vector must have

one element for each nonzero in the matrix.

padQCcoef A pointer to a double vector containing the nonzero coefficients

in the quadratic matrix. This vector must also have space for

each nonzero matrix element.

Remarks:

 LSgetQCData does not return the number of nonzeros in the Q matrices. You can get that

information using LSgetInfo().

FUNCTION DEFINITIONS 229

LSgetQCDatai()

Description:

Retrieves the quadratic data associated with constraint i from an LSmodel data structure. Any

of the pointers in the output argument list can be set to NULL if the corresponding

information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error codes.

Prototype:

int LSgetQCDatai(pLSmodel pModel, int iCon, int *pnQCnnz, int

*paiQCcols1, int *paiQCcols2, double *padQCcoef)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel from which to retrieve the

problem data.

iCon An integer scalar specifying the constraint for which the

quadratic data will be retrieved.

Output Arguments:

Name Description

pnQCnnz A pointer to an integer containing the number of nonzeros in the

coefficient matrix of the quadratic term.

paiQCcols1 A pointer to an integer vector containing the index of the first

variable defining each quadratic term. This vector must have

one element for each nonzero in the matrix.

paiQCcols2

A pointer to an integer vector containing the index of the second

variable defining each quadratic term. This vector must have

one element for each nonzero in the matrix.

padQCcoef A pointer to a double vector containing the nonzero coefficients

in the quadratic matrix. This vector must also have space for

each nonzero matrix element.

230 CHAPTER 2

LSgetSemiContData()

Description:

Retrieves the semi-continuous data from an LSmodel data structure. Any of the pointers in the

output argument list can be set to NULL if the corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error codes..

Prototype:

int LSgetSemiContData(pLSmodel pModel, int *piNvars, int

*piVarndx, double *padl, double *padu)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel from which to retrieve the

problem data.

Output Arguments:

Name Description

piNvars A pointer to an integer variable to return the number of semi-

continuous variables.

piVarndx A pointer to an integer vector to return the indices of semi-

continuous variables.

padl A pointer to a vector to return the lower bounds of semi-

continuous variables.

padu A pointer to a vector to return the upper bounds of semi-

continuous variables.

FUNCTION DEFINITIONS 231

LSgetSETSData()

Description:

Retrieves sets data from an LSmodel data structure. Any of the pointers in the output

argument list can be set to NULL if the corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error codes

Prototype:

int LSgetSETSData(pLSmodel pModel, int *piNsets, int *piNtnz,

char *pachSETtype, int *piCardnum, int *piNnz, int piBegset,

int *piVarndx)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel from which to retrieve the

problem data.

Output Arguments:

Name Description

piNsets A pointer to an integer variable to return the number of sets in

the model.

piNtnz A pointer to an integer variable to return the total number of

variables in the sets.

pachSETtype A pointer to a character array to return the type of sets in the

model. The size of this array should be at least (*piNsets)

piCardnum A pointer to an integer array to return the cardinalities of sets in

the model. The size of this array should be at least (*piNsets)

piNnz A pointer to an integer array to return the number of variables in

each set in the model. The size of this array should be at least

(*piNsets)

piBegset A pointer to an integer array returning the index of the first

variable in each set. This vector must have (*piNsets + 1)

entries, where *piNsets is the number of sets in the model. The

last entry will be the index of the next appended set, assuming

one was to be appended.

piVarndx A pointer to an integer vector returning the indices of the

variables in the sets. You must allocate at least one element in

this vector for each <variable,set> tuple (i.e. at least *piNtnz

elements are required.)

232 CHAPTER 2

LSgetSETSDatai()

Description:

Retrieves the data for set i from an LSmodel data structure. Any of the pointers in the output

argument list can be set to NULL if the corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error codes.

Prototype:

int LSgetSETSDatai(pLSmodel pModel, int iSet, char

*pachSETType, int *piCardnum, int *piNnz, int *piVarndx)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel from which to retrieve the

problem data.

iSet The index of the set to retrieve the data for.

Output Arguments:

Name Description

pachSETType A pointer to a character variable to return the set type.

piCardnum A pointer to an integer variable to return the set cardinality.

piNnz A pointer to an integer variable to return the number of

variables in the set.

piVarndx A pointer to an integer vector to return the indices of the

variables in the set. This vector should have at least (*piNnz)

elements.

FUNCTION DEFINITIONS 233

LSgetVariableIndex()

Description:

Retrieves the internal index of a specified variable name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetVariableIndex(pLSmodel pModel, char *pszVarname,

int *piVar)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pszVarname A pointer to a null terminated character string containing the

name of the variable.

Output Arguments:

Name Description

piVar A pointer to an integer that returns the variable’s index.

Remarks:

 To get a variable’s name given its index, see LSgetVariableNamej().

 If you have problems with this routine, watch out for embedded blanks. For example,

"X005 " (four trailing blanks) is not the same as " X005" (four leading

blanks), is not the same as "X005" (no blanks).

 Refer to LSreadMPSFile() for a detailed description of the internal formatting of the

name data.

234 CHAPTER 2

LSgetVariableNamej()

Description:

Retrieves the name of a variable, given its index number.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetVariableNamej(pLSmodel pModel, int iVar, char

*pszVarname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iVar An integer containing the index of the variable whose name

you wish to retrieve.

Output Arguments:

Name Description

pszVarname A pointer to a character array that returns the variable’s name

with a null terminator.

Remarks:

 To get a variable’s formulation data given its index, see LSgetLPVariableDataj().

LSgetVarStartPoint()

Description:

Retrieves the values of the initial primal solution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetVarStartPoint(pLSmodel pModel, double *padPrimal)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padPrimal A pointer to a double precision vector containing starting

values for each variable in the given model. The length of this

vector is equal to the number of variables in the model.

FUNCTION DEFINITIONS 235

LSgetVarType()

Description:

Retrieves the variable types and their respective counts in a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetVarType(pLSmodel pModel, char *pachVartypes)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pachVartypes A pointer to a vector returning the type of each variable.

Return value for each variable is either

‘C’ for a continuous variable,

‘B’ for a binary variable, or

‘I’ for a general integer variable.

The length of this vector must be at least that of the current

number of variables in the model. This pointer can be set to

NULL if the variable types are not required.

Remarks:

 For information on loading a mixed-integer program’s formulation data into the system,

see LSloadVarType().

LSgetStageName ()

Description:

Get stage name by index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetStageName (pLSmodel pModel, int stageIndex, char *

stageName)

236 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

stageIndex An integer specifying the index of the stage to retrieve the

name for.

stageName A string to retrieve the stage name (max length is 255

characters).

LSgetStageIndex ()

Description:

Get index of stage by name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetStageIndex (pLSmodel pModel, char * stageName, int *

stageIndex)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

stageName A string specifying the name of the stage to return the index

for.

stageIndex A reference to an integer to return the index of the stage.

LSgetStocParIndex ()

Description:

Get the index of stochastic parameter by name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetStocParIndex (pLSmodel pModel, char * svName, int *

svIndex)

FUNCTION DEFINITIONS 237

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

svName A string specifying the name of the stochastic parameter to

return the index for.

svIndex A reference to an integer to return the index of the stochastic

parameter.

LSgetStocParName ()

Description:

Get name of stochastic parameter by index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetStocParName (pLSmodel pModel, int svIndex, char *

svName)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

svIndex A reference to an integer to return the index of the stochastic

parameter.

svName A string specifying the name of the stochastic parameter to

return the index for.

LSgetScenarioName ()

Description:

Get scenario name by index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetScenarioName (pLSmodel pModel, int jScenario, char *

scenarioName)

238 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the scenario index.

scenarioName A string reference to return the name of the scenario (Max

lengt 255 characters).

LSgetScenarioIndex ()

Description:

Get index of a scenario by its name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetScenarioIndex (pLSmodel pModel, char * scenarioName,

int * jScenario)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

scenarioName A string specifying the name of the scenario to return the index

for.

jScenario A reference an integer to return the index of the scenario.

LSgetProbabilityByScenario ()

Description:

Returns the probability of a given scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetProbabilityByScenario (pLSmodel pModel, int jScenario,

double * dprob)

FUNCTION DEFINITIONS 239

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the scenario index.

dprob A reference to a double to return the probabability of the

scenario.

LSgetProbabilityByNode ()

Description:

Returns the probability of a given node in the stochastic tree.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetProbabilityByNode (pLSmodel pModel, int iNode,

double * dprob)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iNode An integer specifying the node index.

dprob A reference to a double to return the probabability of the node.

LSgetDeteqModel ()

Description:

Get the deterministric equivalent (DEQ) of the SP model, building it if not existent.

Returns:

ideModel an instance of LSmodel object referring to the DEQ model

Prototype:

int LSgetDeteqModel (pLSmodel pModel, int iDeqType, int *

perrorcode)

240 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iDeqType An integer specifying the DEQ type (implicit or explicit).

Possible values are:

LS_DETEQ_FREE

LS_DETEQ_IMPLICIT

LS_DETEQ_EXPLICIT

perrorcode an reference to an integer to return the error code.

LSgetNodeListByScenario ()

Description:

Retrieves the indices of the nodes that belong to a given scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetNodeListByScenario (pLSmodel pModel, int jScenario,

int * pNodesOnPath, int * pnNodes)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the scenario index

pNodesOnPath An integer array to return the node list constituting the

scenario. The length of this vector is equal to the number of

stages in the model. It is assumed that memory has been

allocated for this vector.

pnNodes An integer pointer to return the actual number of nodes on the

scenario.

Remarks:

Also loads the nodes of the specified scenario into an internal buffer.

LSgetStocParOutcomes ()

Description:

Retrieve the outcomes of stochastic parameters for the specified scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 241

Prototype:

int LSgetStocParOutcomes (pLSmodel pModel, int jScenario,

double * padVals, double * pdProbability)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the scenario index. be at least the number

of stochastic parameters in the model.

padVals a double vector to return the values of stochastic parameters for

the specified scenario. The length of this vector should be at

least the number of stochastic parameters in the model.

pdProbability probability of the scenario.

Remarks:

Total number of stochastic parameters could be retrived with LS_IINFO_NUM_SPARS.

LSgetStocParData ()

Description:

Retrieve the data of stochastic parameters.

 Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetStocParData (pLSmodel pModel, int * paiStages, double

* padVals)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

paiStages an integer vector to return the stages of stochastic parameters.

The length of this vector should be at least the number of

stochastic parameters in the model.

padVals a double vector to return the values of stochastic parameters for

the specified scenario. The length of this vector should be at

least the number of stochastic parameters in the model.

Remarks:

Total number of stochastic parameters could be retrived with LS_IINFO_NUM_SPARS.

242 CHAPTER 2

LSgetDiscreteBlocks ()

Description:

Gets the stochastic data for the discrete block event at specified index.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetDiscreteBlocks (pLSmodel pModel, int iEvent, int *

nDistType, int * iStage, int * nRealzBlock, double * padProbs,

int * iModifyRule)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iEvent An integer specifying the index of the discrete block event.

nDistType A reference to an integer to return the distribution type of the

event (optional).

iStage A reference to an integer to return the stage index of the block

event.

nRealzBlock A reference to an integer to return the number of block

realizations in the event.

padProbs An double vector to return event probabilities. The length of

this vector should be *nRealzBlock or more.

iModifyRule A reference to an integer to return the flag indicating whether

stochastic parameters update the core model by adding or

replacing.

Remarks:

iEvent cannot be larger than the total number of discrete block events in the SP model. You

can use LSgetStocInfo() or LSgetInfo() with LS_IINFO_STOC_NUM_EVENTS_BLOCK to

retrieve the maximum possible value for iEvent .

FUNCTION DEFINITIONS 243

LSgetDiscreteBlockOutcomes ()

Description:

Gets the outcomes for the specified block-event at specified block-realization index.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetDiscreteBlockOutcomes (pLSmodel pModel, int iEvent,

int iRealz, int * nRealz, int * paiArows, int * paiAcols, int *

paiStvs, double * padVals)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iEvent An integer specifying the index of the discrete block event.

iRealz An integer specifying the index of a block realization in the

specified block event.

nRealz A reference to an integer to return the number of individual

stochastic parameters consitituting the block realization

iRealz.

paiArows An integer vector to return the row indices of stochastic

parameters. in the block realization iRealz . This vector should

have *nRealz elements or more.

paiAcols An integer vector to return the column indices of stochastic

parameters. in the block realization iRealz . This vector should

have *nRealz elements or more.

paiStvs An integer vector to return the (instruction-list) indices of

stochastic parameters. in the block realization iRealz . This

vector should have *nRealz elements or more.

padVals A double vector to return the values associated with the

stochastic parameters listed in paiStvs or (paiArows,paiAcols)

The length of this vector should be *nRealz or more.

Remarks:

Only one of the following, paiStvs or (paiArows,paiAcols) , will take sensible values on

return. paiStvs should be used with instruction-based input, whereas (paiArows,paiAcols)

should be used with matrix-based input. The argument(s) of the other group can be NULL.

iEvent cannot be larger than the total number of discrete block events in the SP model. You

can use LSgetStocInfo() or LSgetInfo() to retrieve the maximum possible value for iEvent .

244 CHAPTER 2

LSgetDiscreteIndep ()

Description:

Gets the stochastic data for the (independent) discrete stochastic parameter at the specified

event index.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetDiscreteIndep (pLSmodel pModel, int iEvent, int *

nDistType, int * iStage, int * iRow, int * jCol, int * iStv, int *

nRealizations, double * padProbs, double * padVals, int *

iModifyRule)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iEvent An integer specifying the index of the discrete independent

event.

nDistType A reference to an integer to return the distribution type of the

event (optional).

iStage A reference to an integer to return the stage index of the

discrete-independent event.

iRow A reference to an integer to return the row index of the

stochastic parameter.

jCol A reference to an integer to return the column index of the

stochastic parameter.

iStv A reference to an integer specifying the index of stochastic

parameter in the instruction list.

nRealizations A reference to an integer to return the number of all possible

realizations for the stochastic parameter.

padProbs A double vector to return the probabilities associated with the

realizations of the stochastic parameter. The length of this

vector should be *nRealizations or more.

padVals A double vector to return the values associated with the

realizations of the stochastic parameter. The length of this

vector should be *nRealizations or more.

iModifyRule A reference to an integer to return the flag indicating whether

stochastic parameters update the core model by adding or

replacing.

FUNCTION DEFINITIONS 245

Remarks:

Only one of the following, iStvs or (iRow,jCol) , will take sensible values on return. iStvs

should be used with instruction-based input, whereas (iRow,jCol) should be used with

matrix-based input. The argument(s) of the other group can be NULL.

iEvent cannot be larger than the total number of discrete independent events in the SP model.

You can use LSgetStocInfo() or LSgetInfo() with

LS_IINFO_STOC_NUM_EVENTS_DISCRETE to retrieve the maximum possible value for

iEvent .

LSgetSampleSizes ()

Description:

Retrieve the number of nodes to be sampled in all stages.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetSampleSizes (pLSmodel pModel, int * panSampleSizes)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

panSampleSizes an integer vector to return the sample size per stage The length

of this vector should be the number of stages in the model or

more.

LSgetVariableStages ()

Description:

Retrieve the stage indices of variables.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetVariableStages (pLSmodel pModel, int * panStage)

246 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

panStage an integer vector to return the stage indices of variables in the

core model. The length of this vector should be at least the

number of variables in the core model.

LSgetHistogram ()

Description:

Retrieves the histogram for given data with given bin specs.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetHistogram(pLSmodel pModel, int nSampSize,

double *padVals, double dHistLow, double dHistHigh,

int *pnBins, int *panBinCounts, double *padBinLow, double

*padBinHigh, double *padBinLeftEdge, double *

padBinRightEdge)

FUNCTION DEFINITIONS 247

Input Arguments:

Name Description

pModel An instance of LSmodel object.

nSampSize An integer specifying the length of the input array.

padVals A double reference to the input array

dHistLow A double scalar specifying the low end of the histogram

dHistHigh A double scalar specifying the high end of the histogram

pnBins An integer reference to specify (or return) the number of bins

(optional).

panBinCounts An integer array to return bin counts. Length of this array

should at least be (*pnBins).

padBinLow An double array to return bin lows. Length of this array should

at least be (*pnBins).

padBinHigh An double array to return bin highs. Length of this array should

at least be (*pnBins).

padBinLeftEdge A double array to return bins left edges. Length of this array

should at least be (*pnBins).

padBinRightEdge A double array to return bins right edges. Length of this array

should at least be (*pnBins).

Remarks:

 Set dHistLow = dHistHigh on input for the module to choose a suitable pair for low and high

values defining the histogram.

 If *pnBins is set to zero on input, the module will choose a suitable value for the number of

bins and on return this value will contain the number of bins.

 During calls with (*pnBins) = 0, all other output arguments should preferably be NULL.

 Make sure to allocate at least (*pnBins) elements for panBinCounts, panBinProbs,

padBinLow, padBinHigh arrays.

Populating these output will require a second call to the function after (*pnBins) is

determinated by a previous call.

 On return padBinLow[0] = smallest value found in padVals, and padBinHigh[*pnBins-1] =

largest value found in padVals.

248 CHAPTER 2

LSgetScenarioModel ()

Description:

Get a copy of the scenario model.

Returns:

scenModel An instance of pLSmodel containing the scenario model.

Prototype:

pLSmodel LSgetScenarioModel(pLSmodel pModel, int jScenario, int

*pnErrorcode)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the scenario to retrieve.

pnErrorcode A reference to an integer to return the error code.

LSgetScenario ()

Description:

Gets the outcomes for the specified specified scenario.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetScenario(pLSmodel pModel, int jScenario, int

*iParentScen, int *iBranchStage, double *dProb, int

*nRealz, int *paiArows, int *paiAcols, int *paiStvs, double

*padVals, int *iModifyRule)

FUNCTION DEFINITIONS 249

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the index of a scenario realization.

iParentScen A reference to an integer specifying the index of the parent

scenario.

iBranchStage A reference to an integer specifying the branching stage.

dProb A reference to a double to return event probability of scenario.

nRealz A reference to an integer to return the number of individual

stochastic parameters consitituting the scenario.

paiArows An integer vector to return the row indices of stochastic

parameters in the scenario. This vector should have*nRealz

elements or more.

paiAcols An integer vector to return the column indices of stochastic

parameters in the scenario. This vector should have*nRealz

elements or more.

paiStvs An integer vector to return the (instruction-list) indices of

stochastic parameters. in the scenario. This vector should

have*nRealz elements or more.

padVals A double vector to return the values associated with the

stochastic parameters listed in paiStvs or (paiArows,paiAcols)

The length of this vector should be *nRealz or more.

iModifyRule A reference to an integer to return the flag indicating

whether stochastic parameters update the core model by adding

or replacing.

 Remark :

Only one of the following, paiStvs or (paiArows,paiAcols),

will take sensible values on return. \c paiStvs should be used with instruction-based input,

whereas (paiArows,paiAcols) should be used with matrix-based input. The argument(s) of the

other group can be NULL.

LSgetParamDistIndep ()

Description:

Gets the stochastic data for the (independent) parametric stochastic parameter at the specified

event index.

Returns:

errorcode An integer error code listed in Appendix A.

250 CHAPTER 2

Prototype:

int LSgetParamDistIndep(pLSmodel pModel, int iEvent, int

*nDistType, int *iStage, int *iRow, int *jCol, int *iStv, int

*nParams, double *padParams, int *iModifyRule)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iEvent An integer specifying the index of the discrete independent

event.

nDistType A reference to an integer to return the distribution type of the

event (optional).

iStage A reference to an integer to return the stage index of the

discrete-independent event.

iRow A reference to an integer to return the row index of the

stochastic parameter.

jCol A reference to an integer to return the column index of the

stochastic parameter.

iStv A reference to an integer specifying the index of stochastic

parameter in the instruction list.

nParams A reference to an integer to return the length of \c padParams.

padParams A double vector to return the parameters defining the

underlying distribution.

iModifyRule A reference to an integer to return the flag indicating whether

stochastic parameters update the core model by adding or

replacing.

Remark:

Only one of the following, iStvs or (iRow,jCol), will take sensible values on return.

iStvs should be used with instruction-based input, whereas (iRow,jCol) should be used with

matrix-based input. The argument(s) of the other group can be NULL.

iEvent cannot be larger than the total number of discrete independent events in the SP model.

You can use LSgetStocInfo() or LSgetInfo() with

LS_IINFO_STOC_NUM_EVENTS_PARAMETRIC to retrieve the maximum possible value

for iEvent.

LSgetStocCCPInfo ()

Description:

Get information about the current state of the stochastic model.

Returns:

errorcode An integer error code listed in Appendix A.

FUNCTION DEFINITIONS 251

Prototype:

int LSgetStocCCPInfo(pLSmodel pModel, int query, int

jscenario, int jchance, void *result)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

query A valid information macro. Possible values are:

 LS_DINFO_PINFEAS

 LS_IINFO_STOC_NUM_CC_VIOLATED

jscenario An optional argument to specify the scenario index.

jchance An optional argument to specify the chance constraint index.

result A reference to a variable of appropriate type to return the

result.

Remark:

Query values whose names begin with LS_IINFO take integer values, while those whose

names begin with LS_DINFO take double-precision floating point values.

LSgetChanceConstraint ()

Description:

Gets the stochastic data for the specified chance constraint

Returns:

errorcode An integer error code listed in Appendix A.

252 CHAPTER 2

Prototype:

int LSgetChanceConstraint(pLSmodel pModel, int iChance, int

*piSense, int *pnCons, int *paiCons, double *pdProb, double

*pdObjWeight)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iChance An integer specifying the index of the chance constraint.

piSense A reference to an integer to return the sense of the chance

constraint.

pnCons A reference to an integer to return the number of constraints in

the chance-constraint.

paiCons An integer vector to return the indices of the constraints

in the constraints in the chance-constraint *pnCons or more.

pdProb A reference to a double to return the probability level required.

pdObjWeight A reference to a double to return the weight of the chance-

constraint in the probabilistic objective.

Remark:

iChance cannot be larger than the total number of chance constraints in the SP model. You

can use LSgetStocInfo() or LSgetInfo() with LS_IINFO_STOC_NUM_CC to retrieve the

maximum possible value for iChance.

LSgetStocRowIndices ()

Description:

Retrieve the indices of stochastic rows.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetStocRowIndices(pLSmodel pModel, int *paiSrows);

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

Output Arguments:

Name Description

paiSrows an integer vector to return the indices of stochastic rows in the

core model. The length of this vector should be at least the

number of constraints in the core model.

FUNCTION DEFINITIONS 253

LSgetVarStartPointPartial ()

Description:

Retrieves the resident partial initial point for NLP models.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetVarStartPointPartial(pLSmodel pModel, int *pnCols,

int *paiCols, double *padPrimal)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel.

pnCols An integer reference to return the number of variables in the

partial solution.

paiCols A vector to return the indicies of variables in the partial

solution.

padPrimal A vector to return the values of the partial solution.

254 CHAPTER 2

LSgetMIPVarStartPointPartial ()

Description:

Retrieves the resident initial point for MIP/MINLP models.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetMIPVarStartPointPartial(pLSmodel pModel, int

*pnCols, int *paiCols, double *padPrimal)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel.

pnCols An integer reference to return the number of variables in the

partial solution.

paiCols A vector to return the indicies of variables in the partial

solution.

padPrimal A vector to return the values of the partial solution.

LSgetMIPVarStartPoint ()

Description:

Retrieves the values of the initial MIP primal solution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetMIPVarStartPoint(pLSmodel pModel, double

*padPrimal)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel.

padPrimal A pointer to a double precision vector containing starting

values for each variable in the given MIP model. The length of

this vector is equal to the number of variables in the model.

FUNCTION DEFINITIONS 255

LSgetQCEigs ()

Description:

Finds a few eigenvalues and eigenvectors of a quadratic matrix

 Q_{i} for the specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetQCEigs(pLSmodel pModel, int iRow,

char *pachWhich, double *padEigval, double **padEigvec,

int nEigval, int nCV, double dTol, int nMaxIter)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iRow The row index of the quadratic constraint for which the

eigenvalues of the associated Q matrix will be computed.

pachWhich A character array specifying the type of eigenvalues to return.

 Possible values are:

 'LM' or 'SM' - Largest or Smallest Magnitude

 For real symmetric problems:

 'LA' or 'SA' - Largest or Smallest Algebraic

 'BE' - Both Ends, one more from high end if K is odd

 For nonsymmetric and complex problems:

 'LR' or 'SR' - Largest or Smallest Real part

 'LI' or 'SI' - Largest or Smallest Imaginary part

padEigval A double vector of length nEigval to return the eigenvalues

padEigvec A double vector of length nEigval by NVARS to return the

eigenvectors or NULL

nEigval The Number of eigenvalues to be computed.

 0 < nEigval < NVARS should hold and if nEigval<=0,

nEigval=4 is assumed.

nCV The number of columns of the matrix padEigvec (which should

be less than or equal to NVARS). This will indicate how many

Lanczos vectors are generated at each iteration.

dTol Stopping tolerance which is the relative accuracy of the Ritz

value. If dTol<0 is passed a default value of 1e-16 is used.

nMaxIter Maximum number of iterations. If nMaxIter < 0 is passed, a

default of 300 is used

256 CHAPTER 2

Model Modification Routines
The routines in this section can modify the structure of a model on an incremental basis. For instance,

these routines may be used to add and/or delete constraints and/or variables. After modifying a model,

the LINDO API solver will restart using the remains of the last solution basis. Thus, after applying

modest modifications to a model, re-solving should be relatively fast. These routines are intended for

making minor modifications to a model. If you need to pass a new formulation, it is faster to use a

routine such as LSloadLPData(), which is discussed above in the Model Loading Routines section.

LSaddCones()

Description:

Adds cones to a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSaddCones(pLSmodel pModel, int nCone, char

*pszConeTypes, char **pcConenames, int *paiConebegcol, int

*paiConecols)

Input Arguments:

Name Description

model A pointer to an instance of LSmodel.

nCone An integer containing the number of cones to append.

pszConeTypes A pointer to a character array containing the type of each cone

to be added to the model.

pcConenames A pointer to a vector of pointers to null terminated strings

containing the name of each new cone.

paiConebegcol A pointer to an integer vector containing the index of the first

variable in each new cone. This vector must have nCone +1

entries. The last entry should be equal to the number of

variables in the added cones.

paiConecols A pointer to an integer vector containing the indices of the

variables in the new cones.

FUNCTION DEFINITIONS 257

LSaddConstraints()

Description:

Adds constraints to a given model. If both constraints and variables need to be added to a

model and adding the new information in row format is preferred, then this routine can be

called after first calling LSaddVariables().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSaddConstraints(pLSmodel pModel, int nNumaddcons, char

*pachContypes, char **paszConnames, int *paiArows, double

*padAcoef, int *paiAcols, double *padB)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nNumaddcons An integer containing the number of constraints to append.

pachContypes A pointer to a character array containing the type of each

constraint to be added to the model. Valid values for each

constraint are 'L', 'E', 'G', or ‘N’ for less-than-or-equal-to,

equal-to, greater-than-or-equal-to, or neutral, respectively.

paszConnames A pointer to a vector of pointers to null terminated strings

containing the name of each new constraint.

paiArows A pointer to an integer vector containing the index of the first

nonzero element in each new constraint. This vector must have

nNumaddcons +1 entries. The last entry should be equal to the

number of nonzeros in the added constraints.

padAcoef A pointer to a double precision vector containing the nonzero

coefficients of the new constraints.

paiAcols A pointer to an integer vector containing the column indices of

the nonzeros in the new constraints.

padB A pointer to a double precision vector containing the

right-hand side coefficients for each new constraint.

Remarks:

 If, in addition, variables need to be added to a model, then LSaddVariables() must be

called prior to this routine. The call to LSaddVariables() should pass NULL as the

paiAcols, padAcoef, and paiArows arguments.

 If you need to load a new model, LSloadLPData() is a more efficient routine

258 CHAPTER 2

LSaddChanceConstraint ()

Description:

Adds a new chance-constraint to the SP model, which is characterized by a set of constraint

indices from the original model and the probability levels to be satisfied.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSaddChanceConstraint (pLSmodel pModel,

int iSense, int nCons, int *paiCons, double dPrLevel, double

dObjWeight)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iSense An integer macro specifying the sense of the chance-constraint.

Possible values are LS_CONTYPE_LE and

LS_CONTYPE_GE.

nCons An integer specifying the number of rows in this chance-

constraint.

paiCons An integer vector specifying the row indices in the chance-

constraint.

dPrLevel A double scalar specifying the probability level of this chance-

constraint.

dObjWeight A double scalar specifying the constraint's weight in the

probabilistic objective relative to the orignal objective

function. Typically this value is zero.

LSsetConstraintProperty ()

Description:

Sets the property of the specified constraint of the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetConstraintProperty (pLSmodel pModel, int ndxCons, int

nProp)

FUNCTION DEFINITIONS 259

Input Arguments:

Name Description

pModel A pointer to an instance of Lsmodel.

ndxCons An integer specifying the index of the constraint to set the

property for.

nProp An integer macro to specify the constraint property. Possible

values are:

 LS_PROPERTY_UNKNOWN

 LS_PROPERTY_LINEAR

 LS_PROPERTY_CONVEX

 LS_PROPERTY_CONCAVE

 LS_PROPERTY_QUASI_CONVEX

 LS_PROPERTY_QUASI_CONCAVE

 LS_PROPERTY_MAX

LSgetConstraintProperty ()

Description:

Returns the property of the specified constraint of the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetConstraintProperty (pLSmodel pModel, int ndxCons, int

*pnProp)

Input Arguments:

Name Description

pModel A pointer to an instance of Lsmodel.

ndxCons An integer specifying the index of the constraint for which the

property is requested.

Output Arguments:

Name Description

pnProp A reference to an integer to return the constraint property.

LSaddSETS()

Description:

Adds sets to a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

260 CHAPTER 2

Prototype:

int

LSaddSETS(pLSmodel pModel, int nSETS, char

*pszSETStypes, int *paiCARDnum, int *paiSETSbegcol, int

*paiSETScols)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nSETS An integer containing the number of sets to add.

pszSETStypes A pointer to a character array containing the type of each set to

be added to the model.

paiCARDnum An integer array containing the cardinalities of the sets to be

added.

paiSETSbegcol A pointer to an integer vector containing the index of the first

variable in each new set. This vector must have nSETS +1

entries. The last entry should be equal to the total number of

variables in the new sets.

paiSETScols A pointer to an integer vector containing the indices of the

variables in the new sets.

LSaddVariables()

Description:

Adds variables to a given model. If both constraints and variables need to be added to a model

and adding the new information in column format is preferred, then this routine can be called

after first calling LSaddConstraints().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSaddVariables(pLSmodel pModel, int nNumaddvars, char

*pachVartypes, char **paszVarnames, int *paiAcols, int

*pacAcols, double *padAcoef, int *paiArows, double *padC,

double *padL, double *padU)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nNumaddvars The number of variables to append to the model.

pachVartypes A pointer to a character array containing the types of each

variable to be added to the model. Valid values for each

variable are 'B', 'C', or 'I' for binary, continuous, or general

FUNCTION DEFINITIONS 261

integer, respectively.

paszVarnames A pointer to a vector of pointers to null terminated strings

containing the name of each new variable.

paiAcols A pointer to an integer vector containing the index of the first

nonzero element in each new column. This vector must have

nNumaddvars+1 entries. The last entry should be equal to the

number of nonzeros in the new columns.

pacAcols A pointer to a vector containing the length of each column.

Note that the length of a column can be set to be shorter than

the values of paiAcols would suggest (i.e., it is possible for

pacAcols[i] < paiAcols[i+1] – paiAcols[i]). This may be

desirable in order to prevent memory reallocations if rows are

subsequently added to the model. If the length of each column i

is equal to paiAcols[i+1] – paiAcols[i], then pacAcols can be

set to NULL on input.

padAcoef A pointer to a double precision vector containing the nonzero

coefficients of the new columns.

paiArows A pointer to an integer vector containing the row indices of the

nonzeros in the new columns.

padC A pointer to a double precision vector containing the objective

coefficients for each new variable.

padL A pointer to a double precision vector containing the lower

bound of each new variable. If there is no lower bound on a

variable, then the corresponding entry in the vector should be

set to -LS_INFINITY. If padL is NULL, then the lower bounds

are internally set to zero.

padU A pointer to a double precision vector containing the upper

bound of each new variable. If there is no upper bound on the

variable, then this value should be set to LS_INFINITY. If

padU is NULL, then the upper bounds are internally set to

LS_INFINITY.

Remarks:

 If, in addition, constraints need to be added to a model and adding the new information in

column format is preferred, then this routine can be called after first calling

LSaddConstraints(). The call to LSaddConstraints() should pass NULL as the paiArows,

padAcoef, and paiAcols arguments.

 NULL may be passed for paiAcols, padAcoef, and paiArows.

LSaddQCterms()

Description:

Adds quadratic elements to the given model.

262 CHAPTER 2

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSaddQCterms (pLSmodel pModel, int nQCnonzeros, int

*paiQCconndx, int *paiQCvarndx1, *paiQCvarndx2, double

*padQCcoef)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nQCnonzeros The total number of nonzeros in quadratic coefficient matrices

to be added.

paiQCconndx A pointer to a vector containing the index of the constraint

associated with each nonzero quadratic term. This vector must

have nQCnonzeros entries.

paiQCvarndx1 A pointer to a vector containing the indices of the first variable

defining each quadratic term. This vector must have

nQCnonzeros entries.

paiQCvarndx2 A pointer to a vector containing the indices of the second

variable defining each quadratic term. This vector must have

nQCnonzeros entries.

padQCcoef A pointer to a vector containing the nonzero coefficients in the

quadratic matrix. This vector must also have nQCnonzeros

entries.

FUNCTION DEFINITIONS 263

LSaddNLPAj()

Description:

Adds NLP elements to the specified column for the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSaddNLPAj (pLSmodel pModel, int iVar1, int nRows, int

*paiRows, double *padAj)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iVar1 The index of the variable to which NLP elements will be

added.

nRows The total number of constraints for which NLP elements will

be added.

paiRows A pointer to an integer vector containing the row indices of the

nonlinear elements. The indices are required to be in ascending

order.

padAj A pointer to a double vector containing the initial nonzero

coefficients of the NLP elements. If padAj is NULL, the solver

will set the initial values.

Remarks:

 paiRows should be sorted in ascending order.

264 CHAPTER 2

LSaddNLPobj()

Description:

Adds NLP elements to the objective function for the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSaddNLPobj (pLSmodel pModel, int nCols, int *paiCols,

double *padColj)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCols The total number of variables for which NLP elements will be

added.

paiCols A pointer to an integer vector containing the variable indices of

the nonlinear elements.

padColj A pointer to a double vector containing the initial nonzero

coefficients of the NLP elements. If padColj is NULL, the

solver will set the initial values.

Remarks:

 paiCols should be sorted in ascending order.

LSdeleteCones()

Description:

Deletes a set of cones in the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

Int LSdeleteCones(pLSmodel pModel, int nCones, int *paiCones)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCones The number of cones in the model to delete.

paiCones A pointer to a vector containing the indices of the cones that

are to be deleted.

FUNCTION DEFINITIONS 265

LSdeleteConstraints()

Description:

Deletes a set of constraints in the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteConstraints(pLSmodel pModel, int nCons, int

*paiCons)

Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCons The number of constraints in the model to delete.

paiCons A pointer to a vector containing the indices of the constraints

that are to be deleted.

LSdeleteQCterms()

Description:

Deletes the quadratic terms from a set of constraints in the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteQCterms(pLSmodel pModel, int nCons, int *paiCons)

Input Arguments:

Name Description

pModel An instance of LSmodel.

nCons The number of constraints in the model whose quadratic terms

will be deleted.

paiCons A pointer to a vector containing the indices of the constraints

whose quadratic terms will be deleted.

266 CHAPTER 2

LSdeleteNLPobj()

Description:

Deletes NLP elements from the objective function for the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

Int LSdeleteNLPobj (pLSmodel pModel, int nCols, int *paiCols)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCols The number of variables for which NLP elements will be

deleted.

paiCols A pointer to a vector containing the indices of the variables

whose NLP elements are to be deleted.

FUNCTION DEFINITIONS 267

LSdeleteAj()

Description:

Deletes the elements at specified rows for the specified column for the given model. The

elements deleted are set to zero.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

Int LSdeleteAj (pLSmodel pModel, int iVar1, int nRows, int

*paiRows)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iVar1 The index of the variable whose elements will be deleted.

nRows The number of constraints at which elements will be deleted.

paiRows A pointer to an integer vector containing the row indices of the

elements to be deleted. The indices are required to be in

ascending order.

LSdeleteSemiContVars()

Description:

Deletes a set of semi-continuous variables in the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteSemiContVars(pLSmodel pModel, int nSC, int

*SCndx)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nSC The number of semi-continuous variables in the model to

delete.

SCndx A pointer to a vector containing the indices of the semi-

continuous variables that are to be deleted.

268 CHAPTER 2

LSdeleteSETS()

Description:

Deletes the sets in the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteSETS(pLSmodel pModel, int nSETS, int *SETSndx)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nSETS The number of sets in the model to delete.

SETSndx A pointer to a vector containing the indices of the sets that are

to be deleted.

LSdeleteVariables()

Description:

Deletes a set of variables in the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteVariables(pLSmodel pModel, int nVars, int *paiVars)

Input Arguments:

Name Description

pModel An instance of LSmodel.

nVars The number of variables in the model to delete.

paiVars A pointer to a vector containing the indices of the variables that

are to be deleted.

FUNCTION DEFINITIONS 269

LSmodifyAj()

Description:

Modifies the coefficients for a given column at specified constraints.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyAj(pLSmodel pModel, int iVar1, int nRows, int *

paiCons, double *padAj)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iVar1 The index of the variable to modify the constraint coefficients.

nCons Number of constraints to modify.

paiCons A pointer to an array of the indices of the constraints to

modify.

padAj A pointer to a double precision array containing the values of

the new coefficients.

LSmodifyCone()

Description:

 Modifies the data for the specified cone.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyCone(pLSmodel pModel, char cConeType, int

iConeNum, int iConeNnz, int *paiConeCols)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

cConeType A character variable specifying the new type of the cone.

iConeNum An integer scalar that refers to the index of the cone to modify.

iConeNnz An integer scalar that refers to the number of variables

characterizing the cone.

paiConeCols An integer vector that keeps the indices of the variables

characterizing the cone. Its size should be iConeNnz.

270 CHAPTER 2

LSmodifyConstraintType()

Description:

Modifies the type or direction of a set of constraints.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyConstraintType(pLSmodel pModel, int nCons, int

*paiCons, char *pachContypes)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCons Number of constraints to modify.

paiCons A pointer to an array of the indices of the constraints to

modify.

pachContypes A pointer to a character vector in which each element is either:

‘L’, ‘E’, ‘G’ or ‘N’ indicating each constraint's type.

Remarks:

 A constraint can be disabled by making its type ‘N’.

 To modify the direction of the objective, use the function LSsetModIntParameter (model,

LS_IPARAM_OBJSENSE, value), where value is either LS_MIN or LS_MAX.

LSmodifyObjConstant()

Description:

Modifies the objective’s constant term for a specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyObjConstant(pLSmodel pModel, double dObjconst)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

dObjconst The new objective constant term.

Remarks:

 To modify the objective’s coefficients, see LSmodifyObjective().

FUNCTION DEFINITIONS 271

LSmodifyLowerBounds()

Description:

Modifies selected lower bounds in a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyLowerBounds(pLSmodel pModel, int nVars, int

*paiVars, double *padL)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nVars The number of bounds in the model to modify.

paiVars A pointer to an integer vector containing the indices of the

variables for which to modify the lower bounds.

padL A pointer to a double precision vector containing the new

values of the lower bounds on the variables.

LSmodifyObjConstant()

Description:

Modifies the objective’s constant term for a specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyObjConstant(pLSmodel pModel, double dObjconst)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

dObjconst The new objective constant term.

Remarks:

 To modify the objective’s coefficients, see LSmodifyObjective().

272 CHAPTER 2

LSmodifyObjective()

Description:

Modifies selected objective coefficients of a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyObjective(pLSmodel pModel, int nVars, int

*paiVars, double *padC)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nVars Number of objective coefficients to modify.

paiVars A pointer to an integer vector containing a list of the indices of

the objective coefficients to modify.

padC A pointer to a double precision vector containing the new

values for the modified objective coefficients.

Remarks:

 To modify the objective’s constant term, see LSmodifyObjConstant().

LSmodifyRHS()

Description:

Modifies selected constraint right-hand sides of a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyRHS(pLSmodel pModel, int nCons, int *paiCons,

double *padB)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCons The number of constraint right-hand sides to modify.

paiCons A pointer to an integer vector containing the indices of the

constraints whose right-hand sides are to be modified.

padB A pointer to a double precision vector containing the new

right-hand side values for the modified right-hand sides.

FUNCTION DEFINITIONS 273

LSmodifySemiContVars()

Description:

Modifies data of a set of semi-continuous variables in the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifySemiContVars(pLSmodel pModel, char nSC, int

*piVarndx, double *padl, double *padu)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nSC The number of semi-continuous variables to modify.

piVarndx A pointer to an integer vector containing the indices of the

variables whose data are to be modified.

padl A pointer to a double precision vector containing the new

lower bound values for the semi-continuous variables.

padu A pointer to a double precision vector containing the new

upper bound values for the semi-continuous variables.

LSmodifySET()

Description:

Modifies set data in the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifySET(pLSmodel pModel, char cSETtype, int

iSETnum, int iSETnnz, int *paiSETcols)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

cSETtype A character variable containing the new type for the specified

set.

iSETnum An integer variable containing the index of the set to apply the

modification.

iSETnnz An integer variable containing the number of variables in the

set specified with iSETnum.

274 CHAPTER 2

paiSETcols A pointer to an integer array containing the indices of variables

in the set specified with iSETnum.

LSmodifyUpperBounds()

Description:

Modifies selected upper bounds in a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyUpperBounds(pLSmodel pModel, int nVars, int

*paiVars, double *padU)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nVars The number of bounds in the model to modify.

paiVars A pointer to an integer vector containing the indices of the

variables for which to modify the upper bounds.

padU A pointer to a double precision vector containing the new

values of the upper bounds.

LSmodifyVariableType()

Description:

Modifies the types of the variables of the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyVariableType(pLSmodel pModel, int nVars, int

*paiVars, char *pachVartypes)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nVars Number of variables to modify.

paiVars A pointer to an array of the indices of the variables to modify.

pachVartypes A pointer to a character vector containing the types of

variables. Valid values for each variable are 'C', 'B', or 'I' for

continuous, binary, or general integer, respectively.

FUNCTION DEFINITIONS 275

Remarks:

 To modify the direction of the objective, use the function LSsetModelIntParameter(

model, LS_IPARAM_OBJSENSE, value), where value is either LS_MIN or LS_MAX.

LSaddUserDist ()

Description:

Adds a new user-defined stochastic parameter function to the SP model. The positions of

stochastic parameters are specified with either (iRow, jCol) or iStv, but not with both. For SP

models where core model is described with an instruction list, iStv have to be used.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSaddUserDist(pLSmodel pModel, int iRow, int jCol, int

iStv, UserPdf_t pfUserFunc, int nSamples, pLSsample

*paSamples, void *pvUserData, int iModifyRule)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iRow An integer specifying the row index of the stochastic

parameter. It should be ignored if iStv will be specified.

jCol An integer specifying the column index of the stochastic

parameter. It should be ignored if iStv will be specified.

iStv An integer specifying the index of stochastic parameter in the

instruction list. It should be ignored if (iRow, jCol) is specified.

pfUserFunc A callback function to compute generate samples.

nSamples An integer specifying the number of LSsample objects

(independent parameters) required in the computation of the

stochastic parameter.

paSamples A vector of LSsample objects associated with the independent

parameters required in the computation of the stochastic

parameter. These sample objects need to be created explictly

before passing to this function.

pvUserData A reference to user's data object.

iModifyRule A flag indicating whether stochastic parameters update the core

model by adding or replacing. Possible values are:

 LS_REPLACE

 LS_ADD

276 CHAPTER 2

LSaddQCShift ()

Description:

Shift diag(Q_{i}) by lambda, i.e. Q_{i} = Q_{i} + I_{i}*dShift.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSaddQCShift(pLSmodel pModel, int iRow, double dShift);

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iRow An integer specifying the index of the QC row.

dShift A double specifying the shift parameter.

LSgetQCShift ()

Description:

Get the current value of the shift parameter associated with Q_{i}.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetQCShift(pLSmodel pModel, int iRow, double *pdShift);

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iRow An integer specifying the index of the QC row.

pdShift A double pointer to return the shift parameter.

LSresetQCShift ()

Description:

Reset to zero any shift previously made to diag(Q_{i}), i.e. Q_{i} = Q_{i} -

I_{i}*currentShift.

FUNCTION DEFINITIONS 277

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSresetQCShift(pLSmodel pModel, int iRow);

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iRow An integer specifying the index of the QC row.

Model and Solution Analysis Routines
The routines in this section allow you to analyze models and their solutions, such as performing

sensitivity analysis of optimal solutions or debugging infeasible or unbounded linear programs. For a

more detailed overview, see Chapter 10, Analyzing Models and Solutions.

LSfindBlockStructure

Description:

Examines the nonzero structure of the constraint matrix and tries to identify block structures

in the model. If neither linking rows nor linking columns exist, then the model is called

“totally decomposable”. Unless total decomposition is requested, the user should specify as

an input the number of blocks to decompose the matrix into.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSfindBlockStructure(pLSmodel pModel, int nBlock, int

nType)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nBlock An integer indicating the number of blocks to decompose the

coefficient matrix into. The value of this argument is ignored if

total decomposition is requested.

nType

An integer scalar indicating the type of decomposition

requested. The possible values are identified with the following

macros:

LS_LINK_BLOCKS_NONE: Try total decomposition (no

linking rows or columns).

LS_LINK_BLOCKS_COLS: The decomposed model will

278 CHAPTER 2

have dual angular structure (linking columns).

LS_LINK_BLOCKS_ROWS: The decomposed model will

have block angular structure (linking rows).

LS_LINK_BLOCKS_BOTH: The decomposed model will

have both dual and block angular structure (linking rows

and columns).

LS_LINK_BLOCKS_FREE: Solver decides which type of

decomposition to use.

Remarks:

 Only one stage of decomposition is attempted (i.e., no attempt is made to find further

decomposition within a sub-block).

 The block structure obtained can be accessed by LSgetBlockStructure().

 Refer to Chapter 10, Analyzing Models, for details on block structures.

 Parameter LS_IPARAM_FIND_BLOCK controls which heuristic algorithm to be used.

LSfindIIS()

Description:

Finds an irreducibly inconsistent set (IIS) of constraints for an infeasible model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSfindIIS(pLSmodel pModel, int nLevel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nLevel An integer indicating the level of analysis in finding the IIS. Bit

mask values are:

LS_NECESSARY_ROWS = 1,

LS_NECESSARY_COLS = 2,

LS_SUFFICIENT_ROWS = 4,

LS_SUFFICIENT_COLS = 8.

Remarks:

 The IIS obtained can be accessed by LSgetIIS().

 Refer to Chapter 10, Analyzing Models, for details on debugging a model.

FUNCTION DEFINITIONS 279

LSfindIUS()

Description:

Finds an irreducibly unbounded set (IUS) of columns for an unbounded linear program.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

Int LSfindIUS(pLSmodel pModel, int nLevel)

Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nLevel An integer indicating the level of detail of the analysis in

finding the IUS. Significant bit mask values are:

LS_NECESSARY_COLS = 2,

LS_SUFFICIENT_COLS = 8.

Remarks:

 The IUS obtained, can be accessed by LSgetIUS().

 Refer to Chapter 10, Analyzing Models, for details on debugging a model.

LSgetBestBounds()

Description:

Finds the best implied variable bounds for the specified model by improving the original

bounds using extensive preprocessing and probing.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetBestBounds(pLSmodel pModel, double *padBestL,

double *padBestU)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padBestL A double precision vector containing the best implied lower

bounds if different from NULL. This vector must at least have

as many entries as the number of variables in the model.

padBestU A double precision vector containing the best implied upper

280 CHAPTER 2

bounds if different from NULL. This vector must at least have

as many entries as the number of variables in the model.

LSgetBlockStructure()

Description:

Retrieves the block structure information following a call to LSfindBlockStructure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetBlockStructure(pLSmodel pModel, int *pnBlock, int

*panRblock, int *panCblock, int *pnType)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pnBlock A pointer to an integer scalar that contains the number of

blocks to decompose the model matrix into. If nType =

LS_LINK_BLOCKS_NONE, then *pnBlock functions as an

output argument, which will contain the number of

independent blocks identified (provided that total

decomposition is successful). Otherwise, it serves as an input

argument where the solver attempts to decompose the model

into *pnBlock blocks linked by a set of rows or/and columns.

panRblock

A pointer to an integer vector in which information about the

block membership of the constraints is to be placed. The length

of this vector must be  the number of constraints in the model.

The i-th element of this array returns information on the i-th

constraint as follows:

 0: The row is a member of the linking (row) block.

k>0: The row is a member of the k-th block.

where 1 <= k <= *pnBlock.

panCblock

A pointer to an integer vector in which information about the

block membership of the variables is to be placed. The length

of this vector must be  the number of variables in the model.

The j-th element of this array contains information on the j-th

column as follows:

 0: The column is a member of the linking (column) block.

k>0: The column is a member of the k-th block.

where 1 <= k <= *pnBlock.

pnType A pointer to an integer returning the type of the decomposition.

FUNCTION DEFINITIONS 281

 The following macros identify possible values:

LS_LINK_BLOCKS_NONE: Try total decomposition (no

linking rows or columns).

LS_LINK_BLOCKS_COLS: The decomposed model will

have dual angular structure (linking columns).

LS_LINK_BLOCKS_ROWS: The decomposed model will

have block angular structure (linking rows).

LS_LINK_BLOCKS_BOTH: The decomposed model will

have both dual and block angular structure (linking rows

and columns).

LS_LINK_BLOCKS_FREE: Solver decides which type of

decomposition to use.

Remarks:

 For more information on decomposition and linking structures, refer to Chapter 10,

Analyzing Models.

LSgetBoundRanges()

Description:

Retrieves the maximum allowable decrease and increase in the primal variables for which the

optimal basis remains unchanged.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetBoundRanges (pLSmodel pModel, double *padDec,

double *padInc)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padDec A pointer to a double precision vector that keeps the maximum

allowable decrease in the lower and upper bounds. The vector

size should be greater-than-or-equal-to the number of

variables.

padInc A pointer to a double precision vector that keeps the maximum

allowable increase in the lower and upper bounds. The vector

size should be greater-than-or-equal-to the number of

variables.

282 CHAPTER 2

LSgetConstraintRanges()

Description:

Retrieves the maximum allowable decrease and increase in the right-hand side values of

constraints for which the optimal basis remains unchanged.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetConstraintRanges (pLSmodel pModel, double *padDec,

double *padInc)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padDec A pointer to a double precision vector that keeps the maximum

allowable decrease in the right-hand sides of constraints. The

size of this vector should be greater-than-or-equal-to the

number of constraints.

padInc A pointer to a double precision vector that keeps the maximum

allowable increase in the right-hand sides of constraints. The

size of this vector should be greater-than-or-equal-to the

number of constraints.

FUNCTION DEFINITIONS 283

LSgetIIS()

Description:

Retrieves the irreducibly inconsistent set (IIS) of constraints for an infeasible model following

a call to LSfindIIS(). Any of the pointers to the names can be input as NULL if the

corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetIIS(pLSmodel pModel, int *pnSuf_r, int *pnIIS_r, int

*paiCons, int *pnSuf_c, int *pnIIS_c, int *paiVars, int

*panBnds)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pnSuf_r A pointer to the number of constraints in the sufficient set.

pnIIS_r A pointer to the number of rows in the IIS.

paiCons A pointer to a vector of size *pnIIS_r containing the indices of

the rows in the IIS. The locations paiCons[0] to

paiCons[*pnSuf_r –1] keep the indices of the sufficient rows.

pnSuf_c A pointer to the number of column bounds in the sufficient set.

pnIIS_c A pointer to the number of column bounds in the IIS.

paiVars A pointer to a vector of size *pnIIS_c containing the indices of

the column bounds in the IIS. The locations paiVars[0] to

paiVars[*pnSuf_c –1] store the indices of the members of the

sufficient column bounds.

panBnds A pointer to a vector of size *pnIIS_c indicating whether the

lower or the upper bound of the variable is in the IIS. Its

elements are –1 for lower bounds and +1 for upper bounds.

Remarks:

 This tool assumes that the user has recently attempted optimization on the model and the

solver returned a basic, but infeasible, solution. If an infeasible basis is not resident in the

solver, the diagnostic tool cannot initiate the processes to isolate an IIS. Cases that

violate this condition are: the pre-solver has detected the infeasibility of the model, or the

barrier solver has terminated without performing a basis crossover. To obtain an IIS for

such cases, the pre-solve option should be turned off and the model must be optimized

again.

 Refer to Chapter 10, Analyzing Models, for details on debugging a model.

284 CHAPTER 2

LSgetIISInts()

Description:

Retrieves the integrality restrictions as part of an IIS determined by a call to LSfindIIS(). Any

of the pointers to the names can be input as NULL if the corresponding information is not

required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetIISInts(pLSmodel pModel, int *pnSuf_i, int *pnIIS_i, int

*paiVars)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pnSuf_i A pointer to the number of integrality restrictions in the

sufficient set.

pnIIS_i A pointer to the number of integrality restrictions in the IIS.

paiVars A pointer to a vector of size *pnIIS_i containing the indices of

the integrality restrictions in the IIS. The locations paiVars[0]

to paiVars[*pnSuf_i –1] store the indices of the members of the

sufficient integrality restrictions.

Remarks:

 This tool assumes that the solver returned an infeasible status for the underlying integer

model and LSfindIIS has been called with LS_IIS_INTS flag turned on. This flag enables

the IIS finder to include integrality restrictions in the analysis. If the cause of infeasibility

is not related to integer restrictions, the argument *pnIIS_i will be zero.

 Refer to Chapter 10, Analyzing Models, for details on debugging a model.

FUNCTION DEFINITIONS 285

LSgetIUS()

Description:

Retrieves the irreducibly unbounded set (IUS) of columns for an unbounded linear program

following a call to LSfindIUS(). Any of the pointers to the names can be input as NULL if the

corresponding information is not required

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetIUS(pLSmodel pModel, int *pnSuf, int *pnIUS, int

*paiVars)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

pnSuf A pointer to the number of columns in the sufficient set.

pnIUS A pointer to the number of columns in the IUS.

paiVars A pointer to a vector of size *pnIUS containing the indices of

the columns in the IUS. The locations paiVars[0] to

paiVars[*pnSuf –1] store the indices of the members of the

sufficient set.

Remarks:

 Refer to Chapter 10, Analyzing Models, for details on debugging a model.

286 CHAPTER 2

LSgetObjectiveRanges()

Description:

Retrieves the maximum allowable decrease and increase in objective function coefficients for

which the optimal basis remains unchanged.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetObjectiveRanges(pLSmodel pModel, double *padDec,

double *padInc)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

padDec A pointer to a double precision vector that keeps the maximum

allowable decrease in the objective function coefficients. The

size of this vector should be greater-than-or-equal-to the

number of variables.

PadInc A pointer to a double precision vector that keeps the maximum

allowable increase in the objective function coefficients. The

vector size should be greater-than-or-equal-to the number of

variables.

LSfindLtf ()

Description:

Finds an approximately lower triangular form for the underlying model's matrix structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

FUNCTION DEFINITIONS 287

Prototype:

int LSfindLtf(pLSmodel pModel, int *panNewColIdx, int

*panNewRowIdx, int *panNewColPos, int *panNewRowPos)

Input Arguments:

Name Description

pModel An instance of the LSmodel object.

panNewColIdx Entry j means the index of the column that is in the postion j of

new matrix.

panNewRowIdx Entry i means the index of the row that is in the postion i of

new matrix.

panNewColPos Entry j means the new position of column j in the new matrix.

panNewRowPos Entry i means the new position of row i in the new matrix.

288 CHAPTER 2

Error Handling Routines
The routines in this section allow you to get detailed information about the errors that occur during

calls to LINDO API routines and while accessing a text file for I/O.

LSgetErrorMessage()

Description:

Retrieves the error message associated with the given error code.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetErrorMessage(pLSenv pEnv, int nErrorcode, char

*pszMessage)

Input Arguments:

Name Description

pEnv A pointer to an instance of LSenv. Error messages are stored in

this environment.

nErrorcode An integer referring to the error code.

Output Arguments:

Name Description

pszMessage The error message associated with the given error code. It is

assumed that memory has been allocated for this string.

Remarks:

 The length of the longest message will not exceed

LS_MAX_ERROR_MESSAGE_LENGTH, including the terminating null character. So,

be sure to allocate at least this many bytes before calling LSgetErrorMessage().

FUNCTION DEFINITIONS 289

LSgetErrorRowIndex()

Description:

Retrieves the index of the row where a numeric error has occurred.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int (pLSmodel pModel, int *piRow);

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Output Arguments:

Name Description

piRow A pointer to an integer variable to return the row index with

numeric error.

LSgetFileError()

Description:

Provides the line number and text of the line in which an error occurred while reading or

writing a file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetFileError (pLSmodel pModel, int *pnLinenum, char

*pszLinetxt)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

Output Arguments:

Name Description

pnLinenum A pointer to an integer that returns the line number in the I/O

file where the error has occurred.

pszLinetxt A pointer to a null terminated string that returns the text of the

line where the error has occurred.

290 CHAPTER 2

Advanced Routines
The routines in this section perform specialized functions. Users interested in only building and

solving a model will not need to access the routines detailed in this section. Users who are developing

customized solution procedures, however, may find these routines useful.

LSdoBTRAN()

Description:

Does a so-called backward transformation. That is, the function solves the linear system

B
T
X = Y, where B

T
 is the transpose of the current basis of the given linear program and Y is a

user specified vector.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdoBTRAN(pLSmodel pModel, int *pcYnz, int *paiY,

double *padY, int *pcXnz, int *paiX, double *padX)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pcYnz A pointer to an integer containing the number of nonzeros in

the right-hand side vector Y.

paiY A pointer to an integer vector containing the positions of the

nonzeros in Y.

padY A pointer to a double precision vector containing the

coefficients of the nonzeros in Y.

Output Arguments:

Name Description

pcXnz A pointer to an integer containing the number of nonzeros in

the solution vector X.

paiX A pointer to an integer vector containing the positions of the

nonzeros in X. You must allocate the memory for this vector,

and should allocate at least m elements, where m is the number

of constraints.

padX A pointer to a double precision vector containing the

coefficients of the nonzeros in X. You must allocate the

memory for this vector, and should allocate at least m

elements, where m is the number of constraints.

Remarks:

 This routine should be called only after optimizing the model.

FUNCTION DEFINITIONS 291

LSdoFTRAN()

Description:

Does a so-called forward transformation. That is, the function solves the linear system

B X = Y, where B is the current basis of the given linear program, and Y is a user specified

vector.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdoFTRAN(pLSmodel pModel, int *pcYnz, int *paiY,

double *padY, int *pcXnz, int *paiX, double *padX)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pcYnz A pointer to an integer containing the number of nonzeros in

the right-hand side vector Y.

paiY A pointer to an integer vector containing the positions of the

nonzeros in Y.

padY A pointer to a double precision vector containing the

coefficients of the nonzeros in Y.

Output Arguments:

Name Description

pcXnz A pointer to an integer containing the number of nonzeros in

the solution vector, X.

paiX A pointer to a vector containing the positions of the nonzeros

in X.

padX A pointer to a double precision vector containing the

coefficients of the nonzeros in X.

Remarks:

 This routine should be called only after optimizing the model.

292 CHAPTER 2

LScalcConFunc()

Description:

Calculates the constraint activity at a primal solution. The specified model should be loaded

by using LSloadInstruct().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LScalcConFunc(pLSmodel pModel, int iCon, double

*padPrimal, double *pdValue,)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iCon An integer containing the index of the constraint whose activity

is requested.

padPrimal A pointer to a double precision vector that contains the primal

solution at which the constraint activity will be computed.

Output Arguments:

Name Description

pdValue A double precision variable that returns the constraint activity

at the given primal solution padPrimal.

FUNCTION DEFINITIONS 293

LScalcConGrad()

Description:

Calculates the partial derivatives of the function representing a constraint with respect to a set

of primal variables. The specified model should be loaded by using LSloadInstruct().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LScalcConGrad(pLSmodel pModel, int iCon, double

*padPrimal, int nVar, int *paiVar, double *padVar)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iCon An integer containing the index of the constraint whose partial

derivatives is requested.

padPrimal A pointer to a double precision vector that contains the primal

solution at which the partial derivatives of the constraint will

be evaluated.

nVar An integer scalar indicating the number of variables to

compute the partial derivatives for.

paiVar A pointer to an integer vector that contains the indices of the

variables to compute the partial derivatives for.

Output Arguments:

Name Description

padVar A pointer to a double precision vector that returns the partial

derivatives of the variables indicated by paiVar[].

294 CHAPTER 2

LScalcObjFunc()

Description:

Calculates the objective function value at a primal solution. The specified model should be

loaded by using LSloadInstruct().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LScalcObjFunc(pLSmodel pModel, double *padPrimal ,

double *pdPobjval,)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

padPrimal A pointer to a double precision vector that contains the primal

solution at which the objective function will be evaluated.

Output Arguments:

Name Description

pdPobjval A double precision variable that returns the objective value for

the given primal solution.

FUNCTION DEFINITIONS 295

LScalcObjGrad()

Description:

Calculates the partial derivatives of the objective function with respect to a set of primal

variables. The specified model should be loaded by using LSloadInstruct().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LScalcObjGrad(pLSmodel pModel, double *padPrimal,

int nVar, int *paiVar, double *padVar)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

padPrimal A pointer to a double precision vector that contains the primal

solution at which the partial derivatives of the objective

function will be evaluated.

nVar An integer scalar indicating the number of variables to

compute the partial derivatives for.

paiVar A pointer to an integer vector that contains the indices of the

variables to compute the partial derivatives for.

Output Arguments:

Name Description

padVar A pointer to a double precision vector that returns the partial

derivatives of the variables indicated by paiVar[].

296 CHAPTER 2

LScomputeFunction()

Description:

Computes many of the functions that correspond to the EP_xxx instruction codes described in

the “Solving Nonlinear Programs “ chapter.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LScomputeFunction(int ninst, double *padinput, double

*padoutput)

Input Arguments:

Name Description

ninst ID of a function operator.

padInput Pointer to a double precision vector of the input arguments..

Output Arguments:

Name Description

padOutput Pointer to a double precision vector that returns the results of

the function operator.

Remarks:

 LScomputeFunction() returns an integer error code

* - LSERR_NO_ERROR: no error, result in pdaOutput

* - LSERR_NOT_SUPPORTED: not supported function operator

* - LSERR_ILLEGAL_NULL_POINTER: illegal output argument

* - LSERR_ERROR_IN_INPUT: input argument error,

* *pdaOutput stores the index of input argument causing error

* - LSERR_NUMERIC_INSTABILITY: numerical error

FUNCTION DEFINITIONS 297

LScheckQterms()

Description:

Checks the definiteness of quadratic terms in the specified set of constraints.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LScheckQterms(pLSmodel pModel, int nCons, int*paiCons,

int *paiType)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCon An integer specifying the number of constraints whose

quadratic terms will be checked.

paiCons A pointer to a vector containing the indices of the constraints

whose quadratic terms will be checked. Use index -1 for the

objective function. When this variable is set to NULL, the

check will be performed on all constraints including the

objective function. In this case, the size of the paiType vector

should be at least n_cons+1, where n_cons is the number of

constraints in the model.

Output Arguments:

Name Description

paiVar A pointer to an integer vector to return the type of quadratic

terms in associated rows. Possible values for the type of

quadratic terms are

 # LS_QTERM_NONE 0

 # LS_QTERM_INDEF 1

 # LS_QTERM_POSDEF 2

 # LS_QTERM_NEGDEF 3

 # LS_QTERM_POS_SEMIDEF 4

 # LS_QTERM_NEG_SEMIDEF 5

298 CHAPTER 2

LSrepairQterms()

Description:

Repairs the quadratic terms in the specified set of constraints by shifting

the diagonals to make them semi-positive-definite or semi-negative-definite to achieve

a convex approximation to the model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSrepairQterms(pLSmodel pModel, int nCons, int*paiCons,

int *paiType)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCon An integer specifying the number of constraints whose

quadratic terms will be repaired.

paiCons A pointer to a vector containing the indices of the constraints

whose quadratic terms will be repaired. Use index -1 for the

objective function. When this variable is set to NULL, the

repair will be performed on all constraints including the

objective function. In this case, the size of the paiType vector

should be at least n_cons+1, where n_cons is the number of

constraints in the model.

Output Arguments:

Name Description

paiVar A pointer to an integer vector to return the type of quadratic

terms in associated rows after the repair. Possible values for the

type of quadratic terms are

 # LS_QTERM_NONE 0

 # LS_QTERM_INDEF 1

 # LS_QTERM_POSDEF 2

 # LS_QTERM_NEGDEF 3

 # LS_QTERM_POS_SEMIDEF 4

 # LS_QTERM_NEG_SEMIDEF 5

If the repair is unsuccessful for some of the constraints, then

the value for those rows will remain as LS_QTERM_INDEF.

FUNCTION DEFINITIONS 299

Matrix Operations

LSgetEigs()

Description:

Get eigenvalues and eigenvectors of symmetric matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetEigs(int nDim, char chUL, double *padA, double

*padD, double *padV, int *pnInfo);

Input Arguments:

Name Description

nDim An integer indicating the dimension of matrix padA.

chUL Upper ('U' or 'u') or lower ('L' or 'l') triangler of padA is stored.

padA nDim by nDim double symmetric matrix.

Output Arguments:

Name Description

padD nDim double vector, eigenvalues in ascending order.

padV nDim by nDim double matrix, orthonormal eigenvectors.

pnInfo A reference to an integer exit code. Possible values are:

 # = 0: successful exit.

 # < 0: if (*pnInfo) = -i, the i^th argument had an illegal

value.

 # > 0: internal error.

300 CHAPTER 2

LSgetMatrixTranspose()

Description:

Get general m by n matrix transpose.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int int LSgetMatrixTranspose(int nRows, int nCols, double

*padA, double *padAT);

Input Arguments:

Name Description

nRows An integer indicating the number of rows of the matrix.

nCols An integer representing the number of columns of the matrix.

padA nRows by nCols double matrix.

Output Arguments:

Name Description

padAT nCols by nRows double matrix transpose.

LSgetMatrixInverse()

Description:

Get general m by m matrix inverse.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMatrixInverse(int nRows, double *padA, double

*padAinv, int *pnInfo);

Input Arguments:

Name Description

nRows An integer indicating the dimension of the square matrix.

padA nRows by nRows double matrix.

Output Arguments:

Name Description

padAinv nRows by nRows double matrix inverse.

pnInfo A reference to an integer exit code. Possible values are:

 # = 0: successful exit.

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal

FUNCTION DEFINITIONS 301

value.

 # > 0: if (*pnInfo) = i, padU(i,i) is exactly zero. The

factorization has been completed, but the factor padU is

exactly singular, so the solution could not be computed.

LSgetMatrixInverseSY()

Description:

Get symmetric m by m matrix inverse.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMatrixInverseSY(int nRows, char chUpLo, double

*padA, double *padAinv, int *pnInfo);

Input Arguments:

Name Description

nRows An integer indicating the dimension of the square matrix.

chUpLo A character to indicate if upper ('U') or lower ('L') triangle of

padA is stored.

padA nRows by nRows double matrix.

Output Arguments:

Name Description

padAinv nRows by nRows double matrix inverse.

pnInfo A reference to an integer exit code. Possible values are:

 # = 0: successful exit.

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal

value.

 # > 0: i, D(i,i) is exactly zero. The factorization has been

completed, but the block diagonal matrix D is exactly singular,

so the solution could not be computed.

LSgetMatrixLUFactor()

Description:

Get LU factorization of a general m by n matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMatrixLUFactor(int nRows, int nCols, double *padA, int

*panP, double *padL, double *padU, int *pnInfo);

302 CHAPTER 2

Input Arguments:

Name Description

nRows An integer indicating the number of rows of the matrix.

nCols An integer indicating the number of columns of the matrix.

padA nRows by nCols double matrix.

Output Arguments:

Name Description

panP nRows by nRows permutation matrix.

padL If nRows > nCols

nRows by nCols matrix, lower trapezoidal with unit diagonal

elements;

Else:

nRows by nRows matrix, lower triangular with unit diagonal

elements.

padU If nRows > nCols

nCols by nCols matrix, upper triangular;

Else:

nRows by nCols matrix, upper trapezoidal.

pnInfo A reference to an integer exit code. Possible values are:

 # = 0: successful exit.

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal

value.

 # > 0: i, U(i,i) is exactly zero. The factorization has been

completed, but the factor U is exactly singular, and division by

zero will occur if it is used to solve a system of equations.

LSgetMatrixQRFactor()

Description:

Get QR factorization of a general m by n matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMatrixQRFactor(int nRows, int nCols, double *padA,

double *padQ, double *padR, int *pnInfo);

Input Arguments:

Name Description

nRows An integer indicating the number of rows of the matrix.

nCols An integer indicating the number of columns of the matrix.

FUNCTION DEFINITIONS 303

padA nRows by nCols double matrix.

Output Arguments:

Name Description

padQ nRows by nRows orthogonal matrix.

padR nRows by nCols matrix, upper triangular (nRows >= nCols) or

upper trapezoidal (nRows < nCols).

pnInfo A reference to an integer exit code. Possible values are:

 # = 0: successful exit.

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal

value.

LSgetMatrixDeterminant()

Description:

Get the determinant of a square matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMatrixDeterminant(int nRows, double *padA, double

*padDet, int *pnInfo);

Input Arguments:

Name Description

nRows An integer indicating the dimension of the square matrix padA.

padA nRows by nRows double matrix.

Output Arguments:

Name Description

padDet The determinant of the square matrix padA.

pnInfo A reference to an integer exit code. Possible values are:

 # = 0: successful exit.

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal

value.

 # > 0: i, U(i,i) is exactly zero. The factorization has been

completed, but the factor U is exactly singular, and division by

zero will occur if it is used to solve a system of equations.

LSgetMatrixCholFactor()

Description:

Get Cholesky factorization of symmetic matrix.

304 CHAPTER 2

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMatrixCholFactor(int nRows, char chUpLo, double

*padA, double *padUL, int *pnInfo);

Input Arguments:

Name Description

nRows An integer indicating the dimension of the square matrix padA.

chUpLo A character to indicate if upper ('U') or lower ('L') triangle of

padA is stored.

padA nRows by nRows double symmetric matrix.

Output Arguments:

Name Description

padUL If chUpLo = 'U', upper triangular matrix.

If chUpLo = 'L', lower triangular matrix.

pnInfo A reference to an integer exit code. Possible values are:

 # = 0: successful exit.

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal

value.

 # > 0: i, the leading minor of order i is not positive

definite, and the factorization could not be completed.

LSgetMatrixSVDFactor()

Description:

Get SVD factorization of a general m by n matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMatrixSVDFactor(int nRows, int nCols, double *padA,

double *padU, double *padS, double *padVT, int *pnInfo);

Input Arguments:

Name Description

nRows An integer indicating the number of rows of the matrix.

nCols An integer indicating the number of columns of the matrix.

padA nRows by nCols double matrix.

FUNCTION DEFINITIONS 305

Output Arguments:

Name Description

padU nRows by nRows orthogonal matrix.

padS Dimension min(nRows, nCols), singular values of padA, sorted

in descending order.

padVT nCols by nCols orthogonal matrix.

pnInfo A reference to an integer exit code. Possible values are:

 # = 0: successful exit.

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal

value.

 # > 0: did not converge, updating process failed.

LSgetEigg()

Description:

Compute the eigenvalues and, optionally, the left and/or right eigenvectors of a general

(nonsymmetric) real square matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetEigg(int nDim, char chJOBV, double *padA, double

*padWR, double *padWI, double *padVRR, double *padVRI,

double *padVLR, double *padVLI, int *pnInfo) ;

Input Arguments:

Name Description

nDim Dimension of matrix A.

chJOBV An integer specifying which eigenvectors should be computed.

Possible values are:

 - 'N': no eigenvectors are computed

 - 'L': left eigenvectors are computed

 - 'R': right eigenvectors are computed

 - 'B': both left and right are computed

padA A double matrix of dimension nDim x nDim.

Output Arguments:

Name Description

padWR A double array of size nDim for the real part of computed

eigenvalues.

306 CHAPTER 2

padWI A double array of size nDim for the imaginary part of

computed eigenvalues. Complex conjugate pairs of eigenvalues

appear consecutively with the eigenvalue having the positive

imaginary part first.

padVRR The real part of right eigenvectors.

padVRI The imaginary part of right eigenvectors

if JOBV = 'N' or 'L', padVRR and padVRI are not referenced

if JOBV = 'R' or 'B', padVRR and padVRI are nDim by nDim

matrix

padVRR and padVRI are stored one after another in the same in

the same order as their eigenvalues.

padVLR The real part of left eigenvectors.

padVLI The imaginary part of left eigenvectors

if JOBV = 'N' or 'R', padVLR and padVLI are not referenced

 if JOBV = 'L' or 'B', padVLR and padVLI are nDim by nDim

matrix

padVLR and padVLI are stored one after another in the same

order as their eigenvalues.

The computed eigenvectors are normalized so the sum of

squares of both real and imaginary parts equal to 1.

pnInfo A reference to an integer exit code. Possible values are:

 # = 0: successful exit.

 # < 0: if (*pnInfo) = -i, the i-th argument had an illegal

value.

 # > 0: if (*pnInfo) = i, the QR algorithm failed to compute

all the eigenvalues, and no eigenvectors have been computed;

elements i+1:N of padWR and padWI contain eigenvalues

which have converged.

FUNCTION DEFINITIONS 307

LSloadNLPDense()

Description:

Set up a dense nonlinear model with specified dimensions.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadNLPDense(pLSmodel pModel, int nCons, int nVars, int

dObjSense, char *pszConTypes, char *pszVarTypes, double

*padX0, double *padL, double *padU);

Input Arguments:

Name Description

pLSmodel An instance of LSmodel in which to load the problem data.

nCons Number of constraints in the model.

nVars Number of variables in the model.

dObjSense An indicator stating whether the objective function is to be

maximized or minimized. Valid values are: LS_MAX or

LS_MIN, respectively.

pszConTypes A vector containing the type of each constraint. Valid values

for each constraint are 'L', 'E', 'G' or 'N' for less than or equal

to, equal to, or greater than or equal to, or free, respectively.

pszVarTypes A vector containing the type of each variable. Valid values for

each variable are 'C', 'B', 'I' or 'S' for continuous, binary,

general integer or semi-continuous, respectively. This value

may be NULL on input.

padX0 A vector containing a guess for primal values which a given

method can use to start with. This value may be NULL on

input.

padL A vector containing the lower bound of each variable. If there

is no lower bound on the variable, then this value should be set

to -LS_INFINITY. If this value is NULL, then the lower

bounds are internally set to zero.

padU A vector containing the upper bound of each variable. If there

is no upper bound on the variable, then this value should be set

to LS_INFINITY. If this value is NULL, then the upper bounds

are internally set to LS_INFINITY.

308 CHAPTER 2

LSloadIISPriorities()

Description:

Provide priorities for constraints and variables in IIS search.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadIISPriorities(pLSmodel pModel, int *panRprior, int

*panCprior);

Input Arguments:

Name Description

pModel An instance of LSmodel.

panRprior A integer vector containing the priority of each row in the

given model. The length of this vector is equal to the number

of constraints in the model. If (panRprior==NULL) then the

default priority scheme will be used.

panCprior A integer vector containing the priority of each column in the

given model. The length of this vector is equal to the number

of variables in the model. If (panCprior==NULL) then the

default priority scheme will be used.

FUNCTION DEFINITIONS 309

LSgetJac()

Description:

Get Cholesky factorization of symmetic matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetJac(pLSmodel pModel, int *pnJnonzeros, int

*pnJobjnnz, int *paiJrows, int *paiJcols, double *padJcoef,

double *padX) ;

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

padX A pointer to a double vector containing values of each variable

in the model.

Output Arguments:

Name Description

pnJnonzeros A reference to an integer to return nonzeros in the Jacobian

matrix.

pnJobjnnz A reference to an integer to return the nonzeros in the objective

function.

paiJrows A pointer to an integer of vector returning the index of the first

nonzero element in Jacobian matrix. This vector must have

m+2 entries, where m is the number of constraints in the

model. The first entry is for objective the next m entries are for

constraints. The last entry will be the total number of nonzeros.

paiJcols A pointer to an integer vector returning the column indices of

nonzeros in the Jacobian matrix.

padJcoef A pointer to a double vector returning the nonzero coefficients

of the Jacobian matrix at padX, when padJcoef and padX is

not NULL.

310 CHAPTER 2

LSgetHess()

Description:

Get Hessian (second order derivative) matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetHess(pLSmodel pModel, int *pnHnonzeros, int

*paiHrows, int *paiHcol1, int *paiHcol2, double *padHcoef,

double *padX) ;

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

padX A pointer to a double vector containing values of each variable

in the model.

Output Arguments:

Name Description

pnHnonzeros A reference to an integer returning the number of nonzero in

the Hessian.

paiHrows A pointer to an integer of vector returning the index of the first

nonzero element in Hessian matrix. This vector must have m+2

entries, where m is the number of constraints in the model. The

first entry is for objective the next m entries are for constraints.

The last entry will be equal to the total number of nonzeros.

paiHcol1 A pointer to an integer vector returning the partial column1

indices.

paiHcol2 A pointer to an integer vector returning the partial column2

indices.

padHcoef A pointer to a double vector returning the coefficients of the

Hessian matrix at padX, when padHcoef and padX is not

NULL.

FUNCTION DEFINITIONS 311

LSregress()

Description:

Compute the linear regression coefficients in the linear model Y = B0 + X*B.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSregress(int nNdim, int nPdim,double *padY,double

*padX,double *padB, double *pdB0, double *padR, double

*padstats) ;

Input Arguments:

Name Description

nNdim The number of observations.

nPdim The number of predictors.

padY A double vector of observed responses with nNdim dimension.

padX A double matrix of predictors with nNdim x pPdim dimension.

Output Arguments:

Name Description

padB A double vector of size nPdim for regression coefficients.

pdB0 A reference to a double scalar for the intercept (optional), i.e.

this argument could be set to NULL.

padR A double vector of size nNdim for residuals (optional), i.e. this

argument could be set to NULL.

padstats A 4-dimensional double vector (optional) to return regression

statistics. The following values will be returned at specified

positions:

padstats[0]: R-squared statistic.

padstats[1]: F-statistic value.

padstats[2]: p-value for the F-test on the regression model.

padstats[3]: estimate of error variance.

312 CHAPTER 2

Callback Management Routines
The routines in this section allow the user to set callback functions and manage callback information.

Refer to Chapter 9, Using Callback Functions, for examples of using callback management routines.

LSgetCallbackInfo()

Description:

Returns information about the current state of the LINDO API solver during model

optimization. This routine is to be called from your user supplied callback function that was

set with LSsetCallback().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetCallbackInfo(pLSmodel pModel, int nLocation, int

nQuery, void *pvValue)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel. This should be the same

instance as was passed to your user callback function from the

LINDO API solver.

nLocation The solver’s current location. This parameter is passed to your

callback function by the LINDO API solver.

nQuery The information desired from LINDO API. Only the following

select information can be obtained from the callback function:

 LS_IINFO_SIM_ITER: Number of simplex iterations

performed for solving a continuous problem.

 LS_IINFO_BAR_ITER: Number of barrier iterations

performed for solving a continuous problem.

 LS_IINFO_NLP_ITER: Number of nonlinear

iterations performed for solving a continuous

problem.

 LS_DINFO_POBJ: Primal objective value of a

continuous problem.

 LS_DINFO_DOBJ: Dual objective value of a

continuous problem.

 LS_DINFO_PINFEAS: Maximum primal

infeasibility.

 LS_DINFO_DINFEAS: Maximum dual infeasibility.

 LS_DINFO_MSW_POBJ: Value of the incumbent

objective value when using the multistart solver.

 LS_IINFO_MSW_PASS: Number of multistart

passes.

 LS_IINFO_MSW_NSOL: Number of distinct

FUNCTION DEFINITIONS 313

solutions found when using the multistart solver.

 LS_DINFO_MIP_OBJ: MIP objective value.

 LS_DINFO_MIP_BESTBOUND: Best bound on MIP

objective.

 LS_IINFO_MIP_LPCOUNT: Number of LPs solved

for solving a MIP.

 LS_IINFO_MIP_BRANCHCOUNT: Number of

branches generated for solving a MIP.

 LS_IINFO_MIP_ACTIVENODES: Number of

remaining nodes to be explored.

 LS_IINFO_MIP_LTYPE: Type of the last MIP

solution.

 LS_IINFO_MIP_SIM_ITER: Number of simplex

iterations performed for solving a MIP.

 LS_IINFO_MIP_BAR_ITER: Number of barrier

iterations performed for solving a MIP.

 LS_IINFO_MIP_NLP_ITER: Number of nonlinear

iterations performed for solving a MIP.

 LS_IINFO_MIP_NUM_TOTAL_CUTS: Number of

total cuts generated.

 LS_IINFO_MIP_GUB_COVER_CUTS: Number of

GUB cover cuts generated.

 LS_IINFO_MIP_FLOW_COVER_CUTS: Number of

flow cover cuts generated.

 LS_IINFO_MIP_LIFT_CUTS: Number of lifted

knapsack covers generated.

 LS_IINFO_MIP_PLAN_LOC_CUTS: Number of

plant location cuts generated.

 LS_IINFO_MIP_DISAGG_CUTS: Number of

disaggregation cuts generated.

 LS_IINFO_MIP_KNAPSUR_COVER_CUTS:

Number of surrogate knapsack cover cuts generated.

 LS_IINFO_MIP_LATTICE_CUTS: Number of

lattice cuts generated.

 LS_IINFO_MIP_GOMORY_CUTS: Number of

Gomory cuts generated.

 LS_IINFO_MIP_COEF_REDC_CUTS: Number of

coefficient reduction cuts generated.

 LS_IINFO_MIP_GCD_CUTS: Number of GCD cuts

generated.

 LS_IINFO_MIP_OBJ_CUT: Number of objective

cuts generated.

 LS_IINFO_MIP_BASIS_CUTS: Number of basis

cuts generated.

 LS_IINFO_MIP_CARDGUB_CUTS: Number of

cardinality/GUB cuts generated.

 LS_IINFO_MIP_CONTRA_CUTS: Number of

contra cuts generated.

314 CHAPTER 2

 LS_IINFO_MIP_CLIQUE_CUTS: Number of clique

cuts generated.

 LS_DINFO_GOP_OBJ: Objective value of the global

optimal solution of a GOP.

 LS_DINFO_GOP_BESTBOUND: Best bound on the

objective value of a GOP.

 LS_IINFO_GOP_STATUS: Solution status of a GOP.

 LS_IINFO_GOP_LPCOUNT: Number of LPs solved

for solving a GOP.

 LS_IINFO_GOP_NLPCOUNT: Number of NLPs

solved for solving a GOP.

 LS_IINFO_GOP_MIPCOUNT: Number of MIPs

solved for solving a GOP.

 LS_IINFO_GOP_NEWSOL: If a new GOP solution

has been found or not.

 LS_IINFO_GOP_BOX: Number of explored boxes

 LS_IINFO_GOP_BBITER: Number of iterations

performed during a major GOP iteration.

 LS_IINFO_GOP_SUBITER: Number of iterations

performed during a minor GOP iteration.

 LS_IINFO_GOP_ACTIVEBOXES: Number of active

boxes at current state for solving a GOP.

 LS_IINFO_GOP_MIPBRANCH: Number of

branches created for solving a GOP.

Output Arguments:

Name Description

pvValue This is a pointer to a memory location where LINDO API will

return the requested information. You must allocate sufficient

memory for the requested information prior to calling this

function.

Remarks:

 LSgetInfo() cannot be used during callbacks.

 Query values whose names begin with LS_IINFO return integer values, while those

whose names begin with LS_DINFO return double precision floating point values.

 Refer to Chapter 9, Using Callback Functions, for additional information.

FUNCTION DEFINITIONS 315

LSgetMIPCallbackInfo()

Description:

Returns information about the current state of the LINDO API branch-and-bound solver. This

routine is to be called from your user supplied callback functions that were established with

the calls LSsetCallback()and LSsetMIPCallback().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetMIPCallbackInfo(pLSmodel pModel, int nQuery, void

*pvValue)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel. This should be the same

instance as was passed to your user callback function from the

LINDO API solver.

nQuery This is the information desired from LINDO API. All

information that can be accessed via LsgetCallbackInfo() is

available.

Output Arguments:

Name Description

pvValue This is a pointer to a memory location where LINDO API will

return the requested information. You must allocate sufficient

memory for the requested information prior to calling this

function.

Remarks:

 Query values whose names begin with LS_IINFO return integer values, while those

values whose names begin with LS_DINFO return double precision floating point values.

 Refer to Chapter 9, Using Callback Functions, for additional information on the use of

callback functions.

316 CHAPTER 2

LSsetCallback()

Description:

Supplies LINDO API with the address of the callback function that will be called at various

points throughout all components of LINDO API. The user supplied callback function can be

used to report the progress of the solver routines to a user interface, interrupt the solver, etc.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetCallback(pLSmodel pModel, int (CALLBACKTYPE

pcbFunc)(LSmodel, int, void*), void *pvData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pcbFunc A pointer to the user supplied callback function.

pvData A pointer to any data you wish to access within the callback

function. Of course, this can be a pointer to a structure,

allowing any amount of information to be passed.

Remarks:

 To disable the callback function, call this routine with the callback function set to NULL.

 To control the frequency of callbacks, use LSsetEnvDouParameter() to set parameter

LS_DPARAM_CALLBACKFREQ. This parameter is the number of seconds

(approximately) between callbacks.

 If the value returned by the callback function is nonzero, the solver will interrupt and the

control of the application program will pass to the user.

 Refer to the lindo.h file for CALLBACKTYPE macro definition.

 Refer to Chapter 9, Using Callback Functions, for additional information.

FUNCTION DEFINITIONS 317

LSsetEnvLogFunc ()

Description:

Supplies the specified environment with the addresses of a) the pLogfunc() that will be called

each time LINDO API logs message and b) the address of the user data area to be passed

through to the pUsercalc() routine.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetEnvLogFunc (pLSenv pEnv, printLOG_t *pLogfunc,

void *pUserData)

Input Arguments:

Name Description

pEnv A pointer to an instance of LSenv.

pLogfunc A pointer to the subroutine that will be called to log messages.

pUserData A pointer to a “pass through” data area in which your calling

application may place information about the functions to be

calculated. Whenever LINDO API calls your subroutine

pUsercalc(), it passes through the pointer pUserData which

could contain data to be used in the computation of the final

value. Passing data in this manner will ensure that your

application remains thread safe.

318 CHAPTER 2

LSsetFuncalc ()

Description:

Supplies LINDO API with the addresses of a) the user-supplied function computing the

routine pFuncalc() (see Chapter 7) that will be called each time LINDO API needs to

compute a row value, and b) the address of the user data area to be passed through to the

pFuncalc() routine.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetFuncalc (pLSmodel pModel, Funcalc_type *pFuncalc,

void *pUserData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pFuncalc A pointer to the subroutine that computes the value of a

specified nonlinear row. See the definition of pFuncalc() in

Chapter 7, Solving Nonlinear Programs, for details on this

function’s prototype.

pUserData A pointer to a “pass through” data area in which your calling

application may place information about the functions to be

calculated. Whenever LINDO API calls your subroutine

pFuncalc(), it passes through the pointer pUserData. All data

that pFuncalc() needs to compute function values should be in

the pUserData memory block. Passing data in this manner will

ensure that your application remains thread safe.

Remarks:

 Visual Basic users can use the AddressOf operator to pass the address of a routine to

LSsetFuncalc(). The supplied routine must be in a VB module, or the AddressOf operator

will fail.

FUNCTION DEFINITIONS 319

LSsetGradcalc()

Description:

Supplies LINDO API with the addresses of a) the pGradcalc () callback function (see Chapter

7, Solving Nonlinear Programs) that will be called each time LINDO API needs a gradient

(i.e., vector of partial derivatives), and b) the data area to be passed through to the gradient

computing routine. This data area may be the same one supplied to LSsetFuncalc().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetGradcalc (pLSmodel pModel, Gradcalc_type

*pGradcalc, void *pUserData, int nLenUseGrad, int

*pnUseGrad);

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pGradcalc A pointer to the subroutine that computes the gradients for

specified nonlinear rows. See the definition of pGradcalc () in

Chapter 7, Solving Nonlinear Programs, for details on this

function’s interface.

pUserData A pointer to a “pass through” data area in which your calling

application may place information about the partial derivatives

to be calculated. Whenever LINDO API calls your subroutine

pGradcalc(), it passes through the pointer pUserData. All data

that pGradcalc() needs to compute gradients should be in the

pUserData memory block. Passing data in this manner will

ensure that your application remains thread safe.

nLenUseGrad An integer indicating how many nonlinear rows will make use

of the pGradcalc() routine. 0 is interpreted as meaning that no

functions use a pGradcalc() routine, thus meaning that partials

on all functions are computed with finite differences. A value

of -1 is interpreted as meaning the partials on all nonlinear

rows will be computed through the pGradcalc() routine. A

value greater than 0 and less-than-or-equal-to the number of

nonlinear rows is interpreted as being the number of nonlinear

rows that make use of the pGradcalc () routine. And, the list of

indices of the rows that do so is contained in the following

array, pnUseGrad.

pnUseGrad An integer array containing the list of nonlinear rows that make

use of the pGradcalc() routine. You should set this pointer to

NULL if nLenUseGrad is 0 or -1. Otherwise, it should point to

an array of dimension nLenUseGrad, where pnUseGrad[j] is

the index of the j-th row whose partial derivatives are supplied

through the pGradcalc() function. A value of -1 indicates the

320 CHAPTER 2

objective row.

Remarks:

 LSsetGradcalc() need not be called. In that case, gradients will be approximated by finite

differences.

 Visual Basic users can use the AddressOf operator to pass the address of a routine to

LSsetGradcalc(). The supplied routine must be in a VB module, or the AddressOf

operator will fail.

LSsetMIPCallback()

Description:

Supplies LINDO API with the address of the callback function that will be called each time a

new integer solution has been found to a mixed-integer model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetMIPCallback(pLSmodel pModel, int (

CALLBACKTYPE *pMIP_caller)(LSmodel*, void*, double,

double*), void *pvData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pMIP_caller A pointer to your user supplied callback function.

pvData A pointer to any data you wish to access within the callback

function. Of course, this can be a pointer to a structure,

allowing any amount of information to be passed.

Remarks:

 To disable the MIP callback function, call this routine with the callback function set to

NULL.

 To retrieve information in your MIP callback routine, see LSgetMIPCallbackInfo().

 To interrupt the mixed-integer optimizer before a new integer solution is found or in

between new integer solutions, set a general callback function via LSsetCallback().

 Refer to the lindo.h file for the CALLBACKTYPE macro definition.

 Refer to Chapter 9, Callback Functions, for additional information.

FUNCTION DEFINITIONS 321

LSsetGOPCallback()

Description:

Supplies LINDO API with the address of the callback function that will be called each time a

the global solver updates the incumbent solution, i.e. finds a solution with objective value

better than the best known solution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetGOPCallback(pLSmodel pModel, int (

CALLBACKTYPE *pGOP_caller)(LSmodel*, void*, double,

double*), void *pvData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pGOP_caller A pointer to your user supplied callback function.

pvData A pointer to any data you wish to access within the callback

function. Of course, this can be a pointer to a structure,

allowing any amount of information to be passed.

LSsetModelLogFunc()

Description:

Supplies the specified model with the addresses of a) the pLogfunc () that will be called each

time LINDO API logs message and b) the address of the user data area to be passed through

to the pUsercalc() routine.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetModelLogFunc (pLSmodel pModel, printLOG_t

*pLogfunc, void *pUserData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pLogfunc A pointer to the subroutine that will be called to log messages.

pUserData A pointer to a “pass through” data area in which your calling

application may place information about the functions to be

calculated. Whenever LINDO API calls your subroutine

pUsercalc(), it passes through the pointer pUserData which

could contain data to be used in the computation of the final

322 CHAPTER 2

value. Passing data in this manner will ensure that your

application remains thread safe.

FUNCTION DEFINITIONS 323

LSsetUsercalc ()

Description:

Supplies LINDO API with the addresses of a) the pUsercalc() (see Chapter 7) that will be

called each time LINDO API needs to compute the value of the user-defined function and b)

the address of the user data area to be passed through to the pUsercalc() routine.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetFuncalc (pLSmodel pModel, user_callback_t

*pUsercalc, void *pUserData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pUsercalc A pointer to the subroutine that computes the value of a user-

defined function. See the definition of pUsercalc() in Chapter

7, Solving Nonlinear Programs, for details on this function’s

prototype.

pUserData A pointer to a “pass through” data area in which your calling

application may place information about the functions to be

calculated. Whenever LINDO API calls your subroutine

pUsercalc(), it passes through the pointer pUserData which

could contain data to be used in the computation of the final

value. Passing data in this manner will ensure that your

application remains thread safe.

Remarks:

 LSsetGradcalc() need not be called. In that case, gradients will be approximated by finite

differences.

324 CHAPTER 2

LSsetMIPCCStrategy ()

Description:

Set the callback function that will be called to define competing strategies

 for each thread when in a concurrent MIP run.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetMIPCCStrategy(pLSmodel pModel, cbStrategy_t

MIP_strategy, int nRunId, char *szParamFile, void

*puserData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

MIP_strategy A pointer to the callback function to define a MIP strategy in

the concurrent run.

nRunId The index of the instance in the concurrent run.

szParamFile A parameter file to import strategy parameters.

puserData A pointer to data that is passed back to the callback function.

This pointer can be a pointer to a structure so that any amount

of information can be passed back.

Note:

 To disable the callback function, call this routine again with the callback function set to

NULL.

FUNCTION DEFINITIONS 325

Memory Management Routines
The routines in this section allow the user to manage the memory used by the LINDO API solvers.

LSfreeGOPSolutionMemory()

Description:

This routine frees up the arrays associated with the GOP solution of a given model. After

freeing the memory, you will lose all access to the information associated to GOP solutions.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSfreeGOPSolutionMemory(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

LSfreeHashMemory()

Description:

This routine frees up work arrays associated with a given model’s variable name hashing.

This will release memory to the system pool, but will cause any subsequent variable name

lookup to pause to regenerate these tables.

Returns:

if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

void LSfreeHashMemory(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Remarks:

 A model also stores work arrays for the solver. These arrays may be freed by a call to

LSfreeSolverMemory().

326 CHAPTER 2

LSfreeMIPSolutionMemory()

Description:

This routine frees up the arrays associated with the MIP solution of a given model. After

freeing the memory, you will lose all access to the information associated to MIP solutions.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSfreeMIPSolutionMemory(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

LSfreeSolutionMemory()

Description:

This routine frees up the arrays associated with the solution of a given model. This will

release the associated memory blocks to the system, but will not cause the solver to loose any

warm start capability for the model on its next run. However, you will lose all access to the

model’s solution information.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSfreeSolutionMemory(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

FUNCTION DEFINITIONS 327

LSfreeSolverMemory()

Description:

This routine frees up solver work arrays associated with a given model. This will release the

associated memory to the system, but will cause any subsequent reoptimization of the model

to take more time. In other words, the solver will lose its warm start capability for the model

on its next run. Note that by freeing solver memory, you will not lose access to the model’s

solution information.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

void LSfreeSolverMemory(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Remarks:

 A model also stores work arrays for variable name hashing. These arrays may be freed by

a call to LSfreeHashMemory().

328 CHAPTER 2

Random Number Generation Routines
Random Number Generator Functions.

LScreateRG ()

Description:

Create a new random generator object.

Returns:

pRG A reference to a random number generator.

Prototype:

pLSrandGen LScreateRG (pLSenv pEnv, int nMethod)

Input Arguments:

Name Description

pEnv A reference to an instance of LSenv.

nMethod An integer specifying the random number generator to use.

Possible values are:

 LS_RANDGEN_FREE

 LS_RANDGEN_SYSTEM

 LS_RANDGEN_LINDO1

 LS_RANDGEN_LINDO2

 LS_RANDGEN_LIN1

 LS_RANDGEN_MULT1

 LS_RANDGEN_MERSENNE

Remark:

Call LScreateRGMT() for multithreaded random number generation.

LSgetDoubleRV ()

Description:

Get the next standard uniform random variate in the stream.

Prototype:

double LSgetDoubleRV (pLSrandGen pRG)

Input Arguments:

Name Description

pRG A reference to the random number generator.

FUNCTION DEFINITIONS 329

LSgetDistrRV ()

Description:

Get the next double random variate of underlying distribution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetDistrRV (pLSrandGen pRG, void * dResult)

Input Arguments:

Name Description

pRG A reference to the random number generator.

dResult The next random value from underlying distribution

LSgetInitSeed ()

Description:

Get the seed initiated this random generator.

Prototype:

int LSgetInitSeed (pLSrandGen pRG)

Input Arguments:

Name Description

pRG A reference to the random number generator.

LSgetInt32RV ()

Description:

Get the next integer random variate in the stream.

330 CHAPTER 2

Prototype:

int LSgetInt32RV (pLSrandGen pRG, int ib, int ie)

Input Arguments:

Name Description

pRG A reference to the random number generator.

ib lower bound for random variate

ie upper bound for random variate

LSsetRGSeed ()

Description:

Set an initialization seed for the random number generator.

Prototype:

void LSsetRGSeed (pLSrandGen pRG, int seed)

Input Arguments:

Name Description

pRG A reference to the random number generator.

seed An integer specifying the seed to set.

LSdisposeRG ()

Description:

Delete the specified random generator object.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

void LSdisposeRG (pLSrandGen * ppRG)

Input Arguments:

Name Description

ppRG A reference to the address of a random number generator.

FUNCTION DEFINITIONS 331

LSsetDistrRG ()

Description:

Set a cdfinv for the random generator.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsetDistrRG (pLSrandGen pRG, int nDistType)

Input Arguments:

Name Description

pRG A reference to the random number generator.

nDistType An integer specifying the distribution type. See

LSsampCreate() for possible values.

LSsetDistrParamRG ()

Description:

Set distribution parameters for internal cdfinv.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsetDistrParamRG (pLSrandGen pRG, int iParam, double

dParam)

Input Arguments:

Name Description

pRG A reference to the random number generator.

iParam A parameter index

dParam A parameter value

LSgetRGNumThreads ()

Description:

Get the number of parallel threads for specified pLSrandGen instance.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

332 CHAPTER 2

Prototype:

int LSgetRGNumThreads(pLSrandGen pRG, int *pnThreads);

Input Arguments:

Name Description

pRG A reference to the random number generator.

Output Arguments:

Name Description

pnThreads An integer reference to return the number of parallel threads

used.

LSfillRGBuffer ()

Description:

Generate next batch of random numbers into random number buffer.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSfillRGBuffer(pLSrandGen pRG)

Input Arguments:

Name Description

pRG A reference to the random number generator.

Remark:

This function is used only with parallel random number generator created with

LScreateRGMT().

LSgetRGBufferPtr ()

Description:

Get buffer pointer for fast access.

Returns:

A pointer to a double array of size (*pnBufferLen).

FUNCTION DEFINITIONS 333

Prototype:

double LSgetRGBufferPtr(pLSrandGen pRG, int *pnBufferLen)

Input Arguments:

Name Description

pRG A reference to the random number generator.

pnBufferLen An integer reference to return the length of output buffer.

334 CHAPTER 2

Sampling Routines
Sampling Functions.

LSsampCreate ()

Description:

Create an instance of a sample (pLSsample) of specified distribution.

Returns:

A reference to an instance of LSsample object.

Prototype:

pLSsample LSsampCreate (pLSenv pEnv, int nDistrType, int *

perrorcode)

Input Arguments:

Name Description

pEnv A reference to an instance of LSenv object.

nDistrType An integer specifying the distribution type. Possible values:

one of the distribution functions listed in the table above

Distribution Function Macros.

perrorcode An reference to an integer returning the error code. See

Appendix-A for possible values.

LSsampDelete ()

Description:

Delete the specified pLSsample object.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampDelete (pLSsample * pSample)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

FUNCTION DEFINITIONS 335

LSsampLoadDiscretePdfTable ()

Description:

Load a PDF table for a user defined discrete distribution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampLoadDiscretePdfTable (pLSsample pSample, int nLen,

double * padProb, double * padVals)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

nLen An integer specifying the table length.

padProb A double array specifying the probabilities of outcomes.

padVals A double array specifying the values of outcomes (optional)

Remarks:

 if nLen <=0, the table length will be set to default (100)

LSsampGetDiscretePdfTable ()

Description:

Get the PDF table from a discrete distribution sample.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampGetDiscretePdfTable (pLSsample pSample, int nLen,

double * padProb, double * padVals)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

nLen An integer to return the table length.

padProb A double array to return the probabilities of outcomes.

padVals A double array to return the values of outcomes (optional)

Remarks:

 Normally, this function should be called twice. The first call to get pnLen (with other

arguments set to NULL) to allocate space for padProb and padVals. In the second call,

padProb and padVals would be populated.

336 CHAPTER 2

LSsampSetUserDistr ()

Description:

Specify a custom function to compute the PDF.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampSetUserDistr (pLSsample pSample, UserPdf * pFunc)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

pFunc A user defined routine.

LSsampSetDistrParam ()

Description:

Set the specified parameter of the given distribution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampSetDistrParam (pLSsample pSample, int iarg, double

dargv)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

iarg An integer specifying the index of the parameter.

dargv A double precision value specifying the parameter value.

LSsampGetDistrParam ()

Description:

Get the specified parameter of a given distribution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 337

Prototype:

int LSsampGetDistrParam (pLSsample pSample, int iarg, double *

dargv)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

iarg An integer specifying the index of the parameter.

dargv A double precision value specifying the parameter value.

LSsampEvalDistr ()

Description:

Evaluate the specified function associated with given distribution at specified point.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampEvalDistr (pLSsample pSample, int nFuncType,

double dX, double * dResult)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

nFuncType An integer specifying the function type to evaluate. Possible

values are:

 LS_PDF: probability density function.

 LS_CDF: cummulative density function.

 LS_CDFINV: inverse of cummulative density

function.

 LS_PDFDIFF: derivative of the probability

density function.

dX A double precision value to evaluate the specified function.

dResult A reference to a double value to return the result.

 LSsampSetRG ()

Description:

Set a random number generator object to the specified distribution.

338 CHAPTER 2

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampSetRG (pLSsample pSample, void * pRG)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

pRG A reference to a random number generator.

LSsampGenerate ()

Description:

Generate a sample of size nSampSize with specified method from the underlying

distribution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampGenerate (pLSsample pSample, int nSampMethod, int

nSampSize)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

nSampMethod An integer specifying the sampling method. Possible values

are:

 LS_MONTECARLO

 LS_LATINSQUARE (default)

 LS_ANTITHETIC

nSampSize An integer specifying the sample size. Possible values are

nonnegative integers > 2.

LSsampGetPoints ()

Description:

Get a copy of the generated sample points.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 339

Prototype:

int LSsampGetPoints (pLSsample pSample, int * pnSampSize,

double * pX)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

pnSampSize A reference to an integer specifying the sample size.

pX A reference to a double pointer containing the sample.

Remarks:

Use LSdistGetSamplePtr for fast access to the sample.

LSsampGetPointsPtr ()

Description:

Get a reference to the generated sample points.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampGetPointsPtr (pLSsample pSample, int * pnSampSize,

double ** pX)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

pnSampSize A reference to an integer specifying the sample size.

pX A reference to a double pointer containing the sample.

LSsampGetCIPoints ()

Description:

Get a copy of the correlation induced sample points.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

340 CHAPTER 2

Prototype:

int LSsampGetCIPoints (pLSsample pSample, int * pnSampSize,

double *pX)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

pnSampSize A refernce to an integer specifying the sample size.

pX A reference to a double vector containing the sample.

LSsampGetCIPointsPtr ()

Description:

Get a reference to the correlation induced sample points.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampGetCIPointsPtr (pLSsample pSample, int *

pnSampSize, double ** pX)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

pnSampSize A reference to an integer specifying the sample size.

pX A reference to a double pointer containing the sample.

LSsampGetCorrelationMatrix ()

Description:

Get the correlation structure between variables.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 341

Prototype:

int LSsampGetCorrelationMatrix (pLSsample * paSample, int

nDim, int iFlag, int nCorrType, int * QCnonzeros, int *

QCvarndx1, int * QCvarndx2, double * QCcoef)

Input Arguments:

Name Description

paSample An array of instances of pLSsample

nDim An integer specifying the number of variables (length of

paSample)

iFlag An integer specifying the sample (original or corr-induced).

Possible values are:

 0 use independent sample

 1 use dependent (correlation induced) sample.

nCorrType Correlation type. Possible values are:

 LS_CORR_PEARSON (default)

 LS_CORR_SPEARMAN

 LS_CORR_KENDALL

 LS_CORR_TARGET

QCnonzeros A reference to an integer to return the number of nonzero

correlation coefficients.

QCvarndx1 A vector containing the first index of variable the correlation

term belongs to (QCnonzeros long)..

QCvarndx2 A vector containing the second index of variable the

correlation term belongs to (QCnonzeros long)..

QCcoef A vector containing the correlation terms (QCnonzeros long).

LSsampInduceCorrelation ()

Description:

Induce a target dependence structure between the stochastic elements via the specified

correlation matrix. This matrix can be retrieved with LSgetCorrelationMatrix function with

LS_CORR_TARGET as the argument.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

342 CHAPTER 2

Prototype:

int LSsampInduceCorrelation (pLSsample * paSample, int nDim,

int nCorrType, int QCnonzeros, int * QCvarndx1, int *

QCvarndx2, double * QCcoef)

Input Arguments:

Name Description

paSample An array of instances of LSsample

nDim An integer specifying the number of variables (length of

paSample)

nCorrType Correlation type. Possible values are:

 LS_CORR_PEARSON

 LS_CORR_SPEARMAN

 LS_CORR_KENDALL

QCnonzeros The number of nonzero correlation coefficients.

QCvarndx1 A vector containing the first index of variable the correlation

term belongs to (QCnonzeros long)..

QCvarndx2 A vector containing the second index of variable the

correlation term belongs to (QCnonzeros long)..

QCcoef A vector containing the correlation terms (QCnonzeros long).

Remarks:

Use LSdistGetSamplePtr for fast access to the sample.

 LSsampGetInfo ()

Description:

Get information about the sample.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 343

Prototype:

int LSsampGetInfo (pLSsample pSample, int query, void * result)

Input Arguments:

Name Description

paSample An array of instances of LSsample

query An integer specifying the information requested from the

sample. Possible values are:

 LS_IINFO_DIST_TYPE

 LS_IINFO_SAMP_SIZE

 LS_DINFO_SAMP_MEAN

 LS_DINFO_SAMP_STD

 LS_DINFO_SAMP_SKEWNESS

 LS_DINFO_SAMP_KURTOSIS

result A reference to the appropriate type to return the result.

Note:

Query values whose names begin with LS_IINFO take integer values while those whose

names begin with LS_DINFO take double-precision floating point values.

LSgetStocParSample ()

Description:

Get a handle for the LSsample object associated with the specified stochastic parameter.

Returns:

A reference to an instance of LSsample object.

Prototype:

pLSsample LSgetStocParSample (pLSmodel pModel, int iStv, int iRow,

int jCol, int * nErrorCode)

344 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iStv An integer specifying the index of stochastic parameter in the

instruction list. It should be ignored if (iRow,jCol) is

specified.

iRow An integer specifying the row index of the stochastic

parameter. It should be ignored if iStv will be specified.

jCol An integer specifying the column index of the stochastic

parameter. It should be ignored if iStv will be specified.

nErrorCode A reference to an integer error code.

LSsampEvalUserDistr ()

Description:

Evaluate the specified multivariate function associated with given distribution at specified

point.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 345

Prototype:

int (pLSsample pSample, int nFuncType, double *padX, int nX,

double *dResult)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

nFuncType An integer specifying the function type to evaluate. Possible

values are:

 LS_PDF: probability density function.

 LS_CDF: cummulative density function.

 LS_CDFINV: inverse of cummulative density

function.

 LS_PDFDIFF: derivative of the probability density

function.

 LS_USER: a user-defined function. The UserPDF()

will

padX A double precision vector containing the values required to

evaluate the specified function. This vector has nX elements.

nX An integer specifying the number of values required in the

computation of the sample point.

dResult A reference to a double value to return the result.

LSsampAddUserFuncArg ()

Description:

Adds other samples as arguments to a sample with a user-defined distribution or a function

with random arguments.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampAddUserFuncArg(pLSsample pSample, pLSsample

pSampleSource)

Input Arguments:

Name Description

pSample An instance of LSsample which depends on pSampleSource

pSampleSource Another instance of LSsample

346 CHAPTER 2

Distribution Function Macros
 Symbol Value Distribution Parameters

 Param 1 Param 2 Param 3

Parametric Discrete Distributions

LSDIST_TYPE_BINOMIAL 701

no. of trials

success

prob.

N/A

[0, +inf) [0, 1] N/A

LSDIST_TYPE_NEGATIVE_BINOMIAL 704

r- factor success

prob.

N/A

(0, +inf) (0, 1) N/A

LSDIST_TYPE_GEOMETRIC 705

success prob. N/A N/A

(0, 1] N/A N/A

LSDIST_TYPE_POISSON 706

mean N/A N/A

(0, +inf) N/A N/A

LSDIST_TYPE_LOGARITHMIC 707

p-factor N/A N/A

(0, 1) N/A N/A

LSDIST_TYPE_HYPER_GEOMETRIC 708

total pop. (N)

sample

size (n)

defective

factor (m)

[0, +inf) [0, N] [0, N]

Parametric Continuous Distributions

LSDIST_TYPE_BETA 801

Shape 1 Shape 2 N/A

(0,+inf) (0,+inf) N/A

LSDIST_TYPE_CAUCHY 802

location scale N/A

(-inf, +inf) (0,+inf) N/A

LSDIST_TYPE_CHI_SQUARE 803

deg. of

freedom

N/A N/A

(0,+inf) N/A N/A

LSDIST_TYPE_EXPONENTIAL 804

 Rate N/A N/A

(0,+inf) N/A N/A

LSDIST_TYPE_F_DISTRIBUTION 805

deg. of

freedom 1

deg. of

freedom 2

N/A

(0,+inf) (0,+inf) N/A

LSDIST_TYPE_GAMMA 806 shape scale N/A

FUNCTION DEFINITIONS 347

(0,+inf) (0,+inf) N/A

LSDIST_TYPE_GUMBEL 807

location scale N/A

(-inf, +inf) (0,+inf) N/A

LSDIST_TYPE_LAPLACE 808

location scale N/A

(-inf, +inf) (0,+inf) N/A

LSDIST_TYPE_LOGNORMAL 809

location scale N/A

(-inf, +inf) (0,+inf) N/A

LSDIST_TYPE_LOGISTIC 810

location scale N/A

(-inf, +inf) (0,+inf) N/A

LSDIST_TYPE_NORMAL 811

mean standard

deviation

N/A

(-inf, +inf) (0,+inf) N/A

LSDIST_TYPE_PARETO 812

scale shape N/A

(0,+inf) (0,+inf) N/A

LSDIST_TYPE_STUDENTS_T 814

deg. of

freedom

N/A N/A

(0,+inf) N/A N/A

LSDIST_TYPE_TRIANGULAR 815

lower limit

(a)

upper

limit (b) mode (c)

(-inf, b] [a, +inf) [a, b]

LSDIST_TYPE_UNIFORM 816

lower limit

(a)

upper

limit (b)

N/A

(-inf, b] [a, +inf) N/A

LSDIST_TYPE_WEIBULL 817

scale shape N/A

(0,+inf) (0,+inf) N/A

LSDIST_TYPE_BETABINOMIAL 819 N>0 shape1>0 shape2>0

LSDIST_TYPE_SYMMETRICSTABLE 820 2>alpha>0.02 N/A N/A

Customized Distributions

LSDIST_TYPE_DISCRETE 702 N/A N/A N/A

LSDIST_TYPE_DISCRETE_BLOCK 703 N/A N/A N/A

LSDIST_TYPE_LINTRAN_BLOCK 709 N/A N/A N/A

LSDIST_TYPE_SUB_BLOCK 710 N/A N/A N/A

LSDIST_TYPE_SUB 711 N/A N/A N/A

348 CHAPTER 2

LSDIST_TYPE_USER 712 N/A N/A N/A

FUNCTION DEFINITIONS 349

Date and Time Routines
The routines in this section provide basic date-time-calendar functionality.

LSdateDiffSecs ()

Description:

Computes number of seconds between two instants in Yr, Mon, Day, Hr, Mn, Sec form. Leap

years are properly accounted for.

Returns:

0 if successful, else an error code if one of the inputs is incorrect, e.g., Mon < 1 or Mon > 12,

etc. See error codes listed in Appendix A, Error Codes.

Prototype:

 int LSdateDiffSecs (int nYr1, int nMon1, int nDay1, int nHr1, int

nMin1, double dSec1, int nYr2, int nMon2, int nDay2, int

nHr2, int nMin2, double dSec2, double *pdSecdiff)

Input Arguments:

Name Description

nYr1 Year, e.g., 1981, of first instant. May be negative for a BC

date.

nMon1 Month of first instant. An integer in [1, 12].

nDay1 Day of month of first instant. An integer in [1, 31].

nHr1 Hour of day of first instant. An integer in [1, 24].

nMin1 Minute of hour of first instant. An integer in [1, 60].

dSec1 Second of hour of first instant. A floating point number in [0,

59.99999], i.e., accurate to 5 decimal places.

nYr2 Year of second instant. May be negative for a BC date.

nMon2 Month of second instant. An integer in [1, 12].

nDay2 Day of month of second instant. An integer in [1, 31].

nHr2 Hour of day of second instant. An integer in [1, 24].

nMin2 Minute of the hour of second instant. An integer in [1, 60].

dSec2 Second of hour of second instant. A floating point number in

[0, 59.99999], i.e., accurate to 5 decimal places.

*dSecdiff Pointer to a double precision variable into which to place the

difference in seconds, including fraction, between the two

instants.

350 CHAPTER 2

LSdateYmdhms ()

Description:

Given an elapsed time in seconds and a first instant in Yr, Mon, Day, Hr, Min, Sec form, this

function computes the Yr, Mon, Day, Hr, Min, Sec, and Day of week of a second instant that

exceeds the first by the specified elapsed seconds. Leap years are properly accounted for.

Returns:

0 if successful, else an error code if one of the inputs is incorrect, e.g., Mon < 1 or Mon > 12,

etc. See error codes listed in Appendix A, Error Codes.

Prototype:

 int LSdateYmdhms (double dSecdiff , int nYr1, int nMon1, int

nDay1, int nHr1, int nMin1, double dSec1, int *pnYr2, int

*pnMon2, int*pnDay2, int *pnHr2, int *pnMin2, double

*pdSec2, int *pnDow,)

Input Arguments:

Name Description

dSecdiff A double precision value giving an elapsed time in seconds.

The second instant will differ from the first instant by this

number of seconds.

nYr1 Year, e.g., 1981, of first instant. May be negative for a BC

date.

nMon1 Month of first instant. An integer in [1, 12].

nDay1 Day of month of first instant. An integer in [1, 31].

nHr1 Hour of day of first instant. An integer in [1, 24].

nMin1 Minute of hour of first instant. An integer in [1, 60].

dSec1 Second of hour of first instant. A floating point number in [0,

59.99999], i.e., accurate to 5 decimal places.

*pnYr2 Pointer to an integer variable into which the year of second

instant will be placed. May be negative for a BC date.

*pnMon2 Pointer to an integer variable into which the month of second

instant will be placed. An integer in [1, 12].

*pnDay2 Pointer to an integer variable into which the day of month of

second instant will be placed. An integer in [1, 31].

*pnHr2 Pointer to an integer variable into which the hour of day of

second instant will be placed. An integer in [1, 24].

*pnMin2 Pointer to an integer variable into which the minute of the hour

of second instant will be placed. An integer in [1, 31].

FUNCTION DEFINITIONS 351

*pdSec2 Pointer to a double variable into which the second of minute of

second instant will be placed. A floating point number in [0,

59.99999], i.e., accurate to 5 decimal places.

*pnDow Pointer to an integer variable into which the day of the week of

the second instant will be placed, where 0 is Sunday, 1 is

Monday, ... , 6 is Saturday.

LSdateToday ()

Description:

Returns the Yr, Mon, Day, Hr, Min, Sec, and Day of week at the instant when the function

was called. Leap years are properly accounted for.

Returns:

0 if successful, else an error code if one of the input pointers is invalid. See error codes listed

in Appendix A, Error Codes.

Prototype:

 int LSdateYmdhms (int *pnYr1, int *pnMon1, int*pnDay1, int

*pnHr1, int *pnMin1, double *pdSec1, int *pnDow,)

Input Arguments:

Name Description

*pnYr1 Pointer to an integer variable into which the year of today will

be placed.

*pnMon1 Pointer to an integer variable into which the month of today

will be placed. An integer in [1, 12].

*pnDay1 Pointer to an integer variable into which the day of month of

today will be placed. An integer in [1, 31].

*pnHr1 Pointer to an integer variable into which the current hour of

today will be placed. An integer in [1, 24].

*pnMin1 Pointer to an integer variable into which the current minute of

the hour of today will be placed. An integer in [1, 31].

*pdSec1 Pointer to a double variable into which the current second of

the minute of today will be placed. A floating point number in

[0, 59.99999], i.e., accurate to 5 decimal places.

*pnDow Pointer to an integer variable into which the day of the week of

the today will be placed, where 0 is Sunday, 1 is Monday, ... , 6

is Saturday.

Chapter 3:

Solving Linear Programs
In this chapter, we demonstrate the use of LINDO API to build and solve a very simple model. We

will give examples written in both C and Visual Basic.

Recall the simple programming example from Chapter 1. It is a small product mix model that appears

as follows:

Maximize: 20 * A + 30 * C

Subject to:

 A <= 60

 C <= 50

 A + 2 * C <= 120

The optimal objective value for this model is 2100, with A = 60 and C = 30.

Solving such a problem with LINDO API involves the following steps:

1. Create a LINDO environment.

2. Create a model in the environment.

3. Specify the model.

4. Perform the optimization.

5. Retrieve the status and model solution.

6. Delete the LINDO environment.

We illustrate each of these steps for both C and Visual Basic.

A Programming Example in C
In this section, we will illustrate the use of LINDO API to build and solve the small model discussed

above. The code for this example is contained in the file \lindoapi\samples\c\ex_samp1\ex_samp1.c.

The contents of this file are reproduced below:

/* ex_samp1.c

 A C programming example of interfacing with the

 LINDO API.

 The problem:

 MAX = 20 * A + 30 * C

 S.T. A + 2 * C <= 120

 A <= 60

 C <= 50

 Solving such a problem with the LINDO API involves

 the following steps:

354 CHAPTER 3

 1. Create a LINDO environment.

 2. Create a model in the environment.

 3. Specify the model.

 4. Perform the optimization.

 5. Retrieve the status and model solution.

 6. Delete the LINDO environment.

*/

#include <stdlib.h>

#include <stdio.h>

/* LINDO API header file is located under \lindoapi\include */

#include "lindo.h"

/* Define a macro to declare variables for error checking */

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

#define APIERRORCHECK

 if (nErrorCode)

 {

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("Errorcode=%d: %s\n", nErrorCode,

 cErrorMessage);

 } else {

 printf("Fatal Error\n");

 }

 exit(1);

 }

/* main entry point */

int main()

{

 APIERRORSETUP;

/* Number of constraints */

 int nM = 3;

/* Number of variables */

 int nN = 2;

/* declare an instance of the LINDO environment object */

 pLSenv pEnv;

/* declare an instance of the LINDO model object */

 pLSmodel pModel;

 int nSolStatus;

 char MY_LICENSE_KEY[1024];

/* >>> Step 1 <<< Create a model in the environment. */

 nErrorCode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

SOLVING LINEAR PROGRAMS 355

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

/* >>> Step 2 <<< Create a model in the environment. */

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

 {

/* >>> Step 3 <<< Specify the model.

 To specify our model, we make a call to LSloadLPData,

 passing it:

 - A pointer to the model which we are specifying(pModel)

 - The number of constraints in the model

 - The number of variables in the model

 - The direction of the optimization (i.e. minimize or

 - maximize)

 - The value of the constant term in the objective (may

 be zero)

 - The coefficients of the objective function

 - The right-hand sides of the constraints

 - The types of the constraints

 - The number of nonzeros in the constraint matrix

 - The indices of the first nonzero in each column

 - The length of each column

 - The nonzero coefficients

 - The row indices of the nonzero coefficients

 - Simple upper and lower bounds on the variables

*/

/* The direction of optimization */

 int nDir = LS_MAX;

/* The objective's constant term */

 double dObjConst = 0.;

/* The coefficients of the objective function */

 double adC[2] = { 20., 30.};

/* The right-hand sides of the constraints */

 double adB[3] = { 120., 60., 50.};

/* The constraint types */

 char acConTypes[3] = {'L', 'L', 'L'};

/* The number of nonzeros in the constraint matrix */

 int nNZ = 4;

/* The indices of the first nonzero in each column */

 int anBegCol[3] = { 0, 2, nNZ};

/* The length of each column. Since we aren't leaving

 any blanks in our matrix, we can set this to NULL */

 int *pnLenCol = NULL;

/* The nonzero coefficients */

 double adA[4] = { 1., 1., 2., 1.};

/* The row indices of the nonzero coefficients */

 int anRowX[4] = { 0, 1, 0, 2};

/* Simple upper and lower bounds on the variables.

 By default, all variables have a lower bound of zero

 and an upper bound of infinity. Therefore pass NULL

356 CHAPTER 3

 pointers in order to use these default values. */

 double *pdLower = NULL, *pdUpper = NULL;

/* We have now assembled a full description of the model.

 We pass this information to LSloadLPData with the

 following call. */

 nErrorCode = LSloadLPData(pModel, nM, nN, nDir,

 dObjConst, adC, adB, acConTypes, nNZ, anBegCol,

 pnLenCol, adA, anRowX, pdLower, pdUpper);

 APIERRORCHECK;

 }

 /* >>> Step 4 <<< Perform the optimization */

 nErrorCode = LSoptimize(pModel,

 LS_METHOD_PSIMPLEX, &nSolStatus);

 APIERRORCHECK;

 if (nSolStatus == LS_STATUS_OPTIMAL ||

 nSolStatus == LS_STATUS_BASIC_OPTIMAL)

 {

 /* >>> Step 5 <<< Retrieve the solution */

 int i;

 double adX[2], dObj;

 /* Get the value of the objective */

 nErrorCode = LSgetInfo(pModel, LS_DINFO_POBJ, &dObj) ;

 APIERRORCHECK;

 printf("Objective Value = %g\n", dObj);

 /* Get the variable values */

 nErrorCode = LSgetPrimalSolution (pModel, adX);

 APIERRORCHECK;

 printf ("Primal values \n");

 for (i = 0; i < nN; i++) printf(" x[%d] = %g\n", i,adX[i]);

 printf ("\n");

 }

 else

 {

 /* see include\lindo.h for status definitions */

 printf("Optimal solution was not"

 " found -- status: %d\n", nSolStatus);

 }

 /* >>> Step 6 <<< Delete the LINDO environment */

 nErrorCode = LSdeleteModel(&pModel);

 nErrorCode = LSdeleteEnv(&pEnv);

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

}

\lindoapi\samples\c\ex_samp1\ex_samp1.c

The C header file lindo.h must be included in each C source file that makes any calls to LINDO API.

This file contains definitions of all LINDO data structures, macros, and function prototypes. This is

done in our sample with the following code:

/* LINDO API header file */

#include "lindo.h"

SOLVING LINEAR PROGRAMS 357

Next, the license key is read into a local string using the following code fragment.

nErrorCode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

The sample code then defines the macros APIERRORSETUP and APIERRORCHECK that are used to

streamline error checking after calls to LINDO API. If an error is encountered after a call to a LINDO

API routine, the APIERRORCHECK macro will cause the application to immediately cease execution.

As mentioned above, the first two major steps in a typical application calling LINDO API are: 1)

creating a LINDO environment object, and 2) creating a model object within the environment. The

following code segment does this:

/* declare an instance of the LINDO environment object */

 pLSenv pEnv;

/* declare an instance of the LINDO model object */

 pLSmodel pModel;

 int nSolStatus;

 char MY_LICENSE_KEY[1024];

/* >>> Step 1 <<< Create a model in the environment */

nErrorCode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

/* >>> Step 2 <<< Create a model in the environment. */

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

The environment data type, pLSenv, and the model data type, pLSmodel, are both defined in the lindo.h

header file. A call to LScreateEnv() creates the LINDO environment. The second argument to

LScreateEnv() is the local sting variable MY_LICENSE_KEY that holds the license key read from

lndapi100.lic file. Immediately after the call to LScreateEnv(), a specific error check is done to trap the

condition of an invalid license key. Finally, the model object is created with a call to LScreateModel().

The next step is to define the model. This is generally the most involved of the steps. The model

definition code in this example is as follows:

/* The direction of optimization */

 int nDir = LS_MAX;

/* The objective's constant term */

 double dObjConst = 0.;

/* The coefficients of the objective function */

 double adC[2] = { 20., 30.};

/* The right-hand sides of the constraints */

 double adB[3] = { 60., 50., 120.};

/* The constraint types */

 char acConTypes[3] = {'L', 'L', 'L'};

358 CHAPTER 3

/* The number of nonzeros in the constraint matrix */

 int nNZ = 4;

/* The indices of the first nonzero in each column */

 int anBegCol[3] = { 0, 2, nNZ};

/* The length of each column. Since we aren't leaving

 any blanks in our matrix, we can set this to NULL */

 int *pnLenCol = NULL;

/* The nonzero coefficients */

 double adA[4] = { 1., 1., 1., 2.};

/* The row indices of the nonzero coefficients */

 int anRowX[4] = { 0, 2, 1, 2};

/* Simple upper and lower bounds on the variables.

 By default, all variables have a lower bound of zero

 and an upper bound of infinity. Therefore pass NULL

 pointers in order to use these default values. */

 double *pdLower = NULL, *pdUpper = NULL;

/* We have now assembled a full description of the model.

 We pass this information to LSloadLPData with the

 following call. */

 nErrorCode = LSloadLPData(pModel, nM, nN, nDir,

 dObjConst, adC, adB, acConTypes, nNZ, anBegCol,

 pnLenCol, adA, anRowX, pdLower, pdUpper);

 APIERRORCHECK;

First, the direction of the objective is set with the following:

/* The direction of optimization */

 int nDir = LS_MAX;

Had the problem been a minimization type, LS_MIN would have been used instead.

This model does not have a constant term in the objective, so it is set to zero:

/* The objective's constant term */

 double dObjConst = 0.;

The model’s objective coefficients are placed into an array:

/* The coefficients of the objective function */

 double adC[2] = { 20., 30.};

The constraint right-hand side values are placed into an array:

/* The right-hand sides of the constraints */

 double adB[3] = { 60., 50., 120.};

The constraint types are placed into an array:

/* The constraint types */

 char acConTypes[3] = {'L', 'L', 'L'};

The three constraints in this model are less-than-or-equal-to constraints. Thus, all the constraint type

codes are set to be “L”. Had any of the constraints been greater-than-or-equal-to, equality, or neutral,

the constraint type code would have been set to “G”, “E”, or “N”, respectively.

SOLVING LINEAR PROGRAMS 359

The number of nonzero coefficients in the constraint matrix is stored:

/* The number of nonzeros in the constraint matrix */

 int nNZ = 4;

The index of the first nonzero element in each column is placed into an array:

/* The indices of the first nonzero in each column */

 int anBegCol[3] = { 0, 2, nNZ};

Note that zero based indices are being used. This array index must have one more element than the

number of variables. The extra element must point to where any new column would start in the

nonzero coefficient matrix.

The next step, is to perform the optimization of the model. This is accomplished with the following

call to LSoptimize():

/* >>> Step 4 <<< Perform the optimization */

 nErrorCode = LSoptimize(pModel,

 LS_METHOD_PSIMPLEX, & nSolStatus);

 APIERRORCHECK;

LSoptimize() takes three arguments. The first is the pointer to the model object you wish to optimize.

The second is the index of the type of solver you wish to use. In this case, the primal simplex solver

was selected by setting the second argument to LS_METHOD_PSIMPLEX. Alternative types of solvers

available for linear models include dual simplex and barrier (if licensed). The third argument is a

pointer to return the status of the solution.

Once the model is solved, the next step is to retrieve the components of the solution that are of interest

to your particular application. In this example, the objective value and the variable values are

displayed. First, check whether LSoptimize() successfully computed an optimal solution by examining

the value of the status variable nSolStatus. Provided that an optimal solution is available, a call to

LSgetInfo() with macro LS_DINFO_POBJ fetches the (primal) objective value, while a call to

LSgetPrimalSolution() retrieves the variable values:

 if (nSolStatus == LS_STATUS_OPTIMAL ||

 nSolStatus == LS_STATUS_BASIC_OPTIMAL)

{

/* >>> Step 5 <<< Retrieve the solution */

 int i;

 double adX[2], dObj;

/* Get the value of the objective */

 nErrorCode = LSgetInfo(pModel, LS_DINFO_POBJ, &dObj) ;

 APIERRORCHECK;

 printf("Objective Value = %g\n", dObj);

/* Get the variable values */

 nErrorCode = LSgetPrimalSolution (pModel, adX);

 APIERRORCHECK;

 printf ("Primal values \n");

 for (i = 0; i < nN; i++) printf(" x[%d] = %g\n", i, adX[i]);

 printf ("\n");

}

360 CHAPTER 3

As our last step, the LINDO environment is deleted with a call to LSdeleteEnv():

/* >>> Step 6 <<< Delete the LINDO environment */

 nErrorCode = LSdeleteEnv(&pEnv);

This allows LINDO to free up all data structures allocated to the environment and all of the

environment’s associated models.

The next section goes through the steps required for compiling and linking this program using Visual

C++ (version 6.0 or later). However, keep in mind that any C development environment should be able

to successfully link the code above with LINDO API.

This application will be built using the nmake utility supplied with Visual C++. The mechanics for

performing the build are illustrated in the DOS command line session below, where user input is

displayed in bold type:

C:\>cd \lindoapi\samples\c\ex_samp1

C:\lindoapi\samples\c\ex_samp1>dir

 Volume in drive C has no label.

 Volume Serial Number is 1833-D1E6

 Directory of C:\lindoapi\samples\c\ex_samp1

11/25/02 12:00p <DIR> .

11/25/02 12:00p <DIR> ..

11/25/02 12:00p 1,347 makefile.unx

11/25/02 12:00p 1,371 makefile.win

11/25/02 12:00p 5,307 ex_samp1.c

11/25/02 12:00p 4,285 ex_samp1.dsp

11/25/02 12:00p 533 ex_samp1.dsw

11/25/02 12:00p 36,864 ex_samp1.exe

 8 File(s) 48,923 bytes

 5,553,143,808 bytes free

C:\lindoapi\samples\c\ex_samp1>del ex_samp1.exe

C:\lindoapi\samples\c\ex_samp1>command /e:32000

Microsoft(R) Windows 98

 (C)Copyright Microsoft Corp 1981-1998.

C:\lindoapi\samples\c\ex_samp1>vcvars32

Setting environment for using Microsoft Visual C++ tools.

C:\lindoapi\samples\c\ex_samp1>nmake -f makefile.win

Microsoft (R) Program Maintenance Utility Version 6.00.8168.0

Copyright (C) Microsoft Corp 1988-1998. All rights reserved.

 cl -c -D_LINDO_DLL_ -I"..\..\..\include" -I"..\..\..\license"

ex_samp1.c

Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 12.00.8168 for

80x86

Copyright (C) Microsoft Corp 1984-1998. All rights reserved.

ex_samp1.c

SOLVING LINEAR PROGRAMS 361

 cl ex_samp1.obj ..\..\..\lib\win32\lindo10_0.lib –

Feex_samp1.exe

Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 12.00.8168 for

80x86

Copyright (C) Microsoft Corp 1984-1998. All rights reserved.

Microsoft (R) Incremental Linker Version 6.00.8447

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

/out:ex_samp1.exe

ex_samp1.obj

..\..\..\lib\win32\lindo10_0.lib

C:\lindoapi\samples\c\ex_samp1>ex_samp1

Objective Value = 2100

Primal values

 x[0] = 60

 x[1] = 30

Press <Enter> ...

The following seven commands were issued to build and run the application:

 cd \lindoapi\samples\c\ex_samp1– This selects the directory where the sample code is

stored. This assumes that you placed LINDO API into the default subdirectory titled

“lindoapi”.

 dir – A directory listing is requested from DOS. The two key files are ex_samp1.c (the source

file) and makefile.win (the input file for the nmake utility). The ex_samp1.exe file is a copy of

the executable that was supplied with LINDO API.

 del ex_samp1.exe – Since the file will be built, the old copy is removed.

 command /e:32000 – This loads a new copy of the command line processor. This is done in

order to increase the space allocated to the environment with the /e:32000 switch. This

allocates enough space in the environment to store all the environment variables required by

the Visual C++ compiler.

 vcvars32 – This runs the vcvars32.bat batch job supplied by Visual C++ that configures the

environment for use of the command line versions of the compiler tools. If this command

fails, it is probably due to not having vcvars32.bat on your search path. Search your hard

drive for vcvars32.bat, and then move it to either a directory on the search path or to the

directory where this sample is located. If you are unable to find vcvars32.bat, you will need to

reinstall Visual C++.

 nmake –f makefile.win – This command invokes the make utility that uses the input supplied

in makefile.win to perform the compiling and linking of our sample application. The details of

the steps contained in this file are discussed below.

 ex_samp1 – Here the actual sample application is run. As predicted, the optimal objective

value is 2100, variable 1 has a value of 60, and variable 2 has a value of 30.

The contents of the make utility input file, makefile.win, are listed below. Users on Unix-like platforms

should refer to makefile.unx:

EXAMPLE= ex_samp1

IFLAGS = -I"..\..\..\include" -I"..\..\..\license"

DFLAGS = -D_LINDO_DLL_

all : $(EXAMPLE).obj $(EXAMPLE).exe

$(EXAMPLE).obj : $(EXAMPLE).c

 cl -c $(DFLAGS) $(IFLAGS) $(EXAMPLE).c

362 CHAPTER 3

$(EXAMPLE).exe : ..\..\..\lib\win32\lindo10_0.lib $(EXAMPLE).obj

 cl $(EXAMPLE).obj ..\..\..\lib\win32\lindo10_0.lib -

Fe$(EXAMPLE).exe

The first and second lines designate the name of the executable and the paths to include directories.

The third line defines the preprocessor macro _LINDO_DLL_. This definition modifies the behavior of

the lindo.h header file in order to allow access to LINDO API as a DLL. Users on platforms other than

Windows should omit this definition.

The fourth line uses the “all” pseudo target to specify the build order. The following set of instructions

listing ex_samp1.obj as the target invokes the command line compiler to compile our source file. The

next directive listing ex_samp1.exe as the target links the object code with the LINDO API import

library to build the completed application.

If you would prefer to build this application using the Visual C++ 6.0 IDE, you should follow these

steps:

 1. Start Visual C++ 6.0.

2. Issue the File|New command.

3. Do the following in the “New” dialog box: select the “Project” tab, click on “Win32 Console

Application”, in the “Project Name” edit field enter “MySample”, in the “Location” edit field

enter \lindoapi\samples\c\ex_samp1, and, finally, click the OK button.

4. Click the Finish button in the “Win32 Console Application” dialog.

5. Click the OK button to clear the “New Project Information” dialog.

6. Run the Project|Add to Project|Files command and add

\lindoapi\samples\c\ex_samp1\samp1.c to the project.

7. Run the Project|Add to Project|Files command and add \lindoapi\lib\win32\lindo10_0.lib to

the project.

8. Run the Project|Settings command, select “All Configurations” from the “Settings For” drop

down list box, select the C/C++ tab, select “General” from the “Category” list box, and in the

“Preprocessor definitions” box add _LINDO_DLL_ to the list of definitions. Click the OK

button.

9. Once again, run the Project|Settings command, select “All Configurations” from the “Settings

For” drop down list box, select the C/C++ tab, select “Preprocessor” from the “Category” list

box, and in the “Additional include directories” box add “\lindoapi\include” and

“\lindoapi\license” (without quotes and separated by a comma). Click the OK button.

10. Run the File|Save Workspace command.

11. Run the Build|Rebuild All command to build the executable.

12. Run the Build|Start Debug|Go command to run the sample application.

SOLVING LINEAR PROGRAMS 363

A Programming Example in Visual Basic
The overall design and code of a program in Visual Basic is quite similar to the C example. Analogous

to the inclusion of lindo.h in our C example, the Visual Basic project includes a module titled

lindo.bas, which facilitates access to LINDO API. A copy of lindo.bas may be found in the main

LINDO API folder. Add lindo.bas to projects with the Project|Add Module command in VB.

There are differences in syntax between the C and VB code. Calls to LINDO API within Visual Basic

are made using Visual Basic type variables. These types differ from the types specified by LINDO API

C-language function prototypes detailed in Chapter 2, Function Definitions. The following chart of

conversions shows how to invoke C routines by passing the appropriate arguments in calls.

If a LINDO routine expects… Then from VB pass…

An int A Long

A double A Double

A pointer to a numeric value Pass the variable as you normally would

A numeric array Pass the first element of the array

A null pointer to a numeric value Pass ‘ByVal 0’

A character array Pass a String

A null pointer to a character array Pass the constant vbNullString

The difference in types between C and VB affects use of several routines returning pointers to a

LINDO environment or model object. For example, LScreateEnvironment() and LScreateModel()

return pointers to environment and model objects, respectively. Neither of these objects can be defined

in Visual Basic (because they contain pointers). Fortunately, the user of LINDO API never has to

directly access or modify these objects. All we need is a pointer to them, which can be conveyed in

Visual Basic code with a Long variable. Wherever a pointer to an environment or a model is needed, a

Long variable can be substituted in its place.

Using VB, the product mix model listed at the beginning of this chapter will be solved once again. The

VB 6.0 project for this example may be found in \lindoapi\samples\vb\samp1\samplevb.vbp, and may

be loaded into VB 6.0 with the File|Open Project command. The code for solving the model is listed

below:

' A VB programming example of interfacing with the

' LINDO API.

'

' the problem:

' Max = 20 * A + 30 * C

' S.T. A + 2 * C <= 120

' A <= 60

' C <= 50

' Solving such a problem with the LINDO API involves

' the following steps:

' 1. Create a LINDO environment.

' 2. Create a model in the environment.

' 3. Specify the model.

' 4. Perform the optimization.

' 5. Retrieve the solution.

364 CHAPTER 3

' 6. Delete the LINDO environment.

Option Explicit

Private Sub Command1_Click()

 'Declarations

 Dim con_type As String

 Dim env As Long

 Dim errorcode As Long

 Dim i As Long

 Dim m As Long

 Dim n As Long

 Dim nz As Long

 Dim prob As Long

 Dim Abegcol() As Long

 Dim Arowndx() As Long

 Dim Acoef() As Double

 Dim b() As Double

 Dim c() As Double

 Dim obj As Double

 Dim x() As Double

 Dim LicenseKey As String * LS_MAX_ERROR_MESSAGE_LENGTH

' Name data

 Dim szTitle, szObjName, szRhsName, szRngName, szBndname As String

 Dim szConNames() As String

 Dim szVarNames() As String

' Auxiliary byte arrays for keeping variable and constraint name

' data for keeping

 Dim acConNames() As Byte

 Dim acVarNames() As Byte

' Pointer arrays for storing the address of each name within the byte

' arrays. These pointers will be passed to LINDO API

 Dim pszConNames() As Long

 Dim pszVarNames() As Long

'>>> Step 1 <<<: Create a LINDO environment.

 errorcode = LSloadLicenseString("\lindoapi\license\lndapi100.lic",

LicenseKey)

 Call CheckErr(env, errorcode)

 env = LScreateEnv(errorcode, LicenseKey)

 If (errorcode > 0) Then

 MsgBox ("Unable to create environment.")

 End

 End If

'>>> Step 2 <<<: Create a model in the environment.

 prob = LScreateModel(env, errorcode)

 Call CheckErr(env, errorcode)

'>>> Step 3 <<<: Specify the model.

 'Set the problem sizes

 'number of constraints

 m = 3

 'number of variables

 n = 2

 'objective coefficients

SOLVING LINEAR PROGRAMS 365

 ReDim c(n)

 c(0) = 20

 c(1) = 30

 'right-hand-sides of constraints

 ReDim b(m)

 b(0) = 120

 b(1) = 60

 b(2) = 50

 'constraint types

 con_type = "LLL"

 'index of first nonzero in each column

 ReDim Abegcol(n + 1)

 Abegcol(0) = 0

 Abegcol(1) = 2

 Abegcol(2) = 4

 'number of nonzeros in constraint matrix

 nz = 4

 'the nonzero coefficients

 ReDim Acoef(nz)

 Acoef(0) = 1

 Acoef(1) = 1

 Acoef(2) = 2

 Acoef(3) = 1

 'the row indices of the nonzeros

 ReDim Arowndx(nz)

 Arowndx(0) = 0

 Arowndx(1) = 1

 Arowndx(2) = 0

 Arowndx(3) = 2

 ' Load LP data

 errorcode = LSloadLPData(prob, m, n, LS_MAX, 0, _

 c(0), b(0), con_type, nz, Abegcol(0), ByVal 0, _

 Acoef(0), Arowndx(0), ByVal 0, ByVal 0)

 Call CheckErr(env, errorcode)

 ' name data

 szTitle = "SAMP1"

 szObjName = "OBJ"

 szRhsName = "RHS"

 szRngName = "RNG"

 szBndname = "BND"

 ' local arrays for variable and constraint names

 ReDim szConNames(m)

 ReDim szVarNames(n)

 Dim szConNamesLen As Long, szVarNamesLen As Long

 szConNames(0) = "Cons0"

 szConNames(1) = "Cons1"

 szConNames(2) = "Cons2"

 For i = 0 To m - 1

 szConNamesLen = szConNamesLen + Len(szConNames(i)) + 1

 Next

 szVarNames(0) = "VarA"

 szVarNames(1) = "VarC"

 For i = 0 To n - 1

 szVarNamesLen = szVarNamesLen + Len(szVarNames(i)) + 1

 Next

 ' byte arrays to keep name data

366 CHAPTER 3

 ReDim acConNames(szConNamesLen)

 ReDim acVarNames(szVarNamesLen)

 ' pointer arrays for keeping addresses of each name

 ' located in the byte arrays

 ReDim pszConNames(m)

 ReDim pszVarNames(n)

 ' parse string arrays to byte arrays and record pointers (source:

' Strutil.bas)

 Call NameToPtr(acConNames, pszConNames, szConNames, m)

 Call NameToPtr(acVarNames, pszVarNames, szVarNames, n)

 ' pass names

 errorcode = LSloadNameData(prob, szTitle, szObjName, szRhsName,

szRngName, szBndname, _

 pszConNames(0), pszVarNames(0))

 Call CheckErr(env, errorcode)

 ' Export the model in LINDO File format

 Dim LindoFile As String

 LindoFile = "samp1.mps"

 Call LSwriteMPSFile(prob, LindoFile, LS_FORMATTED_MPS)

 '>>> Step 4 <<<: Perform the optimization.

 errorcode = LSoptimize(prob, LS_METHOD_PSIMPLEX, ByVal 0)

 Call CheckErr(env, errorcode)

 '>>> Step 5 <<<: Retrieve the solution.

 'Print the objective value and primals

 errorcode = LSgetInfo(prob, LS_DINFO_POBJ, obj)

 Call CheckErr(env, errorcode)

 ReDim x(n)

 errorcode = LSgetPrimalSolution(prob, x(0))

 Call CheckErr(env, errorcode)

 MsgBox ("Objective value: " & obj & vbCrLf & _

 "Primal values: A=" & x(0) & ", C=" & x(1))

 errorcode = LSsetModelIntParameter(prob,

LS_IPARAM_SOL_REPORT_STYLE, 0)

 errorcode = LSwriteSolution(prob, "samp1.sol")

 Call LSdeleteModel(prob)

 '>>> Step 6 <<< Delete the LINDO environment.

 Call LSdeleteEnv(env)

End Sub

Public Sub CheckErr(env As Long, errorcode As Long)

' Checks for an error condition. If one exists, the

' error message is displayed then the application

' terminates.

 If (errorcode > 0) Then

 Dim message As String

 message = String(LS_MAX_ERROR_MESSAGE_LENGTH, _

 vbNullChar)

 Call LSgetErrorMessage(env, errorcode, message)

 MsgBox (message)

 End

 End If

End Sub

SOLVING LINEAR PROGRAMS 367

Private Sub Form_Load()

Dim szVernum As String * LS_MAX_ERROR_MESSAGE_LENGTH

Dim szBuildDate As String * LS_MAX_ERROR_MESSAGE_LENGTH

Call LSgetVersionInfo(szVernum, szBuildDate)

Label2.Caption = "LINDO API Version " & szVernum

Label1.Caption = "Max = 20 A + 30 C " & vbNewLine & vbNewLine & _

 "S.T. A + 2 C <= 120 " & vbNewLine & _

 " A <= 60 " & vbNewLine & _

 " C <= 50 " & vbNewLine & vbNewLine & _

 " A , C are nonnegative "

End Sub

\lindoapi\samples\vb\samp1\samplevb.frm

As mentioned above, the first two major steps in a typical application calling LINDO API are: 1)

creating a LINDO environment object, and 2) creating a model object within the environment. This is

done with the following code segment:

''>>> Step 1 <<<: Create a LINDO environment.

 errorcode = LSloadLicenseString("\lindoapi\license\lndapi100.lic",

LicenseKey)

 Call CheckErr(env, errorcode)

 env = LScreateEnv(errorcode, LicenseKey)

 If (errorcode > 0) Then

 MsgBox ("Unable to create environment.")

 End

 End If

'>>> Step 2 <<<: Create a model in the environment.

 prob = LScreateModel(env, errorcode)

 Call CheckErr(env, errorcode)

The next step is to call LScreateModel() to create a model object in the newly created environment.

After the call to LScreateModel(), a routine called CheckErr() is called. This routine is defined at the

bottom of our code module. The code for CheckErr() has been reproduced below:

Public Sub CheckErr(env As Long, errorcode As Long)

' Checks for an error condition. If one exists, the

' error message is displayed then the application

' terminates.

 If (errorcode > 0) Then

 Dim message As String

 message = String(LS_MAX_ERROR_MESSAGE_LENGTH, _

 vbNullChar)

 Call LSgetErrorMessage(env, errorcode, message)

 MsgBox (message)

 End

 End If

End Sub

CheckErr() is merely used to determine if LINDO API returned an error. If an error is returned,

CheckErr() calls the API routine LSgetErrorMessage() to translate the error code into a text message.

The message is displayed, and CheckErr() terminates the application.

368 CHAPTER 3

The next step is to define the model. The model definition code is listed here:

'>>> Step 3 <<<: Specify the model.

 'Set the problem sizes

 'number of constraints

 m = 3

 'number of variables

 n = 2

 'objective coefficients

 ReDim c(n)

 c(0) = 20

 c(1) = 30

 'right-hand-sides of constraints

 ReDim b(m)

 b(0) = 120

 b(1) = 60

 b(2) = 50

 'constraint types

 con_type = "LLL"

 'index of first nonzero in each column

 ReDim Abegcol(n + 1)

 Abegcol(0) = 0

 Abegcol(1) = 2

 Abegcol(2) = 4

 'number of nonzeros in constraint matrix

 nz = 4

 'the nonzero coefficients

 ReDim Acoef(nz)

 Acoef(0) = 1

 Acoef(1) = 1

 Acoef(2) = 2

 Acoef(3) = 1

 'the row indices of the nonzeros

 ReDim Arowndx(nz)

 Arowndx(0) = 0

 Arowndx(1) = 1

 Arowndx(2) = 0

 Arowndx(3) = 2

 ' Load LP data

 errorcode = LSloadLPData(prob, m, n, LS_MAX, 0, _

 c(0), b(0), con_type, nz, Abegcol(0), ByVal 0, _

 Acoef(0), Arowndx(0), ByVal 0, ByVal 0)

 Call CheckErr(env, errorcode)

 ' name data

 szTitle = "SAMP1"

 szObjName = "OBJ"

 szRhsName = "RHS"

 szRngName = "RNG"

 szBndname = "BND"

 ' local arrays for variable and constraint names

 ReDim szConNames(m)

 ReDim szVarNames(n)

 Dim szConNamesLen As Long, szVarNamesLen As Long

 szConNames(0) = "Cons0"

 szConNames(1) = "Cons1"

 szConNames(2) = "Cons2"

SOLVING LINEAR PROGRAMS 369

 For i = 0 To m - 1

 szConNamesLen = szConNamesLen + Len(szConNames(i)) + 1

 Next

 szVarNames(0) = "VarA"

 szVarNames(1) = "VarC"

 For i = 0 To n - 1

 szVarNamesLen = szVarNamesLen + Len(szVarNames(i)) + 1

 Next

 ' byte arrays to keep name data

 ReDim acConNames(szConNamesLen)

 ReDim acVarNames(szVarNamesLen)

 ' pointer arrays for keeping addresses of each name

 ' located in the byte arrays

 ReDim pszConNames(m)

 ReDim pszVarNames(n)

 ' parse string arrays to byte arrays and record pointers (source:

' Strutil.bas)

 Call NameToPtr(acConNames, pszConNames, szConNames, m)

 Call NameToPtr(acVarNames, pszVarNames, szVarNames, n)

 ' pass names

 errorcode = LSloadNameData(prob, szTitle, szObjName, szRhsName,

szRngName, szBndname, _

 pszConNames(0), pszVarNames(0))

 Call CheckErr(env, errorcode)

 ' Export the model in LINDO File format

 Dim LindoFile As String

 LindoFile = "samp1.mps"

 Call LSwriteMPSFile(prob, LindoFile, LS_FORMATTED_MPS)

First, the model’s dimensions are stored:

 'Set the problem sizes

 'number of constraints

 m = 3

 'number of variables

 n = 2

Then, the arrays are filled with the objective and right-hand side coefficients:

 'objective coefficients

 ReDim c(n)

 c(0) = 20

 c(1) = 30

 'right-hand sides of constraints

 ReDim b(m)

 b(0) = 120

 b(1) = 60

 b(2) = 50

There are three constraints in the model, and all are of type less-than-or-equal-to. Thus, a string of

three L’s is stored to indicate this to the solver:

 'constraint types

 con_type = "LLL"

370 CHAPTER 3

Index of first nonzero in each column are stored next:

 'index of first nonzero in each column

 ReDim Abegcol(n + 1)

 Abegcol(0) = 0

 Abegcol(1) = 2

 Abegcol(2) = 4

The constraint nonzero coefficients are stored next:

 'number of nonzeros in constraint matrix

 nz = 4

 'the nonzero coefficients

 ReDim Acoef(nz)

 Acoef(0) = 1

 Acoef(1) = 1

 Acoef(2) = 2

 Acoef(3) = 1

There are four nonzeros in the constraints—two for column A and two for column C. Note that the

nonzero coefficients for column A (1,1) are passed first. The nonzeros for column C (2,1) are passed

next.

Next, the row indices for the constraint nonzeros are stored:

 'the row indices of the nonzeros

 ReDim Arowndx(nz)

 Arowndx(0) = 0

 Arowndx(1) = 1

 Arowndx(2) = 0

 Arowndx(3) = 2

Note that the indices are zero-based, so a nonzero in the first constraint has a row index of 0.

Finally, all the data is passed off to LINDO API with the following call to LSloadLPData():

errorcode = LSloadLPData(prob, m, n, LS_MAX, 0, _

 c(0), b(0), con_type, nz, Abegcol(0), ByVal 0, _

 Acoef(0), Arowndx(0), ByVal 0, ByVal 0)

Call CheckErr(env, errorcode)

Note that the fourth argument has been explicitly set to be LS_MAX to indicate that the objective is to

be maximized. Another interesting aspect of this call is that arguments 11, 14, and 15 have been set to

“ByVal 0”. These arguments respectively correspond to the column-nonzero-count array,

variable-lower-bound array, and variable-upper-bound array. A column-nonzero-count array is not

needed, because our nonzeros have been stored in a dense manner. Therefore, the column-nonzero

count is inferred from the other data. The default bounds for variables are zero to infinity, which are

appropriate for this example. Thus, the two-variable bound arguments are also superfluous. By setting

these arguments to “ByVal 0”, a C-style null pointer is mimicked. This indicates that values are not

supplied.

Now that the model has been defined, the next step is to invoke the solver. This is done with the

following call to LSoptimize():

 '>>> Step 4 <<<: Perform the optimization.

 errorcode = LSoptimize(prob, LS_METHOD_PSIMPLEX,ByVal 0)

 Call CheckErr(env, errorcode)

SOLVING LINEAR PROGRAMS 371

As our next step, the solution from LINDO is retrieved:

 '>>> Step 5 <<<: Retrieve the solution.

 'Print the objective value and primals

 errorcode = LSgetInfo(prob, LS_DINFO_POBJ, obj)

 Call CheckErr(env, errorcode)

 ReDim x(n)

 errorcode = LSgetPrimalSolution(prob, x(0))

 Call CheckErr(env, errorcode)

 MsgBox ("Objective value: " & obj & vbCrLf & _

 "Primal values: A=" & x(0) & ", C=" & x(1))

 errorcode = LSsetModelIntParameter(prob,

LS_IPARAM_SOL_REPORT_STYLE, 0)

 errorcode = LSwriteSolution(prob, "samp1.sol")

 Call LSdeleteModel(prob)

The objective is fetched with a call to LSgetObjective() and the variable values by calling

LSgetPrimalSolution(). When this application is run, these values are posted in a dialog box as shown

below:

The final step is to free up the memory allocated by LINDO API with a call to LSdeleteEnv():

'>>> Step 6 <<< Delete the LINDO environment.

 Call LSDeleteEnv(env)

VB and Delphi Specific Issues
Some of LINDO API's functions accept C-type NULL as a valid argument. Passing a NULL value

would allow the associated argument to be left out of the scope of the action requested. For instance,

consider the following use of LSgetBasis function using the C language.

 { // init

 int *panCstatus = malloc(nVars*sizeof(int));

 int *panRstatus = malloc(nCons*sizeof(int));

 int nErr = LSERR_NO_ERROR;

 ..

 // FIRST call to LSgetBasis

 nErr = LSgetBasis(pModel, panCstatus, NULL);

 // SECOND call to LSgetBasis

 nErr = LSgetBasis(pModel, NULL, panRstatus);

 ..

 // clean

 free (panCstatus);

 free (panRstatus)

 }

372 CHAPTER 3

The first call to LSgetBasis retrieves the basis status of primal variables and places them in panCstatus

vector. Here, the retrieval of basis status of the constraint slacks are skipped since a NULL value was

passed as the third argument. In the second call, the basis status of primal variables was ignored in a

similar fashion and the basis status of the constraint slacks were retrieved. This calling convention is

common with most query and loading routines in LINDO API.

In certain programming languages (e.g. VB or Delphi), where NULL is not supported, this

functionality can be achieved by following the steps below:

Step 1) Locate the function declaration under consideration in the header file associated with the

language you are using (e.g. lindo.bas (VB), lindo.pas (Delphi)).

Step 2) Locate all the arguments that you want to pass a NULL value for.

Step 3) Modify the type of these arguments from 'by-reference' to 'by-value', whatever that would

mean in terms of the underlying language.

Step 4) Go back to your application and pass a zero value for these arguments.

For instance, Step 3 would lead to the following definition of LSgetBasis() in lindo.bas (VB).

 Public Declare Function LSgetBasis _

 Lib "LINDO10_0.DLL" (ByVal nModel As Long, _

 ByRef anCstatus As Any, _

 ByRef anRstatus As Any) As Long

A hypothetical VB application could then make the following calls

 Redim anCstatus(nVars)

 Redim anRstatus(nVars)

 ..

 LSgetBasis(pModel, anCstatus, ByVal 0)

 LSgetBasis(pModel, ByVal 0, anRstatus)

 ..

Similarly, the following modification to LSgetBasis() in lindo.pas would allow the same effect for

Delphi.

function LSgetBasis (nModel : Integer;

 anCstatus : Integer;

 Var anRstatus : Integer) : Integer; stdcall;

external 'lindo10_0.dll';

The situation is handled in a similar fashion for string arrays, but with a little extra work. LINDO API

functions that take string arrays as arguments require that all string arrays are converted to a C-type

character array before they are passed. A simple utility module for VB performing this conversion is

available as “lindoapi/include/strutil.bas”. Please refer to the sample VB application under

“lindoapi/samples/vb/ samp1” for an illustration of how this interface is used to pass string arrays (or a

NULL when needed) to the solver

Solving Large Linear Programs using Sprint
Sprint is a linear programming solver of the LINDO API, designed for solving “skinny” LP models,

i.e., many more variables, e.g., a million or more, than constraints. The LP model is represented in

MPS file format. The solver uses a column selection or sifting method method. It iteratively reads

columns, i.e., variables, from the MPS file and selects attractive columns to add to an abbreviated

model. All columns are separated into some sets, each set having nNoOfColsEvaluatedPerSet

SOLVING LINEAR PROGRAMS 373

columns. In each iteration or pass, the solver selects the most attractive nNoOfColsSelectedPerSet

columns from each set.

To solve the LP model in the MPS file using Sprint solver, one can use either the command line in

runlindo or the Lindo API routine LSsolveFileLP(). The following demonstrates this using a small

instance of a transportation problem.

Solving Linear Programs using the –fileLP option in Runlindo
The following MPS file, transprt.mps, contains a model of transportation problem with 2 resources and

4 destinations.

NAME TRANSPORT Sources,Destns= 2 4

ROWS

 N COST

 L 1

 L 2

 E 3

 E 4

 E 5

 E 6

COLUMNS

 X0000001 COST 595

 X0000001 1 1 3 1

 X0000002 COST 670

 X0000002 1 1 4 1

 X0000003 COST 658

 X0000003 1 1 5 1

 X0000004 COST 519

 X0000004 1 1 6 1

 X0000005 COST 822

 X0000005 2 1 3 1

 X0000006 COST 309

 X0000006 2 1 4 1

 X0000007 COST 897

 X0000007 2 1 5 1

 X0000008 COST 803

 X0000008 2 1 6 1

RHS

 RHSN 3 407

 RHSN 4 980

 RHSN 5 823

 RHSN 6 653

 RHSN 1 1446.

 RHSN 2 1446.

ENDATA

To solve this model in runlindo using the Sprint solver, one might type

374 CHAPTER 3

runlindo transprt.mps -filelp –nc_eval n1 -nc_select n2

in the command line. The option “–filelp” means solving the LP model with Sprint. The options “–

nc_eval” and “-nc_select” are used for setting the parameters nNoOfColsEvaluatedPerSet and

nNoOfColsSelectedPerSet, respectively, where n1 ≥ n2 are positive integers. The If nc_eval and

nc_select are not specified, the solver will choose the values for them automatically.

After the model is solved by Sprint, a solution report will be written to the file “transprt.log”

automatically as shown below.

Solution status: 2

ObjValue: 1524985.000000

NoOfConsMps: 6

NoOfColsMps: 8

NoOfColsEvaluated: 6

NoOfIterations: 3

TimeTakenInSeconds: 0

Primal solution:

Col-Index Value:

0 0.000000

1 0.000000

2 793.000000

3 653.000000

4 407.000000

5 980.000000

6 30.000000

7 0.000000

Dual solution:

Constraint-Index Value:

0 0.000000

1 -239.000000

2 0.000000

3 822.000000

4 309.000000

5 897.000000

A Programming Example in C
The following is a sample code in C, which uses the Sprint solver to solve the above transportation

model in the MPS file.

SOLVING LINEAR PROGRAMS 375

/*

LINDO-API

Sample Programs

Copyright (c) 2010 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : sprint_exp.c

 Purpose: Solve a transportation LP problem using Sprint.

*/

#include <stdio.h>

#include <stdlib.h>

/* LINDO API header file */

#include "lindo.h"

/* Define a macro to declare variables for

 error checking */

#define APIERRORSETUP \

 int nErrorCode; \

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH] \

/* Define a macro to do our error checking */

#define APIERRORCHECK \

 if (nErrorCode) \

 { \

 if (pEnv) \

 { \

 LSgetErrorMessage(pEnv, nErrorCode, \

 cErrorMessage); \

 printf("nErrorCode=%d: %s\n", nErrorCode, \

 cErrorMessage); \

 } else {\

 printf("Fatal Error\n"); \

 } \

 exit(1); \

 } \

#define APIVERSION \

{\

 char szVersion[255], szBuild[255];\

 LSgetVersionInfo(szVersion,szBuild);\

 printf("\nLINDO API Version %s built on

%s\n",szVersion,szBuild);\

}\

376 CHAPTER 3

int main()

{

 APIERRORSETUP;

 pLSenv pEnv;

 pLSmodel pModel;

 char MY_LICENSE_KEY[1024];

 char *szFileNameMPS;

 char *szFileNameSol;

 char *szFileNameLog;

 int nNoOfColsEvaluatedPerSet;

 int nNoOfColsSelectedPerSet;

 int nTimeLimitSec, nNoOfColsEvaluated;

 int *pnSolStatusParam = NULL;

 int *pnNoOfConsMps = NULL;

 long long *plNoOfColsMps = NULL;

 long long lErrorLine = -10;

 long long lBeginIndexPrimalSol, lEndIndexPrimalSol;

 double *padPrimalValuesSol = NULL, *padDualValuesSol = NULL;

 double dObjValue;

 FILE *pLogFile=NULL;

 long long lNoOfValuesRequired;

 int nNoOfValuesRequired;

 int nNoOfIterations;

 double dTimeTakenInSeconds;

 long long lCount;

 int nCount;

 int nIndexTemp;

 char *szErrorMessage;

SOLVING LINEAR PROGRAMS 377

 /***

 * Step 1: Create a model in the environment.

 ***/

 nErrorCode =

LSloadLicenseString("../../../license/lndapi100.lic",MY_LICENSE_KEY);

 if (nErrorCode != LSERR_NO_ERROR)

 {

 printf("Failed to load license key (error %d)\n",nErrorCode);

 exit(1);

 }

 APIVERSION;

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

 /***

 * Step 2: Create a model in the environment.

 ***/

 pModel = LScreateModel(pEnv,&nErrorCode);

 APIERRORCHECK;

 /***

 * Step 3: Define the input MPS file, the output solution file and

 * the log file.

 ***/

 szFileNameMPS = "lindoapi/samples/data/transport.mps";

 szFileNameSol = "lindoapi/samples/data/transprt.sol";

 szFileNameLog = "lindoapi/samples/data/transprt.log";

 pnSolStatusParam = (int *) malloc(1 * sizeof(int));

 pnNoOfConsMps = (int *) malloc(1 * sizeof(int));

 plNoOfColsMps = (long long *) malloc(1 * sizeof(long long));

 /***

 * Step 4: Set the parameters.

 ***/

 nNoOfColsEvaluatedPerSet = 4;

 nNoOfColsSelectedPerSet = 1;

 nTimeLimitSec = 7200; // maximum running time

378 CHAPTER 3

 /***

 * Step 5: Solve the model using Sprint solver.

 ***/

 nErrorCode = LSsolveFileLP(pModel, szFileNameMPS, szFileNameSol,

 nNoOfColsEvaluatedPerSet,

 nNoOfColsSelectedPerSet,

 nTimeLimitSec,pnSolStatusParam,

 pnNoOfConsMps,plNoOfColsMps,

 &lErrorLine);

 /***

 * Step 6: Extract the solution from the solution file and output

 * the solution to the log file.

 ***/

 if ((nErrorCode == LSERR_NO_ERROR) && (pnSolStatusParam !=

 LS_STATUS_INFEASIBLE))

 {

 lBeginIndexPrimalSol = 0;

 lEndIndexPrimalSol = *plNoOfColsMps - 1;

 lNoOfValuesRequired = lEndIndexPrimalSol-lBeginIndexPrimalSol+1;

 nNoOfValuesRequired = (int)lNoOfValuesRequired;

padPrimalValuesSol = (double *) malloc(nNoOfValuesRequired *

sizeof(double));

padDualValuesSol = (double *) malloc((*pnNoOfConsMps) *

sizeof(double));

 LSreadSolutionFileLP(

 szFileNameSol,

 LS_SPRINT_OUTPUT_FILE_DEFAULT,

 lBeginIndexPrimalSol,

 lEndIndexPrimalSol,

 pnSolStatusParam,

 &dObjValue,

 pnNoOfConsMps,

 plNoOfColsMps,

 &nNoOfColsEvaluated,

 &nNoOfIterations,

 &dTimeTakenInSeconds,

 padPrimalValuesSol,

 padDualValuesSol);

 pLogFile = fopen(szFileNameLog, "w");

 fprintf(pLogFile, "Solution status: ");

 fprintf(pLogFile, "%d\n", pnSolStatusParam);

 fprintf(pLogFile, "ObjValue: ");

 fprintf(pLogFile, "%f\n", dObjValue);

 fprintf(pLogFile, "\nNoOfConsMps: ");

 fprintf(pLogFile, "%d\n", *pnNoOfConsMps);

 fprintf(pLogFile, "NoOfColsMps: ");

 fprintf(pLogFile, "%d\n", *plNoOfColsMps);

 fprintf(pLogFile, "\nNoOfColsEvaluated: ");

 fprintf(pLogFile, "%d\n", nNoOfColsEvaluated);

 fprintf(pLogFile, "\nNoOfIterations: ");

SOLVING LINEAR PROGRAMS 379

 fprintf(pLogFile, "%d\n", nNoOfIterations);

 fprintf(pLogFile, "\nTimeTakenInSeconds: ");

 fprintf(pLogFile, "%2.0f\n", dTimeTakenInSeconds);

 fprintf(pLogFile, "Primal solution: \n");

 fprintf(pLogFile, "Col-Index Value: \n");

for (lCount = lBeginIndexPrimalSol; lCount <= lEndIndexPrimalSol;

lCount++)

 {

 nIndexTemp = (int)(lCount - lBeginIndexPrimalSol);

 fprintf(pLogFile, "\n%llu %f", lCount,

 *(padPrimalValuesSol + nIndexTemp));

 }

 fprintf(pLogFile, "\n\nDual solution: \n");

 fprintf(pLogFile, "Constraint-Index Value: \n");

 for (nCount = 0; nCount < *pnNoOfConsMps; nCount++)

 {

 fprintf(pLogFile, "\n%d %f", nCount, *(padDualValuesSol +

 nCount));

 }

 fclose(pLogFile);

 }

 else

 {

 szErrorMessage = (char *) malloc(100 * sizeof(char));

 LSgetErrorMessage(pEnv, nErrorCode, szErrorMessage);

 printf("Error : %s\n", szErrorMessage);

 printf("Error Code: %d\n", nErrorCode);

 printf("Error line: %d\n", lErrorLine);

 if (szErrorMessage) free(szErrorMessage);

 }

 if (padPrimalValuesSol) free(padPrimalValuesSol);

 if (padDualValuesSol) free(padDualValuesSol);

 if (pnSolStatusParam) free(pnSolStatusParam);

 if (pnNoOfConsMps) free(pnNoOfConsMps);

 if (plNoOfColsMps) free(plNoOfColsMps);

 nErrorCode = LSdeleteModel(&pModel);

 nErrorCode = LSdeleteEnv(&pEnv);

 getchar();

 return nErrorCode;

}

Note that the function for Sprint solver, LSsolveFileLP(), takes 10 parameters (the first seven are for

input, the others are for output). The first is the pointer to the model object. The second is the name of

the input MPS file. The third is the name of the output solution file. The fourth and fifth are the

parameters nNoOfColsEvaluatedPerSet and nNoOfColsSelectedPerSet, respectively. The sixth is the

time limit for the solver. The seventh is the the solution status. The eighth and ninth are number of

380 CHAPTER 3

constraints and number of columns in the model, respecitvely. The tenth is the line number of the input

MPS file at which an error was found.

Also note that the output solution file, transprt.sol, is a binary file. Therefore, after the model is solved,

the program goes to step 6 to extract the solution information from transprt.sol and output the solution

to the log file, transprt.log.

Multiobjective Linear Programs and Alternative
Optima
In certain linear programming (LP) applications, the decision maker is concerned with obtaining a

solution which is optimum with respect to more than one objective criterion. These type of problems

are often called multiobjective LPs where a standard LP formulation is extended with a set of

additional objective functions. The original objective function and the set of additional objectives form

the so-called objective pool where the objectives are ranked with respect to their significance

determined by the decision maker.

The standard LP along with an objective pool forms a hierarchy of subproblems which can be solved

with LINDO API's LP solvers. In LINDO API's framework, the original objective function is assigned

the lowest rank-index and hence has the highest priority. The lower the rank of an objective function in

the objective pool the higher its priority in the hierarchy.

LINDO API offers a small set of API routines to set up an objective pool associated with a standard

LP. The steps involve the following

1. Set up a standard linear program (LP) with a single objective function. See Chapter 3 for

details. The objective function defined at this phase will be considered the original objective

function and will have the lowest rank (highest priority) among objective functions to be

added to the objective pool.

2. Set up an objective pool by adding one or more objective functions to the pModel instance.

Each objective function will be assigned an index automatically. This index will correspond

to the order it was added to the pool. The index will also serve as the rank of the objective

function in the pool. The original objective function will be automatically added to the pool

with a rank-0 and need not be added explicitly.

SOLVING LINEAR PROGRAMS 381

The code snippet below generates four objective functions randomly and adds them to the objective

pool of pModel instance. The fourth argument is a dummy variable specifying the rank of objective

function. As of LINDO API 10.0, this argument is reserved for future use. Its value is not taken into

account and is internally replaced with the order this function was added to the pool.

 {

 int i=0, j=1;

 pLSrandGen pRG = LScreateRG(pEnv, LS_RANDGEN_FREE);

 double *padC=NULL, u, dRelOptTol=-1.0;

 nErrorCode = LSgetInfo(pModel,LS_IINFO_NUM_VARS,&n);

 padC = (double *) malloc(n*sizeof(double))

 LSsetRGSeed(pRG,10001);

 j=1;

 while (j<4) {

 for (i=0; i<n; i++) {

 u = LSgetDoubleRV(pRG);

 if (u<0.5) padC[i] = 0;

 else padC[i] = (double) LSgetInt32RV(pRG,1,100);

 }//for

 nErrorCode = LSaddObjPool(pModel,padC,LS_MIN,j,dRelOptTol);

 APIERRORCHECK;

 j++;

 }//while

 LSdisposeRG(&pRG);

 free(padC);

 }

Solve the LP instance with a call to LSoptimize(). This will generate a solution pool which contains

optimal solutions with respect to each objective function in the objective hierarchy.

nErrorCode = LSoptimize(pModel, LS_METHOD_FREE, &status);

382 CHAPTER 3

Each objective function in the objective pool has a set of references that allows access to the solutions

optimizing that particular objective function. These solutions can be obtained through the following

API calls.

 {

 int k;

 int numSols=0; //number of alternative solutions.

 int iObj=0; //index of the obj function in the pool.

 for (iObj=0; iObj<4; iObj++) {

 nErrorCode = LSgetObjPoolNumSol(pModel,iObj,&numSols);

 for (k=0; k<numSols; k++) {// load solution 'k' for

'iObj' for direct access

 nErrorCode = LSloadSolutionAt(pModel,iObj,k);

 if (nErrorCode) {

 printf("\nError %d:", nErrorCode);

 } else {

 sprintf(strbuf,"model_obj%d_sol%d.sol",iObj,k);

 LSwriteSolution(pModel,strbuf);

 }

 }//for

 }//for

 }//

 // revert to the original solution of the LP

 nErrorCode = LSloadSolutionAt(pModel,0,0);

The significance of LSloadSolutionAt is that the solutions in the solution pool are not readily

available for direct access. A solution in the solution pool can be accessed only after it is loaded to the

common solution area by LSloadSolutionAt. After that, the standard Solution Access Routines

can be called in the usual sense. For example,

 // load k'th solution associated with iObj'th function

in the pool

 nErrorCode = LSloadSolutionAt(pModel,iObj,k);

 APIERRORCHECK;

 // access the solutions loaded

 nErrorCode = LSgetPrimalSolution(pModel, primal) ;

 APIERRORCHECK;

 nErrorCode = LSgetDualSolution(pModel, dual) ;

 APIERRORCHECK;

 nErrorCode = LSgetInfo(pModel,LS_DINFO_POBJ,&dObj);

 APIERRORCHECK;

SOLVING LINEAR PROGRAMS 383

Some of the characteristics of the solution pool can be listed as follows:

1. The solutions retrieved at level iObj are dominated by the solutions retrieved at level jObj if

iObj < jObj with respect to the set of solutions up to level jObj.

2. The solution pool can grow very fast thus hindering the performance, especially if the

standard LP model is highly primal degenerate.

3. Higher values of relative optimality tolerance as identified by dRelOptTol (the fifth argument

of LSaddObjPool) could lead to solutions which are non-optimal w.r.t. the objective functions

higher in the hierarchy (i.e. those with lower ranks).

4. An objective pool populated with random objective functions could help traverse the original

optimal set for evaluating the solutions w.r.t. objective functions with no closed forms, e.g.

those computed through simulation runs.

 Chapter 4: Solving
Mixed-Integer Programs

This chapter walks through an example of a mixed-integer programming (MIP) model. A MIP model

restricts one or more variables to integer values.

MIP models require calling a few different routines from what would normally be called when solving

a linear program (LP). This distinction provides the ability to maintain both the MIP solution and the

continuous solution to a problem. The table below summarizes these differences:

Task LP Routine MIP Routine(s)

Loading formulation LSloadLPData() LSloadLPData()

LSloadVarType()

Establish callback routine LSsetCallback() LSsetCallback()

LSsetMIPCallback()

Solve LSoptimize() LSsolveMIP()

Get information in callback LSgetCallbackInfo() LSgetCallbackInfo()

LSgetMIPCallbackInfo()

Get objective value LSgetInfo() LSgetInfo()

Get primals LSgetPrimalSolution() LSgetMIPPrimalSolution ()

Get slacks LSgetSlacks() LSgetMIPSlacks()

Get duals LSgetDualSolution() LSgetMIPDualSolution()

Get reduced costs LSgetReducedCosts() LSgetMIPReducedCosts()

As the table shows, loading a MIP formulation requires calling LSloadVarType() in addition to

LSloadLPData(). The additional call to LSloadVarType() is made to identify the integer variables. An

additional callback routine may be established for MIP models by calling LSsetMIPCallback(). The

solver calls this additional callback routine every time a new integer solution is found. When retrieving

information in callbacks, you may also be interested in LSgetMIPCallbackInfo(). This routine returns

solver status information that is specific to MIP models.

This sample model is a staffing model that computes the optimal staffing levels for a small business.

Specifically, it determines the number of employees to start on each day of the week to minimize total

staffing costs, while meeting all staffing demands throughout the week. Since a fractional number of

employees cannot start, the variables representing the number of employees are required to be integer.

386 CHAPTER 4

Suppose you run the popular Pluto Dogs hot dog stand that is open seven days a week. Employees are

hired to work a five-day workweek with two consecutive days off. Each employee receives the same

weekly salary. You would like to develop an interactive application that would allow you to enter your

staffing requirements for a week and then use this data to come up with a minimal cost staff schedule

minimizing the total number of required employees, while still meeting (or exceeding) staffing

requirements.

The model generated to solve this problem will have seven variables and seven constraints. The i-th

variable represents the number of employees to start on the i-th day of the week. The i-th constraint

will sum up the number of employees working on the i-th day of the week, and set this sum to be

greater-than-or-equal-to the staff required on the i-th day of the week. The objective will simply

minimize the sum of all employees starting throughout the week. The formulation for this model

appears below:

MIN M + T + W + R + F + S + N

SUBJECT TO

 M + R + F + S + N >=

 M + T + F + S + N >=

 M + T + W + S + N >=

 M + T + W + R + N >=

 M + T + W + R + F >=

 T + W + R + F + S >=

 W + R + F + S + N >=

END

where M represents the number of employees starting on Monday, T the number on Tuesday, and so

on. Furthermore, all variables must have nonnegative integer values. The right-hand side values were

omitted in this formulation, because they will be specified at runtime.

Staffing Example Using Visual C++
In this section, an application that interfaces with LINDO API to solve the Pluto Dogs problem will be

built in Visual C++ 6.0. A complete version of this project may be found in

\lindoapi\samples\c\ex_samp3.

This example uses the MFC AppWizard in Visual C++ to build an MFC (Microsoft Foundation Class)

Windows application for solving the Pluto Dogs problem. For those unfamiliar with MFC, it is an

all-encompassing, object-oriented programming interface to Windows, designed for use with C++.

MFC is not required to interface with LINDO API. It was chosen to use in our example because it

greatly reduces the amount of development effort required to build a Windows application.

To build the sample application, start Visual C++ 6.0 and then follow these steps:

 Issue the File|New command.

 In the “New” dialog box, click on the “Projects” tab.

 On the “Projects” tab, click on the project type titled “MFC AppWizard (exe)”, input a name

for the project in the “Project Name” edit field, input the destination folder in the “Project

Name” edit field, and click the OK button.

 You will see a dialog box titled “MFC AppWizard – Step 1”. Click on the Dialog Based radio

button, because our application will reside entirely within a single dialog box. Click the

Finish button.

 Click the OK button to clear the “New Project Information” dialog, and the AppWizard will

generate the skeleton code base for the application.

SOLVING MIXED INTEGER PROGRAMS 387

Next, modify the application’s dialog box, so it appears as follows:

The user will input the staffing requirements in the “Needs” column. The application will read these

requirements, and then build and solve the staffing integer programming model. To display the results,

the application will place the optimal number of employees to start on each day of the week in the

“Start” column, the number working each day in the “On Duty” column, and the total number of

employees required in the “Total” field. The Solve button solves for the current staffing needs data,

while the Exit button exits the application.

388 CHAPTER 4

In order to access the various data fields in the dialog box, the ClassWizard in Visual C++ must be

used to associate member variables with each of the data fields. After doing this, the handler code for

the Solve button in the dialog class module should be edited, so that it is as follows:

#include "lindo.h"

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

#define APIERRORCHECK

 if (nErrorCode)

 {

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("Errorcode=%d: %s\n", nErrorCode,

 cErrorMessage);

 LSdeleteEnv(&pEnv);

 } else {

 printf("Fatal Error\n");

 }

 return;

 }

void CStafflndDlg::OnSolve()

{

 APIERRORSETUP;

 pLSenv pEnv = NULL;

 char MY_LICENSE_KEY[1024];

// >>> Step 1 <<< Create an environment

 nErrorCode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

 APIERRORCHECK;

 pEnv = LScreateEnv(&nErrorCode, MY_LICENSE_KEY);

 if (!pEnv)

 {

 AfxMessageBox("Unable to create environment!");

 return;

 }

// >>> Step 2 <<< Create a model in the environment

 pLSmodel pMod = NULL;

 pMod = LScreateModel(pEnv, &nErrorCode);

 APIERRORCHECK;

// >>> Step 3 <<< Construct the model

// Number of variables and constraints

 const int nVars = 7, nRows = 7;

// The direction of optimization

 int nDir = LS_MIN;

// The objective's constant term

 double dObjConst = 0.;

SOLVING MIXED INTEGER PROGRAMS 389

// The coefficients of the objective function

 double adC[nVars] = {1.,1.,1.,1.,1.,1.,1.};

// Get right-hand sides of the constraints from

// the Needs column of the dialog box

 UpdateData(true);

 double dNeeds[7];

 dNeeds[0] = m_nNeedsMon;

 dNeeds[1] = m_nNeedsTue;

 dNeeds[2] = m_nNeedsWed;

 dNeeds[3] = m_nNeedsThu;

 dNeeds[4] = m_nNeedsFri;

 dNeeds[5] = m_nNeedsSat;

 dNeeds[6] = m_nNeedsSun;

// The constraint types (all Greater-thans)

 char acConTypes[nRows] = {'G','G','G','G','G','G','G'};

// The number of nonzeros in the constraint matrix

 const int nNZ = 35;

// The indices of the first nonzero in each column

 int anBegCol[nVars + 1];

 for (int i = 0; i <= nVars; i++)

 {

 anBegCol[i] = 5 * i;

 }

// The length of each column. Since we aren't leaving

// any blanks in our matrix, we can set this to NULL.

 int *pnLenCol = NULL;

// The nonzero coefficients and row indices

 double adA[nNZ];

 int anRowX[nNZ];

 int nX = 0;

 for (i = 0; i < 7; i++)

 {

 for (int j = i; j < i + 5; j++)

 {

 adA[nX] = 1.;

 anRowX[nX] = j % 7;

 nX++;

 }

 }

// Simple upper and lower bounds on the variables.

// By default, all variables have a lower bound of zero

// and an upper bound of infinity. Therefore pass NULL

// pointers in order to use these default values.

 double *pdLower = NULL, *pdUpper = NULL;

// We have now assembled a full description of the model.

// We pass this information to LSloadLPData with the

// following call.

 nErrorCode = LSloadLPData(pMod, nVars, nRows, nDir,

 dObjConst, adC, dNeeds, acConTypes, nNZ, anBegCol,

 pnLenCol, adA, anRowX, pdLower, pdUpper);

 APIERRORCHECK;

390 CHAPTER 4

// Mark all 7 variables as being general integer

 nErrorCode = LSloadMIPData(pMod, "IIIIIII");

 APIERRORCHECK;

// >>> Step 4 <<< Perform the optimization

 nErrorCode = LSsolveMIP(pMod, NULL);

 APIERRORCHECK;

// >>> Step 5 <<< Retrieve the solution

 double dObjVal, dStart[7], dSlacks[7];

 nErrorCode = LSgetInfo(pMod, LS_DINFO_MIP_OBJ, &dObjVal);

 APIERRORCHECK;

 nErrorCode = LSgetMIPPrimalSolution(pMod, dStart);

 APIERRORCHECK;

 nErrorCode = LSgetMIPSlacks(pMod, dSlacks);

 APIERRORCHECK;

// Display solution in dialog box

 m_csTotal.Format("%d", (int) dObjVal);

 m_csStartMon.Format("%d", (int) dStart[0]);

 m_csStartTue.Format("%d", (int) dStart[1]);

 m_csStartWed.Format("%d", (int) dStart[2]);

 m_csStartThu.Format("%d", (int) dStart[3]);

 m_csStartFri.Format("%d", (int) dStart[4]);

 m_csStartSat.Format("%d", (int) dStart[5]);

 m_csStartSun.Format("%d", (int) dStart[6]);

 m_csOnDutyMon.Format("%d", (int) (dNeeds[0] - dSlacks[0]));

 m_csOnDutyTue.Format("%d", (int) (dNeeds[1] - dSlacks[1]));

 m_csOnDutyWed.Format("%d", (int) (dNeeds[2] - dSlacks[2]));

 m_csOnDutyThu.Format("%d", (int) (dNeeds[3] - dSlacks[3]));

 m_csOnDutyFri.Format("%d", (int) (dNeeds[4] - dSlacks[4]));

 m_csOnDutySat.Format("%d", (int) (dNeeds[5] - dSlacks[5]));

 m_csOnDutySun.Format("%d", (int) (dNeeds[6] - dSlacks[6]));

 UpdateData(false);

// >>> Step 6 <<< Delete the LINDO environment

 LSdeleteEnv(&pEnv);

}

Prior to the point where the application begins constructing the model, the code should be familiar and

require no explanation. Construction of the model is begun with the following code:

// >>> Step 3 <<< Construct the model

// Number of variables and constraints

 const int nVars = 7, nRows = 7;

// The direction of optimization

 int nDir = LS_MIN;

// The objective's constant term

 double dObjConst = 0.;

// The coefficients of the objective function

 double adC[nVars] = {1.,1.,1.,1.,1.,1.,1.};

SOLVING MIXED INTEGER PROGRAMS 391

There are seven decision variables in this model — one for each day of the week to determine the

number of employees to start on each day. There are also seven constraints — one for each day of the

week to insure that the number of staff on duty on each day exceeds the specified staffing

requirements. The objective in this example is to minimize the total number of employees hired. Thus,

the direction of the objective is LS_MIN. There is no constant term in the objective function, so it is

set to 0. The total number of employees in the objective must be summed. Thus, we place a coefficient

of 1 on each of the seven variables in the objective row.

Next, the staffing requirements is loaded from the dialog box into an array:

// Get right-hand sides of the constraints from

// the Needs column of the dialog box

 UpdateData(true);

 double dNeeds[7];

 dNeeds[0] = m_nNeedsMon;

 dNeeds[1] = m_nNeedsTue;

 dNeeds[2] = m_nNeedsWed;

 dNeeds[3] = m_nNeedsThu;

 dNeeds[4] = m_nNeedsFri;

 dNeeds[5] = m_nNeedsSat;

 dNeeds[6] = m_nNeedsSun;

This array will be passed to LINDO as the array of right-hand side values.

Each of the seven constraints are of the form total staffing must be greater-than-or-equal-to staffing

requirements. So, a string of seven uppercase letter G’s is constructed to indicate all the constraints are

of type greater-than-or-equal-to:

// The constraint types (all Greater-thans)

 char acConTypes[nRows] = {'G','G','G','G','G','G','G'};

Each column in the model has five nonzero coefficients of 1, representing the five days of the week

worked. Thus, given that there are seven columns, there are a total of 35 nonzero coefficients:

// The number of nonzeros in the constraint matrix

 const int nNZ = 35;

Since there are 5 nonzeros per column, the column-starting pointers are 0, 5, 10, 15, 20, 25, 30, and 35:

// The indices of the first nonzero in each column */

 int anBegCol[nVars + 1];

 for (int i = 0; i <= nVars; i++)

 {

 anBegCol[i] = 5 * i;

 }

Note that an eighth column-starting pointer that points to the position immediately following the last

nonzero must be defined.

We are passing LINDO a dense array of nonzeros, so the column lengths can be inferred from the

column-starting pointers. Thus, the column-length pointer can be set to NULL:

// The length of each column. Since we aren't leaving

// any blanks in our matrix, we can set this to NULL.

 int *pnLenCol = NULL;

392 CHAPTER 4

The next code segment generates the nonzero coefficients of the constraints and is a little tricky:

// The nonzero coefficients and row indices

 double adA[nNZ];

 int anRowX[nNZ];

 int nX = 0;

 for (i = 0; i < 7; i++)

 {

 for (int j = i; j < i + 5; j++)

 {

 adA[nX] = 1.;

 anRowX[nX] = j % 7;

 nX++;

 }

 }

A double loop is used here. The outer loop runs i from 0 to 6, indexing over the seven columns that are

generated. In the inner loop, 5 nonzeros of value 1 are generated representing the five days worked for

the column. The column representing employees starting on Monday will have nonzeros in rows 0

through 4, representing the Mon – Fri work schedule. Rows 5 and 6 will not have coefficients due to

the fact that Monday starters are off Saturday and Sunday. Things get a little more complicated later in

the week. Suppose the nonzeros for the Thursday starters are being generated. These occur in the Thu,

Fri, Sat, Sun, and Mon rows. The problem comes when the schedule needs to “wrap” around from

Sunday to Monday. This is done by using the modulo operator (%), which wraps any row index of 7,

or higher, around to the start of the week. A picture of the nonzero matrix for this model would appear

as follows:

Each column has a contiguous block of 5 nonzero coefficients. In each subsequent column, the block is

shifted down one row. Starting with Thursday’s column, one or more nonzeros must wrap back to the

top.

The default bounds of zero to infinity are accepted by setting the bounds pointers to NULL:

// Simple upper and lower bounds on the variables.

// By default, all variables have a lower bound of zero

// and an upper bound of infinity. Therefore pass NULL

// pointers in order to use these default values.

 double *pdLower = NULL, *pdUpper = NULL;

SOLVING MIXED INTEGER PROGRAMS 393

The model has now been generated, so it will be passed to LINDO API by calling LSloadLPData():

// We have now assembled a full description of the model.

// We pass this information to LSloadLPData with the

// following call.

 nErrorCode = LSloadLPData(pMod, nVars, nRows, nDir,

 dObjConst, adC, dNeeds, acConTypes, nNZ, anBegCol,

 pnLenCol, adA, anRowX, pdLower, pdUpper);

 APIERRORCHECK;

Up to this point, nothing has been indicated to LINDO API regarding the integrality requirement on

the variables. We do this through a call to LSloadVarType():

// Mark all 7 variables as being general integer

 nErrorCode = LSloadVarType(pMod, "IIIIIII");

 APIERRORCHECK;

Each of the seven variables are integer, which is indicated by passing a string of seven letter I’s. Note

that LSloadVarType() must be called after LSloadLPData(). Attempting to call LSloadVarType() prior

to the call to LSloadLPData() will result in an error.

The next step is to solve the model:

// >>> Step 4 <<< Perform the optimization

 nErrorCode = LSsolveMIP(pMod, NULL);

 APIERRORCHECK;

In this case, the branch-and-bound solver must be called with LSsolveMIP(), because we have integer

variables in our model.

Next, the solution values are retrieved:

// >>> Step 5 <<< Retrieve the solution

 double dObjVal, dStart[7], dSlacks[7];

 nErrorCode = LSgetInfo(pMod, LS_DINFO_MIP_OBJ, &dObjVal);

 APIERRORCHECK;

 nErrorCode = LSgetMIPPrimalSolution(pMod, dStart);

 APIERRORCHECK;

 nErrorCode = LSgetMIPSlacks(pMod, dSlacks);

 APIERRORCHECK;

Note that the query routines that are specifically designed for MIP models have been used.

The remainder of the code is straightforward and deals with posting the solution in the dialog box and

freeing the LINDO environment.

Staffing Example Using Visual Basic
This section will construct an example using the Visual Basic 6.0 development environment.

After starting VB 6.0, a new project can be created using the following steps:

 Run the File|New Project command.

 In the “New Project” dialog box, click once on the “Standard EXE” icon, then press the OK

button.

394 CHAPTER 4

A simple form for the application’s dialog box will be presented. Modify this form, so it appears as

follows:

Double click on the Solve button in the form and enter the code below:

Private Sub Solve_Click()

Dim nErr As Long

Dim pEnv As Long

Dim LicenseKey As String * LS_MAX_ERROR_MESSAGE_LENGTH

nErr = LSloadLicenseString("..\..\..\license\lndapi100.lic",

LicenseKey)

Call CheckErr(pEnv, nErr)

'>>> Step 1 <<<: Create a LINDO environment.

pEnv = LScreateEnv(nErr, LicenseKey)

If (nErr > 0) Then

 MsgBox ("Unable to create environment.")

 End

End If

'>>> Step 2 <<< create a model in the environment

Dim pMod As Long

pMod = LScreateModel(pEnv, nErr)

Call CheckErr(pEnv, nErr)

'>>> Step 3 <<< construct the model

'number of variables

Dim nVars As Long

SOLVING MIXED INTEGER PROGRAMS 395

nVars = 7

'number of constraints

Dim nRows As Long

nRows = 7

'direction of objective

Dim nDir As Long

nDir = LS_MIN

'objective constant term

Dim dObjConst As Double

dObjConst = 0

'objective coefficients

ReDim dObjCoef(nVars) As Double

Dim i As Integer

For i = 0 To nVars - 1

 dObjCoef(i) = 1

Next

'get the staffing needs for the model's right-hand sides

ReDim dB(nVars) As Double

For i = 0 To nVars - 1

 dB(i) = Needs(i)

Next

'define the constraint types

Dim cConTypes As String

For i = 0 To nRows - 1

 cConTypes = cConTypes & "G"

Next

'the number of nonzero coefficients

Dim nNZ As Long

nNZ = 35

'the array of column start indices

ReDim nBegCol(nVars + 1) As Long

For i = 0 To nVars

 nBegCol(i) = 5 * i

Next

'the nonzero coefficients

ReDim dA(nNZ) As Double

ReDim nRowX(nNZ) As Long

Dim j, k As Integer

k = 0

For i = 0 To nVars - 1

 For j = 0 To 4

 nRowX(k) = (j + i) Mod 7

 dA(k) = 1

 k = k + 1

 Next j

Next i

'load the problem

nErr = LSloadLPData(pMod, nRows, nVars, nDir, _

 dObjConst, dObjCoef(0), dB(0), cConTypes, nNZ, _

 nBegCol(0), ByVal 0, dA(0), nRowX(0), ByVal 0, _

 ByVal 0)

Call CheckErr(pEnv, nErr)

'integer restrictions on the variables

Dim cVarType As String

For i = 1 To nVars

 cVarType = cVarType & "I"

396 CHAPTER 4

Next

nErr = LSloadVarType(pMod, cVarType)

Call CheckErr(pEnv, nErr)

'>>> Step 4 <<< solve the model

nErr = LSsolveMIP(pMod, ByVal 0)

Call CheckErr(pEnv, nErr)

'>>> Step 5 <<< retrieve the solution

ReDim dX(nVars) As Double

Dim dObj As Double

Dim dSlacks(7) As Double

nErr = LSgetInfo(pMod, LS_DINFO_MIP_OBJ, dObj)

Call CheckErr(pEnv, nErr)

nErr = LSgetMIPPrimalSolution(pMod, dX(0))

Call CheckErr(pEnv, nErr)

nErr = LSgetMIPSlacks(pMod, dSlacks(0))

Call CheckErr(pEnv, nErr)

'post solution in dialog box

Total = dObj

For i = 0 To nVars - 1

 OnDuty(i) = dB(i) - dSlacks(i)

 Start(i) = dX(i)

Next

'>>> Step 6 <<< Delete the LINDO environment

Call LSdeleteEnv(pEnv)

End Sub

Public Sub CheckErr(pEnv As Long, nErr As Long)

' Checks for an error condition. If one exists, the

' error message is displayed then the application

' terminates.

 If (nErr > 0) Then

 Dim cMessage As String

 cMessage = String(LS_MAX_ERROR_MESSAGE_LENGTH,

 _vbNullChar)

 Call LSgetErrorMessage(pEnv, nErr, cMessage)

 MsgBox (cMessage)

 End

 End If

End Sub

Prior to the point where construction of the model begins, the code should be familiar and require no

explanation. Construction of the model begins with the following code:

'>>> Step 3 <<< construct the model

'number of variables

Dim nVars As Long

nVars = 7

'number of constraints

Dim nRows As Long

nRows = 7

'direction of objective

Dim nDir As Long

SOLVING MIXED INTEGER PROGRAMS 397

nDir = LS_MIN

'objective constant term

Dim dObjConst As Double

dObjConst = 0

'objective coefficients

ReDim dObjCoef(nVars) As Double

Dim i As Integer

For i = 0 To nVars - 1

 dObjCoef(i) = 1

Next

There are seven decision variables in this model – one for each day of the week to determine the

number of employees to start on each day. There are also seven constraints – one for each day of the

week to insure that the number of staff on duty on each day exceeds the specified staffing

requirements. The objective is to minimize the total number of employees hired. Thus, the direction of

the objective is LS_MIN. There is no constant term in the objective function, so it is set to 0. The total

number of employees in the objective must be summed. Thus, a coefficient of 1 is placed on each of

the seven variables in the objective row.

Next, the staffing requirements are loaded from the dialog box into an array:

'get the staffing needs for the model's right-hand sides

ReDim dB(nVars) As Double

For i = 0 To nVars - 1

 dB(i) = Needs(i)

Next

This array will be passed to LINDO API as the array of right-hand side values.

Each of the seven constraints are of the form total staffing must be greater-than-or-equal-to staffing

requirements. So, a string of seven uppercase letter G’s is constructed to indicate all the constraints are

of type greater-than-or-equal-to:

'define the constraint types

Dim cConTypes As String

For i = 0 To nRows - 1

 cConTypes = cConTypes & "G"

Next

Each column in the model has five nonzero coefficients of 1, representing the five days of the week

worked. Thus, given that there are seven columns, there are a total of 35 nonzero coefficients:

'the number of nonzero coefficients

Dim nNZ As Long

nNZ = 35

Since there are 5 nonzeros per column, the column-starting pointers are 0, 5, 10, 15, 20, 25, 30, and 35:

'the array of column start indices

ReDim nBegCol(nVars + 1) As Long

For i = 0 To nVars

 nBegCol(i) = 5 * i

Next

Note that an eighth column-starting pointer that points to the position immediately following the last

nonzero must be defined.

398 CHAPTER 4

The next code segment generates the nonzero coefficients of the constraints and is a little tricky:

'the nonzero coefficients

ReDim dA(nNZ) As Double

ReDim nRowX(nNZ) As Long

Dim j, k As Integer

k = 0

For i = 0 To nVars - 1

 For j = 0 To 4

 nRowX(k) = (j + i) Mod 7

 dA(k) = 1

 k = k + 1

 Next j

Next i

A double loop is used here. The outer loop runs i from 0 to 6, indexing over the seven columns that are

generated. In the inner loop, 5 nonzeros of values 1 are generated representing the five days worked

for the column. The column representing employees starting on Monday will have nonzeros in rows 0

through 4, representing the Mon – Fri work schedule. Rows 5 and 6 will not have coefficients due to

the fact that Monday starters are off Saturday and Sunday. Things get a little more complicated later in

the week. Suppose the nonzeros for the Thursday starters are being generated. These occur in the Thu,

Fri, Sat, Sun, and Mon rows. The problem comes when the schedule must “wrap” around from Sunday

to Monday. This is done by using the modulo operator (mod), which wraps any row index of 7, or

higher, around to the start of the week. A picture of the nonzero matrix for this model would appear as

follows:

Each column has a contiguous block of 5 nonzero coefficients in the constraints. In each subsequent

column, the block is shifted down one row. Starting with Thursday’s column, one or more nonzeros

must wrap back to the top.

The model has now been generated, so it may be passed to LINDO API by calling LSloadLPData():

'load the problem

nErr = LSloadLPData(pMod, nRows, nVars, nDir, _

 dObjConst, dObjCoef(0), dB(0), cConTypes, nNZ, _

 nBegCol(0), ByVal 0, dA(0), nRowX(0), ByVal 0, _

 ByVal 0)

Call CheckErr(pEnv, nErr)

SOLVING MIXED INTEGER PROGRAMS 399

Note that three of the arguments are set to ByVal 0, which indicates those arguments are being omitted

and their default values accepted. The first of these arguments is for the array of column lengths. Since

the nonzero matrix includes no blank spaces, the column-length array is redundant. The remaining two

0 arguments are for the variable bound arrays. These are omitted because the default variable bound of

zero to infinity is correct for this model.

After the call to LSloadLPData(), a test is done to see if any error condition was raised by calling our

CheckErr() routine. CheckErr() should be familiar from the discussions in the previous chapter.

Up to this point, nothing has been indicated to LINDO API regarding the integrality requirement on

the variables. This is done through a call to LSloadVarType():

'integer restrictions on the variables

Dim cVarType As String

For i = 1 To nVars

 cVarType = cVarType & "I"

Next

nErr = LSloadVarType(pMod, cVarType)

Call CheckErr(pEnv, nErr)

Each of the seven variables are integer, which is indicated by passing a string of seven letter I’s. Note

that LSloadVarType() must be called after LSloadLPData(). Attempting to call LSloadVarType() prior

to the call to LSloadLPData() will result in an error.

The next step is to solve the model:

'>>> Step 4 <<< solve the model

nErr = LSsolveMIP(pMod, ByVal 0)

Call CheckErr(pEnv, nErr)

In this case, the branch-and-bound solver must be called with LSsolveMIP(), because there are integer

variables in our model.

Next, the solution values are retrieved:

'>>> Step 5 <<< retrieve the solution

ReDim dX(nVars) As Double

Dim dObj As Double

Dim dSlacks(7) As Double

nErr = LSgetInfo(pMod, LS_DINFO_MIP_OBJ, dObj)

Call CheckErr(pEnv, nErr)

nErr = LSgetMIPPrimalSolution(pMod, dX(0))

Call CheckErr(pEnv, nErr)

nErr = LSgetMIPSlacks(pMod, dSlacks(0))

Call CheckErr(pEnv, nErr)

'post solution in dialog box

Total = dObj

For i = 0 To nVars - 1

 OnDuty(i) = dB(i) - dSlacks(i)

 Start(i) = dX(i)

Next

400 CHAPTER 4

Note that the query routines that are specifically designed for MIP models have been used.

The remainder of the code is straightforward and deals with posting the solution in the dialog box and

deleting the LINDO environment.

Solving MIPs using BNP
BNP (Branch and Price) is a mixed integer programming solver of LINDO API for solving models

with block structures like the following:

minimize ∑c(k)*x(k)

s.t.

 ∑A(k)* x(k) = d ---------------------- linking constraints

 x(k) in X(k), for all k ---------------------- decomposition structure

where d, c(k) and x(k) are vectors and A(k) is a matrix of appropriate dimensions. x(k) contains

decision variables and X(k) denotes a linear feasible domain for x(k).

The BNP solver is a hybrid of Branch and Bound, Column Generation, and Lagrangean Relaxation

methods. It can help find either the optimal solution or a better lower bound (the Lagrangean bound)

for a minimization problem. Based on the decomposition structure, the solver divides the original

problem into several subproblems and solves them (almost) independently, exploiting parallel

processing if multiple cores or processors are available, one for each block.

BNP may perform better than the default MIP solver if: a) the number of linking constraints is small,

b) the number of blocks is large and they are of approximately the same size, and c) the number of

available processors (or cores) is large, e.g., 4 or more. Also, there may be some models for which

BNP finds a good solution and good bound more quickly than the default MIP algorithm although it

may take longer to prove optimality.

To solve the model with BNP solver, one can use either the command line in runlindo or the LINDO

API routine, LSsolveMipBnp(). The following illustrates this.

Solving MIPs using the –bnp option in Runlindo
We start this section by consider the following example:

EXAMPLE1:

 MIN x1+x2+x3+x4+x5+x6

 Subject to:

 [1] x1+x2+x3+x4+x5+x6 >=3 --------------------- linking constraints

 [2] x1+x2 <=1 --------------------- block 1

 [3] x2+x3 <=1 --------------------- block 1

 [4] x4+x5+x6 <=2 --------------------- block 2

 [5] x4+ x6 <=1 --------------------- block 2
 x1,x2,x3,x4,x5,x6 are binary

SOLVING MIXED INTEGER PROGRAMS 401

The above model has six variables and five constraints. Constraint 1 can be considered as the only

linking constraint. Constraints 2 and 3 will be block 1. Constraints 4 and 5 will be block 2.

In runlindo one can use the following command line format to call the BNP solver to solve the model:

 runlindo filename.mps –bnp [m] –nblock [n] –nthreads [j] –colmt [g] –fblock [k] -rtim

 filename.mps is the name of the MPS file which contains the MIP model to be solved.

 Option -bnp means solving the problem using the BNP solver, m specifies the algorithmic

approach, where the computing level, m = 0 denotes a pure Lagrangean Relaxation procedure,

m = 1 denotes a best-first search BNP procedure, m = 2 denotes a worst-first search BNP

procedure, m = 3 denotes a depth-first search BNP procedure, and m = 4 denotes a breadth-

first search BNP procedure. With m>=1, after each node is investigated, the best lower bound

and the best feasible solution found will be displayed.

 Option –nblock [n] specifies the number of independent blocks in the model to be n, which

should be 2 in the above example.

 Option –nthreads[j] specifies that j parallel threads should be used for solving the submodels

in parallel.

 Option –colmt [g] specifies a limit of g for the total generated columns.

 Option –fblock [k] specifies different heuristic algorithms to find the block structure

automatically, k can be 1 (default) or 2.

 Option –rtim means that the user will input the block information via a file, filename.tim. For

the example above, a valid filename.tim should be essentially as follows:

TIME EXAMPLE1

PERIODS EXPLICIT

 TIME0000

 TIME0001

 TIME0002

ROWS

 1 TIME0000

 2 TIME0001

 3 TIME0001

 4 TIME0002

 5 TIME0002

COLUMNS

 x1 TIME0001

 x2 TIME0001

 x3 TIME0001

 x4 TIME0002

 x5 TIME0002

 x6 TIME0002

 ENDATA

In the above .tim file, we input constraint 1 as the linking constraint (TIME0000), constraint 2

and 3, variable x1, x2 and x3 as in block 1 (TIME0001), and constraint 4 and 5, variable x4,

x5, and x6 as in block 2(TIME0002). Besides linking constraints, the input model can also

have linking variables, in which case the solver will convert those linking variables into

linking constraints automatically.

402 CHAPTER 4

A Programming Example in C
include <stdio.h>

include <stdlib.h>

include "lindo.h"

/* Define a macro to declare variables for error checking */

#define APIERRORSETUP \

 int nErrorCode; \

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH] \

/* Define a macro to do the error checking */

#define APIERRORCHECK \

 if (nErrorCode) \

 { \

 if (pEnv) \

 { \

 LSgetErrorMessage(pEnv, nErrorCode, \

 cErrorMessage); \

 printf("Errorcode=%d: %s\n", nErrorCode, \

 cErrorMessage); \

 } else {\

 printf("Fatal Error\n"); \

 } \

 exit(1); \

 } \

#define APIVERSION \

{\

 char szVersion[255], szBuild[255];\

 LSgetVersionInfo(szVersion,szBuild);\

 printf("\nLINDO API Version %s built on %s\n",szVersion,szBuild);\

}\

int main(int argc, char** argv)

{

 APIERRORSETUP;

 pLSenv pEnv; //LINDO environment object

 pLSmodel pModel; //LINDO model object

 char MY_LICENSE_KEY[1024];

 int nStatus;

 // create a model in the environment

 nErrorCode = LSloadLicenseString("lndapi100.lic",MY_LICENSE_KEY);

 if (nErrorCode != LSERR_NO_ERROR)

 {

 printf("Failed to load license key (error %d)\n",nErrorCode);

 exit(1);

 }

 APIVERSION;

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

SOLVING MIXED INTEGER PROGRAMS 403

 }

 APIERRORCHECK;

 pModel = LScreateModel(pEnv, &nErrorCode);

 APIERRORCHECK;

 // read the mps file

 nErrorCode = LSreadMPSFile(pModel,"example1.mps",LS_UNFORMATTED_MPS);

 APIERRORCHECK;

 // set the BNP level to be 1

 nErrorCode = LSsetModelIntParameter(pModel,LS_IPARAM_BNP_LEVEL,1);

 APIERRORCHECK;

 // user input the block structure

 nErrorCode =

 LSsetModelIntParameter(pModel,LS_IPARAM_BNP_FIND_BLK,3);

 APIERRORCHECK;

 // set number of threads to be 2

 nErrorCode =

 LSsetModelIntParameter(pModel,LS_IPARAM_BNP_NUM_THREADS,2);

 APIERRORCHECK;

 // solve the model using BNP solver

 nErrorCode = LSsolveMipBnp(pModel,2,"example1.tim", &nStatus);

 APIERRORCHECK

 return 0;

}

Prior to calling the BNP solver, we set some parameter values:

 LS_IPARAM_BNP_LEVEL: Setting the BNP level.

= 0 Call only the Lagrangean Relaxation (LR) procedure to get the LR bound.

= 1 (default) Incorporate the LR procedure with a best-first search BNP procedure.

= 2 Incorporate the LR procedure with a worst-first search BNP procedure.

= 3 Incorporate the LR procedure with a depth-first search BNP procedure.

= 4 Incorporate the LR procedure with a breadth-first search BNP procedure.

 LS_IPARAM_BNP_FIND_BLK: Setting the method for finding the block structure.

= 1 Use heuristic algorithm to find the block structure. (default)

= 2 Use another heuristic algorithm to find the block structure.

= 3 User input the block structure.

 LS_IPARAM_BNP_NUM_THREADS: Setting the number of threads to be used.

 After setting the parameter values for the BNP solver, we call the routine LSsolveMipBnp().

This function takes four arguments, the first is a pointer to a model, the second is number of

blocks in the model, the third is the name of the file which contains the user-input block

structure. If the parameter LS_IPARAM_BNP_FIND_BLK is set to be 1 or 2, then this

argument can be set to NULL. If a callback routine is specified, the best bound and best

objective value so far can be found via the macros LS_DINFO_BNP_BESTBOUND and

LS_DINFO_BNP_BESTOBJ. The fourth is an integer pointer which contains the status of

optimization.

404 CHAPTER 4

For other BNP parameter information, please refer to Chapter 2.

Chapter 5: Solving
Quadratic Programs

The quadratic programming interface of LINDO API is designed to solve quadratically constrained

problems (QCP) of the form:

Optimize ½ x’Q
c
x + cx;

subject to:

 ½ x’Q
i
x + ai x ? bi for i = 0,1,…,m-1,

 Lj  xj  Uj for j = 0,1,…,n-1,

 xj is integer for j in a specified J  {0,…, n-1}

where

Optimize is either minimize or maximize,

Q
c
, and Q

i
 are symmetric n by n matrices of constants for i=0,…,m-1,

c and ai are 1 by n vectors of constants,

x = {x0, x2,…,xn-1}, is an n-vector of decision variables.

"?" is one of the relational operators "", "=", or "".

LINDO API will solve and return a global optimum if:

Q
c
 is positive semi-definite for a minimize objective, or,

Q
c
 is negative semi-definite for a maximize objective, and

Q
i
 is positive semi-definite for each  constraint, and

Q
i
 is negative semi-definite for each  constraint.

All the above are also true if “semi-” is deleted. LINDO API may not find a global optimum if some Q

is indefinite, or some constraint with a Q on the left-hand side is an equality constraint. If, for example,

Q is a valid covariance matrix, then Q is positive semi-definite. The negative of a positive semi-

definite matrix is negative semi-definite, and vice versa. If Q is positive (negative) semi-definite, then

all of its eigenvalues are non-negative (non-positive). Strictly positive definite implies that Q is full

rank. If the Q
i
 matrices are positive (negative) semi-definite for "" ("") type constraints and equal to

zero for "=" type constraints, then the feasible region is convex. Geometrically, a positive definite

matrix corresponds to a bowl shaped function. A positive semi-definite matrix corresponds to a trough

shaped function. A negative definite matrix corresponds to an umbrella shaped function.

The ½ term is used above for historical reasons related to the fact that the derivative of ½ x’Qx is Qx.

Note: LINDO API uses the barrier algorithm to solve quadratic programs when they satisfy the

semi-definiteness conditions listed above. Otherwise, the nonlinear solver will be used. In the

latter case, the global optimality cannot be ensured unless the global optimization is

performed.

406 CHAPTER 5

Setting up Quadratic Programs
There are three ways by which you can setup a quadratic program with LINDO API. The first one is

reading a quadratic program directly from an MPS format file, using an extended format to incorporate

quadratic forms in the model formulation. The second way is to build the model directly in memory

and pass the data of the matrices representing quadratic forms to LINDO API. The third way is to

formulate the model using an instruction list (as described in Chapter 7 and Appendix D). Here, we

describe the first and second ones.

Loading Quadratic Data via Extended MPS Format Files
The quadratic parts of the objective function and the constraints can be described in an MPS file by

adding a QMATRIX section to the file for each quadratic form. Synonyms that can be used for this

section are QSECTION or QUADS. The row labels that follow the QMATRIX term denote the

constraints the quadratic terms belong to. The following example illustrates how an MPS file is

modified to include quadratic terms in the objective function.

Example:
Suppose the quadratic program under consideration is:

Minimize 0.5*(X0*X0 + .75*X0*X1

 0.75*X0*X1 + 2.00*X1*X1) + X0 + X1;

Subject to:

 X0 + X1 >= 10;

The corresponding MPS file to this quadratic program is:

NAME quadex2

ROWS

 N OBJ

 G C1

COLUMNS

 X0 OBJ 1.0

 X0 C1 1.0

 X1 OBJ 1.0

 X1 C1 1.0

RHS

 RHS C1 10.

QMATRIX OBJ

 X0 X0 1.0

 X0 X1 0.75

 X1 X1 2.0

ENDATA

The format of the QMATRIX section is similar to the COLUMNS section except that the first two

columns on each line correspond to a pair of variables for which their product appears as a term in the

quadratic objective and the third column on a line corresponds to the coefficient of this product. The

presence of the factor 0.5 is assumed when specifying these coefficients. In describing the QMATRIX,

it is sufficient to specify the elements on its diagonal and below-diagonal entries because the quadratic

matrices are assumed to be symmetric. It should be noted that only one QMATRIX section is allowed

for each constraint and no QMATRIX sections can precede the COLUMNS section.

 SOLVING QUADRATIC PROGRAMS 407

The solution file for the above example will contain the report:

PROBLEM NAME quadex2

 QP OPTIMUM FOUND

 ITERATIONS BY SIMPLEX METHOD = 0

 ITERATIONS BY BARRIER METHOD = 6

 ITERATIONS BY NLP METHOD = 0

 TIME ELAPSED (s) = 0

 OBJECTIVE FUNCTION VALUE

 1) 57.916666753

 VARIABLE VALUE REDUCED COST

 X0 8.333333307 0.000000010

 X1 1.666666701 0.000000060

 ROW SLACK OR SURPLUS DUAL PRICES

 C1 -0.000000008 10.583333322

END OF REPORT

Note: Your license must have the barrier or nonlinear license options to be able to work with

quadratic formulations. Attempting to solve a problem that has a quadratic objective or

constraint using other optimization algorithms such as primal simplex, dual simplex, or

mixed-integer solver will return an error.

Loading Quadratic Data via API Functions
The second way to input a QCP is by setting-up a problem structure and using LINDO API’s quadratic

programming functions to specify the quadratic terms. In this framework, your front-end program

should perform at least the following steps to enter the problem and retrieve its solution:

 Create a LINDO environment with a call to LScreateEnv().

 Create a model structure in this environment with a call to LScreateModel().

 Load problem structure and linear data into the model structure with a call to

LSloadLPData().

 Load the quadratic problem data into the model structure with a call to LSloadQCData().

 Load (optionally) the integer-programming data with a call to LSloadVarType().

 Solve the problem with a call to LSoptimize() (or LSsolveMIP() if there are integer

variables).

 Retrieve the solution with calls to LSgetInfo(), LSgetPrimalSolution(), and

LSgetDualSolution().

 Delete the model and environment with a call to LSdeleteEnv().

The step specific to loading quadratic models is Step 4. Quadratic terms in each row, as well as the

objective function, are represented with a symmetric matrix. Each of these matrices is described by a

vector of four-tuples or quadruplets, one quadruplet per nonzero. Each quadruplet contains:

 index of the constraint which the quadratic matrix belongs,

 row index i (actually the index of a column) of the nonzero in quadratic matrix,

 column index j of the nonzero in quadratic matrix,

 nonzero value q(i,j).

408 CHAPTER 5

We illustrate the preparation of the data with an example:

Maximize 3x0 + 10x1 – 2 x0

2
 – 3x1

2

– 4x2
2
 + 2 x0x2 + 5x2x1

s.t.

Constraint 0: (x0 – 1)
2
 + (x1 – 1)

2
  1

Constraint 1: (x1 – 3)
2
 + (x2 – 1)

2
  2

 -  x0  +

 -  x1  +

 -  x2  +

This model can be written in the equivalent symmetric matrix form

Maximize 3 x0 + 10x1 +

½(-4 x0
2

 + 2x0x2

-6 x1

2
 + 5x1x2

 + 2x2x0 +5x2x1 – 8 x2
2
)

s.t.

Constraint 0: -2 x0 – 2 x1 + ½(2 x0
2
 + 2

x1
2
)

 -1

Constraint 1: -6 x1 – 2 x2 + ½(2 x1
2
 + 2

x2
2
)

 -8

 -  x0  +

 -  x1  +

 -  x2  +

Digression: The historic reason for writing the quadratic part in this form, with the factor of 1/2 in

front, is as follow. When first partial derivatives are taken, the 1/2 cancels out, and the coefficients of

the linear first order conditions that the computer solves are exactly the coefficients inside the

parentheses.

Several other conventions of note are: a) the LINDO API numbers the constraints starting at 0, 1, …,

b) the objective row is denoted as row -1, and c) because of symmetry, we only input the upper

triangle of the symmetric matrix. Thus, the equivalents of the above matrices in quadruplet form are:

 Q
obj

 =

Constraint
Index

Row
index

Column
index

Nonzero
value

-1 0 0 -4

-1 0 2 2

-1 1 1 -6

-1 1 2 5

-1 2 2 -8

 x0 x1 x2

x0 -4 0 2

x1 0 -6 5

x2 2 5 -8

 SOLVING QUADRATIC PROGRAMS 409

And those associated with constraints 0 and 1 are Q
0
 and Q

1
, with 2 nonzeros in each.

 Q
0
 =

 Q
1
 =

Combining the quadruplet representations of Q
obj

, Q
0
 and Q

1
, we obtain the following arrays:

The quadratic data for this model is now ready to be loaded to the solver. Using C conventions, the

following code fragment sets up the arrays and then calls the LSloadQCData function to load these

four vectors into the LINDO API. The LP data must have been previously loaded using

LSloadLPData.

{

 pLSmodel pModel;

 int nQCnnz = 9;

 int paiQCrows [9] = { -1, -1, -1, -1, -1, 0, 0, 1, 1};

 int paiQCcols1[9] = { 0, 0, 1, 1, 2, 0, 1, 1, 2};

 int paiQCcols2[9] = { 0, 2, 1, 2, 2, 0, 1, 1, 2};

 int padQCcoef [9] = {-4.0, 2.0,-6.0, 5.0,-8.0, 2.0, 2.0, 2.0, 2.0};

 int nErr;

 nErr = LSloadQCData(pModel, nQCnnz, paiQCrows, paiQCcols1,

 paiQCcols2, padQCcoef);

}

 x0 x1 x2

x0 2 0 0

x1 0 2 0

x2 0 0 0

Constraint
Index

Row
index

Column
index

Nonzero
value

0 0 0 2

0 1 1 2

 x0 x1 x2

x0 0 0 0

x1 0 2 0

x2 0 0 2

Constraint
Index

Row
index

Column
index

Nonzero
value

1 1 1 2

1 2 2 2

Constraint
Index

Row
index

Column
index

Nonzero
value

-1 0 0 -4

-1 0 2 2

-1 1 1 -6

-1 1 2 5

-1 2 2 -8

0 0 0 2

0 1 1 2

1 1 1 2

1 2 2 2

410 CHAPTER 5

We recommend that you load only the upper triangular portion of a Q matrix when you call

LSloadQCData. You can in fact load the lower triangular portion of the matrix, or even the full

matrix, and the matrix need not be symmetric. If LSloadQCData finds one or more nonzero instances

of the matrix element qij or qji, it treats both qij and qji as equal to the average of all the elements

supplied for qij and qji. This, for example allows you to supply an asymmetric Q matrix and

LSLoadQCData will automatically convert it to the equivalent symmetric matrix.

In the following examples, the functions in LINDO API that are related to solving quadratic problems

are described.

Sample Portfolio Selection Problems
A common use of quadratic programs is in portfolio selection in finance where the proportion of the

available assets invested in each investment alternative is determined. The following examples

illustrate the use of LINDO API to build and solve small portfolio selection models.

Example 1. The Markowitz Model:
Consider a portfolio problem with n assets or stocks held over one period. Let wi denote the amount of

asset i invested and held throughout the period, and ri denote the return of asset i over the period. The

decision variable is the vector w with two basic assumptions: wi  0 (short positions are not allowed)

and w1 + w2 + … + wn = 1 (i.e., unit total budget).

This example assumes the investor wishes to use the well known Markowitz model to balance the

average expected risk and average return on each dollar invested in selecting the portfolio. This can be

handled by maximizing the expected return while limiting the risk of loss with a constraint of the form

w’Q w  K. Here, Q is the covariance matrix of returns and K is a bound on the risk of loss.

The following C programming code illustrates how this model can be set up and solved using LINDO

API for a small portfolio selection problem.

 /*

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : markow.c

 Purpose: Solve a quadratic programming problem.

 Model : The Markowitz Portfolio Selection Model

 MAXIMIZE r(1)w(1) + ... +r(n)w(n)

 st. sum_{ij} Q(i,j)w(i)w(j) <= K

 w(1) + + w(n) = 1

 w(1), ,w(n) >= 0

 where

 r(i) : return on asset i

 SOLVING QUADRATIC PROGRAMS 411

 Q(i,j): covariance between the returns of i^th and

 j^th assets.

 K : a scalar denoting the level of risk of loss.

 w(i) : proportion of total budget invested on asset i

 Covariance Matrix:

 w1 w2 w3 w4

 w1 [1.00 0.64 0.27 0.]

 w2 [0.64 1.00 0.13 0.]

 w3 [0.27 0.13 1.00 0.]

 w4 [0. 0. 0. 1.00]

 Returns Vector:

 w1 w2 w3 w4

 r = [0.30 0.20 -0.40 0.20]

 Risk of Loss Factor:

 K = 0.4

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "lindo.h"

/* Define a macro to declare variables for

 error checking */

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

#define APIERRORCHECK

 if (nErrorCode)

 {

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("Errorcode=%d: %s\n", nErrorCode,

 cErrorMessage);

 } else {

 printf("Fatal Error\n");

 }

 exit(1);

 }

/* main entry point */

int main(int argc, char **argv)

{

 APIERRORSETUP;

 int nM = 2; /* Number of constraints */

 int nN = 4; /* Number of assets */

 double K = 0.20; /* 1/2 of the risk level*/

412 CHAPTER 5

 /* declare an instance of the LINDO environment object */

 pLSenv pEnv = NULL;

 /* declare an instance of the LINDO model object */

 pLSmodel pModel;

 char MY_LICENSE_KEY[1024];

 /***

 * Step 1: Create a model in the environment.

 ***/

 nErrorCode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

 /**

 * Step 2: Create a model in the environment.

 **/

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

 /***

 * Step 3: Specify and load the LP portion of the model.

 ***/

 {

 /* The direction of optimization */

 int objsense = LS_MAX;

 /* The objective's constant term */

 double objconst = 0.;

 /* The coefficients of the objective function are the expected

 returns*/

 double reward[4] = { .3, .2, -.4, .2};

 /* The right-hand sides of the constraints */

 double rhs[2] = { K, 1.0 };

 /* The constraint types */

 char contype[2] = {'L','E'};

 /* The number of nonzeros in the constraint matrix */

 int Anz = 4;

 /* The indices of the first nonzero in each column */

 int Abegcol[5] = { 0, 1, 2, 3, Anz};

 /* The length of each column. Since we aren't leaving

 * any blanks in our matrix, we can set this to NULL */

 int *Alencol = NULL;

 /* The nonzero coefficients */

 double A[4] = { 1., 1., 1., 1.};

 /* The row indices of the nonzero coefficients */

 int Arowndx[4] = { 1, 1, 1, 1};

 /* By default, all variables have a lower bound of zero

 * and an upper bound of infinity. Therefore pass NULL

 * pointers in order to use these default values. */

 SOLVING QUADRATIC PROGRAMS 413

 double *lb = NULL, *ub = NULL;

 /***

 * Step 4: Specify and load the quadratic matrix

 ***/

 /* The number of nonzeros in the quadratic matrix */

 int Qnz = 7;

 /* The nonzero coefficients in the Q-matrix */

 double Q[7] = { 1.00, .64, .27,

 1.00, .13,

 1.00,

 1.00} ;

 /* Specify the row indices of the nonzero coefficients in the

 Q-matrix. */

 int Qrowndx[7] = { 0, 0, 0, 0, 0, 0, 0};

 /* The indices of variables in the Q-matrix */

 int Qcolndx1[7] = { 0, 1, 2, 1, 2, 2, 3};

 int Qcolndx2[7] = { 0, 0, 0, 1, 1, 2, 3};

 /* Pass the linear portion of the data to problem structure

 * by a call to LSloadLPData() */

 nErrorCode = LSloadLPData(pModel, nM, nN, objsense, objconst,

 reward, rhs, contype,

 Anz, Abegcol, Alencol, A, Arowndx,

 lb, ub);

 APIERRORCHECK;

 /* Pass the quadratic portion of the data to problem structure

 * by a call to LSloadQCData() */

 nErrorCode = LSloadQCData(pModel, Qnz, Qrowndx,

 Qcolndx1, Qcolndx2, Q);

 APIERRORCHECK;

 }

 /***

 * Step 5: Perform the optimization using the barrier solver

 ***/

 nErrorCode = LSoptimize(pModel, LS_METHOD_BARRIER,NULL);

 APIERRORCHECK;

 /***

 * Step 6: Retrieve the solution

 ***/

 {

 int i;

 double W[4], dObj;

 /* Get the value of the objective */

 nErrorCode = LSgetInfo(pModel, LS_DINFO_POBJ, &dObj) ;

 APIERRORCHECK;

 printf("* Objective Value = %10g\n\n", dObj);

 /* Get the portfolio */

 nErrorCode = LSgetPrimalSolution (pModel, W);

 APIERRORCHECK;

 printf ("* Optimal Portfolio : \n");

 for (i = 0; i < nN; i++)

 printf("Invest %5.2f percent of total budget in asset %d.\n",

 100*W[i],i+1);

 printf ("\n");

414 CHAPTER 5

 }

 /***

 * Step 7: Delete the LINDO environment

 ***/

 nErrorCode = LSdeleteEnv(&pEnv);

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

}

The source code file for this example may be found in the \LINDOAPI\Samples\C\Markow folder.

After creating the executable “markow.exe”, the application can be run from either with the Start |Run

command, or from the DOS-prompt.

The output for the example follows:

* Objective Value = 0.173161

* Optimal Portfolio =

Invest 28.11 percent of total budget in asset 1.

Invest 21.78 percent of total budget in asset 2.

Invest 9.16 percent of total budget in asset 3.

Invest 40.96 percent of total budget in asset 4.

Example 2. Portfolio Selection with Restrictions on the Number
of Assets Invested:
Another common portfolio selection model is the one where there is a restriction on the number of

assets invested. This is also called the portfolio selection problem with cardinality constraints. In this

formulation, it is also common to have bounds on the proportion of total assets invested to a particular

asset type. The following example, given the required data, demonstrates how LINDO API is used to

set up and solve such problems. Besides this example, the sample file port.c distributed with LINDO

API can be used to solve the portfolio selection problems in J. E. Beasley's collection at ORLIB

(http://mscmga.ms.ic.ac.uk/jeb/orlib/portinfo.html). You can find the source file in the

\LINDOAPI\SAMPLES\C\PORT folder.

/* port.c

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : port.c

 Purpose: Solve a quadratic mixed integer programming problem.

 Model : Portfolio Selection Problem with a Restriction on

 the Number of Assets

http://mscmga.ms.ic.ac.uk/jeb/orlib/portinfo.html

 SOLVING QUADRATIC PROGRAMS 415

 MINIMIZE 0.5 w'Q w

 s.t. sum_i w(i) = 1

 sum_i r(i)w(i) >= R

 for_i w(i) - u(i) x(i) <= 0 i=1...n

 sum_i x(i) <= K

 for_i x(i) are binary i=1...n

 where

 r(i) : return on asset i.

 u(i) : an upper bound on the proportion of total budget

 that could be invested on asset i.

 Q(i,j): covariance between the returns of i^th and j^th

 assets.

 K : max number of assets allowed in the portfolio

 w(i) : proportion of total budget invested on asset i

 x(i) : a 0-1 indicator if asset i is invested on.

 Data:

 Covariance Matrix:

 A1 A2 A3 A4 A5 A6 A7

 A1 [1.00 0.11 0.04 0.02 0.08 0.03 0.10]

 A2 [0.11 1.00 0.21 0.13 0.43 0.14 0.54]

 A3 [0.04 0.21 1.00 0.05 0.16 0.05 0.20]

 Q = A4 [0.02 0.13 0.05 1.00 0.10 0.03 0.12]

 A5 [0.08 0.43 0.16 0.10 1.00 0.10 0.40]

 A6 [0.03 0.14 0.05 0.03 0.10 1.00 0.12]

 A7 [0.10 0.54 0.20 0.12 0.40 0.12 1.00]

 Returns Vector:

 A1 A2 A3 A4 A5 A6 A7

 r = [0.14 0.77 0.28 0.17 0.56 0.18 0.70]

 Maximum Proportion of Total Budget to be Invested on Assets

 A1 A2 A3 A4 A5 A6 A7

 u = [0.04 0.56 0.37 0.32 0.52 0.38 0.25]

 Target Return:

 R = 0.30

 Maximum Number of Assets:

 K = 3

*/

#include <stdlib.h>

#include <stdio.h>

/* LINDO API header file */

#include "lindo.h"

/* Define a macro to declare variables for

 error checking */

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

#define APIERRORCHECK

 if (nErrorCode)

 {

416 CHAPTER 5

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("Errorcode=%d: %s\n", nErrorCode,

 cErrorMessage);

 } else {

 printf("Fatal Error\n");

 }

 exit(1);

 }

/* main entry point */

int main()

{

 APIERRORSETUP;

/* Number of constraints */

 int nM = 10;

/* Number of assets (7) plus number of indicator variables (7) */

 int nN = 14;

/* declare an instance of the LINDO environment object */

 pLSenv pEnv = NULL;

/* declare an instance of the LINDO model object */

 pLSmodel pModel;

 char MY_LICENSE_KEY[1024];

 /**

 * Step 1: Create a LINDO environment.

 **/

 nErrorCode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

 APIERRORCHECK;

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

 /**

 * Step 2: Create a model in the environment.

 **/

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

 {

 /***

 * Step 3: Specify and load the LP portion of the model.

 ***/

 /* The maximum number of assets allowed in a portfolio */

 int K = 3;

 /* The target return */

 double R = 0.30;

 /* The direction of optimization */

 int objsense = LS_MIN;

 SOLVING QUADRATIC PROGRAMS 417

 /* The objective's constant term */

 double objconst = 0.;

 /* There are no linear components in the objective function.*/

 double c[14] = { 0., 0., 0., 0., 0., 0.,0.,

 0., 0., 0., 0., 0., 0.,0.};

 /* The right-hand sides of the constraints */

 double rhs[10] = { 1.0, R, 0., 0., 0., 0., 0., 0., 0., K};

 /* The constraint types */

 char contype[10] = {'E','G','L','L','L','L','L','L','L','L'};

 /* The number of nonzeros in the constraint matrix */

 int Anz = 35;

 /* The indices of the first nonzero in each column */

 int Abegcol[15] = { 0, 3, 6, 9, 12, 15, 18,

 21, 23, 25, 27, 29, 31, 33,Anz};

 /* The length of each column. Since we aren't leaving

 * any blanks in our matrix, we can set this to NULL */

 int *Alencol = NULL;

 /* The nonzero coefficients */

 double A[35] = { 1.00, 0.14, 1.00,

 1.00, 0.77, 1.00,

 1.00, 0.28, 1.00,

 1.00, 0.17, 1.00,

 1.00, 0.56, 1.00,

 1.00, 0.18, 1.00,

 1.00, 0.70, 1.00,

 -0.04, 1.00,

 -0.56, 1.00,

 -0.37, 1.00,

 -0.32, 1.00,

 -0.52, 1.00,

 -0.38, 1.00,

 -0.25, 1.00 };

 /* The row indices of the nonzero coefficients */

 int Arowndx[35] = { 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5,

 0, 1, 6, 0, 1, 7, 0, 1, 8, 2, 9, 3,

 9, 4, 9, 5, 9, 6, 9, 7, 9, 8, 9 };

 /* By default, all variables have a lower bound of zero

 * and an upper bound of infinity. Therefore pass NULL

 * pointers in order to use these default values. */

 double *lb = NULL, *ub = NULL;

 /***

 * Step 4: Specify and load the quadratic matrix

 ***/

 /* The number of nonzeros in the quadratic matrix */

 int Qnz = 28;

 /* The nonzero coefficients in the Q-matrix */

 double Q[28] = { 1.00, 0.11, 0.04, 0.02, 0.08, 0.03, 0.10,

 1.00, 0.21, 0.13, 0.43, 0.14, 0.54,

 1.00, 0.05, 0.16, 0.05, 0.20,

 1.00, 0.10, 0.03, 0.12,

 1.00, 0.10, 0.40,

 1.00, 0.12,

 1.00 };

418 CHAPTER 5

 /* The row indices of the nonzero coefficients in the Q-matrix*/

 int Qrowndx[28] = { -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1,

 -1, -1, -1, -1,

 -1, -1, -1,

 -1, -1,

 -1 };

 /* The indices of the first nonzero in each column in the Q-

matrix */

 int Qcolndx1[28] = { 0, 1, 2, 3, 4, 5, 6,

 1, 2, 3, 4, 5, 6,

 2, 3, 4, 5, 6,

 3, 4, 5, 6,

 4, 5, 6,

 5, 6,

 6};

 int Qcolndx2[28] = { 0, 0, 0, 0, 0, 0, 0,

 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2,

 3, 3, 3, 3,

 4, 4, 4,

 5, 5,

 6};

 /* Pass the linear portion of the data to problem structure

 * by a call to LSloadLPData() */

 nErrorCode = LSloadLPData(pModel, nM, nN, objsense, objconst,

 c, rhs, contype,

 Anz, Abegcol, Alencol, A, Arowndx,

 lb, ub);

 APIERRORCHECK;

 /* Pass the quadratic portion of the data to problem structure

 * by a call to LSloadQCData() */

 nErrorCode = LSloadQCData(pModel, Qnz, Qrowndx,

 Qcolndx1, Qcolndx2, Q);

 APIERRORCHECK;

 /* Pass the integrality restriction to problem structure

 * by a call to LSloadVarData() */

 {

 char vartype[14] ={ 'C','C','C','C','C','C','C', /* w(j) */

 'B','B','B','B','B','B','B' }; /* x(j) */

 nErrorCode = LSloadVarType(pModel, vartype);

 APIERRORCHECK;

 }

 }

 SOLVING QUADRATIC PROGRAMS 419

 /***

 * Step 5: Perform the optimization using the MIP solver

 ***/

 nErrorCode = LSsolveMIP(pModel, NULL);

 APIERRORCHECK;

 {

 /***

 * Step 6: Retrieve the solution

 ***/

 int i;

 double x[14], MipObj;

 /* Get the value of the objective and solution */

 nErrorCode = LSgetInfo(pModel, LS_DINFO_MIP_OBJ, &MipObj);

 APIERRORCHECK;

 LSgetMIPPrimalSolution(pModel, x) ;

 APIERRORCHECK;

 printf ("*** Optimal Portfolio Objective = %f\n", MipObj);

 for (i = 0; i < nN/2; i++)

 printf("Invest %5.2f percent of total budget in asset

%d.\n",

 100*x[i],i+1);

 printf ("\n");

 }

 /***

 * Step 7: Delete the LINDO environment

 ***/

 nErrorCode = LSdeleteEnv(&pEnv);

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

}

420 CHAPTER 5

After building this application, it can be run from the DOS-prompt to produce the following summary

report on your screen.

*** Optimal Portfolio Objective = 0.192365

Invest 0.00 percent of total budget in asset 1.

Invest 0.00 percent of total budget in asset 2.

Invest 0.00 percent of total budget in asset 3.

Invest 32.00 percent of total budget in asset 4.

Invest 32.76 percent of total budget in asset 5.

Invest 35.24 percent of total budget in asset 6.

Invest 0.00 percent of total budget in asset 7.

Chapter 6: Solving Conic
Programs

The optimization capabilities of LINDO API extend to the solution of conic problems. The problems

in this class include a wide range of convex problems, which optimize a convex function over a set

defined by the intersection of a set of linear constraints with a convex cone. The types of cones used in

the formulation define subclasses of conic problems. LINDO API supports two major subclasses (i)

second-order-cone problems (SOCP) and (ii) semi-definite problems (SDP).

Second-Order Cone Programs
The problems involving second-order-cones have the following form

Optimize ||A0 x + b0 ||+ c0 x

subject to:

 ||Ai x + bi ||- ci x - di ? 0 for i = 0,1,…,m-1,

 Lj  xj  Uj for j = 0,1,…,n-1,

 xj is integer for j in a specified J  {0,…, n-1}

where

Optimize is either minimize or maximize,

Ai are matrices of appropriate dimensions i=0,…,m-1,

bi and ci are vectors of constants,

di are constants,

x = {x0, x2,…,xn-1}, is an n-vector of decision variables.

"?" is one of the relational operators "", "=", or "".

This formulation is generic and it should be transformed into the following equivalent form before it

can be loaded to LINDO API.

 = Wi for i = 0,1,…,m-1,

 = yi for i = 0,1,…,m-1,

Fx = g

||Wi|| - yi ? 0 for i = 0,1,…,m-1,
Wi is free, yi >=0 for i = 0,1,…,m-1,

Where

Wi are vectors of appropriate dimensions i=0,…,m-1,

yi are scalars

422 CHAPTER 6

Without the integrality restrictions, SOCPs are nonlinear convex problems that include linear and

convex quadratically constrained quadratic programs as special cases. Several decision problems in

engineering design and control can be formulated as SOCP. LINDO API solves this class of problems

using the so-called conic optimizer, which uses an interior-point algorithm. To solve a convex problem

using LINDO API, it may be advantageous to cast the problem (e.g. a QCQP) as a SOCP and use the

conic optimizer. It has been empirically observed that the conic optimizer is generally faster than the

default barrier solver.

To motivate the second-order cone problems and common forms of quadratic cones, consider the

following two constraints:

x
2
 + y

2
 - z

2
  0,

z  0

Geometrically, the feasible region defined by these two constraints is an ice cream cone, with the point

of the cone at (0,0,0). The feasible region for the constraint x
2
 + y

2
 - z

2
  0 by itself is not convex. The

feasible region consists of two ice cream cones, one right side up, the other upside down, and with

their pointy ends touching. The constraint z  0 eliminates the upside down cone and leaves the

quadratic cone illustrated in Figure 5. Second-order cone problems are essentially a generalization of

linear models defined over polyhedral cones to ones defined over quadratic cones.

-3 -2 -1 0 1 2 3

-2

0

2

0.5

1

1.5

2

2.5

3

3.5

4

X

Quadratic Cone z
2
 >= x

2
 + y

2
, z >= 0

Y

Z

Figure 5. Quadratic Cone

More generally, in n dimensions, a simple quadratic cone (ice-cream cone) constraint is of the form:

 SOLVING SECOND-ORDER CONE PROGRAMS 423

-x0
2
 + x1

2
 + x2

2
 +… + xn

2
  0;

x0  0;

Second-order cone constraints are more general than they might at first appear. For another conic

form, consider the constraints:

-uv + x
2
  0,

u, v  0.

The first constraint by itself describes a nonconvex feasible region (colored blue and green) illustrated

in Figure 6. The three constraints together, however, describe a convex feasible region (colored green

only) called the rotated quadratic cone.

-3
-2

-1
0

1
2

3

-2

0

2

0.5

1

1.5

2

2.5

3

u

Rotated Quadratic Cone, uv >= x
2
, u,v >=0

v

x

Figure 6. Rotated Quadratic Cone

More generally, in n dimensions, the rotated quadratic cone constraint in standard form is:

-2x0 x1 + x2
2
 + x3

2
 +… + xn

2
  0;

x0, x1 0;

In both simple and rotated quadratic cones, a variable can appear in at most one cone constraint. If

naturally you would like to have a variable, say x2, appear in two cone constraints, then you must

introduce an extra copy of the variable, say y2 , for the second cone constraint and then connect the two

with the linear constraint x2 - y2 = 0.

424 CHAPTER 6

Notice, using a standard transformation, rotated quadratic cone constraints can be shown to be

equivalent to quadratic cone constraints:

y = (u – v)/2,

z = (u + v)/2,

x
2
 + y

2
 - z

2
  0,

z  0.

Setting up Second-Order Cone Programs
There are three ways by which you can set up a second-order-cone program with LINDO API. The

first is reading the model directly from an MPS file, which uses an extended format to incorporate

quadratic cones in model formulation. The second way is to build the model directly in memory and

pass the data representing quadratic cones to LINDO API. A third way is via the MPI instruction list

format, see chapter 7. The third way requires less understanding of the details of SOCP. If all

constraints are either linear, or a quadratic of the form x'Qx - u*v ≤ d, where d is a scalar constant ≤

0, and u and v are non-negative scalar variables, and Q is a positive semi-definite matrix, and all

constraints are entered in MPI/instruction list format, then the API will recognize the model as an

SOCP model, and use the SOCP solver. In this chapter we describe only the first two methods. Due to

the simple structure of an SOCP const raint, LINDO API does not require cone constraints to be

included in model body explicitly. In either approach, the following data suffice to characterize the

cone constraints:

 type of each cone (quadratic or rotated-quadratic),

 ordered set of variables characterizing each cone.

Loading Cones via Extended MPS Format Files
The cone constraints can be described in an MPS file by adding a CSECTION section to the file for

each cone. The format of the CSECTION section is simple. It contains four tokens per CSECTION

line, and the names of variables that comprise the cone in the following lines. The second token in the

CSECTION line stands for the name of the cone. The third token is reserved and arbitrarily set to 0.

The fourth token stands for cone type (QUAD or RQUAD). The token QUAD stands for quadratic

cones (e.g. Figure 5) and the token RQUAD stands for rotated-quadratic cones (e.g. Figure 6). Each

CSECTION line is followed by the names of variables (one per line) describing the cone. The ordering

of variables is not important except for the first two. For QUAD cones, the first variable in the list

should be the variable that stands for the depth of the cone, e.g. variable z in Figure 5. For RQUAD,

the first two variables in the list should be the ones that form the product of two variables (e.g.

variables u and v in Figure 6).

Consider the following second-order cone model. The single cone constraint in the model appears after

constraint 2, without which the model is a simple linear model.

Minimize w

s.t.

Constraint 0: 19 x1 + 21 x3 + 21 x4 = 1

Constraint 1: 12 x1 + 21 x2 = 1

Constraint 2: 12 x2 + 16 x5 = 1

 SOLVING SECOND-ORDER CONE PROGRAMS 425

QUAD Cone: - w + (x1
2
 + … + x5

2
)
0.5

 0

 -  xi  +

 0  w  +

The cone constraint is a simple quadratic cone defined over variables {w, x1, x2, x3, x4, x5}. This

reflects to the MPS file in the following fashion.

NAME MININORM

ROWS

 N OBJ

 E R0000000

 E R0000001

 E R0000002

 L R0000003

COLUMNS

 W OBJ 1

 X0000001 R0000000 19

 X0000001 R0000001 12

 X0000002 R0000001 21

 X0000002 R0000002 12

 X0000003 R0000000 -17

 X0000004 R0000000 21

 X0000005 R0000002 16

RHS

 RHS1 R0000000 1

 RHS1 R0000001 1

 RHS1 R0000002 1

BOUNDS

 FR BND1 X0000001

 FR BND1 X0000002

 FR BND1 X0000003

 FR BND1 X0000004

 FR BND1 X0000005

CSECTION CONE0000 0 QUAD

* The first variable in this section must be the ‘x0’ variable

 W

 X0000001

 X0000002

 X0000003

 X0000004

 X0000005

ENDATA

Note: Your license must have the barrier or nonlinear license options to be able to work with

second-order cone formulations. Attempting to solve a problem that has cone data using

other optimization algorithms such as primal simplex, dual simplex, or mixed-integer solver

will return an error.

426 CHAPTER 6

Loading Cones via API Functions
The second way to input cone data is by setting-up a problem structure and using LINDO API’s cone

programming functions to specify the cone constraints. In this framework, your front-end program

should perform at least the following steps to enter the problem and retrieve its solution:

 Create a LINDO environment with a call to LScreateEnv().

 Create a model structure in this environment with a call to LScreateModel().

 Load problem structure and linear data into the model structure with a call to

LSloadLPData().

 Load the cone data into the model structure with a call to LSloadConeData().

 Load (optionally) the integer-programming data with a call to LSloadVarType().

 Solve the problem with a call to LSoptimize() (or LSsolveMIP() if there are integer

variables).

 Retrieve the solution with calls to LSgetInfo(), LSgetPrimalSolution(), and

LSgetDualSolution().

 Delete the model and environment with a call to LSdeleteEnv().

The step specific to loading cone data is Step 4 where cone types and variable indices are loaded to the

model. Assuming the model has nCone cones, and a total of nNz variables in all cones, the following

three-vector representation is sufficient to store all necessary data.

char acConeTypes[nCone] = {‘Q’, ‘Q’, … , ‘R’ , ‘R’ };

int anConeStart[nCone + 1] = {0, k1, k2, … , knCone-1, nNz};

int anConeVars[nNz] = {j1,…,jk1,…,jk2,…,jk(nCone-1)}

Notice, anConeStart[kc] marks the beginning position in vector anConeVars[] keeping variables in

cone c. This convention is similar to the one used in the representation of coefficient matrices in LPs.

In the following, the complete source code for setting up the example above is given.

Example 3: Minimization of Norms:
One of the common types of second-order-cone problems is the minimization of norms. This problem

has applications in several areas such as optimal location problems, statistics and engineering design.

This problem has the following general form.

Minimize  z
(j)

Dx = b

|| A
(j)

x + b
(j)

||  z
(j)

 for all j = 1,…,p

 where

z
(j)

 is a scalar decision variable for all j = 1,…,p,

x = {x1, x2,…,xn} is a vector of decision variables.

D is an m by nmatrix

b is a m vector

A
(j)

 is an nj by n matrix of constants, for j=1,…,p,

b
(j)

 is a 1 by nj vector of constants, for j=1,…,p,

The following sample code shows how to set up and solve a norm minimization problem using LINDO

API’s conic solver.

 SOLVING SECOND-ORDER CONE PROGRAMS 427

/*

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : ex_soc1.c

 Purpose: Solve a second-order cone program.

 Model : Simple norm minimization

 MINIMIZE w

 subject to A.x >= b

 -w^2 + ||x||^2 <= 0

 x : an n-vector

 w : the norm of vector x.

 Data:

 A-matrix for linear constraints:

 w x1 x2 x3 x4 x5

 [0 19 0 -17 21 0]

 A = [0 12 21 0 0 0]

 [0 0 12 0 0 16]

 b-vector:

 b = [1 1 1];

*/

#include <stdlib.h>

#include <stdio.h>

#include "lindo.h"

/* Define a macro to declare variables for error checking */

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

#define APIERRORCHECK

 if (nErrorCode)

 {

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("Errorcode=%d: %s\n", nErrorCode,

 cErrorMessage);

 } else {

 printf("Fatal Error\n");

 }

 exit(1);

 }

/* main entry point */

428 CHAPTER 6

int main()

{

 int nSolStatus;

 APIERRORSETUP;

 int nM = 4; /* Number of constraints */

 int nN = 6; /* Number of variables */

 pLSenv pEnv;

 pLSmodel pModel;

 char MY_LICENSE_KEY[1024];

 /***

 * Step 1: Create a model in the environment.

 **/

 nErrorCode = LSloadLicenseString(

 "../../../license/lndapi100.lic",MY_LICENSE_KEY);

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

 /***

 * Step 2: Create a model in the environment.

 **/

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

 {

 /***

 * Step 3: Specify the linear portion of the model.

 **/

 /* The direction of optimization */

 int objsense = LS_MIN;

 /* The objective's constant term */

 double objconst = 0.;

 /* The coefficients of the objective function*/

 double cost[6] = { 1., 0., 0., 0., 0., 0.};

 /* The right-hand sides of the constraints */

 double rhs[4] = { 1.0, 1.0, 1.0, 0.0 };

 /* The constraint types */

 char contype[4] = {'E','E','E','L'};

 /* The number of nonzeros in the constraint matrix */

 int Anz = 7;

 SOLVING SECOND-ORDER CONE PROGRAMS 429

 /* The indices of the first nonzero in each column */

 int Abegcol[7] = { 0, 0, 2, 4, 5, 6, Anz};

 /* The length of each column. Since we aren't leaving

 * any blanks in our matrix, we can set this to NULL */

 int *Alencol = NULL;

 /* The nonzero coefficients */

 double A[7] = { 19, 12 , 21, 12, -17, 21, 16};

 /* The row indices of the nonzero coefficients */

 int Arowndx[7] = { 0, 1, 1, 2, 0, 0, 2};

 /* All variables, except w, are free */

 double lb[6] = { 0.000000000,-LS_INFINITY,-LS_INFINITY,

 -LS_INFINITY,-LS_INFINITY,-LS_INFINITY};

 double ub[6] = {LS_INFINITY,LS_INFINITY,LS_INFINITY,

 LS_INFINITY,LS_INFINITY,LS_INFINITY};

 /***

 **Step 4: Specify the QCONE data

 **/

 /** The number of CONE constraints*/

 int nCones = 1;

 /** Specify the column indices of variables in the CONE

constraint,*/

 int paiConecols[6] = { 0, 1, 2, 3, 4, 5};

 int paiConebeg[2] = {0, 6};

 /** Specify cone type */

 char pszConeTypes[1] = { LS_CONETYPE_QUAD };

 /* Pass the linear portion of the data to problem structure

 * by a call to LSloadLPData() */

 nErrorCode = LSloadLPData(pModel, nM, nN, objsense, objconst,

 cost, rhs, contype,

 Anz, Abegcol, Alencol, A, Arowndx,

 lb, ub);

 APIERRORCHECK;

 /* Pass the cone portion of the data to problem structure

 * by a call to LSloadConeDataData() */

 nErrorCode = LSloadConeData(pModel, nCones, pszConeTypes,

 paiConebeg, paiConecols);

 APIERRORCHECK;

 /** Export the conic model in case required */

 LSwriteMPSFile(pModel,"cone.mps",0);

 }

 /***

430 CHAPTER 6

 * Step 5: Perform the optimization using the QCONE solver

 ***/

 nErrorCode = LSsetModelIntParameter(pModel,

LS_IPARAM_BARRIER_SOLVER, LS_BAR_METHOD_FREE);

 nErrorCode = LSoptimize(pModel, LS_METHOD_FREE, &nSolStatus);

 APIERRORCHECK;

 /***

 * Step 6: Retrieve the solution

 **/

 if (nSolStatus == LS_STATUS_OPTIMAL ||

 nSolStatus == LS_STATUS_BASIC_OPTIMAL)

 {

 int i;

 double x[6], dObj;

 /* Get the value of the objective */

 nErrorCode = LSgetInfo(pModel, LS_DINFO_POBJ, &dObj) ;

 APIERRORCHECK;

 nErrorCode = LSgetPrimalSolution (pModel, x);

 APIERRORCHECK;

 printf("Minimum norm = %11.5f*\n",x[0]);

 for (i = 0; i < nN; i++)

 printf("%7s x[%d] = %11.5f\n","",i,x[i]);

 printf ("\n");

 }

 else

 {

 printf("Not optimal, status = %d\n",nSolStatus);

 }

 /***

 * Step 7: Delete the LINDO environment

 **/

 nErrorCode = LSdeleteEnv(&pEnv);

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

}

 SOLVING SECOND-ORDER CONE PROGRAMS 431

The source code file for this example may be found in the \LINDOAPI\samples\c\ex_soc1\ folder.

After creating the executable “ex_soc1.exe”, you can run the application from the DOS-prompt and

produce the following report on your screen.

Minimum norm = 0.05903

 x[0] = 0.05903

 x[1] = 0.02083

 x[2] = 0.03572

 x[3] = -0.01407

 x[4] = 0.01738

 x[5] = 0.03

Converting Models to SOCP Form
SOCP constraints are more general than perhaps is superficially obvious. We give four examples.

1) Any constraint of the form:

 x
m/n

 ≤ r, x ≥ 0, where given integers m and n satisfy m ≥ n ≥ 1

can be represented as a SOC constraint. For example, in financial portfolio models, sometimes the

term x
3/2

 ≤ r arises in the modeling of the “market effect” of the size of a stock purchase on the price of

the stock. The following will represent this as a rotated SOCP.

 x
2
 ≤ 2ru;

 s
2
 ≤ 2vw;

 u = s;

 x = v;

 w = 1/8;

To verify, observe that the above imply: x
2
 ≤ 2r(2x/8)

1/2
 = rx

1/2
, or x

3/2
 ≤ r.

2) Also representable are constraints of the form:

 r ≤ x1
m1/n1

* x2
m2/n2

* . . . *xk
mk/nk

,

 xj ≥ 0, where, mi and ni are positive integers, and m1/n1+m2/n2+ . . . +mk/nk ≤ 1.

For example, r ≤ x1
1/4

* x2
1/2

can be representd by the SOCP:

 r
2
 ≤ u*v;

 v
2

≤ x2*1;

 u
2

≤ x1*x2;

3) Also representable are constraints of the form:

 r ≥ x1
-m1/n1

* x2
-m2/n2

* . . . *xk
-mk/nk

,

 xj ≥ 0, where, the mi and ni are positive integers.

For example, r ≥ x1
-4/3

* x2
-1/3

can be representd by the SOC:

 u
2

≤ x2*r;

 v
2

≤ u*r;

 1

≤ x1*v;

 4) As another illustration of this generality, consider a constraint set of the form:

r  (a + bx)/(c+dx);

432 CHAPTER 6

c+dx  0;

Expressions such as this arise for example in modeling traffic delay or congestion as a function of

traffic volume through a congested facility or transportation link. A constraint such as the above can

be put into SOCP form if a – bc/d  0. To do this define:

2y = c+dx, then x = (2y-c)/d, and r  (a + bx)/(c+dx) = (a + bx)/(2y) = (a – bc/d)/(2y) + b/d.

Thus, the constraint is convex if y  0 and a – bc/d  0.

If we define u = (r-b/d), then r - b/d  (a – bc/d)/(2y) is equivalent to the cone constraint:

2yu  a-bc/d.

Summarizing, given a – bc/d  0, we can replace:

r  (a + bx)/(c+dx);

c+dx  0;

by the SOCP set of constraints:

2y = c+dx;

r = u + b/d;

2yu  a-bc/d;

y  0;

The follow code shows how use LINDO API’s conic solver to set up and solve a model with

constraints of the above type, where b = c = 0.

 SOLVING SECOND-ORDER CONE PROGRAMS 433

Example 4: Ratios as SOCP Constraints:

/*

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : ex_soc2.c

 Purpose: Solve a second-order rotated cone program.

 A rotated cone constraint is of the form:

 2*x0*x1 - x2*x2 - x3*x3 - ... >= 0;

 x0, x1 >= 0;

 The model in natural form:

 MINIMIZE 11*x0 + 7*x1 + 9*x2;

 subject to 5/x0 + 6/x1 + 8/x2 <= 1;

 x0, x1, x2 >= 0;

 Reformulated as a rotated cone:

 MINIMIZE 11*x0 + 7*x1 + 9*x2;

 subject to 2*r0 + 2*r1 + 2*r2 <= 1;

 k0 = 5^0.5;

 k1 = 6^0.5;

 k2 = 8^0.5

 2*r0*x0>= k0^2;

 2*r1*x1>= k1^2;

 2*r2*x2>= k2^2;

 x0, x1, x2 >= 0;

 r0, r1, r2 >= 0;

 The constraint matrix for the linear constraints:

 0 1 2 3 4 5 6 7 8

 x0 x1 x2 r0 r1 r2 k0 k1 k2

 [0 0 0 2 2 2 0 0 0] <= 1

 A = [0 0 0 0 0 0 1 0 0] = 5^0.5

 [0 0 0 0 0 0 0 1 0] = 6^0.5

 [0 0 0 0 0 0 0 0 1] = 8^0.5

*/

#include <stdlib.h>

#include <stdio.h>

#include "lindo.h"

/* Define a macro to declare variables for error checking */

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

434 CHAPTER 6

#define APIERRORCHECK

 if (nErrorCode)

 {

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("Errorcode=%d: %s\n", nErrorCode,

 cErrorMessage);

 } else {

 printf("Fatal Error\n");

 }

 exit(1);

 }

/* main entry point */

int main()

{

 int nSolStatus;

 APIERRORSETUP;

 int nM = 4; /* Number of linear constraints */

 int nN = 9; /* Number of variables */

 pLSenv pEnv;

 pLSmodel pModel;

 char MY_LICENSE_KEY[1024];

 /***

 * Step 1: Create a model in the environment.

 ***/

 // Load the license into MY_LICENSE_KEY

 nErrorCode = LSloadLicenseString("../../../lndapi100.lic",

MY_LICENSE_KEY);

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

 /***

 * Step 2: Create a model in the environment.

 ***/

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

 {

 /***

 * Step 3: Specify the linear portion of the model.

 ***/

 /* The direction of optimization */

 SOLVING SECOND-ORDER CONE PROGRAMS 435

 int objsense = LS_MIN;

 /* The objective's constant term */

 double objconst = 0.;

 /* The coefficients of the objective function*/

 double cost[9] = { 11.0, 7.0, 9.0 , 0., 0., 0., 0., 0., 0.};

/* The right-hand sides of the constraints(square roots of 5,

6, 8)*/

 double rhs[4] = { 1.0, 2.2360679775, 2.44948974278,

2.82842712475};

 /* The constraint types */

 char contype[4] = {'L', 'E', 'E', 'E'};

 /* The number of nonzeros in the constraint matrix */

 int Anz = 6;

 /* The indices in A[] of the first nonzero in each column */

 int Abegcol[10] = { 0, 0, 0, 0, 1, 2, 3, 4, 5, Anz};

 /* The length of each column. Since we aren't leaving

 * any blanks in our matrix, we can set this to NULL */

 int *Alencol = NULL;

 /* The nonzero constraint coefficients */

 double A[6] = { 2.0, 2.0, 2.0, 1.0, 1.0, 1.0};

 /* The row indices of the nonzero coefficients */

 int Arowndx[6] = { 0, 0, 0, 1, 2, 3};

 /* All variables are non-negative */

 double lb[9] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

 double ub[9] = {LS_INFINITY,LS_INFINITY,LS_INFINITY,

 LS_INFINITY,LS_INFINITY,LS_INFINITY,

 LS_INFINITY,LS_INFINITY,LS_INFINITY};

 /***

 * Step 4: Set up data describing the CONE constraints

 ***/

 /* The number of Cone constraints */

 int nCones = 3;

 /* The col indices of the variables in each Cone constraint */

 int paiConecols[9] = {0, 3, 6, 1, 4, 7, 2, 5, 8};

 /* The start in paiConecols[] of the indices for each Cone

constraint */

 int paiConebeg[4] = {0, 3, 6, 9};

 /* These are Rotated Cone constraints */

 char pszConeTypes[3] = { 'R', 'R', 'R'};

 /* Pass the linear portion of the data to problem structure

 * by a call to LSloadLPData() */

436 CHAPTER 6

 nErrorCode = LSloadLPData(pModel, nM, nN, objsense, objconst,

 cost, rhs, contype,

 Anz, Abegcol, Alencol, A, Arowndx,

 lb, ub);

 APIERRORCHECK;

 /* Pass the Cone portion of the data to the problem structure

 * by a call to LSloadConeData() */

 nErrorCode = LSloadConeData(pModel, nCones, pszConeTypes,

 paiConebeg, paiConecols);

 APIERRORCHECK;

/* Optionally, write an MPS file version of the model */

 LSwriteMPSFile(pModel,"cone.mps",0);

 }

 /***

 * Step 5: Perform the optimization using the QCONE solver

 ***/

 nErrorCode = LSsetModelIntParameter(pModel,

LS_IPARAM_BARRIER_SOLVER, LS_BAR_METHOD_FREE);

 nErrorCode = LSoptimize(pModel, LS_METHOD_FREE, &nSolStatus);

 APIERRORCHECK;

 /***

 * Step 6: Retrieve the solution

 ***/

 if (nSolStatus == LS_STATUS_OPTIMAL || nSolStatus ==

LS_STATUS_BASIC_OPTIMAL)

 {

 int i;

 double x[9], dObj;

 /* Get the value of the objective */

 nErrorCode = LSgetInfo(pModel, LS_DINFO_POBJ, &dObj) ;

 APIERRORCHECK;

 nErrorCode = LSgetPrimalSolution (pModel, x);

 APIERRORCHECK;

 printf(" Obj = %11.5f\n",dObj);

 for (i = 0; i < nN; i++)

 printf("%7s x[%d] = %11.5f\n","",i,x[i]);

 printf ("\n");

 }

 else

 {

 printf("Not optimal, status = %d\n",nSolStatus);

 }

 /***

 * Step 7: Delete the LINDO environment

 ***/

 nErrorCode = LSdeleteEnv(&pEnv);

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

}

 SOLVING SECOND-ORDER CONE PROGRAMS 437

The source code file for this example may be found in the \LINDOAPI\samples\c\ex_soc2\ folder.

After creating the executable “ex_soc2.exe”, you can run the application from the DOS-prompt and

produce the following report on your screen.

 Obj = 500.96379

 x[0] = 15.09022

 x[1] = 20.72079

 x[2] = 21.10287

 x[3] = 0.16567

 x[4] = 0.14478

 x[5] = 0.18955

 x[6] = 2.23607

 x[7] = 2.44949

 x[8] = 2.82843

Press <Enter> ..

Quadratic Programs as SOCP
Although perhaps not immediately obvious, a SOCP is at least as general as a quadratic program. In a

quadratic program one typically wants to either minimize a quadratic expression, written as x’Qx, or

constrain x’Qx from above. A related example is in Value-At-Risk analysis, where one may have

models of the form:

Minimize k* - ;

Subject to


2
  x’Qx;

 = r’x;

If the Q matrix is positive definite, then x’Qx is convex and SOCP can be applied as outlined below.

An easy way to a) check for positive definiteness, and b) put the model into a SOCP form is to

compute a Cholesky Decomposition or “square root” of the Q matrix. In matrix notation we can write:


2
  x Q x' = x L L' x'.

Here, L is a lower triangular matrix which we can think of as the square root of Q. The following

LINGO code will compute L:

!Compute the Cholesky factor L, so LL'= Q;

@FOR(ASSET(I):

 @FOR(MAT(I, J)| J #LT# I:

 ! Should watch for divide by zero here...;

 L(I,J)= (Q(I, J) - @SUM(MAT(I, K)| K #LT# J:

 L(I, K) * L(J, K)))/ L(J, J);

);

 L(I,I)= (Q(I, I) – @SUM(MAT(I, K)| K #LT# I:

 L(I, K) * L(I, K)))^.5;

);

A key observation is that Q is strictly positive definite if and only if L(i,i) > 0 at every step of the

above computation. Thus, given a quadratic expression, we can try to compute the Cholesky

decomposition of its coefficients. If we succeed, then we can replace


2
  x'Q x = x’L’Lx.

by the cone constraints:

438 CHAPTER 6

w = x L,


2
  w w';

As an example, suppose we wish to use the following covariance matrix:

 0.01080753 0.01240721 0.01307512

 Q = 0.01240721 0.05839169 0.05542639

 0.01307512 0.05542639 0.09422681

The Cholesky factorization of Q is:

 0.10395930

 L = 0.11934681 0.21011433

 0.1257716 0.19235219 0.20349188

Notice that 0.10395930^2 = 0.01080753.

We can replace the expression involving 9 quadratic terms (more accurately, 6):

 
2
  0.01080753*x1*x1 + 0.01240721*x1*x2 + 0.01307512*x1*x3

 + 0.01240721*x2*x1 + 0.05839169*x2*x2 + 0.05542639*x2*x3

 + 0.01307512*x3*x1 + 0.05542639*x3*x2 + 0.09422681*x3*x3;

by three linear expressions and one nonlinear expression involving 3 quadratic terms:

 w1 = 0.10395930*x1;

 w2 = 0.11934681*x1 + 0.21011433*x2;

 w3 = 0.1257716 *x1 + 0.19235219*x2 + 0.20349188*x3;

 
2
  w1*w1 + w2*w2 + w3*w3;

which is a SOCP type constraint

Semi-Definite Programs
The LINDO API allows one to specify that a square matrix of decision variables must be symmetric

and positive definite. Alternatively, one can think of this as allowing the user to formulate in terms of

decision variables that are symmetric square matrices rather than just scalars, and where the non-

negativity of a scalar variable is replaced by the positive definiteness of the matrix decision variable. It

turns out that the barrier algorithms that are used for second order cone problems can be generalized to

solving models with semi-definite matrix decision variables.

The LINDO API allows two general ways of inputting a Semi-Definite Program (SDP): a) Instruction-

List format and b) matrix format. The general Instruction-List form is introduced in Chapter 7, and

there is a short section on inputting SDP’s in Instruction-List form. The Instruction-List form is very

general, and the user my find it convenient to simply concentrate on the Instruction-List form and skip

ahead to Chapter 7.

For matrix form input of SDP’s, the problem statement is as follows:

 SOLVING SECOND-ORDER CONE PROGRAMS 439

Optimize ∑ ∑A
0

ijXij

i j

subject to:

 ∑ ∑A
k
ijXij ? bk for k = 1,…,m,

i j

 Lij  Xij  Uij for i,j = 0,1,…,n-1,

 Xij is integer for i,j in a specified J  {0,…, n-1}×{0,…, n-1}

 X is symmetric and positive semi-definite

where

Optimize is either minimize or maximize,

A
k
 are matrices of appropriate dimensions k=1,…,m

bk are vectors of constants for k=1,…,m

X = {X00, X01,…,Xn-1,n-1}, is an n×n symmetric matrix of decision variables.

"?" is one of the relational operators "", "=", or "".

This formulation is a natural generalization of SOCPs in that the decision variables constitute a

symmetric matrix with the additional restriction that the matrix is positive semi-definite. The

following result illustrates that SOCP is a special case of SDP

 x0 x1 x2 ... xn

 x1 x0

|| x ||  x0 <==> x2 x0 is positive semi-definite.

 :

 xn x0

For a rigorous definition of positive semi-definite, see any comprehensive book on linear algebra. A

very simple definition that may give some insight is that a square symmetric matrix X is positive semi-

definite if for every vector w, we have: w’Xw ≥ 0. In scalar notation, positive definiteness of X = (x11,

x12, . . . , x1n, x21 . . . , xnn), corresponds to the condition that for every set of given weights w = (w1, w2, . .

. , wn), the constraints ∑i ∑j wiwj xij ≥ 0 are satisfied. The LINDO API accepts SDP constraints if all the

other constraints are linear or convex quadratic.

Loading SDP via SDPA Format Files
The SDPs can be fully described using the so-called SDPA text format. Like the MPS format, it is a

sparse format and only non-zeros in the formulation are required to be included.

The SDPA format assumes the following primal and dual forms

Min ∑ ∑ A

0
ijXij

i j

s.t.

 ∑ ∑ A
k
ijXij = bk for k = 1,…,m (PRIMAL)

 X (X is positive semi-definite)

 max b1y1+b2y1+...+bmym

 s.t. A
1
y1+A

2
y2+...+A

m
ym + Z = A

0
 (DUAL)

 Z (Z is positive semi-definite)

440 CHAPTER 6

where Ai are n x n symmetric matrices. These matrices can have block diagonal structure

 B1

 Ak = B2 for k = 1,…,m

 ..

 BR

where Br is a pr x pr matrix for r=1,..,R.

The SDPA format is based on the dual formulation. It can be summarized as follows

< "comment/title > (comment characters are * and ")

< m > " the number of dual variables

< k > " the number of blocks

< p1,p2,..pk > " block structure vector

< b1,b2,..bm > " objective vector

<mat1> <blk1> <i1> <j1> <value1>

<mat1> <blk1> <i2> <j2> <value2>

 :

 :

<matm> <blkk> <ip> <jq> <valuek>

Here, matrix entries are given with 5 entries per line. The first entry <mat> species the matrix index

the <value> belongs to. The second entry <blk> specifies the block within this matrix <mat>, and

<i> and <j> specify the coordinates of <value> in this block. Note that because Ai matrices are

symmetric, only upper diagonal entries are to be given.

Let's illustrate the SDPA format with a small example.

s.t.

 A1 A2 A0

and Z

Models cast in this form are called the dual SDP model. SDPA format assumes the model will be input

in this dual form. The above example can be written in SDPA format as follows

"A sample problem.

2 =mdim

2 =nblocks

2 2

 SOLVING SECOND-ORDER CONE PROGRAMS 441

10.0 20.0

0 1 1 1 1.0

0 1 2 2 2.0

0 2 1 1 3.0

0 2 2 2 4.0

1 1 1 1 1.0

1 1 2 2 1.0

2 1 2 2 1.0

2 2 1 1 5.0

2 2 1 2 2.0

2 2 2 2 6.0

An SDPA format file can be loaded by calling LSreadSDPAFile function. Alternatively, if the

command line frontend runlindo is used, and SDPA format file can be read and solved with a

command like:

$ runlindo example.sdpa -sol

Reading model parameters from lindo.par

Reading H:\prob\sdpa/sample.sdpa in SDPA format

Number of constraints: 2 le: 0, ge: 0, eq: 2, rn: 0 (ne:0)

Number of variables : 6 lb: 0, ub: 0, fr: 6, bx: 0 (fx:0)

Number of nonzeroes : 6 density: 0.005(%) , sb: 5

Abs. Ranges : Min. Max. Condition.

Matrix Coef. (A): 1.00000 6.00000 6.00000

Obj. Vector (c): 1.00000 4.00000 4.00000

RHS Vector (b): 10.00000 20.00000 2.00000

Lower Bounds (l): 1.0000e-100 1.0000e-100 1.00000

Upper Bounds (u): 1.0000e+030 1.0000e+030 1.00000

BadScale Measure: 0

Maximizing the LP objective...

Computer

 Platform : Windows/32-X86

 Cores : 2

Problem

 Name : lindoapi

 Objective sense : max

 Type : CONIC (conic optimization problem)

 Constraints : 2

 Cones : 0

 Scalar variables : 6

 Matrix variables : 2

 Integer variables : 0

Optimizer started.

Conic interior-point optimizer started.

Presolve started.

Linear dependency checker started.

Linear dependency checker terminated.

Eliminator - tries : 0 time : 0.00

Eliminator - elim's : 0

Lin. dep. - tries : 1 time : 0.00

Lin. dep. - number : 0

Presolve terminated. Time: 0.00

Optimizer - threads : 1

Optimizer - solved problem : the primal

Optimizer - Constraints : 2

Optimizer - Cones : 0

442 CHAPTER 6

Optimizer - Scalar variables : 0 conic : 0

Optimizer - Semi-definite variables: 2 scalarized : 6

Factor - setup time : 0.00 dense det. time : 0.00

Factor - ML order time : 0.00 GP order time : 0.00

Factor - nonzeros before factor : 3 after factor : 3

Factor - dense dim. : 0 flops : 1.33e+002

ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME

0 8.0e+000 5.0e+000 9.0e+000 0.00e+000 1.000000000e+001 0.000000000e+000 1.0e+000 0.00

1 9.4e-001 5.9e-001 1.1e+000 -5.59e-001 2.241982808e+001 1.723556960e+001 1.2e-001 0.00

2 9.0e-002 5.6e-002 1.0e-001 5.65e-001 2.921088887e+001 2.851531567e+001 1.1e-002 0.00

3 4.5e-003 2.8e-003 5.1e-003 9.64e-001 2.995968303e+001 2.992409052e+001 5.6e-004 0.00

4 2.2e-004 1.4e-004 2.5e-004 9.98e-001 2.999798215e+001 2.999620075e+001 2.8e-005 0.00

5 1.1e-008 6.8e-009 1.2e-008 1.00e+000 2.999999991e+001 2.999999978e+001 1.4e-009 0.00

Interior-point optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.00

Used Method = 3

Used Time = 0

Refactors (ok,stb) = 0 (-1.#J,-1.#J)

Simplex Iters = 0

Barrier Iters = 5

Nonlinear Iters = 0

Primal Status = 2

Dual Status = 1

Basis Status = 2

Primal Objective = 29.999999906583774

Dual Objective = 29.999999783082483

Duality Gap = 1.235013e-007

Primal Infeas = 1.086410e-008

Dual Infeas = 6.787018e-009

Basic solution is optimal.

The command line option "-sol" causes the solution to be written to a file "example.sol" in the

format given below

* PROBLEM NAME

*

* CONIC GLOBAL OPTIMUM FOUND

*

* ITERATIONS BY SIMPLEX METHOD = 0

* ITERATIONS BY BARRIER METHOD = 5

* ITERATIONS BY NLP METHOD = 0

* TIME ELAPSED (s) = 0

*

* OBJECTIVE FUNCTION VALUE

*

* 1) 29.999999907

*

* XMATRIX ZMATRIX MATRIX MATRIX MATRIX

* VARIABLES VALUE REDUCED COST BLOCK ROW COLUMN

 C0000000 4.790372140 0.000000001 0 0 0

 C0000001 0.000000000 0.000000000 0 1 0

 C0000002 5.209627819 -0.000000000 0 1 1

 C0000003 2.112830326 1.999999991 1 0 0

 C0000004 -2.112900305 1.999999988 1 1 0

 C0000005 2.112970288 1.999999990 1 1 1

* CONSTRAINTS SLACK OR SURPLUS DUAL PRICES

 R0000000 0.000000000 0.999999990

 R0000001 0.000000000 0.999999994

* XMATRIX I J PRIMAL DUAL

 SOLVING SECOND-ORDER CONE PROGRAMS 443

 0 0 0 4.790372140 -0.000000001

 0 1 0 0.000000000 -0.000000000

 0 1 1 5.209627819 0.000000000

 1 0 0 2.112830326 -1.999999991

 1 1 0 -2.112900305 -1.999999988

 1 1 1 2.112970288 -1.999999990

* END OF REPORT

The VARIABLES section reports the primal-dual solution in the following manner. The entries in

VALUES column correspond to the primal variables X whereas the entries in REDUCED COST column

correspond to dual-slacks Z. The matrix-block and row-column information is given in the last three

columns.

The CONSTRAINTS section gives the dual variable y1,y2,...,ym in DUAL PRICES column. SLACK or

SURPLUS column is usually an all-zero vector.

The XMATRIX section gives X and Z matrices separately for the sake completeness.

It is important to note that there will be as many entries in each column in VARIABLES section as

there are elements in the dense representation of block-diagonal X and Z matrices. We can rearrange

the terms of the constraint in above sample and write it as

 Z =

Here, we have 3 elements in each block of Z, thus we have a total of 6 reduced-cost values in the

solution report. Similarly, there will be only 6 primal values in X

Loading SDPs via API Functions
An alternative way to input SDP data is by setting-up a problem structure and using LINDO API’s

cone programming functions to specify the SDP structure. In this framework, your front-end program

should perform at least the following steps to enter the problem and retrieve its solution:

1. Create a LINDO environment with a call to LScreateEnv().

2. Create a model structure in this environment with a call to LScreateModel().

3. Load problem structure and linear data into the model structure with a call to

LSloadLPData().

4. Load the cone data into the model structure with a call to LSloadPOSDData().

5. Load (optionally) the integer-programming data with a call to LSloadVarType().

6. Solve the problem with a call to LSoptimize() (or LSsolveMIP() if there are integer

variables).

7. Retrieve the solution with calls to LSgetInfo(), LSgetPrimalSolution(), and

LSgetDualSolution().

8. Delete the model and environment with a call to LSdeleteEnv().

444 CHAPTER 6

The step specific to loading SDP data is Step 4 where number of positive semi-definite constraints and

associated matrices are loaded. It is important to note that the use of this function requires the user to

write-up the associated linear constraints explicitly and then impose the semi-definite condition for

associated matrix.

s.t.

and X

The following data fully specifies the SDP data

int nPOSD = 2;

int paiPOSDdim[] = { 2, 2, -1 };

int paiPOSDbeg[] = { 0, 3, 6 };

int paiPOSDrowndx[] = { 0, 1, 1, 0, 1, 1, -1 };

int paiPOSDcolndx[] = { 0, 0, 1, 0, 0, 1, -1 };

int paiPOSDvarndx[] = { 0, 1, 2, 3, 4, 5, -1 };

Here, nPOSD is the number of blocks in the PSD constraint to load. paiPOSDdim is a vector

containing the dimension of the blocks. paiPOSDbeg is a vector containing begin position of each

block in coordinate vectors. paiPOSDrowndx and paiPOSDcolndx gives the coordinates of rows and

columns of non-zero expressions in each block. Finally, paiPOSDvarndx is a vector mapping the

actual variable indices to columns of PSD matrix.

In the following code, we set up the primal formulation of the example given above

/*

LINDO-API

Sample Programs

Copyright (c) 2014

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 SOLVING SECOND-ORDER CONE PROGRAMS 445

 File : ex_sdp.c

 Purpose: Set up a SDP model and optimize.

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/* LINDO API header file */

#include "lindo.h"

/* Define a macro to declare variables for

 error checking */

#define APIERRORSETUP \

 int nErrorCode; \

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH] \

/* Define a macro to do our error checking */

#define APIERRORCHECK \

 if (nErrorCode) \

 { \

 if (pEnv) \

 { \

 LSgetErrorMessage(pEnv, nErrorCode, \

 cErrorMessage); \

 printf("Errorcode=%d: %s\n", nErrorCode, \

 cErrorMessage); \

 } else {\

 printf("Fatal Error\n"); \

 } \

 exit(1); \

 } \

#define APIVERSION \

{\

 char szVersion[255], szBuild[255];\

 LSgetVersionInfo(szVersion,szBuild);\

 printf("\nLINDO API Version %s built on %s\n",szVersion,szBuild);\

}\

static void LS_CALLTYPE print_line_log(pLSmodel pModel, char *line, void *userdata)

{

 if (line)

 {

 printf("%s",line);

 } /*if*/

} /*print_line*/

//

int main(int argc, char **argv)

{

 APIERRORSETUP;

 int m, n; /* number of constraints and vars */

 int nC=0, nB=0, nI=0; /* number of cont, bin. int vars*/

 double dObj;

 int counter = 0, status;

/* declare an instance of the LINDO environment object */

 pLSenv pEnv = NULL;

/* declare an instance of the LINDO model object */

 pLSmodel pModel, pModelR=NULL;

446 CHAPTER 6

 char MY_LICENSE_KEY[1024];

 /**

 * Step 1: Create a LINDO environment.

 **/

 nErrorCode = LSloadLicenseString("../../../license/lndapi100.lic",MY_LICENSE_KEY);

 APIERRORCHECK;

 APIVERSION;

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE) {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

 /**

 * Step 2: Create a model in the environment.

 **/

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

 /**

 * Step 3: Read the model from a LINDO file and get the model size

 MODEL:

 MAX= X11 + 2 * X22 + 3 * X33 + 4 * X44;

 X11 + X22 = 10;

 X22 + 5 * X33 + 6 * X44 + 4 * X43 = 20;

 END

 FREE Xij for all ij

 **/

 nErrorCode = LSreadLINDOFile(pModel,"posd.ltx");

 APIERRORCHECK;

 if (0)

 {

 char varType[] = "CCCIII";

 LSloadVarType(pModel,varType);

 }

 nErrorCode = LSgetInfo(pModel,LS_IINFO_NUM_VARS,&n);

 nErrorCode += LSgetInfo(pModel,LS_IINFO_NUM_CONS,&m);

 nErrorCode += LSgetInfo(pModel,LS_IINFO_NUM_CONT,&nC);

 APIERRORCHECK;

 /***

 * Step 4: Load PSD constraint

 | X11 |

 X = | X21 X22 | is PSD

 | X33 |

 | X43 X44 |

 ***/

 {

 int nPOSDBlocks = 2;

 int paiPOSDdim[] = { 2, 2 };

 int paiPOSDbeg[] = { 0, 3, 6};

 int paiPOSDrowndx[] = { 0, 1, 1, 0, 1, 1 };

 int paiPOSDcolndx[] = { 0, 0, 1, 0, 0, 1 };

 int paiPOSDvarndx[] = { 0, 1, 2, 3, 4, 5 };

 nErrorCode = LSloadPOSDData(pModel,

 nPOSDBlocks,

 paiPOSDdim,

 SOLVING SECOND-ORDER CONE PROGRAMS 447

 paiPOSDbeg,

 paiPOSDrowndx,

 paiPOSDcolndx,

 paiPOSDvarndx);

 APIERRORCHECK;

 }

 /***

 * Step 5: Optimize the model

 ***/

 nErrorCode = LSsetModelLogfunc(pModel, (printModelLOG_t) print_line_log, NULL);

 if (n - nC > 0) { nErrorCode = LSsolveMIP(pModel, &status); }

 else { nErrorCode = LSoptimize(pModel, LS_METHOD_FREE, &status); }

 APIERRORCHECK;

 LSwriteSolution(pModel,"posd.sol");

 /***

 * Step 6: Access the final solution if optimal or feasible

 ***/

 if (status == LS_STATUS_OPTIMAL || status == LS_STATUS_BASIC_OPTIMAL ||

 status == LS_STATUS_LOCAL_OPTIMAL || status == LS_STATUS_FEASIBLE)

 {

 double *primal = NULL, *dual = NULL;

 int j;

 primal = (double *) malloc(n*sizeof(double));

 dual = (double *) malloc(m*sizeof(double));

 if (n - nC > 0) {

 nErrorCode = LSgetInfo(pModel,LS_DINFO_MIP_OBJ,&dObj);

 APIERRORCHECK;

 nErrorCode = LSgetMIPDualSolution(pModel,dual);

 APIERRORCHECK;

 nErrorCode = LSgetMIPPrimalSolution(pModel,primal);

 APIERRORCHECK;

 } else {

 nErrorCode = LSgetPrimalSolution(pModel, primal) ;

 APIERRORCHECK;

 nErrorCode = LSgetDualSolution(pModel, dual) ;

 APIERRORCHECK;

 nErrorCode = LSgetInfo(pModel,LS_DINFO_POBJ,&dObj);

 APIERRORCHECK;

 }

 printf ("\n Objective at solution = %f \n", dObj);

 // un/comment the block below if you would like the primal and dual solutions

 // to be printed on the screen.

 if (1){

 char szname[255];

 printf ("\n Primal Solution\n");

 printf("\t%8s %18s\n","VARS", "Primal");

 for (j = 0; j<n; j++)

 {

 nErrorCode = LSgetVariableNamej(pModel,j,szname);

 printf("\t%8s %18.10e\n",szname, primal[j]);

 }

 printf ("\n Dual Solution\n");

 printf("\t%8s %18s\n","CONS", "Dual");

 for (j = 0; j<m; j++)

 {

 nErrorCode = LSgetConstraintNamei(pModel,j,szname);

 printf("\t%8s %18.10e\n",szname, dual[j]);

 }

448 CHAPTER 6

 }

 free(primal);

 free(dual);

 }

 else

 {

 char strbuf[255];

 LSgetErrorMessage(pEnv,nErrorCode,strbuf);

 printf ("\n Optimization failed. Status = %d ",status);

 //printf ("\n Error %d: %s\n",nErrorCode,strbuf);

 }

 /***

 * Step 7: Terminate

 ***/

 nErrorCode = LSdeleteModel(&pModel);

 nErrorCode = LSdeleteEnv(&pEnv);

Terminate:

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 //getchar();

}

Running the application at command-line would give the following output

 Writing model solution.

 Objective at solution = 30.000000

 Primal Solution

 VARS Primal

 X11 4.7903721396e+000

 X12 0.0000000000e+000

 X22 5.2096278186e+000

 X33 2.1128303262e+000

 X34 -2.1129003045e+000

 X44 2.1129702878e+000

 Dual Solution

 CONS Dual

 R0000000 9.9999999037e-001

 R0000001 9.9999999397e-001

 SOLVING SECOND-ORDER CONE PROGRAMS 449

Chapter 7: Solving
Nonlinear Programs

The nonlinear programming (NLP) interface of LINDO API is designed to solve optimization

problems of the form:

 optimize f(x);

such that

gi(x) ? bi for i = 0 to m-1:

Lj  xj  Uj for j = 0 to j = n – 1:
xj is integer for j in a specified J  {0,…, n-1}

where

optimize is either minimize or maximize,

f(x) and gi(x) are scalar valued real functions.

x is the vector of all variables, and

"?" is one of the relational operators "", "=", or "".

For nonlinear constraints, bi is assumed to be zero.

Nonlinear programs are the most general form of mathematical models solvable by LINDO API. They

contain all other types of models that have been covered so far as special cases. It is useful to think of a

mathematical modeling system as consisting of at least three layers: 1) a frontend/user interface that

accepts a model in user-convenient form and converts it to solver-convenient form, 2) a solver

manager that looks at the model in solver form and decides how to solve the model, and 3) solvers that

do the low level solving (e.g., a primal simplex solver, barrier solver, network solver, general

nonlinear solver, etc.).

LINDO API performs levels (2) and (3) and provides tools for setting up and passing a model from

level (1) to level (2). As we have seen, linear or quadratic (mixed-integer) models can be fully

described by (sparse) matrices and vectors. Thus, setting up a model in one of these types involves the

simple tasks of: (i) creating the sparse representation of the constraint matrix; (ii) building the

objective function, right-hand-side, variable-bound, and variable-type vectors along with some others;

and (iii) passing these data objects to LINDO API for solution (levels 2 and 3).

The description of nonlinear models, however, is not as easy as for linear or quadratic (mixed-integer)

models. The main issue lies in the evaluation of the functional values of the objective function and the

constraints with respect to a solution vector. This is because the constraints and objective function are

not linear and hence cannot be represented with matrices and vectors alone. However, if one has the

means for evaluating nonlinear expressions at a given solution, then sparse matrix representation

technique becomes an efficient tool for the nonlinear solver to manipulate working-matrices that

depend on the nonzero structure of the constraint matrix and their gradients.

452 CHAPTER 7

The LINDO API offers two basic interface styles for describing NLP’s: a) “Instruction-List” style, and

b) “black-box” style, plus a combination of the two called c)”grey-box” style. Under the Instruction-

List style, the user passes a set of instruction lists to LINDO API. These instruction-lists describe how

to compute the value of each row of the model. In the black-box style, the model developer achieves

this by means of an external function (e.g., written in C or C++) that evaluates the nonlinear

expressions at a given solution. When the problem is loaded, the name of this routine is passed to

LINDO API. It is possible for the instruction-list interface to inherit the black-box interface via a

special instruction operator. This feature lends itself to a combination of these two basic interfaces,

called the grey-box interface.

There are certain advantages to each of these approaches. In the Instruction-List interface, LINDO

API is given explicit information about each row of the model, rather than having this information

hidden in a black box. For example, if a row of the model is in fact linear, then LINDO API will detect

this and exploit it. If the user wants to use the Global Solver, then the Instruction-List style of input

must be used. If a standard programming language is used by the black-box interface, the computation

of the value of a row is very efficient. The following sections, describe in detail how each style could

be used in setting up a mathematical programming model as general as nonlinear (integer) models.

Instruction-List/MPI Style Interface
Under the instruction list style, the front end supplies a set of instruction lists, one instruction list for

each row of the model. LINDO API will automatically detect linearity and exploit it. Optionally, it can

also detect quadratic and second order cone expressions. An instruction list is a vector of integers that

encodes the original mathematical model. It represents the model in a variant of Reverse Polish

notation (also called postfix notation). This scheme is attractive in that it is concise, easy to edit, easy

and fast to run, and, most important, it retains the original mathematical structure of your model. A

model can be loaded in instruction list format with LSloadInstruct().

If a model is stored in Instruction-List form in a file, the file is called an MPI file and it ends with the

suffix: .mpi. Hence for brevity, we will also refer to the Instruction-List format as MPI format.

Postfix Notation in Representing Expressions
Expressions in postfix notation consist of two elements: operators (e.g., addition and multiplication)

and operands (e.g., variables or constants). Most operators are binary in the sense that they take two

operands. In typical infix mathematical notation, binary operators appear between their operands (e.g.,

in A+B the operator ‘+’ comes between its operands A and B). In postfix or Reverse Polish notation,

the operator comes after its operands. Thus, A+B is expressed A B +. There are also some operators

that are unary and take a single operand. In this case, the ordinary mathematical notation (e.g., exp(A))

is transformed into the postfix notation by reversing the sequence (e.g., A exp).

In infix notation, there may be ambiguity in the proper order of execution of various operators. This

ambiguity is resolved in infix notation by specifying a priority among the operators (i.e., basic

mathematical operator precedence). For example, when evaluating 2+6/3, we do the division before

the addition and get the answer 4. Thus, the division operator has higher precedence than the addition.

As a second example, when evaluating 8-5-2, we evaluate it as (8-5)-2 rather than as 8-(5-2) and get

the answer 1. Similarly, 8-5+2 is taken as (8-5)+2, not 8-(5+2). The general rule is that if two adjacent

operators are the same, or have equal precedence, then the leftmost takes precedence. There exists a

means to override the precedence rules by employing parentheses. For example, we can write (3+7)/2

 SOLVING NONLINEAR PROGRAMS 453

if we want the + to be executed before the /. In postfix notation, all ambiguity has been removed and

there are no parentheses. The following are examples of postfix notation.

 Infix Postfix

 A A

 (A) A

 A/B A B /

 A+B*C A B C * +

 (A+B)*C A B+ C *

 A/B-C/7 A B / C 7 / -

 A-B-3 A B - 3 -

 A+(B-C/D)-E*F A B C D / - + E F * -

In order to appreciate the usefulness of postfix notation, it helps to understand how it is used. Postfix

instructions are executed on a “stack based” pseudo computer. This stack pseudo computer has only

two very simple rules of operation:

1. When an operand is encountered, load its value on top of a stack of numbers.

2. When an operator is encountered, apply it to the numbers on top of the stack and replace the

numbers used by the result.

Consider the infix expression: 5+6/3. The postfix expression is 5, 6, 3, /, +.

After the first three terms in postfix notation have been encountered, the stack will look like:

.

3

6

5

Postfix Stack

After the “/” is encountered, the stack will look like:

.

2

5

Postfix Stack

After the “+” is encountered, the stack will look like:

.

7

Postfix Stack

This illustrates that after a properly formed postfix expression is executed, the stack will contain only

one number. That number is the value of the expression.

For LINDO API, a postfix expression is simply a list of integers. Each operator has a unique integer

associated with it. For example, “+” is represented by the integer 1. Each operand is represented by

two integers. The first integer effectively says “Here comes an operand”. The second integer specifies

which operand. For example, x23, is represented by the integer 23. All currently supported operators

and their functions are exhibited below, where A and/or B and/or C and/or D are argument(s) of each

function or operand(s) to the operator. The integer associated with each operator can be found in the

lindo.h header file that came with LINDO API.

454 CHAPTER 7

Supported Operators and Functions
A list of currently supported operators and functions are listed in the following table. If the Global

solver is to be used, only operators with a “Y” in the “Global support” column can be used. The

equivalent function in Excel is indicated by [Excel=Excelfunction].

Operator Index Function Global

support

?

Description of result

EP_NO_OP 0000 -- Y No operation.

EP_PLUS 1001 A + B Y Addition of A and B.

EP_MINUS 1002 A – B Y Subtraction of A minus B.

EP_MULTIPLY 1003 A * B Y Multiplication of A and B.

EP_DIVIDE 1004 A / B Y Division of A by B.

EP_POWER 1005 A ^ B Y Power of A to B.

EP_EQUAL 1006 A = B Y True(1) if A is equal to B, else

false(0).

EP_NOT_EQUAL 1007 A != B Y True if A is not equal to B.

EP_LTOREQ 1008 A <= B Y True if A is less-than-or-equal-to

B.

EP_GTOREQ 1009 A >= B Y True if A is greater-than-or-

equal-to B.

EP_LTHAN 1010 A < B Y True if A is less than B.

EP_GTHAN 1011 A > B Y True if A is greater than B.

EP_AND 1012 A and B Y Logic conjunction: the

expression is true if A and B are

both true.

EP_OR 1013 A or B Y Logic disjunction: the expression

is true if A or B are true.

EP_NOT 1014 ~ A Y The logic complement of A; 1 if

A = 0, 0 if A > 0

EP_PERCENT 1015 A / 100 Y The percentage of A.

EP_NEGATE 1017 - A Y Negative value of A.

EP_ABS 1018 |A| Y Absolute value of A.

EP_SQRT 1019 (A)
1/2

Y Square root of A.

EP_LOG 1020 log(A) Y Common logarithm (base 10) of

A.

EP_LN 1021 ln(A) Y Natural logarithm of A.

 SOLVING NONLINEAR PROGRAMS 455

EP_PI 1022 3.141592653589793

[Excel=PI()]

Y Load or push onto the top of the

stack the ratio of the

circumference of a circle to its

diameter.

EP_SIN 1023 sin(A) Y Sine of A(in radians).

EP_COS 1024 cos(A) Y Cosine of A(in radians)..

EP_TAN 1025 tan(A) Y Tangent of A (in radians).

EP_ATAN2 1026 atan2(A,B) Y Inverse arc tangent (in radians)

of A (i.e., atan(B/A)).

EP_ATAN 1027 atan(A) Y Arc tangent (in radians) of A.

EP_ASIN 1028 asin(A) Y Arc sine (in radians) of A.

EP_ACOS 1029 acos(A) Y Arc cosine (in radians) of A.

EP_EXP 1030 exp(A) Y The constant e raised to the

power A.

EP_MOD 1031 mod(A,B) Y Remainder of A/B.

EP_FALSE 1032 F Y Load or push a 0 (False) onto the

top of the stack.

EP_TRUE 1033 T Y Load or push a 1 (True) onto the

top of the stack.

EP_IF 1034 if(A,B,C) Y Returns B, if A is true (!=0) and

returns C, if A is false (=0).

EP_PSN 1035 psn(A)

[Excel=

NORMSDIST(A)]

Y Cumulative standard Normal

probability distribution, also

known as the cumulative

distribution function (cdf), i.e.,

Prob{standard Normal random

variable  A}.

EP_PSL 1036 psl(A) Y Unit Normal linear loss function

(i.e., E[max{0, Z-A}], where Z =

standard Normal).

EP_LGM 1037 lgm(A)

[Excel=

GAMMALN(A)]

Y Natural (base e) logarithm of the

gamma (i.e., ln((A-1)!) when A is

a positive integer).

EP_SIGN 1038 sign(A)

[Excel=SIGN(A)]

Y -1 if A< 0, +1 if A > 0, else 0

EP_FLOOR 1039  A Y Integer part of A when fraction is

dropped. E.g., floor(-4.6) = -4.

456 CHAPTER 7

[Excel=

ROUNDDOWN(A,0)

]

EP_FPA 1040 fpa(A,B) Y Present value of an annuity (i.e.,

a stream of $1 payments per

period at interest rate of A for B

periods starting one period from

now).

EP_FPL 1041 fpl(A,B) Y Present value of a lump sum of

$1 B periods from now if the

interest rate is A per period.

Note, A is a fraction, not a

percentage.

EP_PEL 1042 pel(A,B) Y Erlang’s loss probability for a

service system with B servers

and an arriving load of A, no

queue allowed.

EP_PEB 1043 peb(A,B) Y Erlang’s busy probability for a

service system with B servers

and an arriving load of A, with

infinite queue allowed.

EP_PPS 1044 pps(A,B)

[Excel=

POISSON(B,A,1)]

Y Cumulative Poisson probability

distribution. It returns the

probability that a Poisson

random variable with mean A is

≤ B.

EP_PPL 1045 ppl(A,B) N Linear loss function for the

Poisson probability distribution.

It returns the expected value of

max(0,Z-B), where Z is a Poisson

random variable with mean value

A.

EP_PTD 1046 ptd(A,B)

[Excel= 1-

TDIST(B,A,1)]

N Cumulative distribution function

for the t distribution with A

degrees of freedom. It returns the

probability that an observation

from this distribution is ≤ B.

EP_PCX 1047 pcx(A,B)

[Excel

=CHIDIST(B,A)]

N Cumulative distribution function

for the Chi-squared distribution

with A degrees of freedom. It

returns the probability that an

observation from this distribution

is less-than-or-equal-to B.

EP_WRAP 1048 wrap(A,B) Y Transform A into the interval [1,

 SOLVING NONLINEAR PROGRAMS 457

B], If A > B, then A is “wrapped

around”. E.g., WRAP(14,12)=

2. More generally, =1+mod(A,B-

1).

EP_PBNO 1049 pbn(A,B,C)

[Excel=

BINOMDIST(C,A,B,

1)]

N Cumulative Binomial

distribution. It returns the

probability that a sample of A

items, from a universe with a

fraction of B of those items

defective, has C or less defective

items.

EP_PFS 1050 pfs(A,B,C) N Expected number of customers

waiting for repair in a finite

source Poisson service system

with B servers in parallel, C

customers, and a limiting load of

A.

EP_PFD 1051 pfd(A,B,C)

[Excel

=FDIST(C,A,B)]

N Cumulative distribution function

for the F distribution with A

degrees of freedom in the

numerator and B degrees of

freedom in the denominator. It

returns the probability that an

observation from this distribution

is ≤ C.

EP_PHG 1052 phg(A,B,C,D)

[Excel=
HYPGEOMDIST(D,

B,C,A)]

N Cumulative distribution function

for Hyper Geometric

distribution. It returns the

probability that D or fewer items

in the sample are good, given a

sample without replacement of B

items from a population size A

where C items in the population

are good.

EP_RAND 1053 rand(A) N Pseudo-random number

uniformly distributed between 0

and 1, depending

deterministically on the seed A.

EP_USER 1054 user(user_specified_a

rguments)

N Returns the value of the function

supplied by the user through

LSsetUsercalc. The operator is

followed by an integer specifying

the number of arguments, and

preceded by the arguments. See

the definition of Usercalc()

function below for a prototype.

458 CHAPTER 7

EP_SUM 1055 sum(A1 , …, An) Y Summation of vector A (i.e., A1 +

… + An). The operator is

followed by an integer specifying

the vector length n, and then the

vector itself.

EP_AVG 1056 avg(A1 , …, An) Y Average of vector A (i.e., (A1 +

… + An) / n). The operator is

followed by an integer specifying

the vector length n, and then the

vector itself.

EP_STDEV 1077 stdev(A1 , …, An) Y Standard deviation of vector A.

The operator is followed by an

integer specifying the vector

length n, and then the vector

itself.

EP_MIN 1057 min(A1 , …, An) Y Minimum value in vector A. The

operator is followed by an

integer specifying the vector

length n, and then the vector

itself.

EP_MAX 1058 max(A1 , …, An) Y The maximum value in vector A.

The operator is followed by an

integer specifying the vector

length n, and then the vector

itself.

EP_NPV 1059 npv(A,B1,…,Bn) N Net present value of an

investment, using a discount rate

(A) and a series of future

payments (B1,…,Bn). The

operator is followed an integer

specifying the vector length,

which is the number of payments

n plus 1.

EP_VAND 1060 A1 and A2…and An Y Vector AND: Returns true if the

vector A are all true. The

operator is followed by an

integer specifying the vector

length n, and then the vector

itself.

EP_VOR 1061 A1 or A2…or An Y Vector OR: Returns true if there

is at least one element in the

vector A that is true. The

operator is followed by an

integer specifying the vector

length n, and then the vector

 SOLVING NONLINEAR PROGRAMS 459

itself.

EP_PUSH_NUM 1062 A Y Load or push a constant A onto

the top of stack.

EP_PUSH_VAR 1063 A Y Load or push a variable A onto

the top of stack.

EP_NORMDENS 1064 Normdens(A) Y Standard Normal density at A,

also known as the probability

density function (pdf), i.e., (exp(-

A*A/2))/((2*)
0.5

).

EP_NORMINV 1065 NormInv(A, B, C)

[Excel=

NORMINV(A,B,C)]

Y Inverse of the cumulative

Normal distribution with input

probability A, mean B and

standard deviation C. The

function EP_NRMINV is

preferred.

EP_TRIAINV 1066 TriaInv(A, B, C, D) N Inverse of a triangular

cumulative distribution with

input probability A, for lowest

possible value B, mode C, and

highest value D. Function

EP_TRIAINV is preferred.

EP_EXPOINV 1067 ExpoInv(A, B) Y Inverse of an exponential with

input probability A and mean B,

i.e. –B*ln(1-A). Function

EP_EXPNINV is preferred.

EP_UNIFINV 1068 UnifInv(A, B, C) N Inverse of Uniform cumulative

distribution with input

probability A, lower limit B, and

upper limit C. Function

EP_UNIFMINV is preferred.

EP_MULTINV 1069 MultInv(A, B1,…, Bn,

C1,…, Cn)

N Inverse of the cumulative

distribution of a multinomial

random variable with A =

probability, a supplied

probability vector B and

corresponding value vector C.

The operator is followed by an

integer specifying the vector

length, which is 2n+1, where n is

the vector length of B and C.

EP_USRCOD 1070 UserCode ndx Y A user-defined instruction code.

It is treated as an EP_NO_OP

along with the integer

immediately following it in the

460 CHAPTER 7

list.

EP_SUMPROD 1071 SumProd(V1 , V2 , V3

,.. , Vn)

Y Vector inner product. Multiplies

corresponding components in

each vector, and returns the sum

of those products (i.e., v11*

v21*…*vm1 + v12* v22*…*vm2 +

… + v1n* v2n*…*vmn). Note that

these n vectors must have the

same length of m. The operator is

followed by two integers,

specifying the number of vectors

n and the vector length m,

respectively. The syntax is: V1 ,

V2 , V3 ,.. , Vn, EP_SUMPROD,

n, m.

EP_SUMIF 1072 SumIf(w, V1 , V2) Y This vector type of operator adds

the component in vector V2, if its

corresponding component in

vector V1 is equal to the target w

(i.e., if(w== v11 , v21 ,0) + if(w==

v12 , v22 ,0) + … + if(w== v1n , v2n

,0)). Note, both vectors must

have the same length of n. The

operator is followed by an

integer, specifying the number of

vector n. The syntax is: w, V1 , V2

, EP_SUMIF, n.

EP_VLOOKUP 1073 Vlookup(w, V1 , V2,

range_logic)

Y This vector type of operator

searches for a component in the

first vector V1 with respect to the

target w, and then returns the

corresponding component in the

second vector V2. The

range_logic, which takes a value

of 0 and 1 for False or True case,

respectively, decides which type

of logic used to select the

winner. When range_logic is

False, it returns: if(w==v11 , v21 ,

if(w==v12 , v22 ,…, if(w==v1n ,

v2n,, Infinity))). When

range_logic is False, it returns:

if(w<v11 , Infinity , if(w<v12 , v21

,…, if(w<v1n , v2(n-1) , v2n))). Note

that both vectors must have the

same length of n. The operator is

followed by two integers,

specifying the vector length n

 SOLVING NONLINEAR PROGRAMS 461

and range_logic, respectively.

The syntax is: w, V1 , V2 ,

EP_VLOOKUP, n, range_logic.

EP_VPUSH_NUM 1074 n1, n2, n3,…,nm Y Vector Push Number. Loads a

vector of number indices n1, n2,

n3,…,nm. The operator is

followed by an integer,

specifying the vector length m.

The syntax is: n1 , n2 , n3 ,… , nm ,

EP_VPUSH_NUM, m.

EP_VPUSH_VAR 1075 v1, v2, v3,…,vm Y Vector Push Variable. Loads a

vector of variable indices v1, v2,

v3,…,vm. The operator is followed

by an integer, specifying the

vector length m. The syntax is:

v1, v2, v3,…,vm ,

EP_VPUSH_VAR, m.

EP_VMULT 1074 A1 * A2 * …* Am Y This vector type of operator

sequentially multiplies each

element in vector A. The

operator is followed by an

integer, specifying the vector

length m. The syntax is: v1 , v2 ,

v3 ,… , vm , EP_VMULT, m.

EP_SQR 1077 A
2

Y Square of A.

EP_SINH 1078 Sinh(A) Y Hyperbolic sine of A .

EP_COSH 1079 Cosh(A) Y Hyperbolic cosine of A .

EP_TANH 1080 Tanh(A) Y Hyperbolic tangent of A .

EP_ASINH 1081 Sinh
–1

(A) Y Inverse hyperbolic sine of A .

EP_ACOSH 1082 Cosh
–1

(A) Y Inverse hyperbolic cosine of A .

EP_ATANH 1083 Tanh
–1

(A) Y Inverse hyperbolic tangent of A .

EP_LOGB 1084 Log B (A) Y Logarithm of A with base B.

EP_LOGX 1085 A * Log(A) Y A times common logarithm (base

10) of A .

EP_LNX 1086 A * Ln(A) Y A times natural logarithm of A.

EP_TRUNC 1087 Trunc(A, B) Y Truncates A to a specified

precision of B by removing the

remaining part of value A .

EP_NORMSINV 1088 NormSInv(A)

[Excel=

Y Inverse of the cumulative

standard Normal distribution

with input probability A.

462 CHAPTER 7

NORMSINV(A)]

EP_INT 1089 Int(A) Y Largest integer ≤ A. E.g., int(-

4.6) = -5, and int(4.6) = 4.

EP_PUSH_STR 1090 string(A) Y Push string in position A of

strings loaded with

LS_load_string.

EP_VPUSH_STR 1091 string1, string2,

…,stringm.

Y Push a vector of strings. The

operator is followed by an

integer, specifying the vector

length m. The syntax is: string 1,

string 2,…, string m ,

EP_VPUSH_STR, m.

EP_PUSH_SPAR 1092 A Y Load or push a stochastic

(random) parameter A onto the

top of stack.

EP_NORMPDF 1093 NormPdf(A,B,C)

[Excel=

NORMDIST(A,B,C,

0)]

Y Probability density function of

the Normal distribution with

mean B and standard deviation

C, evaluated at A.

EP_NORMCDF 1094 NormCdf(A,B,C)

[Excel=

NORMDIST(A,B,C,

1)]

Y Cumulative distribution function

of the Normal distribution with

mean B and standard deviation

C, evaluated at A.

EP_LSQ 1095 u1, u2, u3,…, un

T1, T2, T3,…, Tn

α1, α2, α3,…, αm

Y Least squares operator for fitting

the best response model for a

data set of n points (Ti, ui), where

Ti is a vector of independent

variables and ui is the observed

dependent variable. The response

function has the form ûi = f(Ti;α

), where

α is a vector of adjustable model

parameters. ûi is the estimated

response.

EP_LNPSNX 1096 A Y The logarithm of the cumulative

probability density function of

the standard normal distribution

evaluated at A.

EP_LNCPSN 1097 A Y The logarithm of the tail

probability of the standard

normal distribution evaluated at

A.

EP_XEXPNAX 1098 B*exp(-A/B) Y Composite function

 SOLVING NONLINEAR PROGRAMS 463

EP_XNEXPMX 1099 A N This is reserved for internal use.

EP_PBT 1100 pbt(A,B,C)

[Excel=

BETADIST(C,A,B)]

N Cumulative distribution function

for Beta distribution with shape

parameters A and B. It returns the

probability that an observation

from this distribution ≤ C.

EP_PBTINV 1101 PbtInv(A,B,C)

[Excel=

BETAINV(C,A,B)]

N Inverse of the cumulative Beta

distribution with input

probability C, and shape

parameters A and B.

EP_PBNINV 1102 PbnInv(A,B,C) N Inverse of Binomial distribution

with input probability C, success

probability B and sample size A.

EP_PCC 1103 pcc(A,B,C) Y Cumulative distribution function

for Cauchy distribution with

location parameter A, scale

parameter B. It returns the

probability that an observation

from this distribution is ≤ C.

EP_PCCINV 1104 PccInv(A,B,C) Y Inverse of Cauchy distribution

with input probability C, location

parameter A, and scale parameter

B.

EP_PCXINV 1105 PcxInv(A,B)

[Excel

=CHIINV(B,A)]

N Inverse of Chi-square

distribution with input

probability B and A degrees of

freedom.

EP_EXPN 1106 expn(A,B)

[Excel=

EXPONDIST(B,A,1)

]

Y Cumulative distribution function

for the Exponential distribution

with parameter A (mean =1/A).

Returns the probability that an

observation from this distribution

is ≤ B.

EP_PFDINV 1107 PfdInv(A,B,C)

[Excel=FINV(C,A,B)

]

N Inverse of F distribution with

input probability C, and degrees

of freedom A in numerator and B

in denominator.

EP_PGA 1108 pga(A,B,C)

[Excel=

GAMMADIST(C,B,

A,1)]

N Cumulative distribution function

for the Gamma distribution with

scale parameter A, shape

parameter B. It returns the

probability that an observation

from this distribution is ≤ C.

EP_PGAINV 1109 PgaInv(A,B,C) N Inverse of Gamma distribution

464 CHAPTER 7

[Excel=

GAMMAINV(C,B,A

)]

with input probability C, scale

parameter A, and shape

parameter B.

EP_PGE 1110 pge(A,B) N Cumulative distribution function

for Geometric distribution with

success probability A. It returns

the probability that the number

of experiments needed for the

first success is ≤ B.

EP_PGEINV 1111 PgeInv(A,B) N Inverse of Geometric distribution

with input probability B and

success probability A.

EP_PGU 1112 pgu(A,B,C) N Cumulative distribution function

for Gumbel distribution with

location parameter A and scale

parameter B. It returns the

probability that an observation

from this distribution is ≤ C.

EP_PGUINV 1113 PguInv(A,B,C) N Inverse of Gumbel distribution

with input probability C, location

parameter A, and scale parameter

B.

EP_PHGINV 1114 PhgInv(A,B,C,D) N Inverse of Hyper Geometric

distribution with input

probability D, population size A,

number of good items in the

population C, and sample size B.

EP_PLA 1115 pla(A,B,C) N Cumulative distribution function

for the Laplace distribution with

location parameter A and scale

parameter B. Returns probability

that an observation is ≤ C.

EP_PLAINV 1116 PlaInv(A,B,C) N Inverse of Laplace distribution

with input probability C, location

parameter A, and scale parameter

B.

EP_PLG 1117 plg(A,B) N Cumulative distribution function

for the Logarithmic distribution

with p-Factor A. It returns the

probability that an observation

from this distribution is ≤ B.

EP_PLGINV 1118 PlgInv(A,B) N Inverse of Logarithmic

distribution with input

probability B and p-Factor A.

 SOLVING NONLINEAR PROGRAMS 465

EP_LGT 1119 lgt(A,B,C) Y Cumulative distribution function

for the Logistic distribution with

location parameter A and scale

parameter B. It returns the

probability that an observation

from this distribution is ≤ C.

EP_LGTINV 1120 LgtInv(A,B,C) Y Inverse of Logistic distribution

with input probability C, location

parameter A and scale parameter

B.

EP_LGNM 1121 lgnm(A,B,C)

[Excel=

LOGNORMDIST(C,

A,B)]

N Cumulative distribution function

for the Lognormal distribution

with location parameter A and

scale parameter B. It returns the

probability that an observation

from this distribution is ≤ C.

EP_LGNMINV 1122 LgnmInv(A,B,C)

[Excel=

LOGINV(C,A,B)]

N Inverse of Lognormal

distribution with input

probability C, location parameter

A and scale parameter B.

EP_NGBN 1123 ngbn(A,B,C)

[Excel=

NEGBINOMDIST(C,

A,B)]

N Cumulative Negative binomial

distribution. It returns the

probability that a Negative

binomial random variable, with

R-factor A and success

probability B, is ≤ C.

EP_NGBNINV 1124 NgbnInv(A,B,C) N Inverse of Negative binomial

distribution with input

probability C, R-Factor A and

success probability B.

EP_NRM 1125 nrm(A,B,C)

[Excel=NORMDIST(

C,A,B,1)]

Y Cumulative Normal distribution

with mean A and standard

deviation B. It returns the

probability that an observation

from this distribution is ≤ C.

EP_PPT 1126 ppt(A,B,C) N Cumulative Pareto distribution

with scale parameter A and shape

parameter B. It returns the

probability that an observation

from this distribution is less than

or equal to C.

EP_PPTINV 1127 PptInv(A,B,C) N Inverse of Pareto distribution

with input probability C, scale

parameter A and shape parameter

466 CHAPTER 7

B.

EP_PPSINV 1128 PpsInv(A,B) N Inverse of Poisson distribution

with input probability B and

mean A.

EP_PTDINV 1129 PtdInv(A,B) N Inverse of Student-t distribution

with input probability B and A

degrees of freedom.

EP_TRIAN 1130 trian(A,B,C,D) N Cumulative Triangular

distribution with lower limit A,

mode C, upper limit B. It returns

the probability that an

observation from this distribution

≤ D.

EP_UNIFM 1131 unifm(A,B,C) N Cumulative Uniform distribution

with lower limit A and upper

limit B. It returns the probability

that an observation from this

distribution is ≤ C.

EP_PWB 1132 pwb(A,B,C)

[Excel=

WEIBULL(C,B,A,1)]

N Cumulative Weibull distribution

with scale parameter A and shape

parameter B. It returns the

probability that an observation

from this distribution is ≤ C.

EP_PWBINV 1133 PwbInv(A,B,C) N Inverse of Weibull distribution

with input probability C, scale

parameter A, and shape

parameter B.

EP_NRMINV 1134 NrmInv(A,B,C)

[Excel=

NORMINV(C,A,B)]

Y Inverse of Normal distribution

with input probability C, mean A

and standard deviation B.

EP_TRIANINV 1135 TrianInv(A,B,C,D) N Inverse of Triangular cumulative

distribution with input

probability D, lower limit A,

mode C, and upper limit B.

EP_EXPNINV 1136 ExpnInv(A,B) Y Inverse of Exponential

distribution with input

probability B and parameter A (

mean 1/A).

EP_UNIFMINV 1137 UnifmInv(A,B,C) N Inverse of Uniform cumulative

distribution with input

probability C, lower limit A, and

upper limit B.

EP_MLTNMINV 1138 MltnmInv(A1,…,An,B N Inverse of a multinomial

 SOLVING NONLINEAR PROGRAMS 467

1,…Bn,C) cumulative distribution with C =

probability to be inverted,

supplied probability vector A and

corresponding value vector B.

The operator is followed by an

integer specifying the vector

length, which is 2n+1, where n is

the vector length of A and B.

EP_BTDENS 1139 BtDens(A,B,C) N Probability density function for

Beta distribution with shape

parameters A and B. It returns the

probability density at C.

EP_BNDENS 1140 BnDens(A,B,C)

[Excel=

BINOMDIST(C,A,B,

0)]

N Probability mass function for

Binomial distribution. It returns

the probability that a sample of A

items, from a universe with a

fraction of B of those items

defective, has C defective items.

EP_CCDENS 1141 CcDens(A,B,C) Y Probability density function for

Cauchy distribution with location

parameter A, scale parameter B.

It returns the probability density

at C.

EP_CXDENS 1142 CxDens(A,B) N Probability density function for

the Chi-square distribution with

A degrees of freedom. It returns

the probability density at C.

EP_EXPDENS 1143 ExpDens(A,B)

[Excel=

EXPONDIST(B,A,0)

]

Y Probability density function for

Exponential distribution with

parameter A (mean = 1/ A). It

returns the probability density at

B.

EP_FDENS 1144 FDens(A,B,C) N Probability density function for

the F distribution with A degrees

of freedom in the numerator and

B degrees of freedom in the

denominator. It returns the

probability density at C.

EP_GADENS 1145 GaDens(A,B,C)

[Excel=

GAMMADIST(C,B,

A,0)]

N Probability density function for

the Gamma distribution with

scale parameter A, shape

parameter B. It returns the

probability density at C.

EP_GEDENS 1146 GeDens(A,B) N Probability mass function for

Geometric distribution with

468 CHAPTER 7

success probability A. It returns

the probability density at B.

EP_GUDENS 1147 GuDens(A,B,C) N Probability density function for

Gumbel distribution with

location parameter A and scale

parameter B. It returns the

probability density at C.

EP_HGDENS 1148 HgDens(A,B,C,D) N Probability mass function for

Hyper Geometric distribution ,

given a sample without

replacement of B items from a

population size A where C items

in the population are good. It

returns the probability of

outcome D.

EP_LADENS 1149 LaDens(A,B,C) N Probability density function for

the Laplace distribution with

location parameter A and scale

parameter B. It returns the

probability density at C.

EP_LGDENS 1150 LgDens(A,B) N Probability mass function for the

Logarithmic distribution with p-

Factor A. It returns the

probability density at B.

EP_LGTDENS 1151 LgtDens(A,B,C) Y Probability density function for

the Logistic distribution with

location parameter A and scale

parameter B. It returns the

probability density at C.

EP_LGNMDENS 1152 LgnmDens(A,B,C) N Probability density function for

the Lognormal distribution with

location parameter A and scale

parameter B. It returns the

probability density at C.

EP_NGBNDENS 1153 NgbnDens(A,B,C) N Probability mass function for

Negative binomial distribution

with R-Factor A and success

probability B. It returns the

probability density at C.

EP_NRMDENS 1154 NrmDens(A,B,C)

[Excel=

NORMDIST(C,A,B,

0)]

Y Probability density function for

Normal distribution with mean A

and standard deviation B. It

returns the probability density at

C.

 SOLVING NONLINEAR PROGRAMS 469

EP_PTDENS 1155 PtDens(A,B,C) N Probability density function for

Pareto distribution with scale

parameter A and shape parameter

B. It returns the probability

density at C.

EP_PSDENS 1156 PsDens(A,B)

[Excel=

POISSON(B,A,0)]

N Probability mass function for

Poisson distribution with mean

A. It returns the probability mass

at B.

EP_TDENS 1157 TDens(A,B) N Probability density function for

Student-t distribution with A

degrees of freedom. It returns the

probability density at B.

EP_TRIADENS 1158 TriaDens(A,B,C,D) N Probability density function for

Triangular distribution with

lower limit A, mode C, upper

limit B. It returns the probability

density at D.

EP_UNIFDENS 1159 UnifDens(A,B,C) N Probability density function for

Uniform distribution with lower

limit A and upper limit B. It

returns the probability density at

C.

EP_WBDENS 1160 WbDens(A,B,C)

[Excel=

WEIBULL(C,B,A,0)]

N Probability density function for

Weibull distribution with scale

parameter A and shape parameter

B. It returns the probability

density at C.

EP_RADIANS 1161 Radians(A)

[Excel=

RADIANS(A)]

Y Convert A degrees to radians.

EP_DEGREES 1162 Degrees(A)

[Excel=

DEGREES(A)]

Y Convert A radians to degrees.

EP_ROUND 1163 Round(A,B)

[Excel=

ROUND(A,B)]

Y When A is greater than or equal

to 0, if B is greater than 0, A is

rounded to B decimal digits; if B

is 0, A is rounded to the nearest

integer; if B is less than 0, then A

is rounded to the |B|+1 digits to

the left of the decimal point.

When A is less than 0,

Round(A,B) = -Round(|A|,B)

EP_ROUNDUP 1164 RoundUp(A,B)

[Excel=
Y When A is greater than or equal

to 0, if B is greater than 0, A is

470 CHAPTER 7

ROUNDUP(A,B)] rounded up to B decimal digits; if

B is 0, A is rounded up to the

nearest integer; if B is less than

0, then A is rounded up to the

|B|+1 digits to the left of the

decimal point.

When A is less than 0,

RoundUp(A,B) = -

RoundUp(|A|,B)

EP_ROUNDDOWN 1165 RoundDown(A,B)

[Excel=

ROUNDDOWN(A,B

)]

Y When A is greater than or equal

to 0, if B is greater than 0, A is

rounded down to B decimal

digits; if B is 0, A is rounded

down to the nearest integer; if B

is less than 0, then A is rounded

down to the |B|+1 digits to the

left of the decimal point.

When A is less than 0,

RoundDown(A,B) = -

RoundDown (|A|,B)

EP_ERF 1166 erf(A) Y Error function value of A.

EP_PBN 1167 pbn(A,B,C) N Binomial cumulative distribution

function at C with success

probability B and sample size A.

EP_PBB 1168 pbb(A,B,C,D) N Beta-binomial cumulative

function at D with sample size A,

shape parameters B and C.

EP_PBBINV 1169 pbbinv(A,B,C,D) N Inverse of beta-binomial

distribution function at input D

with sample size A, shape

parameters B and C.

EP_BBDENS 1170 Bbdens(A,B,C,D) N Beta-binomial probability

density function at D with

sample size A, shape parameters

B and C.

EP_PSS 1171 pss(A,B) N Cummulative distribution

function for the Symmetric

Stable distribution with Alpha

parameter A. It returns the

probability that an observation

from this distribution is less than

or equal to B. Note that A should

be in the range of (0,2].

EP_SSDENS 1172 ssdens(A,B) N Probability density function for

Symmetric Stable distribution

function with Alpha parameter

A. It returns the probability

density at B. Note that A should

be in the range of (0,2].

 SOLVING NONLINEAR PROGRAMS 471

EP_SSINV 1173 ssinv(A,B) N Inverse of Symmetric Stable

distribution with input

probability B and Alpha

parameter A. Note that A should

be in the range of (0,2].

EP_POSD 1174 POSD(dim, nz,

v1,r1,c1…)
Y This is in fact a constraint for

semi-definite programming

(SDP) that forces a matrix to be

symmetric positive semi-definite.

dim is the dimension of the

matrix, nz is the number of

nonzeroes in the lower triangle

of the matrix. The following nz

triples (vi,ri,ci) give the (index of

a variable, row in the lower

triangle of the matrix, column in

the lower triangle of the matrix).

Note ri >= ci.

EP_SETS 1175 SETS(type, nz,

v1,v2…)
Y This is in fact a constraint for

Special Ordered Sets (SOS) that

provides a compact way of

specifying multiple choice type

conditions. type is the type of

SOS, possible values are 1, 2,

and 3; nz is the number of

variables in SOS. The following

nz arguments give the index of

variables in SOS.

EP_CARD 1176 CARD(num_card, nz,

v1,v2…)
Y This is in fact a constraint that

provides a compact way of

specifying cardinality conditions.

num_card is cardinality number;

nz is the number of variables in

cardinality constraint. The

following nz arguments give the

index of variables.

Inputting SDP/POSD Constraints via MPI File/Instruction List
In Chapter 6, the capability for representing positive-definiteness constraints was introduced. If you

are supplying a model to the LINDO API via the instruction list format, then there is a single operator,

EP_POSD for specifying an SDP or POSD constraint. The format of this operator is the command

sequence:

 EP_POSD
 ndim

 nz

 nv1 nr1 nc1

 .

 .

472 CHAPTER 7

 .

 nv1nz nr1nz nc1bz

where,

 ndim = the dimension of the X matrix,

 nz = the number of nonzeroes in the lower triangle of the X matrix,

 For the following nz triples:

 nvi = the index of a variable,

 nri = the row in the lower triangle of the X matrix in which this variable appears

 nci = column in the lower triangle of the matrix.

Because the X matrix is required to be symmetric, only the lower triangle of the matrix X is to be

specified. Zero based indexing of the rows and columns is used, thus, it is required that 0 ≤ nci ≤

nri ≤ ndim-1. You may have several EP_POSD constraints in a model, however, a decision

variable can appear in at most one EP_POSD constraint. This restriction can be circumvented by the

introduction of linking constraints to set one variable equal to another. If the user, elsewhere in his

model wants to reference an element of the upper triangle of a symmetric POSD matrix, then the user

must add explicit constraints to enforce Xij = Xji.

We illustrate with an application from statistics. Suppose by some slightly ad hoc process we derived

an initial estimate of a correlation matrix for three random variables. A required feature of a valid

correlation matrix is that it must be positive definite. Unfortunately, our initial “guessed correlation”

matrix is not positive definite. So we give ourselves the problem of finding a “fitted” matrix that is

positive semi-definite and close in some sense to this guessed matrix. As a measure of closeness we

will take the squared difference. Here is our initial guess at the correlation matrix.

 1.000000

 0.6938961 1.000000

 -0.1097276 0.7972293 1.000000 ;

We will show shortly that the matrix that is closest to the above matrix in the squared difference sense

and is a valid correlation matrix in the sense that it is Positive Semi-definite is:

 1.000000

 0.6348391 1.000000

 -0.0640226 0.7304152 1.000000

How do we find the second matrix? We want to make modest adjustments to the off-diagonal entries

of the original matrix to produce a Positive Semi-definite matrix.We want to solve the following

optimization problem:

 Minimize QADJ_2_1 ^ 2 + QADJ_3_1 ^ 2 + QADJ_3_2 ^ 2;

 Subject to:

 QFIT_2_1 = 0.6938961 + QADJ_2_1;

 QFIT_3_1 = - 0.1097276 + QADJ_3_1;

 QFIT_3_2 = 0.7972293 + QADJ_3_2;

 QFIT_1_1 = 1;

 QFIT_2_2 = 1;

 QFIT_3_3 = 1;

 {QFIT} is POSD;

 SOLVING NONLINEAR PROGRAMS 473

The only new feature of this formulation is the last line. We want the {QFIT} matrix to be Positive

Semi-definite. The following MPI file describes the above problem. A comment line starts with a “!”.

BEGINMODEL POSDmakeCorr

! Number of Objective Functions: 1

! Number of Constraints : 7

! Number of Variables : 9

VARIABLES

! Name Lower Bound Initial Point Upper Bound Type

 QFIT_1_1 0 1.23456788 1e+030 C

 QADJ_2_1 -1e+030 1.23456788 1e+030 C

 QFIT_2_1 -1e+030 1.23456788 1e+030 C

 QFIT_2_2 0 1.23456788 1e+030 C

 QADJ_3_1 -1e+030 1.23456788 1e+030 C

 QFIT_3_1 -1e+030 1.23456788 1e+030 C

 QADJ_3_2 -1e+030 1.23456788 1e+030 C

 QFIT_3_2 -1e+030 1.23456788 1e+030 C

 QFIT_3_3 0 1.23456788 1e+030 C

OBJECTIVES

! Minimize QADJ_2_1^2 + QADJ_3_1^2 + QADJ_3_2^2;

 OBJ00000 MINIMIZE LINEAR

 EP_PUSH_VAR QADJ_2_1

 EP_PUSH_NUM 2

 EP_POWER

 EP_PUSH_VAR QADJ_3_1

 EP_PUSH_NUM 2

 EP_POWER

 EP_PLUS

 EP_PUSH_VAR QADJ_3_2

 EP_PUSH_NUM 2

 EP_POWER

 EP_PLUS

CONSTRAINTS

! QFIT_2_1 = 0.6938961 + QADJ_2_1;

 2 E LINEAR

 EP_PUSH_VAR QFIT_2_1

 EP_PUSH_NUM 0.6938961

 EP_PUSH_VAR QADJ_2_1

 EP_PLUS

 EP_MINUS

! QFIT_3_1 = -0.1097276 + QADJ_3_1;

 3 E LINEAR

 EP_PUSH_VAR QFIT_3_1

 EP_PUSH_NUM -0.1097276

 EP_PUSH_VAR QADJ_3_1

 EP_PLUS

 EP_MINUS

! QFIT_3_2 = 0.7972293 + QADJ_3_2;

 4 E LINEAR

 EP_PUSH_VAR QFIT_3_2

 EP_PUSH_NUM 0.7972293

 EP_PUSH_VAR QADJ_3_2

 EP_PLUS

 EP_MINUS

474 CHAPTER 7

! QFIT_1_1 = 1;

 5 E LINEAR

 EP_PUSH_VAR QFIT_1_1

 EP_PUSH_NUM 1

 EP_MINUS

 7 E LINEAR

! QFIT_2_2 = 1;

 EP_PUSH_VAR QFIT_2_2

 EP_PUSH_NUM 1

 EP_MINUS

! QFIT_3_3 = 1;

 9 E LINEAR

 EP_PUSH_VAR QFIT_3_3

 EP_PUSH_NUM 1

 EP_MINUS

! List the 6 scalar variables that

! make up the lower triangle of the

! 3x3 matrix that must be symmetric POSD,

! using 0 based row/col indexing;

 _R1 G CONST

 EP_POSD 3 6

 QFIT_1_1 0 0

 QFIT_2_1 1 0

 QFIT_2_2 1 1

 QFIT_3_1 2 0

 QFIT_3_2 2 1

 QFIT_3_3 2 2

ENDMODEL

If the above instructions are stored in the file posdmakecorr.mpi and at the command line we type:
 runlindo posdmakecorr.mpi –sol

then a solution file, posdmakecorr.sol, will be created, containing in part:

* OBJECTIVE FUNCTION VALUE

* 1) 0.010040800

* XMATRIX ZMATRIX

 VARIABLES VALUE REDUCED COST

 QFIT_1_1 1.000000000 -0.040398696

 QADJ_2_1 -0.059057019 0.000000000

 QFIT_2_1 0.634839076 0.059057019

 QFIT_2_2 1.000000000 -0.086332791

 QADJ_3_1 0.045704999 0.000000000

 QFIT_3_1 -0.064022600 -0.045704999

 QADJ_3_2 -0.066814075 0.000000000

 QFIT_3_2 0.730415219 0.066814075

 QFIT_3_3 1.000000000 -0.051708294

Inputting SDP/POSD Constraints via a C Program
The code below illustrates how to input an SDP/POSD model in MPI form via a C program.

/* ex_sdp1.c

 A C programming example for solving a mixed semidefinite and

 conic quadratic programming problem,

 SOLVING NONLINEAR PROGRAMS 475

 where the model is described via an instruction list.

 Example model:

 * *

 * minimize 2*(x00 + x10 + x11 + x21 + x22) + x0 ;

 * st x00 + x11 + x22 + x0 = 1 ;

 * x00 + x11 + x22 + 2*(x10 + x20 + x21) + x1 + x2 = 0.5 ;

 * x0^2 >= x1^2 + x2^2 ;

 * x0 >= 0 ;

 * | x00 x10 x20 |

 * | x10 x11 x21 | is positive semidefinite

 * | x20 x21 x22 |

 *

 Solving such a problem with the LINDO API involves

 the following steps:

 1. Create a LINDO environment.

 2. Create a model in the environment.

 3. Set up the instruction list of the model.

 4. Load the model

 5. Perform the optimization.

 6. Retrieve the solution.

 7. Delete the LINDO environment.

*/

#include <stdio.h>

#include <stdlib.h>

/* LINDO API header file */

#include "lindo.h"

/* Define a macro to declare variables for

 error checking */

#define APIERRORSETUP \

 int nErrorCode; \

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH] \

/* Define a macro to do our error checking */

#define APIERRORCHECK \

 if (nErrorCode) \

 { \

 if (pEnv) \

 { \

 LSgetErrorMessage(pEnv, nErrorCode, \

 cErrorMessage); \

 printf("nErrorCode=%d: %s\n", nErrorCode, \

 cErrorMessage); \

 } else {\

 printf("Fatal Error\n"); \

 } \

 exit(1); \

 } \

#define APIVERSION \

{\

476 CHAPTER 7

 char szVersion[255], szBuild[255];\

 LSgetVersionInfo(szVersion,szBuild);\

 printf("\nLINDO API Version %s built on %s\n",szVersion,szBuild);\

}\

/* Set up an outputlog function. */

static void LS_CALLTYPE print_line_log(pLSmodel pModel, char *line, void

*userdata)

{

 if (line)

 {

 printf("%s",line);

 } /*if*/

} /*print_line*/

/* main entry point */

int main()

{

 APIERRORSETUP;

/* declare an instance of the LINDO environment object */

 pLSenv pEnv = NULL;

/* declare an instance of the LINDO model object */

 pLSmodel pModel, pModelR=NULL;

 char MY_LICENSE_KEY[1024];

 int n, m, nC, status ;

 double dObj;

 /**

 * Step 1: Create a LINDO environment.

 **/

 nErrorCode =

LSloadLicenseString("../../../license/lndapi100.lic",MY_LICENSE_KEY);

 APIERRORCHECK;

 APIVERSION;

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE) {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

 /**

 * Step 2: Create a model in the environment.

 **/

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

 {

 /**

 * Step 3: Set up the instruction list of the model.

 **/

 int nobjs, ncons, nvars, nnums, lsize;

 int objsense[10];

 char ctype[10], vtype[10];

 SOLVING NONLINEAR PROGRAMS 477

 int code[200];

 double numval[10],varval[10];

 int objs_beg[10], objs_length[10], cons_beg[10], cons_length[10];

 double lwrbnd[10], uprbnd[10];

 int ikod, iobj, icon;

 /* Number of constraints */

 ncons = 4;

 /* Number of objectives */

 nobjs = 1;

 /* Number of variables */

 nvars = 9;

 /* Number of real number constants */

 nnums = 4;

 /***************

 variable name vs index

 * 0 X00

 * 1 X10

 * 2 X11

 * 3 X21

 * 4 X22

 * 5 X0

 * 6 X20

 * 7 X1

 * 8 X2

 **********************/

 /* Lower bounds of variables */

 lwrbnd[0]=-1e30;

 lwrbnd[1]=-1e30;

 lwrbnd[2]=-1e30;

 lwrbnd[3]=-1e30;

 lwrbnd[4]=-1e30;

 lwrbnd[5]=0 ;

 lwrbnd[6]=-1e30;

 lwrbnd[7]=-1e30;

 lwrbnd[8]=-1e30;

 /* Upper bounds of variables */

 uprbnd[0]=1e30;

 uprbnd[1]=1e30;

 uprbnd[2]=1e30;

 uprbnd[3]=1e30;

 uprbnd[4]=1e30;

 uprbnd[5]=1e30;

 uprbnd[6]=1e30;

 uprbnd[7]=1e30;

 uprbnd[8]=1e30;

 /* Starting point of variables */

 varval[0]=0.0;

 varval[1]=0.0;

 varval[2]=0.0;

 varval[3]=0.0;

 varval[4]=0.0;

478 CHAPTER 7

 varval[5]=0.0;

 varval[6]=0.0;

 varval[7]=0.0;

 varval[8]=0.0;

 /* Variable type, C= continuous, B = binary */

 vtype[0] = 'C';

 vtype[1] = 'C';

 vtype[2] = 'C';

 vtype[3] = 'C';

 vtype[4] = 'C';

 vtype[5] = 'C';

 vtype[6] = 'C';

 vtype[7] = 'C';

 vtype[8] = 'C';

 /* Double Precision constants in the model */

 numval[0]=2.0;

 numval[1]=1.0;

 numval[2]=2.0;

 numval[3]=0.5;

 /* Count for instruction code */

 ikod = 0;

 /* Count for objective row */

 iobj = 0;

 /* Count for constraint row */

 icon = 0;

 /*

 * Instruction code of the objective:

 *

 * min 2*(x00 + x10 + x11 + x21 + x22) + x0

 */

 /* Direction of optimization */

 objsense[iobj]= LS_MIN;

 /* Beginning position of objective */

 objs_beg[iobj]=ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 0;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 0;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 2;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 3;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 4;

 code[ikod++]= EP_PLUS;

 SOLVING NONLINEAR PROGRAMS 479

 code[ikod++]= EP_MULTIPLY;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 5;

 code[ikod++]= EP_PLUS;

 /* Length of objective */

 objs_length[iobj] = ikod - objs_beg[iobj];

 /* Increment the objective count */

 iobj++;

 /*

 * Instruction code of constraint 0:

 * x00 + x11 + x22 + x0 = 1 ;

 */

 /* Constraint type */

 ctype[icon]= 'E'; /* less or than or equal to */

 /* Beginning position of constraint 0 */

 cons_beg[icon]= ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 0;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 2;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 4;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 5;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 1;

 code[ikod++]= EP_MINUS;

 /* Length of constraint 0 */

 cons_length[icon] = ikod - cons_beg[icon];

 /* Increment the constraint count */

 icon++;

 /*

 * Instruction code of constraint 1:

 *

 * x00 + x11 + x22 + 2*(x10 + x20 + x21) + x1 + x2 = 0.5 ;

 */

 /* Constraint type */

 ctype[icon]= 'E'; /* less or than or equal to */

 /* Beginning position of constraint 1 */

 cons_beg[icon]= ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 0;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 2;

 code[ikod++]= EP_PLUS;

480 CHAPTER 7

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 4;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 2;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 6;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 3;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_MULTIPLY ;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 7;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 8;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 3;

 code[ikod++]= EP_MINUS;

 /* Length of constraint 1 */

 cons_length[icon] = ikod - cons_beg[icon];

 /* Increment the constraint count */

 icon++;

 /*

 * Instruction code of constraint 2:

 * x0^2 >= x1^2 + x2^2 ;

 */

 /* Constraint type */

 ctype[icon]= 'G'; /* less or than or equal to */

 /* Beginning position of constraint 2 */

 cons_beg[icon]= ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 5;

 code[ikod++]= EP_SQR;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 7;

 code[ikod++]= EP_SQR;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 8;

 code[ikod++]= EP_SQR;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_MINUS;

 /* Length of constraint 2 */

 cons_length[icon] = ikod - cons_beg[icon];

 /* Increment the constraint count */

 icon++;

 SOLVING NONLINEAR PROGRAMS 481

 /*

 * Instruction code of constraint 3:

 * | x00 x10 x20 |

 * | x10 x11 x21 | is positive semidefinite

 * | x20 x21 x22 |

 */

 /* Constraint type */

 ctype[icon]= 'G';

 /* Beginning position of constraint 3 */

 cons_beg[icon]= ikod;

 /* Instruction list code */

 code[ikod++]= EP_POSD ; // POSD constraint

 code[ikod++]= 3; // dimension of matrix

 code[ikod++]= 6; // number of matrix elements

 // 1st matrix element

 code[ikod++]= 0; // variable index

 code[ikod++]= 0; // row index

 code[ikod++]= 0; // col index

 // 2nd matrix element

 code[ikod++]= 1; // variable index

 code[ikod++]= 1; // row index

 code[ikod++]= 0; // col index

 // 3rd matrix element

 code[ikod++]= 6; // variable index

 code[ikod++]= 2; // row index

 code[ikod++]= 0; // col index

 // 4th matrix element

 code[ikod++]= 2; // variable index

 code[ikod++]= 1; // row index

 code[ikod++]= 1; // col index

 // 5th matrix element

 code[ikod++]= 3; // variable index

 code[ikod++]= 2; // row index

 code[ikod++]= 1; // col index

 // 6th matrix element

 code[ikod++]= 4; // variable index

 code[ikod++]= 2; // row index

 code[ikod++]= 2; // col index

 /* Length of constraint 3 */

 cons_length[icon] = ikod - cons_beg[icon];

 /* Increment the constraint count */

 icon++;

 /* Total number of items in the instruction list */

 lsize = ikod;

 /**

 * Step 4: Load the model

 **/

 /* Pass the instruction list to problem structure

 * by a call to LSloadNLPCode() */

 nErrorCode = LSloadInstruct (pModel, ncons, nobjs, nvars, nnums,

 objsense, ctype, vtype, code, lsize, NULL,

482 CHAPTER 7

 numval, varval, objs_beg, objs_length, cons_beg,

 cons_length, lwrbnd, uprbnd);

 APIERRORCHECK;

 }

 /***

 * Step 5: Optimize the model

 ***/

 /* Set a log function to call. */

 nErrorCode = LSsetModelLogfunc(pModel, (printModelLOG_t) print_line_log,

NULL);

 APIERRORCHECK;

 nErrorCode = LSgetInfo(pModel,LS_IINFO_NUM_VARS,&n);

 nErrorCode += LSgetInfo(pModel,LS_IINFO_NUM_CONS,&m);

 nErrorCode += LSgetInfo(pModel,LS_IINFO_NUM_CONT,&nC);

 APIERRORCHECK;

 nErrorCode = LSoptimizeQP(pModel, &status);

 APIERRORCHECK;

 /***

 * Step 6: Access the final solution if optimal or feasible

 ***/

 if (status == LS_STATUS_OPTIMAL ||

 status == LS_STATUS_BASIC_OPTIMAL ||

 status == LS_STATUS_LOCAL_OPTIMAL ||

 status == LS_STATUS_FEASIBLE)

 {

 double *primal = NULL, *dual = NULL;

 int j;

 primal = (double *) malloc(n*sizeof(double));

 dual = (double *) malloc(m*sizeof(double));

 nErrorCode = LSgetPrimalSolution(pModel, primal) ;

 APIERRORCHECK;

 nErrorCode = LSgetDualSolution(pModel, dual) ;

 APIERRORCHECK;

 nErrorCode = LSgetInfo(pModel,LS_DINFO_POBJ,&dObj);

 APIERRORCHECK;

 printf ("\n Objective at solution = %f \n", dObj);

 // un/comment the block below if you would like

 // the primal and dual solutions to be printed on the screen.

 if (1){

 char szname[255];

 printf ("\n Primal Solution\n");

 printf("\t%8s %18s\n","VARS", "Primal");

 for (j = 0; j<n; j++)

 {

 nErrorCode = LSgetVariableNamej(pModel,j,szname);

 printf("\t%8s %18.10e\n",szname, primal[j]);

 }

 SOLVING NONLINEAR PROGRAMS 483

 printf ("\n Dual Solution\n");

 printf("\t%8s %18s\n","CONS", "Dual");

 for (j = 0; j<m; j++)

 {

 nErrorCode = LSgetConstraintNamei(pModel,j,szname);

 printf("\t%8s %18.10e\n",szname, dual[j]);

 }

 }

 free(primal);

 free(dual);

 }

 else

 {

 char strbuf[255];

 LSgetErrorMessage(pEnv,nErrorCode,strbuf);

 printf ("\n Optimization failed. Status = %d ",status);

 //printf ("\n Error %d: %s\n",nErrorCode,strbuf);

 }

 /***

 * Step 7: Terminate

 ***/

 nErrorCode = LSdeleteModel(&pModel);

 nErrorCode = LSdeleteEnv(&pEnv);

Terminate:

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 //getchar();

}

Black-Box Style Interface
One of the critical issues in efficient solution of NLP models using LINDO API’s black-box style

interface is the exploitation of linearity and sparsity. The NLP solver can exploit linearity in the model

where it exists if the user (optionally) points out in advance the location of the linear and nonlinear

elements. This also allows the solver to partially see “inside the black box” to the extent that the user

provides information about the nonzero structures of: a) the linear terms (step 3 below), and b)) the

derivatives of nonlinear terms in the model (step 4 below).

The other issue specific to black-box interface is the set-up of a callback function (step 5 below) to

compute functional values of nonlinear terms, and optionally their gradients (step 6 below), in the

model.

For an efficient implementation of the black-box interface, the front-end or calling application must do

the following steps:

3. Create a LINDO environment with a call to LScreateEnv().

4. Create a model structure in this environment with a call to LScreateModel().

5. Load problem structure and linear data into the model structure with a call to

LSloadLPData().

484 CHAPTER 7

6. Load nonlinear problem structure into the model structure with a call to

LSloadNLPData().

7. Provide a pointer to a nonlinear function evaluation routine with a call to

LSsetFuncalc().

8. Optionally, provide a pointer to a gradient calculation routine with a call to

LSsetGradcalc().

9. Solve the problem with a call to LSoptimize().

10. Retrieve the solution with calls to LSgetInfo(), LSgetPrimalSolution(), and

LSgetDualSolution().

11. Delete the model and environment with a call to LSdeleteEnv().

We first illustrate with an example how LP and NLP pieces of model data are loaded to the solver. Set

up of callback functions referred to in steps 5 and 6 are discussed later in this chapter.

Loading Model Data
Consider the following minimization problem with 8 variables and 6 constraints, with finite bounds on

all variables. It has both linear and nonlinear components.

Minimize x0 + log(x0*x1) + x3 + x2
2

s.t.

Constraint 0: + x3 + x5  400

Constraint 1: - 25*x3 + 25*x4 + 25*x6  10000

Constraint 2: - x4 + x7  100

Constraint 3: 100*x0 - x1*x5 + 883*x3  83333

Constraint 4: x2*x3 - x2*x6 – 1250*x3 +

1250*x4



0.0

Constraint 5: x3*x4 – x2*x7 – 2500*x4  -1250000

Bounds:

 100  x1  10000

 1000  x2  10000

 1000  x3  10000

 10  x4  1000

 10  x5  1000

 10  x6  1000

 10  X7  1000

 10  X8  1000

Phase I: Loading LP structure
The first step in loading model data is to ignore all nonlinear terms in the model and scan for linear

terms to construct the LP coefficient matrix.

Examining the model row-by-row, we note that

1. Objective row, indexed -1, is linear in x0 and x3,

2. Constraint 0 is linear in x3 and x5,

3. Constraint 1 is linear in x3, x4, and x6,

 SOLVING NONLINEAR PROGRAMS 485

4. Constraint 2 is linear in x4 and x7,

5. Constraint 3 is linear in x0 and x3,

6. Constraint 4 is linear in x4,

7. Constraint 5 is not linear in any variables.

Denoting nonlinear coefficients by “*”, this implies the NLP model has the following coefficient

matrix

 A =

The matrix has 8 columns, 6 rows and 19 nonzeros. Using the guidelines in Chapter 1, we obtain the

following sparse representation, where we use a 0 as a place-holder for nonlinear coefficients

Column-start=[0, 1, 2, 4, 9, 13, 15, 17,

19]

Row-Index= [3, 3, 4, 5, 0, 1, 3, 4, 5, 1, 2, 4, 5, 0, 3, 1, 4, 2, 5]

Values = [100, 0, 0, 0, 1, -25, 883, 0, 0, 25, -1, 1250, 0, 1, 0, 25, 0, 1, 0]

Other LP components, the cost vector, right-hand-side values, variable bounds, and constraint senses,

are obtained from the original model that can be listed as

Objective coefficients = [1, 0, 0, 1, 0, 0, 0]

Lower bounds = [100, 100, 1000, 10, 10, 10, 10]

Upper bounds = [10000, 10000, 10000, 1000, 1000, 1000, 1000]

Right-hand-side vector = [400, 10000, 100, 83333, 0, -1250000]

Constraint senses = [L, L, L, L, L, L]

These Phase-I linear components can be represented using arrays of appropriate types in any

programming language and be loaded to LINDO API using the LSloadLPData function just as in a

linear model.

Phase II: Loading NLP structure

The next step in loading model data is to ignore all linear terms in the model and determine the

nonzero structure of the NLP terms. A nonlinear (nonzero) coefficient is said to exist for row i,

variable j, if the partial derivative of a row i with respect to variable j is not a constant. Scanning the

model row-by-row, we observe the following

8. Objective row, indexed -1, is nonlinear in x0, x1 and x2,

9. Constraint 0 has no nonlinear terms,

10. Constraint 1 has no nonlinear terms

11. Constraint 2 has no nonlinear terms

12. Constraint 3 is nonlinear in x1 and x5,

 0 1 2 3 4 5 6 7

0 1 1

1 -25 25 25

2 -1 1

3 100 * 883 *

4 * * 1250 *

5 * * * *

486 CHAPTER 7

13. Constraint 4 is nonlinear in x2, x3 and x6,

14. Constraint 5 is nonlinear in x2, x3, x4 and x7

At this point we are interested in only the nonlinear coefficients of the constraints, i.e., the “*” in the

previous matrix. The sparse representation of this sub-matrix is

Column-start = [0, 0, 1, 3, 5, 6, 7, 8, 9]

Row-Index = [3, 4, 5, 4, 5, 5, 3, 4, 5]

The nonlinearities in the objective function are represented in a similar fashion using sparse

representation. We simply determine the number of nonlinear variables in the objective function and

place the indices of these nonlinear variables in an array.

Number of nonlinear-variables = 3

Nonlinear variable-index = [0, 1, 2]

As in phase-I, these components can be represented using arrays of appropriate types in any

programming language, and be loaded to the solver via LSloadNLPData function. If required,

integrality restrictions can be imposed using LSloadVarType function (see Chapter 2). In the section

Sample Programming Problems, Examples 1 and 3 give complete code illustrating the Black-box style

method.

 Evaluating Nonlinear Terms via Callback Functions
The black-box approach requires the user to set up a callback function that computes the functional

values for f(x) and gi(x) for a given a row index i. A reference to this function is passed to the solver

via LSsetFuncalc() routine so that it could evaluate functional values as needed. Optionally, a second

callback function, which computes the partial derivatives, could be set via LSsetGradcalc() routine.

However, since LINDO API is equipped with a versatile differentiation toolbox, it can compute the

partial derivatives using functional values provided by the first callback function. This makes the use

of a second callback function for derivatives optional. In this approach, if the user does not provide a

second callback function, the solver will automatically invoke its internal differentiation tools to

compute derivatives.

For certain classes of NLP models, however, a carefully implemented callback function for partial

derivatives may be a more efficient than automatic differentiation. In particular, for models where the

nonlinear terms have potential numerical issues over certain ranges in the domains they are defined, a

user-defined function may provide better means to control numerical accuracy. This advantage could

lead to improved overall performance.

In the following, we give the C prototypes for these callback functions. The function names,

pFuncalc() and pGradcalc(), are arbitrary, and are used merely for illustration. Since these functions

will reside in your calling application, you may choose any name you wish. However, the interfaces

described must be preserved.

 SOLVING NONLINEAR PROGRAMS 487

pFuncalc()

Description:

This is a user/frontend supplied routine to compute the value of a specified nonlinear row,

given a current set of variable values. This function must be provided in order to solve

nonlinear programs with black-box style interface. Use the LSsetFuncalc() routine (see

Chapter 2) to identify your pFuncalc() routine to LINDO API.

Returns:

Returns a value greater than 0 if a numerical error occurred while computing the function

value (e.g., square root of a negative number). Otherwise, returns 0.

Prototype:

int pFuncalc (pLSmodel pModel,

 void *pUserData, int nRow,

 double *pdX, int nJDiff,

 double dXJDiff, double *pdFuncVal,

 void *pReserved);

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

pUserData Pointer to a user data area or structure in which any data

needed to calculate function values can be stored (e.g., the

number of variables). LINDO API obtains the value of this

pointer when the pFuncalc() routine is established through a

call to LSsetFuncalc() (see below). Subsequently, whenever

LINDO API calls your pFuncalc() routine, it passes the same

pointer value through pUserData. Any data that pFuncalc()

needs to compute the value of a row in the model should be

stored in the data structure pointed to by pUserData.

nRow The row of the model to be evaluated. If nRow = -1, then it is

assumed to be the objective row. Otherwise, nRow is the

0-based index of the row to evaluate.

pdX A pointer to an array containing the values of the decision

variables at the point where the row is to be evaluated (i.e.,

pdX[j] = value of variable j at current point for j = 0, 1, …,

nNVars –1, where nNVars is the number of variables).

488 CHAPTER 7

nJDiff, dXJDiff If nJDiff is < 0, then pdX[] contains a new base point. If 0 

nJDiff < nNVars, then the current point is different from the

current base point solely in dimension nJDiff, and the value of

pdX[nJDiff] at the base point is contained in the dXJDiff

variable. If nJDiff is ≥ the number of variables, then pdX[]

contains the previous base point, but the row to evaluate,

nRow, has changed. Without loss of correctness, nJDiff and

dXJDiff can be ignored (by setting nJDiff=-1). In certain cases,

however, exploiting these arguments can reduce function

evaluation times dramatically (an example is given below).

Keep in mind that your implementation will be complicated

through the use of these parameters. Therefore, the first time

user may choose to ignore them.

Output Arguments:

Name Description

pdFuncVal *pdFuncVal returns the value of the function.

pReserved A pointer reserved for future use.

Remarks:

 Any explicit constant term is assumed to have been brought to the left-hand side of the

constraint. That is, an equality constraint is assumed to have been put in the standard

form gi(x) = 0. pdFuncalc() returns the value of gi(x).

 The parameter nJDiff allows pFuncalc() to exploit some efficiencies in typical usage. In

a model with many nonlinear variables, a major portion of the work in pFuncalc() may

be in copying the variable values from pdX[] to local storage (typically in pUserData).

The nonlinear solver may call pFuncalc() several times sequentially where the only

difference in inputs is in the parameter nRow (i.e., the pdX[] values remain unchanged).

Values of nJDiff ≥ the number of variables indicate this situation.

 Somewhat similarly, if finite differences rather than derivatives are being used, the

nonlinear solver may call pFuncalc() several times sequentially where the only

difference in the pdX[] vector is in a single element pdX[nJDiff]. Thus, if pFuncalc() has

retained the values of the pdX[] from the previous call, then only the value pdX[nJDiff]

need be copied to local storage.

 Further efficiencies may be gained when a row is separable in the variables. For

example, suppose the objective is: ∑ i=1,1000 (log(x[i]). This would be an expensive

function to evaluate at each point due to the time required to compute logarithms. In the

case where finite differences are being used, performance could be improved

dramatically in the case where pdX[] differs from the base point in a single dimension

(i.e., when 0 ≤ nJDiff < number of variables). For example, suppose you have stored the

function’s value at the base point in the variable dGBase, which will typically be part of

the pUserData structure. This would allow us to recalculate the row’s value using the

formula: dGBase + log(pdX[nJDiff]) – log(dXJBase). This strategy reduces the number

of logarithm computations to only 2 rather than 1000.

 SOLVING NONLINEAR PROGRAMS 489

pGradcalc()

Description:

This is a user-supplied routine to compute the partial derivatives (i.e., gradient) of a specified

nonlinear row given a current set of variable values. This function’s name, pGradcalc(), is

arbitrary, and is used merely for illustration. Since this function will reside in your calling

application, you may choose any name you wish. However, the interface described below

must be duplicated. This function must be provided only if you do not want LINDO API to

use finite differences. In which case, pGradcalc() will be called by LINDO API when it needs

gradient information. Use the LSsetGradcalc() routine (see below) to identify your

pGradcalc() routine to LINDO API.

Returns:

Returns a value greater than 0 if a numerical error occurred while computing partial values

(e.g., square root of a negative number). Otherwise, returns 0.

Prototype:

int pGradcalc (pLSmodel pModel,

 void *pUserData, int nRow,

 double *pdX, double pdLB,

 double *pdUB, int nNewPnt,

 int nNPar, int *pnParList,

 double *pdPartial)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

pUserData Pointer to a user data area or structure in which you can store

any data that is needed to calculate gradient values (e.g.,

number of variables). LINDO API obtains the value of this

pointer when you establish your pGradcalc () routine through a

call to LSsetGradcalc() (see below). Subsequently, whenever

LINDO API calls your pGradcalc () routine, it passes the same

pointer value through pUserData. Any data that pGradcalc ()

needs to compute partial derivatives should be stored in the

data structure pointed to by pUserData. The pUserData data

structure may be the same one used in pFuncalc().

nRow The row of the model for which partial derivatives are needed.

pdX The values of the decision variables at the current point (i.e.,

pdX[j] = value of variable j at current point, for j = 0, 1,…).

pdLB pdLB[j] = lower bound on variable j.

pdUB pdUB[j] = upper bound on variable j.

nNewPnt

nNewPnt will be 0 if the variable values in pdX[] are the same

as in the preceding call. If these values are still stored in your

pUserData memory block, then they need not be copied again,

490 CHAPTER 7

thereby improving performance. If any of the values are

different, then nNewPnt will be greater than 0. Without loss of

correctness, nNewPnt can be ignored. In certain cases,

however, exploiting the information it provides can reduce

function evaluation time.

nNPar Number of variables for which partial derivatives are needed.

pnParList pnParlList[j] = 0-based index of the j-th variable for which a

partial derivative is needed.

Output Arguments:

Name Description

pdPartial pdPartial[j] = partial derivative with respect to variable j. In

most cases, many of the elements of pdPartial[] will not have

to be set. You need only set those elements listed in

pnParList[]. LINDO API allocates the space for this array

before calling pGradcalc ().

 Remarks:

 The variable bounds are passed for use in computing partials of functions with

discontinuous derivatives. Note, the bounds may change from one call to the next if the

model contains integer variables and the solver is performing branch-and-bound.

Grey-Box Style Interface
The grey-box style interface allows the user to supply some functions in instruction list style and

others in the black-box style. This mixed approach is particularly useful for cases where function

evaluating routines were implemented in the past (possibly in some other language) and it is

imperative to reuse the existing source code. It might also be the case that some functions are difficult

to express in an instruction list or even impossible due to lack of closed forms (like simulation output).

In such case, the user can formulate an instruction-list using the EP_USER operator wherever the need

arises to evaluate some of the expressions in a user-defined function. A simple C programming

example using the grey-box interface is given as Example 5.

 SOLVING NONLINEAR PROGRAMS 491

Usercalc()

Description:

In Grey-box style interface, this is the user/front-end supplied routine, required by the

EP_USER operator, to compute the value of a user-defined function for a given set of

arguments. The arguments the function uses are passed through in a double array of a pre-

specified size.

This function name used here, Usercalc(), is arbitrary, and is merely for illustration. Since

this function will reside in your calling application, you may choose any name you wish.

However, the interface described below must be duplicated.

This function should be provided for all nonlinear models that contain the EP_USER

operator. This operator is particularly useful in expressing nonlinear relations, which are

difficult or impossible to express in closed form. You should use the LSsetUsercalc() routine

to identify your Usercalc() routine to LINDO API.

Returns:

Returns a value greater than 0 if a numerical error occurred while computing the function

value (e.g., square root of a negative number). Otherwise, return 0.

Prototype:

int Usercalc (pLSmodel pModel, int nArgs, double *pdValues,

void *pUserData, double *pdFuncVal);

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nArgs The number of arguments the function requires to evaluate the

function value.

pdValues A pointer to a double array containing the values of the

arguments that will be used to evaluate the function. The size

of this array is specified by nArgs.

pUserData Pointer to a user data area or structure in which any other data

needed to calculate function values can be stored (e.g., input

for a simulation experiment). LINDO API obtains the value of

this pointer when the Usercalc() routine is established through

a call to LSsetFuncalc() (see below). Subsequently, whenever

LINDO API calls your Usercalc() routine, it passes the same

pointer value through pUserData. Any data that Usercalc()

needs to compute the function value could be stored in the data

structure pointed to by pUserData.

Output Arguments:

Name Description

pdFuncVal *pdFuncVal returns the value of the function.

492 CHAPTER 7

Remark:

This single Usercalc() function can be used as a gateway to multiple black-box functions by

extending the use of pdValues array. You simply increase the number of arguments by 1 and

use the first argument (pdValues[0]) as an integer to identify which black-box function needs

to be computed. In such a framework, each EP_USER instruction-block will have to be

extended with EP_PUSH_NUM operator to include a unique function identifier to pass to

Usercalc(). This allows the user to transform Usercalc() into a wrapper for all black-boxes.

With the use of “if-else” blocks based on the value of pdValue[0] in Usercalc(), the user can

divert the computations to the desired black-box. This approach is illustrated in Example 5

with two black-boxes.

Instruction Format
The instruction for most functions consists of a single operator that is represented by its operator name

or the integer referring to its index number in the above list. For example, addition can be written as

‘EP_PLUS’ or ‘1’ in the instruction list. The exceptions are functions involving a vector argument,

such as EP_SUM, EP_AVG, EP_MIN, and EP_MAX, or two arguments, such as EP_SUMPROD and

EP_VLOOKUP. Here an additional integer appears immediately after the operator code in order to

specify the number of elements in the operand vector. When the argument is a variable, PUSH_VAR is

used to invoke loading of the variable and then the position of that variable in the integer vector is

specified. For example, variable ‘x0’ that is the first variable (at position 0, since LINDO API uses

zero-based counting) in the variable vector ‘x’, takes a vector of [EP_PUSH_VAR, 0] or [63, 0] in the

instruction list. When the argument is a (double precision) constant, the operator EP_PUSH_NUM is

used to invoke the loading of the double precision number and then the position of that double

precision number in the double precision number vector is specified. For example, say 3.0 is the

second number (at position 1) in the double precision number vector of r[5]=[1.0, 3.0, 5.0 2.0, 7.0].

Write [EP_PUSH_NUM, 1] or [62, 1] in the instruction list to denote the double precision number 3.0.

Given these representation rules and postfix notation, an instruction list for arbitrary mathematical

expressions can now be constructed. Below are three examples to illustrate this translation.

Example 1
Infix expression = x0 + x1* x2. The corresponding postfix expression = [x0 x1 x2 * +].

If the variable vector is defined as x = [x0, x1, x2], then the resulting instruction list looks like:

[EP_PUSH_VAR, 0, EP_PUSH_VAR, 1, EP_PUSH_VAR, 2, EP_MULTIPLY, EP_PLUS]

or, in the equivalent all integer form:

[1063, 0, 1063, 1, 1063, 2, 1003, 1001]

Example 2
Infix expression = 2 * max(x0, x1 + 3, sin(x0+ x1))

Notice max takes a vector argument with 3 elements. Define a vector of variables x = [x0 , x1] and

declare a vector of double precision constants r=[2.0 , 4.0] storing number values. Then, the

mathematical expression can be translated into the postfix notation, and the result looks like:

[2 x0 x1 3 + x0 x1 + sin max *]

 SOLVING NONLINEAR PROGRAMS 493

This can be converted to the following instruction list:

[EP_PUSH_NUM, 0, EP_PUSH_VAR, 0, EP_PUSH_VAR, 1, EP_PUSH_NUM, 1,

EP_PLUS, EP_PUSH_VAR, 0, EP_PUSH_VAR, 1, EP_PLUS, EP_SIN, EP_MAX, 3,

EP_MULTIPLY]

or, in the equivalent all integer form:

[1062, 0, 1063, 0, 1063, 1, 1062, 1, 1001, 1063, 0, 1063, 1, 1001, 1023, 1058, 3, 1003]

Example 3
Infix expression= (x0 + x1 - 1) * (x1 + 3) – 9 * exp(-5 * x0

2
 / x1)

Define the vector of variables x = [x0 , x1] and declare a double precision vector r =[1.0 , 3.0 , 9.0, 5.0,

2.0] that includes all double precision numbers in the expression. The corresponding postfix =

[x0 x1 + 1 - x1 3 + * 9 5 x0 2 ^ * x1 / - exp * -]

Thus, the resulting instruction list looks like:

[EP_PUSH_VAR, 0, EP_PUSH_VAR, 1, EP_PLUS, EP_PUSH_NUM, 0, EP_MINUS,

EP_PUSH_VAR, 1, EP_PUSH_NUM, 1, EP_PLUS, EP_MULTIPLY, EP_PUSH_NUM, 2,

EP_PUSH_NUM, 3, EP_PUSH_VAR, 0, EP_PUSH_NUM, 4, EP_POWER, EP_MULTIPLY,

EP_PUSH_VAR, 1, EP_DIVIDE, EP_NEGATE, EP_EXP, EP_MULTIPLY, EP_MINUS],

or, in the equivalent all integer form:

[1063, 0, 1063, 1, 1001, 1062, 0, 1002, 1063, 1, 1062, 1, 1001, 1003, 1062, 2, 1062, 3, 1063,

0, 1062, 4, 1005, 1003, 1063, 1, 1004, 1017, 1030, 1003, 1002].

Note that the last operator, “ - ”, is a negate operation, rather than a minus, because it only involves a

single operand in the calculation. Also note that the power expression, [x0 2 ^], can be equivalently

replaced by [x0 square].

Information about the instruction lists and variable bounds are then passed to LINDO API with a call

to LSloadInstruct.

Differentiation

When solving a general nonlinear problem, the solution method used by LINDO API requires the

computation of derivatives. The accuracy and efficiency of the derivative computation are of crucial

importance for convergence speed, robustness, and precision of the answer. The instruction list form of

input supports two approaches to compute derivatives: finite differences and automatic differentiation.

The finite differences approach is the default method to compute derivatives when the local NLP

solver is used. For highly nonlinear cases, this approach may have poor numerical precision for

computing the matrix of partial derivatives of the constraints, the so-called Jacobian. The automatic

differentiation approach computes derivatives directly from the instruction list code. When the Global

optimizer is used, the default method to compute derivatives is automatic differentiation. To select the

automatic differentiation option, call LSsetModelIntParameter() to set the value of parameter

LS_IPARAM_NLP_AUTODERIV to 1.

494 CHAPTER 7

Solving Non-convex and Non-smooth models
The two main reasons that you may not have gotten the best possible solution for your nonlinear model

are a) the model contained non-convex relations, or b) the model contained nonsmooth relations.

Qualitatively, if a model is non-convex, it means that a solution method that moves only in a direction

of continuous improvement will not necessarily lead one to the best possible solution. An example of a

non-convex model is:

Maximize (x -5)
2
;

 0 ≤ x ≤12;

If you start at x = 4, moving in the direction of an improving solution will lead to a local optimum of

x = 0. The global optimum is in fact at x = 12.

In a nonsmooth model, even though the model is convex, it may be difficult to find a direction of

improvement. Examples of nonsmooth functions are abs(x), and max(x, y). For example, abs(x) is

not smooth at x = 0, while max(x, y) has a sharp break at x = y.

 An example of a convex and nonsmooth model is:

Minimize max(abs(x-5), abs(y-5));

The obvious global optimum occurs at x = y = 5. If you start at x = y = 0, the objective value is 5.

Notice that increasing x by itself does not help. Decreasing x hurts. Similar comments apply to y. Thus,

traditional solution methods based on derivatives may be unable to find a direction of improvement at

a point such as x = y = 0, which is not even a local optimum. In this case, the solver will simply quit.

LINDO API has three methods available for eliminating difficulties caused by nonsmooth or non-

convex functions: a) linearization, b) multiple start points, and c) rigorous global optimization.

Linearization
Using the first of these methods, a process referred to as linearization, some of the nonlinear functions

and expressions supported by LINDO API may be automatically converted into a series of linear

expressions by the solver. Linearization replaces a nonlinear function or expression with a collection

of additional variables and linear constraints such that the modified model is mathematically

equivalent to the original. However, the nonlinear functions or expressions have been eliminated. Note

that the linearization process may internally add a considerable number of constraints and variables,

some of which are binary, to the mathematical program generated to optimize your model.

Nonlinear functions, operators, and expressions that may be eliminated through linearization are:

Functions Operators Expressions

EP_ABS < x* y (where at least one of x and y is a binary 0/1 variable)

EP_AND  u* v = 0

EP_IF < > u* v  0

EP_MAX =

EP_MIN <

EP_NOT 

EP_OR

 SOLVING NONLINEAR PROGRAMS 495

To select the linearization options, you can use LSsetModelIntParameter() to set the value of the

LS_IPARAM_NLP_LINEARZ parameter and determine the extent to which LINDO API will attempt to

linearize models. The available options here are:

1. 0 (Solver decides) - Do Maximum linearization if the number of variables is 12 or less.

Otherwise, no linearization will be performed.

2. 1 (None) - No linearization occurs.

3. 2 (Minimum)- Linearize EP_ABS, EP_MAX, and EP_MIN functions and expressions of

x* y , u* v = 0, and u* v  0 (complementarity constraint).

4. 3 (Maximum) - Same as Minimum plus linearize EP_IF, EP_AND, EP_OR, EP_NOT,

and all logical operations (i.e., , =, , and <>).

By default, this parameter is set to 0 (Solver decides).

When a nonlinear model can be fully linearized using nonlinear-to-linear conversions, you may find a

global optimum rather than a local minimum, find a solution where none could be found before, and/or

find an optimal solution faster. Even when the nonlinear model is merely partially linearized and

remains nonlinear after linearization, you still may have a good chance to get the aforementioned

benefits. However, there is no mathematical guarantee.

To check the linearity of the model, you can use LSgetModelIntParameter() to get the value of the

LS_IPARAM_NLP_LINEARITY parameter. If the return value is 1, then the solver has determined that

your model is linear or has been completely linearized in the pre-processing step. This also means that

the solution obtained is the global optimum. If the return value is 0, your model is nonlinear or remains

nonlinear after linearization and the solution may be a local optimum.

Note: It is not possible to linearize a model, which is already loaded. If linearization needs to be

used, it should be turned on before the call to LSloadInstruct.

Delta and Big M Coefficients
In linearization, two coefficients, Delta and Big M, are used to build up the additional linear

constraints added as part of linearization. The Delta coefficient is a measure of how closely the

additional constraints should be satisfied. To define the Delta coefficient, you can use

LSsetModelDouParameter() to set the value of the LS_DPARAM_MIP_DELTA parameter. LINDO

API defaults to the tightest possible Delta coefficient of Big M.

On the other hand, when LINDO API linearizes a model, it will add forcing constraints to the

mathematical program to optimize your model. These forcing constraints are of the form:

f(variables)  M * y

where M is the Big M coefficient and y is a 0/1 binary variable. The idea is that, if some activity in the

model is occurring, the forcing constraint will drive y to take on the value of 1. Given this, setting the

Big M value too small could result in an infeasible model. The astute reader might conclude it would

be smart to make Big M quite large, thereby minimizing the change of an infeasible model.

Unfortunately, setting Big M to a large number can lead to numerical round-off problems in the solver

that result in infeasible or suboptimal solutions. Therefore, getting a good value for the Big M

coefficient may take some experimenting. To set the Big M coefficient, use

LSsetModelDouParameter() to set the value of the LS_DPARAM_MIP_ LBIGM parameter. The

default value for Big M is 1.0e+5.

496 CHAPTER 7

Precedence Relations and Complementarity Constraints
When the linearization option is turned on, LINDO API will recognize the expression pattern of x*y

that involves the multiplication of at least one 0/1 variable (i.e., y). The linearization manager may

attempt to rearrange the sequence of a series of products and determine the best linearization strategies.

Even when the original model expression involves parentheses to override the precedence rules, the

linearization manager still recognizes the possible x*y pattern exists by expanding parentheses.

Subsequently, it will linearize these linearizable expressions.

Currently, the linearization manager rearranges and detects products involving only single variables

and constants (e.g., 2* x0* y0* x1* y1) and performs a comprehensive linearization. Products involving

nonlinear elements (e.g., exp(x) or sin(x), x^2) in complicated expressions (e.g., 2* x0* y0*exp(x1))

won’t be rearranged. Thus, the model might be merely partially linearized.

For complementarity constraints (i.e., u*v = 0 or u*v  0 or u*v  0), LINDO API can recognize and

linearize any product of two continuous or discrete variables (i.e., u and v) constrained to be equal to,

less than, or greater than zero. In order to be recognized as complementarity constraints, the

corresponding instruction list of the constraint should be expressed exactly as:

[EP_PUSH_VAR, (variable index 1) , EP_PUSH_VAR, (variable index 2), EP_MULTIPLY].

Solving and Retrieving the Solution of a Linearized Model
Linearization adds binary variables to the original model and makes it an (mixed) integer (nonlinear)

programming problem. In order to ensure proper solution, LSsolveMIP should be run on the

linearized model. Solution vectors in a linearized model should be accessed via MIP specific solution

query functions (e.g. LSgetMIPPrimalSolution).

Since linearization modifies the original model by adding new variables and constraints to it, the user

should be careful when allocating space for solution vectors. In particular, the number of variables and

constraints in a linearized model would constitute the basis for the size of solution vectors. For

example, a model that has n_vars variables without linearization would have n_vars + k variables with

linearization. Similarly, a model that has n_cons constraints without linearization would have n_cons

+ t constraints with linearization.

The actual values for the number of variables and constraints should be obtained by calling LSgetInfo

function and then be used to allocate sufficient space for the solution vectors. The values of the first

n_vars (n_cons) elements in the primal (dual) solution vectors of the linearized model refer to the

primal (dual) solution of the original model.

Multistart Scatter Search for Difficult Nonlinear Models
In many real-world systems, the governing dynamics are highly nonlinear and the only way they can

be accurately modeled is by using complex nonlinear relationships. Although linear or convex

approximations are often possible, there are cases where such approximations lead to a significant loss

in the accuracy of the model. In the presence of such nonlinear relationships, the analyst faces the

difficult task of solving non-convex nonlinear models. The difficulty is mainly due to three factors: (i)

there are an unknown number of locally optimal solutions in the feasible solution set, (ii) the quality of

these local solutions vary substantially, and (iii) exploring the solution space, even for small problems,

could be prohibitive.

 SOLVING NONLINEAR PROGRAMS 497

In solving non-convex models, the ultimate goal is to find the best of the local optimal solutions. This

is referred to as the global optimum. The optimization task involved with finding the global optimum

is called global optimization. In the context of minimization, LINDO API provides globally optimal

solutions to linear or convex quadratic (mixed-integer) models. For nonlinear models, the solution

returned will be a local optimum and is not known to be the global minimizer. If the nonlinear

objective function and the feasible solution set is known to be convex, then any local optimal solution

could be assessed as the global minimizer. However, it is generally not possible to check if the

nonlinear model under consideration is convex or not. Verifying this is harder than finding a proven

global minimizer.

For non-convex nonlinear models, LINDO API is equipped with a global optimization heuristic called

the multistart nonlinear solver. This method explores the feasible solution space in search of better

local optimal solutions. A multistart method for global optimization refers to a generic algorithm that

attempts to find a global solution by starting the main nonlinear solver from multiple starting points in

the solution space. This method is stochastic in nature and ensures that the chances to achieve a global

optimum are 100% if the algorithm is run indefinitely long. However, for practical purposes, LINDO

API allows the user to set an upper limit on the number of local solutions to be examined within a

fixed number of iterations or during a finite duration of time. This approach generally leads to locating

several high quality local optima and then returns the best one found.

In Figure 7.1, a box-constrained non-convex nonlinear model is illustrated. This is based on a non-

convex combination of three Gaussian distributions. The formal model statement is as follows:

MINIMIZE Z = 3*(1-X)
2
*exp(-(X

2
)-(Y+1)

2
) – 10*(X/5-X

3
-Y

5
)*exp(-(X

2
)

 -Y
2
) – exp(-((X+1)

2
)-Y

2
)/3

S.T. 3  X  -3 , 3  Y  -3

This model has multiple local optimal solutions and its objective values are highly scale-dependent. In

the following section, the section Example 1: Black-Box Style Interface below demonstrates how the

standard nonlinear solver is used to solve the model. In the Example 3: Multistart Solver for Non-

Convex Models below, the same model is solved using the multistart solver to demonstrate the

achievable improvements in the solution quality. Example 3 illustrates the use of a standard callback

function to access every local solution found during optimization.

498 CHAPTER 7

Figure 7.1

Global Optimization of Difficult Nonlinear Models
For difficult nonlinear models that are either non-smooth or non-convex, the multistart search option is

worth considering. However, the multistart option does not provide a guarantee of global optimality. If

a guarantee of global optimality is desired, then one may invoke the global optimizer in LINDO API.

The global optimizer uses a) branching to split the feasible region into sub regions and b) bounding to

get a valid bound on the optimal objective value in each sub region. Sub regions for which the bound is

worse than some incumbent solution are discarded. A promising sub region may be subdivided further

in order to get a more accurate bound. The multistart option works with either the black-box or

instruction list style of input. The global optimizer option works only with the instruction list input

format. See the sections Black-Box Style Interface and Instruction-List Style Interface above for more

information.

The global solver supports a wide range of mathematical functions. Functions currently supported are

identified in the earlier table: “Supported Operators and Functions” in the column, “Global supported”.

If the model contains functions that are not supported, the global solver will terminate without

computing a solution and return an error message of LSERR_GOP_FUNC_NOT_SUPPORTED. In

such cases, the standard or multistart NLP solvers could be invoked by calling LSoptimize() (or

LSsolveMIP() for integer models) to obtain a local optimal solution

An obvious question is, why not use the global solver option all the time? The answer is that finding a

guaranteed global optimum is an NP-hard task. That is, just as with integer programs, the time to find a

guaranteed global optimum may increase exponentially with problem size.

 SOLVING NONLINEAR PROGRAMS 499

Sample Nonlinear Programming Problems
Example 1: Black-Box Style Interface:
This example illustrates the use of LINDO API to build and solve a small nonlinear model whose

unconstrained version is illustrated in Figure 7.1 above. The black-box style interface is used. This

requires a (callback) function to evaluate the objective function and constraints of the model. The

callback function will be installed using the LSsetFuncalc() routine. A second callback function that

computes the partial derivatives of the objective function and constraints is also provided. This second

callback function is optional and need not be specified. LINDO API can approximate the derivatives

from the functional values using a technique called finite differences.

/*

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : ex_nlp1.c

 Purpose: Solve a NLP using the black-box style interface.

 Model : A nonlinear model with multiple local minimizers.

 minimize f(x,y) = 3*(1-x)^2*exp(-(x^2) - (y+1)^2)

 - 10*(x/5 - x^3 - y^5)*exp(-(x^2)-(y^2))

 - 1/3*exp(-(x(+1)^2) - (y^2));

 subject to

 x^2 + y <= 6;

 x + y^2 <= 6;

*/

#include <stdio.h>

#include <math.h>

#include <string.h>

#include "lindo.h"

/* the summands of the objective function */

#define g1(X,Y) (exp(-pow(X ,2) - pow(Y+1,2)))

#define g2(X,Y) (exp(-pow(X ,2) - pow(Y ,2)))

#define g3(X,Y) (exp(-pow(X+1,2) - pow(Y ,2)))

#define f1(X,Y) (pow(1-X,2))

#define f2(X,Y) (X/5 - pow(X ,3) - pow(Y ,5))

/* partial derivatives of the summands */

#define dxg1(X,Y) (g1(X,Y)*(-2)*X)

#define dyg1(X,Y) (g1(X,Y)*(-2)*(Y+1))

#define dxg2(X,Y) (g2(X,Y)*(-2)*X)

#define dyg2(X,Y) (g2(X,Y)*(-2)*Y)

#define dxg3(X,Y) (g3(X,Y)*(-2)*(X+1))

#define dyg3(X,Y) (g3(X,Y)*(-2)*Y)

#define dxf1(X,Y) (2*(1-X))

#define dyf1(X,Y) (0)

#define dxf2(X,Y) (1/5 - 3*pow(X,2))

#define dyf2(X,Y) (-5*pow(Y,4))

500 CHAPTER 7

/**

 Standard callback function to display local and intermediate

 solutions

 **/

int LS_CALLTYPE print_log(pLSmodel model, int iLoc, void *cbData)

{

 int iter=0,niter,biter,siter;

 int *nKKT = (int *) cbData, npass;

 double pfeas=0.0,pobj=0.0,dfeas=0.0;

 double bestobj;

 static int ncalls = 0;

 if (iLoc==LSLOC_LOCAL_OPT)

 {

 LSgetCallbackInfo(model,iLoc,LS_IINFO_NLP_ITER,&niter);

 LSgetCallbackInfo(model,iLoc,LS_IINFO_SIM_ITER,&siter);

 LSgetCallbackInfo(model,iLoc,LS_IINFO_BAR_ITER,&biter);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_POBJ,&pobj);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_PINFEAS,&pfeas);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_DINFEAS,&dfeas);

 LSgetCallbackInfo(model,iLoc,LS_IINFO_MSW_PASS,&npass);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_MSW_POBJ,&bestobj);

 iter = niter+siter+biter;

 printf("%5d %5d %16.5e %16.5e %16.5e %16.5e\n",

 npass,iter,pobj,pfeas,dfeas,bestobj);

 (*nKKT)++;

 }

 else if (iLoc == LSLOC_CONOPT)

 {

 if (ncalls == 0)

 {

 printf("%5s %5s %16s %16s %16s %16s\n",

 "PASS","ITER","POBJ","PINFEAS","DINFEAS","BESTOBJ");

 }

 LSgetCallbackInfo(model,iLoc,LS_IINFO_NLP_ITER,&iter);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_POBJ,&pobj);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_PINFEAS,&pfeas);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_DINFEAS,&dfeas);

 printf("%5s %5d %16.5e %16.5e %16.5e %16s\n",

 "",iter,pobj,pfeas,dfeas,"");

 }

 ncalls++;

 return 0;

} /*print_log*/

/**

 Callback function to compute function values

 **/

int CALLBACKTYPE Funcalc8(pLSmodel pModel,void *pUserData,

 int nRow ,double *pdX,

 int nJDiff,double dXJBase,

 double *pdFuncVal,int *pReserved)

{

 double val=0.0, X = pdX[0], Y = pdX[1];

 int nerr=0;

 /* compute objective's functional value*/

 SOLVING NONLINEAR PROGRAMS 501

 if (nRow==-1)

 val = 3*f1(X,Y)*g1(X,Y) - 10*f2(X,Y)*g2(X,Y) - g3(X,Y)/3;

 /* compute constraint 0's functional value */

 else if (nRow==0)

 val = X*X + Y - 6.0;

 /* compute constraint 1's functional value */

 else if (nRow==1)

 val = X + Y*Y - 6.0;

 *pdFuncVal=val;

 return nerr;

} /*Funcalc8*/

/***

 Callback function to compute derivatives

 ***/

int CALLBACKTYPE Gradcalc8(pLSmodel pModel, void *pUserData,

 int nRow,double *pdX, double *lb,

 double *ub, int nNewPnt, int nNPar,

 int *parlist, double *partial)

{

 int i2,nerr=0;

 double X=pdX[0], Y=pdX[1];

 /*zero out the partials */

 for (i2=0;i2<nNPar;i2++) partial[i2]=0.0;

 /* partial derivatives of the objective function */

 if (nRow==-1) {

 for (i2=0;i2<nNPar;i2++) {

 if (lb[parlist[i2]]!=ub[parlist[i2]]) {

 if (parlist[i2]==0) {

 partial[i2]=

 3*(dxf1(X,Y)*g1(X,Y) + f1(X,Y)*dxg1(X,Y))

 - 10*(dxf2(X,Y)*g2(X,Y) + f2(X,Y)*dxg2(X,Y))

 - 1/3*(dxg3(X,Y));

 } else if (parlist[i2]==1) {

 partial[i2]=

 3*(dyf1(X,Y)*g1(X,Y) + f1(X,Y)*dyg1(X,Y))

 - 10*(dyf2(X,Y)*g2(X,Y) + f2(X,Y)*dyg2(X,Y))

 - 1/3*(dyg3(X,Y));

 }

 }

 }

 }

 /* partial derivatives of Constraint 0 */

 else if (nRow==0) {

 for (i2=0;i2<nNPar;i2++) {

 if (lb[parlist[i2]]!=ub[parlist[i2]]) {

 if (parlist[i2]==0) {

 partial[i2]=2.0*X;

 } else if (parlist[i2]==1) {

 partial[i2]=1;

 }

 }

 }

 }

 /* partial derivatives of Constraint 1 */

 else if (nRow==1) {

 for (i2=0;i2<nNPar;i2++) {

502 CHAPTER 7

 if (lb[parlist[i2]]!=ub[parlist[i2]]) {

 if (parlist[i2]==0) {

 partial[i2]=1;

 } else if (parlist[i2]==1) {

 partial[i2]=2.0*Y;

 }

 }

 }

 }

 return nerr;

}

/* main entry point*/

int main(int argc, char **argv)

{

 pLSenv env = NULL;

 pLSmodel model = NULL;

 FILE *logfile = stdout;

 int errors=0,errorcode=LSERR_NO_ERROR, status;

 double lb[2],ub[2],A[4],rhs[2],cost[2], primal[2],objval;

 int Abegcol[3],Arowndx[4],Alencol[2],Nobjndx[2];

 int m,n,nz, Nnlobj, counter = 0;

 char contype[2];

 char MY_LICENSE_KEY[1024];

 /**

 * Step 1: Create a model in the environment.

 **/

 errorcode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

 env = LScreateEnv(&errorcode,MY_LICENSE_KEY);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 model = LScreateModel(env,&errorcode);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 /**

 * Step 2: Specify the LP portion of the model.

 **/

 /* model dimensions */

 m = n = 2; nz = 4;

 /* The indices of the first nonzero in each column */

 Abegcol[0]=0; Abegcol[1]=2; Abegcol[2]=4;

 /* The length of each column */

 Alencol[0]=2; Alencol[1]=2;

 /* The row indices of the nonzero coefficients */

 Arowndx[0]=0; Arowndx[1]=1; Arowndx[2]=0; Arowndx[3]=1;

 /* The nonzero coefficients of the linear portion of the model*/

 /* The NLP elements have a zero at each of their occurrence */

 A[0]=0.0; A[1]=1.0; A[2]=1.0; A[3]=0.0;

 /* The objective coefficients of the linear portion of the model*/

 cost[0]=0.0; cost[1]=0.0;

 /* lower bounds on variables */

 lb[0]=-3.0 ; ub[0]= 3.0; lb[1]=-3.0 ; ub[1]= 3.0;

 /* The right-hand sides of the constraints */

 rhs[0]=0.0; rhs[1]=0.0;

 /* The constraint types */

 contype[0]='L'; contype[1]='L';

 /* Load in nonzero structure and linear/constant terms. */

 errorcode=LSloadLPData(model,m,n,LS_MIN,0.0,cost,rhs,contype,nz,

 SOLVING NONLINEAR PROGRAMS 503

 Abegcol,Alencol,A,Arowndx,lb,ub);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 /**

 * Step 3: Specify the NLP portion of the model.

 **/

 /* The number of nonlinear variables in each column */

 Alencol[0]=1; Alencol[1]=1;

 /* The indices of the first nonlinear variable in each column */

 Abegcol[0]=0; Abegcol[1]=1; Abegcol[2]=2;

 /* The indices of nonlinear constraints */

 Arowndx[0]=0;

 Arowndx[1]=1;

 /* The indices of variables that are nonlinear in the objective*/

 Nobjndx[0]=0;

 Nobjndx[1]=1;

 /* Number nonlinear variables in cost. */

 Nnlobj = 2;

 /* Load the nonlinear structure */

 errorcode=LSloadNLPData(model,Abegcol,Alencol,

 NULL,Arowndx,Nnlobj,Nobjndx,0);

 printf("\nThe model is installed successfully...\n");

 /**

 * Step 4: Set up callback functions

 **/

 /* Install the routine that will calculate the function values. */

 errorcode=LSsetFuncalc(model,(Funcalc_type) Funcalc8,NULL);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 /* Install the routine that will calculate the gradient */

 errorcode=LSsetGradcalc(model,Gradcalc8,NULL,0,NULL);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 /* Install a callback function */

 LSsetCallback(model,(cbFunc_t) print_log, &counter);

 /* Set the print level to 1 */

 errorcode=LSsetModelIntParameter(model,LS_IPARAM_NLP_PRINTLEVEL,1);

 /* Turn multi-start search on */

LSsetModelIntParameter(model,LS_IPARAM_NLP_SOLVER,LS_NMETHOD_MSW_GRG)

;

 /* Set maximum number of local optimizations */

 LSsetModelIntParameter(model,LS_IPARAM_NLP_MAXLOCALSEARCH,1);

 /**

 * Step 5: Solve the model

 **/

 /* load an initial starting point */

 primal[0] = 0.25; primal[1] = -1.65;

 errorcode=LSloadVarStartPoint(model, primal);

 /* optimize the model */

 errorcode=LSoptimize(model,LS_METHOD_FREE, &status);

 if (errorcode!=LSERR_NO_ERROR)

 return errorcode;

 {

 int i;

 errorcode = LSgetInfo(model, LS_DINFO_POBJ, &objval);

 errorcode = LSgetPrimalSolution(model, primal);

 printf("\n\n\nPrinting the best local optimum found.\n");

 printf("obj = %f \n",objval);

504 CHAPTER 7

 for (i=0; i<2; i++) printf("x[%d] = %f \n",i,primal[i]);

 }

 /**

 * Step 6: Delete the model & env space

 **/

 LSdeleteModel(&model);

 LSdeleteEnv(&env);

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

 return errorcode;

} /*main*/

The source code file for this example may be found in the \lindoapi\samples\c\ex_nlp1\ folder. After

creating the executable “ex_nlp1.exe”, you can run the application from the DOS-prompt and produce

the following report on the screen.

The model is installed successfully...

PASS ITER POBJ PINFEAS DINFEAS BESTOBJ

 0 0.00000e+000 0.00000e+000 0.00000e+000

 1 0.00000e+000 0.00000e+000 0.00000e+000

 2 0.00000e+000 0.00000e+000 0.00000e+000

 3 -6.54423e+000 0.00000e+000 6.15217e+000

 4 -6.54480e+000 0.00000e+000 5.97951e+000

 5 2.26638e-003 0.00000e+000 5.90105e+000

 6 -7.50481e-003 0.00000e+000 1.59402e-001

 6 -7.50481e-003 0.00000e+000 1.59402e-001

 6 0.00000e+000 0.00000e+000 0.00000e+000

 7 0.00000e+000 0.00000e+000 0.00000e+000

 8 0.00000e+000 0.00000e+000 0.00000e+000

 9 -7.50509e-003 0.00000e+000 4.32958e-001

 10 -3.81927e-001 0.00000e+000 4.32968e-001

 11 -4.28345e-001 0.00000e+000 2.43317e+000

 12 -4.86107e-001 0.00000e+000 1.98075e+000

 13 -1.22076e+000 0.00000e+000 3.24088e+000

 14 -1.46611e+000 0.00000e+000 1.34246e+001

 15 -2.45416e+000 0.00000e+000 2.11428e+001

 16 -2.85036e+000 0.00000e+000 7.38464e+000

 17 -3.01813e+000 0.00000e+000 1.31130e+001

 18 -3.01813e+000 0.00000e+000 1.17374e+000

 19 -2.97944e+000 0.00000e+000 1.17374e+000

 19 -2.97944e+000 0.00000e+000 1.17374e+000

 19 -2.97944e+000 0.00000e+000 1.17374e+000

Printing the best local optimum found.

obj = -2.979441

x[0] = -1.449174

x[1] = 0.194467

Press <Enter> ...

 SOLVING NONLINEAR PROGRAMS 505

Example 2: Instruction-List Style Interface
This example illustrates the use of LINDO API to build and solve a small nonlinear mixed integer

model loaded via the instruction-list interface.

/*

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : ex_nlp2.c

 Purpose: Solve a NLP using the instruction-list style interface.

 Model : A nonlinear model with multiple local minimizers.

 maximize abs(x0 + 1) + .4 * x1;

 s.t. x0 + x1 - 4 <= 0;

 x0 * x1 + x1 - 6 <= 0;

 x0 * x1 <= 0;

 max(x0 , x1 + 1) >= 0;

 if(x1, 1, x1) <= 0;

 (x1 * 2 * x1 - x1) * x0 <= 0;

 -100 <= x0 <= 100

 x1 is binary

*/

#include <stdio.h>

#include <stdlib.h>

/* LINDO API header file */

#include "lindo.h"

/* Define a macro to declare variables for

 error checking */

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

#define APIERRORCHECK

 if (nErrorCode)

 {

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("nErrorCode=%d: %s\n", nErrorCode,

 cErrorMessage);

 } else {

 printf("Fatal Error\n");

 }

 exit(1);

 }

/* main entry point */

int main()

{

506 CHAPTER 7

 APIERRORSETUP;

 pLSenv pEnv;

 pLSmodel pModel;

 char MY_LICENSE_KEY[1024];

 /**

 * Step 1: Create a model in the environment.

 **/

 nErrorCode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

/* >>> Step 2 <<< Create a model in the environment. */

 pModel = LScreateModel(pEnv,&nErrorCode);

 APIERRORCHECK;

 {

/* >>>> Step 3 <<< Set up the instruction list of the model. */

 int nobjs, ncons, nvars, nnums, lsize;

 int objsense[1];

 char ctype[6], vtype[2];

 int code[100], varndx[2];

 double numval[8],varval[2];

 int objs_beg[1], objs_length[1], cons_beg[6], cons_length[6];

 double lwrbnd[2], uprbnd[2];

 int nLinearz, nAutoDeriv;

 int ikod, iobj, icon;

 /* Number of constraints */

 ncons = 6;

 /* Number of objectives */

 nobjs = 1;

 /* Number of variables */

 nvars = 2;

 /* Number of real number constants */

 nnums = 5;

 /* Variable index */

 varndx[0]=1;

 varndx[1]=2;

 /* Lower bounds of variables */

 lwrbnd[0]=-100.0;

 lwrbnd[1]=0.0;

 /* Upper bounds of variables */

 uprbnd[0]=100.0;

 uprbnd[1]=1.0;

 /* Starting point of variables */

 varval[0]=4.0;

 varval[1]=0.0;

 /* Variable type, C= continuous, B = binary */

 vtype[0] = 'C';

 vtype[1] = 'B';

 /* Double Precision constants in the model */

 numval[0]=1.0;

 SOLVING NONLINEAR PROGRAMS 507

 numval[1]=0.4;

 numval[2]=6.0;

 numval[3]=4.0;

 numval[4]=2.0;

 /* Count for instruction code */

 ikod = 0;

 /* Count for objective row */

 iobj = 0;

 /* Count for constraint row */

 icon = 0;

 /*

 * Instruction code of the objective:

 *

 * max abs(x0 + 1) + .4 * x1;

 */

 /* Direction of optimization */

 objsense[iobj]= LS_MAX;

 /* Beginning position of objective */

 objs_beg[iobj]=ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 0;

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 0;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_ABS;

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 1;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_MULTIPLY;

 code[ikod++]= EP_PLUS;

 /* Length of objective */

 objs_length[iobj] = ikod - objs_beg[iobj];

 /*

 * Instruction code of constraint 0:

 *

 * x0 + x1 - 4 <= 0;

 */

 /* Constraint type */

 ctype[icon]= 'L'; /* less or than or equal to */

 /* Beginning position of constraint 0 */

 cons_beg[icon]= ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 0;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 3;

 code[ikod++]= EP_MINUS;

 /* Length of constraint 0 */

 cons_length[icon] = ikod - cons_beg[icon];

 /* Increment the constraint count */

508 CHAPTER 7

 icon++;

 /*

 * Instruction code of constraint 1:

 *

 * x0 * x1 + x1 - 6 <= 0;

 */

 /* Constraint type */

 ctype[icon]= 'L'; /* less than or equal to */

 /* Beginning position of constraint 1 */

 cons_beg[icon]= ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 0;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_MULTIPLY;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 2;

 code[ikod++]= EP_MINUS;

 /* Length of constraint 1 */

 cons_length[icon] = ikod - cons_beg[icon];

 /* Increment the constraint count */

 icon++;

 /*

 * Instruction code of constraint 2:

 *

 * x0 * x1 <= 0;

 */

 /* Constraint type */

 ctype[icon]= 'L'; /* less than or equal to */

 /* Beginning position of constraint 2 */

 cons_beg[icon]= ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 0;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_MULTIPLY;

 /* Length of constraint 2 */

 cons_length[icon] = ikod - cons_beg[icon];

 /* Increment the constraint count */

 icon++;

 /*

 * Instruction code of constraint 3:

 *

 * max(x0 , x1 + 1) >= 0;

 */

 /* Constraint type */

 ctype[icon]= 'G'; /* greater than or equal to */

 /* Beginning position of constraint 3 */

 cons_beg[icon]= ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_VAR;

 SOLVING NONLINEAR PROGRAMS 509

 code[ikod++]= 0;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 0;

 code[ikod++]= EP_PLUS;

 code[ikod++]= EP_MAX;

 code[ikod++]= 2;

 /* Length of constraint 3 */

 cons_length[icon] = ikod - cons_beg[icon];

 /* Increment the constraint count */

 icon++;

 /*

 * Instruction code of constraint 4:

 *

 * if(x1, 1, x1) <= 0;

 */

 /* Constraint type */

 ctype[icon]= 'L'; /* less than or equal to */

 /* Beginning position of constraint 4 */

 cons_beg[icon]= ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 0;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_IF;

 /* Length of constraint 4 */

 cons_length[icon] = ikod - cons_beg[icon];

 /* Increment the constraint count */

 icon++;

 /*

 * Instruction code of constraint 5:

 *

 * (x1 * 2 * x1 - x1) * x0 <= 0;

 */

 /* Constraint type */

 ctype[icon]= 'L'; /* less than or equal to */

 /* Beginning position of constraint 5 */

 cons_beg[icon]= ikod;

 /* Instruction list code */

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_PUSH_NUM;

 code[ikod++]= 4;

 code[ikod++]= EP_MULTIPLY;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_MULTIPLY;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 1;

 code[ikod++]= EP_MINUS;

 code[ikod++]= EP_PUSH_VAR;

 code[ikod++]= 0;

510 CHAPTER 7

 code[ikod++]= EP_MULTIPLY;

 /* Length of constraint 5 */

 cons_length[icon] = ikod - cons_beg[icon];

 /* Total number of items in the instruction list */

 lsize = ikod;

 /* Set linearization level, before a call to LSloadInstruct.

 * If not specified, the solver will decide */

 nLinearz = 1;

 nErrorCode = LSsetModelIntParameter (pModel,

 LS_IPARAM_NLP_LINEARZ, nLinearz);

 APIERRORCHECK;

 /* Set up automatic differentiation, before a call to

 * LSloadInstruct. If not specified, the numerical derivative

 * will be applied */

 nAutoDeriv = 1;

 nErrorCode = LSsetModelIntParameter (pModel,

 LS_IPARAM_NLP_AUTODERIV, nAutoDeriv);

 APIERRORCHECK;

 /* Pass the instruction list to problem structure

 * by a call to LSloadInstruct() */

 nErrorCode = LSloadInstruct (pModel, ncons, nobjs, nvars,

nnums,

 objsense, ctype, vtype, code, lsize, varndx,

 numval, varval, objs_beg, objs_length, cons_beg,

 cons_length, lwrbnd, uprbnd);

 APIERRORCHECK;

 }

/*

 * >>> Step 5 <<< Perform the optimization using the MIP solver

 */

 nErrorCode = LSsolveMIP(pModel, NULL);

 APIERRORCHECK;

 {

 int nLinearity;

 double objval=0.0, primal[100];

 /* Get the optimization result */

 LSgetInfo(pModel, LS_DINFO_MIP_OBJ, &objval);

 APIERRORCHECK;

 LSgetMIPPrimalSolution(pModel, primal) ;

 APIERRORCHECK;

 printf("\n\nObjective = %f \n",objval);

 printf("x[0] = %f \n",primal[0]);

 printf("x[1] = %f \n",primal[1]);

 /* Get the linearity of the solved model */

 nErrorCode = LSgetModelIntParameter (pModel,

 LS_IPARAM_NLP_LINEARITY, &nLinearity);

 APIERRORCHECK;

 /* Report the status of solution */

 if (nLinearity)

 printf("\nModel has been completely linearized.\

 \nSolution Status: Globally Optimal\n");

 else

 printf("\nModel is nonlinear.\

 \nSolution Status: Locally Optimal\n\n");

 SOLVING NONLINEAR PROGRAMS 511

 }

 /* >>> Step 7 <<< Delete the LINDO environment */

 LSdeleteEnv(&pEnv);

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

}

This example maximizes a nonlinear objective subject to one linear and five nonlinear constraints.

After including the C header file, creating a LINDO environment object, and creating a model object

within the environment, the model is then assembled via the instruction list code. First, the numbers of

objective, constraints, variables, and constants that appeared in the model are set with the following:

/* Number of objectives */

nobjs = 1;

/* Number of constraints */

ncons = 6;

/* Number of variables */

nvars = 2;

/* Number of real number constants */

nnums = 5;

Then, all variable related information is defined, including lower bounds, upper bounds, variable types,

starting points, and variable indices. The setting of starting points and variable indices are optional to

the user.

/* Lower bounds of variables */

lwrbnd[0]=-100.0;

lwrbnd[1]=0.0;

/* Upper bounds of variables */

uprbnd[0]=100.0;

uprbnd[1]=1.0;

/* Starting point of variables */

varval[0]=4.0;

varval[1]=0.0;

/* Variable type, C= continuous, B = binary */

vtype[0] = 'C';

vtype[1] = 'B';

/* Variable index */

varndx[0]=1;

varndx[1]=2;

512 CHAPTER 7

Next, all double precision constants used in the model are placed into a number array:

/* Double Precision constants in the model */

numval[0]=1.0;

numval[1]=0.4;

numval[2]=6.0;

numval[3]=4.0;

numval[4]=2.0;

Right before starting to build up instruction lists, the counts for instruction codes, objective rows, and

constraint rows are reset with the following:

/* Count for instruction code */

 ikod = 0;

/* Count for objective row */

 iobj = 0;

/* Count for constraint row */

 icon = 0;

The instruction lists and related information are then constructed row by row. The objective function in

our example is to maximize a nonlinear function involving the abs() function:

/*

 * Instruction code of the objective:

 *

 * max abs(x0 + 1) + .4 * x1;

 */

For the objective row, the type of row is defined first by setting the direction of this objective:

/* Direction of optimization */

objsense[iobj]= LS_MAX;

The beginning position of the objective in the instruction list vector is set at the current count on the

instruction code:

/* Beginning position of objective */

objs_beg[iobj]=ikod;

Following the principles of postfix, the corresponding instruction list of the objective function is

placed into the code vector accordingly:

/* Instruction list code */

code[ikod++]= EP_PUSH_VAR;

code[ikod++]= 0;

code[ikod++]= EP_PUSH_NUM;

code[ikod++]= 0;

code[ikod++]= EP_PLUS;

code[ikod++]= EP_ABS;

code[ikod++]= EP_PUSH_NUM;

code[ikod++]= 1;

code[ikod++]= EP_PUSH_VAR;

code[ikod++]= 1;

code[ikod++]= EP_MULTIPLY;

code[ikod++]= EP_PLUS;

 SOLVING NONLINEAR PROGRAMS 513

The length of the objective is calculated as the difference of the current count of codes and the

beginning position:

/* Length of objective */

objs_length[iobj] = ikod - objs_beg[iobj];

Since there is only a single objective, the constraint rows are developed. The first constraint row,

constraint 0, is a simple linear equation constrained to less-than-or-equal-to zero:

/*

 * Instruction code of constraint 0:

 *

 * x0 + x1 - 4 <= 0;

 */

For this constraint, the type of constraint must first be defined to be less-than-or-equal-to:

/* Constraint type */

ctype[icon]= 'L'; /* less or than or equal to */

The beginning position of the constraint in the instruction list vector is set at the current count on the

instruction code:

/* Beginning position of constraint 0 */

cons_beg[icon]= ikod;

Again, following the principles of postfix, the corresponding instruction list of this constraint function

is placed into the code vector accordingly:

/* Instruction list code */

code[ikod++]= EP_PUSH_VAR;

code[ikod++]= 0;

code[ikod++]= EP_PUSH_VAR;

code[ikod++]= 1;

code[ikod++]= EP_PLUS;

code[ikod++]= EP_PUSH_NUM;

code[ikod++]= 3;

code[ikod++]= EP_MINUS;

At the end, the length of the current instruction list is set:

/* Length of constraint 0 */

cons_length[icon] = ikod - cons_beg[icon];

The count on constraint rows is then incremented by one:

/* Increment the constraint count */

icon++;

Following the same rule, the instruction lists for constraint 1, 2, 3, 4, and 5 can also be built

accordingly. After completely specifying the instruction lists and their related information, this model

definition segment is finished by declaring the total number of codes in the instruction lists:

/* Total number of items in the instruction list */

lsize = ikod;

LINDO API provides an user option in dealing with the model, which is linearization. To use this

option, it should be specified before you call LSloadInstruct to load nonlinear codes. The example

model contains nonlinear components of abs(), if(), complementary constraint, and x* y (where x

and/or y are binary 0/1 variables). All of these nonlinear components are linearizable. Therefore, if the

514 CHAPTER 7

Maximum linearization option is selected, the model can be completely linearized when loaded into

LINDO API. In such a case, the model will be transformed into an equivalent linear format, which

need not set up the differentiation option.

Note: Constraint 5 involves a multiplication of a parenthetical expression (x1*2*x1 - x1) with

variable x0, which is expanded into x1*2*x1*x0 –x1*x0 and linearized accordingly.

On the other hand, if the None linearization option is selected and the model stays in its nonlinear form

when loaded into LINDO API, using automatic differentiation can help the solver converge to the

optimal solution in a faster and more precise manner. Otherwise, the solver will use the default, finite

difference differentiation. In this example, the linearization option is turned off and differentiation is

set to automatic with the following code segment:

/* Set linearization level, before a call to LSloadInstruct.

 * If not specified, the solver will decide */

nLinearz = 1;

nErrorCode = LSsetModelIntParameter (pModel,

 LS_IPARAM_NLP_LINEARZ, nLinearz);

APIERRORCHECK;

/* Set up automatic differentiation. If not specified, the numerical

 derivative will be applied */

nAutoDeriv = 1;

nErrorCode = LSsetModelIntParameter (pModel,

 LS_IPARAM_NLP_AUTODERIV, nAutoDeriv);

APIERRORCHECK;

The next step, step 5, is to perform the optimization of the model with a call to LSsolveMIP and

retrieve the variable values. For a more detailed description of this step, please refer to the previous

chapters. LINDO API also provides a parameter LS_IPARAM_NLP_LINEARITY for the user to check

the characteristic of the solved model:

/* Get the linearity of the solved model */

nErrorCode = LSgetModelIntParameter (pModel,

 LS_IPARAM_NLP_LINEARITY, &nLinearity);

APIERRORCHECK;

If the returning value of linearity equals one, then the model is linear or has been completely linearized

in the linearization step. Thus, the global optimality of solution can be ascertained.

The source code file for this example may be found in the \lindoapi\samples\c\ex_nlp2\ folder. After

creating the executable “ex_nlp2.exe”, the application can be run from the DOS-prompt and produce

the following report on your screen.

Objective = 5.000000

x[0] = 4.000000

x[1] = 0.000000

Model is nonlinear.

Solution Status: Locally Optimal

Press <Enter> ...

 SOLVING NONLINEAR PROGRAMS 515

Example 3: Multistart Solver for Non-Convex Models
This example demonstrates how the multistart nonlinear solver can be used in solving a non-convex

mixed-integer nonlinear program. The example uses the same model given in Example 1 with the

black-box style interface where gradients are computed using finite differences. A callback function is

included, so each local solution found during the solution procedure is reported to the user. For more

information on callback functions, refer to Chapter 9, Using Callback Functions.

/*

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : ex_nlp3.c

 Purpose: Solve a MINLP using the black-box stye interface.

 Model : A nonlinear model with linear constraints.

 minimize f(x,y) = 3*(1-x)^2*exp(-(x^2) - (y+1)^2)

 - 10*(x/5 - x^3 - y^5).*exp(-x^2-y^2)

 - 1/3*exp(-(x+1)^2 - y^2);

 subject to

 x + y <= 3;

 - y <= 1;

 x integer

*/

#include <stdio.h>

#include <math.h>

#include <string.h>

#include "lindo.h"

/* the summands of the objective function */

#define g1(X,Y) (exp(-pow(X ,2) - pow(Y+1,2)))

#define g2(X,Y) (exp(-pow(X ,2) - pow(Y ,2)))

#define g3(X,Y) (exp(-pow(X+1,2) - pow(Y ,2)))

#define f1(X,Y) (pow(1-X,2))

#define f2(X,Y) (X/5 - pow(X ,3) - pow(Y ,5))

/**

 Standard callback function to display local solutions

 **/

int LS_CALLTYPE local_sol_log(pLSmodel model,int iLoc, void *cbData)

{

 int iter=0,niter,biter,siter;

 int *nKKT = (int *) cbData, npass, nbrn;

 double pfeas=0.0,pobj=0.0;

 double bestobj;

 if (iLoc==LSLOC_LOCAL_OPT)

 {

 if (*nKKT == 0){

 printf(" %5s %11s %11s %11s %10s\n",

 "Iter","Objective","Infeas","Best","Branches");

 }

516 CHAPTER 7

 LSgetCallbackInfo(model,iLoc,LS_IINFO_MIP_NLP_ITER,&niter);

 LSgetCallbackInfo(model,iLoc,LS_IINFO_MIP_SIM_ITER,&siter);

 LSgetCallbackInfo(model,iLoc,LS_IINFO_MIP_BAR_ITER,&biter);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_POBJ,&pobj);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_PINFEAS,&pfeas);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_MSW_POBJ,&bestobj);

 LSgetCallbackInfo(model,iLoc,LS_IINFO_MIP_BRANCHCOUNT,&nbrn);

 iter = niter+siter+biter;

 printf(" %5d %11.3f %11.3f %11.3f %10d\n",iter,pobj,pfeas,

 bestobj,nbrn);

 (*nKKT)++;

 }

 return 0;

} /*local_sol_log*/

/***

 Callback function to compute function values

 ***/

int CALLBACKTYPE Funcalc8(pLSmodel pModel,void *pUserData,

 int nRow ,double *pdX,

 int nJDiff,double dXJBase,

 double *pdFuncVal,int *pReserved)

{

 double val=0.0, X = pdX[0], Y = pdX[1];

 int nerr=0;

 /* compute objective's functional value*/

 if (nRow==-1)

 val = 3*f1(X,Y)*g1(X,Y) - 10*f2(X,Y)*g2(X,Y) - g3(X,Y)/3;

 /* compute constaint 0's functional value */

 else if (nRow==0)

 val = X + Y - 3.0;

 /* compute constaint 1's functional value */

 else if (nRow==1)

 val = - Y - 1.0;

 *pdFuncVal=val;

 return nerr;

} /*Funcalc8*/

/* main entry point*/

int main(int argc, char **argv)

{

 pLSenv env = NULL;

 pLSmodel model = NULL;

 FILE *logfile = stdout;

 int errors=0,errorcode=LSERR_NO_ERROR;

 double lb[2],ub[2],A[4],rhs[2],cost[2];

 int Abegcol[3],Arowndx[4],Alencol[2],Nobjndx[2];

 int m,n,nz, Nnlobj, howmany=0;

 char contype[2],vartype[2];

 char MY_LICENSE_KEY[1024];

 /**

 * Step 1: Create a model in the environment.

 **/

 errorcode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

 env = LScreateEnv(&errorcode,MY_LICENSE_KEY);

 SOLVING NONLINEAR PROGRAMS 517

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 model = LScreateModel(env,&errorcode);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 /**

 * Step 2: Specify the LP portion of the model.

 **/

 /* model dimensions */

 m = n = 2; nz = 3;

 /* The indices of the first nonzero in each column */

 Abegcol[0]=0; Abegcol[1]=1; Abegcol[2]=3;

 /* The length of each column */

 Alencol[0]=1; Alencol[1]=2;

 /* The row indices of the nonzero coefficients */

 Arowndx[0]=0; Arowndx[1]=0; Arowndx[2]=1;

 /* The nonzero coefficients of the linear portion of the model*/

 /* The NLP elements have a zero at each of their occurence */

 A[0]=1.0; A[1]=1.0; A[2]=-1.0;

 /* The objective coefficients of the linear portion of the model*/

 cost[0]=0.0; cost[1]=0.0;

 /* lower bounds on variables */

 lb[0]=-3.0 ; ub[0]= 3.0; lb[1]=-3.0 ; ub[1]= 3.0;

 /* The right-hand sides of the constraints */

 rhs[0]=3.0; rhs[1]=1.0;

 /* The constraint types */

 contype[0]='L'; contype[1]='L';

 vartype[0]='I'; vartype[1]='C';

 /* Load in nonzero structure and linear/constant terms. */

 errorcode=LSloadLPData(model,m,n,LS_MIN,0.0,cost,rhs,contype,nz,

 Abegcol,Alencol,A,Arowndx,lb,ub);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 errorcode=LSloadVarType(model,vartype);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 errorcode=LSwriteLINDOFile(model,"lpModel.ltx");

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 /**

 * Step 3: Specify the NLP portion of the model.

 **/

 /* The number of nonlinear variables in each column */

 Alencol[0]=0; Alencol[1]=0;

 /* The indices of the first nonlinear variable in each column */

 Abegcol[0]=0; Abegcol[1]=0; Abegcol[2]=0;

 /* The indices of nonlinear constraints */

 Arowndx[0]=0;

 /* The indices of variables that are nonlinear in the objective*/

 Nobjndx[0]=0; Nobjndx[1]=1;

 /* Number nonlinear variables in cost. */

 Nnlobj = 2;

 /* Load the nonlinear structure */

 errorcode=LSloadNLPData(model,Abegcol,Alencol,

 NULL,Arowndx,Nnlobj,Nobjndx,NULL);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

518 CHAPTER 7

 /**

 * Step 4: Set up callback functions

 **/

 /* Install the callback function to call at every local solution */

 LSsetCallback(model,(cbFunc_t) local_sol_log,&howmany);

 /* Set the print level to 1 */

 errorcode=LSsetModelIntParameter(model,LS_IPARAM_NLP_PRINTLEVEL,1);

 /* Set the NLP prelevel to 126 */

 errorcode=LSsetModelIntParameter(model,LS_IPARAM_NLP_PRELEVEL,0);

 /* Install the routine that will calculate the function values. */

 errorcode=LSsetFuncalc(model,(Funcalc_type) Funcalc8,NULL);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 /**

 * Step 5: Solve the model

 **/

 /* Turn multi-start search on */

LSsetModelIntParameter(model,LS_IPARAM_NLP_SOLVER,LS_NMETHOD_MSW_GRG)

;

 /* Set maximum number of local optimizations */

 LSsetModelIntParameter(model,LS_IPARAM_NLP_MAXLOCALSEARCH,5);

 printf("\n\tSolving the MINLP using Multi-Start Approach.\n\n");

 errorcode=LSsolveMIP(model,NULL);

 if (errorcode!=LSERR_NO_ERROR) return errorcode;

 {

 int i;

 double objval, primal[2];

 errorcode = LSgetMIPPrimalSolution(model, primal);

 errorcode = LSgetInfo(model, LS_DINFO_MIP_OBJ, &objval);

 if (errorcode == LSERR_NO_ERROR)

 {

 printf("\n\n\n");

 printf("obj = %15.7f \n",objval);

 for (i=0; i<2; i++) printf("x[%d] = %15.7f \n",i,primal[i]);

 }

 else

 {

 printf("Error %d occured\n\n\n",errorcode);

 }

 }

 /**

 * Step 6: Delete the model & env space

 **/

 LSdeleteModel(&model);

 LSdeleteEnv(&env);

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

 return errorcode;

} /*main*/

 SOLVING NONLINEAR PROGRAMS 519

The source code file for this example may be found in the \lindoapi\samples\c\ex_nlp3\ folder. After

creating the executable “ex_nlp3.exe”, the application can be run from the DOS-prompt and produce

the following report on your screen.

 Solving the MINLP using Multi-Start Approach.

 Iter Objective Infeas Best Branches

 10 -0.032 0.000 -0.032 0

 17 0.013 0.000 -0.032 0

 33 -0.032 0.000 -0.032 0

 40 0.013 0.000 -0.032 0

 74 -0.032 0.000 -0.032 0

 81 0.013 0.000 -0.032 0

 106 -0.032 0.000 -0.032 1

 113 0.013 0.000 -0.032 1

 138 -0.009 0.000 -0.009 2

 142 0.013 0.000 0.013 3

obj = -0.0087619

x[0] = -3.0000000

x[1] = -1.0000000

Press <Enter> ...

As seen from the output report, the multistart solver locates several local optima at each branch. The

internal branch-and-bound solver always uses the best known solution at each node. This leads to

improved quality of the final integer solution. In order to see the effects of different multistart levels,

set the value of LS_IPARAM_NLP_MAXLOCALSEARCH macro to lower or higher values and solve the

model again.

Example 4: Global Solver with MPI Input Format
This example illustrates the use of LINDO API’s global solver to find a global optima to a non-convex

model. The model is represented in MPI file format as given below. For details of the MPI file format,

see the Instruction-List style interface introduced earlier in this chapter or Appendix D, MPI File

Format.

* This is a variant of an expression found in

* Gupta, O. K. and A. Ravindran (1985)

* "Branch-and-bound Experiments in Convex Nonlinear

* Integer Programming.", Management Science, 31 pp.1533-1546.

* MODEL:

*

* MIN = x0;

*

* - X1^2*X2 >= -675;

*

* - 0.1*X1^2*X3^2 >= -0.419;

*

* 0.201*X1^4*X2*X3^2 + 100*X0 = 0;

*

* @Bnd(0,X1,1e1);

* @Bnd(0,X2,1e1);

* @Bnd(0,x3,1e1);

520 CHAPTER 7

* @Free(x0);

*

* End

BEGINMODEL gupta21

! NUMOBJS 1

! NUMCONS 3

! NUMVARS 4

VARIABLES

! Name Lower Bound Initial Point Upper Bound Type

 X0000000 -1e+030 1.23457 1e+030 C

 X0000001 0 1.23457 1e+001 C

 X0000002 0 1.23457 1e+001 C

 X0000003 0 0.2 1e+001 C

OBJECTIVES

 OBJ00000 MINIMIZE

 EP_PUSH_VAR X0000000

CONSTRAINTS

 R0000000 G

 EP_PUSH_VAR X0000001

 EP_PUSH_NUM 2

 EP_POWER

 EP_NEGATE

 EP_PUSH_VAR X0000002

 EP_MULTIPLY

 EP_PUSH_NUM 675

 EP_NEGATE

 EP_MINUS

 R0000001 G

 EP_PUSH_NUM 0.1

 EP_NEGATE

 EP_PUSH_VAR X0000001

 EP_PUSH_NUM 2

 EP_POWER

 EP_MULTIPLY

 EP_PUSH_VAR X0000003

 EP_PUSH_NUM 2

 EP_POWER

 EP_MULTIPLY

 EP_PUSH_NUM 0.419

 EP_NEGATE

 EP_MINUS

 R0000002 E

 EP_PUSH_NUM 0.201

 EP_PUSH_VAR X0000001

 EP_PUSH_NUM 4

 EP_POWER

 EP_MULTIPLY

 EP_PUSH_VAR X0000002

 EP_MULTIPLY

 EP_PUSH_VAR X0000003

 EP_PUSH_NUM 2

 EP_POWER

 EP_MULTIPLY

 EP_PUSH_NUM 100

 EP_PUSH_VAR X0000000

 SOLVING NONLINEAR PROGRAMS 521

 EP_MULTIPLY

 EP_PLUS

 EP_PUSH_NUM 0

 EP_MINUS

ENDMODEL

The following C program reads the MPI formatted file above and solves it using LINDO API’s global

solver.

/*

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : ex_nlp4.c

 Purpose: Read a non-convex nonlinear model from an MPI file and

 optimize with the GOP solver

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/* LINDO API header file */

#include "lindo.h"

/* Define a macro to declare variables for

 error checking */

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

#define APIERRORCHECK

 if (nErrorCode)

 {

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("Errorcode=%d: %s\n", nErrorCode,

 cErrorMessage);

 } else {

 printf("Fatal Error\n");

 }

 exit(1);

 }

/* main entry point */

/***

 Standard callback function to display local and intermediate

 solutions

 ***/

int LS_CALLTYPE print_log(pLSmodel model,int iLoc, void *cbData)

{

 static int siter=0,niter=0;

522 CHAPTER 7

 static double pobj=0.0;

 static double bestbnd;

 static int status;

 if (iLoc == LSLOC_GOP)

 {

 LSgetCallbackInfo(model,iLoc,LS_IINFO_GOP_STATUS,&status);

 LSgetCallbackInfo(model,iLoc,LS_IINFO_GOP_SIM_ITER,&siter);

 LSgetCallbackInfo(model,iLoc,LS_IINFO_GOP_SIM_ITER,&niter);

 LSgetCallbackInfo(model,iLoc,LS_DINFO_GOP_OBJ,&pobj);

 printf("Iters=%6d \tObj=%11.5e \tStatus=%d\n",siter+niter,pobj,

 status);

 }

 return 0;

} /*print_log*/

int main(int argc, char **argv)

{

 APIERRORSETUP;

 int m, n; /* number of constraints and vars */

 double dObj;

 int status;

/* declare an instance of the LINDO environment object */

 pLSenv pEnv;

/* declare an instance of the LINDO model object */

 pLSmodel pModel;

 char MY_LICENSE_KEY[1024];

 /***

 * Step 1: Create a model in the environment.

 ***/

 nErrorCode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE) {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

 /**

 * Step 2: Create a model in the environment.

 **/

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

 /**

 * Step 3: Read the model from an MPS file and get the model size

 **/

 nErrorCode = LSreadMPIFile(pModel,"../../mps/testgop.mpi");

 if (nErrorCode != LSERR_NO_ERROR) {

 printf("\n Bad MPI format\n");

 } else {

 printf("Reading MPI format. \n\n");

 }

 APIERRORCHECK;

 SOLVING NONLINEAR PROGRAMS 523

 nErrorCode = LSgetInfo(pModel,LS_IINFO_NUM_VARS,&n);

 APIERRORCHECK;

 nErrorCode = LSgetInfo(pModel,LS_IINFO_NUM_CONS,&m);

 APIERRORCHECK;

 /***

 * Step 4: Optimize the model

 ***/

 status = LS_STATUS_UNKNOWN;

 LSsetModelDouParameter(pModel,LS_DPARAM_CALLBACKFREQ,2.0);

 /* Install a callback function */

 LSsetCallback(pModel,(cbFunc_t) print_log, NULL);

 /* optimize */

 printf("\tSolving for Global Solution\n\n");

 nErrorCode = LSsolveGOP(pModel, &status);

 /***

 * Step 5: Access the final solution if optimal or feasible

 ***/

 if (status == LS_STATUS_OPTIMAL ||

 status == LS_STATUS_LOCAL_OPTIMAL ||

 status == LS_STATUS_FEASIBLE)

 {

 double *primal = NULL, *dual = NULL;

 int j, nCont;

 primal = (double *) malloc(n*sizeof(double));

 dual = (double *) malloc(m*sizeof(double));

 nErrorCode = LSgetInfo(pModel, LS_IINFO_NUM_CONT, &nCont);

 APIERRORCHECK;

 if (nCont < n)

 {

 printf ("\n *** Integer Solution Report *** \n");

 nErrorCode = LSgetInfo(pModel, LS_DINFO_MIP_OBJ, &dObj);

 APIERRORCHECK;

 nErrorCode = LSgetMIPPrimalSolution(pModel,primal);

 APIERRORCHECK;

 nErrorCode = LSgetMIPDualSolution(pModel,dual);

 APIERRORCHECK;

 }

 else

 {

 printf ("\n *** Solution Report *** \n");

 nErrorCode = LSgetInfo(pModel, LS_DINFO_POBJ, &dObj);

 APIERRORCHECK;

 nErrorCode = LSgetPrimalSolution(pModel,primal);

 APIERRORCHECK;

 nErrorCode = LSgetDualSolution(pModel,dual);

 APIERRORCHECK;

 }

 printf ("\n Objective = %f \n", dObj);

 printf ("\n Primal Solution\n");

 for (j = 0; j<n; j++)

 printf("\tprimal[%d] = %18.10e\n",j, primal[j]);

 printf ("\n Dual Solution\n");

 for (j = 0; j<m; j++)

 printf("\tdual[%d] = %18.10e\n",j, dual[j]);

 free(primal);

 free(dual);

524 CHAPTER 7

 }

 /***

 * Step 6: Terminate

 ***/

 nErrorCode = LSdeleteModel(&pModel);

 nErrorCode = LSdeleteEnv(&pEnv);

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

}

The source code file for this example may be found in the \lindoapi\samples\c\ex_nlp4\ folder. After

creating the executable “ex_nlp4.exe”, the application can be run from the DOS-prompt and produce

the following report on your screen:

C:\lindoapi\samples\c\ex_nlp4>ex_nlp4

Reading MPI format.

 Solving for Global Solution

Iters= 0 Obj=0.00000e+000 Status=12

Iters= 0 Obj=0.00000e+000 Status=3

Iters= 0 Obj=0.00000e+000 Status=12

Iters= 0 Obj=0.00000e+000 Status=12

Iters= 0 Obj=0.00000e+000 Status=12

Iters= 0 Obj=-5.68478e+000 Status=8

Iters= 7330 Obj=-5.68478e+000 Status=8

Iters= 10702 Obj=-5.68478e+000 Status=8

Iters= 13992 Obj=-5.68478e+000 Status=8

Iters= 17454 Obj=-5.68478e+000 Status=8

Iters= 21364 Obj=-5.68478e+000 Status=8

Iters= 24940 Obj=-5.68478e+000 Status=8

Iters= 27064 Obj=-5.68478e+000 Status=8

Iters= 29150 Obj=-5.68484e+000 Status=8

Iters= 36352 Obj=-5.68484e+000 Status=8

Iters= 43502 Obj=-5.68484e+000 Status=8

Iters= 44360 Obj=-5.68484e+000 Status=1

 *** Solution Report ***

 Objective = -5.684836

 Primal Solution

 primal[0] = -5.6848364236e+000

 primal[1] = 9.9939669649e+000

 primal[2] = 6.7581618276e+000

 primal[3] = 2.0481857461e-001

 Dual Solution

 dual[0] = 8.4219092109e-003

 dual[1] = 1.3567519782e+001

 dual[2] = 1.0000000000e-002

Press <Enter> ...

 SOLVING NONLINEAR PROGRAMS 525

Example 5: Grey-Box Style Interface
This example illustrates the use of LINDO API’s grey-box interface. The application reads a nonlinear

model in MPI format (i.e. instruction list). Two user-defined functions are provided to enable the

EP_USER operators completing the grey-boxes. For details of the MPI file format, see the Instruction-

List style interface introduced earlier in this chapter or Appendix D, MPI File Format.

/*

LINDO-API

Sample Programs

Copyright (c) 2006

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 @file : ex_user.c

 @purpose: Solve an NLP that uses two black-box functions within

 the instruction-list interface.

 minimize F(x) = f(x) * x

 G(x) <= 100

 0 <= x <= 10

 The black-box functions are

 f(x) the expression sin(pi*x)+cos(pi*x)

 G(x) the integral[g(x),a,b)], where a,b constants specifying

 the limits of the integral.

 @remark : This application uses the Instruction Style Interface,

 where the instructions are imported from ex_user.mpi file.

 @remark : EP_USER operator is used in the instruction list to

 identify each black-box function and specify the number of

 arguments they take. For each function, the first argument

 is reserved to identify the function, whereas the rest are the

 actual arguments for the associated function.

 @remark : LSsetUsercalc() is used to set the user-defined

 MyUserFunc() function as the gateway to the black-box functions.

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* LINDO API header file */

#include "lindo.h"

/* Define a macro to declare variables for

526 CHAPTER 7

 error checking */

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

#define APIERRORCHECK

 if (nErrorCode)

 {

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("nErrorCode=%d: %s\n", nErrorCode,

 cErrorMessage);

 } else {

 printf("Fatal Error\n");

 }

 exit(1);

 }

/***

 * Set up an output log function.

 */

static void LS_CALLTYPE print_line(pLSmodel model,

 char *line, void *notting)

{

 if (line)

 {

 printf("%s",line);

 } /*if*/

} /*print_line*/

/***

 * Function g(t) to integrate over [a,b] */

double gox(double x, double t)

{

 double function;

 function = exp(x*cos(t));

 return(function);

}

/***

 * Black-box #2 -- G(x)

 * Calculated by Simpson's Rule.

 */

double Gox(int n /* Maximum number of steps (even) n */,

 double x)

{

 int c,k=1; /* Counters in the algorithm */

 double a=0; /* Lower limit x=0 */

 double b=8*atan(1); /* Upper limit x=2*pi */

 double h,dsum;

 dsum=gox(x,a); /* Initial function value */

 SOLVING NONLINEAR PROGRAMS 527

 c=2;

 h=(b-a)/n; /* Step size h=(b-a)/n */

 while (k <= n-1) /* Steps through the iteration */

 {

 c=6-c; /* gives the 4,2,4,2,... */

 dsum = dsum +

 c*gox(x,a+k*h); /* Adds on the next area */

 k++; /* Increases k value by +1 */

 }

 return ((dsum + gox(x,b))*h/3);

}

/***

 * Black-box function #1 -- f(x).

 */

double fox(double a, double b)

{

 return sin(a) + cos(b);

}

/***

 * Grey-box interface

 */

int LS_CALLTYPE MyUserFunc(pLSmodel model,

 int nargs,

 double *argval,

 void *UserData,

 double *FuncVal)

{

 double f;

 if (argval[0]==1.) /* argval[0] is the function ID. */

 {

 double a = argval[1];

 double b = argval[2];

 f = fox(a,b);

 }

 else if (argval[0]==2.)

 {

 f = Gox((int)argval[1],argval[2]);

 }

 *FuncVal = f;

 return (0);

} /*print_line*/

/***

 * Main entry point

 */

int main()

{

 APIERRORSETUP;

 pLSenv pEnv = NULL;

 pLSmodel pModel;

 char MY_LICENSE_KEY[1024];

528 CHAPTER 7

 /*

 * >>> Step 1 <<< Create a LINDO environment.

 */

 nErrorCode = LSloadLicenseString(

 "../../../license/lndapi100.lic",MY_LICENSE_KEY);

 APIERRORCHECK;

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

 /*

 * >>> Step 2 <<< Create a model in the environment.

 */

 pModel = LScreateModel(pEnv,&nErrorCode);

 APIERRORCHECK;

 /*

 * >>>> Step 3 <<< Set up the instruction list of the model.

 */

 {

 int nLinearz, nAutoDeriv, nConvexRelax, nCRAlgReform;

 /* Set a log function to call. */

 nErrorCode =

 LSsetLogfunc(pModel,(printLOG_t) print_line,NULL);

 APIERRORCHECK;

 /* Set linearization level, before a call to LSloadNLPCode.

 * If not specified, the solver will decide */

 nLinearz = 1;

 nErrorCode = LSsetModelIntParameter (pModel,

 LS_IPARAM_NLP_LINEARZ, nLinearz);

 APIERRORCHECK;

 /* Select algebraic reformulation level, convex relaxation*/

 nCRAlgReform = 1;

 nErrorCode = LSsetModelIntParameter (pModel,

 LS_IPARAM_NLP_CR_ALG_REFORM, nCRAlgReform);

 APIERRORCHECK;

 /* Select convex relax level */

 nConvexRelax = 0;

 nErrorCode = LSsetModelIntParameter (pModel,

 LS_IPARAM_NLP_CONVEXRELAX, nConvexRelax);

 APIERRORCHECK;

 /*

 * Set up automatic differentiation before call LSreadMPIFile.

 SOLVING NONLINEAR PROGRAMS 529

 * If not specified, the numerical derivative will be applied

 */

 nAutoDeriv = 0;

 nErrorCode = LSsetModelIntParameter (pModel,

 LS_IPARAM_NLP_AUTODERIV, nAutoDeriv);

 APIERRORCHECK;

 /* Set up MyUserFunc() as the user functionas */

 nErrorCode = LSsetUsercalc (pModel,

 (user_callback_t) MyUserFunc, NULL);

 APIERRORCHECK;

 /* Read instructions from an MPI-file */

 nErrorCode = LSreadMPIFile (pModel,"ex_user.mpi");

 APIERRORCHECK;

 }

 /*

 * >>> Step 5 <<< Perform the optimization using the

 * multi-start solver

 */

 /* set multi-start as the current NLP solver */

 nErrorCode = LSsetModelIntParameter (pModel,

 LS_IPARAM_NLP_SOLVER, LS_NMETHOD_MSW_GRG);

 APIERRORCHECK;

 nErrorCode = LSoptimize(pModel, LS_METHOD_FREE, NULL);

 APIERRORCHECK;

 /*

 * >>> Step 6 <<< Retrieve the solution

 */

 {

 int nLinearity, i, stat, nvars, ncons;

 double objval=0.0, primal[1000];

 /* Get the linearity of the solved model */

 nErrorCode = LSgetModelIntParameter (pModel,

 LS_IPARAM_NLP_LINEARITY, &nLinearity);

 APIERRORCHECK;

 nErrorCode = LSgetInfo(pModel,LS_IINFO_MODEL_STATUS,&stat);

 APIERRORCHECK;

 printf("\n\n\nSolution status = %d \n",stat);

 /* Report the status of solution */

 nErrorCode = LSgetInfo(pModel, LS_IINFO_NUM_VARS,&nvars);

 APIERRORCHECK;

 nErrorCode = LSgetInfo(pModel, LS_IINFO_NUM_CONS,&ncons);

 APIERRORCHECK;

 if (nLinearity)

530 CHAPTER 7

 {

 printf("\nModel has been completely linearized.\n");

 }

 else

 {

 printf("\nModel is nonlinear. (nvars=%d, ncons=%d)\n",

 nvars,ncons);

 }

 nErrorCode = LSgetInfo(pModel,LS_DINFO_POBJ,&objval);

 APIERRORCHECK;

 nErrorCode = LSgetPrimalSolution(pModel,primal);

 APIERRORCHECK;

 if (stat==LS_STATUS_OPTIMAL || stat==LS_STATUS_BASIC_OPTIMAL ||

 stat==LS_STATUS_FEASIBLE || stat==LS_STATUS_LOCAL_OPTIMAL)

 {

 printf("\n\nPrinting the solution ... \n\n");

 printf("F(x) = %20.15f \n",objval);

 printf("G(x) = %20.15f \n",Gox(20,primal[0]));

 for (i=0;i<nvars;i++)

 printf(" x = %20.15f\n",i,primal[i]);

 printf("\n");

 }

 else if (stat == 3)

 printf("\n\nNo feasible solution. \n\n");

 /* Get the linearity of the solved model */

 nErrorCode = LSgetModelIntParameter (pModel,

 LS_IPARAM_NLP_LINEARITY, &nLinearity);

 APIERRORCHECK;

 }

 /*

 * >>> Step 7 <<< Delete the LINDO environment

 */

 LSdeleteEnv(&pEnv);

}

 SOLVING NONLINEAR PROGRAMS 531

The source code file for this example is in the \lindoapi\samples\c\ex_user\ folder. After creating the

executable “ex_user.exe”, the application can be run from the DOS-prompt and produce the following

report on your screen:

C:\lindoapi\samples\c\ex_user>ex_user

 Iter Phase nInf Objective Pinf(sum) Dinf(rgmax)

 0 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 1 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 2 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 3 3 0 -4.61803483e+000 0.00000000e+000 5.80697188e-001

 4 3 0 -4.61804849e+000 0.00000000e+000 7.11677064e-002

 5 4 0 -4.61804850e+000 0.00000000e+000 2.68772059e-005

 6 4 0 -4.61804850e+000 0.00000000e+000 7.58019439e-009

 Iter Phase nInf Objective Pinf(sum) Dinf(rgmax)

 0 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 1 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 2 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 3 3 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 4 3 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 Iter Phase nInf Objective Pinf(sum) Dinf(rgmax)

 0 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 1 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 2 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 3 3 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 4 3 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 Iter Phase nInf Objective Pinf(sum) Dinf(rgmax)

 0 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 1 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 2 0 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 3 3 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

 4 3 0 0.00000000e+000 0.00000000e+000 0.00000000e+000

Solution status = 8

Model is nonlinear. (nvars=1, ncons=1)

Printing the solution ...

F(x) = -4.618048495010020

G(x) = 38.603313116588765

 x = -0.000000000000006

532 CHAPTER 7

Example 6: Nonlinear Least-Square Fitting
This example illustrates the use of LINDO API’s EP_LSQ operator to solve a nonlinear least-squares

problem. The formal description of the problem is as follows:

Given a set of dependent and independent variables (ti,ui), and a nonlinear response function, f(x | α1,

α2,…, αm), with m parameters, the problem is to determine the best values for α1, α2,…, αm such that

sum of residuals are minimized. A residual Ri is the difference between observed ui and estimated ûi =

f(ti;α)

 Minimize ||R
t
 R||

 s.t. Ri = ui - f(ti; α1, α2,…, αm) for all i=1…n

In this application, the model input ti,ui and f(x| α1, α2,…, αm) is imported from an MPI-formatted file.

In this file, we first provide the nonlinear response function, followed by operator EP LSQ with two

integer arguments, K (the number of independent variables), and N (the number of data points).

In this example, K = 1 and N = 15. Note that multiple independent variables are allowed with operator

EP LSQ. Next, the names of the K independent variables are given. Finally, a set of N data points is

provided. Each data point consists of K independent values followed by one dependent value.

BEGINMODEL lsq00lsq

! Number of Objective Functions: 1

! Number of Constraints : 16

! Number of Variables : 34

! Solve the problem:

! MIN = @SUM(OBS(i): R(i)*R(i));

! @FREE(X0); @FREE(X1); @FREE(X2);

! @FOR(OBS(i):

! @FREE(R(i));

! R(i) = U(i) - (X1*t + (1-X0+X1+X2)*t*t)/

! (1+X1*t + X2*t*t);

!);

! DATA:

! t, U =

! 0.07 0.24

! 0.13 0.35

! ...

!

VARIABLES

 SOLVING NONLINEAR PROGRAMS 533

! Name Lower Bound Initial Point Upper Bound Type

 X0 -1e+030 1.23457 1e+030 C

 X1 -1e+030 1.23457 1e+030 C

 X2 -1e+030 1.23457 1e+030 C

 OBJ 0 1.23457 1e+030 C

 t -1e+030 1.23457 1e+030 C

OBJECTIVES

 OBJ00000 MINIMIZE

 EP_PUSH_VAR OBJ

CONSTRAINTS

 2 E

 EP_PUSH_VAR X1

 EP_PUSH_VAR t

 EP_MULTIPLY

 EP_PUSH_NUM 1

 EP_PUSH_VAR X0

 EP_MINUS

 EP_PUSH_VAR X1

 EP_PLUS

 EP_PUSH_VAR X2

 EP_PLUS

 EP_PUSH_VAR t

 EP_MULTIPLY

 EP_PUSH_VAR t

 EP_MULTIPLY

 EP_PLUS

 EP_PUSH_NUM 1

 EP_PUSH_VAR X1

 EP_PUSH_VAR t

 EP_MULTIPLY

 EP_PLUS

 EP_PUSH_VAR X2

 EP_PUSH_VAR t

 EP_MULTIPLY

 EP_PUSH_VAR t

 EP_MULTIPLY

 EP_PLUS

 EP_DIVIDE

 EP_LSQ 1 15

 t

 0.07

 0.24

 0.13

 0.35

 0.19

 0.43

 0.26

 0.49

 0.32

 0.55

 0.38

 0.61

 0.44

 0.66

 0.51

 0.71

 0.57

 0.75

 0.63

 0.79

 0.69

 0.83

534 CHAPTER 7

 0.76

 0.87

 0.82

 0.90

 0.88

 0.94

 0.94

 0.97

 EP_PUSH_VAR OBJ

 EP_MINUS

ENDMODEL

 SOLVING NONLINEAR PROGRAMS 535

After building the sample application under \lindoapi\samples\c\ex_mps\ folder , one could solve the

given MPI-formatted model (assumed to be saved as the text file lsq00sq.mpi) from the command

prompt by running “ex_mps.exe” with it. The following report will be printed on your screen:

Reading problem c:\lindoapi\bin\win32\lsq00lsq.mpi...

Minimizing the NLP objective...

tpre ncons nvars nnzA time

 ini 1 5 4 0.03

 sp1 1 4 4 0.03

Number of constraints: 1 le: 0, ge: 0, eq: 1, rn:

0 (ne:0)

Number of variables : 4 lb: 1, ub: 0, fr: 3, bx:

0 (fx:0)

Number of nonzeroes : 4 density=0.01(%)

Abs. Ranges : Min. Max. Condition.

Matrix Coef. (A): 1.00000 1.00000 1.00000

Obj. Vector (c): 1.00000 1.00000 1.00000

RHS Vector (b): 1.0000e-100 1.0000e-100 1.00000

Lower Bounds (l): 1.0000e-100 1.0000e-100 1.00000

Upper Bounds (u): 1.0000e+030 1.0000e+030 1.00000

BadScale Measure: 0

Nonlinear variables : 3

Nonlinear constraints: 1

Nonlinear nonzeroes : 3+0

 Iter Phase nInf Objective Pinf(sum) Dinf(rgmax)

 0 0 0 0.00000000e+000 9.12589819e-001 0.00000000e+000

 1 0 0 0.00000000e+000 9.12589819e-001 0.00000000e+000

 2 0 0 0.00000000e+000 4.56294909e-001 0.00000000e+000

 …

 …

 …

 41 4 0 1.76640710e-003 0.00000000e+000 6.92959063e-008

Used Method = 7

Used Time = 0

Refactors (ok,stb) = 0 (-1.#J,-1.#J)

Simplex Iters = 0

Barrier Iters = 0

Nonlinear Iters = 41

Primal Status = 8

Dual Status = 12

Basis Status = 14

Primal Objective = 0.0017664071026782786

Dual Objective = 0.0017664071026782786

Duality Gap = 0.000000e+000

Primal Infeas = 0.000000e+000

Dual Infeas = 6.929591e-008

Solution is locally optimal.

 Chapter 8:

Stochastic Programming
So far, we worked with deterministic mathematical programs where model parameters (e.g.

coefficients, bounds, etc.) are known constants. A stochastic program (SP) is a mathematical program

(linear, nonlinear or mixed-integer) in which some of the model parameters are not known with

certainty and the uncertainty can be expressed with known probability distributions. Applications arise

in a variety of industries:

 Financial portfolio planning over multiple periods for insurance and other financial

companies, in face of uncertain prices, interest rates, and exchange rates

 Exploration planning for petroleum companies,

 Fuel purchasing when facing uncertain future fuel demand,

 Fleet assignment: vehicle type to route assignment in face of uncertain route demand,

 Electricity generator unit commitment in face of uncertain demand,

 Hydro management and flood control in face of uncertain rainfall,

 Optimal time to exercise for options in face of uncertain prices,

 Capacity and Production planning in face of uncertain future demands and prices,

 Foundry metal blending in face of uncertain input scrap qualities,

 Product planning in face of future technology uncertainty,

 Revenue management in the hospitality and transport industries.

Stochastic programs fall into two major categories a) Multistage Stochastic Programs with Recourse,

and b) Chance-Constrained Stochastic Programs. LINDO API 10.0 can solve models in both

categories.

Multistage Decision Making Under Uncertainty
In this section, the term ‘stochastic program’ refers to a multistage stochastic model with recourse. The

term ‘stage’ is an important concept, usually referring to a single ‘time period’, in which a set of

decisions are to be made prior to the realization of random phenomena. However there are situations

where a stage may consist of several time periods. The terms ‘random’, ‘uncertain’ and ‘stochastic’

are used interchangeably.

Multistage decision making under uncertainty involves making optimal decisions for a T-stage horizon

before uncertain events (random parameters) are revealed while trying to protect against unfavorable

outcomes that could be observed in the future.

Note: A stage boundary is either a) the beginning of the problem, b) the end of the problem, or c) a

point just after a decision event but just before a random event. A stage is the sequence of

random events followed by decision events between two successive stage boundaries. Thus,

decisions made in stage k are based on all information revealed up to stage k, but no more.

538 CHAPTER 8

In its most general form, a multistage decision process with T+1 stages follows an alternating

sequence of random events and decisions. Slightly more explicitly:

0.1) in stage-0, we make a decision x0, taking into account that…

1.0) at the beginning of stage 1, “Nature” takes a set of random decisions ω1, leading to realizations of

all random events in stage 1, and…

1.1) at the end of stage 1, having seen nature’s decision, as well as our previous decision, we make a

recourse decision x1(ω1), taking into account that …

2.0) at the beginning of stage 2, “Nature” takes a set of random decisions ω2, leading to realizations of

all random events in stage-2, and…

2.1) at the end of stage 2, having seen nature’s decision, as well as our previous decisions, we make a

recourse decision x2(ω1, ω2), taking into account that …

 :

 :

T.0) At the beginning of stage T, “Nature” takes a random decision, ωT, leading to realizations of all

random events in stage T, and…

T.1) at the end of stage T, having seen all of nature’s T previous decisions, as well as all our previous

decisions, we make the final recourse decision xT(ω1,…,ωT).

This relationship between the decision variables and realizations of random data can be illustrated as

follows.

Each decision, represented with a rectangle, corresponds to an uninterrupted sequence of decisions

until the next random event. And each random observation corresponds to an uninterrupted sequence

of random events until the next decision point.

STOCHASTIC PROGRAMMING 539

Multistage Recourse Models
The decision taken in stage 0 is called the initial decision, whereas decisions taken in succeeding

stages are called ‘recourse decisions’. Recourse decisions are interpreted as corrective actions that are

based on the actual values the random parameters realized so far, as well as the past decisions taken

thus far. Recourse decisions provide latitude for obtaining improved overall solutions by realigning the

initial decision with possible realizations of uncertainties in the best possible way.

Restricting ourselves to linear multistage stochastic programs for illustration, we have the following

form for a multistage stochastic program with (T+1) stages.

Minimize (or maximize) c0x0 + E1[c1x1 + E2[c2x2 … + ET[cTxT] …]]

Such that

 A00x0 ~ b0

 A(ω1)10x0 + A(ω1) 11x1 ~ b(ω1)1

 A(ω1,…,ω2)20x0 + A(ω1,…,ω2)21x1 + A(ω1,…,ω2)22x2 ~ b(ω1,…,ω2)2

 : … : :

A(ω1,…,ωT)T0x0 + A(ω1,…,ωT)T1x1 + … + A(ω1,…,ωT)TT xT ~ b(ω1,…,ωT)T

 L0  x0  U0

 L(ω1)1  x1  U(ω1)1

 : : :

 L(ω1,…,ωT)T  xT  U(ω1,…,ωT)T

where, (ω1, ω2,…, ωt) represents random outcomes from event space (Ω1,..., Ωt) up to stage t,

A(ω1,…,ωt)tp is the coefficient matrix generated by outcomes up to stage-t for all p=1…t, t=1…T,

c(ω1,…,ωt)t is the objective coefficients generated by outcomes up to stage-t for all t=1…T,

 b(ω1,…,ωt)t is the right-hand-side values generated by outcomes up to stage-t for all t=1…T,

L(ω1,…,ωt)t and U(ω1,…,ωt)t are the lower and upper bounds generated by outcomes up to stage-t for

all t=1…T,

’~’ is one of the relational operators ‘’, ‘=’, or ‘’; and

x0 and xt ≡ x(ω1, ω2,…, ωt)t are the decision variables (unknowns) for which optimal values are sought.

The expression being optimized is called the cost due to initial-stage plus the expected cost of

recourse.

Note: LINDO API can solve linear, nonlinear and integer multistage stochastic programming

problems.

540 CHAPTER 8

Scenario Tree
When the probability distributions for the random parameters (events) are discrete, there are only a

finite number of outcomes in each stage. With each random parameter fixed to one of its possible

outcomes, one can create a scenario representing one possible realization of the future. Enumeration of

all possible combinations of outcomes allows us to represent all scenarios in a tree, with each scenario

being a path from the root of the tree to one of its leaves. The nodes visited by each path correspond to

values assumed by random parameters in the model.

We illustrate the construction of a scenario tree with a stochastic version of the well-known

Newsvendor inventory problem. In this problem, we must decide how much to order initially and then

later, how much of any unsold product to return before the end of the planning horizon. There is a

shortage penalty when there are lost sales and a carrying cost for left over units. The decision process

takes place under uncertain demand and uncertain price per returned item:

 In stage 0, the order quantity has to be decided (under uncertain demand).

 In stage 1, at the beginning, the demand is revealed. A recourse decision, at the end of stage

1, is the number of units to be returned to the publisher (for an uncertain refund price)

 In stage 2 at the beginning, the refund price is announced by the publisher. The price per

returned item can be either

o Positive (i.e. publisher accepts them at a high price which covers the cost of shipping

and handling) or

o Negative (i.e. publisher accepts them at a low price which doesn’t cover the cost of

shipping and handling).

 The objective is to maximize the total expected profit at the end of planning horizon (stage 2).

STOCHASTIC PROGRAMMING 541

In the scenario tree above, x0 represents the initial decision, order size to be determined before seeing

any of the random outcomes. x1 represents the quantity to return to the publisher of any portion of the

unsold units. Profit2 represents the total profit collected at the end of planning horizon. The notation Ω1

represents the event space for the unknown demand, for which there are three different possible

outcomes Ω1 = {Low, Medium, and High} with probabilities {0.4, 0.3, 0.3}, respectively. Once we

observe the demand ω1 є Ω 1, we make a recourse decision x1 based upon which ω1 nature chose and

our previous decision x0. The notation Ω2 represents the event space for refund price per unsold

newspapers if returned to the publisher in stage 2. This event has two different outcomes Ω2 =

{Positive, Negative} with probabilities {0.7, 0.3}. Once the refund price ω2 є Ω2 in stage 2 is observed,

the total profit would be computed by the model as the final decision Profit2.

It should be clear from the scenario tree that,

 There are as many distinct scenarios in the SP as there are leaf-nodes.

 Each root-leaf path defines a scenario, induced by a full observation of all random events.

 There is a one-to-one correspondence between the scenarios and the leaf-nodes in the tree.

 The unconditional probability of a node is computed by multiplying the conditional

probabilities of the nodes positioned on the path, which starts from the root and terminates at

that node.

 The unconditional probability of each leaf-node corresponds to the probability of the

associated scenario.

 Each node in the tree corresponds to a vector of random parameter with a particular history up

to that node in some scenario.

542 CHAPTER 8

 The branches out of each node enumerate all possible outcomes associated with random

parameters associated with it in order to construct the history of random parameters that

belong to next stage.

Setting up SP Models:
Setting up an SP model in the LINDO API involves three major steps in the given order:

a) Specify the core model as if all of nature’s decisions are known. This is simply describing the

mathematical relations among all the variables in a typical mathematical model as described

in Chapters 3 through 7. If an instruction list is used to represent the core model, the

EP_PUSH_SPAR instruction is required in place of those LS_PUSH_NUM to identify the

parameters that are in fact stochastic. If the core model will be set up using the standard array

representation, a dummy nonzero element is required for each random parameter as a

placeholder.

b) Provide the time structure. This involves listing, either explicitly or implicitly, the stage of

every random parameter, variable and constraint in the model.

c) Provide the distributions describing the random parameters and the type of sampling from the

underlying distributions, when or if required.

An alternative way of inputting an SP to the LINDO API is via files. To achieve this, one must

prepare at least three files each of which will assume the role of the tasks above:

1. A “core” or deterministic version of the model in one of the file formats supported by LINDO

API, such as an MPI file, LINDO file or MPS file. If MPS or LINDO file formats are used,

the core model must be in temporal order and each random parameter must have a dummy

(possibly an average) value in the core model to serve as a placeholder. The file extension is

either .mpi or .mps (or .ltx) depending on the format preferred.

2. A stage or time file with a suffix of .time, which associates each constraint and variable with

a stage,

3. A stochastic data file with a suffix of .stoch, which provides the information about all random

parameters and their properties.

The three-file input is collectively called the SMPI or SMPS file format. The details on the format are

summarized in Appendices E and F. The contents of these files correspond almost exactly with the

contents of the data objects used to set up the SP programmatically given in the following sections.

Loading Core Model:
Consider the Newsvendor problem written as a deterministic linear program after fixing the random

parameters to dummy values temporarily.

! Stochastic Newsvendor Model;

DATA:

 C = 30; ! Purchase cost/unit;

 P = 5; ! Penalty shortage cost/unit unsatisfied demand;

 H = 10; ! Holding cost/unit leftover;

 V = 60; ! Revenue per unit sold;

! Random demand (D);

 D = 63;

! Random refund per return;

STOCHASTIC PROGRAMMING 543

 R = 9;

ENDDATA

MAX = Z;

! Units bought, X, Buy at least 0 (serves as a dummy constraint for

stage 1);

[Row1] X >= 1;

! Inventory (I) and Lost Sales (L);

[Row2] I = X + L - D;

! Units sold S, and inventory left over, I;

[Row3] S = X - I;

! Y units returned to vendor for a possible refund, and E kept;

[Row4] Y + E = I;

! Profit, to be maximized;

[Profit] Z = V*S - C*X - H*I - P*L + Y*R - H*E;

Using Instruction Lists
Starting with the deterministic version given above, we rewrite the model in instruction list format and

then mark each random parameter (D and R) by replacing the associated EP_PUSH_NUM instruction

with an EP_PUSH_SPAR instruction. This is illustrated in the following where the stochastic

parameters R and D are marked in red:

[Row2] I = X + L – D

Deterministic Stochastic

Row2 E

 EP_PUSH_VAR I

 EP_PUSH_VAR X

 EP_PUSH_VAR L

 EP_PLUS

 EP_PUSH_NUM 63

 EP_MINUS

 EP_MINUS

 Row2 E

 EP_PUSH_VAR I

 EP_PUSH_VAR X

 EP_PUSH_VAR L

 EP_PLUS

 EP_PUSH_SPAR D

 EP_MINUS

 EP_MINUS

[Profit] Z = V*S - C*X - H*I - P*L + Y*R - H*E;

Deterministic Stochastic

 PROFIT E

 EP_PUSH_VAR Z

 EP_PUSH_NUM 60

 EP_PUSH_VAR S

 EP_MULTIPLY

 EP_PUSH_NUM 30

 EP_PUSH_VAR X

 EP_MULTIPLY

 EP_MINUS

 EP_PUSH_NUM 10

 EP_PUSH_VAR I

 EP_MULTIPLY

 EP_MINUS

 EP_PUSH_NUM 5

 EP_PUSH_VAR L

 EP_MULTIPLY

 PROFIT E

 EP_PUSH_VAR Z

 EP_PUSH_NUM 60

 EP_PUSH_VAR S

 EP_MULTIPLY

 EP_PUSH_NUM 30

 EP_PUSH_VAR X

 EP_MULTIPLY

 EP_MINUS

 EP_PUSH_NUM 10

 EP_PUSH_VAR I

 EP_MULTIPLY

 EP_MINUS

 EP_PUSH_NUM 5

 EP_PUSH_VAR L

 EP_MULTIPLY

544 CHAPTER 8

 EP_MINUS

 EP_PUSH_VAR Y

 EP_PUSH_NUM 9

 EP_MULTIPLY

 EP_PLUS

 EP_PUSH_NUM 10

 EP_PUSH_VAR E

 EP_MULTIPLY

 EP_MINUS

 EP_MINUS

 EP_MINUS

 EP_PUSH_VAR Y

 EP_PUSH_SPAR R

 EP_MULTIPLY

 EP_PLUS

 EP_PUSH_NUM 10

 EP_PUSH_VAR E

 EP_MULTIPLY

 EP_MINUS

 EP_MINUS

As discussed in Chapter 7, EP_PUSH_NUM instruction loads (pushes) a constant value onto the top of

stack, whereas EP_PUSH_SPAR instruction loads the name of the random parameter on the top of the

stack. An appropriate index for each stochastic parameter will be created. Normally, the index value

depends on the order it appears in the instruction list. Finally, the core model is loaded by calling the

LSloadInstruct() function in the usual way.

Note: When the core model is loaded with an instruction list using LSloadInstruct(), all stochastic

parameters will automatically be assigned a unique index. This index can be used to access to

all information about that stochastic parameter, such as its stage index, stochastic data and

others. See Chapter 2 for the public functions that relies on this index.

Using the Array Representation of a Model:
Because our model is linear, it could also be described in standard array representation (also called the

matrix form). Refer to Chapter 1 for an overview. Starting with the deterministic version in matrix

form, we have:

 X (0) I (1) L (2)

S(3) Y(4) E (5) Z (6)

Max 1

Row1 (0) 1 > 1

Row2 (1) -1 1 -1 = -63

Row3 (2) -1 1 1 = 0

Row4 (3) -1 1 1 = 0

Profit(4) -30 -10 -5 60 -9 -10 -1 = 0

The indices of variables and constraints are given next to their names in parenthesis. The equivalent

array representation, where stochastic parameters are marked in red, is

Column-indices: 0 1 2 3 4 5 6

Column-starts: [0 4 8 10 12 14 16 17]

Values: [1 -1 -1 -60 1 -1 -1 10 -1 -5 1 60 1 -9 1 -10 -1]

Row-index: [0 1 2 4 1 2 3 4 1 4 2 4 3 4 3 4 4]

Right-hand side values = [1 -63 0 0 0]

Objective coefficients = [0 0 0 0 0 0 1]

Constraint senses = [G E E E E]

Lower bounds = [0 0 0 0 0 0 0]

Upper bounds = [      ]

STOCHASTIC PROGRAMMING 545

Take note of the coordinates of the matrix and vector elements where stochastic parameters are

located. The random parameters in matrix form are identified by the (row, column) indices of the

variable they go with. This information uniquely identifies a random element in matrix form and is

needed when loading the stochastic data associated with each random parameter. For instance, in this

example

 The LP matrix has one stochastic element at matrix index position (4,4).

 The RHS has one stochastic element at index 1.

Note: When the LP data contains a random parameter, the row and column indices of the variable

and constraint that goes with the random parameter is sufficient to identify it. If the random

parameter is in the OBJECTIVE row, the RHS column or the BOUNDS rows then a dummy

index is needed to identify these vectors. The following macros identify such dummy rows

and columns:

 LS_JCOL_RHS: Stochastic parameter is a RHS value (belongs to RHS column)

 LS_IROW_OBJ: Stochastic parameter is an objective coefficient (belongs to OBJ row)

 LS_IROW_VUB: Stochastic parameter is a lower bound (belongs to LO row)

 LS_IROW_VLB: Stochastic parameter is an upper bound (belongs to UP row)

 LS_IROW_VFX: Stochastic parameter is a fixed bound (belongs to FX row)

 LS_JCOL_INST: Stochastic parameter is an instruction code.

The important point is that each stochastic element has a nonzero position reserved in the constraint

matrix and/or vector, possibly with a default or dummy value. Once this is ensured, the core model

could be loaded by calling the LSloadLPData() function in the usual sense.

Note: In order to load the core model in matrix form using LSloadLPData, the constraints and

variables in the core model should be in ascending order with respect to their stages. LP data

which has this property is said to have temporal ordering. Such a requirement doesn’t exist

when loading the core model via an instruction list.

Loading the Time Structure:
Loading timing or staging information tells LINDO API a) how many time stages there are and b) the

time stage of each random parameter, variable and constraint. It is convenient to give a label to each

time stage just like we do for variables and constraints.

For this particular example, there are three stages, labeled TIME1, TIME2and TIME3, and they are

associated with random parameters, variables and constraints as summarized in the following table.

Variables Index Time Stage Stage Index

 X

 I

 L

 S

 Y

 0

 1

 2

 3

 4

TIME1

TIME2

TIME2

TIME2

TIME2

 0

 1

 1

 1

 1

546 CHAPTER 8

 E

 Z

 5

 6

TIME2

TIME3

 1

 2

Constraints

 Row1

 Row2

 Row3

 Row4

 Profit

 0

 1

 2

 3

 4

TIME1

TIME2

TIME2

TIME2

TIME3

 0

 1

 1

 1

 2

Random Par.

 D

 R

 0

 1

TIME2

TIME3

 1

 2

Sometimes it may not be easy to deduce the stages of constraints involving several variables from

different stages. The general rule is to set the stage index of the constraint to the largest of the variable

stage indices which appear in that constraint.

A typical call sequence that loads time/stage structure is as in the following code snippet in C

language. See lindoapi/samples/c/ex_sp_newsboy directory for the complete application.

{ /* Load stage data */

 int errorcode = LSERR_NO_ERROR;

 int numStages = 3;

 int colStages[] = {0, 1, 1, 1, 1, 1, 2}; /* Stage

indices of columns */

 int rowStages[] = {0, 1, 1, 1, 2 }; /* Stage

indices of rows */

 int panSparStage[]= {1, 2 }; /* Stage indices of stochastic

parameters */

 errorcode=LSsetNumStages(pModel,numStages);

 if (errorcode!=LSERR_NO_ERROR)

{fprintf(stdout,"\nError=%d\n",errorcode); exit(1);}

 errorcode=LSloadVariableStages(pModel,colStages);

 if (errorcode!=LSERR_NO_ERROR)

{fprintf(stdout,"\nError=%d\n",errorcode); exit(1);}

 errorcode=LSloadConstraintStages(pModel,rowStages);

 if (errorcode!=LSERR_NO_ERROR)

{fprintf(stdout,"\nError=%d\n",errorcode); exit(1);}

 errorcode=LSloadStocParData(pModel,panSparStage,NULL);

 if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode);

exit(1);}

}

Temporal Time Structure:
If the core model is represented in matrix form and loaded with LSloadLPData(), it is required to

have the so-called temporal ordering. When the LP data has temporal ordering, time structure can be

represented by specifying the indices (or names) of the first variable and constraint in each stage.

STOCHASTIC PROGRAMMING 547

In Newsvendor problem, the model is (already) in temporal order, thus it is sufficient to specify the

indices of the first constraint and variable in each stage.

Variables Index Time Stage Stage Index

 X

 I

 Z

 0

 1

 2

TIME1

TIME2

TIME3

 0

 1

 2

Constraints

 Row1

 Row2

 Profit

 0

 1

 2

TIME1

TIME2

TIME3

 0

 1

 2

As seen in the table, variable I is the first variable in stage 2, and due to temporal ordering, all

variables up to the next variable (Z) are also in stage 2. Similarly, Row2 is the first constraint in stage 2

and all constraints up to the next row Profit belong to stage 2.

Note: Currently, temporal time structures can only be loaded through SMPS formatted files. Public

API functions will be made available in future releases.

Loading the Stochastic Structure:
The final step of loading an SP model is to specify the stochastic data associated with all random

parameters. This can be achieved in three different ways depending on the type of randomness and

their relation with each other. The random parameters can be

1. Independently distributed: when the behavior of the system in some stage depends on each

random parameter in that stage independently. Such parameters can be represented in two

forms:

a. A univariate parametric distribution. The distribution can be continuous (e.g.

univariate Normal distribution) or discrete (e.g. Poisson distribution). The stochastic

data for such parameters can be loaded to LINDO API via

LSaddParamDistIndep() function.

b. A univariate discrete distribution in the form of a table describing the range of values

that the random parameter can take and the probabilities associated with each. The

stochastic data for such parameters can be loaded to LINDO API via

LSaddDiscreteIndep() function.

2. Jointly distributed: when the behavior of the system in some stage depends on two or more

interdependent random parameters in that stage. Such random parameters and the

relationships among them can be represented in two forms:

a. A continuous joint distribution function (e.g. multivariate normal distribution).

Multivariate continuous distributions cannot be loaded explicitly. The user is

expected to load each parameter as a univariate continuous parameter and then add

an appropriate correlation structure via LSloadCorrelationMatrix().

548 CHAPTER 8

b. A discrete joint distribution table specifying the probabilities of each joint realization

of a vector of random parameters. The representation is similar to the univariate case

except that each event ω is a vector and the event space Ω is a set of vectors with

known probabilities. The stochastic data for such parameters can be loaded to

LINDO API via LSaddDiscreteBlocks() function.

3. Distributed with interstage dependency: when the event space Ω in some stage depends on the

realizations of random parameters in previous stages. A typical example is when modeling the

operations of an investment bank at a particular stage. It may encounter different event spaces

in the future depending on the past decisions that led to a particular state. For instance, a set

of decisions might lead to bankruptcy beyond which future events will be totally different

than those in non-bankruptcy scenarios. The stochastic data for such cases can be loaded to

LINDO API via LSaddScenario() function

Note: In cases where random parameters don’t have interstage dependency, the stochastic data can

be loaded for each stage separately and the scenario tree can be created by LINDO API

automatically. When there is interstage dependency, the user is expected to create the

scenario tree explicitly by loading scenarios via LSaddScenario().

Typical usage of these functions is illustrated for the Newsvendor problem under various stochastic

data types. It is assumed that an instruction list has been used to load the core model.

Case 1: Let D and R be independently distributed discrete parameters with the following event space

and event probabilities:

Random

Param.

Index Ω P(ω) |Ω|

D

R

0

1

 {H=90,M=60,L=30}

 {P=9,N=-15}

{0.4, 0.3, 0.3}

{0.7, 0.3}

3

2

These data can be loaded to LINDO API as in the following code snippet in C language. See

lindoapi/samples/c/ex_sp_newsboy directory for the complete application modeling this case.

STOCHASTIC PROGRAMMING 549

{ /* Load discrete independent variables */

 int errorcode = 0;

 int iRow = -99;

 int jCol = -99;

 // declarations for stochastic parameter D (index=0)

 int iStv0 = 0; // index of stoc. param.

 int nRealizations0 = 3; // size of event space

 double padVals0[] = {90, 60, 30}; // event space

double padProbs0[] = {0.4, 0.3, 0.3}; // probabilities of

 //events

 // declarations for stochastic parameter R (index=1)

 int iStv1 = 1; // index of stoc. param.

 int nRealizations1 = 2; // size of event space

 double padVals1[] = {9, -15}; // event space

 double padProbs1[] = {0.3, 0.7}; // probabilities of events

 // load stoc. param. 0

 errorcode=LSaddDiscreteIndep(pModel,iRow,jCol,iStv0,

nRealizations0,padProbs0,padVals0,LS_REPLACE);

 if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode);

exit(1);}

 // load stoc. param. 1

 errorcode=LSaddDiscreteIndep(pModel,iRow,jCol,iStv1,

nRealizations1,padProbs1,padVals1,LS_REPLACE);

 if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode);

exit(1);}

}

Case 2: Let D and R be independently normal distributed with distribution parameters (μ = 45, σ = 10)

and (μ = -3, σ =2), respectively.

Random

Param.

Index Distribution |Ω|

D

R

0

1

 NORMAL(45,10)

 NORMAL(-3,2)

+inf

+inf

This data can be loaded to LINDO API as in the following code snippet in C language. See

lindoapi/samples/c/ex_sp_newsboy directory for the complete application which models this case.

550 CHAPTER 8

{ /* Load discrete independent variables */

 int errorcode = 0;

 int iRow = -99;

 int jCol = -99;

 // declarations for stochastic parameter D (index=0)

 int iStv0 = 0; // index of stoc. param.

 int nDistType0 = LSDIST_TYPE_NORMAL; // type of distribution

 int nDistParams0 = 2; // number of distrib. params.

 double padParams0[] = {45, 10}; //distrib. params (mu, sigma)

 // declarations for stochastic parameter R (index=1)

 int iStv1 = 1; // index of stoc. param.

 int nDistType1 = LSDIST_TYPE_NORMAL; // type of distribution

 int nDistParams1 = 2; // number of distrib. params.

 double padParams1[] = {-3, 2}; // distrib. params (mu, sigma)

 // load stoc. param. 0

 errorcode=LSaddParamDistIndep(pModel,iRow,jCol,iStv0,

nDistType0,nDistParams0,padParams0,LS_REPLACE);

 if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode);

exit(1);}

 errorcode=LSaddParamDistIndep(pModel,iRow,jCol,iStv1,

nDistType1,nDistParams1,padParams1,LS_REPLACE);

 if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode);

exit(1);}

}

Note: It is possible to have a mixed case, where D is discrete and R is continuous. In such a case,

declarations for D from case 1 and declarations for R from case 2 will be used along with

associated function calls.

Case 3: Consider a case where probabilities of R are dependent of the observed value of D in the

previous stage. This is a situation where D and R are distributed with interstage dependency. For the

Newsvendor problem, suppose we have the following joint distribution table.

STOCHASTIC PROGRAMMING 551

Stage-1 Stage-2

D R Prob(D,R)

 (P)ositive (9) 0.12

(H)igh (90)

 (N)egative (-15) 0.28

 (P)ositive (9) 0.15

(M)edium (60)

 (N)egative (-15) 0.15

 (P)ositive (9) 0.27

(L)ow (30)

 (N)egative (-15) 0.03

An equivalent scenario tree will look like:

552 CHAPTER 8

In such a case, the scenarios should be explicitly loaded to LINDO API as in the following code

snippet in C language. See lindoapi/samples/c/ex_sp_newsboy directory for the complete application

which models this case.

/* Load scenario 1 */

{ int errorcode = 0;

 int iStage = 1 , jScenario = 0 , iParentScen=-1;

 int nElems = 2 , paiStvs[] = {0, 1};

 double dProb = 0.12, padVals[] = {90, 9};

 errorcode=LSaddScenario(pModel,jScenario,iParentScen,

 iStage,dProb,nElems,NULL,NULL,paiStvs,padVals,LS_REPLACE);

}

/* Load scenario 2 */

{ int errorcode = 0;

 int iStage = 2 , jScenario = 1 , iParentScen=0;

 int nElems = 1 , paiStvs[] = {1};

 double dProb = 0.28, padVals[] = {-15};

 errorcode=LSaddScenario(pModel,jScenario,iParentScen,

 iStage,dProb,nElems,NULL,NULL,paiStvs,padVals,LS_REPLACE);

}

:

:

:

/* Load scenario 6 */

{ int errorcode = 0;

 int iStage = 2 , jScenario = 0 , iParentScen=-1;

 int nElems = 1 , paiStvs[] = {1};

 double dProb = 0.03, padVals[] = {-15};

 errorcode=LSaddScenario(pModel,jScenario,iParentScen,

 iStage,dProb,nElems,NULL,NULL,paiStvs,padVals,LS_REPLACE);

 if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode);

exit(1);}

}

Case 4: Consider a new case where the Newsvendor model has two stages and the random parameters

D and R belong to the same stage with the following time structure

Variables Index Time Stage Stage Index

 X

 I

 L

 S

 Y

 E

 Z

 0

 1

 2

 3

 4

 5

 6

TIME1

TIME2

TIME2

TIME2

TIME2

TIME2

TIME2

 0

 1

 1

 1

 1

 1

 2

Constraints

 Row1

 Row2

 Row3

 0

 1

 2

TIME1

TIME2

TIME2

 0

 1

 1

STOCHASTIC PROGRAMMING 553

 Row4

 Profit

 3

 4

TIME2

TIME2

 1

 1

Random Par.

 D

 R

 0

 1

TIME2

TIME2

 1

 1

After the new time structure is loaded to LINDO API, we can work out the loading of the stochastic

data as follows. Suppose the joint distribution probabilities are the same as case 3. This leads to the

following scenario tree.

Note: This new version of Newsvendor problem is actually a special case of the original problem,

where stage 1 and stage 2 (TIME2 and TIME3) are aggregated into a single stage which is

now called stage 1 (TIME2). The consequences of this aggregation are that all random

parameters, constraints and variables that belonged to stage 1 and stage 2 in the original

problem now belong to stage 1 in the aggregated version.

As it can be seen in the scenario tree, each outcome in stage 1 corresponds to a block realization of a

vector of random parameters, namely D and R. The associated stochastic data can be loaded to LINDO

API as in the following code snippet in C language. See lindoapi/samples/c/ex_sp_newsboy directory

for the complete application modeling this case.

554 CHAPTER 8

Note: Case 4 is a relaxation of case 3 because of the (implicit) non-anticipativity constraints in case

3. In terms of this particular example, case 4 imposes no extra restrictions on stage 1

variables (quantity returned to the vendor) because the refund price is announced prior to

stage 1 decisions are taken.

{ /* Load a single block */

 int errorcode = 0;

 int iStage = 1;

 int nBlockEvents= 6;

 int pakStart[] = { 0, 2, 4, 6, 8, 10,

12};

 int paiStvs[] = { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1};

 double padVals[] = { 90,9, 90,-15, 60,9, 60,-15, 30,9,

30,-15};

 double padProb[] = { 0.12, 0.28, 0.15, 0.15, 0.27,

0.03 };

 errorcode=LSaddDiscreteBlocks(pModel,iStage,nBlockEvents,

 padProb,pakStart,NULL,NULL,paiStvs,padVals,LS_REPLACE);

 if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode);

exit(1);}

} // end-block

Decision Making under Chance-Constraints
The second major class of models in stochastic programming is chance-constrained programs (CCP).

A CCP model is a) similar to general stochastic programs in that model contains random quantities

with known distributions, but b) simpler in that the model has just a single decision stage and a single

random outcome stage.

 The goal in CCP is to make an optimal decision prior to realization of random data while controlling

the chances of violations of constraints. Consider an LP with random matrix Ξ and right-hand-side ω,

 Min c x

 Ξ x ≥ ω i =1...m

If we required all possible realizations of Ξ x ≥ ω to be satisfied, then we would get a very conservative

solution x or no feasibile solutions at all. The distinctive feature of CCP is that we require that Ξ x ≥

ω be satisfied with some prespecified probability 0 < p < 1 as opposed for all possible realizations of

(Ξ,ω).

Individual and Joint Chance-Constraints:
A CCP can be expressed in one of the following forms:

Joint-chance constraints: require the constraints involved be satisfied with a given probability

simultaneously.

STOCHASTIC PROGRAMMING 555

 Min f(x)

 Prob(gi(x, ω) ≥ 0, i=1...m) ≥ p

Individual chance-constraints: require each constraint be satisfied with a given probabilitiy

independent of other constraints.

 Min f(x)

 Prob(gi(x, ω) ≥ 0) ≥ pi i=1...m

Each form has its own benefits and the choice depends on the system being modeled. It can be

observed that individual chance-constraints are weaker than joint chance-constraints. This is because

the former doesn’t impose any restrictions on which realizations of the constraint would be violated in

regards to the realizations of other constraints.

Illustrative Example for Invididual vs Joint Chance-Constraints:
Consider a 2-variable, 2-constraint example where the random data follow discrete uniform

distributions.

MIN x1 + x2

 ω1x1 + x2 ≥ 7

 ω2x1 + 3x2 ≥ 12

 x1 , x2 ≥ 0

with ω1 ~ DU[1,4], ω2 ~ DU[1,3], namely

 Prob(ω1)=1/4 for all ω1 Є Ω1 = {1, 2, 3, 4}

 Prob(ω2)=1/3 for all ω2 Є Ω2 = {1, 2, 3}

The individual chance-constrained program (ICCP) is

MIN x1 + x2

Prob (ω1x1 + x2 ≥ 7) ≥ p1, ω1 Є { 1, 2, 3, 4}

 Prob (ω2x1 + 3x2 ≥ 12) ≥ p2, ω2 Є { 1, 2, 3}

x1, x2 ≥ 0

The joint distribution can be derived from the Cartesian product of individual distributions;

 Prob(ω1,ω2) = 1/12 for all (ω1,ω2)Є Ω

where Ω = { (1,1), (1,2), (1,3), (2,1), (2,2), (2,3),

 (3,1), (3,2), (3,3), (4,1), (4,2), (4,3)}

and, the joint chance-constrained program (JCCP) becomes

MIN x1 + x2

Prob (ω1x1 + x2 ≥ 7; ω2x1 + 3x2 ≥ 12) ≥ p, (ω1,ω2)Є Ω

x1 , x2 ≥ 0

The deterministic equivalents with p =1.0 are given below to show the difference between two forms.

It shows why ICCP has a larger feasible set than JCCP for any 1≥ p >0.

556 CHAPTER 8

 ICCPp=1.0

MIN z = x1 + x2

1 x1 + x2 ≥ 7 (ω1) = 1

2 x1 + x2 ≥ 7 (ω1) = 2 Ω1 ≥ 1-p1

3 x1 + x2 ≥ 7 (ω1) = 3

4 x1 + x2 ≥ 7 (ω1) = 4

1 x1 + 3x2 ≥ 12 (ω2) = 1

2 x1 + 3x2 ≥ 12 (ω2) = 2 Ω2 ≥ 1-p2
3 x1 + 3x2 ≥ 12 (ω2) = 3

 x1, x2 ≥ 0

JCCPp=1.0

MIN z = x1 + x2

1 x1 + 1 x2 >= 7 (ω1,ω2) = (1,1)

1 x1 + 3 x2 >= 12

1 x1 + 1 x2 >= 7 (ω1,ω2) = (1,2)

2 x1 + 3 x2 >= 12

1 x1 + 1 x2 >= 7 (ω1,ω2) = (1,3)

3 x1 + 3 x2 >= 12

2 x1 + 1 x2 >= 7 (ω1,ω2) = (2,1)

1 x1 + 3 x2 >= 12

2 x1 + 1 x2 >= 7 (ω1,ω2) = (2,2)

2 x1 + 3 x2 >= 12

2 x1 + 1 x2 >= 7 (ω1,ω2) = (2,3)

3 x1 + 3 x2 >= 12 Ω ≥ 1- p

3 x1 + 1 x2 >= 7 (ω1,ω2) = (3,1)

1 x1 + 3 x2 >= 12

3 x1 + 1 x2 >= 7 (ω1,ω2) = (3,2)

2 x1 + 3 x2 >= 12

3 x1 + 1 x2 >= 7 (ω1,ω2) = (3,3)

3 x1 + 3 x2 >= 12

4 x1 + 1 x2 >= 7 (ω1,ω2) = (4,1)

1 x1 + 3 x2 >= 12

4 x1 + 1 x2 >= 7 (ω1,ω2) = (4,2)

2 x1 + 3 x2 >= 12

4 x1 + 1 x2 >= 7 (ω1,ω2) = (4,3)

3 x1 + 3 x2 >= 12

 x1, x2 ≥ 0

Notice that there are duplicate constraints in JCCP - these are listed for the sake of completeness to

illustrate the 1-to-1 relationship between the constraints and elements of the set Ω. The solver will

eliminate all such redundancies during the solution process.

For practical instances with p < 1.0, the problem becomes equivalent to requiring only (1-pi) fraction

of the constraints induced by |Ωi| realizations be satisfied. Solving each problem for p=0.4, we get

z(ICCPp) = 4.75

z(JCCPp) = 5.20

These sample models are provided in SMPS format with LINDO API’s installation.

STOCHASTIC PROGRAMMING 557

Monte Carlo Sampling
In stochastic programming where one or more stochastic parameters have continuous or discrete but

infinite event space, there will be too many scenarios, thus making the model computationally

intractable. For such cases Monte Carlo sampling (also called pre-sampling) can be used to

approximate the problem to work with a finite scenario tree. As illustrated in the figure below, if the

model has a single stochastic parameter with a continuous distribution such as the Normal

Distribution; one can discretize the event space simply by generating N sample points and construct a

finite and tractable scenario tree. This is also true for discrete distributions with infinite event space

like the Poisson distribution.

Note: Sampling a scenario tree prior to the optimization process is also called pre-sampling. This is

to distinguish this type of sampling from the one that is used during optimization process. In

LINDO API, sampling refers to pre-sampling unless otherwise is stated.

Note: Since the point probability of each scenario in the original model is zero, it is customary to

set the probabilities of sampled scenarios to 1/N. However, the user can always define

customized sampling approaches to work with different scenario probabilities.

Given the parametric distribution of each stochastic parameter, LINDO API’s sampling routines can be

used to generate univariate samples from these distributions efficiently. The user has the option to use

antithetic-variates or Latin-hyper-square sampling to reduce the sample variance. See Appendix 8c at

the end of this chapter for a brief definition of these techniques. Appendix 8b gives a general account

of pseudo-random number generation in LINDO API.

558 CHAPTER 8

After the samples are created, the sample points could be used to define discrete distributions, which

will approximate the original distribution. Repeating this for all continuous stochastic parameters, one

could reformulate the model as in case 1 or extend it to cases 3 and 4 discussed above.

1. Sampling from a univariate distribution should follow the steps below. Create a sample object

by calling LSsampCreate()function specifying the parametric distribution type. See

Chapter 2 for a list of supported distributions.

2. Set the parameters of the distribution associated with the sample object.

3. Create a pseudorandom generator object by calling LScreateRG() function and specify its

seed for initialization.

4. Assign the random generator to the sample object by calling LSsampSetRG() function.

5. Generate desired number of sample points by calling LSsampGenerate() specifying the

variance reduction method to be used.

6. Retrieve the sample points generated by calling LSsampGetPoints().

The following code snippet illustrates this process in C language. See lindoapi/samples/c/ex_dist_gen

directory for the complete application.

{

 pSample = LSsampCreate(pEnv, LSDIST_TYPE_NORMAL, &nErrorCode);

 // Set two parameters to define the normal distribution

 nErrorCode = LSsampSetDistrParam(pSample, 0,dMean);

 nErrorCode = LSsampSetDistrParam(pSample, 0,dSigma);

 // Create and assign a random number generator (RG)

 pRG = LScreateRG(pEnv, LS_RANDGEN_FREE);

 nErrorCode = LSsampSetRG(pSample,pRG);

 LSsetRGSeed(pRG, 1031);

 // Generate 30 random points with LHS variance reduction in charge

 fprintf(stdout,"\nGenerating %d random variables...\n",30);

 nErrorCode = LSsampGenerate(pSample, LS_LATINSQUARE, 30);

 nErrorCode = LSsampGetPoints(pSample,&i,&pX);

}

Generating dependent samples
In certain situations, the modeler may require some of the samples to be dependent to each other. It is

common to characterize such dependencies by standard correlation measures, like

 Pearson’s linear correlation.

 Spearman’s rank correlation.

 Kendall’s rank correlation.

For definitions of these correlation types, refer to Appendix 8a at the end of this chapter.

LINDO API allows the users to generate dependent samples by the simple steps below.

STOCHASTIC PROGRAMMING 559

1. Create independent univariate sample objects and generate samples of equal size as described

above. The sample size should be greater than or equal to the number of sample objects.

2. Define the lower or upper triangular part of the target correlation matrix Q in sparse form. Its

size should be equal to the number of sample objects (i.e. the dimension of the multivariate

sample).

3. Load the target correlation matrix by calling LSsampInduceCorrelation() function.

For a short overview of inducing correlations , see Appendix 8e at the end of this chapter.

4. Retrieve the correlation induced (CI) sample points by LSsampGetCIPoints() function.

The following code snippet illustrates this process in C language. See lindoapi/samples/c/ex_sp_corr

directory for its application in SP context.

560 CHAPTER 8

{

 nDim = 3;

 // Create a common random number generator.

 pRG = LScreateRG(pEnv, LS_RANDGEN_FREE);

 LSsetRGSeed(pRG, 1031);

 // Create nDim sample objects and generate 30 sample points for

 // each.

 for (i=0; i< nDim; i++)

 {

paSample[i] = LSsampCreate(pEnv, LSDIST_TYPE_NORMAL,

&nErrorCode);

 // Set two parameters to define the normal distribution

 nErrorCode = LSsampSetDistrParam(pSample[i], 0,dMean);

 nErrorCode = LSsampSetDistrParam(pSample[i], 0,dSigma);

 // Assign the common random number generator (RG)

 nErrorCode = LSsampSetRG(pSample[i],pRG);

 // Generate 30 random points with LHS variance reduction in

 // charge

 fprintf(stdout,"\nGenerating %d random variables...\n",30);

 nErrorCode = LSsampGenerate(pSample[i], LS_LATINSQUARE, 30);

 }

 // Induce Pearson correlations to the original sample

 {

 int TargetQCnonzeros = 6;

 int TargetQCvarndx1[] = {0, 0, 0, 1, 1, 2};

 int TargetQCvarndx2[] = {0, 1, 2, 1, 2, 2};

 double TargetQCcoef[] = {1, 0.2, 0.5, //param0

 1, 0.7, //param1

 1}; //param2

nErrorCode = LSsampInduceCorrelation(paSample,nDim,

LSCORR_PEARSON, TargetQCnonzeros, TargetQCvarndx2,

TargetQCvarndx1, TargetQCcoef);

 APIERRORCHECK;

 }

 // Retrieve sample points into local arrays pCIX[][]

 for (i=0; i< nDim; i++)

 LSsampGetCIPoints(paSample[i],&nSampSize,&pCIX[i]);

}

STOCHASTIC PROGRAMMING 561

Automatic Sampling of Scenario Trees
As an alternative to generation of explicit sample points to be used for setting up explicit scenarios,

LINDO API offers an easy to use function LSloadSampleSizes() to create finite scenario trees

implicitly with user-specified dimensions. This is especially handy when there are several stochastic

parameters and the task of explicit sampling becomes tedious. In this context, the user can specify the

dimensions of a scenario tree by either of the following methods:

 Specify the number of nodes per stage: In this method, the user should provide an integer

array of length T (number of stages in the model) and give in each position the number of

nodes to be created in that stage. By default stage-0 will always one node, thus the 0
th

 index in

the array will be one. Other positions in the array, corresponding to the number of nodes in

stages 1,2,…T-1, may take any positive integer values. In this framework, each node

represents a block realization of all the stochastic parameters in that stage and will have a

conditional probability of 1/Nt, where Nt represents the number of nodes in stage t.

 Specify the sample size per stochastic parameter: In this method, the user should provide

an integer array of length S (the number stochastic parameters in the model), and give in each

position the samples size for that stochastic parameter.

In either case, LINDO API will automatically construct a finite scenario tree with specified

dimensions. The user can optionally specify the variance reduction technique with

LS_IPARAM_STOC_VARCONTROL_METHOD parameter (the default variance reduction/control method is

LS_LATINSQUARE). The following code snippet illustrates the first method for the Newsvendor

problem (case 2) in C language.

 {

 int panSampleSize[] = {1, 6, 6};

 errorcode=LSsetModelIntParameter(pModel,

 LS_IPARAM_STOC_VARCONTROL_METHOD,

 LS_ANTITHETIC);

 errorcode=LSloadSampleSizes(pModel,panSampleSize);

 if (errorcode !=0) { fprintf(stdout,"\nError=%d\n",errorcode);

 exit(1);}

 }

In the Newsvendor problem under case 2, both stochastic parameters are normally distributed each

belonging to a different stage. Therefore, creating N nodes per stage has the same effect as creating N

samples per stochastic parameter whenever there is a single stochastic parameter per stage.

Limiting Sampling to Continuous Parameters
In many cases, the user might want to take into account all possible outcomes of all discretely

distributed random parameters, thus enable sampling only on continuous distributions. This is achieved

by LS_IPARAM_STOC_SAMP_CONT_ONLY parameter.

562 CHAPTER 8

Suppose you have two random parameters (R1 and R2) in a 3-stage model, and

 R1 ~ Normal(0,1) with uncountably many outcomes (stage-1)

 R2 ~ 10 outcomes with a discrete uniform (0.1, .., 0.1) (stage-2)

Here, if sampling on R2 may not be desired and setting LS_IPARAM_STOC_SAMP_CONT_ONLY

parameter to 1 will limit the sampling of the scenarios to stochastic parameters with continuous

distributions only, while incorporating all outcomes of R1 into the scenario tree.

If there are no continuous random parameters and yet the user still requests a sampled scenario tree be

generated while LS_IPARAM_STOC_SAMP_CONT_ONLY is 1, LINDO API returns an error message. In

such a case, the user would either a) not generate a sample (because all random parameters are already

discrete) or b) convert one of the random parameters to a suitable continuous parameter or c) set

LS_IPARAM_STOC_SAMP_CONT_ONLY to 0.

Essentially, in neither of the cases, the user will have a direct say in the total number of scenarios in

the tree. The user can only specify

1. the total number of nodes (discretized joint distribution of all random parameters) per stage, or ..

2. the number of outcomes per random parameter (discrete or continuous)

The LINDO API will then use these input to construct a scenario tree, the number of leaves of which

will coincide the number of scenarios. Again, a scenario in this context represents a full path from the

leaf to the root containing a set of realization of all random parameters.

Note: Sampling a scenario tree is not limited to stochastic parameters that follow parametric

distributions. It is also possible to use sampling for models, which already have a finite

scenario tree. This is especially useful when the original tree is finite but still too big to

handle computationally. Consider a model with 30 stochastic parameters with two outcomes

each. This will correspond to a scenario tree with 2
30

 = 1.0737e+009 scenarios. Sampling will

be essential for models with scenario trees this big. For such cases the parameter
LS_IPARAM_STOC_SAMP_CONT_ONLY should be set to 0.

Using Nested Benders Decomposition Method
Nested Benders Decomposition (NBD) method is an extension of the classical Benders Method to

solve multistage SPs. The workings of these are beyond the scope of this section. Interested reader

should consult standard textbooks on the topic. In this section, we describe how and when this method

could be used and point out some limitations.

As of LINDO API version 9.0, Nested Benders Decomposition (NBD Method) can be used for

linear/quadratic SPs. Versions prior to v9.0 can solve only linear SPs.

To enable it, simply designate the NBD solver as the SP method and call LSsolveSP(). This could be

achieved by the following code snippet:

nErr =

LSsetModelIntParameter(pModel,LS_IPARAM_STOC_METHOD,LS_METH

OD_STOC_NBD);

nErr = LSsolveSP(pModel,&nStatus);

STOCHASTIC PROGRAMMING 563

This solver requires the SP model to be setup using the matrix-style interface. If the instruction-style

interface was used to set up the model, LSsolveSP() will return LSERR_STOC_BAD_ALGORITHM

error.

LINDO API offers a parameter LS_IPARAM_STOC_MAP_MPI2LP which removes this limitation

partly. When the parameter is set to 1, the solver converts the model from instruction-style format

into matrix-style format. However, for this conversion to be successful, it is required that expressions

that involve stochastic parameters are simple univariate linear functions like (α.r + β) where α and β

are scalars and r is the random parameter. To give an example for admissible forms, consider a model

with 3 stochastic parameters r1, r2, and r3 which are used in the model as functions of r1,r2 and r3,

respectively, with α1, α2,.., β1,.., β3 being scalars.

Constraint2] (α1.r1+ β1) x + ...

Constraint3] (α2.r2+ β2) y + ...

Constraint4] (α3.r3+ β3) z + ...

This case could be solved with this code snippet:

nErr =

LSsetModelIntParameter(pModel,LS_IPARAM_STOC_MAP_MPI2LP,1);

nErr =

LSsetModelIntParameter(pModel,LS_IPARAM_STOC_METHOD,LS_METHOD_STOC_NB

D);

nErr = LSsolveSP(pModel,&nStatus);

While these forms above can be correctly converted, the following (nonlinear or multivariate linear)

forms cannot be converted.

Constraint5] (α1.r1+ α2.r2+ β3) x + ...

Constraint6] exp(r2) y + ...

For these cases, the user should pre-compute the random parameters (or their distributions if they

belong to continuous distribution)

R1 ~ (α1.r1+ α2.r2+ β3)

R2 ~ exp(r2)

and write the model constraints w.r.t. newly defined random parameters R1 and R2 as follows:

Constraint5] (R1) x + ...

Constraint6] (R2) y + ...

Note 1: As a byproduct, LINDO API can build the *implicit* deterministic equivalent model (as

opposed to the *explicit* deterministic equivalent) of the underlying model. It is useful to

work with implicit model because it is much smaller than the explicit model -- the NAC (non-

anticipative constraints) are eliminated from the model. One can observe this effect by

looking at the difference in the size of the model passed to the solver under two settings of

'LS_IPARAM_STOC_MAP_MPI2LP'.

564 CHAPTER 8

Note 2: For stochastic LPs, the LP presolver can reduce the size of the 'Explicit' model to the same

size as the 'Implicit' model. Therefore, STOC_MAP_MPI2LP setting does not make much

difference for this model class. However, in quadratic/nonlinear SPs, however, it could help

to turn on this parameter.

Sample Multistage SP Problems

An Investment Model to Fund College Education:
We consider a four-period investment planning model to fund college education, based on the book

Introduction to Stochastic Programming, by J. Birge and F. Louveaux. There are two investment

types at each stage, Stocks (S) and Bonds (B). The objective is to maximize the wealth (Z) at the end

of period 4.

Stochastic Parameters:

Rtk : random return from investment type k=B,S in stage, t =1, 2, 3.

Deterministic Parameters:

 Initial wealth: $55,000

Target wealth: $80,000

Decision Variables:

 Xtk: Amount invested on investment type k=B,S in stage t, t =1, 2, 3;

 Z: total wealth ($1000) at the end of period 4;

Y: amount fell short from target wealth at the end of period 4;

CORE Model:
The CORE model has the following formulation. Refer to sample application under

samples/c/ex_sp_putoption directory for its representation in MPI format.

 [COST] MIN = 4 * Y - Z;

 [STAGE1A] + X1B + X1S = 55;

 [STAGE2A] - R1B * X1B - R1S * X1S + X2B + X2S = 0;

 [STAGE3A] - R2B * X2B - R2S * X2S + X3B + X3S = 0;

 [STAGE4A] + R3B * X3B + R3S * X3S - Z = 0;

 [STAGE4B] + R3B * X3B + R3S * X3S + Y >= 80;

TIME Structure:
The time structure of constraints, variables and stochastic parameters are as follows:

Variables Variable

Index

Stage

Index

 X1B

 X1S

 X2B

 X2S

 X3B

 0

 1

 2

 3

 4

 0

 0

 1

 1

 2

STOCHASTIC PROGRAMMING 565

 X3S

 Z

 Y

 5

 6

 7

 2

 3

 3

Constraints Constraint

Index

Stage

Index

STAGE1A

STAGE2A

STAGE2A

STAGE3A

STAGE4A

STAGE4B

 0

 1

 2

 3

 4

 5

 0

 1

 1

 2

 3

 3

Random

Parameters

Parameter

Index

Stage

Index

 R1B

 R1S

 R2B

 R2S

 R3B

 R3S

 0

 1

 2

 3

 4

 5

 1

 1

 2

 2

 3

 3

Refer to the sample application for the steps taken to load this time structure to LINDO API.

Stochastic Structure:
The joint distribution of investment returns remain unchanged across stages and have the following

form:

This stochastic structure can be loaded as block realizations of Rtk for each stage with

LSaddDiscreteBlocks function. This is illustrated in sample application under

samples/c/ex_sp_bondstok directory on your installation directory.

Running the application yields the following first stage decisions

X1B = 13.520727707

X1S = 41.479272293

, with the expected value of the objective function being

E[4Y – Z] = 1.514084643

For a detailed output, see the log produced by the sample application.

Outcomes Returns

(Stocks, Bonds)

Probability

High Performance (25%, 14%) 0.5

Low Performance (6%, 12%) 0.5

566 CHAPTER 8

An American Put-Options Model:
This is a stochastic programming version of an American Put-Option as a six period model. The

holder of the option has the right to sell a specified stock at any time (the feature of American options)

between now and a specified expiration date at a specified strike price. The holder makes a profit in

the period of exercise if the strike price exceeds the market price of the stock at the time of sale.

Wealth is invested at the risk free rate. The objective is to maximize the wealth at the end of planning

horizon.

Initial Price = $100

Strike price = $99

Risk free rate = 0.04%

Stochastic Parameters:

 RVt : random return in the end of period t, for t = 0..4

Decision Variables:

 Pt: Price of option in the beginning of period t, for t = 0…5

 Wt: Wealth at the beginning of period t, for t = 0…5

 Yt: 1 if sold in the beginning of period t, 0 otherwise, for t = 0…5

CORE Model:
The CORE model has the following formulation. Refer to sample application under

samples/c/ex_sp_putoption directory for its representation in MPI format.

 [OBJ] MAX= W5 ;

 [PRICE0] P0 = 100 ; !price at t=0;

 [PRICE1] RV0 * P0 = P1 ; !price at t=1;

 [PRICE2] RV1 * P1 = P2 ; !price at t=2;

 [PRICE3] RV2 * P2 = P3 ; !price at t=3;

 [PRICE4] RV3 * P3 = P4 ; !price at t=4;

 [PRICE5] RV4 * P4 = P5 ; !price at t=5;

 [WEALTH0] + Y0 * (99 - P0) = W0 ; !wealth at t=0;

 [WEALTH1] 1.04 * W0 + Y1 * (99 - P1) = W1 ; !wealth at t=1;

 [WEALTH2] 1.04 * W1 + Y2 * (99 - P2) = W2 ; !wealth at t=2;

 [WEALTH3] 1.04 * W2 + Y3 * (99 - P3) = W3 ; !wealth at t=3;

 [WEALTH4] 1.04 * W3 + Y4 * (99 - P4) = W4 ; !wealth at t=4;

 [WEALTH5] 1.04 * W4 + Y5 * (99 - P5) = W5 ; !wealth at t=5;

 [SellOnce] Y0 + Y1+ Y2+ Y3 + Y4 + Y5 <= 1 ; ! sell only once;

 @FREE(Wt); t=0..5;

 @FREE(Pt); t=0..5;

 @BIN(Yt); t=0..5;

STOCHASTIC PROGRAMMING 567

Note: If your SP model has any variable, say X, that is a function of random parameters and this

function may legitimately take on negative values, then you should add the declaration

@FREE(X) to your model.

TIME Structure:
The time structure of constraints, variables and stochastic parameters are as follows:

Variables Variable

Index

Stage

Index

 Pt

 Wt

 Yt

 t

 t+6

 t+12

 t=0…5

 t=0…5

 t=0…5

Constraints Constraint

Index

Stage

Index

PRICEt

WEALTHt

SellOnce

 t

 t+6

 12

 t=0…5

 t=0…5

 5

Random

Parameters

Parameter

Index

Stage

Index

 RVt t-1 t=1…5

Refer to the sample application for the steps taken to load this time structure to LINDO API.

Stochastic Structure:
The discrete independent distribution of the returns for each stage is as follows:

This stochastic structure can, too, be expressed with block realizations of RVt for each stage

LSaddDiscreteBlocks as given in sample application under samples/c/ex_sp_putoption directory

on your installation directory. Note, it is also possible to use LSaddParamDistIndep to load this

structure.

Running the application yields the following first stage decision

Y0 = 0 (don’t sell),

with the expected value of the objective function being

E[W5] = 3.807665

For a detailed output, see the log produced by the sample application.

Stages Returns Probabilities

1 (-8%, 1%, 7%, 11%) (0.25,0.25,0.25,0.25)

2 (-8%, 1%) (0.5,0.5)

3 (7%, 11%) (0.5,0.5)

4 (1%, 11%) (0.5,0.5)

5 (-8%, 7%) (0.5,0.5)

568 CHAPTER 8

Sample Chance-Constrainted Problems

A Production Planning Problem:
In this example (Kall, P. 1999), we aim to minimize the total production cost of two products, p1 and

p2, which require two types of raw materials, x1 and x2. The unit costs of raw materials, c = (2, 3), the

expected value of product demands, h = (180, 162), and the processing capacity for raw materials is b

= (100). Unit raw matrial requirements for each product are (2,6) for product 1, and (3,3.4) for product

2.

 CORE Model:
The CORE model has the following formulation.

MODEL:

[OBJ] min = 2*x1 + 3*x2;

[CAPACITY] x1 + x2 < 100;

[DEMAND1] 2*x1 + 6.0*x2 > 180;

[DEMAND2] 3*x1 + 3.4*x2 > 162;

END

In order to maintain client satisfaction high, management requires that demand be satisfied of 95% of

the time. In this scenario, we formulate the following stochastic program with joint probabilistic

constraints.

 TIME Structure:
This model is a single stage problem, but a time structure is needed to construct a stochastic program

with LINDO API. Therefore we set up a dummy time structure assigning all constraints and variables

to stage-0. This step is identical to those in previous examples.

 Stochastic Structure:
The stochastic structure imposed on the deterministic model leads to the following formulation.

 MODEL:

 [OBJ] min = 2*x1 + 3*x2;

 [CAPACITY] x1 + x2 < 100;

 [DEMAND1] (2+η1)*x1 + 6*x2 > 180 + ξ1;

 [DEMAND2] 3 *x1 + (3.4-η2)*x2 > 162 + ξ2;

 END

The random parameters η1, η2, ξ1 and ξ2 are mutually independent and have the following

distributions

ξ1 ~ Normal(0,12)

ξ2 ~ Normal(0,9)
η1 ~ Uniform(-0.8, 0.8)

η2 ~ Exp(2.5)

STOCHASTIC PROGRAMMING 569

Each of these random parameters should be loaded by calling LSaddParamDistIndep. Finally, the

joint probabilitstic formulation, expressed as

 Prob (DEMAND1, DEMAND2) > 0.95

should be loaded to the solver with a call to LSaddChanceConstraint.

Note, this model contains continuous random parameters and needs to be discretized before

attempting a solution. A joint sample size of 100 (i.e. each random parameter having 100 independent

iid observations) leads to the following sets of facets defining the boundaries of 100 feasible regions.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x
1

x
2

An optimal solution at p=95% will satisfy at least 95 out of the 100 feasible regions. At p=90%, 90 out

of 100 will be satisfied and so on. Typically, for lower levels of p, one can expect the objective value

to improve at the expense of degrading robustness.

An SMPS version of this model is provided in the “lindoapi/samples/data/products” folder.

Models with User-defined Distribution:
Some stochastic models involve stochastic parameters that have a) arbitrary relationships with a set of

independent stochastic parameters or b) distributions that cannot be expressed in closed form. For such

cases, a user-defined (distribution) function needs to be used to model the underlying stochastic

phenomena. This requires the use of LSaddUserDistr() interface to associate randomness in the model

with a user-defined function. This is a callback function, similar to the one used in black-box NLP

interface, and has the following form.

570 CHAPTER 8

UserPDF()

Description:

This function name used here, UserPDF(), is arbitrary, and is merely for illustration. This

function will reside in your calling application, you may choose any name you wish. But, the

interface described below must be duplicated.

This function should be provided for all stochastic models with user-defined distributions or

general functions of random input. You should use the LSaddUserDistr () routine to

identify your UserPDF() routine to LINDO API.

Returns:

Returns a value greater than 0 if a numerical error occurred while computing the function

value (e.g., square root of a negative number). Otherwise, return 0.

Prototype:

int UserPDF (pLSsample pSample, int nFuncType, double

*padInput, int nInput, double *pdOutput, void *pUserData);

Input Arguments:

Name Description

pSample Pointer to an instance of LSsample.

nFuncType An integer specifying the type of computation required. The

user can use this flag in diverting the program control to

different blocks with a switch. Possible values are:

 LS_PDF: probability density function.

 LS_CDF: cummulative density function.

 LS_CDFINV: inverse of cummulative density

function..

 LS_PDFDIFF: derivative of the probability

density function.

 LS_USER: user-defined computation.

padInput A pointer to a double array containing the values of the

arguments that will be used to evaluate the function. The size

of this array is specified by nInput.

nInput The number of arguments the function requires to evaluate the

function value.

pUserData Pointer to a user data area or structure in which any other data

needed to calculate function values can be stored (e.g., input

for a simulation experiment). LINDO API obtains the value of

this pointer when the UserPDF() routine is established through

a call to LSaddUserDistr () (see below). Subsequently,

whenever LINDO API calls your UserPDF() routine, it passes

the same pointer value through pUserData. Any data that

UserPDF() needs to compute the function value could be stored

in the data structure pointed to by pUserData.

STOCHASTIC PROGRAMMING 571

Output Arguments:

Name Description

pdOutput *pdOutput returns the value of the function.

Remark:

 pSample argument is populated by the values returned by this function, thus you can access

its contents via calls to LSsampGetPoints function.

 LSsampSetUserDistr can be used to install a user-defined function for general sampling

purposes.

A Farming Problem:
In this example, we setup and solve a CCP model, which involves random parameters whose

computation relies on a user-defined function. This requires generating samples for the independent

parameters and computing the dependent variables explicitly from the independent parameters using

LSaddUserDistr routine.

A Kilosa farmer can grow maize and sorghum on his land, and needs to decide how many hectares to

allocate to each satisfying calorie and protein requirements.

 CORE Model:
Decision Variables:

xm : acreage of maize in hectares

xs : acreage of sorghum in hectares

It is known that

100 kgs of maize contains 2.8 × 105 Kcal and 6.4 kg of protein.

100 kgs of sorghum contains 2.8 × 105 Kcal and 8 kg of protein.

The yields are uncertain due to rainfall as well as white noise. We define them as dependent stochastic

parameters;

ym: random yield per hectare of maize (in 100 Kgs)

ys: random yield per hectare of sorghum (in 100 Kgs)

The objective is to minimize total hectares allocated for farming while satisfying each constraint with

p=0.90.

 STOC Model:
[OBJ] Min = xm + xs;

[CALORIES] 2.8*ym*xm + 2.8*ys*xs > 44;

[PROTEIN] 6.4*ym*xm + 8.0*ys*xs > 89;

Now since the constraints CALORIES and PROTEIN are required to be satisfied independently with

p=0.90, we have the following probabilistic requirements.
Prob (CALORIES) > 0.90

Prob (PROTEIN) > 0.90

Independent stochastic parameters which affect random yields (ym, ys) are:

572 CHAPTER 8

ξ ~ Normal(515.5,137.0): random rainfall during the growing season (mm)

εm ~ Normal(0.0, 10.0): white noise in the yield of maize

εs ~ Normal(0.0, 10.0): white noise in the yield of sorghum.

An earlier regression analysis suggests the following relationship between yields and independent

random factors.

ym = 0.020*ξ - 1.65 + εm;

ys = 0.008*ξ + 5.92 + εs;

According to this relationship, it is possible to have negative values ym and ym for some realizations of

(ξ, εm, εs). This would imply negative yields, which would be unrealistic. Therefore, we use a user-

defined distribution function to sample realizations for ym and ys and truncating any negative

realizations to zero. The truncation process is performed by the user-defined callback function on-the-

fly during sampling. The callback function is given below and conforms with the prototype of

UserPDF() given above .

int LS_CALLTYPE UserDistr(pLSsample pSample, int nFuncType,

double *padInput, int nInput, double *pdOutput,

void *userData)

{

 int errorcode = 0;

 static pLSsample pSamp = NULL;

 double ksi_r, eps_m, eps_s;

 int iStv = (*((int *) userData));

 if (nInput<2) { errorcode = LSERR_INTERNAL_ERROR; goto ErrReturn; }

 if (nFuncType != LS_USER) {errorcode = LSERR_INTERNAL_ERROR; goto

ErrReturn; }

 if (iStv==0) {

 ksi_r = padInput[0];

 eps_m = padInput[1];

 *pdOutput = 0.020*ksi_r - 1.65 + eps_m;

 //yields cannot be negative, set them to zero

 if ((*pdOutput)<0) *pdOutput=0;

 } else if (iStv==1) {

 ksi_r = padInput[0];

 eps_s = padInput[1];

 *pdOutput = 0.008*ksi_r + 5.92 + eps_s;

 //yields cannot be negative, set them to zero

 if ((*pdOutput)<0) *pdOutput=0;

 }

ErrReturn:

 return errorcode;

}

We also need to set up LSsample objects, which will be used to express yields (ym, ys) through the

callback function above.

{

 // Rainfall affecting both ym and ys

STOCHASTIC PROGRAMMING 573

 pSample_KSI_R = LSsampCreate(pEnv, LSDIST_TYPE_NORMAL, &errorcode);

APIERRORCHECK;

 errorcode = LSsampSetDistrParam(pSample_KSI_R, 0, 515.5); APIERRORCHECK;

// mu

 errorcode = LSsampSetDistrParam(pSample_KSI_R, 1, 137.0); APIERRORCHECK;

// std

 // White-noise for ym

 pSample_EPS_M = LSsampCreate(pEnv, LSDIST_TYPE_NORMAL,

&errorcode);APIERRORCHECK;

 errorcode = LSsampSetDistrParam(pSample_EPS_M, 0, 0.0); APIERRORCHECK;

// mu

 errorcode = LSsampSetDistrParam(pSample_EPS_M, 1,10.0); APIERRORCHECK;

// std

 // White-noise for ym

 pSample_EPS_S = LSsampCreate(pEnv, LSDIST_TYPE_NORMAL, &errorcode);

APIERRORCHECK;

 errorcode = LSsampSetDistrParam(pSample_EPS_S, 0, 0.0); APIERRORCHECK;

// mu

 errorcode = LSsampSetDistrParam(pSample_EPS_S, 1,10.0); APIERRORCHECK;

// std
}

Finally, the user-defined function would be installed with LSaddUserDist function for each dependent

parameter.

 {// begin user-defined event for random yield ym

 int errorcode = 0;

 int iRow = 0;

 int jCol = -8;

 int iStv = 0;

 int iModifyRule = LS_REPLACE;

 // pass the samples set up above to the event

 paSampleBuf[0] = pSample_KSI_R;

 paSampleBuf[1] = pSample_EPS_M;

 userData_M = iStv;

 errorcode=LSaddUserDist(pModel,iRow,jCol,iStv,UserDistr,2,

paSampleBuf, &userData_M, iModifyRule);

 APIERRORCHECK;

 } // end user-defined event

 {// begin user-defined event for random yield ys

 int errorcode = 0;

 int iRow = 1;

 int jCol = -8;

 int iStv = 1;

 int iModifyRule = LS_REPLACE;

 // pass the samples set up above to the event

 paSampleBuf[0] = pSample_KSI_R;

 paSampleBuf[1] = pSample_EPS_S;

 userData_S = iStv;

 errorcode=LSaddUserDist(pModel,iRow,jCol, iStv,UserDistr,2,

574 CHAPTER 8

 paSampleBuf,&userData_S,iModifyRule);

 APIERRORCHECK;

 } // end user-defined event

The independent chance-constraints (ICC) are expressed as in the previous example. Solving the

model in given form with a sample size of N=30 leads to the following solution.
Objective Value = 5.17789

Primal Solution

 Period Variable Value/Activity Reduced Cost

 TIME0000 XM 3.0599545643 0.0000000000

 TIME0000 XS 2.1179365996 0.0000000000

You may refer to the application under samples/c/ex_ccp_kilosa directory for details of the

implementation and full output.

About alternative formulations:
1. A simple alternative would be to substitute ym and ys with the associated expressions involving (ξ,

εm, εs) and formulate the problem with these stochastic parameters. Unfortunately, this would likely

lead to negative ym and ys during which would invalidate the overall model.

2. An alternative approach would be to fit a multivariate distribution for (ym,ys) directly such that

nonnegative values for ym and ys are (almost) zero. Correlations between ym and ys can be handled by

inducing correlations as in sample application 'ex_sp_corr'.

3. Another alternative would be to assume ym and ys to be independent in which case a conic

formulation would be possible, but this may not be as realistic as the core case.

Ref:

 1) Schweigman, C.: 1985, `OR in development countries'. Khartoum University Press, Khartoum.

 2) van der Vlerk, M. http://mally.eco.rug.nl/lnmb/cases.pdf.

Appendix 8a: Correlation Specification
The LINDO API supports three different ways of computing the correlation of two random variables:

Pearson correlation, Spearman rank correlation, or Kendall-tau rank correlation. To describe them,

first define:

STOCHASTIC PROGRAMMING 575

Pearson correlation is computed by the formula:

Spearman Rank correlation is computed in the same way as Pearson, except xi and yi are replaced by

their ranks, with special adjustments when there are ties.

Kendall Tau Rank

 The Kendall-tau rank correlation is calculated by the formula:

where the sign() function is either +1, 0, or -1 depending upon whether its argument is either

> 0, = 0, or < 0.

The advantage of the Spearman and Kendall tau correlation coefficient is that rank correlations are

non-parametric. E.g., if you compute the Spearman or Kendall tau correlation for a set of uniform

random variables, and then transform these uniforms into some other distribution, e.g., Normal, using

monotonic increasing transformations, the Spearman and Kendall tau correlation remains unchanged.

Example:

 Consider the data set:

 X Y
 2 1.2

 1 2.3

 4 3.1

 3 4.1

The Pearson, Kendall tau, and Spearman correlations between X and Y are respectively: 0.4177,

0.3333, and 0.4500.

There are limitations on what kinds of correlation are achievable. First the correlation matrix must be

positive semi-definite. Secondly, if the random variables are discrete, then it may be that not all

correlations between -1 and +1 are possible. For example, if X and Y are both Bernoulli (0 or 1)

random variables, each with mean 0.3, then the most negative Pearson correlation possible is -3/7.

Inducing a Desired Correlation Matrix

The LINDO API offers a method for imposing user-specified correlation structures among samples.

The technique is based on Iman-Conover’s method, which approximates the target correlation matrix

by reordering the points in each sample. Local improvement techniques are then employed to improve

the accuracy of the final approximation. The following example illustrates how to induce the identity

matrix (I3) as the correlation among 3 samples. This approach is commonly used in obtaining

uncorrelated samples in arbitrary dimensions.

Suppose we generated three samples from NORMAL(0,1) of size 20 and request a correlation of zero

between each sample pair . Due small sample size, the actual correlations will not necessarily be close

576 CHAPTER 8

to zero. We use LSinduceSampleCorrelation function to induce the identity matrix I to specify as

the target correlation structure to reduce pairwise correlations. The main steps for the task involves

1. Generating Xi for i=1..3 by calling LSsampGenerate

2. Specifing T = I3 as the target (Pearson) correlation matrix and loading it with
 LSsampInduceCorrelation.

3. Retrieving correlation-induced samplesYi for i=1..3 by calling LSsampGetCIPoints

X1 X2 X3 Y1 Y2 Y3

1.037 -0.718 -1.389 1.037 -0.954 -1.389

0.220 -0.639 -0.119 0.220 -0.639 0.120

-0.761 -1.407 -1.149 -0.761 -1.407 -0.734

-0.245 0.432 1.344 -0.245 0.545 1.239

0.017 -0.483 -0.132 0.017 -0.483 -0.119

-2.704 -1.762 0.210 -2.704 -1.259 0.210

0.815 0.291 -0.372 0.815 0.201 -0.423

-0.463 -0.326 -2.326 T -0.463 -0.213 -2.326

-0.627 1.267 -0.734 1 -0.627 1.267 -0.988

0.272 -0.213 0.591  0 1  0.272 -0.326 0.591

1.658 1.864 -0.988 0 0 1 1.658 1.864 -1.149

1.594 -1.259 -0.596 1.594 -1.762 -0.372

-0.926 -0.954 0.265 -0.926 -0.718 0.265

0.639 0.008 1.239 0.639 0.008 1.344

-1.510 0.780 0.120 -1.510 0.780 -0.132

-0.279 1.441 0.984 -0.279 1.441 0.805

-1.172 0.975 -0.423 -1.172 0.975 -0.596

0.436 -0.067 0.805 0.436 -0.067 0.984

0.903 0.545 0.437 0.903 0.432 0.437

-0.034 0.201 2.645 -0.034 0.291 2.645

Let Sij = corr(Xi,Xj) and Cij=corr(Yi,Yj), observe that we have the following correlation matrices

 S

 C

X1 X2 X3

Y1 Y2 Y3

x1
1.000

Y

1 1.000

X2
0.205 1.000

Y

2 0.059 1.000

X3 -

0.063 0.147 1.000

Y

3 -0.030 0.069 1.000

STOCHASTIC PROGRAMMING 577

It can be verified that the deviation of S from T is ||S-T|| = 0.221826, whereas deviation of C

from T is only ||C-T|| = 0.081104, which is a reduction about 300%. The deviation is measured

as the norm of the difference between matrices.

In the following, emprical results from an experiment inducing independence among various

distributions are given. In this experiment, 20 samples of sizes 100, 200, 300 are generated and the

20x20 identity matrix is used as the target correlation structure to induce independence among

samples. See lindoapi/matlab/LMtestSampCorr.m script for a quick overview of the steps

involved. The matrices S, T and C are as defined above; NO, BE, GA and U refer to Normal, Beta,

Gamma and Uniform distributions, respectively, with the values in the paranthesis specifying the

distribution parameters. The value specified by ‘reduction’ refers to the reduction in deviation from the

target correlation T before and after inducing the correlation. The test for each distribution and

sample size is repeated for Pearson, Kendall and Spearman correlations.

Normal Dist

 Pearson, NO(0,1), N:100, |T-S|: 0.324072, |T-C|: 0.043502, reduction: 745.0%

 Pearson, NO(0,1), N:200, |T-S|: 0.218323, |T-C|: 0.020076, reduction: 1087.5%

 Pearson, NO(0,1), N:300, |T-S|: 0.191623, |T-C|: 0.010360, reduction: 1849.6%

 Kendall, NO(0,1), N:100, |T-S|: 0.225455, |T-C|: 0.062222, reduction: 362.3%

 Kendall, NO(0,1), N:200, |T-S|: 0.130854, |T-C|: 0.045025, reduction: 290.6%

 Kendall, NO(0,1), N:300, |T-S|: 0.123835, |T-C|: 0.040892, reduction: 302.8%

 Spearman, NO(0,1), N:100, |T-S|: 0.329817, |T-C|: 0.086817, reduction: 379.9%

 Spearman, NO(0,1), N:200, |T-S|: 0.197370, |T-C|: 0.061394, reduction: 321.5%

 Spearman, NO(0,1), N:300, |T-S|: 0.179198, |T-C|: 0.060258, reduction: 297.4%

Beta Dist

 Pearson, BE(1,2), N:100, |T-S|: 0.343788, |T-C|: 0.042635, reduction: 806.4%

 Pearson, BE(1,2), N:200, |T-S|: 0.203274, |T-C|: 0.022548, reduction: 901.5%

 Pearson, BE(1,2), N:300, |T-S|: 0.190010, |T-C|: 0.019834, reduction: 958.0%

 Kendall, BE(1,2), N:100, |T-S|: 0.225455, |T-C|: 0.062222, reduction: 362.3%

 Kendall, BE(1,2), N:200, |T-S|: 0.130854, |T-C|: 0.045025, reduction: 290.6%

 Kendall, BE(1,2), N:300, |T-S|: 0.123835, |T-C|: 0.040892, reduction: 302.8%

 Spearman, BE(1,2), N:100, |T-S|: 0.329817, |T-C|: 0.086817, reduction: 379.9%

 Spearman, BE(1,2), N:200, |T-S|: 0.197370, |T-C|: 0.061394, reduction: 321.5%

 Spearman, BE(1,2), N:300, |T-S|: 0.179198, |T-C|: 0.060258, reduction: 297.4%

Gamma Dist

 Pearson, GA(2,2), N:100, |T-S|: 0.320340, |T-C|: 0.058134, reduction: 551.0%

 Pearson, GA(2,2), N:200, |T-S|: 0.209847, |T-C|: 0.029014, reduction: 723.2%

 Pearson, GA(2,2), N:300, |T-S|: 0.208332, |T-C|: 0.046580, reduction: 447.3%

 Kendall, GA(2,2), N:100, |T-S|: 0.225455, |T-C|: 0.062222, reduction: 362.3%

 Kendall, GA(2,2), N:200, |T-S|: 0.130854, |T-C|: 0.045025, reduction: 290.6%

 Kendall, GA(2,2), N:300, |T-S|: 0.123835, |T-C|: 0.040892, reduction: 302.8%

 Spearman, GA(2,2), N:100, |T-S|: 0.329817, |T-C|: 0.086817, reduction: 379.9%

 Spearman, GA(2,2), N:200, |T-S|: 0.197370, |T-C|: 0.061394, reduction: 321.5%

 Spearman, GA(2,2), N:300, |T-S|: 0.179198, |T-C|: 0.060258, reduction: 297.4%

Uniform Dist

 Pearson, U(0,1), N:100, |T-S|: 0.330391, |T-C|: 0.040821, reduction: 809.4%

 Pearson, U(0,1), N:200, |T-S|: 0.197696, |T-C|: 0.030350, reduction: 651.4%

 Pearson, U(0,1), N:300, |T-S|: 0.179028, |T-C|: 0.014361, reduction: 1246.7%

578 CHAPTER 8

 Kendall, U(0,1), N:100, |T-S|: 0.225455, |T-C|: 0.062222, reduction: 362.3%

 Kendall, U(0,1), N:200, |T-S|: 0.130854, |T-C|: 0.045025, reduction: 290.6%

 Kendall, U(0,1), N:300, |T-S|: 0.123835, |T-C|: 0.040892, reduction: 302.8%

 Spearman, U(0,1), N:100, |T-S|: 0.329817, |T-C|: 0.086817, reduction: 379.9%

 Spearman, U(0,1), N:200, |T-S|: 0.197370, |T-C|: 0.061394, reduction: 321.5%

 Spearman, U(0,1), N:300, |T-S|: 0.179198, |T-C|: 0.060258, reduction: 297.4%

The quality of the approximation is observed to increase with increased sample size for Pearson

correlation, whereas it remained about the same for Kendall and Spearman type correlations.

Appendix 8b: Random Number Generation
The LINDO API allows the user to specify one of six random number generators:

1) LS_RANDGEN_LINDO1: Composite of linear congruentials with a long

period,(default),

2) LS_RANDGEN_LINDO2: Linear congruential (31-bit),

3) LS_RANDGEN_MERSENNE: Mersenne Twister with long period.

4) LS_RANDGEN_SYSTEM: Built-in generator based on C functions rand() and

srand().

5) LS_RANDGEN_LIN1: An alternative linear congruential generator.

6) LS_RANDGEN_MULT1: A multiplicative generator.

The 31-bit linear congruential generator (LS_RANDGEN_LINDO2) uses the recursion:

 IU(t) = 742938285 * IU(t-1) MOD 2147483647

 U(t) = IU(t) /2147483647.0

This generator has a cycle length of (2^31)-1, or about 2.147*10^9.

The composite generator (LS_RANDGEN_LINDO1) uses the recursion, see L’Ecuyer et al.:

 x(t) =(1403580*x(t-2) - 810728*x(t-3)) mod 4294967087;

 y(t) =(527612*y(t-1) - 1370589*y(t-3)) mod 4294944443;

 z(t) = (x(t) - y(t)) mod 4294967087;

 U(t) = z(t)/4294967088 if z(t) > 0;

 = 4294967087/4294967088 if z(t) = 0;

Although this generator is slower, it has the advantages that it has a cycle length of about 2^191 =

3.14*10^57. It has been shown to have good high dimension uniformity in up to 45 dimensional

hypercubes.

The univariate distributions supported are Beta, Binomial, Cauchy, Chisquare, exponential, F, Gamma,

Geometric, Gumbel, Hypergeometric, Laplace, Logarithmic, Logistic, Lognormal, Negativebinomial,

Normal, Pareto, Poisson, Student-t, Uniform, Weibull.

Generating internally a random number from an arbitrary distribution, e.g., Normal, Poisson, Negative

binomial follow the following simple steps.

1) Generate a uniform random number in (0, 1) with one of the available generators.

2) Convert the uniform to the desired distribution via the inverse transform of the cdf (cumulative

distribution function).

STOCHASTIC PROGRAMMING 579

Appendix 8c: Variance Reduction
The LINDO API provides two methods for reducing the variance of results: Latin Hyper Cube

Sampling (LHS), and Antithetic Variates (ATV). Assume we want n random variables drawn from the

interval (0, 1), with all outcomes equally likely, i.e., uniformly distributed.

LHS will partition the interval (0, 1) into n intervals, each of length 1/n, and then draw one sample

uniformly from each interval. For example, if n = 10, you might get the following sample.

0.002773 0.279945

0.789123 0.941034

0.554321 0.837275

0.376877 0.133699

0.430992 0.672890

Notice that there is exactly one number with a fraction starting with .0, one starting with .1, etc. This

is extended to arbitrary distributions so that there is exactly one number drawn from the lowest 1/n

fractile, one from the second lowest fractile, etc.

ATV sampling assumes that n is an even number. Again, assuming we want n random numbers

uniform in (0, 1), ATV, ATV first draws n/2 numbers, xu1, xu2,… xun/2 uniform in (0, 1). ATV then

generates the remaining n/2 numbers by the rule: For k = n/2+1, to n: xuk = 1- xuk –n/2. For example,

the following n = 10 numbers satisfy that feature:

0.002773 0.997227

0.789123 0.210877

0.554321 0.445679

0.376877 0.623123

0.430992 0.569008

Appendix 8d: The Costs of Uncertainty: EVPI and EVMU
We should always be concerned with how much uncertainty is costing us. There are three general

approaches we can take in the face of uncertainty:

1) Disregard uncertainty. Act as if each stochastic parameter is a constant. E.g., at the beginning

of each day, assume it will be partly cloudy.

2) Take uncertainty into account and prepare for it, i.e., make decisions that better take into

account the possible uncertain future outcomes. E.g., Carry a small umbrella in case it is

really cloudy.

3) Eliminate uncertainty. In addition to (2), do better forecasting so that uncertainty is less of an

issue. E.g., subscribe to a super accurate weather forecasting service and take along a sturdy

umbrella on those days when you know it will rain.

In terms of expected profit, if it costs us nothing to do the better information processing of approaches

(2) and (3), then it is clear that the least profitable approach is (1), and the most profitable approach is

(3).

There are two measures of the cost of uncertainty corresponding to differences in the above three:

1) EVPI (Expected Value of Perfect Information) : Expected increase in profit if we know the

future in advance.

580 CHAPTER 8

2) EVMU (Expected Value of Modeling Uncertainty) : Expected decrease in profit if we

replaced each stochastic parameter by a single estimate and act as if this value is certain.

EVMU is sometimes also called VSS (Value of the Stochastic Solution).

Graphically EVMU and EVPI can be described as the differences in profits for three different ways of

making our decision:

 Profit 

 EVMU EVPI

 Disregard Use SP Perfect

 uncertainty forecast

 by basing

 decision on

 a benchmark scenario

 (e.g. average scenario).

Typically, the benchmark scenario is the average-scenario obtained by taking the mean of all

stochastic parameters, but there may be reasons to use the median, or some other scenario. We discuss

this issue later.

EVPI and EVMU Example
Consider the plant location with random demand. Each plant, if we install or keep it, has a specified

capacity. For each plant customer combination there is an net revenue contribution per unit. The

complete data are specified below.

 DATA:
 PLANT = ATL STL CIN; ! The 3 plants;

 CAP = 22 22 15; ! Capacities;

 FCOST = 20 20 20 ; ! Fixed costs;

 CUST =

 CHI SAN NYC MIA; ! The 4 customers;

 REV =

 8 6 7 8 ! Revenues per unit for each;

 9 7 1 1 ! combination of ;

 7 6 8 9; ! plant & customer ;

 SCENE = 1 2 3; ! There are 3 scenarios...;

 PWT = 0.3 0.3 0.4; ! with probabilities...;

 DEM =

 10 10 1 1 ! Demand scenario 1;

 1 1 5 5 ! Demand scenario 2;

 2 2 3 3; ! Demand scenario 3;

 ENDDATA

Below we give details on the calculations.

EVPI Example Computations

STOCHASTIC PROGRAMMING 581

If we know future only probabilistically it can be shown that the optimal policy is to open the plant in

Atlanta. In this case, expected total profit = 82.40

If we know in advance that the scenario will be 1, then Expected Profit= 142.00 (Probability=0.3)

 Plants to open: STL

If we know in advance that the scenario will be 2, then Expected Profit= 78.00 (Probability=0.3)

 Plants to open: CIN

If we know in advance that the scenario will be 3, then Expected Profit= 57.00 (Probability=0.4)

 Plants to open: CIN

So the expected Profit with Perfect Information 0.3*142 + 0.3*78 + 0.4*57 = 88.80

Recall that the Expected Profit without perfect information was 82.40.

So Expected Value of Perfect Information(EVPI)= 88.80 – 82.40 = 6.40

Notice Atlanta not optimal for any scenario!

EVMU Example Computations

 If we act as if mean demand is certain...

 The demand vector is:

 4.1 4.1 3 3.

If we thought that the demand would be exactly (), then the optimal set of plants to open is CIN.

If we force the solution: CIN to be the only plant open, with all other plants closed, then in the face of

the actual demand distribution, the actual expected profit with this configuration= 71.7. So doing the

calculations:

 Expected Profit Modeling uncertainty = 82.40

 Expected Profit using expected values = - 71.70

 Expected Value of Modeling Uncertainty = 10.70

EVMU, When is it zero?

 Can we predict when EVMU = 0?

 E.g.,

 Situation 1:

 The price we get for our products are stochastic parameters.

 Situation 2:

 The demands for our products are stochastic parameters.

EVMU and EVPI, True vs. Estimatied

A fine point: If the true number of scenarios is large, or infinite, and we use sampling, then the values

for EVPI and EVMU reported are estimates rather than true values.

EVMU: Choosing the Benchmark

 EVMU is the expected opportunity cost of using a policy based on a single outcome forecast of the

future, relative to using a policy that is optimal taking into account the distribution of possible future

outcomes. The EVMU provides a measure of how much it is costing the decision maker to not

properly take into account uncertainty. Four possible single outcome forecasts come to mind. Each

has its own problems. Some possible single forecast choices are:

1) Choose the policy that is optimal assuming the future outcome is always the mean outcome.

This is the default benchmark scenario used in EVMU computations with LINDO API.

2) Choose the policy that is optimal assuming the future outcome is always the median outcome.

3) Choose the policy that is optimal assuming the future outcome is always the most likely

outcome.

582 CHAPTER 8

4) The user arbitrarily specifies either a point forecast or a policy, e.g. stock enough inventory so

that the probability of stock out is 0.05.

Some problems with each the user should be aware of are:

1)

a. The mean may not be defined for certain distributions, e.g., the Cauchy,

 or more generally the class of fat tailed "Stable Paretian" distributions popular in finance.

b. The mean (with a fractional value) may not make sense for discrete distributions in

 certain situations. E.g., We are playing Rock-Paper-Scissors or some

 Heads-or-Tails game, and the user models the recourse decision with IF statements or a

 VLOOKUP. The median and most likely do not have this problem.

2)

a. The median is ambiguous if there are an equal number of equally likely outcomes.

b. The median is not obviously defined for a multi-dimensional stochastic

parameter/vector.

3)

a. The most likely outcome may be ambiguous, e.g., for a uniform distribution.

b. The most likely outcome may be a nonsensical choice for a highly skewed

distribution.

 E.g. the most likely outcome for an exponential distribution is 0, even though the mean

 may be 100.

 What to do?

 The following “repair” actions seem appropriate for first two cases.

1) User specifies the mean, however,

a. the mean does not exist. The typical distributions for which the mean does not exist

are symmetric, so automatically switching to the median seems reasonable.

b. there is no feasible solution to the model when a fractional value (which is usually

the case for the mean) is specified for a stochastic parameter but the model expects

to be integer valued. Simply report that EVMU = +. Alternatively, one could

round the mean to the nearest value that corresponds to a draw from the true

population. This is easy for a univariate distribution. Not so easy for a multivariate

distribution.

c. Theoretically, the EVMU is undefined if the original SP is infeasible. For example,

suppose the user says the cost of not satisfying all demand is infinite and there is an

upper bound on how much can be stocked and there happens to be a possible

demand greater than this upper bound. The EVMU in this case is  – , which is

“undefined”. However, LINDO API adopts  –  = 0, implying that stochastic

modeling of uncertainity did not lead to any additional benefits over using the

benchmark scenario.

2) When using the median,

a. Resolve the ambiguity by defining the median as the first outcome for which

thecumulative sum of probabilities is equal to or greater than 0.5. This is the default

strategy adopted by LINDO API when using the median as the benchmark scenario.

A slightly fancier choice would be the outcome for which |cum_sum – 0.5| is

smaller, breaking ties by choosing the larger cum_sum.

b. For a vector of discrete stochastic parameters, assume the user has input the

scenarios in a reasonable order. Sum up the probabilities of the scenarios starting

STOCHASTIC PROGRAMMING 583

with the first. Define the median scenario as the one for which | cum_sum – 0.5| is

smaller.

Appendix 8e: Introducing Dependencies between Stages
The simplest assumption in SP modeling with LINDO API is that random parameters in one stage are

independent of decisions and random parameters in other stages. One can in fact relax this assumption

in several ways. The simplest way is to use the correlation feature in LINDO API. This allows you to

have nonzero correlation between random parameters in different stages. LINDO API supports two

other general types of dependencies; blocks and scenarios. A block is a random vector whose elements

are jointly realized in a single, fixed stage. In this type of dependency, a block cannot contain random

parameters from different stages. A scenario is a more a general construct where dependencies across

stages can also be modeled. Working with blocks and scenarios require the user to generate all

possible realizations and feed them into the solver with LSaddDiscreteBlocks and

LSaddScenario functions, respectively. Some users may find working with explicit blocks and

scenarios not as intuitive as the independent case. In particular, explicit generation of blocks and

scenarios may require performing complex sampling tasks on user's end. LINDO API offers a versatile

sampling API to allow the user to perform such tasks in a straightforward manner. Nonetheless, the

user might be compelled to handle the dependency-issue on the modeling side due to one or more of

the following:

1. The user might simply prefer to avoid getting involved with sampling directly and hence

blocks and scenarios.

2. Dependencies between random parameters are more complicated than correlation matrices,

which make it difficult to adopt a viable sampling methodology.

3. Explicit block and/or scenario generation is not sufficient to model the underlying stochastic

phenomenon (e.g. dependency between a random parameter in one stage and a decision

variable in an earlier stage)

In this section, we introduce some formulation tricks to establish different forms of dependencies.

These tricks should not be perceived as comprehensive but rather supplementary to the existing

methods, which rely on using blocks, scenarios and correlation-matrices, to model dependencies. The

user should also be aware that such tricks, like many others, could affect the performance of the solver.

We will use the following general notation:

 rt = random variable in stage t of the core model, dependent on an earlier stage,

 xt = a decision variable in stage t of the core model,

 ut = an independent random variable used in stage t of the core model,

Example 1, Dependency between rt and rt-1:

 In fact, rather arbitrary dependences between rt and rt-1 can be represented. Suppose that random

variable r2 in stage 2 is Normal distributed with standard deviation 12 and mean equal to the square of

the outcome of random variable r1 in stage 1. In setting up the SP model we would declare u2 to be a

stage 2 Normal random variable with mean zero and standard deviation 1. Then in stage 2 we

introduce another variable r2 with the constraint:

r2 = r1
2
 + 12*u2.

584 CHAPTER 8

That is, given r1, the variable r2 is a Normal random variable with mean r1
2
 and standard deviation 12.

A useful and interesting result is that inserting dependencies between just random parameters such as

this does not change the computational difficulty of the model. If the original deterministic equivalent

(DETEQ) model was linear if r1 and r2 were independent, then the more complicated version where r2

depends upon r1, is also linear. This is because random parameters, and all variables that depend only

upon random parameters, reduce to constants in the DETEQ model.

Example 2, Linear dependency between rt and xt-1:

 Suppose that, now using scalar decision variables, x1t-1 and x2t-1, we may "buy" in stage t-1, the

mean and standard deviation of rt in stage t. For example, x1t-1 might be how much we spend on

advertising in stage t-1, and x2t-1 might be how much we spend on forecasting in stage t-1. A model of

how rt depends upon x1t-1 and x2t-1 might be a simple linear one so that:

 r2 = 50 + x11 + (12 - x21)*u2.

Thus, if we spend nothing on advertising and forecasting, the mean and standard deviation of r2 are 50

and 12 respectively. If we spend 5 units each on advertising and forecasting, the mean and standard

deviation are 55 and 7. A useful and interesting result is that inserting dependencies between a random

variable and a decision variable in an earlier stage may not change the computational difficulty of the

model if: a) the relationship is just a scaling as above, and b) the random variable appears only as a

right hand side constant in the original core model. If the original deterministic equivalent (DETEQ)

model was linear if r2 did not depend upon x1t-1 and x2t-1, and r2 appeared only on the constant right

hand side of the constraints in the core model, then the more complicated version where r2 depends

upon x1t-1 and x2t-1, is also linear.

 Example 3 Nonlinear discrete dependency between rt and rt-1:

 Suppose that x1t-1 and x2t-1, are binary variables that allow us to "buy" in stage t-1, a mean of either 7

or a mean of 11 for a Poisson random variable rt in stage t. Proceed as follows:

 Declare u1t to be a stage t Poisson random variable with mean 7 and

 u2t to be a stage t Poisson random variable with mean 11.

In stage t-1 of the core model we insert the “choose one or the other” constraint:

 x1t-1 + x2t-1 = 1;

In stage t of the core model we insert the “use the one you choose” constraint:

 rt = x1t-1*u1t + x1t-1*u1t ;

A useful and interesting result is that inserting a discrete dependency between a random variable and a

decision variable in an earlier stage as above, although it introduces integer variables, does not change

a linear DETEQ model to a nonlinear one if the associated random variable appears only as a right

hand side constant in the original core model.

Chapter 9:

Using Callback Functions
In many instances, solving a model can be a lengthy operation. Given this, it may be useful to monitor

the progress of the optimization. This is particularly true when building a comprehensive user

interface. You may wish to display a window for the user that summarizes the solver’s progress. This

can be accomplished with a callback function—so named because the code calls the solver, and the

solver periodically calls back to your supplied callback routine.

This chapter illustrates the use of callback functions in conjunction with LINDO API. In this section,

the C and VB code samples presented in the previous chapter will be modified in order to incorporate a

simple callback function. LINDO API also supports a special callback routine for integer models,

where the routine is called every time the solver finds a new integer solution. This chapter is concluded

with a brief discussion on the use of this integer programming callback function.

Specifying a Callback Function
To specify a callback function, call the LSsetCallback() routine before calling the LSoptimize() or the

LSsolveMIP() solution routines. Using C programming conventions, the calling sequence for

LSsetCallback() is:

int LSsetCallback(

 pLSmodel pModel,

 cbFunc_t pCallback,

 void* pUserData

)

where,

pModel – is a pointer to the model object you wish to monitor with your callback routine.

pCallback – is a function pointer, which points to the callback routine you are supplying. To

cancel an existing callback function, set pCallback to NULL. The callback function type

cbFunc_t is defined in the lindo.h file.

pUserData – can point to whatever data you want. LINDO API merely passes this pointer

through to your callback routine. You may then reference this pointer in your callback routine

in order to access your data areas. Passing this pointer allows you to avoid the use of global

data, thus allowing your application to remain thread safe.

586 CHAPTER 9

The callback function you create must have the following interface:

int CALLBACKTYPE MyCallback(

 pLSmodel pModel,

 int nLocation,

 void* pUserData

)

where,

pModel – is a pointer to the model object you passed to the solver. You will need to pass this

pointer when retrieving information about the status of the solver. Details on retrieving

information are discussed below.

nLocation – indicates the solver’s current location. Its value is of no particular interest to your

application. However, you may need to know the current location of the solver since there

may be several different optimizers involved while solving a specific problem. For instance,

in solving a nonlinear mixed-integer model, the solver will deploy both the nonlinear and

MIP optimizer, and at consecutive callback times the solver may be at another location.

pUserData – is the pointer to your data area, which you originally passed to the

LSsetCallback() routine. This can be referenced here to gain access to your data.

Return Value – is the return value of the callback function, which is used to indicate

whether the solver should be interrupted or continue processing the model. To

interrupt the solver, return a –1. To have the solver continue, return a 0.

The CALLBACKTYPE macro is declared in the lindo.h header file. Under Windows, CALLBACKTYPE

is simply defined as “_stdcall_”, which forces the callback function to use the standard function calling

protocol rather than the C-style “cdecl” protocol. VB users don’t need to worry about this aspect of the

callback function because VB automatically uses standard calls.

The callback function will be called on a regular basis by the LINDO API solver. The frequency of

callbacks can be controlled through the parameter LS_DPARAM_CALLBACKFREQ, which may be set

through calls to LSsetEnvDouParameter(). The default value for this parameter is .5, which means the

solver will callback the code approximately once every ½ second.

Once the callback function has control, you will most likely want to retrieve information regarding the

solver’s status. The function LSgetCallbackInfo() is designed for this purpose. Note that inside the

callback routine, any queries directed to LINDO API must be done through LSgetCallbackInfo().

Other LINDO API query routines may not return valid results while the solver is invoked. Here is the

interface for LSgetCallbackInfo():

int LSgetCallbackInfo(

 pLSmodel pModel,

 int nLocation,

 int nQuery,

 void* pResult

)

where,

pModel – is the model object pointer that was passed to your callback routine.

nLocation – is the integer value indicating the solver’s current location that was passed to the

callback routine. The following callback locations are possible:

 USING CALLBACK FUNCTIONS 587

Solver Location Names

Primal Simplex Optimizer LSLOC_PRIMAL

Dual Simplex Optimizer LSLOC_DUAL

Barrier Optimizer LSLOC_BARRIER

Barrier Crossover Process LSLOC_CROSSOVER

MIP Optimizer LSLOC_MIP

Standard Nonlinear Optimizer LSLOC_CONOPT

Multistart Nonlinear

Optimizer at a Local Optimal

LSLOC_LOCAL_OPT

Start of Instruction list-based

model generation

LSLOC_GEN_START

Processing Instruction list-

based model generation

LSLOC_GEN_PROCESS

ING

End of Instruction list-based

model generation

LSLOC_GEN_END

Global Optimizer LSLOC_GOP

Multistart Solver LSLOC_MSW

Function Evaluation LSLOC_FUNC_CALC

Presolver LSLOC_PRESOLVE

Exiting the Solver LSLOC_EXIT_SOLVER

Calling user defined nonlinear

callback functions.

LSLOC_FUNC_CALC

Infeasibility and unbounded

set finder

LSLOC_IISIUS

Stochastic solver LSLOC_SP

Start of instruction list

generation for the

deterministic equivalent

representing a stochastic

program

LSLOC_GEN_SP_STAR

T

Instruction list generation for

the deterministic equivalent

representing a stochastic

program

LSLOC_GEN_SP

End of instruction list

generation for the

deterministic equivalent

LSLOC_GEN_SP_END

588 CHAPTER 9

representing a stochastic

program

Solving Wait-See model of

the underlying stochastic

program

LSLOC_SP_WS

Solving the LSQ model LSLOC_LSQ

BNP solver LSLOC_BNP

nQuery – is the code for the object whose value you wish to retrieve. The possible values for

this argument are listed in Callback Management Routines section under LSgetCallbackInfo

description on page 312.

pResult – is a pointer to the memory location where LINDO API should store the value for

the requested object. Be sure to allocate enough space for the object. Objects whose names

begin with “LS_I” (e.g., LS_IINFO_SIM_ITER) return an integer quantity, while those

beginning with “LS_D” return a double precision quantity.

Return Value – is the function’s return value, which will be 1 if the parameter code was not

recognized, else 0.

A Callback Example Using C
In this section, we will illustrate the use of a callback function written in C. The sample C application

in Chapter 3, Solving Linear Programs, has been modified, so that it now incorporates a simple

callback function. If you are not familiar with the C example in Chapter 3, Solving Linear Programs,

review it now before proceeding with this example. The code for this example is contained in the file

\lindoapi\samples\c\ex_samp2\ex_samp2.c. The contents of this file are reproduced below. Changes

added to the file presented in Chapter 3, Solving Linear Programs, are displayed in bold type:

/* ex_samp2.c

A C programming example of interfacing with the

 LINDO API that employs a callback function.

 The problem:

 MAX = 20 * A + 30 * C

 S.T. A + 2 * C <= 120

 A <= 60

 C <= 50

 Solving such a problem with the LINDO API involves

 the following steps:

 1. Create a LINDO environment.

 2. Create a model in the environment.

 3. Specify the model.

 4. Perform the optimization.

 5. Retrieve the solution.

 6. Delete the LINDO environment.

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/* LINDO API header file */

 USING CALLBACK FUNCTIONS 589

#include "lindo.h"

/* Define a macro to declare variables for

 error checking */

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

#define APIERRORCHECK

 if (nErrorCode)

 {

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("Errorcode=%d: %s\n", nErrorCode,

 cErrorMessage);

 } else {

 printf("Fatal Error\n");

 }

 exit(1);

 }

/* A callback function that will be called by the LINDO

 solver */

int CALLBACKTYPE MyCallback(pLSmodel pMod, int nLocation,

 void* pMyData)

{

/* Display the string we passed to LSsetCallback() */

 printf("In MyCallback: %s\n", pMyData);

/* Display current iteration count and objective value */

 {

 int nIter;

 double dObj;

 LSgetCallbackInfo(pMod, nLocation, LS_IINFO_SIM_ITER,

 &nIter);

 LSgetCallbackInfo(pMod, nLocation, LS_DINFO_POBJ,

 &dObj);

 printf("In MyCallback, Iters, Obj: %d %g\n",

 nIter, dObj);

 }

 return(0);

}

/* main entry point */

int main()

{

 APIERRORSETUP;

 int i, j;

 char strbuffer[255];

 char MY_LICENSE_KEY[1024];

/* Number of constraints */

 int nM = 3;

/* Number of variables */

 int nN = 2;

590 CHAPTER 9

/* declare an instance of the LINDO environment object */

 pLSenv pEnv;

/* declare an instance of the LINDO model object */

 pLSmodel pModel;

/* >>> Step 1 <<< Create a LINDO environment. */

 nErrorCode = LSloadLicenseString(

"../../../license/lndapi100.lic",MY_LICENSE_KEY);

 APIERRORCHECK;

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

/* >>> Step 2 <<< Create a model in the environment. */

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

 {

/* >>> Step 3 <<< Specify the model.

 To specify our model, we make a call to LSloadLPData,

 passing it:

 - A pointer to the model which we are specifying(pModel)

 - The number of constraints in the model

 - The number of variables in the model

 - The direction of the optimization (i.e. minimize or

 - maximize)

 - The value of the constant term in the objective (may be zero)

 - The coefficients of the objective function

 - The right-hand sides of the constraints

 - The types of the constraints

 - The number of nonzeros in the constraint matrix

 - The indices of the first nonzero in each column

 - The length of each column

 - The nonzero coefficients

 - The row indices of the nonzero coefficients

 - Simple upper and lower bounds on the variables

*/

/* The direction of optimization */

 int nDir = LS_MAX;

/* The objective's constant term */

 double dObjConst = 0.;

/* The coefficients of the objective function */

 double adC[2] = { 20., 30.};

/* The right-hand sides of the constraints */

 double adB[3] = { 120., 60., 50.};

/* The constraint types */

 char acConTypes[3] = {'L', 'L', 'L'};

/* The number of nonzeros in the constraint matrix */

 int nNZ = 4;

/* The indices of the first nonzero in each column */

 int anBegCol[3] = { 0, 2, nNZ};

/* The length of each column. Since we aren't leaving

 any blanks in our matrix, we can set this to NULL */

 int *pnLenCol = NULL;

/* The nonzero coefficients */

 USING CALLBACK FUNCTIONS 591

 double adA[4] = { 1., 1., 2., 1.};

/* The row indices of the nonzero coefficients */

 int anRowX[4] = { 0, 1, 0, 2};

/* Simple upper and lower bounds on the variables.

 By default, all variables have a lower bound of zero

 and an upper bound of infinity. Therefore pass NULL

 pointers in order to use these default values. */

 double *pdLower = NULL, *pdUpper = NULL;

/* Variable and constraint names */

 char **paszVarnames, **paszConnames;

 char *pszTitle = NULL, *pszObjname = NULL, *pszRhsname = NULL,

 *pszRngname = NULL, *pszBndname = NULL;

 paszConnames = (char **) malloc(nM*sizeof(char *));

 for (i=0; i < nM; i++)

 {

 paszConnames[i] = (char *) malloc(255*sizeof(char));

 sprintf(strbuffer,"CON%02d",i);

 strcpy(paszConnames[i],strbuffer);

 }

 paszVarnames = (char **) malloc(nN*sizeof(char *));

 for (j=0; j < nN; j++)

 {

 paszVarnames[j] = (char *) malloc(255*sizeof(char));

 sprintf(strbuffer,"VAR%02d",j);

 strcpy(paszVarnames[j],strbuffer);

 }

/* We have now assembled a full description of the model.

 We pass this information to LSloadLPData with the

 following call. */

 nErrorCode = LSloadLPData(pModel, nM, nN, nDir,

 dObjConst, adC, adB, acConTypes, nNZ, anBegCol,

 pnLenCol, adA, anRowX, pdLower, pdUpper);

 APIERRORCHECK;

/* Load name data */

 nErrorCode = LSloadNameData(pModel, pszTitle,

 pszObjname, pszRhsname, pszRngname,pszBndname,

 paszConnames, paszVarnames);

 }

 {

 /* Establish the callback function */

 char* pMyData = "My string!";

 nErrorCode = LSsetCallback(pModel,

 (cbFunc_t) MyCallback, pMyData);

 APIERRORCHECK;

 /* >>> Step 4 <<< Perform the optimization */

 nErrorCode = LSoptimize(pModel,

 LS_METHOD_PSIMPLEX, NULL);

 APIERRORCHECK;

 }

 {

 /* >>> Step 5 <<< Retrieve the solution */

 double adX[2], adY[3],dObj;

 /* Get the value of the objective */

 nErrorCode = LSgetInfo(pModel, LS_DINFO_POBJ, &dObj) ;

 APIERRORCHECK;

 printf("Objective Value = %g\n", dObj);

592 CHAPTER 9

 /* Get the primal and dual values */

 nErrorCode = LSgetPrimalSolution (pModel, adX);

 APIERRORCHECK;

 nErrorCode = LSgetDualSolution (pModel, adY);

 APIERRORCHECK;

 printf ("Primal values:\n");

 for (j = 0; j < nN; j++)

 {

 LSgetVariableNamej(pModel,j,strbuffer);

 printf("%s = %g\n", strbuffer, adX[j]);

 }

 printf ("\n");

 printf ("Dual values:\n");

 for (i = 0; i < nM; i++)

 {

 LSgetConstraintNamei(pModel,i,strbuffer);

 printf("%s = %g\n", strbuffer, adY[i]);

 }

 }

 /* >>> Step 6 <<< Delete the LINDO environment */

 LSdeleteModel(&pModel);

 LSdeleteEnv(&pEnv);

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

}

\lindoapi\samples\c\ex_samp2\ex_samp2.c

There were two primary changes made to incorporate the callback function. The first change involved

including the callback function with the following code:

/* A callback function that will be called by the LINDO

 solver */

int CALLBACKTYPE MyCallback(pLSmodel pMod, int nLocation,

 void* pMyData)

{

/* Display the string we passed to LSsetCallback() */

 printf("In MyCallback: %s\n", pMyData);

/* Display current iteration count and objective value */

 {

 int nIter;

 double dObj;

 LSgetCallbackInfo(pMod, nLocation, LS_IINFO_SIM_ITER,

 &nIter);

 LSgetCallbackInfo(pMod, nLocation, LS_DINFO_POBJ,

 &dObj);

 printf("In MyCallback, Iters, Obj: %d %g\n",

 nIter, dObj);

 }

 return(0);

}

Your callback function must have the exact same interface as presented here. If the interface is

different, then the application will in all likelihood crash once the LINDO API solver is called.

 USING CALLBACK FUNCTIONS 593

This particular callback function displays the string that was passed when it was declared with a call to

LSsetCallback(). This pointer can be used to point to whatever data structure you’d like access to in the

callback function. Use of the passed pointer allows you to avoid using global data. The callback

function then makes two calls to LSgetCallbackInfo() to retrieve the current iteration count and

objective value from the solver. These two values are then written to the standard output device.

You can build this application using the Microsoft C/C++ nmake utility in conjunction with the

makefile.win file included in the same directory as the source. Refer to the discussion of the C example

in Chapter 3, Solving Linear Programs, for detailed build instructions.

When this application is run, the following will be displayed on the screen:

C:\lindoapi\samples\c\ex_samp2>ex_samp2

In MyCallback: My string!

In MyCallback, Iters, Obj: 2 2100

In MyCallback: My string!

In MyCallback, Iters, Obj: 3 2100

In MyCallback: My string!

In MyCallback, Iters, Obj: 3 2100

Objective Value = 2100

Primal values = 60 30

Because this is a relatively small model, the callback function only gets called three times. Larger

models will receive many callbacks from the solver.

A Callback Example Using Visual Basic
This section will illustrate the use of a callback function written in Visual Basic. The sample VB

application in Chapter 3, Solving Linear Programs, has been modified, so that it now incorporates a

simple callback function. If you are not familiar with the VB example in Chapter 3, Solving Linear

Programs, you should review it now before proceeding with this example.

If you are using Visual Basic 5 or later, a callback function can be implemented. The ability to use a

callback function relies on the Visual Basic AddressOf operator, which can return the address of a

function. This operator does not exist in Visual Basic 4 or earlier, nor does it exist in Visual Basic for

Applications.

Your VB callback functions must be placed within standard VB modules. If you place your callback

function in a form or class module, LINDO API will not be able to callback correctly.

The code for this example is contained in the files \lindoapi\samples\vb\samp2\samplevb.frm and

\lindoapi\samples\vb\samp2\callback.bas.

The following two lines in bold type were added to samplevb.frm presented in Chapter 3, Solving

Linear Programs, to identify the callback function to LINDO API:

594 CHAPTER 9

 .

 .

 .

 errorcode = LSloadLPData(prob, m, n, LS_MAX, 0, _

 c(0), b(0), con_type, nz, Abegcol(0), ByVal 0, _

 Acoef(0), Arowndx(0), ByVal 0, ByVal 0)

 Call CheckErr(env, errorcode)

 'Establish the callback function

 errorcode = LSsetCallback(prob, AddressOf MyCallback, ByVal 0)

 '>>> Step 4 <<<: Perform the optimization.

 errorcode = LSoptimize(prob, LS_METHOD_PSIMPLEX, ByVal 0)

 Call CheckErr(env, errorcode)

 .

 .

 .

Additions to samplevb.frm

Note that the AddressOf operator is used to pass the address of our callback function to

LSsetCallback(). The callback function, MyCallback, was placed in a separate file, so it could be

included as a standard module. Placing the callback function in samplevb.frm with the rest of the code

would not have worked because samplevb.frm is a form module. As mentioned above, callback

functions must be placed in standard modules.

The code for MyCallback may be found in callback.bas, which is displayed below.

Public Function MyCallback(ByVal model As Long, _

 ByVal loc As Long, ByRef myData As Long) As Long

 Dim it As Long

 Dim ob As Double

 Call LSgetCallbackInfo(model, loc, LS_IINFO_SIM_ITER, it)

 Call LSgetCallbackInfo(model, loc, LS_DINFO_POBJ, ob)

 MsgBox "In MyCallback" & vbCrLf & "Iteration: " _

 & it & vbCrLf & "Objective value: " & ob

 MyCallback = 0

End Function

\lindoapi\samples\vb\samp2\callback.bas

This file was included to the project by issuing the Project|Add Module command in Visual Basic. As

with the previous C example, this callback function makes two calls to the LINDO API routine

LSgetCallbackInfo() to retrieve the current iteration number and the objective value. The callback

function returns a 0 to indicate the solver is to continue. Alternatively, a –1 may be returned to

interrupt the solver.

When this application is run, the callback function should display a dialog box as follows:

 USING CALLBACK FUNCTIONS 595

Integer Solution Callbacks
In addition to the standard callback routine discussed above, LINDO API also has the ability to

callback your code each time a new integer solution is found. Among other things, this will allow you

to keep users of your application posted on the current best integer solution found so far. Given that

large integer models can take quite some time to solve, you may want to use the callback function’s

ability to interrupt the solver. When LINDO API is interrupted on an integer model, it will restore the

best integer solution before returning to your code. The incumbent solution may then be retrieved

using normal means.

The technique for setting up your MIP callback function should look familiar because it is very similar

to the technique used above for setting up a standard callback function. To set up your MIP callback,

you pass its address to LSsetMIPCallback(). Using C programming conventions, the calling sequence

for LSsetMIPCallback() is:

void LSsetMIPCallback(

 pLSmodel pModel,

 MIP_callback_t pMIPCallback,

 void* pUserData

)

where,

pModel – is a pointer to the model object you wish to monitor with your callback routine.

pMIPCallback – is a function pointer, which points to the callback routine being supplied. To

cancel an existing callback function, set pMIPCallback to NULL. The MIP_callback_t

function type is defined in the lindo.h header file.

pUserData – can point to any data desired. LINDO merely passes this pointer through to the

callback routine. This pointer can then be referenced in the callback routine in order to access

data areas. Passing this pointer avoids the use of global data, thus allowing the application to

remain thread safe.

The MIP callback function created is somewhat different from the standard callback interface and must

be declared as follows:

int CALLBACKTYPE MyMIPCallback(

 pLSModel pModel,

 void* pUserData,

 double dObjective,

 double* dPrimals

)

where,

pModel – is a pointer to the model object passed to the solver. This pointer will need to be

passed to the solver when retrieving information about the status of the solver. Details on

retrieving information are discussed below.

pUserData – is the pointer to the data area, which was originally passed to the

LSsetMIPCallback() routine. It can be referenced here to gain access to the data.

dObjective – contains the objective value for the incumbent solution.

dPrimals – is a pointer to a double precision array containing the values of all the variables at

the incumbent solution point.

Return Value – is the return value of the MIP callback function, which is presently

not used and is reserved for future use. For now, this should always return a 0 value.

596 CHAPTER 9

Once your MIP callback function has control, additional information regarding the solver’s status may

be retrieved. In addition to calling LSgetCallbackInfo() as was done from the standard callback

function, LSgetMIPCallbackInfo() may also be called. This will return solver status information

pertinent to MIP models. Here is the interface for LSgetMIPCallbackInfo():

int LSgetMIPCallbackInfo(

 pLSmodel pModel,

 int nQuery,

 void* pResult

)

where,

pModel – is the model object pointer that was passed to the MIP callback routine.

nQuery – is the code for the object whose value to retrieve. The following objects may be

retrieved:

Solver Data Data Type Name

Simplex iteration count int LS_IINFO_MIP_SIM_ITER

Barrier iteration count int LS_IINFO_MIP_BAR_ITER

Nonlinear iteration count int LS_IINFO_MIP_NLP_ITER

Objective bound double LS_DINFO_MIP_BESTBOUND

Branch count int LS_IINFO_MIP_BRANCHCOUNT

Active node count int LS_IINFO_MIP_ACTIVENODES

Number of relaxed

problems solved

int LS_IINFO_MIP_LPCOUNT

Returns true if an integer

solution was just found.

int LS_IINFO_MIP_NEWIPSOL

How the last integer

solution was found.

int LS_IINFO_MIP_LTYPE

Optimal objective value double LS_DINFO_MIP_OBJ

Solver status int LS_IINFO_MIP_STATUS

Objective value in the last

branch solved

double LS_DINFO_MIP_SOLOBJVAL_LA

ST_BRANCH

Solver status in the last

branch solved

int LS_IINFO_MIP_SOLSTATUS_LA

ST_BRANCH

pResult – is a pointer to the memory location LINDO API should store the value for the

requested object. Be sure to allocate enough space for the object. Objects whose names begin

with “LS_I” (e.g., LS_IINFO_MIP_SIM_ITER) return an integer quantity, while those

beginning with “LS_D” return a double precision quantity.

Return Value – is the function’s return value, which will be 1 if the parameter code was not

recognized, else 0.

 USING CALLBACK FUNCTIONS 597

The mechanics of adding a MIP callback to your application are identical to what was done in the

examples at the beginning of the chapter where a standard callback function was added. Users

interested in adding MIP callbacks should review the next chapter to become familiar with integer

modeling with LINDO API. The final section in the next chapter will direct you to specific examples

that include MIP callbacks.

Chapter 10: Analyzing
Models and Solutions

Sometimes after solving an optimization problem, it may be desired to get additional information

beyond the standard primal and dual values of the solution. Here, two situations are considered:

1. We are unsure about the input values used. The dual prices tell us how sensitive the solution

is to small changes in the input values. Over what ranges can inputs be changed without

causing major changes in the solution (i.e., causing the dual prices to change)?

2. The solution was surprising. In particular, the model was infeasible or unbounded. What

might be the cause of this infeasibility or unboundedness?

Sensitivity and Range Analysis of an LP

LINDO API provides three function calls that allow users to examine the sensitivity of the optimal

solution of an LP to changes in model input such as right-hand side values of constraints or objective

function coefficients of variables. These tools can be useful in responding better to the solution

produced when model data are subject to uncertainty including, measurement errors, lack of

information, and poor or partial interpretation of prices and resources.

The three function calls are:

 LSgetConstraintRanges (pLSmodel prob, double *rhsdec, double *rhsinc);

 LSgetObjectiveRanges (pLSmodel prob, double *objdec, double *objinc);

 LSgetBoundRanges (pLSmodel prob, double *boudec, double *bouinc);

The following example LP illustrates:

max= 20*x0 + 30*x1 + 46*x2;

 [c0] x0 + x2 <= 60;

 [c1] x1 + x2 <= 50;

 [c2] x0 + 2* x1 + 3* x2 <= 120;

When solved, the solution is:

 Primal

Variable Value Reduced Cost

 X0 60.00000 0.00000

 X1 30.00000 0.00000

 X2 0.00000 4.00000

 Row Slack or Surplus Dual Price

 C0 0.00000 5.00000

 C1 20.00000 0.00000

 C2 0.00000 15.00000

600 CHAPTER 10

If LSgetConstraintRanges() is called, the values in the vectors rhsdec and rhsinc will be as follows:

Constraint rhsdec rhsinc

 C0 40.00000 60.00000

 C1 20.00000 LS_INFINITY

 C2 60.00000 40.00000

The interpretation of these numbers is as follows. The value in:

 rhsinc[i] is the amount by which the right-hand side (RHS) of constraint i can be

increased without causing any change in the optimal values of the dual prices or reduced

costs.

 rhsdec[i] is the amount by which the RHS of constraint i can be decreased without

causing any change in the optimal values of the dual prices or reduced costs.

For example, the allowable decrease of 20 on constraint C1 means the RHS of 50 could be reduced by

almost 20, to say 30.001, without causing any of the reduced costs or dual prices to change from (0, 0,

4, 5, 0, 15).

These are one-side guarantees in the following sense: decreasing the RHS of C1 by more than 20 does

not mean that some of the reduced costs and dual prices must change. Similarly, these are

one-at-a-time guarantees. In other words, if you change multiple RHS’s by less than their range limits,

there is no guarantee that the reduced costs and dual prices will not change. There is, nevertheless, a

100% rule at work. Namely, if several coefficients are changed simultaneously, such that the

percentage of the ranges used up is less than 100% in total, then the original guarantee still applies. For

example, if the RHS of C0 is decreased by 10 and the RHS of C2 is decreased by 30, then the total

percentage of ranges used up is 10/40 + 30/60 = 75%. Therefore, the reduced costs and dual prices

would not be affected by these simultaneous changes.

If LSgetObjectiveRanges() is called, the values in the vectors objdec and objinc will be as follows:

Variable objdec objinc

 X0 4.00000 LS_INFINITY

 X1 4.00000 10.00000

 X2 LS_INFINITY 4.00000

The interpretation of these numbers is as follows. The value in:

 objinc[j] is the amount by which the objective coefficient of variable j can be increased

without causing any change in the optimal values of the primal values, slacks, or

surpluses.

 objdec[j] is the amount by which the objective coefficient of variable j can be decreased

without causing any change in the optimal values of the primal values, slacks, or

surpluses.

For example, the allowable increase of 10 on variable X1 means that its objective coefficient of 30

could be increased by almost 10, to say 39.999, without causing any of the primal values, slacks, or

surplus values to change.

These are one-side guarantees. In other words, increasing the objective coefficient of X1 by more than

10 does not mean that some of the primal values, slacks, or surpluses must change. Similarly, these are

one-at-a-time guarantees. If you change several objective coefficients by less than their range limits,

there is no guarantee that the primal values, slacks, or surpluses will not change. The 100% rule

mentioned above, however, also applies here.

Analyzing Models and Solutions 601

The function LSgetBoundRanges() behaves much like LSgetConstraintRanges(). Bounds, such as non-

negativity, are just another form of constraints. For the above example, the vectors boudec and bouinc

will be as follows:

Variable boudec bouinc

 X0 LS_INFINITY 60.00000

 X1 LS_INFINITY 30.00000

 X2 0 30.00000

The interpretation of these numbers is as follows. The value in:

 bouinc[j] is the amount by which the lower and upper bounds of variable j can be

increased without causing any change in the optimal values of the reduced costs and dual

prices.

 boudec[j] is the amount by which the lower and upper bounds of variable j can be

decreased without causing any change in the optimal values of the reduced costs and dual

prices.

For example, the allowable increase of 60 on variable X0 means that its lower bound of zero could be

increased by almost 60, to say 59.999, without causing any of the reduced costs or dual prices to

change. The allowable increase of 30 on variable X2 means that its lower bound of zero could be

increased by almost 30. If X2 is forced to be greater-than-or-equal-to 30, then variable X2 would be

forced out of the solution.

Diagnosis of Infeasible or Unbounded Models
LINDO API contains two diagnostic tools, LSfindIIS() and LSfindIUS(), that can help users debug

infeasible or unbounded optimization models. These tools can be called after the solver reports an

infeasible or unbounded status for the model. LSfindIIS() finds an irreducible infeasible set (IIS) of

constraints, whereas LSfindIUS(), finds an irreducible unbounded set (IUS) of variables. An IIS is a set

of constraints that are infeasible taken together, but every strict subset is feasible. Similarly, an IUS is

a set of variables that are unbounded taken together. However, if any one of these variables are fixed,

then these variables are not unbounded. The IIS or IUS portion of the model will generally be much

smaller than the original model. Thus, the user can track down formulation or data entry errors

quickly. By isolating of the source of the errors, the user can correct the model data such as right-hand

side values, objective coefficients, senses of the constraints, and column bounds.

Note: With LINDO API 4.0, debugging capabilities of LSfindIIS() have been extended beyond

linear programs. It can now debug infeasible quadratic, conic, integer and general nonlinear

models, too.

Infeasible Models
LSfindIIS() assumes that the user has recently attempted optimization on the model and the solver

returned a “no feasible solution” message. For an LP, if an infeasible basis is not resident in the

solver, LSfindIIS() cannot initiate the process to isolate an IIS. This can occur if the infeasibility is

detected in the pre-solver before a basis is created, or the barrier solver has terminated without

performing a basis crossover. To obtain an IIS for such cases, the pre-solve option should be turned off

and the model must be optimized again.

602 CHAPTER 10

The constraints and bounds in the IIS are further classified into two disjoint sets: a necessary set and a

sufficient set. The sufficient set refers to a crucial subset of the IIS in the sense that removing any one

of its members from the entire model renders the model feasible. Note that not all infeasible models

have sufficient sets. The necessary set contains those constraints and bounds that are likely to

contribute to the overall infeasibility of the entire model. Thus, the necessary set requires a correction

in at least one member to make the original model feasible.

Example:

C1) x  6;

C2) y  6;

C3) x + y  5;

 x, y  0;

The set C2 and C3 (as well as the non-negativity bound on x) are a necessary set. That is, some

constraint in this set must be dropped or corrected. Otherwise, the model will continue to be infeasible.

Note that C1 and C3 are also a necessary set. However, LINDO API will identify only one IIS set at a

time. The constraint C3 will be marked as a sufficient set. That is, dropping it will make the entire

model feasible. Note that dropping C2 will not make the entire model feasible, even though C2 is a

member of a necessary set. It follows that a constraint that is marked sufficient is a member of every

possible necessary set. Thus, a constraint that has been marked as sufficient has a high probability of

containing an error. In fact, if the model contains only one bad coefficient, the constraint containing it

will be marked as sufficient.

To control the level of analysis when locating an IIS, one should pass the level (mode) of the analysis

to LSfindIIS() as the second argument. Possible bit-mask values are:

LS_NECESSARY_ROWS= 1,

LS_NECESSARY_COLS = 2,

LS_SUFFICIENT_ROWS= 4,

LS_SUFFICIENT_COLS = 8.

For instance, to isolate only necessary and sufficient rows as the IIS, the associated level to pass to

LSfindIIS() would be LS_NECESSARY_ROWS+ LS_SUFFICIENT_ROWS = 5.

Finally, the following methods are available to perform IIS search.

IIS Methods

LS_IIS_DEFAULT 0 Use default filter in IIS analysis.

LS_IIS_DEL_FILTER 1 Use the standard deletion filter in IIS analysis.

LS_IIS_ADD_FILTER 2 Use the standard additive filter in IIS analysis

(direct use is reserved for future releases).

LS_IIS_GBS_FILTER 3 Use generalized-binary-search filter in IIS

analysis. This is a new method combining (1)

and (2) with binary search.

LS_IIS_DFBS_FILTER 4 Use depth-first-binary-search filter in IIS

analysis. This is an other method combining (1)

and (2) using depth-first during binary search.

LS_IIS_FSC_FILTER 5 Use fast-scan filter in IIS analysis. This method

deduces the IIS from the nonzero structure of the

Analyzing Models and Solutions 603

dual extreme ray and is more prone to numerical

errors than others.

LS_IIS_ELS_FILTER 6 Use the standard elastic filter in IIS analysis. Not

guaranteed to produce an IIS.

Prior to the analysis, the user can specify the norm that measures the infeasibilities with the following

options.

Norm Options

LS_IIS_NORM_FREE 0 Solver decides the infeasibility norm for IIS

analysis.

LS_IIS_NORM_ONE 1 Solver uses L-1 norm for IIS analysis.

LS_IIS_NORM_INFINITY 2 Solver uses L-∞ norm for IIS analysis

Workings of the IIS Finder:
Step 1: IIS-Finder routine (LSfindIIS) starts by finding a single necessary set of infeasible rows and/or

column-bounds. A model may have more than one of these sets, but the solver will simply find one of

them. Note that this necessary set is irreducible, in the sense that removing any row from the set makes

the entire set feasible. Necessary Rows/Cols are reported back to the user with designated output

arrays.

Step 2: Optionally, pass through the row members of the necessary set to see if any of the

rows/column-bounds are sufficient, such that when it is deleted the entire model becomes feasible.

Such sufficient rows/cols are reported back to the user with separate output arrays.

Notice that all the rows/column-bounds in the original necessary set may be sufficient, or a subset of

them may be sufficient, or none of them may be sufficient. The end result of this is that the IIS report

will fall into one of three cases:

Case Suff Sets Nec Sets

All Suff 1 0

Subset Suff 1 1

All Nec 0 1

So, having both a necessary and a sufficient will occur whenever a subset of the rows are sufficient.

This also means that some sufficient rows may not be reported in the debug report. Some sufficient

rows may not be revealed until one or more other necessary sets are repaired.

In the presence of sufficient sets, a common pitfall is to focus solely on the members of the sufficient

set as the source of infeasibility. Unfortunately, this is not always the case. Members of the sufficient

set might all be legitimate and well-defined constraints and the modeler might be forced to keep them

unchanged. It is important that the modeler treats the members of the necessary set with equal care and

consider the possibility that several necessary sets might exist in the model with their members

contributing to the infeasibility collectively. In such situations, the IIS-finder will be required to run

repeatedly following each correction the modeler makes to the model.

604 CHAPTER 10

Unbounded Linear Programs
LSfindIUS() is similar to LSfindIIS(), except that if is used to track down the source of an unbounded

solution in a linear program. This tool analyzes the model and isolates an irreducibly unbounded set

(IUS) of columns. As in the infeasibility case, the IUS is partitioned into sufficient and necessary sets

to indicate the role of the member columns in the unboundedness of the overall model.

The columns in the sufficient set are crucial in the sense that fixing any of these columns makes the

overall model bounded. However, fixing the columns in the necessary set makes the IUS found a

bounded set. There may still be some other unbounded set of columns in the model.

The dual of the earlier infeasibility bug example (shown above) is as follows.

Example:

Min 5 u – 6 v – 6 w;

 Subject to:

 u - v  4;

 u – w  4;

 u, v, w,  0

The variables u and v constitute a necessary, or irreducible unbounded set. If no coefficients are

changed in either of these columns, the model will remain unbounded. The variables u and w also

constitute a necessary set.

The variable u constitutes a sufficient set. If you change its objective coefficient from 5 to 7, then the

entire model becomes bounded.

Controling of the analysis level is done in a similar fashion as in previous section. For instance, to

isolate only necessary and sufficient variables as the IUS, the associated level to pass to LSfindIUS()

would be LS_NECESSARY_COLS+ LS_SUFFICIENT_COLS = 5. Currently, there is only a single

method available to perform IUS analysis. Therefore, no other options are required to control the

solver in analyzing unbounded models.

Note: Dualizing an unbounded LP would allow the user to deduce IUS results through an IIS

analysis on the explicit dual model.

Infeasible Integer Programs
Infeasible integer programs with infeasible linear relaxations can be easily debugged as an infeasible

LP using the standard LSfindIIS() for LPs. However, when the LP relaxation is feasible, the infeasible

IP needs to be debugged explicitly. With the release of LINDO API 4.0, LSfindIIS() is also able to

debug infeasible IPs. In the current implementation, variable bounds and integrality restrictions are

left out of the analysis, and only structural constraints are considered. The constraints in the IIS are

classified into necessary and sufficient sets just as in LP debugging.

Infeasible Nonlinear Programs
Recent enhancements in LSfindIIS() also make debugging of infeasible nonlinear models possible.

Although, it is generally more difficult to determine the source of infeasibility in NLPs, LSfindIIS()

performs reasonably well on a wide class of nonlinear models, particularly on quadratic and second-

order-cone models. For general nonlinear models, the performance generally dependents on factors

like (i) model scaling, (ii) infeasibility tolerance settings, (iii) presence of mathematical errors (e.g.

Analyzing Models and Solutions 605

log(.) of negative numbers), (iv) numerical errors (e.g. exp(.) of large numbers), (v) the initial solution

selected, and (vi) convexity. For cases when it is difficult (or even impossible) to determine the

feasibility status of an NLP in practical run-times, the diagnosis could lead to the isolation of a

Minimally Intractable Subsystem (MIS), which is a small subset of the original constraint set that

contributes to the intractability of the original NLP.

An Example for Debugging an Infeasible Linear
Program
In this section, an application in Visual C++ 6.0 will be built that reads an infeasible linear program

from an MPS file and then debugs it using LINDO API’s analyze routines. A complete version of this

project may be found in \lindoapi\samples\c\ex_iis.c.

/*

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : ex_iis.c

 Purpose: Analyze an infeasible (unbounded) LP to isolate the

 constraints (variables) causing the infeasibility (unboundedness)

 of the model.

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/* LINDO API header file */

#include "lindo.h"

/* Define a macro to declare variables for

 error checking */

#define APIERRORSETUP

 int nErrorCode;

 char cErrorMessage[LS_MAX_ERROR_MESSAGE_LENGTH]

/* Define a macro to do our error checking */

#define APIERRORCHECK

 if (nErrorCode)

 {

 if (pEnv)

 {

 LSgetErrorMessage(pEnv, nErrorCode,

 cErrorMessage);

 printf("Errorcode=%d: %s\n", nErrorCode,

 cErrorMessage);

 } else {

 printf("Fatal Error\n");

606 CHAPTER 10

 }

 exit(1);

 }

int CALLBACKTYPE MyCallback(pLSmodel pMod, int nLocation,

 void* pMyData)

{

 int *status = (int *) pMyData;

/* Display current iteration count and objective value */

 {

 int nIter,nNec=0,nSuf=0,

 nErr,nErr1,nErr2;

 double dObj, dInf;

 nErr=LSgetCallbackInfo(pMod,nLocation,LS_IINFO_SIM_ITER,&nIter);

 nErr=LSgetCallbackInfo(pMod,nLocation,LS_DINFO_POBJ,&dObj);

 nErr=LSgetCallbackInfo(pMod,nLocation,LS_DINFO_PINFEAS,&dInf);

 if (status && *status == LS_STATUS_INFEASIBLE)

 {

 nErr1=LSgetCallbackInfo(pMod,nLocation,LS_IINFO_NUM_IIS_ROWS,&nNec);

 nErr2=LSgetCallbackInfo(pMod,nLocation,LS_IINFO_NUM_SUF_ROWS,&nSuf);

 }

 else if (status && *status == LS_STATUS_UNBOUNDED)

 {

nErr1=LSgetCallbackInfo(pMod,nLocation,LS_IINFO_NUM_IUS_COLS,&nNec);

 nErr2=LSgetCallbackInfo(pMod,nLocation,LS_IINFO_NUM_SUF_COLS,&nSuf);

 }

 printf("@MyCallback %8d, %8d, %16g, %16g, %8d (%d)\n",

 nLocation,nIter,dObj,dInf,nNec,nSuf);

 }

 return(0);

}

static void LS_CALLTYPE print_line_log(pLSmodel pModel, char *line,

void *userdata)

{

 if (line)

 {

 printf("\n%s",line);

 } /*if*/

} /*print_line*/

 /* main entry point */

int main(int argc, char **argv)

{

 APIERRORSETUP;

 /* model data objects */

 int n; /* number of variables */

 int m; /* number of constraints */

 int solstatus;/*solution status (see lindo.h for possible

values)*/

 int prep_level;

 char *mpsfile = NULL;

 char MY_LICENSE_KEY[1024];

 /* IIS related data objects */

 int nLevel, /* level of analysis */

Analyzing Models and Solutions 607

 nSuf_r, /* number of sufficient rows */

 nSuf_c, /* number of sufficient columns */

 nIIS_r, /* number of rows in the IIS */

 nIIS_c; /* number of columns in the IIS */

 int *aiRows = NULL, /* index set of rows in the IIS */

 aiCols = NULL, / index set of columns in the IIS */

 anBnds = NULL; / bound type of columns in the IIS */

 int j;

 char bndtype[255], oufname[255], varname[255];

 /* declare an instance of the LINDO environment object */

 pLSenv pEnv;

 /* declare an instance of the LINDO model object */

 pLSmodel pModel;

 /**

 * Init: Command prompt calling sequence

 **/

 {

 char szVer[255], szBld[255];

 LSgetVersionInfo(szVer,szBld);

 printf("\nAN APPLICATION FOR ANALYZING & DEBUGGING LPs\n");

 printf("\nusing LINDO API Version %s (Built

%s)\n\n",szVer,szBld);

 }

 if (argc == 1)

 {

 printf("\nUsage: ex_iis filename\n\n");

 goto Terminate;

 }

 else if (argc == 2)

 {

 mpsfile = argv[1];

 }

 /**

 * Step 1: Create a LINDO environment.

 **/

 nErrorCode =

LSloadLicenseString("../../../license/lndapi100.lic",MY_LICENSE_KEY);

 APIERRORCHECK;

 pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

 if (nErrorCode == LSERR_NO_VALID_LICENSE)

 {

 printf("Invalid License Key!\n");

 exit(1);

 }

 APIERRORCHECK;

 /**

 * Step 2: Create a model in the environment.

 **/

 pModel = LScreateModel (pEnv, &nErrorCode);

 APIERRORCHECK;

 /**

 * Step 3: Read the model from an MPS file and

 **/

 nErrorCode = LSreadMPSFile(pModel,mpsfile,LS_UNFORMATTED_MPS);

 if (nErrorCode != LSERR_NO_ERROR)

608 CHAPTER 10

 {

 printf("\nBad MPS format... Trying LINDO format.\n");

 nErrorCode =LSreadLINDOFile(pModel,mpsfile);

 APIERRORCHECK;

 printf("\nLINDO format OK!\n\n");

 }

 else

 {

 printf("\nMPS format OK!\n\n");

 }

 nErrorCode = LSgetInfo(pModel, LS_IINFO_NUM_VARS, &n);

 APIERRORCHECK;

 nErrorCode = LSgetInfo(pModel, LS_IINFO_NUM_CONS, &m);

 APIERRORCHECK;

 /**

 * Step 4: Set Model parameters

 **/

 /* Turn off the LP preprocessor. This is required if the model

 is infeasible and the user wishes to debug it. */

 nErrorCode = LSgetModelIntParameter(pModel,LS_IPARAM_LP_PRELEVEL,

 &prep_level);

 APIERRORCHECK;

 if (prep_level > 0)

 printf("The LP presolver has been turned off. Solving ...\n\n");

 nErrorCode =

LSsetModelIntParameter(pModel,LS_IPARAM_LP_PRELEVEL,0);

 /* set LP solver type for optimizations (cold start) */

 nErrorCode = LSsetModelIntParameter(pModel,LS_IPARAM_IIS_TOPOPT,

 LS_METHOD_FREE);

 /* set LP solver type for reoptimizations (warm start)*/

 nErrorCode = LSsetModelIntParameter(pModel,LS_IPARAM_IIS_REOPT,

 LS_METHOD_FREE);

#if 0

 nErrorCode = LSsetCallback(pModel,(cbFunc_t) MyCallback, NULL);

 APIERRORCHECK;

 printf(" %8s, %8s, %16s, %16s, %8s (%s)\n",

 "LOCATION","ITERS","OBJECTIVE","INFEASIBILITY","NNEC","NSUF");

#endif

 /* Install a log function to display solver's progress

 as reported by the internal solver */

 nErrorCode = LSsetModelLogfunc(pModel, (printModelLOG_t)

print_line_log, NULL);

 nErrorCode =

LSsetModelDouParameter(pModel,LS_DPARAM_CALLBACKFREQ,0.5);

 APIERRORCHECK;

 /**

 * Step 5: Optimize the model

 **/

 nErrorCode = LSoptimize(pModel,LS_METHOD_FREE, &solstatus);

 APIERRORCHECK;

#if 0

 /* set callback and solution status */

 nErrorCode = LSsetCallback(pModel,(cbFunc_t) MyCallback,

&solstatus);

#endif

Analyzing Models and Solutions 609

 if (solstatus == LS_STATUS_BASIC_OPTIMAL)

 {

 printf("\tThe model is solved to optimality.\n");

 }

 /**

 * Step 6: Debug the model if unbounded or infeasible

 **/

 else if (solstatus == LS_STATUS_UNBOUNDED)

 {

 APIERRORCHECK;

 printf("\nThe model is unbounded.. Analyzing...\n\n");

 nLevel = LS_NECESSARY_COLS + LS_SUFFICIENT_COLS;

 /*** Step 6.1: Find IIS ***/

 nErrorCode = LSfindIUS(pModel,nLevel);

 APIERRORCHECK;

 strcpy(oufname,"findius.ltx");

 nErrorCode = LSwriteIUS(pModel,oufname);

 printf("\n\n IUS is written to %s !!\n",oufname);

 }

 else if (solstatus == LS_STATUS_INFEASIBLE)

 {

 printf("\nThe model is infeasible.. Analyzing...\n\n");

 aiRows = (int *) malloc(m*sizeof(int));

 aiCols = (int *) malloc(n*sizeof(int));

 anBnds = (int *) malloc(n*sizeof(int));

 /*** Step 6.1: Find IIS ***/

 nLevel = LS_NECESSARY_ROWS + LS_SUFFICIENT_ROWS;

 nErrorCode = LSfindIIS(pModel,nLevel);

 APIERRORCHECK;

 nErrorCode = LSgetIIS(pModel,&nSuf_r,&nIIS_r,aiRows,

 &nSuf_c,&nIIS_c,aiCols,anBnds);

 APIERRORCHECK;

 printf("\n\t *** LSfindIIS Summary ***\n\n");

 printf("\t Number of Sufficient Rows = %u\n",nSuf_r);

 printf("\t Number of Sufficient Cols = %u\n",nSuf_c);

 printf("\t Number of Necessary Rows = %u\n",nIIS_r - nSuf_r);

 printf("\t Number of Necessary Cols = %u\n",nIIS_c - nSuf_c);

 printf("\n");

 /*** Step 6.2: Display row index sets ***/

 printf("\n IIS Rows\n");

 for (j=0; j<nIIS_r; j++)

 {

 nErrorCode = LSgetConstraintNamei(pModel,aiRows[j],varname);

 APIERRORCHECK;

 if (j<nSuf_r)

 printf("%2d] (%-8s) is"

 " in the sufficient set.\n",j,varname);

 else

 printf("%2d] (%-8s) is"

 " in the necessary set.\n",j,varname);

 }

610 CHAPTER 10

 /*** Step 6.3: Display column index sets ***/

 printf("\n IIS Column Bounds\n");

 for (j=0; j<nIIS_c; j++)

 {

 if (anBnds > 0)

 strcpy(bndtype,"Lower");

 else

 strcpy(bndtype,"Upper");

 nErrorCode = LSgetVariableNamej(pModel,aiCols[j],varname);

 APIERRORCHECK;

 if (j<nSuf_r)

 printf("%2d] %s bound of (%-8s) is"

 " in the sufficient set.\n",j,bndtype,varname);

 else

 printf("%2d] %s bound of (%-8s) is"

 " in the necessary set.\n",j,bndtype,varname);

 }

 strcpy(oufname,"findiis.ltx");

 LSwriteIIS(pModel,oufname);

 printf("\n\n IIS is written to %s !!\n",oufname);

 free(aiRows);

 free(aiCols);

 free(anBnds);

 }

 /**

 * Step 7: Terminate

 **/

 nErrorCode = LSdeleteModel(&pModel);

 nErrorCode = LSdeleteEnv(&pEnv);

Terminate:

 /* Wait until user presses the Enter key */

 printf("Press <Enter> ...");

 getchar();

}

After building this application, you can run it from the DOS-prompt to debug the model in

lindoapi\samples\mps\testilp.mps. This should produce the following summary report on your screen.

MPS format OK!

*** LSfindIIS Summary ***

Number of Sufficient Rows = 0

Number of Sufficient Cols = 0

Number of Necessary Rows = 2

Number of Necessary Cols = 2

*** Rows Section ***

0] Row 4 (ROW5) is in the necessary set.

1] Row 0 (ROW1) is in the necessary set.

*** Column Bounds Section ***

0] Lower bound of Col 1 (X2) is in the necessary set.

1] Lower bound of Col 2 (X3) is in the necessary set.

IIS is written to findiis.ltx !

Analyzing Models and Solutions 611

Block Structured Models
Many large-scale linear and mixed integer problems have constraint matrices that are extremely sparse.

In practice, the ratio of the number of nonzeros to the total is so small (less than 0.05 %) that the

underlying model generally has a structure that could be exploited in solving the model. Such models

are often seen in airline scheduling, multi-period production planning, planning under uncertainty, and

other logistics problems. There are four types of possible decomposition schemes for a constraint

matrix.

Independent Block Structure
In this type of decomposition, the underlying model has a constraint matrix that is totally

decomposable. As illustrated in Figure 9.1, this implies that the blocks forming the constraint matrix

are independent from each other. Each block can be associated to a sub-problem that can be solved

independently. An optimal solution to the overall problem can then be obtained by taking the union of

the solutions to the sub-problems. A hypothetical case would be the minimization of operating costs of

a company who owns three plants, which do not share any resources. The company can make the

decisions pertaining to each plant independently.

X X

X X

 X X X

 X X X

 X X X

 X X

 X X

Figure 9.1 Independent Block Structure

Block Angular Structure with Linking Rows
In this type of decomposition, the blocks forming the constraint matrix are linked by a number of

constraints (rows) as illustrated in Figure 9.2. Note that when all linking rows are eliminated from the

constraint matrix, the remaining rows and columns form independent blocks. Therefore, the model is

totally decomposable. It is always possible to transform a sparse matrix into one that has block angular

structure. However, the advantages may not be available in the presence of many linking rows.

Building on the hypothetical example described above, this structure can be associated to the case

when there are a small number of resources that are common to all plants. In this case, the decisions

involve optimal splitting of these resources among the plants efficiently.

X X

X X

 X X X

 X X X

 X X X

 X X

 X X

Y Y Y Y Y Y Y

Figure 9.2 Block Angular Structure

612 CHAPTER 10

Dual Angular Structure with Linking Columns
In this type of decomposition, the blocks forming the constraint matrix are linked by a number of

variables (columns) as illustrated in Figure 9.3. This structure has a primal-dual relationship with the

Block Angular Structure described above. Again, for our hypothetical plant example, a structure of this

form can be associated to the case when there are a few variable outside factors that effect all plants.

X X Z

X X Z

 X X X Z

 X X X Z

 X X X Z

 X X Z

 X X Z

Figure 9.3 Dual Angular Structure.

Block and Dual Angular Structures
This is the most general form of decomposition where the blocks forming the constraint matrix have

both linking rows and columns as illustrated in Figure 9.4. The decisions involved for the hypothetical

plant example now include both resource sharing and external factors.

X X Z

X X Z

 X X X Z

 X X X Z

 X X X Z

 X X Z

 X X Z

Y Y Y Y Y Y Y A

Figure 9.4 Block and Dual Angular Structure

Analyzing Models and Solutions 613

Determining Total Decomposition Structures
Given a linear or mixed-integer program, the user can determine the decomposition structure by

calling the LSfindBlockStructure() routine. In a typical call, the user has to specify as input (i) the

number-of-blocks requested to decompose the model into and (ii) the target decomposition structure

(e.g. total-decomposition, or, block-angular-decomposition or dual-angular-decomposition as

discussed above). If total-decomposition is sought, the number-of-blocks is not required as input (any

value input will be ignored for this case). LSfindBlockStructure will find all independent blocks, if they

exist.

Given a target decomposition structure, LSfindBlockStructure will compute

i. A scalar of value N+1, with N representing the total number of independent blocks. The

increment ‘1’ stands for the linking block (the set of linking rows or/and columns).

ii. An integer array with values in [0,N] range, indicating assignments of the constraints to the

blocks, and

iii. An integer array with values in [0,N] range, indicating the assignments of the variables to the

blocks.

The linking block has index ‘0’ and independent blocks have indices in the [1,N] range. Subsequently,

a call to LSgetBlockStructure function is used to retrieve the computed values.

The following piece of C code demonstrates how LSfindBlockStructure() can be used to check if a

model that has 100 constraints and 200 variables is totally decomposable:

{

 pLSmodel model;

 int nblock, type, err;

 int rblock[100], cblock[200];

 :

 :

 type = LS_LINK_BLOCKS_NONE; // try total decomposition

 err = LSfindBlockStructure(model, -1, type); //2
nd
 arg is ignored

 err = LSgetBlockStructure(model, &nblock, &rblock, &cblock, type);

 if (nblock > 1)

 printf(“ The model has %d independent blocks\n”,nblock-1);

 else

 printf(“ The model is not totally decomposable\n”);

 :

 :

}

On return, the k
th

 entry of array cblock (rblock) will indicate the index of the block that the k
th

 variable

(constraint) belongs to. If the model does not have a total-decomposition structure, then the variable

nblock will take a value of 1 and both arrays would have all of their elements set to 0. This would

imply all constraints and variables are part of the linking block.

614 CHAPTER 10

Note: Many large scale linear (LP) and mixed integer problems (MIP) have constraint matrices that

are totally decomposable into a series of independent block structures. The user adjustable

parameter (LS_IPARAM_DECOMPOSITION_TYPE) can be set, so the solver checks if a

model can be broken into smaller independent models. If total decomposition is possible, it will

solve the independent problems sequentially to reach a solution for the original model. This

may result in dramatic speed improvements.

Determining Angular Structures
If the matrix is not found to be totally decomposable, then other decomposition schemes can be

pursued. For any constraint matrix, block-angular, dual-angular, or block-and-dual decompositions can

always be achieved for a given number-of-independent blocks (N>1). As illustrated previously,

models with block- (dual-) angular decomposition, some of the rows (columns) will not belong to any

of the independent blocks. Such rows (columns) are regarded as linking or coupling rows (columns),

since they establish a dependence relationship among the independent blocks constituting the original

matrix. From the perspective of API functions, these rows (columns) are considered to belong to a

pseudo block called the linking-block. As described in the previous section, LSfindBlockStructure()

will label rows (columns) in this block with a ‘0’ on return.

The C code above can be modified as follows to use decomposition schemes other than total

decomposition:

{

 pLSmodel model;

 int nblkTarget, nblkOut, type, err, ncons=100, nvars=200;

 int rblock[100], cblock[200];

 :

 :

 // perform dual angular decomposition

 type = LS_LINK_BLOCKS_COLS;

 // specify the number of blocks to decompose the model (required)

 nblkTarget = 3;

 // perform decomposition

 err = LSfindBlockStructure(model, nblkTarget, type);

 err = LSgetBlockStructure(model, &nblkOut, &rblock, &cblock,type);

 // print block memberships

 for (j=0; j< nvars; j++)

 if (cblock[j] > 0)

 printf(“ Variable %d belongs to block %d\n”,j,cblock[j]);

 else

 printf(“ Variable %d is a linking column\n”,j);

 for (i=0; i< ncons; i++)

 printf(“ Constraint %d belongs to block %d\n”,j,rblock[j]);

 :

 :

}

Note: In decomposing a constraint matrix into one that has a block and/or dual angular structure, the

user needs to specify the number of blocks requested explicitly. This is because the matrix

can be decomposed into as many blocks as possible when linking rows or columns are

allowed.

Analyzing Models and Solutions 615

Techniques Used in Determining Block Structures
LINDO API uses two different methods in determining the block strucutures. Each method uses ideas

from the heuristics available for the hypergraph partititioning problem. They differ in the way they

conceptualize the underlying partitioning problem. The user can switch between these methods by

setting the LS_IPARAM_FIND_BLOCK parameter to 0 or 1 (default is 0) prior to calling

LSfindBlockStructure routine. Note that when this parameter is set to 1, LSfindBlockStructure will find

a block structure which tries to minimize the total number of linking columns and linking rows

ignoring the block-structure-type argument.

If users have other means to determine the model structure (e.g. via other methods outside LINDO API

or simply by construction), the resulting structures can be loaded by calling the LSloadBlockStructure

routine. There are several model classes which already possess one of the structures discussed above.

Some examples are

 Generalized Assignment Problem (linking rows),

 Deterministic equivalent of stochastic programming problems (linking columns),

 Multi-item scheduling over a time horizon (linking columns or rows).

 Financial pricing models (linking rows)

 Multi echelon inventory management problems.

In the following, an illustration of the Generalized Assignment Problem (GAP) is given

Generalized Assignment Problem
The standard GAP formulation in LINGO format is as follows.

MODEL:

SETS:

 AGENTS /1..5/: R;

 JOBS /1..15/;

 ASSIGN(AGENTS, JOBS): C, W, X;

ENDSETS

DATA:

! Cost of assignments (5x15 elements);

C = 25 23 20 16 …;

! Weights of assignments (5x15 elements);

W = 8 18 22 5 …;

! Capacity of agents (5 elements);

R = 36 35 38 …;

ENDDATA

MIN = @SUM(ASSIGN: C * X);

! Blocks (subproblems);

@FOR(AGENTS(I): @SUM(JOBS(J): W(I,J)*X(I,J)) <= R(I););

! Linking rows;

@FOR(JOBS(J): @SUM(AGENTS(I): X(I,J)) = 1;);

! Integrality;

@FOR(JOBS(J): @FOR(AGENTS(I): @BIN(X(I,J));));

END

616 CHAPTER 10

Figure 10.5 Structure of the sample GAP formulation

In Figure 10.5, the nonzero structure of the GAP formulation is given. The objective function is

labeled as row 1, rows labeled K1 to K5 are the knapsack constraints constituting the sub-problems

and rows labeled A1 to A15 are the linking constraints. The LINDO file of the original model and

TIME file specifying the structure are in the following files

 lindoapi/samples/data/gap1_5_5_15.ltx

 lindoapi/samples/data/gap1_5_5_15.tim

The TIME file keeps the assignment of row and columns to blocks (see Chapter 4, section Solving

MIPs using BNP for a brief overview).

 Chapter 11:

 Parallel Optimization
LINDO API offers multi-cpu optimization extensions to its solvers to take advantage of computers

with multicore processors. For the typical user, one need be aware of but one parameter,

LS_IPARAM_NUM_THREADS. It can be used to specify the the number of threads used by every

solver. For the sophisticated user hoping to achieve additional performance from multiple cores, there

additional parameters available, described below.

Thread Parameters

There are additional parameters that allow one to make the exploitation of multiple cores solver

dependent. The following table summarizes these parameters.

Optimizer Routine Solver Specific Threading Parameter

LSsolveMIP LS_IPARAM_MIP_NUM_THREADS

LSoptimize

(NLP/Multistart) LS_IPARAM_NLP_MSW_NUM_THREADS

LSoptimize

(LP+QP/Barrier) LS_IPARAM_IPM_NUM_THREADS

LSoptimize

(LP/Simplex) LS_IPARAM_SOLVER_CONCURRENT_OPTMODE

LSsolveGOP LS_IPARAM_GOP_NUM_THREADS

LSsolveMipBnp LS_IPARAM_BNP_NUM_THREADS

LSsolveHS LS_IPARAM_GA_NUM_THREADS

LSsolveHS LS_IPARAM_MIP_ NUM_THREADS

LSsolveSP LS_IPARAM_STOC_NUM_THREADS

LSsolveSBD LS_IPARAM_SBD_NUM_THREADS

Optimizer Routine Generic Threading Parameter

Any of the above LS_IPARAM_NUM_THREADS

The generic multithreading parameter LS_IPARAM_NUM_THREADS is a short-hand for all other

thread parameters for a given solver type. It works by setting the solver-specific thread-parameter

internally when a solver routine is invoked. All thread parameters are 1 by default, which implies the

model will be solved by the serial optimizer on a single thread. When solving a model with a meta-

solver like LSsolveGOP or LSsolveHS, any thread parameter associated with a subsolver, e.g.

LSoptimize or LSsolveMIP, will be ignored and treated as 1 (serial optimization). For example, if

you set LS_IPARAM_GOP_NUM_THREADS to 2 on a 4-core machine, setting barrier solver’s

618 CHAPTER 11

thread parameter LS_IPARAM_IPM_NUM_THREADS to 2 or higher will not have any effect on

internal calls made to LSoptimize by LSsolveGOP. In other words, the barrier solver will continue to

run in serial optimization mode. Setting LS_IPARAM_IPM_NUM_THREADS to 2 will only be

effective when LSoptimize is called as a standalone solver.

When the generic threading parameter LS_IPARAM_NUM_THREADS is set to 4 and subsequently

LSsolveGOP is called, the solver will internally set LS_IPARAM_GOP_NUM_THREADS to 4 global

optimization will proceed over 4 threads in the usual sense. In a separate run, for instance, calling the

multistart solver with LSoptimize with LS_IPARAM_NUM_THREADS set to 4, will behave exactly

the same as setting LS_IPARAM_NLP_MSW_NUM_THREADS to 4.

Concurrent vs. Parallel Parameters

The multicore extensions are of two types: concurrent optimizers and parallel optimizers.

Concurrent optimizers run two or more different serial solvers on multiple copies of the same model,

using a separate thread for each solver, terminating as soon as the winner thread finishes. These

“different solvers” may in fact be the same solver type but using different search strategies and/or

subsolvers. Parallel optimizers, on the other hand, use built-in parallel algorithms on the original

model by parallelizing computationally intensive portions of the serial algorithm to distribute the

workload across multiple threads. .

In LINDO API, the following multicore extensions are available for each optimizer type.

Optimizer Routine Model Class

Parallel

Optimizer

Concurrent

Optimizer

LSsolveMIP

Mixed Integer

Programs Yes Yes

LSoptimize

Linear and Quadratic

Programs

Yes

(Barrier/Multistart)

Yes

(Barrier/Simplex)

LSsolveGOP Nonlinear Programs Yes No

LSsolveMipBnp Mixed Integer Programs Yes No

LSsolveHS

Mixed Integer and

Nonlinear Programs Yes No

LSsolveSP Stochastic Programs Yes No

LSsolveSBD Linear Programs Yes No

The choice, whether the concurrent or parallel optimizer will be used, is controlled by the value of

LS_IPARAM_MULTITHREAD_MODE parameter. By default,

LS_IPARAM_MULTITHREAD_MODE is set to -1, which indicates the solver will choose the best

performing type.

PARALLEL OPTIMIZATION 619

Solving MIPs Concurrently

MIP models can be solved concurrently either by using built-in strategies or defining custom search-

strategies via a specific callback function. The choice is controlled by

LS_IPARAM_MIP_CONCURRENT_STRATEGY parameter. This parameter controls the concurrent

MIP strategy. Possible values are:

 LS_STRATEGY_PRIMIP Use built-in priority lists to use a different branching rule on each

thread.

 LS_STRATEGY_USER Use the custom search strategy defined via a callback function for

each thread.

The default is LS_STRATEGY_PRIMIP. The following code snippet illustrates the use of built-in

strategies.

{

/* Insert code to set up a MIP model */

 // Set number of threads to 4

LSsetModelIntParameter(pModel,

LS_IPARAM_MIP_NUM_THREADS,4);

 // Note: LS_IPARAM_NUM_THREADS can also be used

 // Set threading to concurrent mode

LSsetModelIntParameter(pModel,

LS_IPARAM_MULTITHREAD_MODE, LS_MTMODE_CC);

 // Select LS_STRATEGY_PRIMIP strategy

LSsetModelIntParameter(pModel,

LS_IPARAM_MIP_CONCURRENT_STRATEGY,LS_STRATEGY_PRIMIP);

 // Start the concurrent run

 nErr = LSsolveMIP(pModel,&nMIPstatus);

 /* Insert code to handle status and access to solution vectors */

}

Note: In runlindo, the same effect can be achieved with the following command when solving

mipmodel.mps instance.

 $ runlindo mipmodel.mps –ccstrategy 1 –nthreads 4

The concurrent MIP optimizer allows the use of user-defined strategies with LS_STRATEGY_USER

option. The use of this option requires the user to define a callback function, which turns the program

control back to the user to define a strategy for each model instance on each thread.

Note: In this context, a strategy constitutes a set of parameter settings selected by the user and set by

LSsetModelIntParameter or LSsetModelDouParameter calls. It may also constitute user-

defined branching priorities loaded with LSloadVarPriorities.

620 CHAPTER 11

In order to specify a strategy-defining callback function, call the LSsetMIPCCStrategy routine before

calling LSsolveMIP(). The callback function has the following interface.

pFunStrategy()

Description:

This is a user/frontend supplied routine to define custom search strategies for a concurrent

MIP run. Use the LSsetMIPCCStrategy() routine (see Chapter 2) to identify your

pFunStrategy() routine to LINDO API.

Returns:

Returns a value greater than 0 if a numerical error occurred while defining the strategy.

Otherwise, returns 0.

Prototype:

int pFunStrategy (pLSmodel model,int nRunId, void * pUserData)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nRunId The index of a particular run running on a thread.

pUserData Pointer to a user data area or structure in which any data

needed to define a strategy. LINDO API obtains the value of

this pointer when the pFunStrategy() routine is established

through a call to LSsetMIPCCStrategy(). Subsequently,

whenever LINDO API calls your pFunStrategy () routine, it

passes the same pointer value through pUserData.

In order to define customized strategies, MIP_CONCURRENT_STARTEGY should normally be set

to LS_STRATEGY_USER. But even if it is set to another option, callback functions could still be

used allowing the user to overwrite the internal strategy associated with that option. The following

code snippet illustrates its usage with LS_STRATEGY_USER.

PARALLEL OPTIMIZATION 621

{

/* Insert code to set up a MIP model */

// Set number of threads to 4

LSsetModelIntParameter(pModel,

LS_IPARAM_MIP_NUM_THREADS,4);

 // Note: LS_IPARAM_NUM_THREADS can also be used

 // Set threading to concurrent mode

LSsetModelIntParameter(pModel,

LS_IPARAM_MULTITHREAD_MODE, LS_MTMODE_CC);

 // Select LS_STRATEGY_USER strategy

LSsetModelIntParameter(pModel,

LS_IPARAM_MIP_CONCURRENT_STRATEGY,LS_STRATEGY_USER);

// Install the callback function to each thread/model

for (iThread=0; iThread<4; iThread++) {

LSsetMIPCCStrategy(pModel,pFunStrategy,

 iThread,NULL,NULL);

}

 // Start the concurrent run

 nErr = LSsolveMIP(pModel,&nMIPstatus);

 /* Insert code to handle status and access to solution vectors */

}

// callbback function defining a strategy for a thread/run
int LS_CALLTYPE pFunStrategy(pLSmodel pModel,int nRunId,

 void *pvUserData)

{

 extern int priArray[][];

 // priArray[][] is a collection of vectors

 // keeping user-defined priorities for each thread

 LSloadVarPriorities(pModel, priArray[nRunId])

 /* Insert calls to LSsetModelIntParameter or

 LSsetModelDouParameter to make each thread

 run under different MIP parameter settings. */

 // E.g. use different heuristic levels across threads

 LSsetModelIntParameter(pModel,

 LS_IPARAM_MIP_HEULEVEL, 2*nRunId);

 // E.g. use different strongbranching levels across threads

 LSsetModelIntParameter(pModel,

LS_IPARAM_MIP_STRONGBRANCHLEVEL, 5*nRunId);

}

622 CHAPTER 11

LSsetMIPCCStrategy accepts an string argument (#4) to specify a chain of parameter files to be read

by each thread. This feature is used in runlindo to define parameter settings for each thread

convenientlty, e.g. without requiring a callback function implementation. This is achieved by the

command-line option '-ccparchain <root-name >' as described in the following:

$ runlindo mipmodel.mps -ccstrategy 0 -ccparchain ccpar/lindo –nthreads 3

The option "-ccparchain ccpar/lindo" translates into reading 3 parameter files, one file per thread, from

a relative-path with the following names

./ccpar/lindo-cc-0.par

./ccpar/lindo-cc-1.par

./ccpar/lindo-cc-2.par

Solvers with built-in Parallel Algorithms

As displayed in above table, global-optimization, multistart, stochastic, and branch-price solvers have

built-in parallel versions. To run the parallel version of each solver, simply set the associated

parameter (e.g. LS_IPARAM_GOP_NUM_THREADS for global-optimization or

LS_IPARAM_IPM_NUM_THREADS for linear-optimization with barrier solver) to 2 or more. See

the code snippet below for starting the parallel GOP solver over 3 threads.

{

/* Insert code to set up a nonlinear model */

 // Set number of parallel threads to 3

LSsetModelIntParameter(pModel,LS_IPARAM_GOP_NUM_THREADS,3);

 // Set threading to parallel mode

LSsetModelIntParameter(pModel,

LS_IPARAM_MULTITHREAD_MODE, LS_MTMODE_PP);

 // Start the parallel global optimizer

 nErr = LSsolveGOP(pModel,&nGOPstatus);

 /* Insert code to handle status and access to solution vectors */

}

PARALLEL OPTIMIZATION 623

The runlindo session with “–gop –nthreads 3” options invokes the parallel GOP solver on a sample

problem and produces the following trace log. The cummulative workloads of threads in seconds,

along with their shares in the total in percentages, are displayed at termination.

#NODEs BOXES LOWER BOUND UPPER BOUND RGAP TIME(s)

 1 1 -5.873680e+001 -1.146802e+000 9.8e-001 0 (*N)

 15 13 -2.647840e+001 -1.020879e+001 6.1e-001 4 (*N)

 21 17 -2.633181e+001 -1.020879e+001 6.1e-001 7 (*I)

 24 16 -2.275840e+001 -1.020879e+001 5.5e-001 7 (*I)

 47 0 -1.020881e+001 -1.020879e+001 2.0e-006 9 (*F)

GOP thread workload: 13.75 secs |36%|38%|26%|

Terminating global search ...

 Global optimum found

 Objective value : -10.2087927922

 Best Bound : -10.2088130442

 …

 …

 Total time (sec.) : 10

Note that for mixed-integer solver, multithreading by default will invoke the MIP concurrent solver.

To invoke the parallel solver, one may make the

following call LSsetModelIntParameter(pModel, LS_IPARAM_MULTITHREAD_MODE,

LS_MTMODE_PP). In 'runlindo', this corresponds to using option "-threadmode 2".

Reproducibility

 We say a solution method is reproducible if when you apply the solution method a second time to the

same problem, you get the same answer as in the first run. This is of particular interest if your model

has multiple optimal solutions. A reproducible method will always give you the same optimal solution

every time you solve the problem on the same computer system using the same parameter settings.

You may not get reproducibility if a) you set time limits of any sort, or b) use a concurrent solver.

Appendix A: Error Codes
Below is a listing of the various error codes that are returned by LINDO API along with a brief

description of the error condition and possible remedies. These codes are defined in the header files

(e.g. lindo.h) under lindoapi/include directory.

LSERR_BAD_CONSTRAINT_TYPE

Constraint types are expected to be ‘G’, ‘L’, ‘E’, or ‘N’ corresponding to greater-than-or-

equal-to, less-than-or-equal-to, equal-to, and neutral. Correct and retry.

LSERR_BAD_DECOMPOSITION_TYPE

The specified decomposition type is invalid.

LSERR_BAD_LICENSE_FILE

The specified license file does not exist or contains a corrupt license key.

LSERR_BAD_MODEL

There is an error in your formulation. Correct and retry.

LSERR_BAD_MPI_FILE

LINDO API was unable to parse your MPI file for some reason. Check to be sure that the file

format follows the rules of the MPI file format and the expressions representing the linear or

nonlinear relationships conform to the postfix notation.

LSERR_BAD_MPS_FILE

LINDO API was unable to parse your MPS file for some reason. Check to be sure that the file

is truly an MPS file. Review the MPS file format in Appendix B, MPS File Format, to see

that your file conforms. Try reading the file as an unformatted MPS file.

LSERR_BAD_OBJECTIVE_SENSE

Your objective sense argument was not correctly specified.

LSERR_BAD_SOLVER_TYPE

You’ve requested an incorrect solver type. Please make sure you have specified one from the

supported list of solvers.

LSERR_BAD_VARIABLE_TYPE

The specified variable type is invalid.

LSERR_BASIS_BOUND_MISMATCH

The specified value for basis status does not match to the upper or lower bound the variable

can attain.

LSERR_BASIS_COL_STATUS

The specified basis status for a column is invalid.

LSERR_BASIS_INVALID

 The given basis is invalid.

LSERR_BASIS_ROW_STATUS

 The specified basis status for a constraint’s slack/surplus is invalid.

626 APPENDIX A

LSERR_BLOCK_OF_BLOCK

The specified model is already a block of a decomposed model.

LSERR_BOUND_OUT_OF_RANGE
The input values fall out side allowed range. E.g. a negative value was input while expecting

a nonnegative value.

LSERR_CANNOT_OPEN_FILE

LINDO API couldn’t open a specified file. Check the spelling of the file name, be sure that

the file exists, and make sure you have read access to the file.

LSERR_CHECKSUM

 A checksum operation has failed during license checking.

LSERR_COL_BEGIN_INDEX

The index vector that mark the beginning of structural columns in three (or four) vector

representation of the underlying model is invalid.

LSERR_COL_INDEX_OUT_OF_RANGE

The specified column index is out of range for the underlying model.

LSERR_COL_NONZCOUNT

The number of nonzeros in one or more columns specified is invalid or inconsistent with

other input vectors.

LSERR_ERRMSG_FILE_NOT_FOUND

The specified file was not found.

LSERR_ERROR_IN_INPUT

There was an error in the input.

LSERR_GOP_BRANCH_LIMIT

The GOP solver has reached the branch limit in branch and bound before solving to

optimality.

LSERR_GOP_FUNC_NOT_SUPPORTED

The specified function is not supported with GOP solver

LSERR_ILLEGAL_NULL_POINTER

LINDO API was expecting a pointer as an argument, but found NULL instead.

LSERR_INDEX_DUPLICATE

The specified index set contains duplicate index values.

LSERR_INDEX_OUT_OF_RANGE

The specified index is out of range.

LSERR_INSTRUCT_NOT_LOADED

The instruction list has not yet been loaded into the model specified by a pLSmodel type

pointer.

LSERR_INTERNAL_ERROR

An unanticipated internal error has occurred. Please report this problem to LINDO Systems

Technical Support.

LSERR_INFO_NOT_AVAILABLE

You have posed a query to LINDO API for which no information is available.

ERROR CODES 627

LSERR_INVALID_ERRORCODE

The error code inquired about is invalid.

LSERR_ITER_LIMIT

The solver reached the iteration limit before solving to optimality.

LSERR_LAST_ERROR

This error code marks the last valid error code in LINDO API and is for internal use only.

LSERR_MIP_BRANCH_LIMIT

The solver has reached the branch limit in branch and bound before solving to optimality.

LSERR_MODEL_ALREADY_LOADED

The problem data has already been loaded into the model specified by a pLSmodel type

pointer.

LSERR_MODEL_NOT_LINEAR

The underlying model is not linear.

LSERR_MODEL_NOT_LOADED

The problem data has not yet been loaded into the model specified by a pLSmodel type

pointer.

LSERR_NO_ERROR

The LINDO API function called has terminated without any errors.

LSERR_NO_LICENSE_FILE

No license file that contains a valid license could be found on the system.

LSERR_NO_METHOD_LICENSE

Your license key doesn’t allow for the solver method you’ve chosen. To check the capacity of

your version, call LSgetModelIntParameter() with license information access macros. Try a

different solver method or upgrade your license to include the desired method.

LSERR_NO_VALID_LICENSE

The license key passed to LScreateEnv() was not valid. Please check that you have correctly

typed in your license key, preserving capitalization and including all hyphens.

LSERR_NOT_CONVEX

The underlying model is not convex. This implies that the model could not be solved using

the standard barrier solver.

LSERR_NOT_SUPPORTED

You have tried to use a feature that is not currently supported.

LSERR_NUMERIC_INSTABILITY

The solver encountered a numeric error and was unable to continue. Please report this

problem to LINDO Systems Technical Support.

LSERR_OLD_LICENSE

The license is valid for an older version.

LSERR_OUT_OF_MEMORY

You don’t have adequate memory for the operation. Add more RAM and/or free disk space to

allow the operating system more swap space.

628 APPENDIX A

LSERR_PARAMETER_OUT_OF_RANGE

The specified parameter was out of range.

LSERR_ROW_INDEX_OUT_OF_RANGE

The specified row index is out of range for the underlying model.

LSERR_STEP_TOO_SMALL

The solver halted because of failing to take sufficiently large steps to the solution set.

LSERR_TIME_LIMIT

The solver reached the time limit before solving to optimality.

LSERR_TOO_SMALL_LICENSE

Your license key doesn’t allow for enough capacity to solve the model you’ve built. To check

the capacity of your version, call LSgetModelIntParameter() with license information access

macros. You’ll need to reduce the size of your model or upgrade to a larger license.

LSERR_TOTAL_NONZCOUNT

The total number of nonzeros specified is invalid or inconsistent with other input.

LSERR_TRUNCATED_NAME_DATA

The solver exported the specified model in a portable file format, however, some variables or

constraints had very long names which have been truncated to a fixed length while exporting.

LSERR_UNABLE_TO_SET_PARAM

The parameter you are attempting to set is not user configurable.

LSERR_USER_FUNCTION_NOT_FOUND

Model contains user function that is not supplied.

LSERR_USER_INTERRUPT

The solver was interrupted by the user’s callback function.

LSERR_VARIABLE_NOT_FOUND

The specified variable was not found in the model.

LSERR_DATA_TERM_EXIST

The row already has a quadratic (or nonlinear) term loaded.

LSERR_NOT_SORTED_ORDER

The index vector is required to be sorted but it is not.

LSERR_INST_MISS_ELEMENTS

Instruction list has incorrect numbers of elements.

LSERR_INST_TOO_SHORT

Instruction list has too short a length.

LSERR_INST_INVALID_BOUND

Instruction list has conflicting variable bounds. For example, the lower bound is greater than

the upper bound.

LSERR_INST_SYNTAX_ERROR

Instruction list contains at least one syntax error.

LSERR_LAST_ERROR

Marker for the last error code. Internal use only.

ERROR CODES 629

LSERR_BAD_SMPS_CORE_FILE

Core MPS file/model has an error.

LSERR_BAD_SMPS_TIME_FILE

Time file/model has an error.

LSERR_BAD_SMPS_STOC_FILE

Stoc file/model has an error.

LSERR_BAD_SMPI_CORE_FILE

Core MPI file/model has an error.

LSERR_BAD_SMPI_STOC_FILE

Stoc file associated with Core MPI file has an error.

LSERR_CANNOT_OPEN_CORE_FILE

Unable to open Core file.

LSERR_CANNOT_OPEN_TIME_FILE

Unable to open Time file.

LSERR_CANNOT_OPEN_STOC_FILE

Unable to open Stoc file.

LSERR_STOC_MODEL_NOT_LOADED

Stochastic model/data has not been loaded yet.

LSERR_STOC_SPAR_NOT_FOUND

Stochastic parameter specified in Stoc file has not been found .

LSERR_TIME_SPAR_NOT_FOUND

Stochastic parameter specified in Time file has not been found .

LSERR_SCEN_INDEX_OUT_OF_SEQUENCE

Specified scenario index is out of sequence.

LSERR_STOC_MODEL_ALREADY_PARSED

Stochastic model/data has already been loaded.

LSERR_STOC_INVALID_SCENARIO_CDF

Specified scenario CDF is invalid, e.g. scenario probabilities don't sum to 1.0

LSERR_CORE_SPAR_NOT_FOUND

No stochastic parameters was found in the Core file.

LSERR_CORE_SPAR_COUNT_MISMATCH

Number of stochastic parameters found in Core file don't match to that of Time file.

LSERR_CORE_INVALID_SPAR_INDEX

Specified stochastic parameter index is invalid.

LSERR_TIME_SPAR_NOT_EXPECTED

A stochastic parameter was not expected in Time file.

LSERR_TIME_SPAR_COUNT_MISMATCH

Number of stochastic parameters found in Time file don't match to that of Stoc file.

630 APPENDIX A

LSERR_CORE_SPAR_VALUE_NOT_FOUND

Specified stochastic parameter doesn't have a valid outcome value.

LSERR_INFO_UNAVAILABLE

Requested information is unavailable.

LSERR_STOC_MISSING_BNDNAME

Core file doesn't have a valid bound name tag.

LSERR_STOC_MISSING_OBJNAME

 Core file doesn't have a valid objective name tag.

LSERR_STOC_MISSING_RHSNAME

 Core file doesn't have a valid right-hand-side name tag.

LSERR_STOC_MISSING_RNGNAME

 Core file doesn't have a valid range name tag.

LSERR_MISSING_TOKEN_NAME

 Stoc file doesn't have an expected token name.

LSERR_MISSING_TOKEN_ROOT

Stoc file doesn't have a 'ROOT' token to specify a root scenario.

LSERR_STOC_NODE_UNBOUNDED

 Node model is unexpectedly unbounded.

LSERR_STOC_NODE_INFEASIBLE

Node model is unexpectedly infeasible.

LSERR_STOC_TOO_MANY_SCENARIOS

 Stochastic model has too many scenarios to solve with specified solver.

LSERR_STOC_BAD_PRECISION

One or more node-models have irrecoverable numerical problems.

LSERR_CORE_BAD_ AGGREGATION

 Specified aggregation structure is not compatible with model's stage structure.

LSERR_STOC_NULL_EVENT_TREE

 Event tree is either not initialized yet or was too big to create.

LSERR_CORE_BAD_STAGE_INDEX

Specified stage index is invalid.

LSERR_STOC_BAD_ALGORITHM

 Specified algorithm/method is invalid or not supported.

LSERR_CORE_BAD_NUMSTAGES

 Specified number of stages in Core model is invalid.

LSERR_TIME_BAD_TEMPORAL_ORDER

Underlying model has an invalid temporal order.

LSERR_TIME_BAD_NUMSTAGES

 Number of stages specified in Time structure is invalid.

LSERR_CORE_TIME_MISMATCH

Core and Time data are inconsistent.

ERROR CODES 631

LSERR_STOC_INVALID_CDF

Specified stochastic structure has an invalid CDF.

LSERR_BAD_DISTRIBUTION_TYPE

Specified distribution type is invalid or not supported.

LSERR_DIST_SCALE_OUT_OF_RANGE

 Scale parameter for specified distribution is out of range.

LSERR_DIST_SHAPE_OUT_OF_RANGE

 Shape parameter for specified distribution is out of range.

LSERR_DIST_INVALID_PROBABILITY

Specified probabability value is invalid.

LSERR_DIST_NO_DERIVATIVE

 Derivative information is unavailable.

LSERR_DIST_INVALID_SD

 Specified standard deviation is invalid.

LSERR_DIST_INVALID_X

Specified value is invalid.

LSERR_DIST_INVALID_PARAMS

 Specified parameters are invalid for the given distribution.

LSERR_DIST_ROOTER_ITERLIM

 Iteration limit has been reached during a root finding operation.

LSERR_ARRAY_OUT_OF_BOUNDS

 Given array is out of bounds.

 LSERR_DIST_NO_PDF_LIMIT

Limiting PDF does not exist

LSERR_RG_NOT_SET

 A random number generator is not set.

LSERR_DIST_TRUNCATED

 Distribution function value was truncated during calculations.

LSERR_STOC_MISSING_PARAM_TOKEN

Stoc file has a parameter value missing.

LSERR_DIST_INVALID_NUMPARAM

Distribution has invalid number of parameters.

LSERR_CORE_NOT_IN_TEMPORAL_ORDER

Core file/model is not in temporal order.

LSERR_STOC_INVALID_SAMPLE_SIZE

Specified sample size is invalid.

LSERR_STOC_NOT_DISCRETE

Node probability cannot be computed due to presence of continuous stochastic parameters.

LSERR_STOC_SCENARIO_LIMIT

 Event tree exceeds the maximum number of scenarios allowed to attempt an exact solution.

632 APPENDIX A

LSERR_DIST_BAD_CORRELATION_TYPE

Specified correlation type is invalid.

LSERR_TIME_NUMSTAGES_NOT_SET

Number of stages in the model is not set yet.

LSERR_STOC_SAMPLE_ALREADY_LOADED

Model already contains a sampled tree

LSERR_STOC_EVENTS_NOT_LOADED

Stochastic events are not loaded yet .

 LSERR_STOC_TREE_ALREADY_INIT

 Stochastic tree already initialized.

 LSERR_RG_SEED_NOT_SET

Random number generator seed not initialized.

 LSERR_STOC_OUT_OF_SAMPLE_POINTS

All sample points in the sample has been used. Resampling may be required.

 LSERR_STOC_SCENARIO_SAMPLING_NOT_SUPPORTED

All sample points in the sample has been used. Resampling may be required.

 LSERR_STOC_SAMPLE_NOT_GENERATED

Sample points are not yet generated for a stochastic parameter.

 LSERR_STOC_SAMPLE_ALREADY_GENERATED

 Sample points are already generated for a stochastic parameter.

 LSERR_STOC_SAMPLE_SIZE_TOO_SMALL

Sample sizes selected are too small.

LSERR_RG_ALREADY_SET

A random number generator is already set.

LSERR_STOC_BLOCK_SAMPLING_NOT_SUPPORTED

Sampling is not allowed for block/joint distributions.

LSERR_EMPTY_ROW_STAGE

No rows were assigned to one of the stages.

LSERR_EMPTY_COL_STAGE

No columns were assigned to one of the stages.

 LSERR_STOC_CONFLICTING_SAMP_SIZES

 Default sample sizes per stoc.pars and stage are in conflict.

 LSERR_STOC_EMPTY_SCENARIO_DATA

 Empty scenario data.

 LSERR_STOC_CORRELATION_NOT_INDUCED

A correlation structure has not been induced yet.

 LSERR_STOC_PDF_TABLE_NOT_LOADED

A discrete PDF table has not been loaded.

 LSERR_COL_TOKEN_NOT_FOUND

Reserved for future use.

ERROR CODES 633

 LSERR_ROW_TOKEN_NOT_FOUND

Reserved for future use.

 LSERR_NAME_TOKEN_NOT_FOUND

Reserved for future use.

 LSERR_STOC_NO_CONTINUOUS_SPAR_FOUND

No continously distributed random parameters are found.

 LSERR_STOC_ROW_ALREADY_IN_CC

One or more rows already belong to another chance constraint.

 LSERR_STOC_CC_NOT_LOADED

No chance-constraints were loaded.

 LSERR_STOC_CUT_LIMIT

Cut limit has been reached.

 LSERR_MIP_PRE_RELAX_ILLEGAL_PROBLEM

Reserved for future use.

 LSERR_MIP_PRE_RELAX_NO_FEASIBLE_SOL

Reserved for future use.

 LSERR_SPRINT_MISSING_TAG_ROWS

Reserved for future use.

 LSERR_SPRINT_MISSING_TAG_COLS

Reserved for future use.

 LSERR_SPRINT_MISSING_TAG_RHS

Reserved for future use.

 LSERR_SPRINT_MISSING_TAG_ENDATA

Reserved for future use.

 LSERR_SPRINT_MISSING_VALUE_ROW

Reserved for future use

 LSERR_SPRINT_EXTRA_VALUE_ROW

Reserved for future use.

 LSERR_SPRINT_MISSING_VALUE_COL

Reserved for future use.

 LSERR_SPRINT_EXTRA_VALUE_COL

Reserved for future use.

 LSERR_SPRINT_MISSING_VALUE_RHS

Reserved for future use

 LSERR_SPRINT_EXTRA_VALUE_RHS

Reserved for future use.

 LSERR_SPRINT_MISSING_VALUE_BOUND

Reserved for future use.

 LSERR_SPRINT_EXTRA_VALUE_BOUND

Reserved for future use.

634 APPENDIX A

 LSERR_SPRINT_INTEGER_VARS_IN_MPS

Reserved for future use.

 LSERR_SPRINT_BINARY_VARS_IN_MPS

Reserved for future use.

 LSERR_SPRINT_SEMI_CONT_VARS_IN_MPS

Reserved for future use.

 LSERR_SPRINT_UNKNOWN_TAG_BOUNDS

Reserved for future use.

 LSERR_SPRINT_MULTIPLE_OBJ_ROWS

Reserved for future use.

 LSERR_SPRINT_COULD_NOT_SOLVE_SUBPROBLEM

Reserved for future use.

 LSERR_COULD_NOT_WRITE_TO_FILE

Reserved for future use.

 LSERR_COULD_NOT_READ_FROM_FILE

Reserved for future use.

 LSERR_READING_PAST_EOF

Reserved for future use.

 LSERR_NOT_LSQ_MODEL

The given model is not a least squares formulation.

 LSERR_INCOMPATBLE_DECOMPOSITION

 Specified decomposition type is not compatible with the structure of the model.

 LSERR_STOC_GA_NOT_INIT

GA object has not been initialized yet.

 LSERR_STOC_ROWS_NOT_LOADED_IN_CC

 There exists stochastic rows not loaded to any chance constraints yet.

 LSERR_SAMP_ALREADY_SOURCE

Specified sample is already assigned as the source for the target sample.

 LSERR_SAMP_USERFUNC_NOT_SET

 No user-defined distribution function has been set for the specified sample.

 LSERR_SAMP_INVALID_CALL

 Specified sample does not support the function call or it is incompatible with the argument

list.

 LSERR_NO_MULTITHREAD_SUPPORT

Parallel threads are not supported for the specified feature.

 LSERR_INVALID_PARAMID

Specified parameter is invalid.

 LSERR_INVALID_NTHREADS

Specified value is not valid for number of parallel threads.

ERROR CODES 635

 LSERR_COL_LIMIT

The BNP solver has reached the column-generation limit before

solving to optimality.

 LSERR_QCDATA_NOT_LOADED

Quadratic data has not been loaded yet.

 LSERR_NO_QCDATA_IN_ROW

 Specified row does not have any quadratic terms.

 LSERR_CLOCK_SETBACK

 Clock setback was detected

 LSERR_LDL_FACTORIZATION

 Error in LDLt factorization

 LSERR_LDL_EMPTY_COL

 Empty column detected in LDLt factorization

 LSERR_LDL_BAD_MATRIX_DATA

 Matrix data is invalid or has bad input in LDLt factorization

 LSERR_LDL_INVALID_DIM

 Invalid matrix or vector dimension

 LSERR_LDL_EMPTY_MATRIX

 Matrix or vector is empty

 LSERR_LDL_MATRIX_NOTSYM

 Matrix is not symmetric

 LSERR_LDL_ZERO_DIAG

Matrix has zero diagonal

 LSERR_LDL_INVALID_PERM

 Invalid permutation

 LSERR_LDL_DUPELEM

 Duplicate elements detected in LDLt factorization

 LSERR_LDL_RANK

 Detected rank deficiency in LDLt factorization

 LSERR_ZLIB_LOAD

Reserved for future use.

 LSERR_STOC_INVALID_INPUT

Specified stochastic input is invalid.

ERROR CODES 636

Appendix B:

MPS File Format
This appendix describes the file format that can be read with LSreadMPSFile(), or written with

LSwriteMPSFile(). The MPS format for describing an LP or a quadratic program is a format

commonly used in industry. It is a text file format, so one of the reasons for using it is to move an

LP/IP model from one machine to another machine of a different type or manufacturer. It is not a very

compact format (i.e., MPS format files tend to be large and wasteful of space).

Every MPS file has at least the two sections:

ROWS (List the row names and their type: L, E, G, or N)

COLUMNS (List by column, nonzero elements in objective and constraints)

The optional sections in an MPS file are :

 RHS (Specify nonzero right hand sides for constraints.)

BOUNDS (Specify bounds on variables.)

RANGES (Specify the bounds on a RHS.)

QMATRIX (Specify a quadratic portion of a row or the objective function)

QSECTION (Synonym for QMATRIX)

 CSECTION (Specify second-order cone constraints)

Any line with an asterisk (*) in the first position is treated as a comment line and is disregarded.

LINDO API understands the most commonly used features of the MPS format subject to:

1. Leading blanks in variable and row names are disregarded. All other characters, including

embedded blanks, are allowed.

2. Only one free row (type N row) is retained from the ROWS section after input is complete,

specifically the one selected as the objective.

3. Only one BOUNDS set is recognized in the BOUNDS section. Recognized bound types are:

UP (upper bound)

LO (lower bound)

FR (free variable)

FX (fixed variable)

BV (bivalent variable, i.e., 0/1 variables)

UI (upper-bounded integer variable)

LI (lower-bounded integer variable)

SC (semi-continuous variable)

4. Only one RANGES set is recognized in the RANGES section.

6. MODIFY sections are not recognized.

7. SCALE lines are accepted, but have no effect.

638 APPENDIX B

Even though embedded blanks are allowed in names in an MPS file, they are not recommended. For

example, even though “OK NAME” is an acceptable name for a row in an MPS file, it is not

recommended.

Similarly, lowercase names are accepted, but for consistency—also for ease of distinguishing between

1 (one) and l (L)—it is recommended that only uppercase names be used.

To illustrate an MPS format file, consider the following equation style model in LINGO format:

[PROFIT] MAX = 500*LEXUS + 1600*CAMARO + 4300* BEETLE +

1800*BMW;

[MIX] 12*LEXUS -4*BEETLE – 2*BMW >= 0;

[SPORT] CAMARO + BMW <= 2000;

[SMALL] BEETLE + BMW <= 1500;

[TOTAL] LEXUS + CAMARO + BEETLE + BMW <= 3000;

! This lower bound on the SMALL constraint can be represented

 by an entry in the RANGES section of an MPS file;

[SMALLR] BEETLE + BMW >= 1500-700;

! This upper bound on a variable can be represented by an

 entry in the BOUNDS section of an MPS file;

@BND(0, LEXUS, 250);

The equivalent MPS file looks like:

NAME CAFEMODL

ROWS

 N PROFIT

 G MIX

 L SPORT

 L SMALL

 L TOTAL

COLUMNS

 LEXUS PROFIT -500

 LEXUS MIX 12

 LEXUS TOTAL 1

 CAMARO PROFIT -1600

 CAMARO SPORT 1

 CAMARO TOTAL 1

 BEETLE PROFIT -4300

 BEETLE TOTAL 1

 BEETLE MIX -4

 BEETLE SMALL 1

 BMW PROFIT -1800

 BMW MIX -2

 BMW TOTAL 1

 BMW SMALL 1

 BMW SPORT 1

RHS

 RHS1 SPORT 2000

 RHS1 SMALL 1500

 RHS1 TOTAL 3000

RANGES

 ROWRNG1 SMALL 700

BOUNDS

 UP BND1 LEXUS 250

ENDATA

MPS FILE FORMAT 639

Notice that there are two major types of lines in an MPS file: (1) header lines such as ROWS,

COLUMNS, RHS, etc., and (2) data lines, which immediately follow each header line. The fields in a

data line are as follows:

Field Character Position Contents

1 2 to 3 Row type or bound type

2 5 to 12 Name of column, bound or range

3 15 to 23 Row name

4 25 to 37 Numerical value

5 40 to 47 Row name

6 50 to 62 Numerical value

Two features of an MPS file are worth noting at this point: (1) It is allowed to have several non-

constrained rows (i.e., type N) any one of which could be the objective and (2) There is nothing in the

file to indicate whether it is a MIN or a MAX problem. The default is that it is MIN, so in our

example, the signs have been reversed in the MPS file on the coefficients in the MAX objective.

Integer Variables

The standard way of designating integer variables in an MPS file is to place them between ‘INTORG’,

‘INTEND’ marker cards in the COLUMNS section. Integer variables may alternatively be designated

with either the BV, UI, or LI type in a BOUNDS section. Consider the following model in LINGO

equation style.

 ! Example: EXAMINT;

 [OBJ] MIN = 38*X1 + 42*X2 + 14*X3 + 28*X4;

 [NEED] 12*X1 + 14*X2 + 6*X3 + 12*X4 >= 78;

 @GIN(X1); @GIN(X2); @GIN(X3);

 @BND(0,X3,2);

 @BIN(X4);

An MPS file describing the above model is:

NAME EXAMINT

ROWS

 N OBJ

 G NEED

COLUMNS

 MYINTS1 'MARKER' 'INTORG'

 X1 OBJ 38

 X1 NEED 12

 X2 OBJ 42

 X2 NEED 14

 MYINTS1 'MARKER' 'INTEND'

 X3 OBJ 14

 X3 NEED 6

 X4 OBJ 28

 X4 NEED 12

RHS

640 APPENDIX B

 RHS1 NEED 78

BOUNDS

 UP BND1 X1 9999

 UP BND1 X2 9999

 UI BND1 X3 2

 BV BND1 X4

ENDATA

Some software systems assume an upper bound of 1.0 on any variable appearing in an INTORG,

INTEND section, so the safe approach is to always explicitly list the intended upper bound of an

integer variable in the BOUNDS section.

Semi-continuous Variables
A semi-continuous variable is one that is constrained to be either 0 or strictly positive over a range.

Such a semi-continuous variable is indicated by using the SC bound type in the BOUNDS section.

The following equation form model illustrates.

TITLE SEMICONT;

 [OBJ] MIN = - 20 * A - 38 * C - 44 * R;

 [ALINE] A + R <= 60;

 [CLINE] C + R <= 50;

 [LABOR] A + 2 * C + 3 * R <= 119;

 @GIN(C); @GIN(R);

 @BND(0, C, 45); @BND(0, R, 999);

! Additionally, we want either C = 0, or 35 <= C <= 45;

The above model does not enforce the semi-continuous feature on C. In the MPS format you can

easily enforce the feature by using the SC bound type in the BOUNDS section. See below.

NAME SEMICONT Illustrate semi-continuous variables

ROWS

 N OBJ

 L ALINE

 L CLINE

 L LABOR

COLUMNS

 A OBJ -20

 A LABOR 1

 A ALINE 1

 INT0000B 'MARKER' 'INTORG'

 C OBJ -38

 C LABOR 2

 C CLINE 1

 R OBJ -44

 R ALINE 1

 R LABOR 3

 R CLINE 1

 INT0000E 'MARKER' 'INTEND'

RHS

 RHS1 ALINE 60

 RHS1 CLINE 50

 RHS1 LABOR 119

BOUNDS

 SC BND1 C 45

MPS FILE FORMAT 641

 LO BND1 C 35

 UP BND1 R 999

* We must have either C = 0 or 35 <= C <= 45

* If the LO bound does not appear for an SC variable

* then it is assumed to be 1.

* Appearance of both SC and UP for a variable is an error.

ENDATA

SOS Sets
SOS(Special Ordered Sets) provide a compact way of specifying multiple choice type conditions. The

LINDO API recognizes three types of SOS sets. A set of variables defined to be in an SOS will be

constrained in the following ways.

 Type 1: At most one of the variables in the set will be allowed to be nonzero.

 Type 2: At most two variables in the set will be allowed to be nonzero. If two, they must be

adjacent.

 Type 3: At most one of the variables in the set will be nonzero. If one, its value must be 1.

Consider the following example.

[OBJ] MIN = -3*X1 -2*X2 -4*X3;

 [R2] X1 + X2 + X3 <= 5;

 [R3] X1 <= 2;

 [R4] X2 <= 2;

 [R5] X3 <= 2;

The following MPS file will cause X1, X2, and X3 to be in a type 1 SOS set.

NAME S3TEST

ROWS

 N OBJ

 L R2

 L R3

 L R4

 L R5

COLUMNS

 S1 JUNK 'MARKER' 'SOSORG'

 X1 OBJ -3

 X1 R2 1

 X1 R3 1

 X2 OBJ -2

 X2 R2 1

 X2 R4 1

 X3 OBJ -4

 X3 R2 1

 X3 R5 1

 S1 JUNK 'MARKER' 'SOSEND'

RHS

 RHS1 R2 5

 RHS1 R3 2

 RHS1 R4 2

 RHS1 R5 2

ENDATA

642 APPENDIX B

The optimal solution will be X1 = X2 = 0, X3 = 2.

If you change the S1 to S2 in the MPS file, then the optimal solution will be X1 = 0, X2 = X3 = 2.

If you change the S1 to blanks, e.g., the start marker line is simply:

JUNK 'MARKER' 'SOSORG'

then X1, X2, and X3 will be interpreted as a type 3 SOS set and the optimal solution will be:

The optimal solution will be X1 = X2 = 0, X3 = 1.

SOS2 Example

An SOS2 set is an ordered set of variables which are required to satisfy the conditions: a) at most two

variables in the set may be nonzero, and b) if two, then they must be adjacent. This feature is useful

for modeling piecewise linear continuous curves. The following example illustrates.

! Cost of production is a piecewise linear, continuous

function of 4 segments given by the 5 points:

 cost: 0 1500 15500 41500 77500

 volume: 0 100 1100 3100 6100.

We have 3 customers who are willing to buy

at a given price/unit up to a maximum.

Maximize revenues minus cost of production;

 Max = 20*SELL1 + 14*SELL2 + 13*SELL3 - COST;

! How much each customer will buy;

 @BND(0,SELL1,300); @BND(0,SELL2,900); @BND(0,SELL3,2000);

! Wj =weight given to each point on cost curve;

 W0 + W0100 + W1100 + W3100 + W6100= 1;

 100*W0100 + 1100*W1100 + 3100*W3100 + 6100*W6100= VOL;

 1500*W0100 +15500*W1100 +41500*W3100 +77500*W6100= COST;

! If we sell it, we have to make it;

 SELL1 + SELL2 + SELL3 = VOL;

! Additionally, we need the SOS2 condition that at most

 2 W's are > 0, and they must be adjacent;

! Soln: Obj=1900, W3100=0.9666667, W6100= 0.0333333, VOL=

3200;

The above model does not enforce the SOS2 feature on W0,…,W6100. An MPS file for this model

that enforces the SOS2 condition is:

NAME SOS3EXAM Illustrate use of SOS2 set

ROWS

 N OBJ

 E CNVX

 E CVOL

 E CCST

 E BALN

COLUMNS

 SELL1 OBJ -20

 SELL1 BALN 1

 SELL2 OBJ -14

 SELL2 BALN 1

 SELL3 OBJ -13

 SELL3 BALN 1

MPS FILE FORMAT 643

 COST OBJ 1

 COST CCST -1

 S2 SET2 'MARKER' 'SOSORG'

 W0 CNVX 1

 W0100 CNVX 1

 W0100 CCST 1500

 W0100 CVOL 100

 W1100 CNVX 1

 W1100 CVOL 1100

 W1100 CCST 15500

 W3100 CNVX 1

 W3100 CVOL 3100

 W3100 CCST 41500

 W6100 CNVX 1

 W6100 CVOL 6100

 W6100 CCST 77500

 S2 SET2 'MARKER' 'SOSEND'

 VOL CVOL -1

 VOL BALN -1

RHS

 RHS1 CNVX 1

BOUNDS

 UP BND1 SELL1 300

 UP BND1 SELL2 900

 UP BND1 SELL3 2000

ENDATA

Quadratic Objective

A quadratic objective function may be input via the MPS format by entering the coefficients of the

quadratic function. Consider the following equation form model.

[VAR] MIN=

 X1*X1 * 0.01080754 + X1*X2 * 0.01240721 + X1*X3 * 0.01307513

 + X2*X1 * 0.01240721 + X2*X2 * 0.0583917 + X2*X3 * 0.05542639

 + X3*X1 * 0.01307513 + X3*X2 * 0.05542639 + X3*X3 * 0.09422681 ;

 [BUDGET] X1 + X2 + X3 = 1 ;

 [RETURN] 1.0890833 * X1 + 1.213667 * X2 + 1.234583 * X3 >=

1.15 ;

A quadratic objective can be described in an MPS file by a QMATRIX section as shown below. The

second field VAR in QMATRIX header must correspond to the objective function name listed in the

ROWS section.

644 APPENDIX B

 NAME PORTQP Markowitz's portfolio problem

* [VAR] MIN=

* X1*X1 * 0.01080754 + X1*X2 * 0.01240721 + X1*X3 * 0.01307513

* + X2*X1 * 0.01240721 + X2*X2 * 0.0583917 + X2*X3 * 0.05542639

* + X3*X1 * 0.01307513 + X3*X2 * 0.05542639 + X3*X3 * 0.09422681 ;

* [BUDGET] X1 + X2 + X3 = 1 ;

* [RETURN] 1.0890833 * X1 + 1.213667 * X2 + 1.234583 * X3 >= 1.15 ;

*

* Input to QP optimizers assume quadratic has been divided by 2.0,

* so when first derivatives are taken the 2's cancel.

ROWS

 N VAR

 E BUDGET

 G RETURN

COLUMNS

 X1 BUDGET 1

 X1 RETURN 1.0890833

 X2 BUDGET 1

 X2 RETURN 1.213667

 X3 BUDGET 1

 X3 RETURN 1.234583

RHS

 rhs BUDGET 1

 rhs RETURN 1.15

QMATRIX VAR

 X1 X1 0.02161508

 X1 X2 0.02481442

 X1 X3 0.02615026

 X2 X1 0.02481442

 X2 X2 0.1167834

 X2 X3 0.11085278

 X3 X1 0.02615026

 X3 X2 0.11085278

 X3 X3 0.18845362

* The upper triangular is input.

ENDATA

Quadratic Constraints

A quadratic constraint may be input via the MPS format by entering the coefficients of the quadratic

function. Consider the following equation form model.

[RETURN] MAX

 = 1.0890833 * X1 + 1.213667 * X2 + 1.234583 * X3 ;

 [VAR]

 X1*X1 * 0.01080754 + X1*X2 * 0.01240721 + X1*X3 * 0.01307513

 + X2*X1 * 0.01240721 + X2*X2 * 0.0583917 + X2*X3 * 0.05542639

 + X3*X1 * 0.01307513 + X3*X2 * 0.05542639 + X3*X3 * 0.09422681 <=

0.02241375 ;

 [BUDGET] X1 + X2 + X3 = 1 ;

A quadratic constraint is described in an MPS file by a QMATRIX section as shown below. The second

field VAR in QMATRIX header must be the associated constraint name listed in the ROWS section.

MPS FILE FORMAT 645

NAME PORTQPC

ROWS

 N RETURN

 L VAR

 E BUDGET

COLUMNS

 X1 RETURN -1.0890833

 X1 BUDGET 1

 X2 RETURN -1.213667

 X2 BUDGET 1

 X3 RETURN -1.234583

 X3 BUDGET 1

QMATRIX VAR

 X1 X1 0.02161508

 X1 X2 0.02481442

 X1 X3 0.02615026

 X2 X1 0.02481442

 X2 X2 0.1167834

 X2 X3 0.11085278

 X3 X1 0.02615026

 X3 X2 0.11085278

 X3 X3 0.18845362

RHS

 RHS1 BUDGET 1

 RHS1 VAR 0.02241375

ENDATA

The quadratic matrix must be symmetric. If the barrier solver is used, the quadratic matrix must be

positive semi-definite.

Second-Order Cone Constraints

The LINDO API supports two types of second-order cone constraints: a) simple quadratic cones,

denoted by QUAD, and b) rotated quadratic cones, denoted by RQUAD. A simple quadratic cone

constraint is of the form:

-x0
2
 + x1

2
 + x2

2
 +… + xn

2
  0;

x0  0;

A rotated quadratic cone constraint is of the form:

-2x0 x1 + x2
2
 + x3

2
 +… + xn

2
  0;

x0, x1 0;

Consider the following example of a simple cone constraint in equation form.

[OBJ] MIN = -4*X1 - 5*X2 - 6*X3;

[CAP] 8*X1 + 11*X2 + 14*X3 + 1.645*SD <= 34.8;

[S1] SD1 - 2*X1 = 0;

[S2] SD2 - 3*X2 = 0;

[S3] SD3 - 4.1*X3 = 0;

[CONE1] SD1^2 + SD2^2 + SD3^2 - SD^2 <= 0;

 @BND(0,X1,1); @BND(0,X2,1); @BND(0,X3,1);

646 APPENDIX B

The MPS file describing this model is:

NAME CONE2EX1 Model with a single QUADratic cone

ROWS

 N OBJ

 L CAP

 E S1

 E S2

 E S3

COLUMNS

 X1 OBJ -4

 X1 CAP 8

 X1 S1 -2

 X2 OBJ -5

 X2 CAP 11

 X2 S2 -3

 X3 OBJ -6

 X3 CAP 14

 X3 S3 -4.1

 SD CAP 1.645

 SD1 S1 1

 SD2 S2 1

 SD3 S3 1

RHS

 RHS1 CAP 34.8

BOUNDS

 UP BND1 X1 1

 UP BND1 X2 1

 UP BND1 X3 1

CSECTION CONE1 0.0 QUAD

 SD

 SD1

 SD2

 SD3

ENDATA

We illustrate a rotated quadratic cone constraint with the following model in equation form:

[OBJ] MIN = 2*HGT + 1.5*WID

 - 5*RADIUS1 - 4*RADIUS2 - 3.5*RADIUS3;

[TPI1] R1 - 1.77245385*RADIUS1 = 0;

[TPI2] R2 - 1.77245385*RADIUS2 = 0;

[TPI3] R3 - 1.77245385*RADIUS3 = 0;

[WGT1] 3.5*RADIUS1 + 3*RADIUS2 + 2.5*RADIUS3 <= 6;

[WGT2] 4*RADIUS1 + 6*RADIUS2 + 5*RADIUS3 <= 11;

[CONE2] R1^2 + R2^2 + R3^2 - 2*HGT*WID <= 0;

MPS FILE FORMAT 647

The corresponding MPS file is:

NAME CONE2EX2 Rotated cone example

ROWS

 N OBJ

 E TPI1

 E TPI2

 E TPI3

 L WGT1

 L WGT2

COLUMNS

 HGT OBJ 2

 WID OBJ 1.5

 RADIUS1 OBJ -5

 RADIUS1 TPI1 -1.77245385

 RADIUS1 WGT1 3.5

 RADIUS1 WGT2 4

 RADIUS2 OBJ -4

 RADIUS2 TPI2 -1.77245385

 RADIUS2 WGT1 3

 RADIUS2 WGT2 6

 RADIUS3 OBJ -3.5

 RADIUS3 TPI3 -1.77245385

 RADIUS3 WGT1 2.5

 RADIUS3 WGT2 5

 R1 TPI1 1

 R2 TPI2 1

 R3 TPI3 1

RHS

 RHS1 WGT1 6

 RHS1 WGT2 11

CSECTION CONE2 0.0 RQUAD

 HGT

 WID

 R1

 R2

 R3

ENDATA

648 APPENDIX B

A cone constraint need not be defined in the ROWS section. There are some restrictions on the usage

of cone constraints: a) If there are any cone constraints, then there cannot be any quadratic terms, i.e.,

if a CSECTION appears in a model, then there can be no QMATRIX or QSECTION sections, b) a

variable can appear in at most one CSECTION. However, these limitations need not be tight provided

that correct formulation is used. For instance, general convex quadratically constrained models can be

easily cast as conic models by simple change of variables. Similarly, by using auxiliary variables,

arbitrary conic constraints can be formulated with where any variable appears in at most one

CSECTION.

Ambiguities in MPS Files

An MPS file is allowed to specify a constant in the objective. Some solvers will disregard this

constant. LINDO API does not. This may cause other solvers to display a different optimal objective

function value than that found by LINDO API.

If a variable is declared integer in an MPS file but the file contains no specification for the bounds of

the variable, LINDO API assumes the lower bound is 0 and the upper bound is infinity. Other solvers

may in this case assume the upper bound is 1.0. This may cause other solvers to obtain a different

optimal solution than that found by LINDO API.

Appendix C:

LINDO File Format
The MPS file format is a column-oriented format. If a row-oriented format is more convenient, then

the LINDO file format is of interest. This section details the syntax required in a model imported from

a text file with LSreadLINDOFile(). The list of rules is rather short and easy to learn.

Flow of Control
The objective function must always be at the start of the model and is initiated with any of the

following keywords:

MAX MIN

MAXIMIZE MINIMIZE

MAXIMISE MINIMISE

The end of the objective function and the beginning of the constraints are signified with any of the

following keywords:

SUBJECT TO

SUCH THAT

S.T.

ST

The end of the constraints is signified with the word END.

Formatting
Variable names are limited to eight characters. Names must begin with an alphabetic character (A to

Z), which may then be followed by up to seven additional characters. These additional characters may

include anything with the exception of the following: !) + - = < >. As an example, the following

names are valid:

XYZ MY_VAR A12 SHIP.LA

whereas the following are not:

THISONEISTOOLONG A-HYPHEN 1INFRONT

The first example contains more than eight characters, the second contains a forbidden hyphen, and the

last example does not begin with an alphabetic character.

You may, optionally, name constraints in a model. Constraint names must follow the same

conventions as variable names. To name a constraint, you must start the constraint with its name

terminated with a right parenthesis. After the right parenthesis, you enter the constraint as before. As

an example, the following constraint is given the name XBOUND:

XBOUND) X < 10

650 APPENDIX C

Only five operators are recognized: plus (+), minus (-), greater than (>), less than (<), and equals (=).

When you enter the strict inequality operators greater than (>) and less than (<), they will be

interpreted as the loose inequality operators greater-than-or-equal-to () and less-than-or-equal-to (),

respectively. This is because many keyboards do not have the loose inequality operators. Even for

systems having the loose operators, they will not be recognized. However, if you prefer, you may enter

“>=” (and “<=”) in place of “>” (and “<”).

Parentheses as indicators of a preferred order of precedence are not accepted. All operations are

ordered from left to right.

Comments may be placed anywhere in a model. A comment is denoted by an exclamation mark.

Anything following an exclamation mark on the current line will be considered a comment. For

example:

MAX 10 STD + 15 DLX ! Max profit

SUBJECT TO

! Here are our factory capacity constraints

! for Standard and Deluxe computers

 STD < 10

 DLX < 12

! Here is the constraint on labor availability

 STD + 2 DLX < 16

END

LSreadLINDOFile() allows you to input comments, but they will not be stored with the model. The

call to LSreadLINDOFile() does not store these comment. Therefore, if LSwriteLINDOFile() is called

later, an equivalent model will be written, but the comments will be removed.

Constraints and the objective function may be split over multiple lines or combined on single lines.

You may split a line anywhere except in the middle of a variable name or a coefficient. The following

would be mathematically equivalent to our example (although not quite as easy to read):

MAX

 10

 STD + 15 DLX SUBJECT TO

STD

<

10

dlx < 12 STD + 2

dlx < 16 end

However, if the objective function appeared as follows:

MAX 10 ST

D + 1

5 DLX

SUBJECT TO

then LSreadLINDOFile() would return an error because the variable STD is split between lines and the

coefficient 15 is also.

Only constant values—not variables—are permitted on the right-hand side of a constraint equation.

Thus, an entry such as:

X > Y

LINDO FILE FORMAT 651

would be rejected. Such an entry could be written as:

X - Y > 0

Conversely, only variables and their coefficients are permitted on the left-hand side of constraints. For

instance, the constraint:

3X + 4Y - 10 = 0

is not permitted because of the constant term of -10 on the left-hand side. The constraint may be recast

as:

3X + 4Y = 10

By default, all variables have lower bounds of zero and upper bounds of infinity.

Note: There is a "1024 characters per line" limit for LINDO formatted files. Expressions with more

characters should be split with a newline char '\n'. Also note, LINDO API never checks if this

limit is exceeded or not. The behavior of the parser is undetermined when the limit is

exceeded.

Optional Modeling Statements
In addition to the three required model components of an objective function, variables, and constraints,

a number of other optional modeling statements may appear in a model following the END statement.

These statements and their functions appear in the table below:

Model Statement Function

FREE <Variable> Removes all bounds on <Variable>, allowing <Variable> to

take on any real value, positive or negative.

GIN <Variable> Makes <Variable> a general integer (i.e., restricts it to the

set of nonnegative integers).

INT <Variable> Makes <Variable> binary (i.e., restricts it to be either 0 or

1).

SLB <Variable> <Value> Places a simple lower bound on <Variable> of <Value>.

Use in place of constraints of form X = r.

SUB <Variable> <Value> Places a simple upper bound on <Variable> of <Value>.

Use in place of constraints of form X = r.

TITLE <Title> Makes <Title> the title of the model.

Next, we will briefly illustrate the use of each of these statements.

652 APPENDIX C

FREE Statement
The default lower bound for a variable is 0. In other words, unless you specify otherwise, variables are

not allowed to be negative. The FREE statement allows you to remove all bounds on a variable, so it

may take on any real value, positive or negative.

The following small example illustrates the use of the FREE statement:

MIN 5X + Y

ST

 X+Y>5

 X-Y>7

END

FREE Y

Had we not set Y to be a free variable in this example, the optimal solution of X = 6 and Y = -1 would

not have been found. Instead, given the default lower bound of 0 on Y, the solution X = 7 and Y = 0

would be returned.

GIN Statement
By default, all variables are assumed to be continuous. In other words, unless told otherwise, variables

are assumed to be any nonnegative fractional number. In many applications, fractional values may be

of little use (e.g., 2.5 employees). In these instances, you will want to make use of the general integer

statement, GIN. The GIN statement followed by a variable name restricts the value of the variable to

the nonnegative integers (0,1,2,…).

The following small example illustrates the use of the GIN statement:

MAX 11X + 10Y

ST

2X + Y < 12

X - 3Y > 1

END

GIN X

GIN Y

Had we not specified X and Y to be general integers in this model, the optimal solution of X = 6 and

Y = 0 would not have been found. Instead, X and Y would have been treated as continuous and returned

the solution of X = 5.29 and Y = 1.43.

Note also that simply rounding the continuous solution to the nearest integer values does not yield the

optimal solution in this example. In general, rounded continuous solutions may be nonoptimal and, at

worst, infeasible. Based on this, one can imagine that it can be very time consuming to obtain the

optimal solution to a model with many integer variables. In general, this is true, and you are best off

utilizing the GIN feature only when absolutely necessary.

INT Statement
Using the INT statement restricts a variable to being either 0 or 1. These variables are often referred to

as binary variables. In many applications, binary variables can be very useful in modeling all-or-

nothing situations. Examples might include such things as taking on a fixed cost, building a new plant,

or buying a minimum level of some resource to receive a quantity discount.

LINDO FILE FORMAT 653

The following small example illustrates the use of the INT statement:

MAX -100X + 20A + 12B

ST

 A - 10X < 0

 A + B < 11

 B < 7

END

INT X !Make X 0/1

Had we not specified X to be binary in this example, a solution of X = .4, A = 4, and B = 7 for an

objective value of 124 would not have been returned. Forcing X to be binary, you might guess that the

optimal solution would be for X to be 0 because .4 is closer to 0 than it is to 1. If we round X to 0 and

optimize for A and B, we get an objective of 84. In reality, a considerably better solution is obtained at

X = 1, A = 10, and B = 1 for an objective of 112.

In general, rounded continuous solutions may be nonoptimal and, at worst, infeasible. Based on this,

one can imagine that it can be very time consuming to obtain the optimal solution to a model with

many binary variables. In general, this is true and you are best off utilizing the INT feature only when

absolutely necessary.

SUB and SLB Statements
If you do not specify otherwise, LINDO API assumes variables are continuous (bounded below by

zero and unbounded from above). That is, variables can be any positive fractional number increasing

indefinitely. In many applications, this assumption may not be realistic. Suppose your facilities limit

the quantity produced of an item. In this case, the variable that represents the quantity produced is

bounded from above. Or, suppose you want to allow for backordering in a system. An easy way to

model this is to allow an inventory variable to go negative. In which case, you would like to

circumvent the default lower bound of zero. The SUB and SLB statements are used to alter the bounds

on a variable. SLB stands for Simple Lower Bound and is used to set lower bounds. Similarly, SUB

stands for Simple Upper Bound and is used to set upper bounds.

The following small example illustrates the use of the SUB and SLB:

MAX 20X + 30Y

ST

 X + 2Y < 120

END

SLB X 20

SUB X 50

SLB Y 40

SUB Y 70

In this example, we could have just as easily used constraints to represent the bounds. Specifically, we

could have entered our small model as follows:

max 20x + 30y

st

 x + 2y < 120

 x > 20

 x < 50

 y > 40

 y < 70

end

654 APPENDIX C

This formulation would yield the same results, but there are two points to keep in mind. First, SUBs

and SLBs are handled implicitly by the solver, and, therefore, are more efficient from a performance

point of view than constraints. Secondly, SUBs and SLBs do not count against the constraint limit,

allowing you to solve larger models within that limit.

TITLE Statement
This statement is used to associate a title with a model. The title may be any alphanumeric string of up

to 74 characters in length. Unlike all the other statements that must appear after the END statement,

the TITLE statement may appear before the objective or after the END statement of a model.

Here is an example of a small model with a title:

TITLE Your Title Here

MAX 20X + 30Y

ST

 X < 50

 Y < 60

 X + 2Y < 120

END

Appendix D:

MPI File Format
The MPI (math program instructions) file format is a low level format for describing arbitrary

nonlinear mathematical models. Expression of all relationships (linear or nonlinear) follows the same

rules of instruction-list style interface described in Chapter 7, Solving Nonlinear Programs. The

following example illustrates this:

* minimize= 2 * x0 + x1

* s.t. -16 * x0 * x1 + 1 <= 0

* - 4 * x0^2 - 4 * x1^2 + 1 <= 0

* 0 <= x0 <= 1

* 0 <= x1 <= 1

BEGINMODEL LSNLP1

VARIABLES

 X0 0.5 0.0 1.0 C

 X1 0.5 0.0 1.0 C

OBJECTIVES

 LSNLP1 LS_MIN

 EP_PUSH_NUM 2.0

 EP_PUSH_VAR X0

 EP_MULTIPLY

 EP_PUSH_VAR X1

 EP_PLUS

CONSTRAINTS

 R001 L

 EP_PUSH_NUM -16.0

 EP_PUSH_VAR X0

 EP_MULTIPLY

 EP_PUSH_VAR X1

 EP_MULTIPLY

 EP_PUSH_NUM 1.0

 EP_PLUS

 R002 L

 EP_PUSH_NUM -4.0

 EP_PUSH_VAR X0

 EP_PUSH_NUM 2.0

 EP_POWER

 EP_MULTIPLY

 EP_PUSH_NUM -4.0

 EP_PUSH_VAR X1

 EP_PUSH_NUM 2.0

 EP_POWER

 EP_MULTIPLY

 EP_PLUS

 EP_PUSH_NUM 1.0

 EP_PLUS

ENDMODEL

656 APPENDIX D

Observe that an MPI file has the following structure:

1. Comment lines start with an “*” (asterisk),

2. There is a VARIABLES section that lists one line for each variable:

3. Its name, lower bound, an initial value, its upper bound, and its type, C(ontinuous), B(inary),

I(nteger) or S(emi-continuous). A variable name must start with one of A-Z. Remaining characters

must be one of A-Z, 0-9. Case does not matter (e.g., X1 is the same as x1). Names may have up to 255

characters.

4. There is an OBJECTIVES section that lists the name for the objective row and its type, LS_MIN

or LS_MAX. This section also lists the instructions to compute the objective in postfix or Reverse

Polish notation.

5. There is a CONSTRAINTS section that lists the name of each constraint and its type, L, G, E, or

N for less-than-or-equal-to, greater-than-or-equal-to, equal-to, or not-constrained, respectively. This

section also lists the instructions to compute the constraint in postfix or reverse Polish notation. Name

conventions for constraints and objectives are the same as for variable names.

The instructions specify the operations to be performed on a LIFO(Last In First Out) stack of numbers.

The instructions are of three main types:

6. Put(PUSH) a number on to the top of the stack,

7. Put(PUSH) the current value of a variable on to the top of the stack,

8. Perform some arithmetic operation on the top k elements of the stack and replace these k numbers

with the result.

Refer to Chapter 7, Solving Nonlinear Programs, for more information on supported operators and

functions.

Appendix E:

SMPS File Format
The SMPS (stochastic mathematical programming standard) file format is an extension of the MPS

format, described in Appendix B, for representing multistage stochastic linear programs. This format

requires three files to completely define a stochastic multistage model.

CORE File
This is a standard MPS file to specify the deterministic version of the model, which is also called the

base model. This file serves as the blueprint of the underlying model’s nonzero structure when

imposing stage information and stochasticity. This file generally has the extension ‘.mps’. Refer to

Appendix B for details on MPS format.

TIME File
This file specifies the stage of each variable and constraint in the base model. The format of this file is

similar to the MPS file where the information is provided in sections.

 TIME Specifies the name of the problem.

 PERIODS Specifies the stages in ascending order.

 ROWS Specifies the time stages of constraints.

 COLUMNS Specifies the time stages of variables.

 ENDATA Marks the end of staging data.

We call the base model (core-file), to be in temporal order if the variables and constraints are ordered

with respect to their stage indices. Depending on whether the base model is in temporal order, time file

can provide stage information implicitly or explicitly. The time-file usually has the extension ‘.time’.

658 APPENDIX E

Explicit
If the core model is not in temporal order, the stage information should be given in an extended format.

In PERIODS section, stage names should be given in ascending order of their indices. The keyword

EXPLICIT is required in the second field of the PERIOD header. The stage information for variables

and constraints are given in COLUMNS and ROWS sections, respectively. The following is the time-

file associated with the Newsvendor model’s in Chapter 8.

*0000000011111111112222222222333333333344444444445555555555

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789

TIME NEWSVENDOR

PERIODS EXPLICIT

 TIME1

 TIME2

 TIME3

COLUMNS

 X TIME1

 I TIME2

 L TIME2

 S TIME2

 Y TIME3

 E TIME3

 Z TIME3

ROWS

 ROW1 TIME1

 ROW2 TIME2

 ROW3 TIME2

 ROW4 TIME2

 ROW5 TIME3

 PROFIT TIME3

ENDATA

Implicit
If the core model is in temporal order, then the stage information can be given in a compact way by

simply specifying the first variable and constraint in each stage, where stage names are specified in

ascending order of their indices. Optionally, the keyword IMPLICIT can be placed in the second field

of the PERIOD header. The following is the time file associated with the Newsvendor model’s in

Chapter 8.

*0000000011111111112222222222333333333344444444445555555555

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789

TIME NEWSVENDOR

PERIODS IMPLICIT

 X ROW1 TIME1

 I ROW2 TIME2

 Y ROW5 TIME3

SMPS File Format 659

STOCH File
This file identifies the stochastic elements in the base model, represented with the core-file, and the

characteristics of their randomness (e.g. distribution type, distribution parameters, etc.). The format of

this file is similar to the MPS file where the information is provided in sections.

 STOCH Specifies the name of the problem.

 INDEP Specifies the stage and univariate distribution of each independent random

parameter.

 BLOCK Specifies the stage and joint distribution of random parameters.

 SCENARIOS Specifies an explicit scenario by identifying its parent scenario, how and

when it differs from its parent and the stage at which it branched from its parent.

 CHANCE Specifies the chance-constraints

 ENDATA Marks the end of stochastic data.

Independent Distributions:
Independent distribution are identified with INDEP section, with the second field in the header being a

keyword representing the distribution type, which can either be a parametric or a finite discrete

distribution.

In the parametric case, such as the Normal distribution, the second field in INDEP header has to have

the keyword NORMAL. Inside the INDEP section, the distribution of the parameters is represented as

follows:

*0000000011111111112222222222333333333344444444445555555555

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789

STOCH NEWSVENDOR2

INDEP NORMAL

*

 RHS1 ROW2 45.00000 TIME2 10

*

 Y PROFIT -3.00000 TIME3 2

ENDATA

660 APPENDIX E

In this example, the right-hand-side value in constraint [ROW2] takes a random value which is

normally distributed with parameters μ=45, and σ=10. Similarly, variable [Y] in constraint [PROFIT]

takes a random value which is normally distributed with parameters μ=-3, and σ=2.

In the finite discrete case, the second field of INDEP header should have the keyword DISCRETE.

Inside the INDEP section, outcomes of each random parameter should be listed explicitly, where the

sum of outcome probabilities should sum up to 1.0.

*0000000011111111112222222222333333333344444444445555555555

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789

STOCH NEWSVENDOR2

INDEP DISCRETE

*

 RHS1 ROW2 90.00000 TIME2 0.4

 RHS1 ROW2 60.00000 TIME2 0.3

 RHS1 ROW2 30.00000 TIME2 0.3

*

 Y PROFIT 9.00000 TIME3 0.3

 Y PROFIT -15.00000 TIME3 0.7

ENDATA

SMPS File Format 661

In this example, the right-hand-side value in constraint [ROW2] takes a random value from {90,60,30}

with probabilities {0.4,0.3,0.3}. Similarly, variable [Y] in constraint [PROFIT] takes a random value

from {9,-15} with probabilities {0.3,0.7}.

Joint Distributions with Intrastage Dependence:
Dependent distributions are identified with BLOCK sections, where each block corresponds to a vector

of random parameters taking specified values jointly with a specified probabilitiy. The dependence is

implicit in the sense of joint distributions. The subsection BL within each BLOCK section marks each

event (with its probability) listing the outcomes for a vector of random parameters.

*0000000011111111112222222222333333333344444444445555555555

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789

STOCH NEWSVENDOR

BLOCKS DISCRETE

 BL BLK0 TIME2 0.1200000000

 RHS1 ROW2 90.000000000

 Y PROFIT 9.0000000000

 BL BLK0 TIME2 0.2800000000

 RHS1 ROW2 90.000000000

 Y PROFIT -15.00000000

 BL BLK0 TIME2 0.1500000000

 RHS1 ROW2 60.000000000

 Y PROFIT 9.0000000000

 BL BLK0 TIME2 0.1500000000

 RHS1 ROW2 60.000000000

 Y PROFIT -15.00000000

 BL BLK0 TIME2 0.2700000000

 RHS1 ROW2 30.000000000

 Y PROFIT 9.0000000000

 BL BLK0 TIME2 0.0300000000

 RHS1 ROW2 30.000000000

 Y PROFIT -15.00000000

ENDATA

In this example, the block called BLK0 lists the outcomes of the right-hand-side of constraints

[ROW2] and [PROFIT]. Possible values are { (90,9), (90,-15), (60,9), (60,-15), (30,9), (30,-15)}

with probabilities {0.12,0.28,0.15,0.15,0.27,0.03}.

Scenarios - Joint Distributions with Interstage Dependence:
For models where discrete random parameters that belong to different stages are dependent, it is not

possible to use the BLOCK structure to specify joint outcomes. This is because BLOCK structure

requires the dependent random parameters to belong to the same stage. In such cases, it is required to

input the stochastic data by specifying all scenarios explicitly with SCENARIOS section. For discrete

distributions, this is the most general form for inputting a multistage SP because SCENARIOS section

casts the entire scenario tree, irrespective of the type of dependence among randoms.

662 APPENDIX E

It could be a tedious task to enumerate all scenarios, therefore it is necessary to use a programming

language or a script to generate scenarios programmatically writing them to a file in SCENARIOS

format.

In a scenario tree, like the one given in Chapter 8, a scenario corresponds to a path from the root of the

tree to one of the leaves. For each scenario, there is a one-to-one correspondence between each node

on the path and a stage. One could think of a node as the point in time where decisions that belong to a

stage are taken following the random outcomes that occur in that stage. The branches that emanate

from a node represents the events associated with the next stage. Consequently, the set of all paths that

branch from a node in a stage represents the future outcomes of all random parameters beyond that

stage, namely the future as seen with respect to that node.

Given two scenarios A and B where they share the same path from the root up to (and including) stage

t, we call

 The stage t+1 to be the “branching stage” of scenario B from A,

 The scenario A to be the parent of scenario B.

 The outcomes of all random parameters up to (and including) stage t to be the same for both

scenarios

The SCENARIOS section lists scenarios in a compact form, specifying how and when it differs from

its parent scenario. The SC keyword marks the beginning of a scenario, which is followed by the name

of the scenario, its parent’s name and its probability . The probability of the scenario is to be computed

by multiplying the conditional probabilities of all the nodes that resides on the path defining the

scenario. The conditional probability of a node is the probability that the end-node occurs given the

initial-node has occurred.

SMPS File Format 663

Consider the example from case 4 in the Newsvendor problem in Chapter 8, whose scenario tree is

given as

This scenario tree can be represented in the following format using SCENARIOS section.

*0000000011111111112222222222333333333344444444445555555555

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789

STOCH NEWSVENDOR

SCENARIOS DISCRETE

 SC SCEN01 ROOT 0.1200000000 TIME1

 RHS1 ROW2 90.000000000

 Y PROFIT 9.0000000000

 SC SCEN02 SCEN01 0.2800000000 TIME3

 Y PROFIT -15.00000000

 SC SCEN03 SCEN01 0.1500000000 TIME2

 RHS1 ROW2 60.000000000

 SC SCEN04 SCEN03 0.1500000000 TIME3

 Y PROFIT -15.00000000

 SC SCEN05 SCEN01 0.2700000000 TIME2

 RHS1 ROW2 30.000000000

 SC SCEN06 SCEN05 0.0300000000 TIME3

 Y PROFIT -15.00000000

ENDATA

664 APPENDIX E

In this example, the scenario tree is initiated by the base scenario called SCEN01, which lists inside its

SC block a particular realization of all random parameters, namely the right-hand-side values for

constraints [ROW2] and [PROFIT] to take values 90 and 9 respectively. The probability of the

scenario is given as 0.12 and branching stage to be TIME1 (stage index 0). The parent of the base

scenario is by default designated as the ROOT. This implies that this scenario has no parents and that it

is the first scenario in the tree. The second scenario is SCEN02 and its parent is SCEN01, which was

specified in the previous step. The scenario SCEN02 has a probability of 0.28 and branches of its

parent SCEN01 at stage TIME2 (stage index 1). Inside its SC block, it only gives the random

parameter and its value which makes SCEN02 different from SCEN1. This is the compact form

described earlier, i.e. specifying a scenario’s outcomes only by how and when it differs from its parent

scenario. Continuing in this fashion, we achieve the complete representation of the scenario tree.

Appendix F:

SMPI File Format
The SMPI (stochastic mathematical programming instructions) file format is an extension of the SMPS

format, described in Appendix E, for representing multistage stochastic programs using an instruction

list. While the SMPS format can only express linear and integer models, SMPI format can express all

types of models including quadratic and general nonlinear stochastic models.

At the heart of the SMPI format lies the MPI format, which

 represents the core model using general mathematical expressions, and

 allows all random parameters in the SP to be referred with symbolically with

EP_PUSH_SPAR macro.

The following illustrates a typical core-file for an SP model. Its only difference from a deterministic

MPI file is in the use of EP_PUSH_SPAR macro, which marks each stochastic parameter in the model

and allows them to be part of general mathematical expressions just like regular numeric constants or

decision variables.

BEGINMODEL newsboy_v5

! Number of Objective Functions: 1

! Number of Constraints : 6

! Number of Variables : 7

VARIABLES

!Name Lower Bound Initial Point Upper Bound

Type

X 0 1.2345678806304932 1e+030 C

I 0 1.2345678806304932 1e+030 C

L 0 1.2345678806304932 1e+030 C

S 0 1.2345678806304932 1e+030 C

Y 0 1.2345678806304932 1e+030 C

E 0 1.2345678806304932 1e+030 C

Z 0 1.2345678806304932 1e+030 C

OBJECTIVES

 OBJ00000 MAXIMIZE

 EP_PUSH_VAR Z

CONSTRAINTS

 ROW1 G

 EP_PUSH_VAR X

 EP_PUSH_NUM 1

 EP_MINUS

 ROW2 E

 EP_PUSH_VAR X

 EP_PUSH_VAR I

 EP_MINUS

 EP_PUSH_VAR L

 EP_PLUS

 EP_PUSH_SPAR D

666 APPENDIX F

 EP_MINUS

 ROW3 E

 EP_PUSH_VAR X

 EP_PUSH_VAR I

 EP_MINUS

 EP_PUSH_VAR S

 EP_MINUS

 EP_PUSH_NUM 0

 EP_MINUS

 ROW4 G

 EP_PUSH_VAR X

 EP_PUSH_VAR S

 EP_MINUS

 EP_PUSH_NUM 0

 EP_MINUS

 ROW5 E

 EP_PUSH_VAR Y

 EP_PUSH_VAR I

 EP_MINUS

 EP_PUSH_VAR E

 EP_PLUS

 EP_PUSH_NUM 0

 EP_MINUS

 PROFIT E

 EP_PUSH_NUM 60

 EP_PUSH_VAR S

 EP_MULTIPLY

 EP_PUSH_NUM 30

 EP_PUSH_VAR X

 EP_MULTIPLY

 EP_MINUS

 EP_PUSH_NUM 10

 EP_PUSH_VAR I

 EP_MULTIPLY

 EP_MINUS

 EP_PUSH_NUM 5

 EP_PUSH_VAR L

 EP_MULTIPLY

 EP_MINUS

 EP_PUSH_VAR Y

 EP_PUSH_SPAR R

 EP_MULTIPLY

 EP_PLUS

 EP_PUSH_NUM 10

 EP_PUSH_VAR E

 EP_MULTIPLY

 EP_MINUS

 EP_PUSH_VAR Z

 EP_MINUS

 EP_PUSH_NUM 0

 EP_MINUS

ENDMODEL

SMPI File Format 667

Like with SMPS format, the user has to define the time structure of the model with a TIME file. The

TIME file in SMPI format uses an additional section, identified with keyword SVARS or SPARS,

where time structure of random parameters are explicitly specified. The time structure of constraints

and variables should also be specified explicitly. Implicit specification is currently not supported in

SMPI format.

*0000000011111111112222222222333333333344444444445555555555

66

*>>4>678901<34>678901<34>6789012345<789>123456<89>1234567890<

TIME NEWSVENDOR

PERIODS EXPLICIT

 TIME1

 TIME2

 TIME3

COLUMNS

 X TIME1

 I TIME2

 L TIME2

 S TIME2

 Y TIME3

 E TIME3

 Z TIME3

ROWS

 ROW1 TIME1

 ROW2 TIME2

 ROW3 TIME2

 ROW4 TIME2

 ROW5 TIME3

 PROFIT TIME3

SPARS

 D TIME2 63

 R TIME3 9

ENDATA

Each random parameter that was referred in the Core-file should be listed in the TIME file along with

their stage memberships and optionally a default value as the third field.

Finally, the user needs a STOCH file to specify the stochastic information for the SP model. In SMPS

format, the random parameters was expressed by their location in the core model. In SMPI format,

each random parameter has a unique name (a.k.a. an internal index), which can be used to refer each

when specifying the information associated with it. Consequently, the STOCH file, whose format was

laid out when explaining the SMPS format, can suitably be extended to support the indices of random

parameters when expressing stochastic information using INDEP, BLOCK and SCENARIO sections.

The keyword INST is used in field 1 of the line identifying the random parameter about which

information is to be given.

A typical INDEP section in a STOCH file in SMPI format will be in the following

668 APPENDIX F

*0000000011111111112222222222333333333344444444445555555555

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789

STOCHI NEWSVENDOR

INDEP NORMAL

*

 INST D 45.00000 TIME2 10

*

 INST R -3.00000 TIME3 2

ENDATA

Similarly, the SCENARIOS section will be in the following form

*0000000011111111112222222222333333333344444444445555555555

*>>4>678901<34>678901<34>6789012345<789>123456<89>123456789

STOCHI NEWSVENDOR

SCENARIOS DISCRETE

 SC SCEN01 ROOT 0.1200000000 TIME1

 INST D 90.000000000

 INST R 9.0000000000

 SC SCEN02 SCEN01 0.2800000000 TIME3

 INST R -15.00000000

 SC SCEN03 SCEN01 0.1500000000 TIME2

 INST D 60.000000000

 SC SCEN04 SCEN03 0.1500000000 TIME3

 INST R -15.00000000

 SC SCEN05 SCEN01 0.2700000000 TIME2

 INST D 30.000000000

 SC SCEN06 SCEN05 0.0300000000 TIME3

 INST R -15.00000000

ENDATA

As it can be seen from sample STOCH files, INST keyword identifies the keyword in the next field to

be a random element and the stochastic information is provided in the same way as in SMPS format.

Appendix G: mxLINDO

A MATLAB Interface
Introduction
MATLAB is a technical-computing and problem-solving environment that combines numerical

analysis, matrix manipulation, and graphics tools in a user-friendly environment. This environment has

a built-in high-level programming language that allows the development of special algorithms without

much programming.

mxLINDO is a MATLAB executable (MEX-file) to establish an interface to LINDO API from within

MATLAB. It provides MATLAB users direct access to several LINDO API routines for developing

higher-level MATLAB functions (m-functions) to solve various kinds of optimization problems. The

interface is particularly useful if you are solving very large or very difficult linear and integer

programs, or implementing an optimization algorithm with MATLAB’s programming language.

This release of the interface works with MATLAB Version 2009 or later. The precompiled binary

mxlindo.mexw32 (or mxlindo.mexw64) for the 32-bit (or 64-bit) Windows platform is located under

the lindoapi\bin\win32 (or lindoapi\bin\win64) folder.

Setting up MATLAB to Interface with LINDO
Use the following instructions to establish an interface with MATLAB:

1. Edit the C:\MATLAB\TOOLBOX\LOCAL\STARTUP.M file that came with your

MATLAB distribution using your favorite text editor. Typically, your MATLAB

installation is under C:\MATLAB. For MATLAB Release 2009a, the default directory is

R2009a. In more recent versions of MATLAB, the path may start with C:\Program

Files\MATLAB\. If you do not have the STARTUP.M file, then create it from

STARTUPSAV.M.

2. Append the following lines to the end of your STARTUP.M file to update your

MATLAB environment-path. It is assumed that your LINDO API installation is under

‘C:\LINDOAPI’. If the last line in STARTUPSAV.M is “load matlab.mat”, then delete

that line.

global MY_LICENSE_FILE

MY_LICENSE_FILE = ‘C:\LINDOAPI\LICENSE\LNDAPI50.LIC’;

path(‘C:\LINDOAPI\BIN\WIN32’,path);

path(‘C:\LINDOAPI\INCLUDE\’,path);

path(‘C:\LINDOAPI\MATLAB\’,path);

3. Start a MATLAB session and try the sample m-functions to use the interface.

670 APPENDIX G

Using the mxLINDO Interface
The quickest way of trying out the mxLINDO interface is to use one of the m-functions provided with

mxLINDO. is version of the interface supports a subset of the available functions and routines in

LINDO API. Here we demonstrate the LMsolve.m function supplied with mxLINDO.

Suppose, using matrix notation, we wish to solve:
Minimize c

T
x

S.t. Ax  b

 u  x  l

Define the objects A, b, c, l, u, and csense in the MATLAB as in Figure 10.1.

» A = [

 1.0000 1.0000 1.0000 1.0000;

 0.2000 0.1000 0.4000 0.9000;

 0.1500 0.1000 0.1000 0.8000;

 -30.0000 -40.0000 -60.0000 -100.0000]

» b = [4000 3000 2000 -350000]’

» c = [65 42 64 110]’

» csense = 'GGGG';

» l=[]; u=[];

Figure 10.1

Setting l and u to empty vectors causes all lower and upper bounds to be at their default values (0 and

LS_INFINITY, respectively). The sense of the constraints is stored in the string variable csense. To

solve this LP, the following command should be issued at the MATLAB command prompt:

>> [x, y, s, dj, obj, solstat] = LMsolvem(A, b, c, csense, l, u)

mxLINDO A MATLAB INTERFACE 671

As illustrated in Figure 10.2, the function returns the primal and dual solutions (x,s) and (y,dj), the

optimal objective value obj, and the optimization status flag solstat. LSsolveM.m may be modified in

several ways to change the output returned.

» [x, y, s, dj, obj, solstat] = LMsolvem(A, b, c, csense, l, u)

x =

 1.0e+003 *

 0.1429

 0

 1.0000

 2.8571

y =

 66.0000

 202.8571

 0

 1.3857

s =

 0

 0

 -407.1429

 0

dj =

 -0.0000

 11.1429

 -0.0000

 -0.0000

obj =

 3.8757e+005

solstat =

 2

Figure 10.2

Further examples of this high-level use of mxLINDO and the LMsolveM.m furnction are given at the

end of this chapter. LMsolve.m was built using low level calls that can be made from MATLAB to the

LINDO API via the mxLINDO interface. The following section describes all the low level calls that

are available in mxLINDO.

672 APPENDIX G

Calling Conventions
This version of the interface supports a subset of the available functions and routines in LINDO API.

The calling conventions used to access these routines within MATLAB are quite similar to the C/C++

prototypes described above (see Chapter 2, Function Definitions). The main difference is that, when

accessing any external routine within MATLAB, all arguments modified by the external routine (the

output-list) appear as left-hand side (LHS) arguments, whereas the constant arguments (the input-list)

appear as right-hand side (RHS) arguments.

For example, consider a LINDO API routine that has the following C/C++ prototype calling sequence:

int LSroutine(a1,a2,…,ak, z1,z2, …, zn)

Assume that this function retrieves (or modifies) the values for z1,z2, …, zn using the input list

a1,a2,…,ak. The calling convention mxLINDO uses to access this routine within MATLAB is:

>> [z1,z2, …, zn] = mxlindo(‘LSroutine’,a1,a2,…,ak)

where mxlindo is the MATLAB executable function that calls LINDO API. The first input (right-hand

side) argument of the mxlindo function is required to be a string that corresponds to the name of the

LINDO API routine that the user wishes to access. Note that the subroutine names are case sensitive.

The arguments a1,a2,…,ak are the constant (RHS) arguments and z1,z2, …, zn are the variable (LHS)

arguments required by this routine. In naming RHS and LHS arguments, a dialect of the so-called

Hungarian Notation is adopted. See Chapter 1, Introduction, to review the details of this naming

convention.

mxLINDO Routines
In the following sections, we describe the calling sequence for all of the supported LINDO API

routines. See Chapter 2, Function Definitions, above to review the standard calling conventions and

their argument lists. Observe that the input and output arguments of mxLINDO follow the definitions

therein with a few exceptions.

Note: All the parameter macros described in Chapter 2, Function Definitions, are also available

from within MATLAB via the lindo.m script file located in lindoapi\include\ directory.

Structure Creation and Deletion Routines
In a standard C/C++ application that calls LINDO API, an environment or a model instance is

referenced with a pointer. In MATLAB, we identify each environment and model with the integer cast

of its pointer created during the call to LScreateEnv() or LScreateModel().

mxLINDO A MATLAB INTERFACE 673

LScreateEnv()

Description:

Creates a new instance of LSenv, which is an environment used to maintain one or more

models.

MATLAB Prototype:
>> [iEnv ,nStatus] = mxlindo('LScreateEnv', MY_LICENSE_KEY)

RHS Arguments:

Name Description

MY_LICENSE_KEY A string containing the license key file.

LHS Arguments:

Name Description

iEnv An integer cast to the instance of LSenv created.

nStatus An integer error code. If successful, nStatus will be 0 on

return. A list of possible error codes may be found in Appendix

A, Error Codes.

Remarks:

 This variable can be set by calling the LSloadLicenseString() function.

LScreateModel()

Description:

Creates a new instance of LSmodel.

MATLAB Prototype:
>> [iModel, nStatus] = mxlindo('LScreateModel', iEnv)

RHS Arguments:

Name Description

iEnv A user assigned integer referring to an instance of LSenv.

LHS Arguments:

Name Description

iModel An integer cast to the instance of LSmodel created.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A,

Error Codes.

674 APPENDIX G

LSdeleteEnv()

Description:

Deletes an instance of LSenv.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteEnv', iEnv)

RHS Arguments:

Name Description

iEnv A user assigned integer referring to an instance of LSenv.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A,

Error Codes.

LSdeleteModel()

Description:

Deletes an instance of LSmodel.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteModel', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A,

Error Codes.

mxLINDO A MATLAB INTERFACE 675

License Information Routines
The routine in this section allows you to read a license key from a license file (e.g.

\Lindoapi\License\lndapi100.lic) and load it into a local string buffer (e.g., MY_LICENSE_KEY).

LSgetVersionInfo()

Description:

Returns the version and build information of the LINDO API on your system.

MATLAB Prototype:
>> [szVersion, szBuildDate, nStatus] = mxlindo('LSgetVersionInfo')

LHS Arguments:

Name Description

szVersion A null terminated string that keeps the version information of

the LINDO API on your system.

szBuildDate A null terminated string that keeps the build date of the LINDO

API library on your system.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A,

Error Codes.

LSloadLicenseString()

Description:

Reads the license string from the specified file in text format.

MATLAB Prototype:
>> [MY_LICENSE_KEY, nStatus] = mxlindo('LSloadLicenseString',

MY_LICENSE_FILE)

RHS Arguments:

Name Description

MY_LICENSE_FILE The global string containing the full name of the license key

file.

LHS Arguments:

Name Description

MY_LICENSE_KEY A string containing the license key file.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A,

Error Codes.

676 APPENDIX G

Remarks:

 MY_LICENSE_FILE is the string variable that keeps the name of your LINDO API

license file and is loaded during startup. Please see Lindoapi\Matlab\Readme.txt for setup

instructions.

Input-Output Routines
The routines in this section provide functionality for reading and writing model formulations to and

from disk files into LINDO API.

LSreadLINDOFile()

Description:

Reads the model in LINDO (row) format from the given file and stores the problem data in

the given model structure.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSreadLINDOFile', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the model.

szFname A string containing the path and name of the LINDO format

file.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A,

Error Codes.

mxLINDO A MATLAB INTERFACE 677

LSreadMPIFile()

Description:

Reads the model in MPI format from the given file and stores the problem data in the given

model structure.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSreadMPIFile', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the model.

szFname A string containing the path and name of the MPI format file.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSreadMPSFile()

Description:

Reads a model in MPS format from the given file into the given problem structure.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSreadMPSFile', iModel, szFname, nFormat)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the model.

szFname A string containing the path and name of the basis file.

nFormat An integer parameter indicating whether the MPS file is

formatted or not. The parameter value should be either

LS_FORMATTED_MPS or LS_UNFORMATTED_MPS

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A,

Error Codes.

678 APPENDIX G

LSreadBasis()

Description:

Reads an initial basis from the given file in the specified format.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSreadBasis', iModel, szFname, nFormat)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the model.

szFname A string containing the path and name of the basis file.

nFormat An integer parameter indicating the format of the file to be

read. Possible values are

 LS_BASFILE_BIN : Binary format (default)

 LS_BASFILE_MPS : MPS file format

 LS_BASFILE_TXT : Space delimited text format

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSwriteDualLINDOFile()

Description:

Writes the dual of a given problem to a file in LINDO format.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteDualLINDOFile', iModel, szFname,

nObjsense)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the model.

szFname A string containing the path and name of the file to which the

model should be written.

nObjsense An integer indicating the sense of the dual objective function.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

mxLINDO A MATLAB INTERFACE 679

A list of possible error codes may be found in Appendix A.

LSwriteDualMPSFile()

Description:

Writes the dual of a given problem to a file in MPS format.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteDualMPSFile', iModel, szFname,

nFormat, nObjsense)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the model.

szFname A string containing the path and name of the MPS format file.

nFormat An integer parameter indicating whether the MPS file is

formatted or not.

nObjsense An integer indicating the sense of the dual objective function.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

680 APPENDIX G

LSwriteIIS()

Description:

Writes the IIS of an infeasible LP to a file in LINDO file format.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteIIS', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szFname A string containing the path and name of the file to which the

solution should be written.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A,

Error Codes.

LSwriteIUS()

Description:

Writes the IUS of an unbounded LP to a file in LINDO file format.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteIUS', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szFname A string containing the path and name of the file to which the

solution should be written.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A,

Error Codes.

mxLINDO A MATLAB INTERFACE 681

LSwriteLINDOFile()

Description:

Writes the given problem to a file in LINDO format. Model must be linear.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteLINDOFile', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the model.

szFname A string containing the path and name of the file to which the

model should be written.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSwriteLINGOFile()

Description:

Writes the given problem to a file in LINGO format. Model must be linear.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteLINGOFile', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel containing the

model to be written to a LINGO file.

szFname A string containing the path and name of the file to which the

model should be written.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

682 APPENDIX G

LSwriteMPIFile()

Description:

Writes the given model in MPI format.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteMPIFile', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the model.

szFname A string containing the path and name of the file to which the

model should be written.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSwriteMPSFile()

Description:

Writes the given problem to a specified file in MPS format.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteMPSFile', iModel, szFname, nFormat)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the model.

szFname A string containing the path and name of the file to which the

model should be written.

nFormat An integer indicating the format of the file to be written.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 683

LSwriteBasis()

Description:

Reads an initial basis from the given file in the specified format.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteBasis', iModel, szFname, nFormat)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the model.

szFname A string containing the path and name of the file to which the

model should be written.

nFormat An integer parameter indicating the format of the file to be

written. Possible values are

 LS_BASFILE_BIN : Binary format (default)

 LS_BASFILE_MPS : MPS file format

 LS_BASFILE_TXT : Space delimited text format

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSwriteSolution()

Description:

Writes the LP solution to a file .

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteSolution', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szFname A string containing the path and name of the file to which the

solution should be written.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

684 APPENDIX G

Error Handling Routines
The following command can be used to print the description of an error message to your screen.

LSgetErrorMessage()

Description:

Returns an error message for the given error code.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSgetErrorMessage', nErrorcode)

RHS Arguments:

Name Description

nErrorcode The error code associated with the error message for which you

want a description.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetErrorRowIndex()

Description:

Retrieves the index of the row where a numeric error has occurred.

MATLAB Prototype:
>> [iRow, nStatus] = mxlindo(‘LSgetErrorRowIndex’, iModel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the problem data.

LHS Arguments:

Name Description

iRow An integer variable to return the row index with numeric error.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 685

LSgetFileError()

Description:

Provides the line number and text of the line in which an error occurred while reading or

writing a file.

MATLAB Prototype:
>> [nLinenum, szLinetxt, nStatus] = mxlindo(‘LSgetFileError’,

iModel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the problem data.

LHS Arguments:

Name Description

nLinenum An integer that returns the line number in the I/O file where the

error has occurred.

szLinetxt A string that returns the text of the line where the error has

occurred.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

686 APPENDIX G

Parameter Setting and Retrieving Routines
The following routines are used to set and get various model and environment parameters with

mxLINDO. Please refer to the parameter macro list given in Chapter 2, Function Definitions, for their

definitions.

LSgetEnvParameter()

Description:

Retrieves a parameter for a specified environment.

MATLAB Prototype:
>> [dValue, nStatus] = mxlindo(‘LSgetEnvParameter’, iEnv,

nParameter);

RHS Arguments:

Name Description

iEnv An integer referring to an instance of LSenv.

nParameter An integer macro.

LHS Arguments:

Name Description

dValue On return, dValue will contain the parameter’s value. The user

is responsible for allocating sufficient memory to store the

parameter value.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetEnvDouParameter()

Description:

Gets or retrieves a double precision parameter for a specified environment.

MATLAB Prototype:
>>[dVal, nStatus] = mxlindo('LSgetEnvDouParameter', iEnv, nParameter)

RHS Arguments:

Name Description

iEnv An integer referring to an instance of LSenv.

nParameter An integer referring to a double precision parameter.

LHS Arguments:

Name Description

dVal A double precision variable. On return, dVal will contain the

parameter’s value.

mxLINDO A MATLAB INTERFACE 687

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetEnvIntParameter()

Description:

Gets or retrieves an integer parameter for a specified environment.

MATLAB Prototype:
>>[nVal, nStatus] = mxlindo('LSgetEnvIntParameter', iEnv, nParameter)

RHS Arguments:

Name Description

iEnv An integer referring to an instance of LSenv.

nParameter An integer referring to an integer parameter.

LHS Arguments:

Name Description

nVal An integer variable. On return, nVal will contain the

parameter’s value.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetModelParameter()

Description:

Retrieves a parameter or status variable for a specified model.

MATLAB Prototype:
>> [dValue, nStatus] = mxlindo('LSgetModelParameter', iModel,

nParameter)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nParameter An integer macro.

LHS Arguments:

Name Description

dValue On return, dValue will contain the parameter’s value. The user

is responsible for allocating sufficient memory to store the

parameter value.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

688 APPENDIX G

LSgetModelDouParameter()

Description:

Gets or retrieves a double precision parameter for a specified model.

MATLAB Prototype:
>> [dVal, nStatus] = mxlindo('LSgetModelDouParameter', iModel,

nParameter)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nParameter An integer referring to a double precision parameter.

LHS Arguments:

Name Description

dVal A double precision variable. On return, dVal will contain the

parameter’s value.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetModelIntParameter()

Description:

Gets or retrieves an integer parameter for a specified model.

MATLAB Prototype:
>> [nVal, nStatus] = mxlindo('LSgetModelIntParameter', iModel,

nParameter)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nParameter An integer referring to an integer parameter.

LHS Arguments:

Name Description

nVal An integer variable. On return, nVal will contain the

parameter’s value.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 689

LSsetEnvParameter ()

Description:

Sets a parameter for a specified environment.

MATLAB Prototype:
>>[nStatus] = mxlindo('LSsetEnvParameter', iEnv, nParameter, dValue)

RHS Arguments:

Name Description

iEnv An integer referring to an instance of LSenv.

nParameter An integer macro.

dValue A variable containing the parameter’s new value.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSsetEnvDouParameter()

Description:

Sets a double precision parameter for a specified environment.

MATLAB Prototype:
>>[nStatus] = mxlindo('LSsetEnvDouParameter', iEnv, nParameter, dVal)

RHS Arguments:

Name Description

iEnv An integer referring to an instance of LSenv.

nParameter An integer referring to a double precision parameter.

dVal A double precision variable.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

690 APPENDIX G

LSsetEnvIntParameter()

Description:

Sets an integer parameter for a specified environment.

MATLAB Prototype:
>>[nStatus] = mxlindo('LSsetEnvIntParameter', iEnv, nParameter, nVal)

RHS Arguments:

Name Description

iEnv An integer referring to an instance of LSenv.

nParameter An integer referring to an integer parameter.

nVal An integer variable.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSsetModelParameter()

Description:

Sets a parameter for a specified model.

MATLAB Prototype:
>>[nStatus] = mxlindo('LSsetModelParameter', iModel, nParameter,

dValue)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nParameter An integer macro.

dValue A variable containing the parameter’s new value.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 691

LSsetModelDouParameter()

Description:

Sets a double precision parameter for a specified model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSsetModelDouParameter', iModel, nParameter,

dVal)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nParameter An integer referring to a double precision parameter.

dVal A double precision variable.

LHS Arguments:

Name Description

nStatus 0 if successful, else one of the error codes listed in Appendix

A.

LSsetModelIntParameter()

Description:

Sets an integer parameter for a specified model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSsetModelIntParameter', iModel, nParameter,

nVal)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nParameter An integer referring to an integer parameter.

nVal An integer variable.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

692 APPENDIX G

LSreadEnvParameter()

Description:

Reads environment parameters from a parameter file.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSreadEnvParameter', iEnv , szFname)

RHS Arguments:

Name Description

iEnv A user assigned integer referring to an instance of LSenv.

szFname The name of the file from which to read the environment

parameters.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSreadModelParameter()

Description:

Reads model parameters from a parameter file.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSreadModelParameter', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szFname The name of the file from which to read the model parameters.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 693

LSwriteModelParameter()

Description:

Writes model parameters to a parameter file.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSwriteModelParameter', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szFname The name of the file from which to read the model parameters.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

Model Loading Routines
The routines in this section allow you to pass a model to LINDO API directly through memory.

LINDO API expects the formulation to be in sparse format. In other words, only nonzero coefficients

are passed. For details on sparse representation, see the section titled Sparse Matrix Representation in

Chapter 1, Introduction.

Note: LINDO API uses the C-language type indexing of arrays. Therefore, when loading an index

vector into LINDO API by using mxLINDO, make sure that the index set is a C based index

set (i.e., zero is the base index).

LSloadConeData()

Description:

Loads quadratic cone data into a model structure.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadConeData', iModel , nCone ,

szConeTypes, aiConebegcone, aiConecols)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nCone Number of cones to add.

szConeTypes A character vector containing the type of each cone being

added. Valid values for each cone are ‘Q’ and ‘R’. The length

of this vector is equal to nCone.

694 APPENDIX G

aiConebegcone An integer vector containing the index of the first variable that

appears in the definition of each cone. This vector must have

nCone+1 entries. The last entry will be the index of the next

appended cone, assuming one was to be appended. If

aiConebegcone [i] < aiConebegcone [i-1], then

LSERR_ERROR_IN_INPUT is returned.

aiConecols An integer vector containing the indices of variables

representing each cone. The length of this vector is equal to

aiConebegcone[nCone].

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSloadInstruct()

Description:

Loads an instruction lists into a model structure.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadInstruct', iModel , nCons , nObjs

,nVars , nNums , anObjSense , acConType , acVarType , anCode , nCode

, aiVars , adVals , adX0 , aiObj , anObj , aiRows , anRows , adL)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nCons Number of constraints in the model.

nObjs Number of objectives in the model. Currently, only a single

objective function is supported. (i.e., nObjs = 1)

nVars Number of variables in the model.

nNums Number of real numbers in the model.

anObjSense An integer vector containing the indicator stating whether the

objective is to be maximized or minimized. Valid values are

LS_MAX or LS_MIN, respectively. The length of this vector

is equal to nObjs.

acConType A character vector containing the type of each constraint. Each

constraint is represented by a single byte in the array. Valid

values for each constraint are ‘L’, ‘E’, ‘G’, or ‘N’ for less-than-

or-equal-to, equal to, great-than-or-equal-to, or neutral,

respectively. The length of this vector is equal to nCons.

acVarType A character vector containing the type of each variable. Valid

mxLINDO A MATLAB INTERFACE 695

values for each variable are ‘C’, ‘B’, or ‘I’, for continuous,

binary, or general integer, respectively. The length of this

vector is equal to nVars. This value may be ‘[]’ on input, in

which case all variables will be assumed to be continuous.

anCode An integer vector containing the instruction list. The length of

this vector is equal to nCode.

nCode Number of items in the instruction list.

aiVars An integer vector containing the variable index. The length of

this vector is equal to nVars. This value may be set to ‘[]’ if the

variable index is consistent with the variable position in the

variable array.

adVals A double precision vector containing the value of each real

number in the model. The length of this vector is equal to

nNums.

adX0 A double precision vector containing starting values for each

variable in the given model. The length of this vector is equal

to nVars.

aiObj An integer vector containing the beginning positions on the

instruction list for each objective row. The length of this vector

is equal to nObjs. Currently, there is only support for a single

objective.

anObj An integer vector containing the length of instruction code

(i.e., the number of individual instruction items) for each

objective row. The length of this vector is equal to nObjs.

Currently, only a single objective function is allowed.

aiRows An integer vector containing the beginning positions on the

instruction list for each constraint row. The length of this

vector is equal to nCons.

anRows An integer vector containing the length of instruction code

(i.e., the number of individual instruction items) for each

constraint row. The length of this vector is equal to nCons.

adL A double precision vector containing the lower bound of each

variable.

adU A double precision vector containing the upper bound of each

variable.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

696 APPENDIX G

LSloadLPData()

Description:

Loads the given LP data into the LSmodel data structure.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadLPData', iModel, nCons, nVars,

nObjsense, dObjconst, adC, adB, achContypes, nAnnz, aiAcols, acAcols,

adCoef, aiArows, adL, adU)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the problem data.

nCons Number of constraints in the model.

nVars Number of variables in the model.

nObjsense An integer indicator stating whether the objective is to be

maximized or minimized.

dObjconst A double precision value to be added to the objective value.

adC A double precision vector containing the objective coefficients.

adB A double vector containing the constraint right-hand side

coefficients.

achContypes A character vector containing the type of each constraint.

nAnnz The number of nonzeros in the constraint matrix.

aiAcols An integer vector containing the index of the first nonzero in

each column.

acAcols An integer vector containing the length of each column.

adACoef A double precision vector containing the nonzero coefficients

of the constraint matrix.

aiArows An integer vector containing the row indices of the nonzeros in

the constraint matrix.

adL A double precision vector containing the lower bound of each

variable.

AdU A double precision vector containing the upper bound of each

variable.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 697

Remark:

 LSXloadLPData(), which admits the coefficient matrix in MATLAB’s sparse form, can

also be used as an alternative.

LSloadNameData()

Description:

Loads the given name data (e.g., row and column names), into the LSmodel data structure.

MATLAB Prototype:

>> [nStatus] = mxlindo('LSloadNameData', iModel, szTitle, szObjName, szRhsName,

szRngName, szBndname, aszConNames, aszVarNames, aszConeNam

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the problem data.

szTitle A string containing the title of the problem.

szObjName A string containing the name of the objective.

szRhsName A string containing the name of the right-hand side vector.

szRngName A string containing the name of the range vector.

szBndname A string containing the name of the bounds vector.

aszConNames Reserved for future use. Currently, should be an empty vector.

aszVarNames Reserved for future use. Currently, should be an empty vector.

aszConeNames Reserved for future use. Currently, should be an empty vector.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

698 APPENDIX G

LSloadNLPData()

Description:

Loads a nonlinear program’s data into the model data structure.

MATLAB Prototype:
>> "[nErrorCode] = mxLINDO('LSloadNLPData', iModel, aiCols, acCols,

adCoef, aiRows, nObjcnt, aiObjndx, adObjcoef)

 RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the problem data.

aiCols An integer vector containing the index of the first nonlinear

nonzero in each column. This vector must have nVars+1

entries, where nVars is the number of variables. The last entry

will be the index of the next appended column, assuming one

was to be appended.

acCols An integer vector containing the number of nonlinear elements

in each column.

adCoef A double precision vector containing initial values of the

nonzero coefficients in the (Jacobian) matrix. It may be set to

[], in which case, LINDO API will compute an initial matrix.

aiRows An integer vector containing the row indices of the nonlinear

elements.

nObjcnt An integer containing the number of nonlinear variables in the

objective.

aiObjndx An integer vector containing the column indices of nonlinear

variables in the objective function.

adObjCoef A double precision vector containing the initial nonzero

coefficients in the objective. It may be set to [], in which case,

LINDO API will compute an initial gradient vector.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 699

LSloadQCData()

Description:

Loads quadratic program data into the LSmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadQCData', iModel, nQCnnz, aiQCrows,

aiQCvars1, aiQCvars2, adQCcoef)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the quadratic data.

nQCnnz The total number of nonzeros in quadratic coefficient matrices.

aiQCrows A vector containing the index of the constraint associated with

each nonzero quadratic term. This vector must have nQCnnz

entries.

aiQCvars1 A vector containing the index of the first variable defining each

quadratic term. This vector must have nQCnnz entries.

aiQCvars2 A vector containing the index of the second variable defining

each quadratic term. This vector must have nQCnnz entries.

adQCcoef A vector containing the nonzero coefficients in the quadratic

matrix. This vector must also have nQCnnz entries.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

700 APPENDIX G

LSloadSemiContData()

Description:

Loads semi-continuous data into the Lsmodel data structure.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadSemiContData', iModel, nSC, iVarndx,

ad1, adu)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the semi-continuous data.

nSC The number of semi-continuous variables.

iVarndx A vector containing the indices of semi-continuous variables.

This vector must have nSC entries.

ad1 A vector containing the lower bound associated with each

semi-continuous variable. This vector must also have nSC

entries.

adu A vector containing the upper bound associated with each

semi-continuous variable. This vector must also have nSC

entries.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on

return. A list of possible error codes may be found in Appendix

A.

mxLINDO A MATLAB INTERFACE 701

LSloadSETSData()

Description:

Loads special sets data into the Lsmodel data structure.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadSETSData', iModel, nSETS, szSETStype,

aiCARDnum, aiSETSbegcol, aiSETScols)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the set data.

nSETS Number of sets to load.

szSETStype A character vector containing the type of each set. Valid values

for each set are

 LS_MIP_SET_CARD
 LS_MIP_SET_SOS1
 LS_MIP_SET_SOS2
 LS_MIP_SET_SOS3

aiCARDnum An integer vector containing set cardinalities. This vector must

have nSETS entries. The set cardinalities are taken into account

only for sets with szSETStype[i] = LS_MIP_SET_CARD.

aiSETSbegcol An integer vector containing the index of the first variable in

each set. This vector must have nSETS+1 entries. The last

entry will be the index of the next appended set, assuming one

was to be appended. If aiSETSbegcol[i] < aiSETSbegcol

[i-1], then LSERR_ERROR_IN_INPUT is returned.

aiSETScols An integer vector containing the indices of variables in each

set. If any index is not in the range [0, nVars -1],

LSERR_INDEX_OUT_OF_RANGE is returned.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

702 APPENDIX G

LSloadVarType()

Description:

Loads the variable types data into the LSmodel data structure. This replaces the routine

previously named LSloadMIPData().

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadVarType', iModel, achVartypes)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel in which to

place the MIP data.

achVartypes A character vector containing the type of each variable.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSloadStringData()

Description:

Loads a vector of strings into the LSmodel data structure.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadStringData', iModel, nStrings,

vStrings)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nStrings An integer indicating the number of strings to be loaded.

vStrings A vector containing the strings to be loaded.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 703

LSbuildStringData()

Description:

Finalizes the loading of the string data and build the string values.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSbuildStringData', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSdeleteStringData()

Description:

Deletes the string values data.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteStringData', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

704 APPENDIX G

LSloadString()

Description:

Loads a single string into the LSmodel data structure.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadString', iModel, szString)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szString A variable containing the string to be loaded.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSdeleteString()

Description:

Deletes the complete string data, including the string vector and values.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteString', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 705

LSgetStringValue()

Description:

Retrieves a string value for a specified string index.

MATLAB Prototype:
>> [szValue, nStatus] = mxlindo('LSgetStringValue', iModel,

nStringIdx)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nStringIdx An integer containing the index of the string whose value you

wish to retrieve.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

szValue A string variable containing the string value.

706 APPENDIX G

Solver Initialization Routines
The following commands can be used to initialize the linear and mixed integer solvers.

LSloadBasis()

Description:

Provides a starting basis for the simplex method. A starting basis is frequently referred to as

being a “warm start”.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadBasis', iModel, anCstatus, anRstatus)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel containing the

model for which you are providing the basis.

anCstatus An integer vector containing the status of each column in the

given model.

anRstatus An integer vector in which information about the status of the

rows is to be placed.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSloadVarPriorities()

Description:

Provide priorities for each variable for use in branch-and-bound.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadVarPriorities', iModel, anCprior)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

anCprior An integer vector containing the priority of each column in the

given model.

 LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 707

LSloadVarStartPoint()

Description:

Provide initial guesses for variable values.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSloadVarStartPoint', iModel, adPrimal)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

adPrimal A double precision vector containing starting values for each

variable in the given model.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

708 APPENDIX G

LSloadBlockStructure()

Description:

Provides a block structure for the constraint matrix by specifying block memberships of each

variable and constraint.

MATLAB Prototype:
>> [nBlock, anRblock, anCblock, nType, nStatus] =

mxlindo(‘LSloadBlockStructure’, iModel))

RHS Arguments:

Name Description

iModel A user assigned integer referring to an instance of LSenv.

LHS Arguments:

Name Description

nBlock An integer scalar that contains the number of blocks to

decompose the model matrix into (Sensible only if nType =

LS_LINK_BLOCKS_NONE).

anRblock

An integer vector in which information about the block

membership of the constraints is to be placed. The i-th element

of this array returns information on the i-th constraint as

follows:

 0: The row is a member of the linking (row) block.

k>0: The row is a member of the k-th block.

Where 1 <= k <= nBlock.

anCblock

An integer vector in which information about the block

membership of the variables is to be placed. The j-th element

of this array contains information on the j-th column as

follows:

 0: The column is a member of the linking (column) block.

k>0: The column is a member of the k-th block.

where 1 <= k <= nBlock.

nType An integer returning the type of the decomposition.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 709

LSreadVarPriorities()

Description:

Provide branching priorities for integer variables from a disk file.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSreadVarPriorities', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szFname The name of the file from which to read the variable priorities.

 LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSreadVarStartPoint()

Description:

Provides initial values for variables from a file.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSreadVarStartPoint', iModel, szFname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szFname The name of the file from which to read the initial values for

the variables.

 LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

710 APPENDIX G

Optimization Routines
The following commands can be used to optimize a linear or mixed-integer program.

LSoptimize()

Description:

Optimizes a continuous model by a given method.

MATLAB Prototype:
>> [nSolStat, nStatus] = mxlindo('LSoptimize', iModel, nMethod)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel you wish to

optimize.

nMethod An integer to specify the type of solver to use. See the

definition of LSoptimize() in Chapter 2, Function Definitions.

LHS Arguments:

Name Description

nSolStat An integer indicating the status of the solution.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSsolveGOP()

Description:

Optimizes a GOP model.

MATLAB Prototype:
>> [nSolStat, nStatus] = mxlindo('LSsolveGOP', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel you wish to

optimize.

LHS Arguments:

Name Description

nSolStat An integer indicating the status of the GOP solution.

nStatus0 An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 711

LSsolveMIP()

Description:

Optimizes a mixed-integer programming model using branch-and-bound.

MATLAB Prototype:
>> [nSolStat, nStatus] = mxlindo('LSsolveMIP', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel you wish to

optimize.

LHS Arguments:

Name Description

nSolStat An integer indicating the status of the MIP solution.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

Solution Query Routines
The following commands can be issued to retrieve information on the solution of the specified model:

Note: LINDO API uses the C-language type indexing of arrays. Therefore, any index set retrieved

will start with zero.

LSgetBasis()

Description:

Gets information about the basis that was found after optimizing the given model.

MATLAB Prototype:
>> [anCstatus, anRstatus, nStatus] = mxlindo('LSgetBasis', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel containing the

model for which you are retrieving the basis.

LHS Arguments:

Name Description

anCstatus An integer vector containing the status of each column in the

given model.

anRstatus An integer vector in which information about the status of the

rows is to be placed.

712 APPENDIX G

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetDualSolution()

Description:

Returns the value of the dual variables for a given model.

MATLAB Prototype:
>> [adDual, nStatus] = mxlindo('LSgetDualSolution', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adDual A double precision vector in which the dual solution is to be

placed.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetInfo()

Description:

Returns model or solution information about the current state of the LINDO API solver after

model optimization is completed. This function cannot be used to access callback

information.

MATLAB Prototype:
>> [dValue, nStatus] = mxlindo('LSgetInfo', iModel, nQuery);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nQuery The information desired from LINDO API. For possible

values, see the definition of this function in Chapter 2,

Function Definitions.

LHS Arguments:

Name Description

dValue A double precision scalar or a vector depending on the type of

query.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 713

LSgetMIPBasis()

Description:

Gets information about the basis that was found after optimizing the LP relaxation of the node

that yielded the optimal solution of a given MIP model.

MATLAB Prototype:
>> [anCstatus, anRstatus, nStatus] = mxlindo('LSgetMIPBasis', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel containing the

model for which you are retrieving the basis.

LHS Arguments:

Name Description

anCstatus An integer vector containing the status of each column in the

given model.

anRstatus An integer vector in which information about the status of the

rows is to be placed.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetMIPDualSolution()

Description:

Returns the value of the dual variables for a given MIP model.

MATLAB Prototype:
>> [adDual, nStatus] = mxlindo('LSgetMIPDualSolution', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adDual A double precision vector in which the dual solution is to be

placed.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

714 APPENDIX G

LSgetMIPPrimalSolution()

Description:

Gets the current solution for a MIP model.

MATLAB Prototype:
>>[adPrimal, nStatus] = mxlindo('LSgetMIPPrimalSolution', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adPrimal A double precision vector in which the primal solution is to be

placed.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A,

Error Codes.

LSgetMIPReducedCosts()

Description:

Gets the current reduced cost for a MIP model.

MATLAB Prototype:
>>[adRedCost, nStatus] = mxlindo('LSgetMIPReducedCosts', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adRedCost A double precision vector in which the reduced cost is to be

placed.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 715

LSgetMIPSlacks()

Description:

Gets the slack values for a MIPmodel.

MATLAB Prototype:
>> [adSlacks, nStatus] = mxlindo('LSgetMIPSlacks', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adSlacks A double precision vector in which the MIP slacks are to be

placed.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetPrimalSolution()

Description:

Returns the value of the primal variables for a given model.

MATLAB Prototype:
>> [adPrimal, nStatus] = mxlindo('LSgetPrimalSolution', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adPrimal A double precision vector in which the primal solution is to be

placed.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

Remarks:

 Error code LSERR_INFO_NOT_AVAILABLE -the requested info not available- is

returned if any solution access routines are called after the optimization halts without

computing a solution. The most common causes for not having a solution after the

optimization are:

Optimization halted due to a time or iteration limit,

Optimization halted due to numerical errors,

Optimization halted due to CTRL-C (user break),

Presolver has determined the problem to be infeasible or unbounded.

716 APPENDIX G

In all these cases, the optimizer will return an associated error code (e.g.,

LSERR_ITER_LIMIT). During subsequent steps of user's application the type of the last

error code returned by the optimizer can be accessed via LSgetInfo() function.

LSgetReducedCosts()

Description:

Returns the value of the reduced costs for a given model.

MATLAB Prototype:
>> [adRedcosts, nStatus] = mxlindo('LSgetReducedCosts', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adRedcosts A double precision vector in which the reduced costs are to be

placed.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetReducedCostsCone()

Description:

Returns the reduced cost of all cone variables of a given model.

MATLAB Prototype:
>> [adRedcosts, nStatus] = mxlindo('LSgetReducedCostsCone', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adRedcosts A double precision vector in which the reduced costs of the

variables are to be returned.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 717

LSgetSlacks()

Description:

Returns the value of the primal slacks for a given model.

MATLAB Prototype:
>> [adSlacks, nStatus] = mxlindo('LSgetSlacks', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adSlacks A double precision vector in which the primal slacks are to be

placed.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetSolution()

Description:

Gets the solution specified by the third argument.

MATLAB Prototype:
>> [adValues, nStatus] = mxlindo('LSgetSolution', iModel, nWhich);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nWhich An integer parameter specifying the solution to be retrieved.

Refer to Chapter 2 for possible values.

LHS Arguments:

Name Description

adValues A double precision vector in which the specified solution is to

be placed.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

718 APPENDIX G

Model Query Routines
The following commands can be issued to retrieve information on the specified model:

Note: LINDO API uses the C-language type indexing of arrays. Therefore, index set retrieved may

contain zero as index value.

LSgetConeDatai()

Description:

Retrieve data for cone i.

MATLAB Prototype:
>> [achConeType, iNnz, iCols, nStatus] = mxlindo('LSgetConeDatai',

iModel, iCone);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iCone The index of the cone to retrieve the data for.

LHS Arguments:

Name Description

achConeType A character variable that returns the constraint’s type. The

returned value will be ‘'Q', or ‘R’.

iNnz An integer variable that returns the number of variables

characterizing the cone.

iCols An integer vector that returns the indices of variables

characterizing the cone.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 719

LSgetConeIndex()

Description:

Gets the index of a cone with a specified name.

MATLAB Prototype:
>> [iCone, nStatus] = mxlindo('LSgetConeIndex', iModel, szConeName);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szConeName A string containing the name of the cone for which the index is

requested.

LHS Arguments:

Name Description

iCone An integer scalar that returns the index of the cone requested.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetConeNamei()

Description:

Gets the name of a cone with a specified index.

MATLAB Prototype:
>> [achConeName, nStatus] = mxlindo('LSgetConeNamei', iModel, iCone);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iCone Index of the cone whose name is to be retrieved.

LHS Arguments:

Name Description

achConeName A character array that contains the cone’s name with a null

terminator.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

720 APPENDIX G

LSgetConstraintDatai()

Description:

Gets data on a specified constraint.

MATLAB Prototype:
>> [chContype, chIsNlp, dB, nStatus] =

mxlindo('LSgetConstraintDatai', iModel , iCon);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iCon An integer containing the index of the constraint whose name

you wish to retrieve.

LHS Arguments:

Name Description

chContype A character variable that returns the constraint’s type. The

returned value will be ‘'L', 'E', 'G', or ‘N’, for less-than-or-

equal-to, equal to, greater-than-or-equal-to, or neutral,

respectively.

chIsNlp A character that returns 0 if the constraint is linear and 1 if it is

nonlinear.

dB A double precision variable that returns the constraint’s right-

hand side value.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 721

LSgetConstraintIndex()
Description:

Retrieves the internal index of a specified constraint name.

Prototype:
>> [iCon, nStatus] = mxlindo('LSgetConstraintIndex', iModel,

szConname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szConname A character string containing the name of the constraint.

LHS Arguments:

Name Description

iCon An integer that returns the constraint’s index.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetConstraintNamei()
Description:

Retrieves the name of a constraint, given its index number.

Prototype:
>> [szConname, nStatus] = mxlindo('LSgetConstraintNamej', iModel,

iCon)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iCon An integer containing the index of the constraint whose name

you wish to retrieve.

LHS Arguments:

Name Description

szConname A character string that returns the constraint’s name.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

722 APPENDIX G

LSgetLPConstraintDatai()

Description:

Retrieves the formulation data for a specified constraint in a linear or mixed integer linear

program. Individual LSH entries may be set to ‘[]’ if associated items are not required.

MATLAB Prototype:
>> [chContype, dB, nNnz, aiVar, adAcoef, nStatus] =

mxlindo('LSgetLPConstraintDatai', iModel , iCon);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iCon An integer containing the index of the constraint whose name

you wish to retrieve.

LHS Arguments:

Name Description

chContype A character that returns the constraint’s type. Values returned

are 'L' for less-than-or-equal-to, 'E' for equal-to, 'G' for

greater-than-or-equal-to, or ‘N’ for neutral.

dB A double precision quantity that returns the constraint’s right-

hand side coefficient.

nNnz An integer that returns the number of nonzero coefficients in

the constraint.

aiVar An integer vector that contains the indices of the variables to

compute the partial derivatives for.

adAcoef A vector containing nonzero coefficients of the new

constraints.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 723

LSgetLPData()

Description:

Returns the formulation data for a given linear programming model.

MATLAB Prototype:
>> [nCons, nVars, nObjsense, dObjconst, adC, adB, achContypes,

aiAcols, acAcols, adCoef, aiArows, adL , adU, nStatus] =

mxlindo('LSgetLPData', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

LHS Arguments:

Name Description

nCons Number of constraints in the model.

nVars Number of variables in the model.

nObjsense An indicator stating whether the objective is to be maximized

or minimized.

dObjconst A constant value to be added to the objective value.

adC A double precision vector containing the objective coefficients.

adB A double vector containing the constraint right-hand side

coefficients.

achContypes A character vector containing the type of each constraint.

aiAcols An integer vector containing the index of the first nonzero in

each column.

acAcols An integer vector containing the length of each column.

adCoef A double precision vector containing the nonzero coefficients

of the constraint matrix.

aiArows An integer vector containing the row indices of the nonzeros in

the constraint matrix.

adL A double precision vector containing the lower bound of each

variable.

adU A double precision vector containing the upper bound of each

variable.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

724 APPENDIX G

Remark:

 LSXgetLPData(), which retrieves the coefficient matrix in MATLAB’s sparse form, can

also be used as an alternative.

LSgetLPVariableDataj()

Description:

Retrieves the formulation data for a specified variable. Individual LHS entries may be set to

‘[]’ if associated items are not required.

MATLAB Prototype:
>> [chVarType, dC, dL, dU, nAnnz, aiArows, nStatus] =

mxlindo('LSgetLPVariableDataj', iModel, iVar)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iVar An integer containing the index of the variable whose name

you wish to retrieve.

LHS Arguments:

Name Description

chVarType A character that returns the variable’s type. Values returned are

'B' for binary, 'C' for continuous, or 'I' for general integer.

dC A double precision quantity that returns the variable’s

objective coefficient.

dL A double precision quantity that returns the variable’s lower

bound.

dU A double precision quantity that returns the variable’s upper

bound.

nAnnz An integer that returns the number of nonzero constraint

coefficients in the variable’s column.

aiArows An integer vector containing the row indices of the nonzeros in

the new columns.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 725

LSgetNameData()

Description:

Returns the names—objective, right-hand side vector, range vector, bound vector, constraints,

and variables—of a given model.

MATLAB Prototype:
>> [szTitle, szObjname, szRhsname, szRngname, szBndname, aszConnames,

achConNameData, aszVarnames, achVarNameData, nStatus] =

mxlindo('LSgetNameData', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

szTitle A character array that returns the title of the problem. A

model’s title can be of any length, so be sure to allocate

sufficient space to store the title you originally passed to

LINDO API. The returned title will be null terminated.

szObjname A character array that will return the name of the objective,

null terminated.

szRhsname A character array that returns the name of the right-hand side

vector, null terminated.

szRngname A character array that returns the name of the range vector, null

terminated.

szBndname A character array that returns the name of the bound vector,

null terminated.

aszConnames Reserved for future use. Currently, should be an empty vector.

achConNameData Reserved for future use. Currently, should be an empty vector.

aszVarnames Reserved for future use. Currently, should be an empty vector.

achVarNameData Reserved for future use. Currently, should be an empty vector.

726 APPENDIX G

LSgetNLPConstraintDatai()

Description:

Gets data about the nonlinear structure of a specific row of the model.

MATLAB Prototype:
>> [nColcnt,aiColndx,adCoef,nErrorCode] = mxLINDO(

'LSgetNLPConstraintDatai', iModel, iCon)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

iCon An integer referring to the index of the constraint whose NLP

data will be retrieved.

LHS Arguments:

Name Description

nColcnt An integer vector returning the number of nonlinear columns in

the specified row.

aiColndx An integer vector returning the column indices of the nonlinear

nonzeros in the specified row.

adCoef A double precision vector returning the current values of the

nonzero coefficients of the specified row in the (Jacobian)

matrix.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 727

LSgetNLPData()

Description:

Gets data about the nonlinear structure of a model, essentially the reverse of

LSloadNLPData().

MATLAB Prototype:
>> [aiCols, acCols, adCoef, aiRows, nObj, aiObj, adObjCoef,

achConType, nStatus] = mxLINDO('LSgetNLPData',iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

LHS Arguments:

Name Description

aiCols An integer vector returning the index of the first nonlinear

nonzero in each column. The last entry will be the index of the

next appended column, assuming one was to be appended.

acCols An integer vector returning the number of nonlinear elements

in each column.

adCoef A double precision vector returning the current values of the

nonzero coefficients in the (Jacobian) matrix.

aiRows An integer vector returning the row indices of the nonlinear

nonzeros in the coefficient matrix.

nObj An integer returning the number of nonlinear variables in the

objective function.

aiObj An integer vector returning column indices of the nonlinear

terms in the objective.

adObjCoef A double precision vector returning the current partial

derivatives of the objective corresponding to the variables

aiObj [].

achConType A character array whose elements indicate whether a constraint

has nonlinear terms or not. If achConType [i] > 0, then

constraint i has nonlinear terms.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

728 APPENDIX G

LSgetNLPObjectiveData()

Description:

Gets data about the nonlinear structure of the objective function of the model.

MATLAB Prototype:
>> [nObjcnt,aiColndx,adCoef,nErrorCode] = mxLINDO(

'LSgetNLPConstraintDatai', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

LHS Arguments:

Name Description

nObjcnt An integer vector returning the number of nonlinear columns in

the objective row.

aiColndx An integer vector returning the column indices of the nonlinear

nonzeros in the objective row.

adCoef A double precision vector returning the current values of the

nonzero coefficients of the gradient of the objective.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 729

LSgetNLPVariableDataj()

Description:

Gets data about the nonlinear structure of a specific column of the model.

MATLAB Prototype:
>> [nRowcnt,aiRowndx,adCoef,nErrorCode] = mxLINDO(

'LSgetNLPVariableDataj', iModel, iVar)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

iVar An integer referring to the index of the variable whose NLP

data will be retrieved.

LHS Arguments:

Name Description

nRowcnt An integer vector returning the number of nonlinear rows in

the specified variable’s column.

aiRowndx An integer vector returning the row indices of the nonlinear

nonzeros in the specified variable’s column.

adCoef A double precision vector returning the current values of the

nonzero coefficients of the specified column in the (Jacobian)

matrix.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

730 APPENDIX G

LSgetQCData()

Description:

Retrieves quadratic program data in a given model.

MATLAB Prototype:
>> [nQCnnz, aiQCrows, aiQCvars1, aiQCvars2, adQCcoef, nStatus] =

mxlindo('LSgetQCData', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

LHS Arguments:

Name Description

nQCnnz The total number of nonzeros in quadratic coefficient matrices.

aiQCrows A vector containing the index of the constraint associated with

each nonzero quadratic term.

aiQCvars1 A vector containing the index of the first variable defining each

quadratic term.

aiQCvars2 A vector containing the index of the second variable defining

each quadratic term. This vector will have nQCnnz entries.

adQCcoef A vector containing the nonzero coefficients in the quadratic

matrix. This vector will also have nQCnnz entries.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 731

LSgetQCDatai()

Description:

Retrieves quadratic program data of a single constraint in a given model.

MATLAB Prototype:
>> [nQCnnz, aiQCvars1, aiQCvars2, adQCcoef, nStatus] =

mxlindo('LSgetQCDatai', iModel, iCon)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

iCon An integer referring to the index of the constraint whose

quadratic data will be retrieved.

LHS Arguments:

Name Description

nQCnnz The number of nonzeros in the quadratic coefficient matrix of

the specified constraint.

aiQCvars1 A vector containing the index of the first variable defining the

quadratic term. This vector will have nQCnnz entries.

aiQCvars2 A vector containing the index of the second variable defining

the quadratic term. This vector will have nQCnnz entries.

adQCcoef A vector containing the nonzero coefficients in the quadratic

matrix. This vector will have nQCnnz entries.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

732 APPENDIX G

LSgetSemiContData()

Description:

Retrieves the semi-continuous data from an LSmodel data structure.

MATLAB Prototype:
>> [iNvars, iVarndx, ad1, adu, nStatus] =

mxlindo('LSgetSemiContData', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

LHS Arguments:

Name Description

iNvars An integer variable to return the number of semi-continuous

variables.

iVarndx An integer vector to return the indices of semi-continuous

variables.

ad1 A vector to return the lower bounds of semi-continuous

variables.

adu A vector to return the upper bounds of semi-continuous

variables.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 733

LSgetSETSData()

Description:

Retrieves sets data from an LSmodel data structure.

MATLAB Prototype:
>> [iNsets, iNtnz, achSETtype, iCardnum, iNnz, iBegset, iVarndx,

nStatus] = mxlindo('LSgetSETSData', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

LHS Arguments:

Name Description

iNsets An integer variable to return the number of sets in the model.

iNtnz An integer variable to return the total number of variables in

the sets.

achSETtype A character array to return the type of sets in the model. The

size of this array should be at least (iNsets)

iCardnum An integer array to return the cardinalities of sets in the model.

The size of this array should be at least (iNsets)

iNnz An integer array to return the number of variables in each set in

the model. The size of this array should be at least (iNsets)

iBegset An integer array returning the index of the first variable in each

set. This vector must have (iNsets + 1) entries, where iNsets is

the number of sets in the model. The last entry will be the

index of the next appended set, assuming one was to be

appended.

iVarndx An integer vector returning the indices of the variables in the

sets. You must allocate at least one element in this vector for

each <variable,set> tuple (i.e. at least iNtnz elements are

required.)

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

734 APPENDIX G

LSgetSETSDatai()

Description:

Retrieves the data for set i from an LSmodel data structure.

MATLAB Prototype:
>> [achSETType, iCardnum, iNnz, iVarndx, nStatus] =

mxlindo('LSgetSETSDatai', iModel, iSet)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

iSet The index of the set to retrieve the data for.

LHS Arguments:

Name Description

achSETType A character variable to return the set type.

iCardnum An integer variable to return the set cardinality.

iNnz An integer variable to return the number of variables in the set.

iVarndx An integer vector to return the indices of the variables in the

set. This vector should have at least (iNnz) elements.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetVariableIndex()

Description:

Retrieves the internal index of a specified variable name.

Prototype:
>> [iVar, nStatus] = mxlindo('LSgetVariableIndex', iModel, szVarname)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szVarname A character string containing the name of the variable.

LHS Arguments:

Name Description

iVar An integer that returns the variable’s index.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 735

LSgetVariableNamej()

Description:

Retrieves the name of a variable, given its index number.

Prototype:
>> [szVarname, nStatus] = mxlindo('LSgetVariableNamej', iModel, iVar)

RHS Arguments:

Name Description

iModel An integer referring to an instance of Lsmodel.

iVar An integer containing the index of the variable whose name

you wish to retrieve.

LHS Arguments:

Name Description

szVarname A character string that returns the variable’s name.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetVarStartPoint()

Description:

Retrieves the values of the initial primal solution.

MATLAB Prototype:
>> [adPrimal, nStatus] = mxlindo('LSgetVarStartPoint', iModel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adPrimal A double precision vector that contains the primal solution at

which the objective function will be evaluated.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

736 APPENDIX G

LSgetVarType()

Description:

Gets the variable type for a MIP model.

MATLAB Prototype:
>> [achVartypes,nCont,nBin,nGin,nStatus] = mxlindo('LSgetVarType',

iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

LHS Arguments:

Name Description

achVartypes A character vector containing the type of each variable.

nCont A scalar indicating the number of continuous variables in the

model.

nBin A scalar indicating the number of binary variables in the

model.

nGin A scalar indicating the number of general integer variables in

the model.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 737

Model Modification Routines
The following commands can be issued to modify an existing model iModel in several ways. Since the

modification routines reset the solution status of the model to its default, the resident solution may not

be optimal.

LSaddCones ()

Description:

Adds cones to a given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSaddCones', iModel, nCone, szConeTypes,

cConenames, aiConebegcol, aiConecols)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel from which to

retrieve the problem data.

nCone An integer containing the number of cones to append.

szConeTypes A character array containing the type of each cone to be added

to the model.

cConenames Reserved for future use. Currently, should be empty vector.

aiConebegcol An integer vector containing the index of the first variable in

each new cone. This vector must have nCone +1 entries. The

last entry should be equal to the number of variables in the

added cones.

aiConecols An integer vector containing the indices of the variables in the

new cones.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

738 APPENDIX G

LSaddConstraints()

Description:

Adds constraints to a given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSaddConstraints', iModel, nCons,

achContypes, aszConnames, aiArows, adAcoef, aiAcols, adB)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nCons An integer containing the number of constraints to append.

achContypes A character vector containing the type of each constraint to be

added to the model.

aszConnames A vector of null terminated strings containing the name of each

new constraint.

aiArows An integer vector containing the index of the first nonzero

element in each new constraint.

adAcoef A vector containing nonzero coefficients of the new

constraints.

aiAcols An integer vector containing the column indices of the

nonzeros in the new constraints.

adB A double precision vector containing the right-hand side

coefficients for each new constraint.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 739

LSaddSETS()

Description:

Adds sets to a given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSaddSETS', iModel, nSETS, szSETStypes,

aiCARDnum, aiSETSbegcol, aiSETScols)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nSETS An integer containing the number of sets to add.

szSETStypes A character array containing the type of each set to be added to

the model.

aiCARDnum An integer array containing the cardinalities of the sets to be

added.

aiSETSbegcol An integer vector containing the index of the first variable in

each new set. This vector must have nSETS +1 entries. The last

entry should be equal to the total number of variables in the

new sets.

aiSETScols An integer vector containing the indices of the variables in the

new sets.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

740 APPENDIX G

LSaddVariables()

Description:

Adds variables to a given model. If both constraints and variables need to be added to a model

and adding the new information in column format is preferred, then this routine can be called

after first calling LSaddConstraints().

MATLAB Prototype:
>> [nStatus] = mxlindo('LSaddVariables', iModel, nVars, achVartypes,

aszVarnames, aiAcols, acAcols, adAcoef, aiArows, adC, adL, adU)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nVars The number of variables to append to the model.

achVartypes A character vector indicating the types of each variable to be

added to the model.

aszVarnames A vector of null terminated strings containing the name of each

new variable.

aiAcols An integer vector containing the index of the first nonzero

element in each new column.

acAcols An integer vector containing the length of each column.

adAcoef A double precision vector containing the nonzero coefficients

of the new columns.

aiArows An integer vector containing the row indices of the nonzeros in

the new columns.

adC A double precision vector containing the objective coefficients

for each new variable.

adL A double precision vector containing the lower bound of each

new variable.

adU A double precision vector containing the upper bound of each

new variable.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 741

LSaddQCterms()

Description:

Adds quadratic elements to the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSaddQCterms', iModel, nQCnonzeros,

vaiQCconndx, vaiQCvarndx1, vaiQCvarndx2, vadQCcoef)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nQCnonzeros The total number of nonzeros in quadratic coefficient matrices

to be added.

vaiQCconndx A vector containing the index of the constraint associated with

each nonzero quadratic term. This vector must have

nQCnonzeros entries.

vaiQCvarndx1 A vector containing the indices of the first variable defining

each quadratic term. This vector must have nQCnonzeros

entries.

vaiQCvarndx2 A vector containing the indices of the second variable defining

each quadratic term. This vector must have nQCnonzeros

entries.

vadQCcoef A vector containing the nonzero coefficients in the quadratic

matrix. This vector must also have nQCnonzeros entries.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

742 APPENDIX G

LSaddNLPAj()

Description:

Adds NLP elements to the specified column for the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSaddNLPAj', iModel, iVar1, nRows, vaiRows,

vadAj)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iVar1 The index of the variable to which NLP elements will be

added.

nRows The total number of constraints for which NLP elements will

be added.

vaiRows An integer vector containing the row indices of the nonlinear

elements. The indices are required to be in ascending order.

vadAj A double vector containing the initial nonzero coefficients of

the NLP elements. If vadAj is NULL, the solver will set the

initial values.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 743

LSaddNLPobj()

Description:

Adds NLP elements to the objective function for the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSaddNLPobj', iModel, nCols, vaiCols,

vadColj)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nCols The total number of variables for which NLP elements will be

added.

vaiCols A integer vector containing the variable indices of the

nonlinear elements.

vadColj A double vector containing the initial the initial nonzero

coefficients of the NLP elements. If vadColj is NULL, the

solver will set the initial values.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSdeleteCones()

Description:

Deletes a set of cones in the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteCones', iModel, nCones, aiCones)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nCones The number of cones in the model to delete.

aiCones A vector containing the indices of the cones that are to be

deleted.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

744 APPENDIX G

LSdeleteConstraints()

Description:

Deletes a set of constraints in the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteConstraints', iModel, nCons, aiCons)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nCons The number of constraints in the model to delete.

aiCons A vector containing the indices of the constraints that are to be

deleted.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSdeleteQCterms()

Description:

Deletes the quadratic terms in a set of constraints in the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteQCterms', iModel, nCons, aiCons)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nCons The number of constraints in the model for which the quadratic

terms will be deleted.

aiCons A vector containing the indices of the constraints whose

quadratic terms are to be deleted.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 745

LSdeleteSemiContVars()

Description:

Deletes a set of semi-continuous variables in the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteSemiContVars', iModel, nSC, SCndx)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nSC The number of semi-continuous variables in the model to

delete.

SCndx A vector containing the indices of the semi-continuous

variables that are to be deleted.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSdeleteSETS()

Description:

Deletes the sets in the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteSETS', iModel, nSETS, SETSndx)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nSETS The number of sets in the model to delete.

SETSndx A vector containing the indices of the sets that are to be

deleted.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

746 APPENDIX G

LSdeleteVariables()

Description:

Deletes a set of variables in the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteVariables', iModel, nVars, aiVars)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nVars The number of variables in the model to delete.

aiVars A vector containing the indices of the variables that are to be

deleted.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSdeleteAj()

Description:

Deletes all the elements in the specified column for the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteAj', iModel, iVar1, nRows, vaiRows)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iVar1 The index of the variable whose lements will be deleted.

nRows The number of constraints at which elements will be deleted.

vaiRows An integer vector containing the row indices of the elements to

be deleted. The indices are required to be in ascending order.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 747

LSdeleteNLPobj()

Description:

Deletes NLP elements from the objective function for the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSdeleteNLPobj', iModel, nCols, vaiCols)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nCols The number of variables for which NLP elements will be

deleted.

vaiCols A vector containing the indices of the variables whose NLP

elements are to be deleted.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSmodifyAj()

Description:

Modifies the coefficients for a given column at specified constraints.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifyAj', iModel, iVar1, nCons, aiCons,

adAj)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iVar1 The index of the variable to modify the constraint coefficients.

nCons Number of constraints to modify.

aiCons An array of the indices of the constraints to modify.

adAj A double precision array containing the values of the new

coefficients.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

748 APPENDIX G

LSmodifyCone()

Description:

 Modifies the data for the specified cone.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifyCone', iModel, cConeType, iConeNum,

iConeNnz, aiConeCols)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

cConeType A character variable specifying the new type of the cone.

iConeNum An integer scalar that refers to the index of the cone to modify.

iConeNnz An integer scalar that refers to the number of variables

characterizing the cone.

aiConeCols An integer vector that keeps the indices of the variables

characterizing the cone. Its size should be iConeNnz.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSmodifyConstraintType()

Description:

Modifies the senses of the selected constraints of a given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifyConstraintType', iModel, nCons,

aiCons, achContypes)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nCons The number of constraint senses to modify.

aiCons An integer vector containing the indices of the constraints

whose senses are to be modified.

achContypes A character vector in which each element is either: ‘L’, ‘E’,

‘G’, or ‘N’ indicating each constraint's type.

mxLINDO A MATLAB INTERFACE 749

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSmodifyLowerBounds()

Description:

Modifies selected lower bounds in a given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifyLowerBounds', iModel, nVars, aiVars,

adL)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nVars The number of bounds in the model to modify.

aiVars An integer vector containing the indices of the variables for

which to modify the lower bounds.

adL A double precision vector containing the new values of the

lower bounds on the variables.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

750 APPENDIX G

LSmodifyObjConstant()

Description:

Modifies the objective’s constant term for a specified model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifyObjConstant', iModel , dObjconst);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

dObjconst The new objective constant term.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSmodifyObjective()

Description:

Modifies selected objective coefficients of a given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifyObjective', iModel, nVars, aiVars, adC)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nVars Number of objective coefficients to modify.

aiVars An integer vector containing a list of the indices of the

objective coefficients to modify.

adC A double precision vector containing the new values for the

modified objective coefficients.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 751

LSmodifyRHS()

Description:

Modifies selected constraint right-hand sides of a given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifyRHS', iModel, nCons, aiCons, adB)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nCons The number of constraint right-hand sides to modify.

aiCons An integer vector containing the indices of the constraints

whose right-hand sides are to be modified.

adB A double precision vector containing the new right-hand side

values for the modified right-hand sides.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSmodifySemiContVars()

Description:

Modifies data of a set of semi-continuous variables in the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifySemiContVars', iModel, nSC, iVarndx,

ad1, adu)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nSC The number of semi-continuous variables to modify.

iVarndx An integer vector containing the indices of the variables whose

data are to be modified.

ad1 A double precision vector containing the new lower bound

values for the semi-continuous variables.

adu A double precision vector containing the new upper bound

values for the semi-continuous variables.

752 APPENDIX G

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSmodifySET()

Description:

Modifies set data in the given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifySET', iModel, cSETtype, iSETnum,

iSETnnz, aiSETcols)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

cSETtype A character variable containing the new type for the specified

set.

iSETnum An integer variable containing the index of the set to apply the

modification.

iSETnnz An integer variable containing the number of variables in the

set specified with iSETnum.

aiSETcols An integer array containing the indices of variables in the set

specified with iSETnum.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 753

LSmodifyUpperBounds()

Description:

Modifies selected upper bounds in a given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifyUpperBounds', iModel, nVars, aiVars, adU)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nVars The number of bounds in the model to modify.

aiVars A vector containing the indices of the variables for which to

modify the upper bounds.

adU A double precision vector containing the new values of the

upper bounds on the variables.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSmodifyVariableType()

Description:

Modifies the types of the selected variables of a given model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSmodifyVariableType', iModel, nVars, aiVars,

achVartypes)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nVars The number of variable types to modify.

aiVars An integer vector containing the indices of the variables whose

types are to be modified.

achVartypes A character vector containing strings of length nVars

specifying the types of the specified variables.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

754 APPENDIX G

Model and Solution Analysis Routines
The routines in the section below allow you to analyze models and their solutions. For a more detailed

overview, see the Chapter 10, Analyzing Models and Solutions.

LSfindBlockStructure ()

Description:

Examines the nonzero structure of the constraint matrix and tries to identify block structures

in the model..

MATLAB Prototype:
>> [nStatus] = mxlindo(‘LSfindBlockStructure’, iModel, nBlock, nType)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nBlock An integer scalar that contains the number of blocks to

decompose the model matrix into. (Sensible only if nType <>

LS_LINK_BLOCKS_NONE.)

nType

An integer scalar indicating the type of decomposition

requested. The possible values are identified with the following

macros:

LS_LINK_BLOCKS_NONE: Try total decomposition (no

linking rows or columns).

LS_LINK_BLOCKS_COLS: The decomposed model will have

dual angular structure (linking columns).

LS_LINK_BLOCKS_ROWS: The decomposed model will

have block angular structure (linking rows).

LS_LINK_BLOCKS_BOTH: The decomposed model will

have both dual and block angular structure (linking rows

and columns).

LS_LINK_BLOCKS_FREE: Solver decides which type of

decomposition to use.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A

mxLINDO A MATLAB INTERFACE 755

LSfindIIS()

Description:

Determines an irreducibly inconsistent set (IIS) of constraints for an infeasible linear

program. Any of the RHS arguments can be set to empty vectors if the corresponding

information is not required.

MATLAB Prototype:
>> [nStatus] = mxlindo(‘LSfindIIS’, iModel, nLevel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nLevel An integer indicating the level of detail of the analysis in

finding the IIS. Possible values are:

LS_NECESSARY_ROWS = 1,

LS_NECESSARY_COLS = 2,

LS_SUFFICIENT_ROWS = 4,

LS_SUFFICIENT_COLS = 8.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSfindIUS()

Description:

Determines an irreducibly unbounded set (IUS) of columns for an unbounded linear program.

MATLAB Prototype:
>> [nStatus) = mxlindo(‘LSfindIUS’, iModel, nLevel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nLevel An integer indicating the level of detail of the analysis in

finding the IUS. Possible values are:

LS_NECESSARY_COLS = 2,

LS_SUFFICIENT_COLS = 8.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

756 APPENDIX G

LSgetBestBounds ()

Description:

Finds the best-implied variable bounds for the specified model by improving the original

bounds using extensive preprocessing and probing.

MATLAB Prototype:
>> [adBestL, adBestU, nStatus] = mxlindo(‘LSgetBestBounds’, iModel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adBestL A double precision vector containing the best-implied lower

bounds.

adBestU A double precision vector containing the best implied upper

bounds.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 757

LSgetBlockStructure ()

Description:

Retrieves the block structure, identified by LSfindBlockStructure(), in the model..

MATLAB Prototype:
>> [nBlock, anRblock, anCblock, nType, nStatus] =

mxlindo(‘LSgetBlockStructure’, iModel))

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

nBlock An integer scalar that contains the number of blocks to

decompose the model matrix into (Sensible only if nType =

LS_LINK_BLOCKS_NONE).

anRblock

An integer vector in which information about the block

membership of the constraints is to be placed. The i-th element

of this array returns information on the i-th constraint as

follows:

 0: The row is a member of the linking (row) block.

k>0: The row is a member of the k-th block.

where 1 <= k <= nBlock.

anCblock

An integer vector in which information about the block

membership of the variables is to be placed. The j-th element

of this array contains information on the j-th column as

follows:

 0: The column is a member of the linking (column) block.

k>0: The column is a member of the k-th block.

where 1 <= k <= nBlock.

nType An integer returning the type of the decomposition.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

Remarks:

 For a brief overview on decomposition and linking structures, refer to Chapter 10,

Analyzing Models and Solutions.

758 APPENDIX G

LSgetBoundRanges ()

Description:

Retrieves the maximum allowable decrease and increase in the primal variables for which the

optimal basis remains unchanged.

MATLAB Prototype:
>> [adDec, adInc, nStatus] = mxlindo(‘LSgetBoundRanges’, iModel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adDec A double precision vector that keeps the maximum allowable

decrease in the lower and upper bounds.

adInc A double precision vector that keeps the maximum allowable

increase in the lower and upper bounds.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetConstraintRanges ()

Description:

Retrieves the maximum allowable decrease and increase in the right-hand side values of

constraints for which the optimal basis remains unchanged.

MATLAB Prototype:
>> [adDec, adInc, nStatus] = mxlindo(‘LSgetConstraintRanges’, iModel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adDec A vector that keeps the maximum allowable decrease in the

right-hand sides of constraints.

adInc A vector that keeps the maximum allowable increase in the

right-hand sides of constraints.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 759

LSgetIIS()

Description:

Retrieves the irreducibly inconsistent set (IIS) determined by LSfindIIS(). Any of the RHS

arguments can be set to empty vectors if the corresponding information is not required.

MATLAB Prototype:
>> [nSuf_r, nIIS_r, aiCons, nSuf_c, nIIS_c, aiVars, anBnds, nStatus]

= mxlindo(‘LSgetIIS’, iModel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

nSuf_r The number of constraints in the sufficient set.

nIIS_r The number of rows in the IIS.

aiCons A vector of size nIIS_r containing the indices of the rows in the

IIS. The locations aiCons[1] to aiCons[nSuf_r] keep the

indices of the sufficient rows.

nSuf_c The number of column bounds in the sufficient set.

nIIS_c The number of column bounds in the IIS.

aiVars A vector of size nIIS_c containing the indices of the column

bounds in the IIS. The locations aiVars[1] to aiVars[nSuf_c]

store the indices of the members of the sufficient column

bounds. Passing an empty matrix forces the algorithm to ignore

the column bounds as the source of infeasibility.

anBnds A vector of size nIIS_c indicating whether the lower or the

upper bound of the variable is in the IIS. Its elements are –1 for

lower bounds and +1 for upper bounds.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

760 APPENDIX G

LSgetIUS()

Description:

Retrieves the irreducibly unbounded set (IUS) of columns determined by a call to

LSfindIUS().

MATLAB Prototype:
>> [nSuf, nIUS, aiVars, nStatus) = mxlindo(‘LSgetIUS’, iModel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

nSuf The number of columns in the sufficient set.

nIUS The number of columns in the IUS.

aiVars A vector of size nIUS containing the indices of the columns in

the IUS. The locations aiVars[1] to aiVars[nSuf] store the

indices of the members of the sufficient set.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSgetObjectiveRanges ()

Description:

Retrieves the maximum allowable decrease and increase in objective function coefficients for

which the optimal basis remains unchanged.

MATLAB Prototype:
>> [adDec, adInc, nStatus] = mxlindo(‘LSgetObjectiveRanges’, iModel);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

adDec A vector that keeps the maximum allowable decrease in the

objective function coefficients.

adInc A vector that keeps the maximum allowable increase in the

objective function coefficients.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 761

Advanced Routines
The routines in this section perform specialized functions for users who are developing customized

solution procedures.

LSdoBTRAN()

Description:

Does a so-called backward transformation. That is, the function solves the linear system

B
T
X = Y, where B

T
 is the transpose of the current basis of the given linear program and Y is a

user specified vector.

MATLAB Prototype:
>> [cXnz, aiX, adX, nStatus] = mxlindo('LSdoBTRAN', iModel, cYnz,

aiY, adY)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

cYnz An integer containing the number of nonzeros in the right-hand

side vector Y.

aiY An integer vector containing the positions of the nonzeros in Y.

adY A double precision vector containing the coefficients of the

nonzeros in Y.

LHS Arguments:

Name Description

cXnz An integer containing the number of nonzeros in the solution

vector X.

aiX An integer vector containing the positions of the nonzeros in X.

adX A double precision vector containing the coefficients of the

nonzeros in X.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

762 APPENDIX G

LSdoFTRAN()

Description:

Does a so-called forward transformation. That is, the function solves the linear system

BX = Y, where B is the current basis of the given linear program, and Y is a user specified

vector.

MATLAB Prototype:
>> [cXnz, aiX, adX, nStatus] = mxlindo('LSdoFTRAN', iModel, cYnz,

aiY, adY)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

cYnz An integer containing the number of nonzeros in the right-hand

side vector Y.

aiY An integer vector containing the positions of the nonzeros in Y.

adY A double precision vector containing the coefficients of the

nonzeros in Y.

LHS Arguments:

Name Description

cXnz An integer containing the number of nonzeros in the solution

vector X.

aiX An integer vector containing the positions of the nonzeros in X.

adX A double precision vector containing the coefficients of the

nonzeros in X.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 763

LScalcConFunc()

Description:

Calculates the constraint activity at a primal solution .

MATLAB Prototype:
>> [dValue, nStatus] = mxlindo(‘LScalcConFunc’, iModel, iCon,

adPrimal);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iCon An integer containing the index of the constraint whose activity

is requested.

adPrimal A double precision vector that contains the primal solution at

which the constraint activity will be computed.

LHS Arguments:

Name Description

dValue A double precision variable that returns the constraint activity

at the given primal solution.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LScalcObjFunc()

Description:

Calculates the objective function value at a primal solution .

MATLAB Prototype:
>> [dPobjval, nStatus] = mxlindo(‘LScalcObjFunc’, iModel,adPrimal);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

adPrimal A double precision vector that contains the primal solution at

which the objective function will be evaluated.

LHS Arguments:

Name Description

dPobjval A double precision variable that returns the objective value for

the given primal solution.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

764 APPENDIX G

LScalcConGrad()

Description:

Calculates the partial derivatives of the function representing a constraint with respect to a set

of primal variables.

MATLAB Prototype:
>> [adVar, nStatus] = mxlindo(‘LScalcConGrad’, iModel, iCon,

adPrimal, nVar, aiVar);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iCon An integer containing the index of the constraint whose partial

derivatives is requested.

adPrimal A double precision vector that contains the primal solution at

which the partial derivatives of the constraint will be evaluated.

nVar An integer scalar indicating the number of variables to

compute the partial derivatives.

aiVar An integer vector that contains the indices of the variables to

compute the partial derivatives for.

LHS Arguments:

Name Description

adVar A double precision vector that returns the partial derivatives of

the variables indicated by aiVar[].

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 765

LScalcObjGrad()

Description:

Calculates the partial derivatives of the objective function with respect to a set of primal

variables.

MATLAB Prototype:
>> [adVar, nStatus] = mxlindo(‘LScalcObjGrad’, iModel, adPrimal,

nVar, aiVar);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

adPrimal A double precision vector that contains the primal solution at

which the partial derivatives of the objective function will be

evaluated.

nVar An integer scalar indicating the number of variables to

compute the partial derivatives.

aiVar An integer vector that contains the indices of the variables to

compute the partial derivatives for.

LHS Arguments:

Name Description

adVar A double precision vector that returns the partial derivatives of

the variables indicated by aiVar[].

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

766 APPENDIX G

Callback Management Routines
The routines in this section allow the user to set callback m-functions and manage callback

information.

LSgetCallbackInfo()

Description:

Returns information about the current state of the LINDO API solver during model

optimization. This routine is to be called from your user supplied callback m-function that

was set with LSsetCallback().

MATLAB Prototype:
>> [dValue, nStatus] = mxlindo('LSgetCallbackInfo', iModel,

nLocation, nQuery);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel. This should be

the same instance as was passed to your user callback function

from LINDO API.

nLocation The solver’s current location. This parameter is passed to your

callback function by LINDO API.

nQuery The information desired from LINDO API. For possible

values, see the definition of this function in Chapter 2,

Function Definitions.

LHS Arguments:

Name Description

dValue A double precision scalar or a vector depending on the type of

query.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 767

LSgetMIPCallbackInfo()

Description:

Returns information about the MIP solver. This routine is to be called from your user supplied

callback functions that were established with calls LSsetCallback() and LSsetMIPCallback().

MATLAB Prototype:
>> [dValue, nStatus] = mxlindo('LSgetMIPCallbackInfo', iModel,

nQuery);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel. This should be

the same instance as was passed to your user callback function

from the LINDO API solver.

nQuery The information requested from LINDO API. See the function

definition in Chapter 2, Function Definitions, for the

information available through this routine.

LHS Arguments:

Name Description

dValue A double precision scalar or a vector depending on the type of

query.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSsetCallback()

Description:

Supplies LINDO API with the name of a user-supplied m-function that will be called at

various points during the solution process. The user-supplied m-function can be used to report

the progress of the solver routines to a user interface, interrupt the solver, etc.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSsetCallback', iModel, szCbfunc, szData);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szCbfunc A character string referring to the name of the user supplied

callback m-function.

szData A dummy character string. Reserved for future use.

768 APPENDIX G

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

Remarks:

 The m-function szCbfunc.m should have the following MATLAB calling sequence:

function retval = szCbfunc(iModel, loc, szData)

 The user need not be concerned about the types and values of the RHS arguments.

mxLINDO will ensure that correct types and values are passed.

 The value returned by the callback function, retval, specifies if the solver should be

interrupted or not. A return value different than zero will interrupt the solver.

 See LMreadF.m and the sample callback function LMcback.m that came with your

mxLINDO distribution.

LSsetFuncalc()

Description:

Supplies LINDO API with a) the user-supplied M-function szFuncalc (see Chapter 7) that

will be called each time LINDO API needs to compute a row value, and b) reference to the

user data area to be passed through to the szFuncalc function.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSsetFuncalc', iModel , szFuncalc , iUserData

);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szFuncalc The name of the M-function that computes the value of a

specified nonlinear row. See the definition of pFuncalc() in

Chapter 7, Solving Nonlinear Programs, for details of this

function’s prototype in C calling conventions.

iUserData A reference to a “pass through” data area in which your calling

application may place information about the functions to be

calculated.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 769

LSsetGradcalc()

Description:

Supplies LINDO API with a) the user-supplied M-function szGradcalc (see Chapter 7,

Solving Nonlinear Programs) that will be called each time LINDO API needs a gradient (i.e.,

vector of partial derivatives), and b) the reference to data area to be passed through to the

gradient computing routine. This data area may be the same one supplied to LSsetFuncalc().

MATLAB Prototype:
>> [nStatus] = mxlindo('LSsetGradcalc', iModel , szGradcalc,

iUserData, nLenUseGrad, aiUseGrad);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szGradcalc A string containing the name of the M-function that computes

the gradients for specified nonlinear rows. See the definition of

pGradcalc() in Chapter 7, Solving Nonlinear Programs, for

details on this function’s interface in C calling conventions .

iUserData A reference to a “pass through” data area in which your calling

application may place information about the functions to be

calculated.

nLenUseGrad An integer indicating how many nonlinear rows will make use

of the szGradcalc function. 0 is interpreted as meaning that no

functions use szGradcalc function, thus meaning that partials

on all functions are computed with finite differences. A value

of -1 is interpreted as meaning the partials on all nonlinear

rows will be computed through the szGradcalc function. A

value greater than 0 and less-than-or-equal-to the number of

nonlinear rows is interpreted as being the number of nonlinear

rows that make use of the szGradcalc function. And, the list of

indices of the rows that do so is contained in the following

array, aiUseGrad.

aiUseGrad An integer array containing the list of nonlinear rows that make

use of the szGradcalc function. You should set this value to

‘[]’ if nLenUseGrad is 0 or -1. Otherwise, it should be an array

of dimension nLenUseGrad, where aiUseGrad[j] is the index

of the j-th row whose partial derivatives are supplied through

the szGradcalc function. A value of -1 indicates the objective

row.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

770 APPENDIX G

LSsetMIPCallback()

Description:

Supplies LINDO API with the address of the callback m-function that will be called each time

a new integer solution has been found to a mixed-integer model.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSsetMIPCallback', iModel, szMIPCbfunc,

szData);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szMIPCbfunc A character string referring to the name of the user supplied

callback m-function.

szData A dummy character string. Reserved for future use.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

Remarks:

 The m-function szMIPCbfunc.m should have the following calling sequence:

function retval = szMIPCbfunc(iModel, szData, pdObjval, adPrimal)

 The MIP callback functions cannot be used to interrupt the solver, instead the general

callback function set by LSsetCallback() routine should be used.

 See LMreadF.m and the sample callback function LMcbMLP.m that came with your

mxLINDO distribution.

mxLINDO A MATLAB INTERFACE 771

LSsetModelLogFunc()

Description:

Supplies the specified model with a) the user-supplied M-function szLogfunc that will be

called each time LINDO API logs a message and b) the reference to the user data area to be

passed through to the szLogfunc function.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSsetModelLogFunc', iModel, szLogfunc,

iUserData);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

szLogfunc A string containing the name of the M-function that will be

called to log messages.

iUserData A reference to a “pass through” data area in which your calling

application may place information about the functions to be

calculated.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

LSsetUsercalc()

Description:

Supplies LINDO API with the addresses of a) the pUsercalc() that will be called each time

LINDO API needs to compute the value of the user-defined function and b) the address of the

user data area to be passed through to the pUsercalc() routine.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSsetUsercalc', iModel, iUsercalc,

iUserData);

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

iUsercalc The subroutine that computes the value of a user-defined

function.

iUserData A “pass through” data area in which your calling application

may place information about the functions to be calculated.

772 APPENDIX G

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

Auxiliary Routines
Two auxiliary routines have been added to the MATLAB interface in order to allow the users to load

or retrieve linear and mixed integer models without being concerned about the sparse representation of

the coefficient matrix as required by LINDO API. These routines are not part of LINDO API.

LSXgetLPData()

Description:

This routine is for accessing the data of model iModel. Its difference from “LSgetLPData” is

that, it does not return the additional vectors aiAcols, acAcols, and aiArows used for sparse

representation of the coefficient matrix. On return, the coefficient matrix is already in

MATLAB’s sparse form. The calling sequence is:

MATLAB Prototype:
>> [nObjsense, dObjconst, adC, adB, achContypes, adA, adL, adU,

nStatus] = mxlindo('LSXgetLPData', iModel)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

LHS Arguments:

Name Description

nObjsense An indicator stating whether the objective is to be maximized

or minimized.

dObjconst A constant value to be added to the objective value.

adC A double precision vector containing the objective coefficients.

adB A double precision vector containing the RHS coefficients.

achContypes A character vector containing the type of constraints.

adA A matrix in MATLAB’s sparse format representing the LP

coefficient matrix.

adL A double precision vector containing the lower bounds.

adU A double precision vector containing the upper bounds.

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

mxLINDO A MATLAB INTERFACE 773

LSXloadLPData()

Description:

The routine “LSXloadLPData” loads the data of a linear model iModel into LINDO API. It is

different from “LSloadLPData” in the sense that the additional vectors aiAcols, acAcols, and

aiArows are not required as input for sparse representation of the coefficient matrix. This

routine already admits the coefficient matrix in MATLAB’s sparse form.

MATLAB Prototype:
>> [nStatus] = mxlindo('LSXloadLPData', iModel, nObjsense, dObjconst,

adC, adB, achContypes, adA, adL, adU)

RHS Arguments:

Name Description

iModel An integer referring to an instance of LSmodel.

nObjsense An indicator stating whether the objective is to be maximized

or minimized.

dObjconst A constant value to be added to the objective value.

adC A double precision vector containing the objective coefficients.

adB A double precision vector containing the RHS coefficients.

achContypes A character vector containing the type of constraints.

adA A matrix in MATLAB’s sparse format representing the LP

coefficient matrix.

adL A double precision vector containing the lower bounds.

adU A double precision vector containing the upper bounds.

LHS Arguments:

Name Description

nStatus An integer error code. If successful, nStatus will be 0 on return.

A list of possible error codes may be found in Appendix A.

774 APPENDIX G

Sample MATLAB Functions
M-functions using mxLINDO
The LINDO API distribution package contains a number of sample m-functions that demonstrate how

mxLINDO can be used in MATLAB to set up, solve, and query linear and nonlinear mixed-integer

models with LINDO API. At the beginning of the chapter we gave an example of solving a linear

program using the LMsolveM.m m file. We continue with some additional illustrations of using

mxLINDO based m files.

Solving Quadratic Programs with LMsolveM.m
LMsolvem has an extended argument list for solving quadratically constrained quadratic programs

(QCP) and retrieving their solutions using mxLINDO. Suppose, the data objects illustrated in Figure

10.3 have been constructed.

» A = [0 0 0 0

 1 1 1 1];

» b = [0.2000 1.0000]’;

» c = [0.3000 0.2000 -0.4000 0.2000]’;

» csense = 'LE';

» vtype = 'CCCC';

» l=[]; u=[];

» QCrows = [0 0 0 0 0 0 0];

» QCvars1 = [0 0 0 1 1 2 3];

» QCvars2 = [0 1 2 1 2 2 3];

» QCCoef = [1.00 0.64 0.27 1.00 0.13 1.00 1.00];

Figure 10.3

These objects represent a QCP instance of the form:

Minimize c
T
x + ½ x

T
Q
0
x

S.t. aix + ½ x
T
Q
i
x  b for i=1,..,m

 u  x  l

To solve this QCP, issue the following command at the MATLAB prompt:

>> [x, y, s, dj, obj, solstat] = LMsolvem(A, b, c, csense, l, u,

vtype, QCrows, QCvars1, QCvars2, QCcoef)

mxLINDO A MATLAB INTERFACE 775

As illustrated in Figure 10.4, the function returns the primal and dual solutions (x,s) and (y,dj), the

optimal objective value obj, and the optimization status flag solstat.

» [x, y, s, dj, pobj, solstat] = LMsolvem(A, b, adC, csense, l, u,

vtype, QCrows, QCvars1, QCvars2, QCcoef)

x =

 0.0000

 0.2239

 0.4887

 0.2874

y =

 -2.6045

 0.9486

s =

 1.0e-009 *

 0.1169

 0

dj =

 0.0683

 0.0000

 0.0000

 0.0000

pobj =

 -0.0932

solstat =

 1

Figure 10.4

Reading from Input Files with LMreadf.m
This m-function interfaces with LINDO API to read a model instance in supported file formats and

retrieves the problem data into the MATLAB environment.

Run the m-function by invoking the following at the command prompt. This will retrieve the model

data of a problem in MPS format into the MATLAB variables specified by LHS arguments of the m-

function. Make sure to pass the full path name of the MPS file to the function.

>>[c, A, b, l, u, csense, vtype, QCrows, QCvars1, QCvars2, QCcoef] =

LMreadf(‘c:\lindoapi\samples\mps\testlp.mps’);

See Appendix B, MPS File Format, for general information on MPS files. Also, refer to the

description of LSreadMPSFile() in Chapter 2, Function Definitions, to see different formatting

conventions LINDO API supports when reading MPS files.

776 APPENDIX G

Column Generation with LMBinPack.m
This function uses a set of LINDO API routines to compute a set-partitioning relaxation to the bin-

packing problem based on Dantzig-Wolfe (DW) decomposition.

Suppose n objects with weights wj, j=1,…,n are given, and the objective is to find the minimum

number of bins, each with capacity b, required to pack all n objects. LMbinpack.m computes a tight

lower bound on the minimum number of bins required using DW-decomposition.

The problem data was represented by a column vector w = (w1,w2,…,wn) and a scalar b. To see how the

function works, read the sample bin-packing instance ‘bin25_150.mat’ that came with the distribution

package. This is a small instance with n=25 and b=150. Assuming that your files reside under

‘c:\lindoapi’, the following commands can be issued to read and run this sample:

>> load(‘bin25_150’, ‘w’, ‘b’)

>> [E, eb, ec, x, z, how] = LMbinpack(w, b)

The output will look like Figure 10.5. The variable z returned by the function is a lower bound on the

minimum number of bins required to pack the n objects. The other LHS arguments E, eb, and ec

represent the LP data of the set-partitioning formulation of the bin-packing problem.

» [E, eb, ec, x, z, how] = LMbinpack(w, b);

 Num cols Obj of DW Reduced cost

 generated relaxation of new column

 --------- ---------- -------------

 5 12.000 3.000

 10 12.000 3.588

 15 12.000 9.500

 20 10.879 1.672

 25 10.095 0.429

 30 9.534 0.397

 35 9.100 0.100

 40 9.071 0.071

 45 9.012 0.118

 50 8.976 0.088

 55 8.922 0.047

 55 8.909 0.000

Elapsed time = 3.324 secs

Minimum bins >= 8.909

Figure 10.5
To solve the relaxed set-partitioning formulation as an integer problem, try using LMsolvem.m by

entering:

>> csense = []; vtype = [III…I];

>> l=[]; u = [];

>> [x, y, s, dj, obj, solstat] = LMsolvem(E, eb, ec,csense,l,u,vtype)

Appendix H:

An Interface to Ox
Introduction
Ox is an object-oriented programming environment equipped with a comprehensive set of statistical

and mathematical functions. In Ox, matrices can be used in expressions with references to their

symbolic names providing a particularly attractive medium for modeling and solving optimization

problems. Ox’s versatile matrix manipulation functions allow users to develop special purpose

optimization algorithms quickly and efficiently.

OxLINDO extends the standard capabilities of Ox to include an optimization toolbox by providing an

interface to LINDO API’s powerful optimizers. In particular, this interface provides Ox users the

ability to call LINDO API’s functions the same way they call native Ox functions. This offers greater

flexibility in developing higher-level Ox routines that can set up and solve different kinds of large-

scale optimization problems, testing new algorithmic ideas or expressing new solution techniques.

This release of the interface works with Ox Version 3.x and later. The precompiled binary for

OxLINDO can be found in the \lindoapi\ox folder. For more information on Ox see

http://www.nuff.ox.ac.uk/users/doornik/.

Setting up Ox Interface
For the Windows platform, follow the instructions below to set up the interface. For other platforms,

modify the steps accordingly. It is assumed that your LINDO API installation folder is

C:\Lindoapi.

1. Locate the Ox installation folder on your machine. In a typical Windows

installation, it is C:\Program Files\Ox.

2. Copy C:\Lindoapi\Ox folder to C:\Program

Files\Ox\Packages\Lindoapi\Ox folder.

3. Copy C:\Lindoapi\License folder to C:\Program

Files\Ox\Packages\ Lindoapi\License folder.

4. Start an Ox session and try out some of the samples located at

C:\lindoapi\samples\ox.

778 APPENDIX H

Calling Conventions
The interface supports all available functions in LINDO API. Because the syntax of Ox’s

programming language is very similar to the C language, it follows the calling conventions given in

Chapter 2 very closely.

Besides the interface functions making native LINDO API calls, OxLINDO has two specific helper

functions, that facilitate environment creation and error checking:

1. OxLScreateEnv();

Check the license and create a LINDO environment. If successful, return an

integer referring to a LINDO API environment variable. If unsuccessful, a zero

value is returned.

2. LSerrorCheck(const penv, const nerrorcode);

Check the returned error code. If it is nonzero then display the error message

associated with specified error code, otherwise do nothing.

These functions are provided for user’s convenience and their source codes are available in

oxlindo.ox file under \lindoapi\ox directory. The following code fragment illustrates how

these functions are used in a typical Ox optimization session.

{

 /* a reference to an instance of the LINDO API environment */

 decl pEnv;

 /* a reference to an instance of the LINDO API model */

 decl pModel;

 /* Step 1: Create a LINDO environment. */

 pEnv = OxLScreateEnv();

 /* Step 2: Create a model in the environment. */

 pModel = LScreateModel (pEnv, &nErrorCode);

 LSerrorCheck(pEnv, nErrorCode);

}

An Interface to Ox 779

The following table summarizes the rules for converting a C type into an equivalent Ox type.

C input type C description Ox equivalent

pLSenv Pointer to Structure Integer (created with LScreateEnv)

pLSmodel Pointer to Structure Integer (created with LScreateModel)

Int Integer Integer

double Double Double

Int * Integer vector Row vector

double * Double vector Row vector

char * Character string String

char ** Character string array Array of strings

void * Pointer to double or integer Integer or double (LSget..., LSset...)

void * Pointer to void Not used (substitute 0 as argument)

NULL Macro for Null or zero <>

C output type C description Ox equivalent

Int * Pointer to integer Address of variable

Int * Pointer to integer vector Address of variable

double * Pointer to double Address of variable

double * Pointer to double vector Address of variable

char * Pointer to characters Address of variable

void * Pointer to double or integer Integer or double (LSget..., LSset...)

void * Pointer to void Not used (substitute 0 as argument)

Table 10.1 Conversion from C types to Ox

Recall from Chapter 2 that some LINDO API functions accept NULL (in C-style) as one or

more of their arguments. In Ox, the <> symbol should replace NULL when necessary in

calling such functions. Do not confuse the <> symbol with the <0> expression. The latter

corresponds to a constant 1x1 matrix that has a zero value and it cannot substitute the NULL

value.

In model or solution access routines, the output arguments should be prefixed with the C-style

address-of operator “&”. This tells Ox that the associated argument is an output argument and ensures

that the correct calling convention is used when communicating with LINDO API. For instance, in the

following code fragment written in Ox, the output argument MipObj of LSgetInfo is prefixed with

“&” operator.

780 APPENDIX H

{

 decl MipObj;

 decl adX;

 decl nErrorCode;

 /* Retrieve the MIP objective value */

 nErrorCode = LSgetInfo(pModel, LS_DINFO_MIP_OBJ, &MipObj);

 LSerrorCheck(pEnv, nErrorCode);

 /* Retrieve the MIP solution */

 LSgetMIPPrimalSolution(pModel, &adX) ;

 LSerrorCheck(pEnv, nErrorCode);

}

Example. Portfolio Selection with Restrictions on the Number
of Assets Invested
In the following example, we illustrate how these rules are applied in writing up an equivalent model

in Ox to the portfolio selection problem given in Chapter 5. The source codes in C and Ox languages

are located under C:\lindoapi\samples\c\port and C:\lindoapi\samples\ox\ folders, respectively.

/* port.ox

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

 File : port.ox

 Purpose: Solve a quadratic mixed integer programming problem.

 Model : Portfolio Selection Problem with a Restriction on

 the Number of Assets

 MINIMIZE 0.5 w'Q w

 s.t. sum_i w(i) = 1

 sum_i r(i)w(i) >= R

 for_i w(i) - u(i) x(i) <= 0 i=1...n

 sum_i x(i) <= K

 for_i x(i) are binary i=1...n

 where

 r(i) : return on asset i.

 u(i) : an upper bound on the proportion of total budget

 that could be invested on asset i.

 Q(i,j): covariance between the returns of i^th and j^th

 assets.

 K : max number of assets allowed in the portfolio

 w(i) : proportion of total budget invested on asset i

 x(i) : a 0-1 indicator if asset i is invested on.

An Interface to Ox 781

 Data:

 Covariance Matrix:

 A1 A2 A3 A4 A5 A6 A7

 A1 [1.00 0.11 0.04 0.02 0.08 0.03 0.10]

 A2 [0.11 1.00 0.21 0.13 0.43 0.14 0.54]

 A3 [0.04 0.21 1.00 0.05 0.16 0.05 0.20]

 Q = A4 [0.02 0.13 0.05 1.00 0.10 0.03 0.12]

 A5 [0.08 0.43 0.16 0.10 1.00 0.10 0.40]

 A6 [0.03 0.14 0.05 0.03 0.10 1.00 0.12]

 A7 [0.10 0.54 0.20 0.12 0.40 0.12 1.00]

 Returns Vector:

 A1 A2 A3 A4 A5 A6 A7

 r = [0.14 0.77 0.28 0.17 0.56 0.18 0.70]

 Maximum Proportion of Total Budget to be Invested on Assets

 A1 A2 A3 A4 A5 A6 A7

 u = [0.04 0.56 0.37 0.32 0.52 0.38 0.25]

 Target Return:

 R = 0.30

 Maximum Number of Assets:

 K = 3

*/

#include <oxstd.h>

/* LINDO API header file is located under lindoapi\ox */

#import <packages/lindoapi/ox/oxlindo>

/* main entry point */

main()

{

 decl nErrorCode;

/* Number of constraints */

 decl nM = 10;

/* Number of assets (7) plus number of indicator variables (7) */

 decl nN = 14;

/* declare an instance of the LINDO environment object */

 decl pEnv;

/* declare an instance of the LINDO model object */

 decl pModel;

 /***

 * Step 1:Create a LINDO environment.MY_LICENSE_KEY in

 * lndapi100.lic must be defined using the key shipped with

 * your software.

 ***/

 pEnv = OxLScreateEnv();

 /***

 * Step 2: Create a model in the environment.

 ***/

 pModel = LScreateModel (pEnv, &nErrorCode);

 LSerrorCheck(pEnv, nErrorCode);

 {

 /**

 * Step 3: Specify and load the LP portion of the model.

 **/

 /* The maximum number of assets allowed in a portfolio */

 decl K = 3;

782 APPENDIX H

 /* The target return */

 decl R = 0.30;

 /* The direction of optimization */

 decl objsense = LS_MIN;

 /* The objective's constant term */

 decl objconst = 0.;

 /* There are no linear components in the objective function.*/

 decl c = < 0., 0., 0., 0., 0., 0.,0.,

 0., 0., 0., 0., 0., 0.,0.>;

 /* The right-hand sides of the constraints */

 decl rhs = 1.0 ~ R ~ 0. ~ 0. ~ 0. ~ 0. ~ 0. ~ 0. ~ 0. ~ K;

 /* The constraint types */

 decl contype = "EGLLLLLLLL";

 /* The number of nonzeros in the constraint matrix */

 decl Anz = 35;

 /* The indices of the first nonzero in each column */

 decl Abegcol = < 0, 3, 6, 9, 12, 15, 18,

 21, 23, 25, 27, 29, 31, 33> ~ Anz;

 /* The length of each column. Since we aren't leaving

 * any blanks in our matrix, we can set this to NULL */

 decl Alencol = <>;

 /* The nonzero coefficients */

 decl A = < 1.00, 0.14, 1.00,

 1.00, 0.77, 1.00,

 1.00, 0.28, 1.00,

 1.00, 0.17, 1.00,

 1.00, 0.56, 1.00,

 1.00, 0.18, 1.00,

 1.00, 0.70, 1.00,

 -0.04, 1.00,

 -0.56, 1.00,

 -0.37, 1.00,

 -0.32, 1.00,

 -0.52, 1.00,

 -0.38, 1.00,

 -0.25, 1.00 >;

 /* The row indices of the nonzero coefficients */

 decl Arowndx = < 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5,

 0, 1, 6, 0, 1, 7, 0, 1, 8, 2, 9, 3,

 9, 4, 9, 5, 9, 6, 9, 7, 9, 8, 9 >;

 /* By default, all variables have a lower bound of zero

 * and an upper bound of infinity. Therefore pass NULL

 * pointers in order to use these default values. */

 decl lb = <>, ub = <>;

 /**

 * Step 4: Specify and load the quadratic matrix

 **/

 /* The number of nonzeros in the quadratic matrix */

 decl Qnz = 28;

 /* The nonzero coefficients in the Q-matrix */

 decl Q = < 1.00, 0.11, 0.04, 0.02, 0.08, 0.03, 0.10,

 1.00, 0.21, 0.13, 0.43, 0.14, 0.54,

 1.00, 0.05, 0.16, 0.05, 0.20,

 1.00, 0.10, 0.03, 0.12,

 1.00, 0.10, 0.40,

 1.00, 0.12,

An Interface to Ox 783

 1.00 >;

 /* The row indices of the nonzero coefficients in the Q-matrix*/

 decl Qrowndx = < -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1,

 -1, -1, -1, -1,

 -1, -1, -1,

 -1, -1,

 -1 >;

 /* The indices of the first nonzero in each column in the Q-

matrix */

 decl Qcolndx1 = < 0, 1, 2, 3, 4, 5, 6,

 1, 2, 3, 4, 5, 6,

 2, 3, 4, 5, 6,

 3, 4, 5, 6,

 4, 5, 6,

 5, 6,

 6 >;

 decl Qcolndx2 = < 0, 0, 0, 0, 0, 0, 0,

 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2,

 3, 3, 3, 3,

 4, 4, 4,

 5, 5,

 6 >;

 /* Pass the linear portion of the data to problem structure

 * by a call to LSloadLPData() */

 nErrorCode = LSloadLPData(pModel, nM, nN, objsense, objconst,

 c, rhs, contype,

 Anz, Abegcol, Alencol, A, Arowndx,

 lb, ub);

 LSerrorCheck(pEnv, nErrorCode);

 /* Pass the quadratic portion of the data to problem structure

 * by a call to LSloadQCData() */

 nErrorCode = LSloadQCData(pModel, Qnz, Qrowndx,

 Qcolndx1, Qcolndx2, Q);

 LSerrorCheck(pEnv, nErrorCode);

 /* Pass the integrality restriction to problem structure

 * by a call to LSloadVarData() */

 {

 decl vartype = "CCCCCCC" /* w(j) */

 "BBBBBBB" ; /* x(j) */

 nErrorCode = LSloadVarType(pModel, vartype);

 LSerrorCheck(pEnv, nErrorCode);

 }

 }

 /**

 * Step 5: Perform the optimization using the MIP solver

 **/

 decl nStatus;

 nErrorCode = LSsolveMIP(pModel, &nStatus);

 LSerrorCheck(pEnv, nErrorCode);

 {

 /***

 * Step 6: Retrieve the solution

 ***/

784 APPENDIX H

 decl i;

 decl x, MipObj;

 /* Get the value of the objective and solution */

 nErrorCode = LSgetInfo(pModel, LS_DINFO_MIP_OBJ, &MipObj);

 LSerrorCheck(pEnv, nErrorCode);

 LSgetMIPPrimalSolution(pModel, &x) ;

 LSerrorCheck(pEnv, nErrorCode);

 println("*** Optimal Portfolio Objective = ", MipObj);

 for (i = 0; i < nN/2; i++)

 println("Invest ", "%5.2f", 100*x[i], " percent of total

budget in asset ",

 i+1);

 print("\n");

 }

 /**

 * Step 7: Delete the LINDO environment

 ***/

 nErrorCode = LSdeleteEnv(&pEnv);

} /*main*/

After running this program with Ox’s console version, we obtain the output depicted in Figure 11.1.

Figure 11.1 Output for Port.ox

 Appendix I:

List of Abbreviations in
Progress Logs

LINDO API's solver routines, LSsolveMIP and LSsolveGOP in particular, produce progress logs with

certain abbreviations. These correspond to events where the best-known solution (incumbent) or the

best-bound is updated with a better value. The following is the list of these events and the

abbreviations associated with them. Please refer to LSsetModelLogfunc to install a log function to

enable the displaying of progress logs.

(*FP): found a new MIP solution with feasibility pump.

(*AHI):reserved for future use.

(*SBB):found a new MIP solution in tree reorder.

(*SE): found a new MIP solution in simple enumeration.

(*AB): found a new MIP solution in advanced branching.

(*AH): found a new MIP solution with advanced heuristics.

(*C): found a new MIP solution after cuts added.

(*T): found a new MIP solution on the top.

(*SRH): found a new MIP solution in simple rounding heuristics.

(*SB): found a new MIP solution in strong branching.

(*K): found a new MIP solution in knapsack enumerator.

(*): found a new MIP solution normal branching.

(*?-): found a new MIP solution with advanced heuristics (level>10).

(*N): found a new incumbent GOP solution.

(*I): stored a box with the incumbent solution into the GOP solution list.

(*F): determined the final GOP status.

An R Interface 787

Appendix J:

An R Interface
Introduction
R is an open source software for statistical computing and graphics. It is widely used for developing

statistical software and data analysis, in which optimization problems (e.g. linear and nonlinear

regression, least square minimization) sometimes also need to be solved.

rLindo is an R interface to LINDO API. It provides R users the capability to call LINDO API

functions from R directly so that users can solve relatively arbitrary optimization problems, e.g., linear,

quadratic, conic, nonlinear, and integer. By combining the power of LINDO API and R, rLindo also

provides users an easier way for problem data analysis.

The rLindo package is packed as a .tar.gz file, which is shipped within the LINDO API package under

the folder /R. Users can also download rLindo from CRAN website:

http://cran.r-project.org/web/packages/rLindo/index.html.

Installation
rLindo currently supports Windows and Linux operating systems. To install the package, users first

should have LINDO API 10.0 and R installed. Environment variable LINDOAPI_HOME must be set

to the installation path of LINDO API (e.g. /opt/lindoapi), and there must be a valid license file, named

lndapi100.lic, under the folder LINDOAPI_HOME/license, otherwise rLindo will give a “Failed to

load license key” error. For detailed instruction of the installation, users may refer to file HOW-TO-

INSTALL-RLINDO.txt, which can be found under folder /R of the LINDO API package.

Calling Conventions
rLindo supports most public functions in LINDO API. Function names use the convention of 'r' +

name of LINDO API function, e.g. rLScreateEnv in the R interface corresponds to LScreateEnv in

LINDO API. However, all LINDO parameters and constants in rLindo use the same names as in

LINDO API. Detailed usage of the functions and parameters can be found under folder rLindo/man/.

Example. Least Absolution Deviation Estimation
In the following we illustrate the detailed usage of rLindo by giving an example for solving a least

absolution deviation (LAD) estimation problem, note that the italic part is the output of R.

788 APPENDIX J

__

#LAD.R

LINDO-API

Sample Programs

Copyright (c) 2007 by LINDO Systems, Inc

LINDO Systems, Inc. 312.988.7422

1415 North Dayton St. info@lindo.com

Chicago, IL 60622 http://www.lindo.com

We have five observations on a dependent variable d and a single

explanatory variable e,

di ei

2 1

3 2

4 4

5 6

8 7

The LAD problem can be written as a Linear Programming model:

Minimize U1 + V1 + U2 + V2 + U3 + V3 + U4 + V4 + U5 + V5

Subject to

U1 – V1 = 2 – X0 – 1X1

U2 – V2 = 3 – X0 – 2X1

U3 – V3 = 4 – X0 – 4X1

U4 – V4 = 5 – X0 – 6X1

U5 – V5 = 8 – X0 – 7X1

The U and V variables are nonnegative, X0 and X1 unconstrained.

#load the package

library(rLindo)

#create LINDO environment object

rEnv <- rLScreateEnv()

#create LINDO model object within/under the environment

rModel <- rLScreateModel(rEnv)

#number of variables

nVars <- 12

#number of constraints

nCons <- 5

#maximize or minimize the objective function

nDir <- LS_MIN

#objective constant

dObjConst <- 0.

#objective coefficients for U1, V1, ..., U5, V5, X0, X1

adC <- c(1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0.)

#right hand side coefficients of the constraints

adB <- c(2., 3., 4., 5., 8.)

An R Interface 789

#constraint types are all Equality

acConTypes <- "EEEEE"

#number of nonzeros in LHS of the constraints

nNZ <- 20

#index of the first nonzero in each column

anBegCol <- c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20)

#nonzero coefficients of the constraint matrix by column

adA <- c(1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,

 1.0,1.0,1.0,1.0,1.0,1.0,2.0,4.0,6.0,7.0)

#row indices of the nonzeros in the constraint matrix by column

anRowX <- c(0,0,1,1,2,2,3,3,4,4,0,1,2,3,4,0,1,2,3,4)

#lower bound of each variable (X0 and X1 are unconstrained)

pdLower <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -LS_INFINITY, -LS_INFINITY)

#load the data into the model object

rLSloadLPData(rModel, nCons, nVars, nDir, dObjConst, adC, adB, acConTypes,

 nNZ, anBegCol, NULL, adA, anRowX, pdLower, NULL)

Number of constraints: 5 le: 0, ge: 0, eq: 5, rn:

0 (ne:0)

Number of variables : 12 lb: 10, ub: 0, fr: 2, bx:

0 (fx:0)

Number of nonzeroes : 20 density: 0.0033(%) , sb: 10

Abs. Ranges : Min. Max. Condition.

Matrix Coef. (A): 1.00000 7.00000 7.00000

Obj. Vector (c): 1.00000 1.00000 1.00000

RHS Vector (b): 2.00000 8.00000 4.00000

Lower Bounds (l): 1.0000e-100 1.0000e-100 1.00000

Upper Bounds (u): 1.0000e+030 1.0000e+030 1.00000

BadScale Measure: 0

$ErrorCode

[1] 0

#solve the model. LS_METHOD_FREE means solver chooses the algorithm

rLSoptimize(rModel, LS_METHOD_FREE)

Used Method = 2

Used Time = 0

Refactors (ok,stb) = 3 (100.00,100.00)

Simplex Iters = 5

Barrier Iters = 0

Nonlinear Iters = 0

Primal Status = 2

Dual Status = 1

Basis Status = 2

Primal Objective = 2.6666666666666661

Dual Objective = 2.6666666666666661

Duality Gap = 0.000000e+000

Primal Infeas = 0.000000e+000

Dual Infeas = 1.110223e-016

790 APPENDIX J

Basic solution is optimal.

$ErrorCode

[1] 0

$pnStatus

[1] 2

#retrieve value of the objective and display it

rLSgetDInfo(rModel,LS_DINFO_POBJ)

$ErrorCode

[1] 0

$pdResult

[1] 2.666667

#get primal solution and display it

rLSgetPrimalSolution(rModel)

$ErrorCode

[1] 0

$padPrimal

 [1] 0.0000000 0.0000000 0.3333333 0.0000000 0.0000000 0.0000000 0.0000000

 [8] 0.3333333 2.0000000 0.0000000 1.3333333 0.6666667

#get dual solution and display it

rLSgetDualSolution(rModel)

$ErrorCode

[1] 0

$padDual

[1] -0.3333333 1.0000000 -0.6666667 -1.0000000 1.0000000

#delete enviroment and model objects to free memory

rLSdeleteModel(rModel)

$ErrorCode

[1] 0

rLSdeleteEnv(rEnv)

$ErrorCode

[1] 0

Appendix K:

A Python Interface
Introduction
Python is a widely used object-oriented, high-level programming language. Its dynamic semantics,

simple syntax, high-level data structure, and increased productivity make it very attractive for

application development.

pyLindo is a Python interface to LINDO API. It provides Python users the capability to call LINDO

API functions from Python directly so that users can solve relatively arbitrary optimization problems,

e.g., linear, quadratic, conic, nonlinear, and integer. The pyLindo package is shipped within the

LINDO API package under the folder /python.

Installation
pyLindo currently supports Windows and Linux operating systems. To install the package, users first

should have LINDO API 10.0 and Python installed. Environment variable LINDOAPI_HOME must

be set to the installation path of LINDO API (e.g. /opt/lindoapi), and there must be a valid license file,

named lndapi100.lic, under the folder LINDOAPI_HOME/license. For detailed instruction of the

installation, users may refer to file INSTALL, which can be found in the pyLindo package.

Calling Conventions
pyLindo supports most public functions in LINDO API. Function names use the convention of 'py' +

name of LINDO API function, e.g. pyLScreateEnv in the python interface corresponds to LScreateEnv

in LINDO API. However, all LINDO parameters and constants in pyLindo use the same names as in

LINDO API. For more details on LINDO API calling conventions and parameters, please refer to

Chapter 2.

792 APPENDIX K

Example. Solving an LP model with pyLindo
In the following we illustrate the detailed usage of pyLindo by giving an example for solving an LP

model.

__

A Python programming example of interfacing with LINDO API.

The problem:

Minimize x1 + x2 + x3 + x4

s.t.

3x1 + 2x4 = 20

6x2 + 9x4 >= 20

4x1 + 5x2 + 8x3 = 40

7x2 + 1x3 >= 10

2 <= x1 <= 5

1 <= x2 <= +inf

-inf <= x3 <= 10

-inf <= x4 <= +inf

from pyLindo import *

#model data

nCons = 4

nVars = 4

nDir = 1

dObjConst = 0.0

adC = N.array([1.,1.,1.,1.],dtype=N.double)

adB = N.array([20.0,20.0,40.0,10.0],dtype=N.double)

acConTypes = N.array(['E','G','E','G'],dtype=N.character)

nNZ = 9;

anBegCol = N.array([0,2,5,7,9],dtype=N.int32)

pnLenCol = N.asarray(None)

adA = N.array([3.0,4.0,6.0,5.0,7.0,8.0,1.0,2.0,9.0],dtype=N.double)

anRowX = N.array([0,2,1,2,3,2,3,0,1],dtype=N.int32)

pdLower = N.array([2,1,-LSconst.LS_INFINITY,-

LSconst.LS_INFINITY],dtype=N.double)

pdUpper =

N.array([5,LSconst.LS_INFINITY,10,LSconst.LS_INFINITY],dtype=N.double)

#create LINDO environment and model objects

LicenseKey = N.array('',dtype='S1024')

lindo.pyLSloadLicenseString('c:/lindoapi/license/lndapi80.lic',LicenseKey)

pnErrorCode = N.array([-1],dtype=N.int32)

pEnv = lindo.pyLScreateEnv(pnErrorCode,LicenseKey)

pModel = lindo.pyLScreateModel(pEnv,pnErrorCode)

geterrormessage(pEnv,pnErrorCode[0])

#load data into the model

print("Loading LP data...")

errorcode = lindo.pyLSloadLPData(pModel,nCons,nVars,nDir,

 dObjConst,adC,adB,acConTypes,nNZ,anBegCol,

A Python Interface 793

 pnLenCol,adA,anRowX,pdLower,pdUpper)

geterrormessage(pEnv,errorcode)

#solve the model

print("Solving the model...")

pnStatus = N.array([-1],dtype=N.int32)

errorcode = lindo.pyLSoptimize(pModel,LSconst.LS_METHOD_FREE,pnStatus)

geterrormessage(pEnv,errorcode)

#retrieve the objective value

dObj = N.array([-1.0],dtype=N.double)

errorcode = lindo.pyLSgetInfo(pModel,LSconst.LS_DINFO_POBJ,dObj)

geterrormessage(pEnv,errorcode)

print("Objective is: %.5f" %dObj[0])

print("")

#retrieve the primal solution

padPrimal = N.empty((nVars),dtype=N.double)

errorcode = lindo.pyLSgetPrimalSolution(pModel,padPrimal)

geterrormessage(pEnv,errorcode)

print("Primal solution is: ")

for x in padPrimal: print("%.5f" % x)

#delete LINDO model pointer

errorcode = lindo.pyLSdeleteModel(pModel)

geterrormessage(pEnv,errorcode)

#delete LINDO environment pointer

errorcode = lindo.pyLSdeleteEnv(pEnv)

geterrormessage(pEnv,errorcode)

__

The python output of the above sample will be:
__

>>>

Loading LP data...

Solving the model...

Objective is: 10.44118

Primal solution is:

5.00000

1.17647

1.76471

2.50000

>>>

__

Please refer to python/example folder for other model classes and samples.

REFERENCES 795

References

Birge, J. and F. Louveaux(1997), Introduction to Stochastic Programming, Springer.

L'Ecuyer, P., R. Simard, E. Chen, and W. Kelton(2002), "An Object-Oriented Random-Number

Package with Many Long Streams and Substreams", Operations Research, vol. 50, no. 6, pp. 1073-

1075.

796

Acknowledgements

Portions of LINDO Systems products are based on the independent work of:

LAPACK Users' Guide, E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.

LAPACK Users' Guide. SIAM, third edition, 1999, Philadelphia, PA, ISBN 0-89871-447-8.

INDEX
1

100% rule, 600

A

absolute optimality tolerance, 92

absolute value, 454, 494, 512

Add Module command, 363, 594

adding

constraints, 257, 738

variables, 257, 260, 740

addition, 454

AddressOf operator, 318, 320, 593, 594

advanced routines, 290, 761

algebraic reformulation, 110

algorithm

barrier, 405

generalized reduced gradient, 3

alternate optima, 210

ambiguities in MPS Files, 648

analysis routines, 277, 754

analyzing models and solutions, 599

AND function, 454, 458

angular block structure, 611, 754

annuity, 456

antithetic variate, 124, 338, 557

antithetic variates, 579

API

callback functions, 312

error messages, 625

examples, 353

function definitions, 19

arc sine, 455

arc tangent, 455

arguments, right-hand side, 672

ASCII text format, 29

asset investing, 414

asymmetric Q matrix, 410

automatic differentiation, 493

auxiliary routines, 772

available parameters, 61, 133

average, 458

B

backward transformation, 290, 761

barrier algorithm, 405

barrier solver

iterations, 312

license, 117

solving, 61, 66, 74, 97, 186, 359

basis, 762

crossover, 66

cuts, 312

forward transformation, 291

getting, 195, 199, 711

loading, 706

MIPs, 713

parameters, 92

warm start, 181

Beasley, J., 414

Beta distribution, 463, 578

Beta inverse, 463

beta-binomial distribution, 470

Big M, 89, 495

binary variables, 29, 222, 651, 652, 724

Binomial distribution, 578

Binomial inverse, 463

Birge, J., 564

black-box interface, 452, 483, 497

example, 499

blanks, 637, 638

block structure, 400, 401

block structured models, 611

finding, 277, 754

getting, 280, 757

loading, 183, 708

parameters, 63

BNP information, 152

bounds

assets invested, 414

best bounds, 279, 756

defaults, 392, 399, 651, 652, 653

free variables, 637, 651, 652

global optimization, 111

MATLAB, 695, 696, 723, 740, 772, 773

modifying, 271, 274, 749, 753

MPS files, 637

name, 158, 223, 697, 725

objective bounds, 222, 596, 724

ranges, 281, 599, 758

real bound, 96

risk of loss, 410

running time, 95

SUB/SLB, 651, 653

type, 639

variable upper/lower, 157, 221, 261, 370, 651

800 INDEX

branch and bound, 400

branch and price, 400

branch-and-bound

cuts, 89

limits, 88, 100, 107, 113

solver, 190, 393, 399, 519, 711

solver status, 315, 767

branching

branch count, 312, 596

branch direction, 91, 94, 110

global optimization, 107

priorities, 90, 163, 182, 185, 706, 709

strong branching, 96

variable branching, 96, 706

BTRAN, 290, 761

building an application, 361

C

C example, 353, 474, 585, 588

C++ example, 386

debugging, 601–10

calendar, 349

callback functions, 499, 585

definitions, 312, 766

double precision, 588

examples, 585–97

frequency, 61

MIPs, 320, 385, 770

query routines, 312, 766

callback management routines, 312, 766

callback.bas, 593

CALLBACKTYPE, 586

calling conventions, 672, 778

capitalization, 7, 627, 638

cardinality constraints, 414

Cauchy distribution, 463, 578

Cauchy inverse, 463

CCP, 554

cdecl protocol, 586

chance-constrained program, 554

CheckErr(), 367

Chisquare distribution, 578

Chi-square inverse, 463

Chi-squared distribution, 456

Cholesky decomposition, 437

class module, 593

ClassWizard, 388

clique cuts, 312

coefficients

adding, 257, 261, 740

backward transformation, 290, 761

C++ example, 358, 391, 392

coefficient matrix, 12, 221, 359

forward transformation, 762

getting, 219, 220, 222, 722, 723, 724, 772

left-hand side, 651

linearization, 495

loading, 156, 157, 693, 696, 773

modifying, 269, 747

number of, 219, 222, 359, 722, 724

quadratic, 160, 262

reduction, 75, 88, 95, 99

right-hand side, 369, 738

sparse format, 153

storing, 370

Visual Basic example, 397, 398

column

column length, 14, 220, 261, 391, 399

column start, 13, 14, 391, 397

file format, 260, 261, 740

MATLAB, 776

names, 158, 697

nonlinear, 159, 225, 698, 726, 727, 728, 729

column generation, 400

column selection, 372

comments, 650

compiling, 360

complement function, 454

complementarity, 496

complementarity constraint, 495

concurrent, 618

cone optimization, 421

congestion, 432

conjunction, 454

constant in objective, 29, 648

constant term, 154, 156, 220, 270, 271, 488, 694,

696, 723, 750, 772, 773

constraints, 397, 649

adding, 257, 738

C++ example, 358, 392

cardinality, 414

complementarity, 496

cuts, 91

deleting, 265, 744

equal to, 155, 694

errors, 625

forcing, 495

get, 215, 217, 219, 220, 718, 720, 722, 723, 772

greater than, 155, 204, 694

GUB, 88

index of, 166, 219, 292, 293, 297, 298, 763, 764

internal index, 721

left-hand sides, 651

less than, 155, 204, 694

limit, 654

loading, 157, 696, 773

matrix, 157, 221, 359, 696, 723

modifying, 269, 270, 272, 747, 748

names, 158, 223, 649, 721

INDEX 801

nonlinear data, 224, 726, 728, 729

number of, 116, 154, 156, 204, 222, 349, 350,

351, 693, 694, 696, 723, 724

Pluto Dogs example, 391

quadratic, 160, 229, 262, 405

ranges, 282, 599, 758

right-hand sides, 358, 650, 751

selective evaluation, 75

splitting, 650

status, 195

storing, 370

violated, 63, 77

Visual Basic example, 398

continuous model, 186, 204, 710

continuous variables, 186, 200, 210, 212, 496, 653

priorities, 182

contra cuts, 312

converting models to SOCP form, 431

convex models, 62, 78, 494, 497, 498, 515

convexification, 107

core file, 38, 40

core model, 170, 171, 172, 207, 209, 242, 246, 542,

564

correlation, 124, 339, 340, 341, 574

correlation matrix, 559

correlation, inducing, 575

cosine, 455

covariance, 405

crashing, 74, 79

creating

environment, 673

model, 673

creation routines, 24

crossover, 66, 187

cutoff value, 62, 67, 91, 96, 99

cuts

depth, 89

frequency, 89

max passes, 90

total generated, 312

types of, 88, 89, 91

D

data

fields, 388

formulation, 219, 220, 222, 722, 723, 724

getting, 217, 585, 720

global, 24, 585, 593, 595

lines, 639

loading, 163

name, 158, 223, 697, 725

passing, 370

quadratic, 730, 731

storing, 24

structures, 24, 356, 360, 593

types, 19, 46, 357

Date and Time Routines, 349

debug, 601

example, 605

decision variables, 391, 397

decomposition, xi, 611

angular structures, 614

Dantzig-Wolfe, 776

finding, 278, 754

getting, 708, 757

loading, 184

parameters, 63, 110

total, 613

decomposition structure, 400

default bounds, 392, 399, 651, 652, 653

definitions, 19

degrees to radians, 469

deletion routines, 24, 265, 268, 744

examples, 360, 371

MATLAB, 674

nonlinear programming, 484

variables, 746

Delphi, 371

delta tolerance, 89, 107, 495

dependent sample, 558

derivatives, 488

accuracy, 493

calculating, 293, 295, 489, 764, 765

discontinuous, 490

examples, 499

finite differences, 74, 78

getting, 225, 226, 727

setting, 319, 769

determinant, 303

deterministic equivalent, 3, 23, 41, 122

Devex pricing, 65, 66

differentiation, 493

dimensions of model, 46, 369

direction

of constraints, 270

of objective, 358, 391, 397

to branch, 91, 94

disaggregation, 88, 312

discontinuous derivatives, 490

discrete variables, 496

disjunction, 454

Distribution Function Macros, 346

distribution, user defined, 569

division, 454

double precision, 492, 512

callback functions, 588, 596

getting parameters, 48, 50, 686, 688

parameters, 46

setting parameters, 52, 54, 689, 691

802 INDEX

dual

models, 33, 34, 679

objective, 312

reductions, 75, 95, 99

simplex, 66, 74, 88, 186, 359

solution, 200

values, 196, 587, 712, 713

writing, 679

dual angular structure, 277, 612, 754

E

e, 455

educational license, 117

eigenvalue, 405

embedded blanks, 637, 638

END, 649

engineering design, 422

enumeration solver, 93

environment, 25

creating, 24, 353, 367, 673

deleting, 24, 25, 674

space, 24

variables, 361

EP_ABS, 454

EP_ACOS, 455

EP_ACOSH, 461

EP_AND, 454

EP_ASIN, 455

EP_ASINH, 461

EP_ATAN, 455

EP_ATAN2, 455

EP_ATANH, 461

EP_AVG, 458

EP_BNDENS, 467

EP_BTDENS, 467

EP_CARD, 471

EP_CCDENS, 467

EP_COS, 455

EP_COSH, 461

EP_CXDENS, 467

EP_DEGREES, 469

EP_DIVIDE, 454

EP_EQUAL, 454

EP_ERF, 470

EP_EXP, 455

EP_EXPDENS, 467

EP_EXPN, 463

EP_EXPNINV, 466

EP_EXPOINV, 459

EP_EXT_AND, 458

EP_FALSE, 455

EP_FDENS, 467

EP_FLOOR, 455

EP_FPA, 456

EP_FPL, 456

EP_GADENS, 467

EP_GEDENS, 467

EP_GTHAN, 454

EP_GTOREQ, 454

EP_GUDENS, 468

EP_HGDENS, 468

EP_IF, 455

EP_INT, 462

EP_LADENS, 468

EP_LGDENS, 468

EP_LGM, 455

EP_LGNM, 465

EP_LGNMDENS, 468

EP_LGNMINV, 465

EP_LGT, 465

EP_LGTDENS, 468

EP_LGTINV, 465

EP_LN, 454

EP_LNCPSN, 462

EP_LNPSNX, 462

EP_LNX, 461

EP_LOG, 454

EP_LOGB, 461

EP_LOGX, 461

EP_LSQ, 462

EP_LTHAN, 454

EP_LTOREQ, 454

EP_MAX, 458

EP_MIN, 458

EP_MINUS, 454

EP_MLTNMINV, 466

EP_MOD, 455

EP_MULTINV, 459

EP_MULTIPLY, 454

EP_NEGATE, 454

EP_NGBN, 465

EP_NGBNDENS, 468

EP_NGBNINV, 465

EP_NO_OP, 454

EP_NORMCDF, 462

EP_NORMDENS, 459

EP_NORMINV, 459

EP_NORMPDF, 462

EP_NORMSINV, 461

EP_NOT, 454

EP_NOT_EQUAL, 454

EP_NPV, 458

EP_NRM, 465

EP_NRMDENS, 468

EP_NRMINV, 466

EP_OR, 454

EP_PBB, 470

EP_PBBINV, 470

EP_PBDENS, 470

INDEX 803

EP_PBN, 457

EP_PBNINV, 463

EP_PBT, 463

EP_PBTINV, 463

EP_PCC, 463

EP_PCCINV, 463

EP_PCX, 456

EP_PCXINV, 463

EP_PEB, 456

EP_PEL, 456

EP_PERCENT, 454

EP_PFD, 457

EP_PFDINV, 463

EP_PFS, 457

EP_PGA, 463

EP_PGAINV, 463

EP_PGE, 464

EP_PGEINV, 464

EP_PGU, 464

EP_PGUINV, 464

EP_PHG, 457

EP_PHGINV, 464

EP_PI, 455

EP_PLA, 464

EP_PLAINV, 464

EP_PLG, 464

EP_PLGINV, 464

EP_PLUS, 454

EP_POSD, 471

EP_POWER, 454

EP_PPL, 456

EP_PPS, 456

EP_PPSINV, 466

EP_PPT, 465

EP_PPTINV, 465

EP_PSDENS, 469

EP_PSL, 455

EP_PSN, 455

EP_PSS, 470

EP_PTD, 456

EP_PTDENS, 469

EP_PTDINV, 466

EP_PUSH_NUM, 459

EP_PUSH_OR, 458

EP_PUSH_SPAR, 462

EP_PUSH_STR, 462

EP_PUSH_VAR, 459

EP_PWB, 466

EP_PWBINV, 466

EP_RADIANS, 469

EP_RAND, 457

EP_ROUND, 469

EP_ROUNDDOWN, 470

EP_ROUNDUP, 469

EP_SETS, 471

EP_SIGN, 455

EP_SIN, 455

EP_SINH, 461

EP_SQR, 461

EP_SQRT, 454

EP_SSDENS, 470

EP_SSINV, 471

EP_STDEV, 458

EP_SUM, 458

EP_SUMIF, 460

EP_SUMPROD, 460

EP_TAN, 455

EP_TANH, 461

EP_TDENS, 469

EP_TRIADENS, 469

EP_TRIAINV, 459

EP_TRIAN, 466

EP_TRIANINV, 466

EP_TRUE, 455

EP_TRUNC, 461

EP_UNIFDENS, 469

EP_UNIFINV, 459

EP_UNIFM, 466

EP_UNIFMINV, 466

EP_USER, 457

EP_USER operator, 490

EP_USRCOD, 459

EP_VLOOKUP, 460

EP_VMULT, 461

EP_VPUSH_NUM, 461

EP_VPUSH_STR, 462

EP_VPUSH_VAR, 461

EP_WBDENS, 469

EP_WRAP, 456

EP_XEXPNAX, 462

EP_XNEXPMX, 463

equal to

constraints, 157, 219, 220, 257, 722

error messages, 625

operators, 454, 650

quadratic programs, 405

Erlang loss, 456

error codes, 288, 289, 625, 684

error handling routines, 61, 288, 367, 684

EVMU, 145, 150, 579

EVPI, 122, 145, 579

examples

callback functions, 585–97

debugging, 605

linear programs, 353

MATLAB, 774

programming in C, 353, 585

Visual Basic, 393

Excel equivalent, 454

exclamation mark, 650

804 INDEX

expiration, 116, 628

exponential distribution, 459, 578

F

F density, 467

F distribution, 457, 578

false, 455

farming problem, 571

feasibility tolerance, 63, 77

fields, 388

file formats, 28

ASCII text format, 29

column format, 260, 261, 740

error messages, 625

LINDO, 649

LINGO, 28, 36, 681

MPI, 30, 519, 625, 655, 657, 665, 677

MPS, 28, 29, 224, 637

row format, 257, 649

file input, 8

fileLP, 373

finance, 410

financial portfolio, 431

finite differences, 488

black-box interface, 499

coefficients, 160

derivatives, 74, 78, 319, 769

gradients, 320, 489

instruction-list interface, 493

finite source queue, 457

first order approximations, 74

fixed variables, 91, 99, 637

flow cover, 88, 312

forcing constraints, 495

form module, 593

formatted MPS file, 29

formulation data, 219, 220, 222, 722, 723, 724

forward transformation, 291, 762

four vector representation, 14

FREE, 651, 652

free variables, 637, 651, 652

frequency of callbacks, 61

frequency of cuts, 89

frontend, 451

FTRAN, 291, 762

full rank, 405

Funcalc(), 487

functions

definitions, 19

objective, 65, 397, 649, 650

postfix notation, 454

prefixes, 19

prototypes, 356

functions to callback, 499, 585

definitions, 312, 766

frequency, 61

MIPs, 320, 385, 770

G

Gamma density, 467

Gamma distribution, 463, 578

gamma function, 455

Gamma inverse, 463

gaussian distributions, 497

GCD cuts, 88, 312

general integers, 222, 385, 651, 652, 724

general model and solution information, 134

generalized upper bound, 88

geometric distribution, 467

Geometric distribution, 464, 578

geometric distribution inverse, 464

getting

constraints, 217, 219, 720, 722

data, 217, 585, 720

parameters, 47, 48, 166, 686, 687, 688

variable types, 736

GIN, 222, 385, 651, 652, 724

global data, 24, 585, 593, 595

global optimality, 76

global optimization

cuts, 312

non-convex models, 497

nonlinear models, 494, 498

parameters, 106, 116

quadratic programs, 405

solving, 188, 710

global optimization information, 142

global solver, ix, 3, 117, 498, 519

Gomory cuts, 88, 312

Gradcalc(), 489

gradient, 3, 77, 159, 451, 489, 515, 698

greater than, 157, 219, 220, 257, 722

constraints, 204

errors, 625

example, 358, 391, 397

operator, 650

postfix notation, 454

grey-box interface, 452, 490

example, 525, 532

GUB cuts, 88, 312

Gumbel distribution, 464, 578

Gumbel inverse, 464

H

handler code, 388

hashing, 325

header file, 24, 61, 356, 357, 362, 672

INDEX 805

here-and-now, 145

heuristic, 91, 93

histogram, 246

Hungarian notation, 19, 672

Hyper geometric, 457, 468

Hyper geometric inverse, 464

Hypergeometric distribution, 578

I

IF() function, 455

IIS, 35, 601, 680

finding, 278

getting, 283, 759

MATLAB, 755

Iman-Conover method, 575

incumbent solution, 107, 108, 312, 595

indefinite, 405

independent block structure, 611

index

of a row, 221, 231, 261, 370, 724, 733, 740

of constraints, 166, 219, 292, 293, 297, 298, 763,

764

inequality operators, 650

infeasibilities, 312

MATLAB, 755, 759

primal infeasibility, 587, 766

rounded solutions, 652, 653

solver status, 599

infeasible solution, 35, 283, 284, 601, 680

infinity, 651

infix notation, 452

inheriting, 46

initial values, 181, 185, 234, 706, 707, 709, 735

initialization of solver, 181, 706

inner product, 460

Input/Output, of models, 28

instruction list, 424

instruction-list interface, 154, 155, 452, 694

example, 505

instructition format, 492

INT, 651, 652

integer optimization information, 138

integer part, 455

integer programming. See also mixed-integer

programming

callback functions, 320, 595, 596, 770

constraint cuts, 91

cut level, 88, 89

examples, 385, 599

getting, 48, 50

heuristics, 93

internal index, 233, 721, 734

loading, 163

optimality tolerance, 92

setting, 53, 54

slack values, 202, 204, 717

integer variables

binary, 651, 652

block structure, 184

bounded, 637

branching priorities, 182, 709

general, 222, 385, 651, 652, 724

integer feasible tolerance, 92, 96

limit, 116

parameters, 46

solving for, 186, 200, 210, 212

variable status, 195, 199, 280

integrality, 88, 393, 399

interface, 451, 585

black-box, 452, 483, 497, 499

callback function, 592

grey-box, 490, 525, 532

instruction list, 452, 505

java, xi

MATLAB, xi, 669

nonlinear, 451

interior point algorithm, 405

interior point solver, 66, 74, 97, 117, 186, 359

Interior-Point Solver Programs

parameters, 83

internal error, 626

internal index

constraints, 721

getting, 219, 222

variables, 233, 234, 734, 735

interrupt solver, 61, 586, 594, 595, 628

inverse of distribution, 459

inverse of standard Normal, 459, 461

inverse transform of cdf, 578

investing, 414

irreducibly inconsistent set, 35, 601, 680

finding, 278

getting, 283, 759

MATLAB, 755

irreducibly unbounded set, 35, 604, 680

finding, 279

getting, 285, 760

MATLAB, 755

parameters, 119

iterations, 312

barrier, 596

callback functions, 593, 594

iteration limit, 64, 78, 80, 627

nonlinear, 596

simplex, 596

IUS, 35, 601, 604, 680

finding, 279

getting, 285, 760

MATLAB, 755

806 INDEX

parameters, 119

J

Jacobian, 224, 225, 227, 493, 698, 726, 727, 729

java interface, xi

JNI, xi

joint chance constraints, 554

K

Kall, P., 568

K-best solutions, 210

Kendall rank correlation, 558

Kendall tau, 575

Kilosa farmer, 571

knapsack cuts, 88, 312

knapsack solver, 93

L

LAD estimation, 787

Lagrangean relaxation, 400

Laplace density, 468

Laplace distribution, 464, 578

Laplace distribution inverse, 464

Latin hypercube sampling, 124, 338, 557, 558, 560,

579

Latin square sampling, 124, 338, 557, 558, 560, 579

lattice cuts, 88, 312

leading blanks, 637

least absolution deviation, 787

least squares, 462

left-hand sides, 651

arguments, 672

length of column, 14, 261, 391, 399

length of objective, 513

less than, 157, 219, 220, 257, 722

constraints, 204

errors, 625

example, 358, 369

operator, 650

postfix notation, 454

license

barrier, 117, 359, 407, 425

C++ example, 7

educational, 117

error messages, 627, 628

expiration, 116

global, 117

license key, 24, 26

MATLAB, 673, 675

nonlinear, 117, 407, 425

reading, 27

runtime, 117

trial, 116

license key, 7

lifting cuts, 88

limits

branch-and-bound, 100

constraints, 654

integer variables, 116

iteration, 64, 78, 80, 627

license expiration, 116

time limit, 89, 97, 113, 116, 628

variables, 116

LINDO contact information, xii

LINDO format, 28, 649

reading, 28, 676

writing, 33, 36, 678, 681

lindo.bas, 363

lindo.h, 356, 362, 363, 595

lindo.par, 10

linear loss function, 455, 456

linear models, 497

linear programming, 1, 96, 353

getting data, 723

loading, 696

linear solver, 2

linearity, 76, 452, 495

linearization, xi, 3, 89, 494, 513

LINGO format, 28, 36

writing, 681

linking, 360

linking constraints, 401

linking variables, 401

Linux, 10, 787, 791

LMBinPack.m, 776

LMreadf.m, 775

lndapi40.lic, 7, 27

loading

models, 156, 696

variables, 702, 703, 704, 705

Loading Core Model, 542

Loading the Stochastic Structure, 547

Loading the Time Structure, 545

locally optimal, 496, 515

location, 586

logarithm, 454, 488

Logarithmic distribution, 464, 578

Logarithmic inverse, 464

Logarithmic mass function, 468

logical operators, 494

Logistic density, 468

Logistic distribution, 465, 578

Logistic inverse, 465

Lognormal density, 468

Lognormal distribution, 465, 578

Lognormal inverse, 465

long variable, 363

INDEX 807

looping, 392, 398

loose inequality operators, 650

Louveaux, F., 564

lower bounds

adding, 261, 740

best, 279

getting, 221, 695, 723, 772

LINDO files, 651

loading, 157, 696, 773

MIPs, 90

modifying, 271, 749

MPS files, 637

nonlinear programs, 156, 489

objective, 222, 724

SLB, 651, 653

Visual Basic example, 370

LS_BASTYPE_ATLO, 20, 22

LS_BASTYPE_ATUP, 20, 22

LS_BASTYPE_BAS, 20, 22

LS_BASTYPE_FNUL, 20, 22

LS_BASTYPE_SBAS, 20, 22

LS_CONETYPE_QUAD, 21

LS_CONETYPE_RQUAD, 21

LS_CONTYPE_EQ, 21

LS_CONTYPE_FR, 21

LS_CONTYPE_GE, 21

LS_CONTYPE_LE, 21

LS_CONVEX_MINLP, 20

LS_CONVEX_MIQP, 20

LS_CONVEX_NLP, 20

LS_CONVEX_QP, 20

LS_DERIV_BACKWARD_DIFFERENCE, 78

LS_DERIV_CENTER_DIFFERENCE, 78

LS_DERIV_FORWARD_DIFFERENCE, 78

LS_DERIV_FREE, 78

LS_DINFO_BNP_BESTBOUND, 152

LS_DINFO_BNP_BESTOBJ, 152

LS_DINFO_GOP_RELGAP, 143

LS_DINFO_MIP_OBJ, 596

LS_DINFO_MIP_RELGAP, 141

LS_DINFO_MIP_SOLOBJVAL_LST_BRANCH,

596

LS_DINFO_MIPBESTBOUND, 596

LS_DINFO_SAMP_KURTOSIS, 148

LS_DINFO_SAMP_MEAN, 148

LS_DINFO_SAMP_SKEWNESS, 148

LS_DINFO_SAMP_STD, 148

LS_DINFO_STOC_ABSOPT_GAP, 145

LS_DINFO_STOC_CC_PLEVEL, 151

LS_DINFO_STOC_DINFEAS, 145

LS_DINFO_STOC_EVOBJ, 145

LS_DINFO_STOC_NUM_COLS_DETEQE, 147

LS_DINFO_STOC_NUM_COLS_DETEQI, 147

LS_DINFO_STOC_NUM_NODES, 146

LS_DINFO_STOC_NUM_NODES_STAGE, 146

LS_DINFO_STOC_NUM_ROWS_DETEQE, 147

LS_DINFO_STOC_NUM_ROWS_DETEQI, 147

LS_DINFO_STOC_NUM_SCENARIOS, 146

LS_DINFO_STOC_PINFEAS, 145

LS_DINFO_STOC_RELOPT_GAP, 145

LS_DINFO_STOC_THRIMBL, 151

LS_DINFO_STOC_TOTAL_TIME, 146

LS_DPARAM_BNP_BOX_SIZE, 129

LS_DPARAM_BNP_COL_LMT, 130

LS_DPARAM_BNP_INFBND, 129

LS_DPARAM_BNP_ITRLIM_IPM, 130

LS_DPARAM_BNP_ITRLIM_SIM, 130

LS_DPARAM_BNP_SUB_ITRLMT, 130

LS_DPARAM_BNP_TIMLIM, 130

LS_DPARAM_CALLBACKFREQ, 61, 586

LS_DPARAM_GA_BLXA, 131

LS_DPARAM_GA_BLXB, 132

LS_DPARAM_GA_CMUTAT_PROB, 131

LS_DPARAM_GA_CXOVER_PROB, 131

LS_DPARAM_GA_IMUTAT_PROB, 131

LS_DPARAM_GA_INF, 131

LS_DPARAM_GA_INFBND, 131

LS_DPARAM_GA_IXOVER_PROB, 131

LS_DPARAM_GA_MIGRATE_PROB, 133

LS_DPARAM_GA_MUTAT_SPREAD, 131

LS_DPARAM_GA_OBJSTOP, 133

LS_DPARAM_GA_TOL_PFEAS, 131

LS_DPARAM_GA_TOL_ZERO, 131

LS_DPARAM_GA_XOVER_SPREAD, 131

LS_DPARAM_GOP_ABSOPTTOL, 106

LS_DPARAM_GOP_AOPTTIMLIM, 115

LS_DPARAM_GOP_BNDLIM, 107, 111

LS_DPARAM_GOP_BOXTOL, 107

LS_DPARAM_GOP_DELTATOL, 107

LS_DPARAM_GOP_OPTTOL, 108

LS_DPARAM_GOP_PEROPTTOL, 115

LS_DPARAM_GOP_QUAD_METHOD, 115

LS_DPARAM_GOP_RELOPTTOL, 107

LS_DPARAM_GOP_WIDTOL, 107, 108

LS_DPARAM_IIS_ITER_LIMIT, 121

LS_DPARAM_IPM_BASIS_REL_TOL_S, 84

LS_DPARAM_IPM_BASIS_TOL_S, 85

LS_DPARAM_IPM_BASIS_TOL_X, 85

LS_DPARAM_IPM_BI_LU_TOL_REL_PIV, 85

LS_DPARAM_IPM_CO_TOL_INFEAS, 83

LS_DPARAM_IPM_TOL_DSAFE, 84

LS_DPARAM_IPM_TOL_INFEAS, 83

LS_DPARAM_IPM_TOL_MU_RED, 84

LS_DPARAM_IPM_TOL_PATH, 84

LS_DPARAM_IPM_TOL_PFEAS, 84

LS_DPARAM_MIP_ABSCUTTOL, 104

LS_DPARAM_MIP_ABSOPTTOL, 92

LS_DPARAM_MIP_ADDCUTOBJTOL, 91

LS_DPARAM_MIP_ADDCUTPER, 91

LS_DPARAM_MIP_ADDCUTPER_TREE, 91

808 INDEX

LS_DPARAM_MIP_AOPTTIMLIM, 91

LS_DPARAM_MIP_BIGM_FOR_INTTOL, 86

LS_DPARAM_MIP_BRANCH_TOP_VAL_DIFF

_WEIGHT, 103

LS_DPARAM_MIP_CUTOFFOBJ, 95

LS_DPARAM_MIP_CUTOFFVAL, 96

LS_DPARAM_MIP_CUTTIMLIM, 89

LS_DPARAM_MIP_DELTA, 89, 495

LS_DPARAM_MIP_FP_TIMLIM, 88

LS_DPARAM_MIP_FP_WEIGTHT, 87

LS_DPARAM_MIP_HEUMINTIMLIM, 91, 93

LS_DPARAM_MIP_INTTOL, 92

LS_DPARAM_MIP_ITRLIM, 100

LS_DPARAM_MIP_ITRLIM_IPM, 101

LS_DPARAM_MIP_ITRLIM_NLP, 100

LS_DPARAM_MIP_ITRLIM_SIM, 100

LS_DPARAM_MIP_LBIGM, 89, 495

LS_DPARAM_MIP_LSOLTIMLIM, 97

LS_DPARAM_MIP_MINABSOBJSTEP, 98

LS_DPARAM_MIP_OBJ_THRESHOLD, 99

LS_DPARAM_MIP_PARA_INIT_NODE, 104

LS_DPARAM_MIP_PARA_RND_ITRLMT, 104

LS_DPARAM_MIP_PEROPTTOL, 91, 92

LS_DPARAM_MIP_POLISH_ALPHA_TARGET,

103

LS_DPARAM_MIP_PSEUDOCOST_WEIGT, 99

LS_DPARAM_MIP_REDCOSTFIX_CUTOFF, 91

LS_DPARAM_MIP_REDCOSTFIX_CUTOFF_T

REE, 99

LS_DPARAM_MIP_RELINTTOL, 92, 96

LS_DPARAM_MIP_RELOPTTOL, 92

LS_DPARAM_MIP_SWITCHFAC_SIM_IPM_IT

ER, 97

LS_DPARAM_MIP_SWITCHFAC_SIM_IPM_TI

ME, 99

LS_DPARAM_MIP_TIMLIM, 97

LS_DPARAM_NLP_FEASTOL, 77

LS_DPARAM_NLP_INF, 83

LS_DPARAM_NLP_MSW_EUCDIST_THRES,

81

LS_DPARAM_NLP_MSW_OVERLAP_RATIO,

83

LS_DPARAM_NLP_MSW_POXDIST_THRES,

81

LS_DPARAM_NLP_MSW_XKKTRAD_FACTO

R, 81

LS_DPARAM_NLP_MSW_XNULRAD_FACTO

R, 81

LS_DPARAM_NLP_PSTEP_FINITEDIFF, 74

LS_DPARAM_NLP_REDGTOL, 77

LS_DPARAM_OBJPRINTMUL, 65

LS_DPARAM_SAMP_NCM_OPTTOL, 128

LS_DPARAM_SOLVER_CUTOFFVAL, 62, 67

LS_DPARAM_SOLVER_FEASTOL, 48, 63

LS_DPARAM_SOLVER_IUSOL, 65

LS_DPARAM_SOLVER_OPTTOL, 63

LS_DPARAM_SOLVER_PERT_FEASTOL, 69

LS_DPARAM_SOLVER_TIMLMT, 66, 67

LS_DPARAM_STOC_ABSOPTTOL, 123

LS_DPARAM_STOC_ALD_DUAL_FEASTOL,

124

LS_DPARAM_STOC_ALD_DUAL_STEPLEN,

125

LS_DPARAM_STOC_ALD_PRIMAL_FEASTOL

, 125

LS_DPARAM_STOC_ALD_PRIMAL_STEPLEN,

125

LS_DPARAM_STOC_BIGM, 126

LS_DPARAM_STOC_INFBND, 126

LS_DPARAM_STOC_REL_DSTEPTOL, 127

LS_DPARAM_STOC_REL_PSTEPTOL, 127

LS_DPARAM_STOC_RELOPTTOL, 123

LS_DPARAM_STOC_SBD_OBJCUTVAL, 126

LS_DPARAM_STOC_TIME_LIM, 123

LS_FORMATTED_MPS, 29, 677

LS_IINFO_ASSIGNED_MODEL_TYPE, 152

LS_IINFO_BNP_LPCOUNT, 152

LS_IINFO_BNP_NUMCOL, 152

LS_IINFO_BNP_SIM_ITER, 152

LS_IINFO_DIST_TYPE, 147

LS_IINFO_ITER, 596

LS_IINFO_MIP_ACTIVENODES, 596

LS_IINFO_MIP_BRANCHCOUNT, 596

LS_IINFO_MIP_LPCOUNT, 596

LS_IINFO_MIP_LTYPE, 596

LS_IINFO_MIP_NEWIPSOL, 596

LS_IINFO_MIP_SOLSTATUS_LAST_BRANCH,

596

LS_IINFO_MIP_STATUS, 596

LS_IINFO_MODEL_TYPE, 152

LS_IINFO_NUM_STOCPAR_AIJ, 146

LS_IINFO_NUM_STOCPAR_INSTR_CONS, 146

LS_IINFO_NUM_STOCPAR_INSTR_OBJS, 146

LS_IINFO_NUM_STOCPAR_LB, 146

LS_IINFO_NUM_STOCPAR_OBJ, 146

LS_IINFO_NUM_STOCPAR_RHS, 146

LS_IINFO_NUM_STOCPAR_UB, 146

LS_IINFO_SAMP_SIZE, 147

LS_IINFO_STOC_BAR_ITER, 145

LS_IINFO_STOC_NLP_ITER, 145

LS_IINFO_STOC_NUM_BENDERS_FCUTS, 147

LS_IINFO_STOC_NUM_BENDERS_OCUTS,

147

LS_IINFO_STOC_NUM_BIN_CONS_DETEQC,

150

LS_IINFO_STOC_NUM_BIN_DETEQC, 150

LS_IINFO_STOC_NUM_CC_VIOLATED, 150

LS_IINFO_STOC_NUM_COLS_BEFORE_NODE

, 147

LS_IINFO_STOC_NUM_COLS_CORE, 147

INDEX 809

LS_IINFO_STOC_NUM_COLS_DETEQC, 150

LS_IINFO_STOC_NUM_COLS_DETEQE, 147

LS_IINFO_STOC_NUM_COLS_DETEQI, 147

LS_IINFO_STOC_NUM_COLS_NAC, 147

LS_IINFO_STOC_NUM_COLS_STAGE, 147

LS_IINFO_STOC_NUM_CONT_CONS_DETEQ

C, 150

LS_IINFO_STOC_NUM_CONT_DETEQC, 151

LS_IINFO_STOC_NUM_EQROWS, 151

LS_IINFO_STOC_NUM_EQROWS_CC, 150

LS_IINFO_STOC_NUM_INT_CONS_DETEQC,

150

LS_IINFO_STOC_NUM_INT_DETEQC, 151

LS_IINFO_STOC_NUM_NLP_CONS_DETEQC,

151

LS_IINFO_STOC_NUM_NLP_NONZ_DETEQC,

151

LS_IINFO_STOC_NUM_NLP_VARS_DETEQC,

151

LS_IINFO_STOC_NUM_NLPOBJ_NONZ_DETE

QC, 151

LS_IINFO_STOC_NUM_NODE_MODELS, 146

LS_IINFO_STOC_NUM_NODES, 146

LS_IINFO_STOC_NUM_NODES_STAGE, 146

LS_IINFO_STOC_NUM_NONZ_DETEQC, 150

LS_IINFO_STOC_NUM_NONZ_OBJ_DETEQC,

151

LS_IINFO_STOC_NUM_NONZ_OBJ_DETEQE,

151

LS_IINFO_STOC_NUM_QC_NONZ_DETEQC,

151

LS_IINFO_STOC_NUM_QCP_CONS_DETEQC,

150

LS_IINFO_STOC_NUM_QCP_CONS_DETEQE,

148

LS_IINFO_STOC_NUM_QCP_VARS_DETEQC,

150

LS_IINFO_STOC_NUM_ROWS_BEFORE_NOD

E, 147

LS_IINFO_STOC_NUM_ROWS_CORE, 147

LS_IINFO_STOC_NUM_ROWS_DETEQC, 150

LS_IINFO_STOC_NUM_ROWS_DETEQE, 147

LS_IINFO_STOC_NUM_ROWS_DETEQI, 147

LS_IINFO_STOC_NUM_ROWS_NAC, 147

LS_IINFO_STOC_NUM_ROWS_STAGE, 147

LS_IINFO_STOC_NUM_SCENARIOS, 146

LS_IINFO_STOC_NUM_STAGES, 146

LS_IINFO_STOC_STAGE_BY_NODE, 146

LS_IINFO_STOC_STATUS, 146

LS_IINFO_STOC_THREADS, 151

LS_IIS_ADD_FILTER, 22, 602

LS_IIS_DEFAULT, 22, 602

LS_IIS_DEL_FILTER, 22, 602

LS_IIS_DFBS_FILTER, 23, 602

LS_IIS_ELS_FILTER, 23, 603

LS_IIS_FSC_FILTER, 23, 602

LS_IIS_GBS_FILTER, 22, 602

LS_IIS_NORM_FREE, 22, 603

LS_IIS_NORM_INFINITY, 22, 603

LS_IIS_NORM_ONE, 22, 603

LS_IMAT_AIJ, 23

LS_INFINITY, 21, 157, 221, 261

LS_IPARAM_ MIP_USECUTOFFOBJ, 96

LS_IPARAM_ALLOW_CNTRLBREAK, 61

LS_IPARAM_BARRIER_SOLVER, 61

LS_IPARAM_BNP_BRANCH_LIMIT, 130

LS_IPARAM_BNP_FIND_BLK, 130

LS_IPARAM_BNP_LEVEL, 129

LS_IPARAM_BNP_NUM_THREADS, 129

LS_IPARAM_BNP_PRELEVEL, 130

LS_IPARAM_BNP_PRINT_LEVEL, 129

LS_IPARAM_CHECK_FOR_ERRORS, 61

LS_IPARAM_COPY_MODE, 69

LS_IPARAM_CORE_ORDER_BY_STAGE, 125

LS_IPARAM_DECOMPOSITION_TYPE, 63

LS_IPARAM_FIND_BLOCK, 70

LS_IPARAM_GA_CMUTAT_METHOD, 132

LS_IPARAM_GA_CXOVER_METHOD, 132

LS_IPARAM_GA_FILEOUT, 133

LS_IPARAM_GA_IMUTAT_METHOD, 132

LS_IPARAM_GA_INJECT_OPT, 133

LS_IPARAM_GA_IXOVER_METHOD, 132

LS_IPARAM_GA_NGEN, 132

LS_IPARAM_GA_NUM_THREADS, 133

LS_IPARAM_GA_OBJDIR, 133

LS_IPARAM_GA_POPSIZE, 132

LS_IPARAM_GA_PRINTLEVEL, 133

LS_IPARAM_GA_SEED, 132

LS_IPARAM_GA_SSPACE, 133

LS_IPARAM_GOP_ALGREFORMMD, 110

LS_IPARAM_GOP_BBSRCHMD, 110

LS_IPARAM_GOP_BRANCH_LIMIT, 112

LS_IPARAM_GOP_BRANCHMD, 109

LS_IPARAM_GOP_CORELEVEL, 113

LS_IPARAM_GOP_DECOMPPTMD, 110

LS_IPARAM_GOP_FLTTOL, 115

LS_IPARAM_GOP_HEU_MODE, 113

LS_IPARAM_GOP_LINEARZ, 115

LS_IPARAM_GOP_LPSOPT, 113

LS_IPARAM_GOP_LSOLBRANLIM, 113

LS_IPARAM_GOP_MAXWIDMD, 107, 108

LS_IPARAM_GOP_MULTILINEAR, 115

LS_IPARAM_GOP_NUM_THREADS, 115

LS_IPARAM_GOP_OBJ_THRESHOLD, 115

LS_IPARAM_GOP_OPT_MODE, 111

LS_IPARAM_GOP_OPTCHKMD, 108

LS_IPARAM_GOP_POSTLEVEL, 109

LS_IPARAM_GOP_PRELEVEL, 109

LS_IPARAM_GOP_PRINTLEVEL, 110

LS_IPARAM_GOP_RELBRNDMD, 111

810 INDEX

LS_IPARAM_GOP_SUBOUT_MODE, 113

LS_IPARAM_GOP_TIMLIM, 107

LS_IPARAM_GOP_USE_NLPSOLVE, 113

LS_IPARAM_GOP_USEBNDLIM, 111

LS_IPARAM_IIS_ANALYZE_LEVEL, 119

LS_IPARAM_IIS_GETMODE, 121

LS_IPARAM_IIS_INFEAS_NORM, 120

LS_IPARAM_IIS_ITER_LIMIT, 120

LS_IPARAM_IIS_METHOD, 118

LS_IPARAM_IIS_NUM_THREADS, 121

LS_IPARAM_IIS_PRINT_LEVEL, 120

LS_IPARAM_IIS_REOPT, 120

LS_IPARAM_IIS_TIME_LIMIT, 120

LS_IPARAM_IIS_TOPOPT, 120

LS_IPARAM_IIS_USE_EFILTER, 118

LS_IPARAM_IIS_USE_GOP, 118

LS_IPARAM_IIS_USE_SFILTER, 120

LS_IPARAM_INSTRUCT_LOADTYPE, 62

LS_IPARAM_INSTRUCT_SUBOUT, 70

LS_IPARAM_IPM_CHECK_CONVEXITY, 85

LS_IPARAM_IPM_MAX_ITERATIONS, 85

LS_IPARAM_IPM_NUM_THREADS, 85

LS_IPARAM_IPM_OFF_COL_TRH, 85

LS_IPARAM_IUS_ANALYZE_LEVEL, 119

LS_IPARAM_LIC_BARRIER, 117

LS_IPARAM_LIC_CONIC, 117

LS_IPARAM_LIC_CONSTRAINTS, 116

LS_IPARAM_LIC_DAYSTOEXP, 116

LS_IPARAM_LIC_DAYSTOTRIALEXP, 116

LS_IPARAM_LIC_EDUCATIONAL, 117

LS_IPARAM_LIC_GLOBAL, 117

LS_IPARAM_LIC_GOP_INTEGERS, 116

LS_IPARAM_LIC_GOP_NONLINEARVARS,

116

LS_IPARAM_LIC_INTEGERS, 116

LS_IPARAM_LIC_MIP, 117

LS_IPARAM_LIC_NONLINEAR, 117

LS_IPARAM_LIC_NONLINEARVARS, 116

LS_IPARAM_LIC_NUMUSERS, 117

LS_IPARAM_LIC_PLATFORM, 116

LS_IPARAM_LIC_RUNTIME, 117

LS_IPARAM_LIC_SP, 118

LS_IPARAM_LIC_VARIABLES, 116

LS_IPARAM_LP_PCOLAL_FACTOR, 73

LS_IPARAM_LP_PRELEVEL, 67

LS_IPARAM_LP_PRINTLEVEL, 65, 76

LS_IPARAM_LP_RATRANGE, 73

LS_IPARAM_LP_SCALE, 64

LS_IPARAM_MAXCUTPASS_TREE, 90

LS_IPARAM_MIP_AGGCUTLIM_TOP, 98

LS_IPARAM_MIP_AGGCUTLIM_TREE, 98

LS_IPARAM_MIP_ANODES_SWITCH_DF, 97

LS_IPARAM_MIP_BNB_TRY_BNP, 106

LS_IPARAM_MIP_BRANCH_LIMIT, 97

LS_IPARAM_MIP_BRANCH_PRIO, 90

LS_IPARAM_MIP_BRANCHDIR, 91

LS_IPARAM_MIP_BRANCHRULE, 94

LS_IPARAM_MIP_CONCURRENT_REOPTMO

DE, 102

LS_IPARAM_MIP_CONCURRENT_STRATEGY

, 101

LS_IPARAM_MIP_CONCURRENT_TOPOPTM

ODE, 101

LS_IPARAM_MIP_CUTDEPTH, 89

LS_IPARAM_MIP_CUTFREQ, 89

LS_IPARAM_MIP_CUTLEVEL_TOP, 88

LS_IPARAM_MIP_CUTLEVEL_TREE, 89

LS_IPARAM_MIP_DUAL_SOLUTION, 98

LS_IPARAM_MIP_FP_HEU_MODE, 100

LS_IPARAM_MIP_FP_ITRLIM, 88

LS_IPARAM_MIP_FP_MODE, 87

LS_IPARAM_MIP_FP_OPT_METHOD, 88

LS_IPARAM_MIP_GENERAL_MODE, 103

LS_IPARAM_MIP_HEU_DROP_OBJ, 104

LS_IPARAM_MIP_HEU_MODE, 87

LS_IPARAM_MIP_HEULEVEL, 91, 93

LS_IPARAM_MIP_KEEPINMEM, 92

LS_IPARAM_MIP_LOCALBRANCHNUM, 99

LS_IPARAM_MIP_MAKECUT_INACTIVE_CO

UNT, 84, 87

LS_IPARAM_MIP_MAXCUTPASS_TOP, 90

LS_IPARAM_MIP_MAXNONIMP_CUTPASS,

90

LS_IPARAM_MIP_MAXNUM_MIP_SOL_STOR

AGE, 100

LS_IPARAM_MIP_NODESELRULE, 94

LS_IPARAM_MIP_NUM_THREADS, 102

LS_IPARAM_MIP_PARA_FP, 105

LS_IPARAM_MIP_PARA_FP_MODE, 105

LS_IPARAM_MIP_PARA_ITR_MODE, 104

LS_IPARAM_MIP_PARA_SUB, 103

LS_IPARAM_MIP_PERSPECTIVE_REFORM,

104

LS_IPARAM_MIP_POLISH_MAX_BRANCH_C

OUNT, 103

LS_IPARAM_MIP_POLISH_NUM_BRANCH_N

EXT, 103

LS_IPARAM_MIP_PRE_ELIM_FILL, 84, 87

LS_IPARAM_MIP_PREHEU_DFE_VSTLIM, 101

LS_IPARAM_MIP_PREHEU_LEVEL, 101

LS_IPARAM_MIP_PREHEU_PRE_LEVEL, 102

LS_IPARAM_MIP_PREHEU_PRINT_LEVEL,

102

LS_IPARAM_MIP_PREHEU_TC_ITERLIM, 101

LS_IPARAM_MIP_PREHEU_VAR_SEQ, 101

LS_IPARAM_MIP_PRELEVEL, 95

LS_IPARAM_MIP_PRELEVEL_TREE, 99

LS_IPARAM_MIP_PREPRINTLEVEL, 95

LS_IPARAM_MIP_PRINTLEVEL, 95

LS_IPARAM_MIP_PSEUDOCOST_RULE, 98

INDEX 811

LS_IPARAM_MIP_REOPT, 96

LS_IPARAM_MIP_REP_MODE, 106

LS_IPARAM_MIP_SCALING_BOUND, 90

LS_IPARAM_MIP_SOLVERTYPE, 93

LS_IPARAM_MIP_STRONGBRANCHDONUM,

87

LS_IPARAM_MIP_STRONGBRANCHLEVEL,

96

LS_IPARAM_MIP_TIMLIM, 105

LS_IPARAM_MIP_TOPOPT, 97

LS_IPARAM_MIP_TREEREORDERLEVEL, 96

LS_IPARAM_MIP_TREEREORDERMODE, 105

LS_IPARAM_MIP_USE_CUTS_HEU, 86

LS_IPARAM_MIP_USE_ENUM_HEU, 98

LS_IPARAM_MIP_USE_INT_ZERO_TOL, 86

LS_IPARAM_MIP_USE_PARTIALSOL_LEVEL,

103

LS_IPARAM_MPS_OBJ_WRITESTYLE, 62

LS_IPARAM_MULTITHREAD_MODE, 69

LS_IPARAM_NLP_AUTODERIV, 75, 493

LS_IPARAM_NLP_AUTOHESS, 79

LS_IPARAM_NLP_CONVEX, 78

LS_IPARAM_NLP_CONVEXRELAX, 78

LS_IPARAM_NLP_CR_ALG_REFORM, 78

LS_IPARAM_NLP_DERIV_TYPE, 78

LS_IPARAM_NLP_FEASCHK, 77

LS_IPARAM_NLP_ITERS_PER_LOGLINE, 80

LS_IPARAM_NLP_ITRLMT, 78, 80

LS_IPARAM_NLP_LINEARITY, 76, 495

LS_IPARAM_NLP_LINEARZ, 76, 495

LS_IPARAM_NLP_MAX_RETRY, 80

LS_IPARAM_NLP_MAXLOCALSEARCH, 78,

519

LS_IPARAM_NLP_MAXLOCALSEARCH_TRE

E, 81

LS_IPARAM_NLP_MSW_FILTMODE, 81

LS_IPARAM_NLP_MSW_MAXNOIMP, 80

LS_IPARAM_NLP_MSW_MAXPOP, 80

LS_IPARAM_NLP_MSW_NORM, 80

LS_IPARAM_NLP_MSW_NUM_THREADS, 81

LS_IPARAM_NLP_MSW_POPSIZE, 80

LS_IPARAM_NLP_MSW_PREPMODE, 82

LS_IPARAM_NLP_MSW_RG_SEED, 81

LS_IPARAM_NLP_MSW_RMAPMODE, 82

LS_IPARAM_NLP_MSW_SOLIDX, 80

LS_IPARAM_NLP_PRELEVEL, 75

LS_IPARAM_NLP_QUADCHK, 78

LS_IPARAM_NLP_SOLVE_AS_LP, 74

LS_IPARAM_NLP_SOLVER, 74

LS_IPARAM_NLP_STALL_ITRLMT, 79

LS_IPARAM_NLP_STARTPOINT, 78

LS_IPARAM_NLP_SUBSOLVER, 74

LS_IPARAM_NLP_USE_CRASH, 74

LS_IPARAM_NLP_USE_LINDO_CRASH, 79

LS_IPARAM_NLP_USE_SELCONEVAL, 75

LS_IPARAM_NLP_USE_SLP, 75

LS_IPARAM_NLP_USE_STEEPEDGE, 75

LS_IPARAM_NLP_XSMODE, 82

LS_IPARAM_NUM_THREADS, 70

LS_IPARAM_OBJSENSE, 65

LS_IPARAM_PROB_TO_SOLVE, 66

LS_IPARAM_SAMP_NCM_ITERLIM, 128

LS_IPARAM_SAMP_NUM_THREADS, 128

LS_IPARAM_SAMP_RG_BUFFER_SIZE, 128

LS_IPARAM_SBD_NUM_THREADS, 69

LS_IPARAM_SOL_REPORT_STYLE, 61

LS_IPARAM_SOLVER_IPMSOL, 66, 187

LS_IPARAM_SOLVER_PARTIALSOL_LEVEL,

69

LS_IPARAM_SOLVER_PRE_ELIM_FILL, 68

LS_IPARAM_SOLVER_RESTART, 66

LS_IPARAM_SOLVER_USE_CONCURRENT_O

PT, 85

LS_IPARAM_SOLVER_USECUTOFFVAL, 67

LS_IPARAM_SPLEX_DPRICING, 66

LS_IPARAM_SPLEX_DUAL_PHASE, 68

LS_IPARAM_SPLEX_ITRLMT, 64

LS_IPARAM_SPLEX_PPRICING, 65

LS_IPARAM_SPLEX_REFACFRQ, 61

LS_IPARAM_STOC_ADD_MPI, 126

LS_IPARAM_STOC_ALD_INNER_ITER_LIM,

124

LS_IPARAM_STOC_ALD_OUTER_ITER_LIM,

124

LS_IPARAM_STOC_AUTOAGGR, 125

LS_IPARAM_STOC_BENCHMARK_SCEN, 126

LS_IPARAM_STOC_BUCKET_SIZE, 123

LS_IPARAM_STOC_CALC_EVPI, 122

LS_IPARAM_STOC_DETEQ_NBLOCKS, 128

LS_IPARAM_STOC_DETEQ_TYPE, 122

LS_IPARAM_STOC_DS_SUBFORM, 127

LS_IPARAM_STOC_ELIM_FXVAR, 126

LS_IPARAM_STOC_ITER_LIM, 122

LS_IPARAM_STOC_MAP_MPI2LP, 125

LS_IPARAM_STOC_METHOD, 121

LS_IPARAM_STOC_NAMEDATA_LEVEL, 127

LS_IPARAM_STOC_NODELP_PRELEVEL, 123

LS_IPARAM_STOC_NSAMPLE_SPAR, 121

LS_IPARAM_STOC_NSAMPLE_STAGE, 121

LS_IPARAM_STOC_NUM_THREADS, 128

LS_IPARAM_STOC_PRINT_LEVEL, 122

LS_IPARAM_STOC_REOPT, 122

LS_IPARAM_STOC_RG_SEED, 121

LS_IPARAM_STOC_SAMP_CONT_ONLY, 122

LS_IPARAM_STOC_SBD_MAXCUTS, 127

LS_IPARAM_STOC_SBD_NUMCANDID, 126

LS_IPARAM_STOC_SBD_OBJCUTFLAG, 126

LS_IPARAM_STOC_SHARE_BEGSTAGE, 123

LS_IPARAM_STOC_TOPOPT, 122

812 INDEX

LS_IPARAM_STOC_VARCONTROL_METHOD

, 124, 127

LS_IPARAM_VER_BUILD, 67

LS_IPARAM_VER_MAJOR, 67

LS_IPARAM_VER_MINOR, 67

LS_IPARAM_VER_NUMBER, 67

LS_IPARAM_VER_REVISION, 67

LS_IROW_OBJ, 23

LS_IROW_VFX, 23

LS_IROW_VLB, 23

LS_IROW_VUB, 23

LS_JCOL_INST, 23

LS_JCOL_RHS, 23

LS_JCOL_RLB, 23

LS_JCOL_RUB, 23

LS_LINK_BLOCKS_BOTH, 63

LS_LINK_BLOCKS_COLS, 63

LS_LINK_BLOCKS_FREE, 63

LS_LINK_BLOCKS_NONE, 63

LS_LINK_BLOCKS_ROWS, 63

LS_LP, 20

LS_MAX, 21, 156, 220, 370

LS_MAX_ERROR_MESSAGE_LENGTH, 288

LS_METHOD_BARRIER, 22, 74, 186

LS_METHOD_DSIMPLEX, 22, 74, 186

LS_METHOD_FREE, 21, 186

LS_METHOD_GA, 22

LS_METHOD_HEUMIP, 22

LS_METHOD_NLP, 22, 186

LS_METHOD_PRIMIP, 22

LS_METHOD_PSIMPLEX, 22, 74, 186, 359

LS_METHOD_STOC_ALD, 23

LS_METHOD_STOC_DETEQ, 23

LS_METHOD_STOC_FREE, 23

LS_METHOD_STOC_HS, 23

LS_METHOD_STOC_NBD, 23

LS_MILP, 20

LS_MIN, 21, 154, 156, 220, 358, 391, 397, 694

LS_MINLP, 20

LS_MIP_SET_CARD, 22

LS_MIP_SET_SOS1, 22

LS_MIP_SET_SOS2, 22

LS_MIP_SET_SOS3, 22

LS_MIQP, 20

LS_MISDP, 20

LS_MISOCP, 20

LS_NLP, 20

LS_NMETHOD_CONOPT, 74

LS_NMETHOD_FREE, 74

LS_NMETHOD_MSW_GRG, 74

LS_QP, 20

LS_SDP, 20

LS_SINFO_CORE_FILENAME, 151

LS_SINFO_MODEL_FILENAME, 152

LS_SINFO_MODEL_SOURCE, 152

LS_SINFO_STOC_FILENAME, 151

LS_SINFO_TIME_FILENAME, 151

LS_SOCP, 20

LS_SOLUTION_MIP, 22

LS_SOLUTION_MIP_OLD, 22

LS_SOLUTION_OPT, 22

LS_SOLUTION_OPT_IPM, 22

LS_SOLUTION_OPT_OLD, 22

LS_SPARAM_STOC_FMT_NODE_NAME, 125

LS_SPARAM_STOC_FMT_SCENARIO_NAME,

125

LS_STATUS_CUTOFF, 21

LS_STATUS_INFORUNB, 20

LS_STATUS_LOADED, 21

LS_STATUS_LOCAL_INFEASIBLE, 21

LS_STATUS_LOCAL_OPTIMAL, 21

LS_STATUS_NEAR_OPTIMAL, 20

LS_STATUS_NUMERICAL_ERROR, 21

LS_STATUS_UNKNOWN, 21

LS_STATUS_UNLOADED, 21

LS_UNDETERMINED, 20

LS_UNFORMATTED_MPS, 29

LS_VARTYPE_BIN, 21

LS_VARTYPE_CONT, 21

LS_VARTYPE_INT, 21

LSaddCones(), 256, 737

LSaddConstraints(), 257, 260, 738, 740

LSaddContinuousIndep (), 170

LSaddDiscreteBlocks (), 171

LSaddDiscreteIndep (), 169

LSaddNLPAj(), 263

LSaddNLPobj(), 264

LSaddObjPool(), 178

LSaddQCterms(), 261

LSaddScenario (), 172

LSaddSETS(), 260, 739, 741, 742, 743

LSaddUserDist(), 275, 276

LSaddUserDistr(), 569

LSaddVariables(), 257, 260, 740

LSbuildStringData(), 165

LScalcConFunc(), 292, 763

LScalcConGrad(), 293, 764

LScalcObjFunc(), 294, 763

LScalcObjGrad(), 295, 765

LScheckQterms(), 297

LScomputeFunction(), 296

LScopyParam(), 59

LScreateEnv(), 24, 357, 363, 483, 627, 673

quadratic programming, 407, 426, 443

LScreateModel(), 24, 25, 357, 363, 367, 483, 673

quadratic programming, 407, 426, 443

LScreateRG (), 328

LSdateDiffSecs (), 349

LSdateToday (), 351

LSdateYmdhms (), 350

INDEX 813

LSdeleteAj(), 267

LSdeleteCones(), 264, 743

LSdeleteConstraints(), 265, 744

LSdeleteEnv(), 24, 25, 360, 371, 407, 426, 443, 674

nonlinearprogramming, 484

LSdeleteModel(), 25, 26, 674

LSdeleteNLPobj(), 266

LSdeleteQCterms(), 265, 744

LSdeleteSemiContVars(), 267, 745

LSdeleteSETS(), 268, 745, 746, 747

LSdeleteString(), 166

LSdeleteStringData(), 165

LSdeleteVariables(), 268, 746

LSdisposeRG (), 330

LSdoBTRAN(), 290, 761

LSdoFTRAN(), 291, 762

LSenv()

creating, 24, 673

deleting, 25, 674

error messages, 288

getting, 47, 48, 686, 687

setting, 51, 52, 53, 689, 690

LSERR_ARRAY_OUT_OF_BOUNDS, 631

LSERR_BAD_CONSTRAINT_TYPE, 625

LSERR_BAD_DECOMPOSITION_TYPE, 625

LSERR_BAD_DISTRIBUTION_TYPE, 631

LSERR_BAD_LICENSE_FILE, 625

LSERR_BAD_MODEL, 625

LSERR_BAD_MPI_FILE, 625

LSERR_BAD_MPS_FILE, 625

LSERR_BAD_OBJECTIVE_SENSE, 625

LSERR_BAD_SMPI_CORE_FILE, 629

LSERR_BAD_SMPI_STOC_FILE, 629

LSERR_BAD_SMPS_CORE_FILE, 629

LSERR_BAD_SMPS_STOC_FILE, 629

LSERR_BAD_SMPS_TIME_FILE, 629

LSERR_BAD_SOLVER_TYPE, 625

LSERR_BAD_VARIABLE_TYPE, 625

LSERR_BASIS_BOUND_MISMATCH, 625

LSERR_BASIS_COL_STATUS, 625

LSERR_BASIS_INVALID, 625

LSERR_BASIS_ROW_STATUS, 625

LSERR_BLOCK_OF_BLOCK, 626

LSERR_BOUND_OUT_OF_RANGE, 626

LSERR_CANNOT_OPEN_CORE_FILE, 629

LSERR_CANNOT_OPEN_FILE, 626

LSERR_CANNOT_OPEN_STOC_FILE, 629

LSERR_CANNOT_OPEN_TIME_FILE, 629

LSERR_CHECKSUM, 626

LSERR_CLOCK_SETBACK, 635

LSERR_COL_BEGIN_INDEX, 626

LSERR_COL_INDEX_OUT_OF_RANGE, 626

LSERR_COL_LIMIT, 635

LSERR_COL_NONZCOUNT, 626

LSERR_CORE_BAD_AGGREGATION, 630

LSERR_CORE_BAD_NUMSTAGES, 630

LSERR_CORE_BAD_STAGE_INDEX, 630

LSERR_CORE_INVALID_SPAR_INDEX, 629

LSERR_CORE_NOT_IN_TEMPORAL_ORDER,

631

LSERR_CORE_SPAR_COUNT_MISMATCH,

629

LSERR_CORE_SPAR_NOT_FOUND, 629

LSERR_CORE_SPAR_VALUE_NOT_FOUND,

630

LSERR_CORE_TIME_MISMATCH, 630

LSERR_DATA_TERM_EXIST, 628

LSERR_DIST_BAD_CORRELATION_TYPE,

632

LSERR_DIST_INVALID_NUMPARAM, 631

LSERR_DIST_INVALID_PARAMS, 631

LSERR_DIST_INVALID_PROBABILITY, 631

LSERR_DIST_INVALID_SD, 631

LSERR_DIST_INVALID_X, 631

LSERR_DIST_NO_DERIVATIVE, 631

LSERR_DIST_NO_PDF_LIMIT, 631

LSERR_DIST_ROOTER_ITERLIM, 631

LSERR_DIST_SCALE_OUT_OF_RANGE, 631

LSERR_DIST_SHAPE_OUT_OF_RANGE, 631

LSERR_DIST_TRUNCATED, 631

LSERR_EMPTY_COL_STAGE, 632

LSERR_EMPTY_ROW_STAGE, 632

LSERR_ERRMSG_FILE_NOT_FOUND, 626

LSERR_ERROR_IN_INPUT, 154, 157, 162, 626,

694, 701

LSERR_GOP_BRANCH_LIMIT, 626

LSERR_GOP_FUNC_NOT_SUPPORTED, 626

LSERR_ILLEGAL_NULL_POINTER, 626

LSERR_INCOMPATBLE_DECOMPOSITION,

634

LSERR_INDEX_DUPLICATE, 626

LSERR_INDEX_OUT_OF_RANGE, 157, 162,

626, 701

LSERR_INFO_NOT_AVAILABLE, 626

LSERR_INFO_UNAVAILABLE, 630

LSERR_INST_INVALID_BOUND, 628

LSERR_INST_MISS_ELEMENTS, 628

LSERR_INST_SYNTAX_ERROR, 628

LSERR_INST_TOO_SHORT, 628

LSERR_INSTRUCT_NOT_LOADED, 626

LSERR_INTERNAL_ERROR, 626

LSERR_INVALID_ERRORCODE, 627

LSERR_INVALID_NTHREADS, 634

LSERR_INVALID_PARAMID, 634

LSERR_ITER_LIMIT, 627

LSERR_LAST_ERROR, 627, 628

LSERR_LDL_BAD_MATRIX_DATA, 635

LSERR_LDL_DUPELEM, 635

LSERR_LDL_EMPTY_COL, 635

LSERR_LDL_EMPTY_MATRIX, 635

814 INDEX

LSERR_LDL_FACTORIZATION, 635

LSERR_LDL_INVALID_DIM, 635

LSERR_LDL_INVALID_PERM, 635

LSERR_LDL_MATRIX_NOTSYM, 635

LSERR_LDL_RANK, 635

LSERR_LDL_ZERO_DIAG, 635

LSERR_MIP_BRANCH_LIMIT, 627

LSERR_MISSING_TOKEN_NAME, 630

LSERR_MISSING_TOKEN_ROOT, 630

LSERR_MODEL_ALREADY_LOADED, 627

LSERR_MODEL_NOT_LINEAR, 627

LSERR_MODEL_NOT_LOADED, 627

LSERR_NAME_TOKEN_NOT_FOUND, 633

LSERR_NO_ERROR, 627

LSERR_NO_LICENSE_FILE, 627

LSERR_NO_METHOD_LICENSE, 627

LSERR_NO_MULTITHREAD_SUPPORT, 634

LSERR_NO_QCDATA_IN_ROW, 635

LSERR_NO_VALID_LICENSE, 627

LSERR_NOT_CONVEX, 627

LSERR_NOT_LSQ_MODEL, 634

LSERR_NOT_SORTED_ORDER, 628

LSERR_NOT_SUPPORTED, 627

LSERR_NUMERIC_INSTABILITY, 627

LSERR_OLD_LICENSE, 627

LSERR_OUT_OF_MEMORY, 627

LSERR_PARAMETER_OUT_OF_RANGE, 628

LSERR_QCDATA_NOT_LOADED, 635

LSERR_RG_ALREADY_SET, 632

LSERR_RG_NOT_SET, 631

LSERR_RG_SEED_NOT_SET, 632

LSERR_ROW_INDEX_OUT_OF_RANGE, 628

LSERR_ROW_TOKEN_NOT_FOUND, 633

LSERR_SAMP_ALREADY_SOURCE, 634

LSERR_SAMP_INVALID_CALL, 634

LSERR_SAMP_USERFUNC_NOT_SET, 634

LSERR_SCEN_INDEX_OUT_OF_SEQUENCE,

629

LSERR_STEP_TOO_SMALL, 628

LSERR_STOC_BAD_ALGORITHM, 630

LSERR_STOC_BAD_PRECISION, 630

LSERR_STOC_BLOCK_SAMPLING_NOT_SUP

PORTED, 632

LSERR_STOC_CC_NOT_LOADED, 633

LSERR_STOC_CONFLICTING_SAMP_SIZES,

632

LSERR_STOC_CORRELATION_NOT_INDUCE

D, 632

LSERR_STOC_CUT_LIMIT, 633

LSERR_STOC_EMPTY_SCENARIO_DATA, 632

LSERR_STOC_EVENTS_NOT_LOADED, 632

LSERR_STOC_GA_NOT_INIT, 634

LSERR_STOC_INVALID_CDF, 631

LSERR_STOC_INVALID_SAMPLE_SIZE, 631

LSERR_STOC_INVALID_SCENARIO_CDF, 629

LSERR_STOC_MISSING_BNDNAME, 630

LSERR_STOC_MISSING_OBJNAME, 630

LSERR_STOC_MISSING_PARAM_TOKEN, 631

LSERR_STOC_MISSING_RHSNAME, 630

LSERR_STOC_MISSING_RNGNAME, 630

LSERR_STOC_MODEL_ALREADY_PARSED,

629

LSERR_STOC_MODEL_NOT_LOADED, 629

LSERR_STOC_NO_CONTINUOUS_SPAR_FOU

ND, 633

LSERR_STOC_NODE_INFEASIBLE, 630

LSERR_STOC_NODE_UNBOUNDED, 630

LSERR_STOC_NOT_DISCRETE, 631

LSERR_STOC_NULL_EVENT_TREE, 630

LSERR_STOC_OUT_OF_SAMPLE_POINTS, 632

LSERR_STOC_PDF_TABLE_NOT_LOADED,

632

LSERR_STOC_ROW_ALREADY_IN_CC, 633

LSERR_STOC_ROWS_NOT_LOADED_IN_CC,

634

LSERR_STOC_SAMPLE_ALREADY_GENERA

TED, 632

LSERR_STOC_SAMPLE_ALREADY_LOADED,

632

LSERR_STOC_SAMPLE_NOT_GENERATED,

632

LSERR_STOC_SAMPLE_SIZE_TOO_SMALL,

632

LSERR_STOC_SCENARIO_LIMIT, 631

LSERR_STOC_SCENARIO_SAMPLING_NOT_S

UPPORTED, 632

LSERR_STOC_SPAR_NOT_FOUND, 629

LSERR_STOC_TOO_MANY_SCENARIOS, 630

LSERR_STOC_TREE_ALREADY_INIT, 632

LSERR_TIME_BAD_NUMSTAGES, 630

LSERR_TIME_BAD_TEMPORAL_ORDER, 630

LSERR_TIME_LIMIT, 628

LSERR_TIME_NUMSTAGES_NOT_SET, 632

LSERR_TIME_SPAR_COUNT_MISMATCH, 629

LSERR_TIME_SPAR_NOT_EXPECTED, 629

LSERR_TIME_SPAR_NOT_FOUND, 629

LSERR_TOO_SMALL_LICENSE, 628

LSERR_TOTAL_NONZCOUNT, 628

LSERR_TRUNCATED_NAME_DATA, 628

LSERR_UNABLE_TO_SET_PARAM, 628

LSERR_USER_FUNCTION_NOT_FOUND, 628

LSERR_USER_INTERRUPT, 628

LSERR_VARIABLE_NOT_FOUND, 628

LSfillRGBuffer (), 332

LSfindBlockGP (), 287

LSfindBlockStructure(), 277, 613, 754

LSfindIIS(), 278, 601, 755

LSfindIUS(), 279, 755

LSfindLtf (), 286

LSfreeGOPSolutionMemory(), 325

INDEX 815

LSfreeHashMemory(), 325

LSfreeMIPSolutionMemory(), 326

LSFreeObjPool(), 180

LSfreeSolutionMemory(), 326

LSfreeSolverMemory(), 327

LSgetBasis(), 195, 711

LSgetBestBounds(), 279, 756

LSgetBlockStructure(), 280, 757

LSgetBoundRanges(), 281, 599, 601, 758

LSgetCallback, 385

LSgetCallbackInfo(), 312, 586, 593, 594, 596, 766

LSgetChanceConstraint, 251

LSgetCLopt(), 59

LSgetCLoptArg(), 60

LSgetCLoptInd(), 60

LSgetConeDatai(), 215, 718

LSgetConeIndex(), 216, 719

LSgetConeNamei(), 216, 719

LSgetConstraintDatai(), 217, 720

LSgetConstraintIndex(), 218, 721

LSgetConstraintNamei(), 218, 721

LSgetConstraintRanges(), 282, 599, 600, 758

LSgetDeteqModel (), 239

LSgetDiscreteBlockOutcomes, 243

LSgetDiscreteBlocks, 242

LSgetDiscreteIndep, 244

LSgetDistrRV (), 329

LSgetDoubleRV (), 328

LSgetDualMIPSolution(), 385

LSgetDualSolution(), 196, 712

nonlinear programming, 484

quadratic programming, 407, 426, 443

LSgetEigg(), 305

LSgetEigs(), 299

LSgetEnvDouParameter(), 48, 686

LSgetEnvIntParameter(), 48, 687

LSgetEnvParameter(), 47, 686

LSgetErrorMessage(), 288, 367, 684

LSgetErrorRowIndex, 289

LSgetErrorRowIndex(), 684

LSgetFileError(), 289, 685

LSgetHess(), 310

LSgetHistogram, 246

LSgetIIS(), 283, 759

LSgetIISInts(), 284

LSgetInfo(), 197, 258, 259, 385, 712

nonlinear programming, 484

quadratic programming, 407, 426, 443

LSgetInitSeed (), 329

LSgetInt32RV (), 329

LSgetIUS(), 285, 760

LSgetJac(), 309

LSgetLPConstraintDatai(), 219, 722

LSgetLPData(), 220, 723

LSgetLPVariableDataj(), 222, 724

LSgetMatrixCholFactor(), 303

LSgetMatrixDeterminant(), 303

LSgetMatrixInverse(), 300

LSgetMatrixInverseSY(), 301

LSgetMatrixLUFactor(), 301

LSgetMatrixQRFactor(), 302

LSgetMatrixSVDFactor(), 304

LSgetMatrixTranspose(), 300

LSgetMIPBasis(), 199, 713

LSgetMIPCallbackInfo(), 315, 385, 596, 767

LSgetMIPDualSolution(), 200, 713

LSgetMIPPrimalSolution(), 200, 210, 714

LSgetMIPReducedCosts(), 201, 385, 714

LSgetMIPSlacks(), 202, 385, 715

LSgetMIPSolution(), 385

LSgetMIPVarStartPoint (), 254

LSgetMIPVarStartPointPartial (), 254

LSgetModelDouParameter(), 50, 687, 688

LSgetModelIntParameter(), 50, 495, 688

LSgetModelParameter(), 49, 55, 687

LSgetNameData(), 223, 725

LSgetNextBestMIPSoln (), 210

LSgetNLPConstraintDatai(), 224

LSgetNLPConstraintDatai(), 726

LSgetNLPData(), 225, 727

LSgetNLPObjectiveData(), 226

LSgetNLPObjectiveData(), 728

LSgetNLPVariableDataj(), 227

LSgetNLPVariableDataj(), 729

LSgetNodeDualSolution, 208, 209, 210

LSgetNodeDualSolution (), 208

LSgetNodeListByScenario (), 240

LSgetNodePrimalSolution, 206

LSgetNodePrimalSolution (), 206

LSgetNodeReducedCost (), 42

LSgetNodeSlacks, 208

LSgetNodeSlacks (), 208

LSgetObjective(), 359, 371

LSgetObjectiveRanges(), 286, 599, 600, 760

LSgetObjPoolNumSol(), 214

LSgetParamDistIndep, 249

LSgetParamLongDesc (), 57

LSgetParamMacroID (), 58

LSgetParamMacroName (), 58

LSgetParamShortDesc (), 57

LSgetPrimalSolution(), 202, 715

C++ example, 359

MATLAB, 715

nonlinear programming, 484

quadratic programming, 407, 426, 443

Visual Basic example, 371

LSgetProbabilityByNode (), 239

LSgetProbabilityByScenario (), 238

LSgetProfilerContext(), 198

LSgetProfilerInfo(), 198

816 INDEX

LSgetQCData(), 228, 730

LSgetQCDatai(), 229, 731

LSgetReducedCosts(), 203, 716

LSgetReducedCostsCone(), 203, 716

LSgetRGBufferPtr (), 332

LSgetRGNumThreads (), 331

LSgetSampleSizes, 245

LSgetScenario, 248

LSgetScenarioDualSolution (), 209

LSgetScenarioIndex (), 238

LSgetScenarioModel, 248

LSgetScenarioName, 237

LSgetScenarioName (), 237

LSgetScenarioObjective, 206

LSgetScenarioObjective (), 206

LSgetScenarioPrimalSolution, 207

LSgetScenarioPrimalSolution (), 207

LSgetScenarioReducedCost (), 207

LSgetScenarioSlacks (), 210

LSgetSemiContData(), 230, 732

LSgetSETSData(), 231, 733

LSgetSETSDatai(), 232, 734

LSgetSlacks(), 204, 717

LSgetSolution(), 205, 717

LSgetStageIndex (), 236

LSgetStageName (), 235

LSgetStocCCPInfo, 250

LSgetStocParData (), 241

LSgetStocParIndex (), 236

LSgetStocParName (), 237

LSgetStocParOutcomes, 241

LSgetStocParOutcomes (), 240

LSgetStocParSample, 343

LSgetStocRowIndices, 252

LSgetStringValue(), 166

LSgetVariableIndex(), 233, 734

LSgetVariableNamej(), 234, 735

LSgetVariableStages, 245

LSgetVarStartPoint(), 234, 735

LSgetVarStartPointPartial (), 253

LSgetVarType(), 235, 736

LSgetVersionInfo(), 26, 675

LSgetxxxyyyParameter(), 61

LSloadBasis(), 181, 706

LSloadBlockStructure(), 183, 185, 708

LSloadConeData (), 153, 349, 350

LSloadConeData(), 426, 443, 693

LSloadConstraintStages (), 168

LSloadCorrelationMatrix (), 174

LSloadGASolution (), 213

LSloadIISPriorities(), 308

LSloadInstruct(), 154, 493, 513, 694

LSloadLicenseString(), 26, 675

LSloadLPData(), 156, 385

C++ example, 393

integer programming, 385

MATLAB, 696

nonlinear programming, 483

quadratic programming, 407, 426, 443

Visual Basic example, 370, 398, 399

LSloadMIPVarStartPointPartial (), 176

LSloadMultiStartSolution (), 175

LSloadNameData(), 37, 158, 697

LSloadNLPData(), 159, 484, 698

LSloadNLPDense(), 307

LSloadPOSDData (), 178

LSloadQCData(), 160, 407, 409, 699

LSloadSampleSizes (), 167

LSloadSemiContData(), 161, 700

LSloadSETSData(), 162, 701

LSloadSolutionAt(), 214

LSloadStocParData (), 169

LSloadStocParNames (), 173

LSloadString(), 164

LSloadStringData(), 164

LSloadVariableStages (), 168

LSloadVarPriorities(), 182, 706

LSloadVarStartPoint(), 182, 183, 707

LSloadVarStartPointPartial (), 176

LSloadVarType(), 157, 163, 385, 393, 399, 702,

703, 704, 705

integer programming, 385

quadratic programming, 407, 426, 443

LSmodel

creating, 25, 673

deleting, 26, 674

getting, 687, 688

loading, 156, 158, 163, 696, 697, 702, 703, 704,

705

setting, 690, 691

LSmodifyAj(), 269, 747

LSmodifyCone(), 269, 748

LSmodifyConstraintType(), 270, 748

LSmodifyLowerBounds(), 271, 749

LSmodifyObjConstant(), 270, 271, 750

LSmodifyObjective(), 272, 750

LSmodifyRHS(), 272, 751

LSmodifySemiContVars(), 273, 751

LSmodifySET(), 273, 752

LSmodifyUpperBounds(), 274, 753

LSmodifyVariableType(), 274, 753

LSoptimize(), 186

C++ example, 359

MATLAB, 710

nonlinear programming, 484

quadratic programming, 407, 426, 443

Visual Basic example, 370

LSreadBasis(), 32

LSreadEnvParameter(), 55, 692

LSreadLINDOFile(), 28, 649, 650, 676

INDEX 817

LSreadModelParameter(), 55, 692, 693

LSreadMPIFile(), 677

LSreadMPSFile(), 29, 637, 677

LSreadSDPAFile, 441

LSreadSDPAFile (), 177

LSreadSMPIFile(), 39

LSreadSMPSFile (), 38

LSreadVarPriorities(), 185, 709

LSreadVarStartPoint(), 185, 709

LSregress(), 311

LSremObjPool(), 179

LSrepairQterms (), 298

LSsampAddUserFuncArg (), 345

LSsampCreate (), 334

LSsampDelete (), 334

LSsampEvalDistr (), 337

LSsampEvalUserDistr (), 344

LSsampGenerate (), 338

LSsampGetCIPoints (), 339

LSsampGetCIPointsPtr (), 340

LSsampGetCorrelationMatrix (), 340

LSsampGetDiscretePdfTable (), 335

LSsampGetDistrParam (), 336

LSsampGetInfo (), 342

LSsampGetPoints (), 338

LSsampGetPointsPtr (), 339

LSsampInduceCorrelation (), 341

LSsampLoadDiscretePdfTable (), 335

LSsampSetDistrParam (), 336

LSsampSetRG (), 337

LSsampSetUserDistr (), 336

LSsetCallback(), 312, 316, 385, 585, 586, 593, 620,

622

MATLAB, 766, 767

Visual Basic example, 594

LSsetDistrParamRG (), 331

LSsetDistrRG (), 331

LSsetEnvDouParameter(), 52, 586, 689

LSsetEnvIntParameter(), 53, 690

LSsetEnvLogFunc(), 317

LSsetEnvParameter(), 51, 689

LSsetFuncalc(), 318, 484, 487, 499, 620, 622, 768

LSsetGradcalc(), 319, 484, 489, 769

LSsetMIPCallback(), 320, 321, 385, 595

MATLAB, 767, 770

LSsetMIPCCStrategy (), 324

LSsetModelDouParameter(), 54, 495, 691

LSsetModelIntParameter(), 54, 493, 495, 691

LSsetModelLogFunc(), 771

LSsetModelParameter(), 53, 690

LSsetNumStages (), 167

LSsetObjPoolInfo(), 180

LSsetRGSeed (), 330

LSsetUsercalc(), 323, 491, 570, 771

LSsetxxxyyyParameter(), 61

LSsolveFileLP, 373

LSsolveFileLP(), 187

LSsolveGOP(), 186, 188, 192, 710

LSsolveHS(), 193

LSsolveMIP(), 186, 190, 191, 258, 385, 711

C++ example, 393

nonlinear programming, 514

quadratic programming, 407, 426, 443

Visual Basic example, 399

LSsolveMipBnp(), 194

LSsolveSP (), 191

LSstocInfo

LS_IINFO_STOC_SIM_ITER, 145

LSwriteBasis(), 32

LSwriteDeteqLINDOFile (), 41

LSwriteDeteqMPSFile (), 41

LSwriteDualLINDOFile(), 33, 678

LSwriteDualMPSFile(), 34, 679

LSwriteEnvParameter(), 56

LSwriteIIS(), 35, 680

LSwriteIUS(), 35, 680

LSwriteLINDOFile(), 36, 650, 681

LSwriteLINGOFile(), 36, 681

LSwriteModelParameter(), 56

LSwriteMPIFile(), 30

LSwriteMPSFile(), 37, 637, 682

LSwriteNodeSolutionFile (), 43

LSwriteScenarioLINDOFile (), 45

LSwriteScenarioMPIFile (), 44

LSwriteScenarioMPSFile (), 44

LSwriteScenarioSolutionFile (), 43

LSwriteSMPIFile(), 40

LSwriteSMPSFile (), 40

LSwriteSolution(), 38, 683

LSXgetLPData(), 772

LSXloadLPData(), 773

lump sum, 456

M

Macintosh, 10

macros, 356

_LINDO_DLL_, 362

APIERRORSETUP, 357

LS_DINFO_POBJ, 359

makefile.win, 361, 593

market effect, 431

Markowitz model, 410

mathematical guarantee, 495

MATLAB, xi, 669

matrix, 12, 157, 221, 359, 392, 398, 696, 723

block structured, 183, 611, 708

covariance, 410

nonlinear, 160

quadratic, 160, 229, 262

818 INDEX

sparse, 451

Matrix Operations, 299

maximization, 65, 156, 220, 494, 696, 723, 772,

773

memory, 315, 326, 327, 588, 627

memory management routines, 325

MEX-file, 669

Microsoft Foundation Class, 386

minimization, 65, 156, 220, 494, 696, 723, 772, 773

minus, 650

mixed-integer programs, 200, 210, 212

branch-and-bound, 190, 711

callback functions, 320, 385, 770

cut level, 88, 89

data loading, 163

example, 385, 599

parameters, 86

query routines, 393, 400

solution, 714

mixed-integer solver, 2

mod function, 455, 456

model

analyzing, 599

block structured, 277, 280, 611

continuous, 186, 204, 710

convex, 494, 515

creating, 25, 353, 367, 673

data, 24

deleting, 25, 26, 674

dimensions, 46, 369

dual, 33, 34, 679

I/O routines, 28

loading routines, 153, 156, 693

modification routines, 256, 737

monitoring, 585, 595

nonlinear, 451

primal, 33

query routines, 215, 718

reading, 28

smooth, 494

writing, 28

model analysis information, 144

model and solution analysis routines, 754

modification routines, 256, 737

modifying variable types, 753

modules, 593

modulo, 392, 398

Monte Carlo Sampling, 557

MPI, 424

MPI format, 30, 452, 519, 625, 655, 657, 665, 677

SOCP, 471, 474

MPS file ambiguities, 648

MPS format, 28, 637

debugging, 601–10

error messages, 625

extended, 406

LMreadf.m, 775

names, 224

reading, 29, 677

SOCP, 424, 439

writing, 34, 37, 678, 682, 683

MS Windows, 10

multicore, 617

multinomial distribution, 459

multinomial inverse, 466

Multiobjective Linear Programs and Alternative

Optima, 380

multiple choice, 641

multiple threads, 618

multiplication, 454

multistart solver, ix, 3, 74, 78, 312, 494, 496, 497,

515, 587

mxLINDO, 669

routines, 672

N

names

column, 158, 697

constraints, 158, 223, 649, 721

data, 158, 223, 697, 725

getting, 223, 233, 234, 734, 735

hashing, 325

LINDO files, 649

loading, 158, 164

MATLAB, 734

MPS files, 637

row, 158, 697

natural logarithm, 454

necessary set, 602, 604

negation, 454, 493

Negative binomial, 465, 468

Negative binomial distribution, 578

Negative binomial inverse, 465

negative semi-definite, 405

negative variables, 637, 651, 652

Nested Benders Decomposition, 562

New Project command, 393

newsvendor problem, 540, 542, 548

nmake, 360, 361, 593

node selection rule, 94, 110

non-convex models, 494, 498

nonlinear programs, ix, 76, 451

constraint data, 224, 726, 728, 729

getting data, 225, 727

iterations, 312

loading data, 159, 698

objective data, 226

optimization, 186

parameters, 74, 116, 117

INDEX 819

variable data, 227

nonlinear solver, 3, 405

nonoptimal solutions, 652, 653

non-smooth models, xi, 494, 498

nonzero coefficients

adding, 257, 722, 738

C++ example, 392

coefficient matrix, 221, 392, 398

columns, 261, 391, 392, 397, 398, 740

getting, 219, 723

loading, 157, 696

number of, 219, 222, 359, 696, 722, 724

sparse format, 153, 693

storing, 370

variables, 222

vectors, 290, 761, 762

Visual Basic example, 398

norm minimization, 426

Normal cdf, 455

normal density, 459

Normal density, 468

Normal distribution, 578

Normal inverse, 466

not equal to, 454

notation

Hungarian, 19, 672

postfix, 452, 512

Reverse Polish, 452

NP-hard, 498

numeric error, 111, 627

O

object oriented, 386

objective

adding, 261, 740

bounds, 222, 596, 724

C++ example, 358, 391

constant value, 154, 156, 220, 270, 271, 694,

696, 723, 750, 772, 773

cuts, 312

direction, 358, 391, 397

displaying, 359

dual value, 312, 587

function, 65, 397, 649, 650

getting, 220, 222, 723, 724, 772

integrality, 88

length, 513

loading, 156, 696, 773

modifying, 272, 750

name, 223, 725

nonlinear data, 226

parameters, 91

primal value, 312

printing, 65

ranges, 286, 599, 760

row, 391

sense, 625

Visual Basic example, 397

operators, 452, 650

optimal solution, 353, 393, 405, 714

optimality tolerance, 91, 92

optimization, 186, 353, 585, 710

optimization method, LP, 97

optimization routines, 186, 710

options, supported, 26

order of precedence, 650

Ox statistical functions, 777

oxLINDO, 777

P

parallel, 618

parallel processing, 400

parameters, 46, 61, 133, 586, 628

getting, 49, 686, 687, 688

setting, 52, 686

parentheses, 452, 496, 650

Pareto distribution, 465, 469, 578

Pareto inverse, 465

partial derivatives

calculating, 293, 295, 489

getting, 225, 226, 727

setting, 319, 769

partial pricing, 65

passing data, 370

password. See license key

Pearson correlation, 558, 575

percent function, 454

pFunStrategy(), 620

PI, 455

piecewise linear, 642

plant location, 88, 312

plus, 650

Pluto Dogs, 386

Poisson, 456

Poisson distribution, 578

Poisson inverse, 466

Poisson probability, 469

portfolio selection, 410, 780

POSD, 471

positive definite, 405

positive semi-definite, 405, 471, 575

postfix notation, 452, 512

post-solving, 109

power function, 454

precedence order, 452, 496, 650

prefixes, 19

preprocessing, 67, 75, 92, 95, 99, 109

pre-sampling, 557

820 INDEX

present value, 456, 458

pricing, 65, 66

primal

infeasibility, 312, 587, 766

model, 33, 34

objective value, 312

simplex, 65, 74, 88, 186, 359

solution, 200, 202, 763

values, 203, 715

print level, 76, 95

printing objective value, 65

priorities, 182, 185, 706, 709

probability, 455

probing, 75, 95, 99

product form inverse, 2

product mix, 363

progress of solver, 585

protocol cdecl, 586

prototypes, 356

PSL, 455

PUSH instruction, 459, 462

put option, 566

Python, 791

Q

QMATRIX section, 406, 424

QSECTION, 406

quadratic constraint, 644

quadratic objective, 643

quadratic program, 265, 437, 637, 699, 730, 731,

744

constraints, 405

data, 228, 229

examples, 405

loading, 160, 164

MATLAB, 774

multistart, 497

quadratic programs as SOCP, 437

quadratic recognition, x, 78

quadruplet entry for QC models, 407

QUADS, 406

query routines, 195

callback functions, 312, 766

errors, 626

MIP models, 393, 400

mxLINDO, 718

solver status, 586

R

R interface, 787

radians, 455

radians to degrees, 469

random, 328

random number, 457

ranges

analysis, 282, 286, 599, 758

bounds, 281

names, 223, 725

vectors, 158, 697

rank correlation, 558

reading

LINDO format, 676

MATLAB, 775

models, 28

MPS format, 677

real bounds, 96

real numbers, 154, 694

recourse models, 539

reduced costs, 91, 99, 203, 716

reduced gradient solver, 74

reduction, 77

cuts, 312

dual, 75, 95, 99

of coefficients, 75, 88, 95, 99

refactorization, 61

reformulation, algebraic, 110

relative optimality tolerance, 91, 92

reproducibility, 623

retrieving parameters, 46, 686

Reverse Polish notation, 452

right-hand side

adding, 257, 738

arguments, 672

constraints, 358, 650, 751

getting, 166, 219, 220, 722, 723

increase/decrease, 282

loading, 157, 696

modifying, 272

names, 223, 725

values, 291

vector, 158, 164, 697

Visual Basic example, 369

rLindo, 787

rotated quadratic cone, 645

round, 469

rounded solutions, 111, 652, 653

routines

auxiliary, 772

callback management, 312, 766

creation, 24

deletion, 24, 265, 268, 744, 746

errors, 626

memory management, 325

MIP models, 393, 400

model loading, 153, 693

model modification, 256, 737

mxLINDO, 672

optimization, 186, 710

INDEX 821

query, 195, 215, 718

random number generation, 328

sampling routines, 334

solver status, 586

row

format, 257, 649

index vector, 13, 14

indices, 221, 231, 261, 370, 724, 733, 740

names, 158, 697

nonlinear, 159, 225, 698, 727

objective, 391

separable, 488

runlindo, 8

running an application, 361

runtime license, 117

S

sampl.c, 361

sampl.exe, 361, 362

sampl.obj, 362

Sample Chance-Constrainted Problems, 568

Sample SP Problems, 554, 564

sample without replacement, 468

samplec.mak, 361

samplevb.frm, 593, 594

sampling, 557

sampling routines, 334

SC bound type, 640

scatter search, 496

scenario tree, 561

Scenario Tree, 540

SDP, 471

SDP constraint, 471

second order cone, 645

second-order cone

examples, 421

second-order-cone optimization, 421

selective constraint evaluation, 75

semi-continuous variable, 640

semi-definite program, 471

sense, of objective, 625

sensitivity analysis, 599

separable, 488

serial number, 26

setting parameters, 46, 52, 686

Setting up SP Models, 542

sifting, 372

sign function, 455

simple lower bound, 203

simple lower/upper bound, 651, 653

simplex method, 88, 181, 706

dual, 66, 186, 359

iterations, 312

primal, 65, 186, 359

Simplex method, 2

sine, 455

size of version, 26, 116, 627, 628

slack values, 202, 204, 717

SLB, 651, 653

SLP pricing, 75, 183

smooth models, xi, 494, 498

SOCP

MPI format, 471, 474

MPS format, 424, 439

SOCP Constraints, 433

SOCP Form, 431

Solaris, 10

solution, 353, 393, 714

analyzing, 599

dual, 200

incumbent, 107, 108, 312, 595

infeasible, 35, 283, 284, 601, 680

nonoptimal, 652, 653

primal, 200, 202, 763

query routines, 195, 711

rounded, 652, 653

unbounded, 35, 601, 604, 680

writing, 38, 683

solver, 451

barrier, 61, 66, 74, 97, 117, 186, 359

branch-and-bound, 190, 191, 315, 393, 399, 519,

711, 767

enumeration, 93

global solver, ix, 188, 192, 498, 519, 710

initialization, 181, 706

interrupt, 61, 586, 594, 595, 628

knapsack, 93

multistart, ix, 3

multistart solver, 515

nonlinear, ix, 76, 186, 405

progress, 585

quadratic, x

solver status, 385, 586, 596, 599

type, 625

Solvers with built-in Parallel Algorithms, 622

Solving large linear programs using Sprint, 372

Solving MIPs Concurrently, 619

Solving MIPs using BNP, 400

SOS, 641

SOS2 set, 642

sparse matrix representation, 12–14, 153, 451, 693

Spearman rank correlation, 558, 575

Special Ordered Sets, 641

splitting lines, 650

sprint, 372

square root, 454

stable distribution, 470

stack based computer, 453

staffing model, 385

822 INDEX

stage, 42, 43, 123, 146, 147, 167, 168, 169, 173,

206, 210, 235, 236, 241, 244, 245, 561

standard deviation, 458

standard Normal cdf, 455

standard Normal inverse, 459, 461

standard Normal pdf, 462

start, column, 13, 14, 391, 397

starting basis, 78, 181, 706

starting points, 155, 186, 497, 695, 707, 709

statistical computing, 787

status of variables, 195, 199, 280

stdev, 458

steepest edge pricing, 66, 75

stochastic information, 145

stochastic programming, 497, 537

Stochastic Programming, 537

stochastic solver, x

storing data, 24

strong branching, 96

structure creation/deletion routines, 24, 672

Student-t distribution, 578

Student-t inverse, 466

SUB, 651, 653

subtraction, 454

successive linear programming, 3

sufficient set, 283, 285, 602, 604, 759, 760

summation, 458

supported options, 26

symmetric, 645

symmetric matrix., 408

symmetric stable distribution, 470

syntax, 363, 649

T

t distribution, 456, 469

tangent, 455

text format (ASCII), 29

Thread Parameters, 617, 618

thread safe, 585, 595

threads, 403

three vector representation, 13

time limit, 89, 97, 113, 116, 120, 628

title, 158, 223, 651, 654, 697, 725

tolerances, 63, 77, 91, 92, 96, 107

traffic delay, 432

transformation

backward, 290, 761

forward, 291, 762

trial license, 116

triangular density, 469

triangular distribution, 459

Triangular distribution, 466

triangular inverse, 466

true, 455

types of constraints

adding, 257, 738

C++ example, 358

errors, 625

getting, 215, 217, 219, 220, 718, 720, 722, 723,

772

loading, 157, 696, 773

modifying, 748

types of cuts, 88, 89, 91

types of data, 19, 46, 357

U

unbounded, 35, 599, 601, 604, 653, 680

MATLAB, 755, 760

unformatted MPS file, 29, 625

uniform density, 469

uniform distribution, 466

Uniform distribution, 578

uniform distribution inverse, 459

unsupported features, 627

upper bounds

adding, 261

best, 279

getting, 221

LINDO files, 651

loading, 157

MATLAB, 695, 696, 723, 740, 772, 773

MIPs, 90

modifying, 274, 753

MPS files, 637

nonlinear programs, 156, 489

objective, 222, 724

SUB, 651, 653

Visual Basic example, 370

upper triangle, 408

USER function, 457

user interface, 451, 585, 592

Usercalc(), 491

user-defined function, 525

V

value vector, 13

Value-At-Risk, 437

variables

adding, 257, 260, 740

artificial, 63, 77

binary, 29, 222, 651, 652, 724

block structure, 184

bounded, 157, 221, 261

bounded, MATLAB, 695, 696, 723, 740, 772,

773

branch-and-bound, 186

branching on, 96, 163, 706

INDEX 823

branching priorities, 182, 709

coefficients, 222, 724

continuous, 186, 200, 210, 496, 653

decision, 391, 397

defining, 511

deleting, 268, 746

discrete, 496

displaying, 359

dual, 196, 712, 713

environment, 361

errors, 628

fixed, 91, 99, 637

free, 637, 651, 652

general integer, 222, 385, 651, 652, 724

getting, 222, 724

index of, 222

initial values, 185, 707, 709

integer, 200, 210, 212, 637

integer feasible tolerance, 92, 96

internal index, 233, 234, 268, 734, 735, 746

left-hand sides, 651

limit, 116

loading, 702, 703, 704, 705

long, 363

MIPs, 385, 393

modifying, 274

name hashing, 325

names, 158, 164, 223, 233, 234, 637, 649, 725,

734, 735

negative, 637, 651, 652

nonlinear, 116, 159, 225, 227, 698, 727

number of, 154, 156, 693, 694, 696, 723

primal, 203, 715

priorities, 182

quadratic, 160, 262

reduced costs, 203, 204, 716

slack/surplus values, 63, 77, 202, 204, 717

splitting lines, 650

status, 195, 199, 280

types of, 162, 163, 222, 235, 701, 702, 704, 705,

724, 736, 753

values, 371

variance reduction, 579

VB, 371

VB modules, 593

vcvars32.bat, 361

Vector OR, 458

Vector Push, 461

vectors, 13, 14, 158, 164, 290, 451, 452, 697, 740

versions, 26, 67, 116, 407, 425, 627, 628

violated constraints, 63, 77

Visual Basic, 318, 320

Visual Basic example, 363, 393, 593

Visual Basic for Applications, 593

Visual C++ 6, 360

Visual C++ example, 386

W

wait-see, 124, 145, 588

warm start, 326, 327, 497, See also initial values

Weibull density, 469

Weibull distribution, 466, 578

Weibull distribution inverse, 466

wizard, 388

Workings of the IIS Finder, 603

wrap function, 456

wrapping, 392, 398

writing

dual, 678, 679

LINDO format, 650, 681

LINGO format, 681

models, 28

MPS format, 678, 682, 683

solutions, 38, 683

	LINDO
	API 10.0
	Copyright (2016 by LINDO Systems, Inc. All rights reserved.
	Printing 1
	Published by
	1415 North Dayton Street
	What Is LINDO API?
	Linear Solvers
	Mixed-Integer Solver
	Nonlinear Solver
	Global Solver
	Stochastic Solver

	Installation
	Windows Platforms
	Unix-Like Platforms

	Updating License Keys
	Solving Models from a File using Runlindo
	Sample Applications
	Array Representation of Models
	Sparse Matrix Representation
	Three Vector Representation
	Four Vector Representation

	Simple Programming Example
	Create an Environment and Model
	Load the Model
	Objective
	Constraints
	Variables

	Solve
	Retrieve the Solution
	Clear Memory

	Common Parameter Macro Definitions
	Structure Creation and Deletion Routines
	Returns:
	License and Version Information Routines
	Input-Output Routines
	Parameter Setting and Retrieving Routines
	Available Parameters
	Available Information

	Model Loading Routines
	Remarks:

	Solver Initialization Routines
	Optimization Routines
	Solution Query Routines
	Model Query Routines
	Model Modification Routines
	Model and Solution Analysis Routines
	Error Handling Routines
	Advanced Routines
	Matrix Operations

	Callback Management Routines
	Memory Management Routines
	Random Number Generation Routines
	Sampling Routines
	Date and Time Routines
	A Programming Example in C
	A Programming Example in Visual Basic
	VB and Delphi Specific Issues
	Solving Large Linear Programs using Sprint
	Solving Linear Programs using the –fileLP option in Runlindo
	A Programming Example in C

	Multiobjective Linear Programs and Alternative Optima
	Staffing Example Using Visual C++
	Staffing Example Using Visual Basic
	Solving MIPs using BNP
	Solving MIPs using the –bnp option in Runlindo
	A Programming Example in C
	Setting up Quadratic Programs
	Loading Quadratic Data via Extended MPS Format Files
	Example:

	Loading Quadratic Data via API Functions

	Sample Portfolio Selection Problems
	Example 1. The Markowitz Model:
	Example 2. Portfolio Selection with Restrictions on the Number of Assets Invested:

	Second-Order Cone Programs
	Setting up Second-Order Cone Programs
	Loading Cones via Extended MPS Format Files
	Loading Cones via API Functions
	Example 3: Minimization of Norms:
	Converting Models to SOCP Form
	Example 4: Ratios as SOCP Constraints:
	Quadratic Programs as SOCP

	Semi-Definite Programs
	Loading SDP via SDPA Format Files
	Loading SDPs via API Functions

	Instruction-List/MPI Style Interface
	Postfix Notation in Representing Expressions
	Supported Operators and Functions
	Inputting SDP/POSD Constraints via MPI File/Instruction List
	Inputting SDP/POSD Constraints via a C Program

	Black-Box Style Interface
	Loading Model Data
	Phase I: Loading LP structure
	Phase II: Loading NLP structure

	Evaluating Nonlinear Terms via Callback Functions

	Grey-Box Style Interface
	Instruction Format
	Example 1
	Example 2
	Example 3

	Differentiation
	Solving Non-convex and Non-smooth models
	Linearization
	Delta and Big M Coefficients
	Precedence Relations and Complementarity Constraints
	Solving and Retrieving the Solution of a Linearized Model

	Multistart Scatter Search for Difficult Nonlinear Models
	Global Optimization of Difficult Nonlinear Models

	Sample Nonlinear Programming Problems
	Example 1: Black-Box Style Interface:
	Example 2: Instruction-List Style Interface
	Example 3: Multistart Solver for Non-Convex Models
	Example 4: Global Solver with MPI Input Format
	Example 5: Grey-Box Style Interface
	Example 6: Nonlinear Least-Square Fitting
	Multistage Decision Making Under Uncertainty

	Multistage Recourse Models
	Scenario Tree
	Setting up SP Models:
	Loading Core Model:
	Using Instruction Lists
	Using the Array Representation of a Model:

	Loading the Time Structure:
	Temporal Time Structure:

	Loading the Stochastic Structure:

	Decision Making under Chance-Constraints
	Individual and Joint Chance-Constraints:
	Illustrative Example for Invididual vs Joint Chance-Constraints:

	Monte Carlo Sampling
	Generating dependent samples
	Automatic Sampling of Scenario Trees
	Limiting Sampling to Continuous Parameters
	Using Nested Benders Decomposition Method

	Sample Multistage SP Problems
	An Investment Model to Fund College Education:
	CORE Model:
	TIME Structure:
	Stochastic Structure:

	An American Put-Options Model:
	CORE Model:
	TIME Structure:
	Stochastic Structure:

	Sample Chance-Constrainted Problems
	A Production Planning Problem:
	CORE Model:
	TIME Structure:
	Stochastic Structure:

	Models with User-defined Distribution:
	A Farming Problem:
	CORE Model:
	STOC Model:

	About alternative formulations:
	Appendix 8a: Correlation Specification
	Appendix 8b: Random Number Generation
	Appendix 8c: Variance Reduction
	Appendix 8d: The Costs of Uncertainty: EVPI and EVMU
	EVPI and EVMU Example

	Appendix 8e: Introducing Dependencies between Stages

	Specifying a Callback Function
	A Callback Example Using C
	A Callback Example Using Visual Basic
	Integer Solution Callbacks
	Sensitivity and Range Analysis of an LP
	Diagnosis of Infeasible or Unbounded Models
	Infeasible Models
	Workings of the IIS Finder:
	Unbounded Linear Programs
	Infeasible Integer Programs
	Infeasible Nonlinear Programs

	An Example for Debugging an Infeasible Linear Program
	Block Structured Models
	Independent Block Structure
	Block Angular Structure with Linking Rows
	Dual Angular Structure with Linking Columns
	Block and Dual Angular Structures
	Determining Total Decomposition Structures
	Determining Angular Structures
	Techniques Used in Determining Block Structures
	Generalized Assignment Problem

	Thread Parameters
	Concurrent vs. Parallel Parameters
	Solving MIPs Concurrently
	Solvers with built-in Parallel Algorithms
	Reproducibility
	Integer Variables
	Semi-continuous Variables
	SOS Sets
	SOS2 Example
	Quadratic Objective
	Quadratic Constraints
	Second-Order Cone Constraints
	Ambiguities in MPS Files
	Flow of Control
	Formatting
	Optional Modeling Statements
	FREE Statement
	GIN Statement
	INT Statement
	SUB and SLB Statements
	TITLE Statement
	TIME File
	Explicit
	Implicit

	STOCH File
	Independent Distributions:
	Joint Distributions with Intrastage Dependence:
	Scenarios - Joint Distributions with Interstage Dependence:

	Introduction
	Setting up MATLAB to Interface with LINDO
	Using the mxLINDO Interface
	Calling Conventions
	mxLINDO Routines
	Structure Creation and Deletion Routines
	License Information Routines
	Input-Output Routines
	Error Handling Routines
	Parameter Setting and Retrieving Routines
	Model Loading Routines
	Solver Initialization Routines
	Optimization Routines
	Solution Query Routines
	Model Query Routines
	Model Modification Routines
	Model and Solution Analysis Routines
	Advanced Routines
	Callback Management Routines
	Auxiliary Routines

	Sample MATLAB Functions
	M-functions using mxLINDO

	Introduction
	Setting up Ox Interface
	Calling Conventions
	Example. Portfolio Selection with Restrictions on the Number of Assets Invested

	Introduction
	Installation
	Calling Conventions
	rLindo supports most public functions in LINDO API. Function names use the convention of 'r' + name of LINDO API function, e.g. rLScreateEnv in the R interface corresponds to LScreateEnv in LINDO API. However, all LINDO parameters and constants in rL...
	Example. Least Absolution Deviation Estimation

	In the following we illustrate the detailed usage of rLindo by giving an example for solving a least absolution deviation (LAD) estimation problem, note that the italic part is the output of R.
	Introduction
	Installation
	Calling Conventions
	pyLindo supports most public functions in LINDO API. Function names use the convention of 'py' + name of LINDO API function, e.g. pyLScreateEnv in the python interface corresponds to LScreateEnv in LINDO API. However, all LINDO parameters and constant...
	Example. Solving an LP model with pyLindo

	In the following we illustrate the detailed usage of pyLindo by giving an example for solving an LP model.

