LINDO
API 14.0

User Manual

LINDO Systems, Inc.

1415 North Dayton Street, Chicago, lllinois 60642
Phone: (312)988-7422 Fax: (312)988-9065
E-mail: info@lindo.com

COPYRIGHT

LINDO API and its related documentation are copyrighted. You may not copy the LINDO API
software or related documentation except in the manner authorized in the related documentation or
with the written permission of LINDO Systems, Inc.

TRADEMARKS

LINDO is a registered trademark of LINDO Systems, Inc. Other product and company names
mentioned herein are the property of their respective owners.

DISCLAIMER

LINDO Systems, Inc. warrants that on the date of receipt of your payment, the disk enclosed in the
disk envelope contains an accurate reproduction of LINDO API and that the copy of the related
documentation is accurately reproduced. Due to the inherent complexity of computer programs and
computer models, the LINDO API software may not be completely free of errors. You are advised to
verify your answers before basing decisions on them. NEITHER LINDO SYSTEMS INC. NOR
ANYONE ELSE ASSOCIATED IN THE CREATION, PRODUCTION, OR DISTRIBUTION OF
THE LINDO SOFTWARE MAKES ANY OTHER EXPRESSED WARRANTIES REGARDING
THE DISKS OR DOCUMENTATION AND MAKES NO WARRANTIES AT ALL, EITHER
EXPRESSED OR IMPLIED, REGARDING THE LINDO API SOFTWARE, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR OTHERWISE. Further, LINDO Systems, Inc. reserves the right to revise this software and related
documentation and make changes to the content hereof without obligation to notify any person of such
revisions or changes.

Copyright ©2022 by LINDO Systems, Inc. All rights reserved.
Printing 1

Published by

LINDO SHSTEMS INC.

1415 North Dayton Street
Chicago, Illinois 60642
Technical Support: (312) 988-9421
E-mail: tech@lindo.com
http://www.lindo.com

http://www.lindo.com/

TABLE OF CONTENTS

TABLE OF CONTENTS ...ttt sttt e e e ee e e e sttt e e e et e e e e s bt e e e e snbeeeeeannaeeeeennees iii
L (=) = Lo YU UR PP iX
L0 gF=T o] (=) St PRSP 1
IO AU CHION .. s 1
What IS LINDO API? .ttt ettt e et e e e e ae e e e st ae e e e st e e e e sntaea e s ennneaeeannees 1
LINEAI SOIVEISceeiiieee ettt e e e e e et e e e e e e e e s e et e eeeeeeeeeaannsneeeeeaeeaaannnes 2
MiXE-INTEGET SOIVET ... e e 2
NONIINEA SOIVET ...ttt e e e e e e st e e e e e e e e e eanereeeeeaeeeeaannes 3
1] 0] o F= 1S T 1Y/ SRR 3

S 0T ed 0 F=] (o T AV R 3
INStallation ... 3
WINAOWS PlatfOormScooo oo e e e e e e 4
UNiX-LiKe PlatfOorms.........ouiiiiiiii e e e e e e 4
Updating License KeYS.......cooooiiiiiiii 6
Solving Models from a File using RUNINAOcoooiiiiiiiiii e, 7
Sample APPHCAtIONSuveiiiiii e e e a e e e e aaes 13
Array Representation of MOEIS..........cooiiiiiiiiiiii e 14
Sparse Matrix Representation ... 15
Simple Programming EXamPIeccoocuiiiiiiiiiiiiiee e 18

L0 0 F=T o (T PR 23
LU Tex T o T D =Y {1 T1 1o o T SRR 23
Common Parameter Macro Definitionseeviiiiiiiiiiiiiiieiieeeeeeeeeeeeee e aereenees 24
Structure Creation and Deletion ROULINES...........eiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e veeeveaeraneees 28
License and Version Information Routinescccc 31
INPUt-OUtPULt ROULINES ..o 33
Parameter Setting and Retrieving ROULINESoooiiiiiiiiii e, 52
Available Parameters............oo 67
Available INFOrMAatioNoooi i 141
Model Loading ROULINES........ccoiiiiiiiiiie ettt e e 162
Solver Initialization ROULINEScoi i 194
Optimization ROULINESoo.uiiiiiii e 200
Solution QUErY ROUTINEScuviiiiiiiiiie ettt e e e aeeeeeeaes 209
Model QUETY ROULINES........ueiiiiiiiiiie ettt e e e e e e 231
Model Modification ROULINES ... 274
Model and Solution Analysis ROULINESeuiiiiiiiie e 298
Error Handling ROULINESoooiii et e e e e e 309
Advanced ROULINES ... 311
Matrix Operations ... 320
Callback Management ROULINESooiiiiiiii e 333
Memory Management ROULINEScooiiiiiiiiiiie e 347
Random Number Generation ROULINESuvviiiiiiiiiiiiieice et 350
SaMPlNG ROULINES ..ottt et e et e e e s b e e e e nareeeeeaes 356
Date and Time ROULINES......cccooiiiiiiiei et 371
TUNEE ROULINES ...ttt e e e e e e e e e e s 374

iv. TABLE OF CONTENTS

SOIVING LINEAr PrOGramScoiiiiiiii ittt ettt e e e b e e e s sbeeeeeaans 387
A Programming EXample in C ..o 387

A Programming Example in Visual BasiC...........ccccccoo i 397
VB and Delphi SPECIfIC ISSUEScoiiiiiiiiiiiiiiee et 405
Solving Large Linear Programs using Sprint..........ccccceeooiiiiiiiiiiie e 406
Solving Linear Programs using the —fileLP option in Runlindoccoeccvvieneennnn. 407

A Programming EXample iN Coooiiiiiiiiiiiee et 408
Multiobjective Linear Programs and Alternate Optima............cooccviiieiiee i, 414
Chapter 4: Solving Mixed-Integer Programs ... 419
Staffing Example Using Visual CH+ ... 420
Staffing Example Using Visual BasiCccooiiiiiiiiiiii e 427
Solving MIPS USING BNP ..o 434
Solving MIPs using the —bnp option in RUNIINAO.........cccooiiiiiii e, 434

A Programming EXample in Cooo i 436
INAICAtOr CONSIFAINTSeiiiiiiiii e e e e e e e nbae e e e nrae e e e ennes 438
Numerical CoNSIAErAtIONSc.uuiieiiiiiie it e e e e enree e e e nbae e e e ennees 441
Chapter 5: Solving Quadratic Programssccceeiiiiiiii it e e sraee e 443
Setting up QuAadratic Programscueii i 444
Loading Quadratic Data via Extended MPS Format Files..........cccccooveeiviiieee e, 444
Loading Quadratic Data via APl FUNCHIONSc..coiiiiiiiiiiiiie e 445
Sample Portfolio Selection Problems ... 448
Example 1. The Markowitz Model: ... 448
Example 2. Portfolio Selection with Restrictions on the Number of Assets Invested:.. 452
Chapter 6: Solving CONIC Programs..........ocuuiii ittt e st e s sreee e 459
Second-Order CoNe Programs.cci iieiea i iiieee ettt e et e et e et e e e sbeeeessnneeeeeaae 459
Setting up Second-Order Cone Programsceuiiiiiiiiiiiiiieae e 462
Loading Cones via Extended MPS Format Files..........ccueiiiiiiiieeeee 462
Loading Cones via APl FUNCHONScooiiiiiiee e 464
Example 3: Minimization of NOrms: ... 464
Converting Models 10 SOCP FOMMooiiiiiiiiee e 469
Example 4: Ratios as SOCP Constraints:cccccooo 471
Quadratic Programs as SOCPcooiiiiiiiiie e 475
Semi-Definite Programso 476
Loading SDP via SDPA Format Filesc..coiiiiiiiiiiee e 477
Loading SDPs via APl FUNCHONS..........oiiiiiiiiiiiiicc e 481
Chapter 7: Solving Nonlinear ProgramsS............ocueeiiiiiiie it e e e s sreeee e 489
Instruction-List/MPI Style INterface ... 490
Postfix Notation in Representing EXpressions ... 490
Supported Operators and FUNCHONSuviiiiiiiiiiiiiiiieeieieeeeeeeeeeeeee e eeeeeeesrsreeaeanes 492
Inputting SDP/POSD Constraints via MPI File/Instruction List.............occccoiciiiiis 511
Inputting SDP/POSD Constraints via a C Programccccooiiiiiiiiiiiiiiieeee e 514
Black-Box Style INterface ...t 522
Loading MOdel Data...........cooiiiiiiiiiiiieee e 523
Evaluating Nonlinear Terms via Callback FUNCHONSccooviiiiiiiiiiiie e 526
Grey-Box Style INterfaceoooiiiii i 530
INSTrUCION FOIMAL.... ..o 532
EXAMPIE 1 .. a e 532
EXAMPIE 2. 532
= 0] o] L= S 533

(B (=T (=T A LU= 1 (o) o IO 533

TABLE OF CONTENTS v

Solving Non-convex and Non-smooth Models ... 534

I TCT= T 2= (o o SR 534
Multistart Scatter Search for Difficult Nonlinear Modelsccccceviiiiiiiiieniiiiieeens 536
Global Optimization of Difficult Nonlinear Modelscccceveeeiiiiiiiiieece e, 538
Sample Nonlinear Programming Problems ..., 539
Example 1: Black-Box Style Interface:ccooueeeveiiiiiiiie e 539
Example 2: Instruction-List Style Interfaceccccccooooiiiiiieiii e, 545
Example 3: Multistart Solver for Non-Convex Models.........c..ccooeecuviiieieeeecicciiieeeeeenn 555
Example 4: Global Solver with MPI Input Format.............cccooiiiiiiiieeeee 559
Example 5: Grey-Box Style Interface ... 565
Example 6: Nonlinear Least-Square Fitting........cccccoveiiiiiiii e 572

L0 aF=T] (=] S 577
Stochastic Programmingoooieiii i 577
Multistage Decision Making Under Uncertaintycccoociieiiiiiieiiiiiee e 577
Multistage Recourse Models ... 579
107 =Y o= 1y (o T Y SRS 580
Setting UP SP MOAEIS:uuiiiiiiieee e e e a e 582
Loading Core MOELueiiiiiee i e e e e eaa e 582
Loading the Time StruCIUre:uuviiiiii e 585
Loading the Stochastic StrUCTUre:............ooiiiiiiiii e 587
Decision Making under Chance-Constraints...........coocuiiiiiiiie e 594
Individual and Joint Chance-Constraints: ..o 594
Monte Carlo SAMPIINGouuiiiiieei e 597
Automatic Sampling of Scenario Trees ..o 601
Limiting Sampling to Continuous Parameterscccccv i 601
Using Nested Benders Decomposition Method.............cceeeeiiiiiiiiiiceeeeee 602
Sample Multistage SP Problems...... ... 604
An Investment Model to Fund College Education:cccccooiiiiiiiiiiiiiiiieee e 604

An American Put-Options Model: ... 606
Sample Chance-Constrainted Problems..............eeviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeseereeane 608

A Production Planning Problem:..... ... 608
Models with User-defined Distribution:c..ooviriiiiiiii e 609

A Farming Problemi.... ... e 611
About alternative formulations:oooi i 614
Appendix 8a: Correlation Specification............ccccooiiiiiiiiiii e 614
Appendix 8b: Random Number Generationcccoiiiiiiiiiieiiiee e 618
Appendix 8c: Variance RedUCtioncceuiiiiiiiiiii e 619
Appendix 8d: The Costs of Uncertainty: EVPI and EVMUcccccoiiiiiiies 619
Appendix 8e: Introducing Dependencies between Stages..........cccccoiviiiiiis 623

L0 0F=1 o (=T S PP POPPPPPPPPPPPPRt 625
Using Callback FUNCHONS ... et e e e e 625
Specifying a Callback FUNCHON ... 625

A Callback Example USING C ... e e e 628

A Callback Example Using Visual BasiCcc.coiiiiiiiieiiiiiieiiee e 633
Integer SolUtioN CallDACKS............uiiiiiiiie et 635
Chapter 10: Analyzing Models and SOIULIONScocuiiiiiiiiiiiiie e 639
Sensitivity and Range Analysis Of @n LP..........cooiiiiiiiiiiei e 639
Diagnosis of Infeasible or Unbounded Models............cccuvvieeiieiiiiiiiiiieee e, 641
Infeasible MOAEIS.......... o e e e 641

Workings of the [IS FINAEr:oo i 643

vi ~ TABLE OF CONTENTS

Unbounded Linear Programsocueiiiiiiiei ettt e s ee e 644
Infeasible INteger Programs ... 644
Infeasible NONIIN€Ar Programscooiciiiiiiiie i a e 645

An Example for Debugging an Infeasible Linear Program...........cccccccooviiiiiiieeeccecciinnnen. 645
Debugging an infeasible model with runlindo..............cccoieiii e, 651
Block Structured MOUEISccoiueiiiiiiiiee e 652
Determining Total Decomposition StruCturesccooccvvieeiei i 655
Determining Angular STrUCIUIESeooiiiiiiiiieiie e 656
Techniques Used in Determining Block Structures ..., 657
Generalized Assignment Problem ... 657

L7 0 F= T) (=) St I S 659
Parallel Optimizationooo e e e e 659
Thread Parameterst e e e e e e e e e e e e e as 659
Concurrent vs. Parallel Parameters ..o 660
SolviNg MIPS CONCUITENIYeeiiiiiiiiieiee et e e e e e e 661
Solvers with built-in Parallel Algorithmscccuveiiiiiiii e, 664
ReproduCibilitycooeeee e 665
Chapter 12: Parameter TUNING TOON..........ooiiiiiiiiii e e 666
Setting Up the TUNING TOOIeeiiiiiiiie e 666
Tuning with a Configuration File..............oeeiiiiiiii e 667
Tuning with API Calls Programmaticallycooouieiiiiiiiiiii e 669
Running the TUNING TOOIcoiiiiiiii e 670
Tuning Tool from Command LiNe..........cuiiiiiiiiiiiiie e 672
Chapter 13: Multiobjective Models and Alternate Optima..........cccccoeveeeiiiicce e 673
Setting up ODBJECHIVE POOooiiiiii e 674
Accessing SolUtION POOI ... 675
Example: Bi-objective Linear Assignment Problemccccoiiiiiiiieeees 678

F N o] 1= T b 5 o] o o = 681
APPENAIX B ... 694
MPS File FOrmMaLttt e e e e e e e e e e eee s 694
INtEEr VariabIEs ...t e e e e e e e 697
SeMi-CoNtINUOUS Variables........cooiii it e e e e 697
SO SES ittt e e b e e e e e e e e st —e e e e et ae e e e aaareaae et 698
SOS2 EXAMPIE ..t e e e e be e e e snaeeeeaae 699

L@ TUE=To = o3 @ o] =Y o211 701
QuAdratic CONSITAINTSciii e e e e e e e e e e e e nnreeeeaaeeeas 702
Second-Order Cone CoNSIraiNtSc.oiiiiiiiiiiiie e 703
Indicator CONSLrAINTSoiiiii et e e e e e e e e e e e nnes 706
AmMbIgUIties IN MPS FleS......o e 708

Y o] o 1= g T 11 709
LINDO File FOIMAt ...ttt e et e e e e e e e e e e e e e e e e e eeeeas 709
FIOW Of CONLIOL ...ttt e e e e e e e e e e e e e e e e e annes 709
FOrMAttiNg ... 709
Optional Modeling Statementscoociiiiiiiii e 711

L R S = (=Y 0 =Y o | SRR 712

L] VS =1 =T 41T o | SRR 712

1 IS €= 1 (= 0 4 1= 0 | PP ERRR 712

SUB and SLB Statementsooiueiiiiiiiiiie e 713
TITLE Statementot e e e e e e e e e e e e e nenee s 714

Y o] 01T Lo Gl I SR 715

TABLE OF CONTENTS vii

L I 1 F= T o Ty 4= SRS 715
Y o] 01T Lo Gl SR 718
SMPS File FOMMAT...iiiiei ittt ettt e e st e e e st e e e abteeeesbeeeeesreeeaeanns 718
L0101 PSR 718
TIME Fl© oottt ettt et e ettt e e e et e e e et e e e e nbee e e enbeeeeennneas 718

S 1O 10 o I 1= PSSR 720
APPENAIX i oo 727
SMPI Fil8 FOMMAL ..ottt et s e e e sttt e e e st e e e sbbeeeesbeeeeesreeeaeanes 727
AppendiX G: MXLINDO ...t e e e e e e e e e e e e e e e e nnreeeeeaaeeas 731
F Y I N S g =Y = Lo SR 731
10T [T3 o) o ORI 731
Setting up MATLAB to Interface with LINDOccooooiiiiiiiii e 731
Using the MXLINDO INTEIfaCecoooiiiiiiiiii e 732
Calling CONVENLIONSoiiiiiiiiie et e et e e b e e e eanes 734
MXLINDO ROULINEScviiieiiiiie ettt ettt ete e e e sntee e e e sntae e e e snnaeeeeennes 734
Structure Creation and Deletion ROULINEScoccuviiiiiiiiiiiiiice e 734
License Information ROULINEScociiiiiiiiiii et 737
INPUE-OULPUL ROULINES....coiiiiiii e e e e e naes 738
Error Handling ROULINEScoooiiiii 746
Parameter Setting and Retrieving ROULINESccooiiiiiiiiiiiiiiiiee e, 748
Model Loading ROULINEScooiiiiiiii it 755
Solver Initialization ROULINES ..o 768
Optimization ROULINES.ccooiuiiii e 772
Solution QUErY ROULINESuiiiiiiiiii e 773
Model QUETY ROULINESveiiiiiiiiie ettt e e e eeeaes 780
Model Modification ROULINESuiiiiiiiiii e 799
Model and Solution Analysis ROULINESc.eueiiiiiiiii e 816
AdVaNCed ROULINES........coiiiii e e e e e e 823
Callback Management ROULINES...........cooiiiiii e 828
AUXIlIANY ROULINES ...t e e e e e e e e 834
Sample MATLAB FUNCHONSoviiiiiiiiiieiiiiieteeeieeeeeeeeeeeeeeeeeeeeeeeseeessssssssssssssssssssssssssssennnes 836
M-functions using MXLINDOccoiiiiiiiiiiiie e e e 836
APPENAIX Hi e e e e e e e e e e e 839
F N T 1 (=5 =Tt (o T) SR 839
INTrOAUCHION ... 839
Setting UP OX INTEITACEcoi e 839
Calling CONVENLIONSoiiiiiiiiie ettt e e e st e e e snbee e e e sbee e e e ennes 840
Example. Portfolio Selection with Restrictions on the Number of Assets Invested...... 842
APPENAIX | e e aan 847
oo =TT o T SRR 847
a0 T [T 4o o [SRR 847
HOW 10 EXGMINE LOGS ...eeeieeiiieiiiie ettt e e e e e e e e e e e e e e e nnes 848
ADBDIevatioNS. ... 852

F Y o] 01T e Lo [G OO PP PP PP 854
F T 01 =1 = Lo SRR 854
INEFOAUCHION ... 854
INSEAlAtioON ... 854
Calling CONVENTIONS ...t e e e e e s e et ea e e e e senrrraeeeaaaeeas 854
Example. Least Absolution Deviation Estimationccccoii i 854

F Y o] o 1= oo [l PP PP PP PR 859

vii TABLE OF CONTENTS

A PYINON INTEITACE ..o e 859
10T [T 4o o SO 859
INSTANIALION ...t e e e e et e e e e e e nae 859
Calling CONVENTIONS ...t e e e e e e e et e e e e e e e e enaaaeeeeaaeeas 859

Example. Solving an LP model with pyLindoccoooiiiiiiiiiiiee e, 860

APPENAIX L o an 863

MPX File FOrMAL ...t e e e e s e 863
LT o1 = T o 4y o =) SRR 863
Variable NAMING ...ttt e e e s eaneeee s 864
EXaMPIE MOGEIS ...t e e e e et r e e e e e e e e e e e e e e e e ennes 864

RS T= 0 g1 o] 1= e SRR 864
RS-0 g1 o] 1= SRR 865
RS-0 g1 o] 1= SRR 865

Y o] o= oo [l Y PP TP 867

USING EXIEINAI SOIVEIScooiiiiiiieeeee et e e e e e e e e e e e anraaee s 867

APPENAIX N L s 870

Runtime DistribUtabIesooo e 870
INEFOAUCTION ...t e e e et e e e e e e e e e e e e e e e e e e annes 870
Shared Library FileS ...t e e e e 870
Language SPECIfiC FilEScociiiiiiiiiiiie e e 871
LICENSE KEYS ... ettt e et e e e e aneas 871
General Guidelines before Distributioncccuveiiiiiiii i 871

L= 1= =Y Lo S 874

ACKNOWIEAGEMENTES ..o et e e e e e e e e 875

IN D X ettt ettt e e e e e e e e e e e e e e e e e a e e e e s 877

iX

Preface

LINDO Systems is proud to introduce LINDO API 14.0. The general features include a) stochastic
optimization b) global and multistart solvers for global optimization, c) nonlinear solvers for general
nonlinear optimization, d) simplex solvers for linear optimization e) barrier solvers for linear,
quadratic and second-order-cone optimization f) mixed-integer solvers for linear-integer and
nonlinear-integer optimization, g) tools for analysis of infeasible linear, integer and nonlinear models,
h) features to exploit parallel processing on multi-core computers, i) interfaces to other systems such as
MATLAB, Ox, Java and .NET and j) support of more platforms

(see below).

The new features are: a) Improved speed and robustness in all solvers; b) Several new functions and
constraint types are recognized, e.g., the AlIDiff constraint for general integer variables, c) New
symmetry detection capabilities have been added to the integer (MIP) solver. This may dramatically
reduce the time needed to prove optimality on some models with integer variables.

The primary solvers in LINDO API 14.0 are:

O Global Solver:
The global solver combines a series of range bounding (e.g., interval analysis and convex
analysis) and range reduction techniques (e.g., linear programming and constraint
propagation) within a branch-and-bound framework to find proven global solutions to non-
convex NLPs. Traditional nonlinear solvers can get stuck at suboptimal, local solutions. API
14.0 incorporates substantial improvements in a) finding good feasible solutions quickly and
b) constructing bounds on both convex and nonconvex functions so optimality can be proven
more quickly.

O Mixed Integer Solver:
The mixed integer solver of LINDO API 14.0 solves linear, quadratic, and general nonlinear
integer models. It contains advanced techniques such as a) cut generation b) tree reordering
to reduce tree growth dynamically, ¢) improved heuristics for finding good solutions quickly,
and d) identifying certain model structures and exploiting for much faster solution, d)
recognition of the AlIDiff (All Different constraint type).

O General Nonlinear Solver:
LINDO API is the first full-featured solver callable library to offer general nonlinear and
nonlinear/integer capabilities. This unique feature allows developers to use a single general
purpose solver into custom applications. As with its linear and integer capabilities, LINDO
API provides the user with a comprehensive set of routines for formulating, solving, and
modifying nonlinear models. API 14.0 supports several dozen additional nonlinear functions,
mainly in the area of probability distributions, pdf’s, cdf’s, and their inverses.

O Multistart Nonlinear Solver:
The multistart solver intelligently generates a sequence of candidate starting points in the
solution space of NLP and mixed integer NLPs. A traditional NLP solver is called with each
starting point to find a local optimum. For non-convex NLP models, the quality of the best
solution found by the multistart solver tends to be superior to that of a single solution from a

X

PREFACE

traditional nonlinear solver. A user adjustable parameter controls the maximum number of
multistarts to be performed. See Chapter 7, Solving Nonlinear Models, for more information.

Simplex Solvers:

LINDO API 14.0 offers two advanced implementations of the primal and dual simplex
methods as the primary means for solving linear programming problems. Its flexible design
allows the users to fine tune each method by altering several of the algorithmic parameters.
The Sprint method uses the standard simplex solvers efficiently to handle “skinny” LP’s,
those having millions of variables, but a modest number of constraints.

Barrier (Interior-Point) Solver:

Barrier solver is an alternative way for solving linear and quadratic programming problems.
LINDO API’s state-of-the-art barrier solver offers great speed advantages for large scale
sparse models. LINDO API 14.0 also includes a special variant of the barrier solver
specifically designed to solve Second-Order-Cone (SOC) problems, including Semi-Definite
Programs (SDP). See Chapter 6, Solving Second-Order-Cone Models, for more information.
API 14.0 includes improved techniques for automatically identifying models than can be
solved as SOC.

Stochastic Solver, Multistage and Chance Constrained:

LINDO API 14.0 supports decision making under uncertainty. Its powerful stochastic solver
offers the ability to solve:

a) chance-constrained models,

b) multistage stochastic models with recourse.

For both types, the user expresses the uncertainty by providing distribution functions, either
built-in or user-defined. In multistage models, the stochastic solver optimizes the model to
minimize the cost of the initial stage plus the expected value of recourse over all future
stages. In chance-constrained models, the solver finds the best solution that satisfies
constraints with a specified probability.

Parallel Extensions:

LINDO API 14.0 includes multi-cpu optimization extensions to its solvers to take advantage
of computers with multicore processors. The multicore extensions are of two types:
concurrent optimizers and parallel optimizers (using built-in parallel algorithms). Parallel
versions of random number generators and sampling features are also provided.

Statistical Sampling Tools:

LINDO API 14.0 offers extensive set of API functions for sampling from various statistical
distributions. Sampling error can be reduced by using variance reduction methods such as
Latin-Hyper-Square sampling and Antithetic variates. Generation of correlated (dependent)
samples based on Pearson, Spearman or Kendall’s correlation measures is provided. A
pseudo-random number generation API offers advanced generators with long cycles.

PREFACE xi

Model and Solution Analysis Tools:

LINDO API 14.0 includes a comprehensive set of analysis tools for a) debugging of
infeasible linear, integer and nonlinear programs using series of advanced techniques to
isolate the source of infeasibilities to smaller subset of the original constraints, b) performing
sensitivity analysis to determine the sensitivity of the optimal basis to changes in certain data
components (e.g. objective vector, right-hand-size values etc..).

Quadratic Recognition Tools:

The QP recognition tool is a useful algebraic pre-processor that automatically determines if
an arbitrary NLP is actually a quadratic or SOC model. These models may then be passed to
the faster quadratic solver, which is available as part of the barrier solver option.

Linearization Tools:

Linearization is a comprehensive reformulation tool that automatically converts many non-
smooth functions and operators (e.g., max and absolute value) to a series of linear,
mathematically equivalent expressions. Many non-smooth models may be entirely linearized.
This allows the linear solver to quickly find a global solution to what would have otherwise
been an intractable nonlinear problem.

Decomposition Solvers and Tools:

Many large scale linear and mixed integer problems have constraint matrices that are
decomposable into certain forms that could offer computational advantage when solving. For
instance, some models decompose into a series of totally independent subproblems. A user
adjustable parameter can be set, so the solver checks if a model possesses such a structure. If
total decomposition is possible, it will solve the independent problems sequentially to reach a
solution for the original model. This may result in dramatic speed improvements. In other
cases, the model could have dual-angular structure with few linking columns, in which case
Benders decomposition solver may be useful. Models with primal-angular structure with a
few linking row can exploit the BNP solver. BNP solver can also be helpful in determining
very tight bounds to MIP problems using the built-in Lagrangean relaxation procedure. To
help identify different decomposition structures, special tools are provided to determine lower
triangular, dual-angular and primal-angular structures. Refer to the Block Structured Models
section in Chapter 10, Analyzing Models and Solutions, for more information.

Java Native Interface:

LINDO API includes Java Native Interface (JNI) support for Windows, Solaris, and Linux
platforms. This new feature allows users to call LINDO API from Java applications, such as
applets running from a browser.

MATLAB Interface:

The Matlab interface allows using LINDO API functions from within MATLAB. Using
MATLAB’s modeling and programming environment, you can build and solve linear,
nonlinear, quadratic, and integer models and create custom algorithms based upon LINDO
API’s routines and solvers.

NET Interface:

LINDO API includes C# and VB.NET interfaces that allow it to be used from within .NET's
distributed computing environment (including Windows Forms, ADO.NET, and ASP.NET).
The interfaces are in the form of classes that allow managed .NET code to interact with
unmanaged LINDO API code via the "System.Runtime.InteropServices" namespace.

Xii

PREFACE

O Ox Interface:
This interface provides users of the Ox statistical package, the ability to call LINDO API’s
functions the same way they call native Ox functions. This offers greater flexibility in
developing higher-level Ox routines that can set up and solve different kinds of large-scale
optimization problems, testing new algorithmic ideas or expressing new solution techniques.

O Python Interface:
The Python interface allows using LINDO API from within applications written in Python
language. Using Python’s extensive programming environment, you can build and solve all
model types supported by the C API. The Python interface is particularly suited for fast
development and testing of algorithmic ideas.

O R Interface:
The R interface allows using LINDO API from within applications written in R-language.
Coupled with R’s extensive statistical and data-mining tools, the LINDO API's R interface
offers seamless possibilities in statistical analysis and optimization. All model types
supported by the C API are available in the R interface.

O Platforms:
LINDO API 14.0 is currently available on Windows 32/64 bit, Linux 64-bit, OSX 64-bit
platforms. For availability of LINDO API 14.0 on all other platforms, you may wish to
contact LINDO Systems, Inc.

LINDO Systems, Inc
1415 N. Dayton
Chicago, Illinois
(312) 988 9421

info@lindo.com
http://www.lindo.com

August 2022

Chapter 1:
Introduction

What Is LINDO API?

The LINDO Application Programming Interface (API) provides a means for software developers to
incorporate optimization into their own application programs. LINDO API is designed to solve a wide
range of optimization problems, including linear programs, mixed integer programs, quadratic
programs, and general nonlinear non-convex programs. These problems arise in areas of business,
industry, research, and government. Specific application areas where LINDO API has proven to be of
great use include product distribution, ingredient blending, production and personnel scheduling,
inventory management... The list could easily occupy the rest of this chapter.

Optimization helps you find the answer that yields the best result; attains the highest profits, output, or
happiness; or achieves the lowest cost, waste, or discomfort. Often these problems involve making the
most efficient use of your resources—including money, time, machinery, staff, inventory, and more.
Optimization problems are often classified as linear or nonlinear, depending on whether the
relationships in the problem are linear with respect to the variables.

The most fundamental type of optimization problems is the /inear program (LP) of the form:

Minimize (or maximize) cix1 + ¢z + ...+ ¢

Such that

Auxy +Aixz + o+ Auxn 2 by

Anx; +Axxz + ...+ Auxn ? b

Amx1 + Apx2 + .o+ AunXn 2 b
Li<x1 LU
Ly <x < Us
Li<x, < U,

where 4;;, ¢, bi, Lj, U; are known real numbers; ? is one of the relational operators ‘<’, ‘=, or °>’; and

X1,X2, ...,Xn are the decision variables (unknowns) for which optimal values are sought.

The expression being optimized is called the objective function and cy,c», ...,c, are the objective
coefficients. The relationships whose senses are expressed with ? are the constraints; 41,4, ..., Ain are
the coefficients; and &; is the right-hand side value for the i constraint. Z; and Uj represent lower and
upper bounds for the j decision variable and can be finite or infinite.

2 CHAPTER 1

At the core of LINDO API’s optimizers are the linear solvers, which solve problems of this form. On
top of the linear solvers are other solver types. These can be used to solve generalizations of LPs, such
as problems containing integer variables or quadratic or nonlinear expressions.

The problem of mixed-integer linear programs (MILP) is an extension of LPs where some of the
decision variables are required to take integer (whole number) values. Another extension of LPs is
when the expressions in the objective function or the constraints are nonlinear functions of decision
variables, such as logarithms or products of variables. Such problems are called nonlinear programs
(NLPs). A special case of NLPs is quadratic programs (QPs) where the only nonlinear relationships
among variables are products of two variables. NLPs and QPs with integrality restrictions on some
variables are called mixed-integer nonlinear programs (MINLP) and mixed-integer quadratic
programs (MIQP), respectively.

Linear Solvers

There are three linear solvers—the Primal Simplex, Dual Simplex, and the Barrier Methods. The
simplex method (primal or dual) solves the LP by moving along the edges of the feasible region
defined by the constraint set. By contrast, the barrier method walks through the interior of the feasible
region while searching an optimal solution. All three methods either terminate with an optimal solution
or return a flag indicating that the LP is infeasible or unbounded.

In general, it is difficult to say which algorithm will be fastest for a particular model. A rough
guideline is Primal Simplex tends to do better on sparse models with fewer rows than columns. Dual
Simplex tends to do well on sparse models with fewer columns than rows or models that are primal
and/or dual degenerate, while Barrier works best on structured models or very large models. The
simplex methods use a state-of-the-art implementation of the revised simplex method with product
form inverse. The barrier solver uses a homogeneous self-dual algorithm. All three use extensive
preprocessing to help reduce the complexity of the LP and improve its numerical properties. See
Chapter 3, Solving Linear Programs, for examples of solving linear programs with the LINDO API.

Mixed-Integer Solver

LINDO API solves the mixed-integer models with the branch-and-cut method. It is an iterative method
that uses either the linear or nonlinear solver as a subsolver, depending on the nature of the problem.
The mixed-integer solver is equipped with advanced preprocessing, heuristic and cut generation tools.
Preprocessing generally reduces the problem size to a manageable size and offers great computational
savings, especially for large problems. Addition of “cuts” helps eliminate the noninteger feasible
regions quickly and provides improved bounds during the branch-and-bound. For many classes of
MILP problems, heuristic algorithms quickly find good integer solutions and lead to improved bounds.
All these techniques lead to improved solution times for most integer programming models. See
Chapter 2, Function Definitions, for more information of optimization functions and related
parameters. See Chapter 4, Solving Mixed-integer Programs, for examples of solving mixed integer
programs with LINDO API.

INTRODUCTION 3

Nonlinear Solver

LINDO API’s nonlinear solver employs both successive linear programming (SLP) and generalized
reduced gradient (GRG) methods. Under certain conditions, QPs, which are special cases of NLPs, can
be solved more efficiently via the barrier method.

The nonlinear solver returns a local optimal solution to the underlying problem. If local optimality
cannot be achieved, then a feasible solution is reported if one had been found. In case no feasible
solutions were found or the problem was determined to be unbounded or numerical problems have
been encountered, then an appropriate flag is returned.

LINDO API can automatically linearize a number of nonlinear relationships through the addition of
constraints and integer variables, so the transformed linear model is mathematically equivalent to the
original nonlinear model. Keep in mind, however, that each of these strategies will require additional
computation time. Thus, formulating models, so they are convex and contain a single extremum, is
desirable.

Global Solver

The standard nonlinear solver returns a local optimal solution to the NLP. However, many practical
nonlinear models are non-convex and have more than one local optimal solution. In some applications,
the user may want to find a global optimal solution.

The optional global solver available in LINDO API employs branch-and-cut methods to break an NLP
model down into many convex sub-regions and returns a provably global optimal solution. See

Chapter 7, Solving Nonlinear Programs, for examples of solving nonlinear programs with LINDO
APL

LINDO API also has a multistart feature that restarts the standard (non-global) nonlinear solver from a
number of intelligently generated points. This allows the solver to find a number of locally optimal
points and report the best one found. This alternative could be used when global optimization is costly.

Stochastic Solver

LINDO API’s stochastic solver can solve multistage linear, nonlinear and integer models where some
of the model parameters are not known with certainty but can be expressed probabilistically. Integer
and nonlinear stochastic models are solved by transforming the model into the so-called deterministic-
equivalent model. Linear models can be solved either with the nested Benders method or through the
deterministic equivalent. For models with parametric distributions, Monte-Carlo sampling is available
for finite approximations. Standard variance reduction strategies like Latin-hypersquare sampling and
antithetic control variates are also available during sampling. Advanced tools, like inducing a
correlation structure among random parameters based on various measures, are also provided. See
Chapter 8, Stochastic Programming, for a detailed coverage of the topic and illustrative examples.

Installation

Installing the LINDO API software is relatively straightforward. To run LINDO API, we recommend a
computer running 64-bit of Linux or OSX, or a 32-bit or 64-bit version of Windows. In general, you
will need at least 32Mb of RAM and 50Mb of free disk space. A faster processor and additional
memory may allow LINDO API to solve tougher problems and/or improve performance. It should be
noted that these are minimums. Solving big models may require more resources.

4 CHAPTER 1

Windows Platforms

To install a Windows version (95/98/NT/XP/Vista/7/8/10), simply insert the LINDO API installation
CD, double-click on the LINDO API folder to open the directory, and then double-click on the setup
icon to run the LINDO API setup program. For a downloaded version of LINDO API, simply extract
the executable file (.exe) from the (.zip) archive and run it (double-click the setup icon) to launch the
installation process. Setup will do all the required work to install LINDO API on your system and will
prompt you for any required information.

After the installation process is complete, the following directory structure will be available.

lindoapi\ ' installation directory
lindoapilbin\<platform> ' executables, dynamic libraries
lindoapillib\<platform> ' import library, java class library
lindoapi\matlab ' matlab scripts, functions, etc..
lindoapi\ox ' ox library

lindoapilinclude ' header files

lindoapillicense ' license files

lindoapildoc ' user manual in pdf format
lindoapilsamples ' samples directory
lindoapilsamples\c\ ' ¢c/ct++ samples
lindoapilsamples\delphi\ ' delphi samples
lindoapil\samples\java\ ' java samples (jsdk)
lindoapilsamples\vb\ ' visual basic samples (windows only)
lindoapilsamples\dotnet\vb ' visual basic .net samples
lindoapilsamples\dotnet\cs ' c# .net samples
lindoapilsamples\fort\ ' £90 samples

lindoapi\samples\mps\ ' test problems in mps format

Note: The binaries in your installation are located under ‘lindoapi\bin\<platform>’ directory, where
<platform> refers to the platform (or operating system) you are working on. For instance, on
x86 platform running 32-bit Windows, the binaries are located at ‘lindoapi\bin\win32’, similarly
on x64 platform running 64-bit Linux, the binaries are at ‘lindoapi\bin\linux64’.

Unix-Like Platforms

Follow the steps below to complete the installation on Unix-like platforms. It is assumed that the
Linux 64-bit version of LINDO API is being installed. For OSX and other platforms, these steps
would be identical except for the installation file name.

Step 1. Locate the LAPI-LINUX-64x86-14.0.tar.gz file on your CD.

Step 2. Copy this file into an installation directory of your choice (e.g. /opt):
%> cp LAPI-LINUX-64x86-14.0.tar.gz /opt

Step 3. Change working directory to '/opt' and uncompress the file using ‘gzip —d’ command as
below. This operation creates LAPI-LINUX-64x86-14.0.tar.

%> gzip —-d LAPI-LINUX-64x86-14.0.tar.gz

INTRODUCTION

5

Step 4. Uncompress that file using ‘tar —xvf> command as below. This will create the LINDO API
directory ‘lindoapi/’.
%> tar —-xvf LAPI-LINUX-64x86-14.0.tar

Step 5. Set SLINDOAPI_HOME environment variable to point to the installation directory.

LINDOAPI HOME=/opt/lindoapi
export LINDOAPI HOME

Step 6. Change file permissions and create symbolic links as needed.

Change working directory to ‘SLINDOAPI HOME/bin/linux64’ and check if LINDO

API’s shared libraries (.so files) and the driver program ‘runlindo’ are all in executable mode. If not,
either run the script 'Isymlink.sh' or change the mode manually by typing the following commands:

%> chmod 755 liblindo*
%> chmod 755 libmosek*
%> chmod 755 runlindo

Create symbolic links to the following library files — symbolic links are required for makefiles in
samples directory.

For Unix-like systems,

%> 1n -sf liblindo64.s0.14.0 1liblindo64.so
%> 1In -sf liblindojni.so0.14.0 1liblindojni.so
%> 1In -sf libmosek64.s0.9.1 libmosek64.so

For Mac-OSX

%> 1ln -sf liblindo64.14.0.dylib liblindo64.dylib
%> 1ln -sf libmosek64.9.1.dylib libmosek64.dylib

These steps can be performed using the script ‘SLINDOAPI_HOME/bin/<platform>/lsymlink.sh’.

Step 7. (Optional) You can update your library path environment variable although it is not the
recommended way to specify search directories. LINDO API already have the run-time search paths
(RPATH) hardcoded into its libraries. LD LIBRARY PATH might only be appropriate as a short
term solution during testing or development. For example, a developer might use it to point to

older versions (prior to v8) of the LINDO API library. Older versions of LINDO API rely on this
environment variable.

LD _LIBRARY PATH=SLINDOAPI HOME /bin/<platform>:$ LD LIBRARY PATH
export LD LIBRARY PATH

Note: Mac-OSX, AIX and HP-UX do not use LD_LIBRARY_ PATH. Users of these systems
should apply the following equivalent changes.

6 CHAPTER 1

Mac-OSX:
DYLD LIBRARY PATH=$LINDOAPI HOME/bin/<platform>:$DYLD LIBRARY PATH
export DYLD LIBRARY PATH

AIX:
LIBPATH=SLINDOAPI HOME/bin/<platform>:$SLIBPATH
export LIBPATH

HP-UX:
SHLIB_PATH=SLINDOAPI HOME/bin/<platform>:$SHLIB_PATH
export SHLIB PATH

Step 8. (Optional) You can set SLINDOAPI_LICENSE_FILE environment variable to refer to
the license file in your installation.

LINDOAPI LICENSE FILE = “S$LINDOAPI HOME/license/lndapil40.lic ”
export LINDOAPI LICENSE FILE

Alternatively, you can execute the shell script ‘lindoapivars.sh’ to perform the required updates in
these environment variables.

To execute this script manually, enter the following at command line:
source SLINDOAPI HOME/bin/<platform>/lindoapivars.sh

To execute this script automatically at logon, append this line to the end of your startup script
(.bashrc or .bash_profile for bash shell).

Step 8. 1f you received a license file (Indapil40.lic) with your installation CD, copy this file into the
‘SLINDOAPI_HOME/license’ directory.

Step 9. You can test your installation by changing directory to SLINDOAPI _HOME/bin/<platform>
and type the following. This should display the version info on your LINDO API installation.

%> ./runlindo -v

Optionally, you can add “./”” to your $PATH variable to avoid having to type "./" in front of program
runlindo from the current working directory.

Updating License Keys
In a default installation, the license file (Indapi140.lic) is located under LINDOAPI\LICENSE

directory. The license file initially contains a demo license, which allows full access to LINDO API
with limited problem capacity.

INTRODUCTION 7

The contents of /ndapil40.lic are as follows:

LINDO API Demo 14.00

1

None

Nonlinear Global Barrier
Educational

All platforms

Eval Use Only

>

** place your license key here **
>

Modify this file by placing the license key you received with your copy of the software between the
“>” characters. Be sure to preserve capitalization and include all hyphens. For instance, suppose your
license key is: AT3x-5*mX-6d9J-vS$pG-TzAU-D2%. Then, modify Indapil40.lic , so it appears
exactly as follows:

LINDO API Demo 14.00

1

None

Nonlinear Global Barrier
Educational

All platforms

Eval Use Only

>
AT3x-5*mX-6d9J-vSpG-TzAU-D2%
>

Note: If you purchased a license, you should update the license file with the license key you obtained
from your sales representative.

If you were e-mailed your license key, simply cut the license key from the e-mail that contains
it and paste it into the /ndapil40.lic file replacing the existing demo license key.

Your license key is unique to your installation and contains information regarding your version's serial
number, size, and supported options. The license key is case sensitive, so be sure to enter it exactly as
listed, including all hyphens. Given that your license key is unique to your installation, you can not
share it with any user not licensed to use your copy of the LINDO API.

Solving Models from a File using Runlindo

LINDO API distribution contains a simple program, runlindo.exe that allows you to solve models from
a file after installation. In a 32-bit Windows installation, runlindo.exe is in the \lindoapi\bin\win32
directory. Runlindo is intended to be run from a command line prompt. To see command line options,
type at the command line prompt:

runlindo -help

in which case the following command line options will be listed:

8 CHAPTER 1

Usage: runlindo.exe filename [options]

General options:

-max { Solve the problem as a maximization problem }
-min { Solve the problem as a minimization problem }
-print [n] { Set print level to [n] }

-profile [n] { Set profile level to [n] }

-decomp [n] { Set decomposition type to 'n' when solving

LP/MIPs (2)}

-iisfind [n] { Find IIS with search level 'n'

-iisnorm [n] { Set infeasibility norm to 'n' in IIS search
(1) .

-iismeth [n] { Use method 'n' with IIS finder (1).

—iusfind [n] { Find IUS with search level 'n'

-iusmeth [n] { Use method 'n' with IUS finder (1).

-nblocks [n] { Set number of blocks in a decomposed model to
'n' (1)

-bnd, -b [n] { Truncate infinite bounds with le+n (15)

-linfo { Display license information }

-uinfo [n] { Display user information, with (optional) query
type 'n' }

-licfile { Read license file }

-tlim [n] { Set time limit to 'n' secs. }

-ilim [n] { Set iter limit to 'n'. }

-pftol [eps] { Set primal feasibility tolerance to 'eps'.}

Defaults for LP: le-7, NLP: le-6

-dftol [eps] { Set dual feasibility tolerance to 'eps'.}
Defaults for LP: le-7, NLP: le-7.

—aoptol [eps] { Set absolute optimality tolerance to 'eps'.}
Defaults for MILP: 0.0, GOP:le-6, SP:le-7

-roptol [eps] { Set relative optimality tolerance to 'eps'.}
Defaults for MILP:le-6, GOP:le-6, SP:le-7

-poptol [eps] { Set percent optimality tolerance to 'eps'.}
Defaults for MILP:le-5

-ver, -v { Display version and build date }

-help, -h { Help }

-nthreads [n] { Set number of parallel threads. }

-ccstrategy [n] { Set concurrent strategy to n. }

INTRODUCTION

-xsolver [n] { Enable external LP solver #n. }

-threadmode [n] { Multithread mode for supported solvers}

-modeltype { Print out model type}
-keepilist { Keep i-list for LP/QP models}
-orient [n] { Problem orientation (0O:free l:solve primal

model, 2:solve dual model}

-rcnames { Delete existing name data and use RC names. }
-nzhist { Show a histogram of matrix nonzeros. }

-1tf { Convert to lower-triangular-form (LTF). }
-kbest [k] { Find k best solutions, in binary variable space

for MIP, corner points for an LP }

-sym [n] { Set symmetry finding level to [n]}
-symprint [n] { Set symmetry finding print level to [n]}
-mswcutoff[v] { Set multistart objective cutoff value to [Vv]}

—-tuner <jsonfile> { Run the tuner using configuration in
jsonfile}

-rtuner { Run the tuner using default configuration on
specified model}

-bexp { Create the binary expansion of the model with
general integers}

Linear optimization options:

-1lp { Solve the problem as an LP problem }

-psim { Use the primal simplex method for LP problems }
-dsim { Use the dual simplex method for LP problems }
-bar { Use the barrier method for LP problems }
-sprint { Use the sprint method for LP problems }

-scale [n] { Set scaling mode to [n] }

-dual { Solve the dual model implicitly }

-tpos { Solve the dual model explicitly }

-novertex { No crossover with barrier method }

-iusol { Force the solver to return some solution

when the model is infeasible or unbounded. }

-pre 1lp [n] { Set presolve level to 'n' for LP problems
(126) }
-filelp { Solve specified LP model with file based sprint

-refact [n] { Refactor frequency (250) }

10

CHAPTER 1

-pprice [n]

-dprice [n]

2:steepest-edge,

-pratio [n]

-dratio [n]

-bigm [n]

-pivtol [eps]

-mkwtol [eps]

-sfttol [eps]

-sbttol [eps]

-ufttol [eps]

-rcond [val]

-lup [n]

-lumode [n]

-lucore [n]

-lptool [n]

-lpxmode
-lpumode

-pertfact

[n]
[n]
[n]

-pcolal [n]

-dynobjfact [n]

-dynobjmode [n]

-umode [n]

-mergefact [n]

-maxmerge
-basrecov

-solvmode

Mixed integer
-mip
-mipduals
-pri
-pre_root

-pre leaf
(174) .}

-cut_root

[n]
[n]
[n]

Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set

sparse ftran tolerance
sparse btran tolerance

lu update tolerance to

{ Primal pricer. -l:auto, O:partial, l:devex }

{ Dual pricer. -l:auto, O:partial, 1:full,
3:devex, 4:approx.devex}

{ Primal ratio. -l:auto, O:Harris, 1l:Long}

{ Dual ratio. -l:auto, O:Harris, 1l:Long}

{ Set big-M for phase-I to 'n' (leb6)}

{ Set simplex pivot tolerance to 'eps' (le-8)}

{ Set Markowitz tolerance to 'eps' (le-2)}

to 'eps' (2e-1)}

to 'eps' (le-1)}

'eps' (le-3)}

lu rcond target to 'val' (le-2)}

update type O:eta, 1:ft (1)}

LU mode mask to 'n' (0
LU core to 'n' (0) }

LP strategy tool mask
LP xmode to 'n' (advan
LP umode to 'n' (advan

LP perturbation factor
col sparsify factor to
dynamic obj factor to
dynamic obj mode to 'n
update mode to 'n' }
merge factor to 'n' }

max merges to 'n' }

)}

to 'n'}
ced) }
ced) }

to 'n' }
"m' o
'n')

"}

basis recovery method to 'n' }

solver mode to 'n' }

optimization options:

{
{
{

Solve the problem as a MIP problem }

Compute dual solutions

Read the priority file 'fi

Set
Set

Set

presolve level to 'n'

presolve level to 'n'

cut level to 'n' for root node

lename.pri' }

to the MIP problem }

for root node (510).}
for leaf nodes
(22520) .}

INTRODUCTION

11

-cut leaf [n]
-ord tree [n]
-heuris [n]

-strongb [n]

-bnp [n]
n}

-fblock [n]

-colmt [n]

-hsearch [n]
method/mode [n]}

-fp [n]

-rootlp [n]
(0 to 4)}

-nodelp [n]
(0 to 4)}

-mipmode [n]

~hamming [n]
solution}

-nodesel [n]
-brandir [n]
-bransel [n]
-branlim [n]

-mipcutoff[n]
-mipsym [n]
—-saveroot
-loadroot

-lbigm [n]

Set cut level to 'n' for leaf nodes (20478).}
Set tree reorder level to 'n' (10).}

Set heuristic level to 'n' (3).}

Set strongbranch level to 'n' (10).}

Solve MIP with branch and price method of level

Find block for bnp with level n (1 to 3)}
Limit for colums generated in bnp solver}

Solve MIP using heuristic-search using

Set feasibility pump level (-1 to 2)}

Set the method for solving root LP relaxation

Set the method for solving node LP relaxation

Set MIP general mode}

Display the hamming distance for new MIP

Set node selection rule to [n]}

Set branch direction selection rule to [n]}
Set branch variable selection rule to [n]}
Set branch limit to [n]}

Set mip objective cutoff value to [n]}

Set mip symmetry mode to [n]}

Save root solution }

Load root solution }

Set linearization bigM to 'n' (leb5) }

Nonlinear optimization options:

-nlp [n]
{7} 1}

-multis [n]
problems}

—-conopt [n]
-slp

-1lnz [n]

-pre nlp [n]

{ Use the nonlinear solver 'n' for LP/QP problems

Set number of multistarts to [n] for NLP

Use Conopt version 'n' for NLP problems (3)}
Use SLP solver for NLP problems}

Set linearization level for NLP problems to 'n'

Set presolve level to 'n' for NLP problems (0)}

12 CHAPTER1

-derv [n] { Set derivative type 'n' for NLP problems (0)}

-gp [n] { 1: Enable quadratic check, 0: disable quadratic
check (1)}

-hessian { Enable usage of Hessian (2nd order) matrix}

-lcrash [n] { Set advanced NLP crash mode to n (1)}

-filtmode[n] { Set multistart filter mode (0) }

-prepmode [n] { Set multistart prep mode (0) }

—-qgcheck { Check quadratic terms without solving }

-grepair { Repair quadratic terms before solving }

-slpdir { Use SLP directions for NLP problems }

Global optimization options:

-gop { Solve the problem as a GOP problem }

I/0 options:
-par <parfile> { Read parameters from <parfile>}

-ini <inifile> { Read initial solution from <inifile> or
'filename.sol'}

-sol { Write solution to file 'filename.sol' }
-sol ipm { Write IPM solution to file 'filename.sol' }
—-fmps { Read formatted MPS files (old MPS format) }
-cmps { Read MPS compatible mode files (can combine

with -fmps) }

-wWmps { Export the input model in MPS format }

-wmpi { Export the input model in MPI format }

-wltx { Export the input model in LINDO format }

-wlng { Export the input model in LINGO format }

-wsrc { Export the input model data in C language }

-wtsk { Export the input model data as a task file }

-wiis { Export the IIS in LINDO format }

-wpri <mode> { Export the variable priorities }

-wset { Export the input model with sets/sc in MPS
format}

-wlpf { Export the input model in LP format }

-wmpx <mask> { Export the input model in MPX format with

specified mask }

-wbas { Export the final basis into 'filename.bas'}

INTRODUCTION 13

-smps { Read SMPS/SMPI formatted SP model. }
-rtim { Read time/block structure from 'filename.tim'}
-wtim { Export time/block structure to 'filename.tim'}

-wpar <parfile> { Write parameters to <parfile>}

-hpar <parid> { Help message for parameter <parid>}

-ccpar <base> { Read parameters for concurrent solve from
file-chain <base>}

-xlua <luafile> { Execute lua script file 'luafile'}

-wtun { Export resident tuner file in json format}

For example, to solve a linear program in MPS format in a file called “mymodel.mps”, you might type:

runlindo mymodel.mps -sol

The option “-sol” causes a solution report to be written to the file “mymodel.sol”. To learn more about
the file formats recognized, see the appendices.

The ability to set parameters is not limited to command line arguments. Before initializing each
optimization session, runlindo reads optionally specified parameters from a file named “lindo.par”.

All LINDO API parameters can be set through this simple interface. Parameter values set through
command line arguments have precedence over those set through “lindo.par”. An example “lindo.par”
can be found in:

lindoapi/bin/$PLATFORM

where SPLATFORM refers to one of the following

win32 for 32-bit MS Windows on x86,
wino4 for 64-bit MS Windows on x64,
0sx64x86 for 64-bit Macintosh 0SX on x86
linux64 for 64-bit Linux on x64

For details, on available parameters in LINDO API and their usage through API calls and parameter-
files, see "Parameter Setting and Retrieving Routines" in Chapter 2."

Sample Applications

The distribution package contains several sample application programs that illustrate the use of
LINDO API using a high level programming language. The majority of the examples provided are in
C/C++. Sample applications in other languages, such as Visual Basic, C#, Delphi, Fortran 90, and
Java/J++ are also given.

Note: The header files required by each programming language are located in LINDOAPINNCLUDE
directory. These headers contain macro definitions and function prototypes (calling sequences)
for each programming language. For a detailed description of available LINDO API functions,
please refer to Chapter 2, Function Definitions.

Each sample is located in a separate directory along with a MAKEFILE and/or an IDE Project (for
Windows only) to build the application. Depending on your platform, use MAKEFILE.UNX (for
Solaris and Linux) or MAKEFILE.WIN (for Windows).

14 CHAPTER1

Now, let’s illustrate how to get started using LINDO API by setting up and solving a small LP using a
programming language.

Array Representation of Models

From within a programming environment, models can be entered into LINDO API in either of two
ways: 1) characterize the model using data structures (array representation) and pass the associated
data objects to LINDO API via model loading routines in LINDO API, or 2) read the model from a file
directly into LINDO API via input/output routines available. Supported file formats are MPS, LINDO,
MPI, SMPS, and SMPI formats, which are described in Appendices B, C, D, E, and F respectively.
Here, we focus on the first alternative, which we have referred to as array representation, and describe
how to characterize an LP model within a programming environment. In our discussion, the terms
‘array’ and ‘vector’ are used interchangeably.

We will use a small LP with four decision variables x;, x2, x3, x4 (n=4) and four constraints (m=4) for
our example. The lower and upper bounds are specified for each variable explicitly. If neither bounds
are given, it would be assumed the variable is continuous, bounded below by zero and bounded from
above by infinity. The model appears as follows:

Minimize X1t X2 o+ X3+ x4
S.t.
3x1 + 2xa = 20
6x2 + 9x4 > 20
4x; + 5xz + 8x3 = 40
Tx, + 1x3 > 10
2 < X1 < 5
1 < X2 < +00
—00 < X3 < 10
-0 < Xg < +00

INTRODUCTION 15

The diagram below shows how each component of LP data, except the coefficients of the constraint
matrix, can be trivially represented by vectors (arrays). The circled elements labeled 4,B,C,D, and E in
the following figure symbolize these components and refer to objective coefficients, constraint senses,
right-hand sides, lower-bounds, and upper-bounds, respectively.

Use ‘L’, ‘E’, ‘G’, or ‘N’
for less-than, equal-to,

A greater-than, or neutral.
Minini e -'
S.t.
3x4 + 2%, 20
6%, + 9%, 201 C
4x; + 5x; + 8x3 40
1%, + 1x,; B 10
D
< X1 <
= X2 =
< X3 = E
< Xy =

In this small example, these vectors translate to the following:

(1 1 1 117.
[E G E G].
[20 20 40 10 1.
[2
[5

1 -LS INFINITY -LS INFINITY].
LS INFINITY 10 LS INFINITY].

Mo QW=
I

Each of these vectors can be represented with an array of appropriate type and passed to LINDO API
via model loading routines. Although it is also possible to represent the coefficients of the constraint
matrix with a single vector, a different representation, called the sparse matrix representation, has
been adopted. This is discussed in more detail below.

Sparse Matrix Representation

LINDO API uses a sparse matrix representation to store the coefficient matrix of your model. It
represents the matrix using three (or optionally four) vectors. This scheme is utilized, so it is
unnecessary to store zero coefficients. Given that most matrix coefficients in real world math
programming models are zero, this storage scheme proves to be very efficient and can drastically
reduce storage requirements. Below is a brief explanation of the representation scheme.

We will use the coefficients of the constraint matrix in our sample LP from above. These are as
follows:

X1 Xo X3 X4

300

2
9
0
0

o s O
~ 01 O
= o O

16 CHAPTER1

Three Vector Representation

Three vectors can represent a sparse matrix in the following way. One vector will contain all of the
nonzero entries from the matrix, ordered by column. This is referred to as the Value vector. In our
example, this vector has 9 entries and looks like:

valve = [3 4 6 5 7 8 1 2 9 1.

Note that all of the entries from the first column appear first, then the entries from the second column,
and so on. All of the zeros have been stripped out.

In the second vector, which we call the Column-start vector, we record which points in the Value
vector represent the start of a new column from the original matrix. The n' entry in the Column-start
vector tells us where in the Value vector to find the beginning of the n'h column. For instance, the
column starts for the Value vector of our small example are underlined in the following diagram. Note
that LINDO API uses zero-based counting, so the Column-start vector is as follows:

01234561738
Value = [34657812291].

Column-start = [0 2 5 7 9].

Note that the Column-start vector has one more entry than there are columns in our matrix. The extra
entry tells LINDO where the last column ends. It will always be equal to the length of the Value
vector.

From the Column-start vector, we can deduce which column is associated with each entry in our Value
vector. The only additional information that we need is the row numbers of the entries. We store this
information in a third vector, the Row-index vector. This vector is the same length as the Value vector.
Each entry in the Row-index vector tells which row the corresponding entry from the Value vector
belongs to. In our example, the number 3 belongs to the first row, which we call row 0, so the first
entry in the Row-index vector is 0. Similarly, the second entry in the Value vector (4), belongs to the
third row (row 2 when starting from zero), so the second entry of the Row-index vector is 2.
Continuing in this way through the rest of the entries of the Value vector, the resulting Row-index
vector appears as follows:

0 1 2 3 4 5 6 7 8
o 2 1 2 3 2 3 0 11].

Row-index = [

In summary, our transformation from a matrix into 3 vectors is:

Column-starts: [02579]
= Value: [3465781209]
Row-index: [021232301]

S O W
~N L O\ ©
— o0 O O
S S O N

INTRODUCTION 17

Four Vector Representation

The four vector representation allows more flexibility than the three vector representation. Use it when
you expect to add rows to your original matrix (i.e., if you will be adding additional constraints to your
model).

The four vector representation uses the same three vectors as above. However, it allows you to have
“blanks” in your Value vector. Because of this, you must also pass a vector of column lengths, since
the solver doesn’t know how many blanks there will be.

For example, suppose we wish to leave room for one additional row. Then, our Value vector becomes:

Value = [3 4 X 6 5 7 X 8 1 X 2 9 X]

where the X’s represent the blanks. The blanks may be nulls or any other value, since they will be
ignored for the time being.

Our Column-start vector becomes:
0 1 2 3 4 5 6 7 8 9 10 11 12
Value = [3 4 X 6 5 7 X 8 1 X 2 9 XxX1].

Column-start = [0 3 7 10 13].

Our new vector is the Column-length vector. It will contain the length of each column (i.e., the number
of nonzeros in each column). This allows the solver to skip the blanks (X’s) in the Value vector. In our
small example, since the first column contains two nonzero and nonblank entries, the first element of
the Column-length vector will be 2. Continuing through the remaining columns, the Column-length
vector and its corresponding entries from the Value vector are as follows:

Column-length = [2 3 2 2].
Value = [3 4 X 6 5 7 X 8 1 X 2 9 X].

Our Row-index vector is as before, except we add a blank for each blank in the Value vector. As with
the Value vector, these blanks will be ignored, so they can contain any value. Thus, the Row-index
vector becomes:

0o 1 2 3 4 5 6 7 8 9 10 11 12

0 2 X 1 2 3 X 2 3 X 1

Row—index = [2 X 1.

In summary, the four vector transformation is:

300 2 Column lengths: [2 3 2 2]

06 09 N Column starts: [0 3 7 1013]

4 580 Values: [34X657X81X29X]
0710 Row indexes: [02X123X23X01X]

18 CHAPTER1
Simple Programming Example

Up to this point, we have seen that the objective function coefficients, right-hand side values,
constraint senses, and variable bounds can be stored in vectors of appropriate dimensions and the
constraint matrix can be stored in three or four vectors using the sparse matrix representation. In this
section, we show how these objects should be declared, assigned values, and passed to LINDO API to
complete the model setup phase and invoke optimization.

Recall the small LP example model from the array representation section above:

Minimize X1+ X2 + X3 + X4
S.t.
3x1 + 2x4 = 20
(& + 9x4 2> 20
4x1 + 5%, + 8x3 = 40
Tx, + 1xs > 10
2 < X1 < 5
1 < X2 < +00
-0 < X3 < 10
-0 < X4 < +00

It is easy to verify that the model has 4 variables, 4 constraints, and 7 nonzeros. As determined in the
previous section, its constraint matrix has the following (three-vector) sparse representation:

Column-start = [0 2 5 7 9]
Values = [3.0 4.0 6.0 5.0 7.0 8.0 1.0 2.0 9.0]
Row-index = o 2 1 2 3 2 3 0 11

Other components of the LP data, as described above, are:

Right-hand side values = [20 20 40 10].
Objective coefficients = [1 1 1 1].

Constraint senses = [E G E G].

Lower bounds = [2 1 -LS INFINITY -LS INFINITY].
Upper bounds = [5 LS INFINITY 10 LS INFINITY].

Create an Environment and Model

Before any data can be input to LINDO API, it is necessary to request LINDO API to initialize the
internal solvers by checking the license this user has and to get handles of the required resources

(e.g., pointers to internal memory areas). This is achieved by creating a LINDO environment object
and creating a model object within the environment. These reside at the highest level of LINDO API’s
internal object oriented data structure. In this structure, a model object belongs to exactly one
environment object. An environment object may contain zero or more model objects.

The following code segment does this:

/* declare an environment variable */
pLSenv pEnv;

/* declare a model variable */
pLSmodel pModel;

/* Create the environment */
pEnv = LScreateEnv (&nErrorCode, MY LICENSE KEY);

/* Create the model */
pModel = LScreateModel (pEnv, &nErrorCode);

INTRODUCTION 19

The environment data type, pLSenv, and the model data type, pLSmodel, are both defined in the /indo.h
header file. A call to LScreateEnv() creates the LINDO environment. Finally, the model object is
created with a call to LScreateModel(). For languages other than C/C++ pLSenv and pLSmodel objects
refer to integer types. The associated header files are located in the ‘lindoapi/include’ directory.

Load the Model
The next step is to set up the LP data and load it to LINDO API. This is generally the most involved of
the steps.

Objective

The following code segment is used to enter the direction of the objective. The possible values for the
direction of the objective are LS MAX and LS MIN, which are predefined macros that stand for
maximize or minimize. For our sample problem, the objective direction is given as maximization with
the following code:

int nDir = LS MIN;
The constant terms in the objective function are stored in a double scalar with the following:
double dObjConst = 0.0;

Finally, the objective coefficients are placed into an array with the following:
double adC[4] = { 1., 1., 1., 1.};

Constraints

The following code segment is used to enter the number of constraints:
int nM = 4;

The constraint right-hand sides are place into an array with the following:
double adB[4] = { 20., 20., 40., 10. };

The constraint types are placed into an array with the following:
char acConTypes[4] = {‘E’, ‘G, ‘E’ , ‘G" };

The number of nonzero coefficients in the constraint matrix is stored:
int nNZ = 9;

Finally, the length of each column in the constraint matrix is defined. This is set to NULL in this
example, since no blanks are being left in the matrix:
int *pnLenCol = NULL;

The nonzero coefficients, column-start indices, and the row indices of the nonzero coefficients are put
into arrays with the following:

int anBegCol[5] {0 , 2 ,5 , 7 ,91%;
double adaf[9] = { 3.0, 4.0, 6.0, 5.0, 7.0, 8.0, 1.0, 2.0, 9.0 };
int anRowx[(9] = { O , 2 , 1 , 2 ,3 ,2 ,3 ,0 ,1 };

Note: Refer to the section Sparse Matrix Representation above for more information on
representing a matrix with three or four vectors.

20 CHAPTER1

Variables
The following code segment is used to declare the number of variables:

int nN = 4;
The upper and lower bounds on the variables are defined with the following:
double pdLower[4] = {2, 1, -LS INFINITY, -LS INFINITY};

double pdUpper[4] = {5, LS INFINITY, 10, LS INFINITY};

Then, the variable types are placed into an array with the following:
char acVarTypes[4] = {‘C’,C’",'C’,C"};

The variable types could actually be omitted and LINDO API would assume that the variables were
continuous.

We have now assembled a full description of the model and pass this information to LINDO API with
the following:

nErrorCode = LSloadLPData(pModel, nM, nN, nDir, dObjConst, adC, adB,
acConTypes, nNZ, anBegCol, pnLenCol, adA, anRowX, pdLower, pdUpper);

All LINDO API functions return an error code indicating whether the call was successful or not. If the
call was successful, then the error code is zero. Otherwise, an error has occurred and its type could be
looked up in Appendix A, Error Codes. It is imperative that the error code returned is always checked
to verify that the call was successful.

Note: If there is a nonzero error code, the application program should stop, since the results would
be unpredictable and it may cause the program to crash.

Solve
Since the model is an LP, a linear solver, such as the primal simplex method, can be used. The model
is solved with the following call:

nErrorCode = LSoptimize(pModel, LS METHOD PSIMPLEX, &nSolStat);

Alternative solvers available for linear models include dual simplex and barrier (if licensed). When the
second argument in the function call is set to LS METHOD_ FREE, LINDO API will decide the solver
to use by examining its structure and mathematical content. See the Common Macro Definitions
section of Chapter 2, Function Definitions, for more information on the predefined macros

LS METHOD_PSIMPLEX and LS METHOD_FREE.

Retrieve the Solution

The next step is to retrieve the solution using solution query functions. Many of the LINDO API query
functions need to have space allocated before calling the routine. You must be sure to allocate
sufficient space for query routines that include a pointer to a string, an integer vector, a double
precision vector, or character vector. If sufficient memory is not initially allocated, the application will
crash once it is built and executed. See Solution Query Routines in Chapter 2, Function Definitions, for
more information on which routines require space to be allocated for them. Refer to Chapter 3, Solving
Linear Programs, for more details on building and solving the model and a programming example in
Visual Basic.

INTRODUCTION 21

Here, the objective value and optimal variable values will be displayed. The objective value is
retrieved and printed with the following:

double adX[4];
nErrorCode = LSgetInfo(pModel, LS DINFO POBJ, &d0Obj) ;
printf("Objective Value = %g\n", doObj);

See the context of the LSgetinfo() function in Chapter 2, Function Definitions, for more information on
the predefined macro LS DINFO_POBJ. It tells LINDO API to fetch the value of the primal objective
value via the LSgetiInfo() function. The optimal variable values are retrieved and printed with the
following:

nErrorCode = LSgetPrimalSolution (pModel, adX);

printf ("Primal values \n");

for (i = 0; 1 < nN; i++) printf(" x[%d] = %g\n", i, adX[i]);
printf ("\n");

The output of this program would appear as follows:

Objective Value = 10.44118
Primal values

x[0] =5

x[1] = 1.176471
x[2] = 1.764706
x[3] = 2.5

Clear Memory
A last step is to release the LINDO API memory by deleting the LINDO environment with the
following call:

nErrorCode = LSdeleteEnv(&pEnv);

This frees up all data structures LINDO API allocated to the environment and all of the environment’s
associated models.

Chapter 2:
Function Definitions

In this section, we give "header" definitions of all user callable functions in LINDO API. Most of the
functions return error or information codes. For a complete listing of the codes, see Appendix A, Error
Codes.

The general form of functions in LINDO API is:
LSverbObject(specific_object)

Typical verbs are: create, delete, get, set, and optimize. Typical objects are: environment, model, and
parameter. LINDO API assumes typical default values (e.g., zero or infinity (LS _INFINITY) for most
of the specific objects). If you are happy with these defaults, then you can simply pass NULL for these
arguments in a function call.

In describing the callable functions, we have adopted a variable-naming convention, which is
commonly referred to as Hungarian notation. Several versions of Hungarian notation have evolved
over the years and all its dialects are intended to be mnemonic (easy to remember) for your
convenience. The version used here is dictated mainly by the data structure definitions that arise in the
representation of mathematical models. In building your own applications, you may follow or alter
them as desired.

In Hungarian notation, variable names begin with one or more lowercase letters that denote the
variable type, thus providing an inherent identification. For example, the prefix ad is used to identify a
double precision array, as in adVal. In like fashion, the prefix psz identifies a pointer to a
null-terminated string, as in *pszFilename. The following table summarizes the Hungarian notation
conventions for the commonly used data types in LINDO API:

Prefix Data type

Array

Integer (count)

Character

Double

Float

Integer (index into arrays)

Integer

A pointer variable containing the address of a variable
Null-terminated string (ASCIIZ)

= OO0
T B Q-:T‘

72}
N

24 CHAPTER 2

Common Parameter Macro Definitions

Macro symbols are extensively used in LINDO API as arguments during function calls or as a
parameter to specify a choice or value. The macros can take integer, double, or character values. In the
following table, the most common ones are listed. The first column gives the name of the macro, the
second column refers to the value it refers to, and the third column gives a brief description.

Symbol [Value [Description
Model Types
LS LP 10 [Linear programs
LS QP 11 [Quadratic programs
LS SOCP 12 |Conic programs
LS SDP 13 |Semidefinite programs
LS NLP 14 [Nonlinear programs
LS MILP 15 |Mixed-integer linear programs
LS MIQP 16 |Mixed-integer quadratic programs
LS MISOCP 17 |Mixed-integer conic programs
LS MISDP 18 |Mixed-integer semidefinite programs
LS MINLP 19 |Mixed-integer nonlinear programs
LS CONVEX QP 20 [Convex QP
LS CONVEX NLP 21 |Convex NLP
LS CONVEX MIQP 22 |Convex MIQP
LS CONVEX MINLP 23 |Convex MINLP
LS UNDETERMINED -1 [Undetermined
Model Status
LS STATUS OPTIMAL 1 |An optimal solution is found
LS STATUS BASIC OPTIMAL 2 |An optimal basic solution is found
LS STATUS INFEASIBLE 3 |The model is infeasible
LS STATUS UNBOUNDED 4 |The model is unbounded
LS STATUS FEASIBLE 5 |The model is feasible
LS STATUS INFORUNB 6 |The solution is infeasible or unbounded. In order
to determine the actual status, primal simplex
method should be run on the model with
presolver off.
LS STATUS NEAR OPTIMAL 7 |A near optimal solution is found (for

FUNCTION DEFINITIONS 25

nonlinear problems only)

LS STATUS LOCAL OPTIMAL 8 A local optimal solution is found (for
nonlinear problems only)

LS STATUS LOCAL INFEASIBLE 9 |A locally infeasible solution is found
(for nonlinear problems only)

LS STATUS CUTOFF 10 |The solver found an optimal solution worse than
the cutoff

LS STATUS NUMERICAL ERROR| 11 [The solver encountered a numerical error during
a function evaluation (e.g., square root of a
negative number)

LS STATUS UNKNOWN 12 [Model was attempted to be solved, but the
optimization session terminated without
producing any useful information as to what
the actual status of the model is. So, the status of
the model is remains unknown.

LS STATUS UNLOADED 13 [No model is loaded

LS STATUS LOADED 14 |Model is loaded, but it has not been attempted to
be solved yet.

LS STATUS BOUNDED Reserved for internal use.

Optimization Direction
LS MIN 1 |Minimization type model.
LS MAX -1 |Maximization type model.
[Numerical Infinity

LS _INFINITY 1.E30 |[Numeric infinity for variable bounds. All bounds
whose absolute value is larger than
LS INFINITY is truncated.

Constraint Types (Senses)

LS CONTYPE LE ‘L> |Less than equal to.

LS CONTYPE EQ ‘E> |Equal to.

LS CONTYPE GE ‘G’ |Greater than equal to.

LS CONTYPE FR ‘N’ [Free (or neutral).

Cone Types

LS CONETYPE QUAD ‘Q’ |Quadratic cone.

LS CONETYPE RQUAD ‘R> [Rotated quadratic cone.

LS CONETYPE PEXP ‘E” |Exponential cone.

LS CONETYPE PPOW ‘P> [Power cone.

Variable Types

LS VARTYPE CONT ‘C’ |Continuous variable.

LS VARTYPE BIN ‘B’ [Binary variable.

LS VARTYPE INT ‘" |General integer variable.

LS VARTYPE SC ‘S’ |Semi-continuous variable.

26 CHAPTER?2
Solver Types
LS METHOD FREE 0 [Solver decides.
LS METHOD PSIMPLEX 1 |Primal simplex method.
LS METHOD DSIMPLEX 2 |Dual simplex method.
LS METHOD BARRIER 3 |Barrier method.
LS METHOD NLP 4 |Nonlinear Solver.
LS METHOD MIP 5 [Mixed integer solver.
LS METHOD MULTIS 6
LS METHOD GOP 7 |Global solver.
LS METHOD 1IS 8
LS METHOD_IUS 9
LS METHOD SBD 10
LS METHOD_SPRINT 11 [Sprint solver.
LS METHOD GA 12 |Genetic optimization solver
LS METHOD HEUMIP 15 [Use different heuristic algorithms to find a
feasible MIP solution.
LS METHOD PRIMIP 16 | Use different starting priorities to find a feasible
MIP solution.
LS METHOD_ FILELP
Basis Status
LS BASTYPE BAS 0 [Basic.
LS BASTYPE ATLO -1 |Non-basic at lower bound.
LS BASTYPE ATUP -2 |Non-basic at upper bound.
LS BASTYPE FNUL -3 |Free and non-basic at zero value.
LS BASTYPE SBAS -4 |Fixed and non-basic at both lower and upper
bounds.
Solution File Format and Types
LS SOLUTION_OPT 0 [Default solution file format.
LS SOLUTION_MIP 1 [Solution file format for MIP solutions.
LS SOLUTION_OPT_IPM 2 [Solution file format for interior point solutions.
LS SOLUTION _OPT OLD 3 |Solution file format in LINDO API version 1.x.
LS SOLUTION _MIP_OLD 4 [Solution file format for MIP solutions in LINDO
API version 1.x
Set Types
LS MIP_SET SOS1 1 |Special ordered set of type-1
LS MIP_SET SOS2 2 [Special ordered set of type-2
LS MIP_SET SOS3 3 |Special ordered set of type-3
LS MIP_SET CARD 4 [Set cardinality.

[Norm Options

FUNCTION DEFINITIONS 27

LS IIS NORM_FREE 0 [Solver decides the infeasibility norm for IIS
analysis.
LS IIS NORM_ONE 1 [Solver uses L-1 norm for IIS analysis.
LS IIS NORM_INFINITY 2 [Solver uses L-co norm for IIS analysis
IS Methods
LS IIS DEFAULT 0 |Use default filter in IIS analysis.
LS IIS DEL FILTER 1 |Use deletion filter in IIS analysis.
LS IIS_ADD FILTER 2 |Use additive filter in IIS analysis.
LS IIS GBS FILTER 3 |Use generalized-binary-search filter in IIS
analysis.
LS IIS DFBS FILTER 4 |Use depth-first-binary-search filter in IIS
analysis.
LS IS FSC FILTER 5 |Use fast-scan filter in IIS analysis.
LS IIS ELS FILTER 6 |Use elastic filter in IIS analysis.
Stochastic Optimization Methods
LS METHOD STOC FREE -1 [Solve with the method chosen by the solver.
LS METHOD STOC DETEQ 0 [Solve the deterministic equivalent (DETEQ).
LS METHOD STOC NBD 1 [Solve with the Nested Benders Decomposition
(NBD) method.
LS METHOD STOC ALD 2 |Solve with the Augmented Lagrangian
Decomposition (ALD) method.
LS METHOD_STOC HS 4 |Solve with the Heuristic-Search (HS) method.
Stochastic Data Types
LS JCOL_INST -8 |Stochastic parameter is an instruction code
LS JCOL RUB -7 |Stochastic parameter is an upper bound for RHS
(reserved for future use)
LS JCOL RLB -6 [Stochastic parameter is a lower bound for RHS
(reserved for future use)
LS JCOL _RHS -5 |Stochastic parameter is a RHS value (belongs to
RHS column)
LS TIROW_OBIJ -4 |Stochastic parameter is an objective coefficient
(belongs to OBJ row)
LS IROW_VUB -3 [Stochastic parameter is a lower bound (belongs
to LO row)
LS IROW_VLB -2 [Stochastic parameter is an upper bound (belongs
to UP row)
LS TIROW_VFX -1 |Stochastic parameter is a fixed bound (belongs
to FX row)
LS IMAT AlJ 0 [Stochastic parameter is an LP matrix entry.
Property
LS PROPERTY_CONST 1 [Constraint function is a constant

28 CHAPTER 2

LS PROPERTY LINEAR 2 |Constraint function is linear

LS PROPERTY_ CONVEX 3 |Constraint function is convex

LS PROPERTY CONCAVE 4 |Constraint function is concave

LS PROPERTY_ QUASI CONVEX 5 |Constraint function is quasi-convex

LS PROPERTY QUASI CONCAVE 6 |Constraint function is quasi-concave

LS PROPERTY MAX 7 |Reserved for future use

LS PROPERTY MONO_INCREASE 8 |Reserved for future use

LS PROPERTY MONO DECREASE| 9 |[Reserved for future use

LS PROPERTY UNKNOWN 0 |Undetermined or general contraint classification
Other

LS MIP PREP SIMROW 'Whether to use the similar row reduction in MIP

presolver

LS SOLVER PREP CONE Apply presolve to conic forms

LS MIP_ MODE NO_LSLVDP

LS MIP SOFT KNAP CUTS

LS MIP LP ROUND CUTS

Structure Creation and Deletion Routines

The routines in this section are used to create and destroy the basic data structures used within LINDO
API to manage your mathematical programming models.

In order to solve a model, you must begin by allocating a modeling environment. This is done through
a call to LScreateEnv(). LINDO API uses the environment space to store global data pertaining to all
models belonging to the environment. Once an environment has been created, you allocate space for
one or more models within the environment. Models are allocated by calls to LScreateModel(). The
model structure holds all model specific data and parameters.

LScreateEnv()

Description:
Creates a new instance of LSenv, which is an environment used to maintain zero or more
models. The LSenv data structure is defined in the lindo.h header file.

Returns:
If successful, a pointer to the newly created instance of LSenv is returned. If unsuccessful,
NULL is returned.
Prototype:
pLSenv LScreateEnv(int *pnErrorcode, char *pszPassword)

Input Arguments:

Name Description

pszPassword A pointer to a character string containing a license key for
LINDO API.

FUNCTION DEFINITIONS 29

Output Arguments:
Name Description
pnErrorcode A pointer to the error code. If successful, *pnErrorcode will be
0 on return. A list of possible error codes may be found in
Appendix A, Error Codes.
Remarks:

e Your license key is printed on the sleeve containing the distribution CD.

® You can call LSloadLicenseString() to read the license key from a text file.

e Be sure to call LSdeleteEnv (see below) once for each environment created when they are
no longer needed. This will allow LINDO API to free all memory allocated to the
environments.

LScreateModel()

Description:
Creates a new instance of LSmodel.

Returns:
If successful, a pointer to the newly created instance of LSmodel is returned. If unsuccessful,
NULL is returned.

Prototype:

pLSmodel LScreateModel(pLSenv pEnv, int *pnErrorcode)

Input Arguments:

Name Description

pEnv Pointer to the current LINDO environment established via a
call to LScreateEnv().

Output Arguments:
Name Description
pnErrorcode A pointer to the error code. If successful, *pnErrorcode will be
0 on return. A list of potential error codes is listed in
Appendix A, Error Codes.
Remarks:

o LScreateEnv() must be called before this function is called in order to obtain a valid
environment pointer.

e Be sure to call LSdeleteModel() (see below) once for each model created when they are
no longer needed. This will allow LINDO API to free all memory allocated to the
models.

30 CHAPTER2
LSdeleteEnv()

Description:
Deletes an instance of LSenv. The memory used by the LSenv instance is freed and the pointer
to the instance is set to NULL. Each model created under this environment will also be
deleted by calls to LSdeleteModel().

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteEnv(pLSenv *pEnv)

Input Arguments:

Name Description

pEnv A pointer to a pointer of an instance of LSenv.

LSdeleteModel()

Description:
Deletes an instance of LSmodel. The memory used by the LSmodel instance is freed and the
pointer to this instance is set to NULL.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteModel(pLSmodel *pModel)

Input Arguments:

Name Description

pModel A pointer to a pointer of an instance of LSmodel.

FUNCTION DEFINITIONS 31

LSsetXSolverLibrary()

Description:
Designate the specified external solver library as the solver engine.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsetXSolverLibrary(pLSenv pEnv, int xSolverld, char
*szLibrary)
Input Arguments:
Name Description
pEnv A pointer to a pointer of an instance of LSenv.
xSolverld An integer symbolic macro specifying the vendor/product id.
szLibrary A string specifying the name of shared library to be loaded
from local filesystem.

License and Version Information Routines

The first routine in this section allows you to read a license key from a file and load it into a local
string buffer. Your license key is unique to your installation and contains information regarding your
version’s serial number, size, and supported options. The license key is case sensitive, so be sure to
enter it exactly as listed, including all hyphens. Given that your license key is unique to your
installation, you should not share it with any user not licensed to use your copy of LINDO API. The
second routine allows you to access the version and build date of LINDO API.

LSgetVersionlnfo()

Description:
Returns the version and build information of the LINDO API on your system.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetVersionInfo(char *pszVersion, char *pszBuildData)
Output Arguments:
Name Description
pszVersion A pointer to a null terminated string that keeps the version
information of the LINDO API on your system.
pszBuildDate A pointer to a null terminated string that keeps the build date of
the LINDO API library on your system.

32 CHAPTER?2

LSloadLicenseString()

Description:

Reads the license string from the specified file in text format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSloadLicenseString(char *pszFname, char *pszLicense)

Input Arguments:

Name Description
pszFname A pointer to a null terminated string that refers to the name of
the file that contains your license key. Typically, the license
key is placed in the /ndapil40.lic file.
Output Arguments:
Name Description

pszLicense

A pointer to a null terminated string that keeps the license key.

FUNCTION DEFINITIONS 33

Input-Output Routines

The routines in this section provide functionality for reading and writing model formulations to and
from disk files. Loading a model from a file will generally not be as efficient as passing the nonzero
structure directly via the routines discussed in the Model Loading Routines section below. However,
some may find files more convenient.

LINDO API currently supports four file formats: LINDO, MPS, LINGO, and MPI. LINDO format is
identical to the format used by the interactive version of LINDO and is very straightforward to use.
The LINDO format is discussed in detail in Appendix C, LINDO File Format. MPS format, although
not as easy to deal with as LINDO format, is an industry standard and can be processed by most
commercial solvers. The details of the MPS format are given in Appendix B, MPS File Format. The
LINGO format is similar to the LINDO format and was originally developed for use with the LINGO
modeling language. For details on the LINGO format, refer to the LINGO User’s Manual, available
through LINDO Systems. MPI format is for representing nonlinear models, which is described in
detail in Appendix D, MPI File Format. LINDO API can read and write both LINDO and MPS files.
At present, LINGO files may only be written and may not be read, and MPI files can only be read.

LSreadLINDOFile()

Description:
Reads the model in LINDO format from the given file and stores the problem data in the
given model structure.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSreadLINDOFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the
model. To obtain a pointer to a model structure, see
LScreateModel().

pszFname A pointer to a null terminated string containing the path and

name of the LINDO file.

Remarks:
e Details for the LP file format are given in Appendix C, LINDO File Format.
e To write a model in LINDO format, see LSwriteLINDOFile().
e Toread a model in MPS format, see LSreadMPSFile().

34 CHAPTER?2

LSreadNLFile()

Description:
Reads the model in AMPL's NL format from specified file and stores it in the given model
structure.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSreadNLFile(pLSmodel pModel, char *pszFname)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel in which to place the
model. To obtain a pointer to a model structure, see
LScreateModel().
pszFname A pointer to a null terminated string containing the path and
name of the NL file.

Remark:
Refer to https://ampl.com/REFS/hooking?2.pdf for details on NL file format.

LSreadMPSFile()

Description:
Reads a model in MPS format from the given file and stores the problem data in the given
problem structure.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSreadMPSFile(pLSmodel pModel, char *pszFname, int
nFormat)
Arguments:
Name Description
pModel A pointer to an instance of LSmodel in which to place the
model. To obtain a pointer to a model structure, see
LScreateModel().
pszFname A pointer to a null terminated string containing the path and
name of the MPS file.
nFormat An integer parameter indicating whether the MPS file is
formatted or not. The parameter value should be either
LS FORMATTED_ MPS or LS UNFORMATTED_ MPS.

FUNCTION DEFINITIONS 35

Remarks:

All memory for the passed LSmodel structure will be allocated in this routine. Therefore,
all pointers in the given structure are assumed to be NULL when this function is called.
A call to both LScreateEnv() and LScreateModel(), however, must have been made first
to properly establish the structure.

When reading a formatted MPS file, all text is read literally, including spaces, in the
columns of that field. For example, if “ABC DEF” is the text provided in the field for
row names in the ROWS section of the MPS file, then this is taken as the row name. If

“ ABC DEF” (note the initial space) appears as another row name, then this name is
treated literally as the text between the quotes and is therefore different from

“ABC DEF”. MPS file format details are given in Appendix B, MPS File Format.

When reading an unformatted MPS file, the row and column names should not contain
spaces. Spaces within the names will tend to generate errors and any leading or trailing
spaces will be ignored (making “ ABC” equivalent to “ABC”). Note, "unformatted" in
the sense used here, does not mean binary format as used by some compilers. The low
level file format is still standard ASCII text.

When the file type is set to LS FORMATTED_ MPS, all names will have 8 characters.
When the file type is set to LS UNFORMATTED_MPS, the length of a name is only
restricted by the maximum length of a line, which is 256 characters.

To minimize the probability of a file open error, it is useful to give the fully specified file
path name (e.g., ¢.\mydir\myfile.mps) rather than just myfile.mps.

An MPS file is allowed to specify a constant in the objective. Some solvers will disregard
this constant. LINDO API does not. This may cause other solvers to display different
optimal objective function values than that found by LINDO API.

If a variable is declared integer in an MPS file but the file contains no specification for
the bounds of the variable, LINDO API assumes the lower bound is 0 and the upper
bound is infinity. Other solvers may in this case assume the upper bound is 1.0. This
may cause other solvers to obtain a different optimal solution than that found by LINDO
APL

36 CHAPTER?2

LSreadMPIFile()

Description:
Reads the model in MPI format from the given file and stores the problem data in the given
model structure.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSreadMPIFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the
model. To obtain a pointer to a model structure, see
LScreateModel().

pszFname A pointer to a null terminated string containing the path and

name of the MPI format file.

Remarks:
e Details for the MPI file format are given in Appendix D, MPI File Format.

LSwriteMPIFile()

Description:
Writes the given model in MPI format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteMPIFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the
model.

pszFname A pointer to a null terminated string containing the path and

name of the MPI format file.

Remarks:
e The model must have been loaded via LSloadInstruct call previously.
e Details for the MPI file format are given in Appendix D, MPI File Format.

FUNCTION DEFINITIONS 37

LSreadBasis()

Description:
Reads an initial basis from the given file in the specified format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSreadBasis(pLSmodel pModel, char *pszFname, int
nFormat)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel in which to place the
model
pszFname A pointer to a null terminated string containing the path and

name of the basis file.

nFormat An integer parameter indicating the format of the file to be
read. Possible values are

e LS BASFILE BIN : Binary format (default)
LS BASFILE MPS : MPS file format.
LS BASFILE TXT : Space delimited text format.

Remarks:
e LS BASFILE MPS option requires the variable and constraint names in the resident
model and the basis MPS file to match.

LSwriteBasis()

Description:
Writes the resident basis to the given file in the specified format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSwriteBasis(pLSmodel pModel, char *pszFname, int
nFormat)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel in which to place the
model
pszFname A pointer to a null terminated string containing the path and
name of the basis file.

38 CHAPTER?2

nFormat An integer parameter indicating the format of the file to be
written. Possible values are

e LS BASFILE BIN : Binary format (default)

LS BASFILE MPS : MPS file format.
e LS BASFILE TXT : Space delimited text format.

Remarks:
e LS BASFILE MPS option requires the variable and constraint names in the resident
model and the basis MPS file to match.

LSwriteDualLINDOFile()

Description:
Writes the dual of a given problem to a file in LINDO format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteDual LINDOFile(pLSmodel pModel, char *pszFname,
int nObjsense)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to be
written to a LINDO format file.

pszFname A pointer to a null terminated character string containing the
path and name of the file to which the dual model should be
written.

nObjsense An integer specifying if the dual problem will be posed as a

maximization or minimization problem. The possible values
are LS MAX and LS _MIN.

Remarks:
e The primal model is assumed to be a linear model. Presence of integrality restrictions and
quadratic terms will be ignored when writing the dual problem.

FUNCTION DEFINITIONS 39

LSwriteDualMPSFile()

Description:
Writes the dual of a given problem to a file in MPS format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.
Prototype:

int LSwriteDualMPSFile(pLSmodel pModel, char *pszFname, int
nFormat, int nObjsense)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to be
written to a MPS format file.

pszFname A pointer to a null terminated character string containing the
path and name of the file to which the dual model should be
written.
nFormat An integer parameter indicating the format of the file to be
ger p g

written. LS FORMATTED_ MPS indicates the file is to be
formatted, while LS UNFORMATTED_ MPS indicates
unformatted output.

nObjsense An integer specifying if the dual problem will be posed as a
maximization or minimization problem. The possible values
are LS MAX and LS MIN.

Remarks:
e The primal model is assumed to be a linear model. Presence of integrality restrictions and
quadratic terms in the primal model will be ignored when creating the dual problem.

40 CHAPTER 2

LSwritellS()

Description:
Writes the IIS of an infeasible LP to a file in LINDO file format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwritelIS(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the infeasible
model for which the IIS has already been computed.

pszFname A character string containing the path and name of the file to
which the IIS should be written.

Remarks:
o LSfindIIS() can be used to find the IIS of an infeasible LP.

LSwritelUS()

Description:
Writes the ITUS of an unbounded LP to a file in LINDO file format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwritelUS(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the unbounded
model for which the IUS has already been computed.

pszFname A character string containing the path and name of the file to
which the IUS should be written.

Remarks:
o LSfindIUS() can be used to find IUS of an unbounded linear model.

FUNCTION DEFINITIONS 41

LSwriteLINDOFile()

Description:
Writes the given problem to a file in LINDO format. Model must be linear.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteLINDOFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to be
written to a LINDO format file.

pszFname A pointer to a null terminated character string containing the
path and name of the file to which the model should be written.

Remarks:
e Details for the LINDO file format are given in Appendix C, LINDO File Format.
e To read a model in LINDO format, see LSreadLINDOFile().
e To write a model in MPS format, see LSwriteMPSFile().

LSwriteLINGOFile()

Description:
Writes the given problem to a file in LINGO format. Model must be linear.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteLINGOFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to be
written to a LINGO file.

pszFname A pointer to a null terminated string containing the path and
name of the file to which the model should be written.

Remarks:
o To write a model in LINDO format, see LSwriteLINDOFile().
e To write a model in MPS format, see LSwrite MPSFile().

42 CHAPTER 2

LSwriteMPSFile()

Description:
Writes the given problem to a specified file in MPS format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSwriteMPSFile(pLSmodel pModel, char *pszFname, int
nFormat)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel containing the model to be

written to an MPS file.

pszFname A pointer to a null terminated string containing the path and

name of the file to which the model should be written.

nFormat An integer parameter indicating the format of the file to be

written. LS FORMATTED_ MPS indicates the file is to be
formatted, while LS UNFORMATTED_ MPS indicates
unformatted output.

Remarks:

If the name vectors in the model are not set, then the problem title will be "NO_TITLE";
the objective name will be "OBIJ"; the column names will be "C0000001", "C0000002",
etc.; and the row names will be "R0000001", "R0000002", etc. The name vectors may be
set via a call to LSloadNameData().

When using formatted output, this routine writes in the standard MPS format using 8
character names. Longer names are truncated to 8 characters. Therefore, care must be
taken when using longer names, since two unique names such as "012345678" and
"012345679" will both be treated as "01234567". If your model has names longer than
eight characters, you should use unformatted output.

Details for the MPS file format are given in Appendix B, MPS File Format.

To read a model in MPS format, see LSreadMPSFile().

To write a model in LINDO format, see LSwriteLINDOFile().

FUNCTION DEFINITIONS 43

LSwriteSolution()

Description:
Writes the LP solution to a file.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSwriteSolution(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to
write the LP solution for.

pszFname A character string containing the path and name of the file to
which the solution should be written.

LSwriteNLSolution()

Description:
Writes the solution to a file in AMPL's NL solution format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteNLSolution(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel containing the model to
write the solution for.

pszFname A character string containing the path and name of the file to
which the solution should be written.

Remarks:
Writing NL solution requires the model to be input through reading from NL file.
Refer to https://ampl.com/REFS/hooking2.pdf for details on NL solution file format.

44 CHAPTER 2

LSreadSMPSFile ()

Description:

This subroutine is the top level input routine. It first reads a core-file in the MPS format. It
then calls further subroutines to read time and stoch files whose format are laid out in

Appendix E.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSreadSMPSFile (pLSmodel pModel, char * coreFile, char *
timeFile, char * stocFile, int nMPStype)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel object.
coreFile A string specifying the name of the CORE file in MPS format.
timeFile A string specifying the name of the TIME file.
stocFile A string specifying the name of the STOCH file.
nMPStype An integer parameter indicating whether the MPS file is
formatted or not. Possible values are:
e LS FORMATTED MPS
e LS UNFORMATTED MPS
e LS FORMATTED MPS COMP
Remarks:

Refer to appendix for details on SMPS format.

FUNCTION DEFINITIONS 45

LSreadSMPIFile()

Description:

Read an SP model in SMPI file format in to the given model instance. . It first reads a core-
file in the MPI format. It then calls further subroutines to read time and stoch files whose
format are laid out in Appendix F.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSreadSMPIFile (pLSmodel pModel, char *coreFile, char
*timeFile, char *stocFile)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel object.
coreFile A string specifying the name of the CORE file in MPS format.
timeFile A string specifying the name of the TIME file.
stocFile A string specifying the name of the STOCH file.
Remarks:

Refer to appendix for details on SMPI format.

46 CHAPTER 2

LSwriteSMPIFile()

Description:

Writes the CORE, TIME,STOCH files for SP models in SMPI format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSwriteSMPIFile (pLSmodel pModel, char * coreFile, char *
timeFile, char * stocFile)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

coreFile A string specifying the name of the CORE file in MPI format.
timeFile A string specifying the name of the TIME file.

stocFile A string specifying the name of the STOCH file.

LSwriteSMPSFile ()

Description:

Writes the CORE, TIME,STOCH files for SP models in SMPS format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSwriteSMPSFile (pLSmodel pModel, char * coreFile, char *
timeFile, char * stocFile, int nMPStype)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

coreFile A string specifying the name of the CORE file in MPS format.
timeFile A string specifying the name of the TIME file.

stocFile A string specifying the name of the STOCH file.

nMPStype An integer parameter indicating whether the MPS file is

formatted or not. Possible values are:
LS FORMATTED MPS

LS UNFORMATTED_ MPS

LS FORMATTED MPS COMP

FUNCTION DEFINITIONS 47

LSwriteDetegMPSFile ()

Description:
Writes the deterministic equivalent for the SP model in MPS format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteDeteqMPSFile (pLSmodel pModel, char * mpsFile, int
nMPStype, int iDeqType)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

mpsFile A string specifying the name of the MPS file
nMPStype An integer parameter indicating whether the MPS file is

formatted or not. Possible values are:
e LS FORMATTED MPS
e LS UNFORMATTED MPS
¢ LS FORMATTED MPS COMP

iDeqType An integer specifying the type of the deterministic equivalent.
Possible values are

e LS DETEQ IMPLICIT
e LS DETEQ EXPLICIT (default).

LSwriteDetegLINDOFile ()

Description:
Writes the deterministic equivalent (DEQ) of the SP models in LINDO format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteDeteqLINDOFile (pLSmodel pModel, char * ltxFile,
int iDeqType)

48 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

ItxFile An string specifying the name of the LINDO file.

iDeqType Type of the the deterministic equivalent. Possible values are

e LS DETEQ IMPLICIT
e LS DETEQ EXPLICIT (default).

LSgetNodeReducedCost ()

Description:

Returns the reduced cost for the specified node.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetNodeReducedCost (pLSmodel pModel, int iScenario, int
iStage, double * padD)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel object.
iScenario An integer specifying the scenario the node belongs to.
iStage An integer specifying the stage the node belongs to.
padD A double array to return specified nodes's dual solution The
length of this vector is equal to the number of variables in the
stage associated with the node. It is assumed that memory has
been allocated for this vector.
Remarks:

The number of variables or constraints in a stage can be accessed via LSgetStocInfo().

FUNCTION DEFINITIONS 49

LSwriteScenarioSolutionFile ()

Description:
Writes the scenario solution to a file.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes
Prototype:

int LSwriteScenarioSolutionFile (pLSmodel pModel, int
iScenario, char * szFname)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario to write the solution for.
szFname A null terminated string containing the file name. If set to

NULL, then the results are printed to stdout

LSwriteNodeSolutionFile ()

Description:
Writes the node solution to a file.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteNodeSolutionFile (pLSmodel pModel, int iScenario,
int iStage, char * szFname)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario number the node belongs to.
iStage An integer specifying the stage the node belongs to.

szFname A null terminated string containing the file name. If set to

NULL, then the results are printed to stdout.

50 CHAPTER?2

LSwriteScenarioMPIFile ()

Description:

Write scenario model in MPI format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSwriteNodeSolutionFile (pLSmodel pModel, int iScenario,
int iStage, char * szFname)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario to write in MPI format..
scenFile A null terminated string specifying file to write the scenario

model..

LSwriteScenarioMPSFile ()

Description:

Write a specific scenario model in MPS format.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSwriteScenarioMPSFile (pLSmodel pModel, int iScenario,
char * scenFile, int nMPStype)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario to write in MPS format..

scenFile A null terminated string specifying file to write the scenario
model.

nMPStype An integer parameter indicating whether the MPS file is

formatted or not. Possible values are:
e LS FORMATTED MPS
e LS UNFORMATTED MPS
e LS FORMATTED MPS COMP

FUNCTION DEFINITIONS 51

LSwriteScenarioLINDOFile ()

Description:
Write scenario model in LINDO format.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSwriteScenarioLINDOFile (pLSmodel pModel, int iScenario,
char * scenFile)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario to write in MPI format..

scenFile A null terminated string specifying file to write the scenario
model.

LSreadCBFFile ()

Description:
Reads a conic model from an CBF formatted file.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadCBFFile(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the
model.

pszFname A pointer to a null terminated string containing the name of the

CBF file.

52 CHAPTER?2

Parameter Setting and Retrieving Routines

The routines in this section allow you to set and retrieve system parameter values. Each of these
routines is distinguished on three dimensions:

1. The parameter being dealt with is void, double precision, or integer.
2. The routine either gets or sets the specified parameter’s value.
3. The parameter being dealt with is in either a model space or an environment space.

The various permutations of these three options result in a total of fifteen routines. A brief listing of
these routines and their usage is listed in the following table:

Routine Parameter Type | Action Location
LSgetEnvParameter() Void Gets Environment
LSgetEnvDouParameter() Double Gets Environment
LSgetEnvintParameter() Integer Gets Environment
LSgetModelParameter() Void Gets Model
LSgetModelDouParameter() Double Gets Model
LSgetModellntParameter() Integer Gets Model
LSsetEnvParameter() Void Sets Environment
LSsetEnvDouParameter() Double Sets Environment
LSsetEnvIntParameter() Integer Sets Environment
LSsetModelParameter() Void Sets Model
LSsetModelDouParameter() Double Sets Model
LSsetModellntParameter() Integer Sets Model
LSreadEnvParameter() N/A Reads Environment
LSwriteEnvParameter() N/A Writes | Environment
LSreadModelParameter() N/A Reads Model
LSwriteModelParameter() N/A Writes Model

These fifteen functions are documented in detail immediately below. The list of parameters that may
be referenced through these routines is given in the section Available Parameters. This lists, each of
the parameter’s data type (integer or double) and whether they are available as part of the environment
or model. The parameters available to be set for the environment are also available to be set for the
model. However, some of the parameters available to be set for the model are not available to be set
for the environment.

All parameters are assigned default (initial) values during environment and model creation. These
defaults work best for general purpose. However, there may be cases where users prefer to work with
different settings for a subset of the available parameters. When a model is created, it inherits the
parameter values in the environment it belongs to. Changes to the parameter values in the model do not
affect the parameter values currently set in the environment. Similarly, once a model is created in an

FUNCTION DEFINITIONS 53

environment, subsequent changes in the environment parameters do not affect the parameter settings in
the model. During the optimization process, the solver uses the parameter settings in the model space.
If a parameter is not part of the model space, then the solver uses the value in the environment space.

LSgetEnvParameter()

Description:
Retrieves a parameter for a specified environment.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetEnvParameter(pLSenv pEnv, int nParameter, void
*pvValue)
Input Arguments:
Name Description
pEnv Pointer to an instance of LSenv.
nParameter An integer macro (e.g., LS IPARAM_STATUS).
Output Arguments:
Name Description
pvValue On return, *pvValue will contain the parameter’s value. The
user is responsible for allocating sufficient memory to store the
parameter value.
Remarks:

e The available parameters are described in the Available Parameters section below.
e For retrieving model parameters, use LSgetModelParameter().

54 CHAPTER 2

LSgetEnvDouParameter()

Description:
Retrieves a double precision parameter for a specified environment.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetEnvDouParameter(pLSenv pEnv, int nParameter, double
*pdVal)
Input Arguments:
Name Description
pEnv Pointer to an instance of LSenv.
nParameter An integer macro referring to a double precision parameter
(e.g.,LS_DPARAM_SOLVER_FEASTOL).

Output Arguments:
Name Description
pdVal A pointer to a double precision variable. On return, *pdVal
will contain the parameter’s value.
Remarks:

e The available parameters are described in the Available Parameters section below.
e For retrieving double precision model parameters, use LSgetModelDouParameter().
e For retrieving integer environment parameters, use LSgetEnvintParameter().

LSgetEnvintParameter()

Description:
Retrieves an integer parameter for a specified environment.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetEnvIntParameter(pLSenv pEnv, int nParameter, int
*pnVal)
Input Arguments:
Name Description
pEnv Pointer to an instance of LSenv.
nParameter An integer macro referring to an integer parameter (e.g.,
LS IPARAM LP ITRLMT).

FUNCTION DEFINITIONS 55

Output Arguments:
Name Description
pnVal A pointer to an integer variable. On return, *pnVal will contain
the parameter’s value.
Remarks:

e The available parameters are described in the Available Parameters section below.
e For retrieving integer model parameters, use LSgetModellntParameter().
e For retrieving double precision environment parameters, use LSgetEnvDouParameter().

LSgetModelParameter()

Description:
Retrieves a parameter or status variable for a specified model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetModelParameter(pLSmodel pModel, int nParameter,
void *pvValue)

Input Arguments:

Name Description
pModel Pointer to an instance of LSmodel.
nParameter An integer macro (e.g., LS IPARAM_STATUS).
Output Arguments:
Name Description
pvValue On return, *pvValue will contain the parameter’s value. The

user is responsible for allocating sufficient memory to store the
parameter value.

Remarks:
e The available parameters are described in the Available Parameters section below.
e For retrieving environment parameters, use LSgetEnvParameter().

56 CHAPTER?2

LSgetModelDouParameter

Description:
Retrieves a double precision parameter for a specified model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetModelDouParameter(pLSmodel pModel, int
nParameter, double *pdVal)

Input Arguments:

Name Description
pModel Pointer to an instance of LSmodel.
nParameter An integer macro referring to a double precision parameter

(e.g., LS DPARAM _MIP_RELOPTTOL).

Output Arguments:
Name Description
pdVal A pointer to a double precision variable. On return, *pdVal
will contain the parameter’s value.
Remarks:

e The available parameters are described in the Available Parameters section below.
e For retrieving double precision environment parameters, use LSgetEnvDouParameter().
e For retrieving integer model parameters, use LSgetModellntParameter().

LSgetModellntParameter()

Description:
Retrieves an integer parameter for a specified model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetModellntParameter(pLSmodel pModel, int nParameter,
int *pnVal)

Input Arguments:

Name Description
pModel Pointer to an instance of LSmodel.
nParameter An integer macro referring to an integer parameter (e.g.,

LS _IPARAM_LP_ITRLMT).

FUNCTION DEFINITIONS 57

Output Arguments:
Name Description
pnVal A pointer to an integer variable. On return, *pnVal will contain
the parameter’s value.
Remarks:

e The available parameters are described in the Available Parameters section below.
e For retrieving integer environment parameters, use LSgetEnvintParameter().
e For retrieving double precision model parameters, use LSgetModelDouParameter ().

LSsetEnvParameter()
Description:
Sets a parameter for a specified environment.
Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.
Prototype:
int LSsetEnvParameter(pLSenv pEnv, int nParameter, void
*pvValue)
Input Arguments:
Name Description
pEnv Pointer to an instance of LSenv.
nParameter An integer macro (e.g., LS DPARAM SOLVER FEASTOL).
pvValue A variable containing the parameter’s new value.

Remarks:
e The available parameters are described in the Available Parameters section below.
e For setting model parameters, use LSsetModelParameter().

58 CHAPTER?2

LSsetEnvDouParameter()

Description:
Sets a double precision parameter for a specified environment.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.
Prototype:
int LSsetEnvDouParameter(pLSenv pEnv, int nParameter, double
dVal)
Input Arguments:
Name Description
pEnv Pointer to an instance of LSenv.
nParameter An integer macro referring to a double precision parameter
(e.g.,LS DPARAM SOLVER FEASTOL).
dVal A double precision variable containing the parameter’s new
value.
Remarks:

e The available parameters are described in the Available Parameters section below.
e For setting integer environment parameters, use LSsetEnvintParameter().
e For setting double precision model parameters, use LSsetModelDouParameter().

FUNCTION DEFINITIONS

59

LSsetEnvintParameter()

Description:
Sets an integer parameter for a specified environment.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsetEnvIntParameter(pLSenv pEnv, int nParameter, int
nVal)
Input Arguments:
Name Description
pEnv Pointer to an instance of LSenv.
nParameter An integer macro referring to an integer parameter (e.g.,
LS IPARAM _LP PRELEVEL).
nVal An integer variable containing the parameter’s new value.
Remarks:

e The available parameters are described in Available Parameters below.

e For setting double precision environment parameters, use LSsetEnvDouParameter().

e For setting integer model parameters, use LSsetModellntParameter().

LSsetModelParameter()

Description:
Sets a parameter for a specified model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetModelParameter(pLSmodel pModel, int nParameter,
void *pvValue)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nParameter An integer macro (e.g., LS IPARAM_LP ITRLMT).

PvValue A variable containing the parameter’s new value.
Remarks:

e The available parameters are described in Available Parameters below.
e For setting environment parameters, use LSsetEnvParameter ().

60 CHAPTER?2

LSsetModelDouParameter()

Description:
Sets a double precision parameter for a specified model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsetModelDouParameter(pLSmodel pModel, int nParameter,
double dVal)
Input Arguments:
Name Description
pModel Pointer to an instance of LSmodel.
nParameter An integer macro referring to a double precision parameter

(e.g.,LS_ DPARAM _SOLVER_FEASTOL).

dVval A double precision variable containing the parameter’s new
value.

Remarks:
e The available parameters are described in the Available Parameters section below.
e For setting integer model parameters, use LSsetModellntParameter().
e For setting double precision environment parameters, use LSsetEnvDouParameter().

LSsetModellntParameter()

Description:
Sets an integer parameter for a specified environment.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsetModelIntParameter(pLSmodel pModel, int nParameter,
int nVal)
Input Arguments:
Name Description
pModel Pointer to an instance of LSmodel.
nParameter An integer macro referring to an integer parameter (e.g.,
LS IPARAM_TIMLIM).
nVal An integer variable containing the parameter’s new value.

FUNCTION DEFINITIONS 61

Remarks:
e The available parameters are described in the Available Parameters section below.
e For setting double precision model parameters, use LSsetModelDouParameter().
e For setting integer environment parameters, use LSsetEnvIntParameter().

LSreadEnvParameter()

Description:
Reads environment parameters from a parameter file.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadEnvParameter(pLSenv pEnv, char *pszFname)

Input Arguments:

Name Description
pEnv Pointer to an instance of LSenv.
pszFname A null-terminated string containing the path and name of the

file from which parameters will be read.

Remarks:
e The available parameters are described in the Available Parameters section below.
e For retrieving environment parameters, use LSgetModelParameter().
e For an example parameter file, see /indo.par in the distribution.

LSreadModelParameter()

Description:
Reads model parameters from a parameter file.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadModelParameter(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description
pModel Pointer to an instance of LSmodel.
pszFname A null-terminated string containing the path and name of the

file from which parameters will be read.

Remarks:
e The available parameters are described in the Available Parameters section below.
e For retrieving environment parameters, use LSgetEnvParameter().

62 CHAPTER?2

LSwriteEnvParameter()

Description:
Writes environment parameters to a parameter file.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteEnvParameter(pLSenv pEnv, char *pszFname)

Input Arguments:

Name Description
pEnv Pointer to an instance of LSenv.
pszFname A null-terminated string containing the path and name of the

file to which parameters will be written.

Remarks:
e LSmodel objects inherit default parameter values from the LSenv object they belong.

LSwriteModelParameter()

Description:
Writes model parameters to a parameter file.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSwriteModelParameter(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description
pModel Pointer to an instance of LSmodel.
pszFname A null-terminated string containing the path and name of the

file to which parameters will be written.

Remarks:
e LSmodel objects inherit default parameter values from the LSenv object they belong.

FUNCTION DEFINITIONS 63

LSgetParamShortDesc()

Description:

Get the specified parameter's short description.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetParamShortDesc(pLSenv pEnv, int nParam,
char *szDescription)

Input Arguments:

Name Description

pEnv An instance of LSenv.

nParam An integer parameter identifier.

szDescription A string buffer to copy the parameter's description. This buffer

should be sufficiently long (e.g. 256 characters or more).

LSgetParamLongDesc()

Description:

Get the specified parameter's long description, which is also the entry in the user manual for

the parameter.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetParamLongDesc(pLSenv pEnv, int nParam,
char *szDescription)

Input Arguments:

Name Description

pEnv An instance of LSenv.

nParam An integer parameter identifier.

szDescription A string buffer to copy the parameter's description. This buffer

should be sufficiently long (e.g. 1024 characters or more).

64 CHAPTER?2

LSgetParamMacroName()

Description:

Get the specified parameter's macro name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetParamMacroName(pLSenv pEnv, int nParam, char
*szMacro)

Input Arguments:

Name Description

pEnv An instance of LSenv.

nParam An integer parameter identifier.
szMacro A string buffer to return the name.

LSgetParamMacrolD()

Description:

Get the integer identifier and the data type of parameter specified by its name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetParamMacrolD(pLSenv pEnv, char *szParam, int
*pnParamType, int *pnParam)

Input Arguments:

Name Description

pEnv An instance of LSenv.

szParam A parameter macro name.

pnParamType An integer pointer to return the data type.

pnParam An inter pointer to return the integer identifier of the

parameter.

Remark:

A typical call in C/C++ is:

LSgetParamMacrolD(pEnv,"LS DPARAM SOLVER TIMLMT",&nParamType,&nParam)

assert(nParam==LS DPARAM _ SOLVER TIMLMT);
assert(nParamType==LS DOUBLE PARAMETER TYPE);

>

FUNCTION DEFINITIONS 65

LScopyParam()

Description:
Copy model parameters to another model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.
Prototype:

int LScopyParam(pLSmodel sourceModel, pLSmodel
targetModel, int mSolverType)

Input Arguments:

Name Description

sourceModel Pointer to an instance of LSmodel to copy the parameters from.
targetModel Pointer to an instance of LSmodel to copy the parameters to.
mSolverType An integer specifying the solver type to copy the parameters

for. Reserved for future use.

LSgetCLopt()

Description:
Get command line options.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetCLOpt(pLSenv pEnv, int nArgc, char **pszArgv, char
*pszOpt)
Input Arguments:
Name Description
pEnv An instance of LSenv.
nArgc Number of command line arguments.
pszArgv Argument list.
pszOpt Option list.

66 CHAPTER 2

LSgetCLoptArg()

Description:
Retrieve option argument.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetCLOptArg(pLSenv pEnv, char **pszOptArg)

Input Arguments:

Name Description
pEnv An instance of LSenv.
pszOptArg Option arguments returned.

LSgetCLoptInd()

Description:
Retrieve option argument.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetCLOptInd(pLSenv pEnv, int *pnOptInd);

Input Arguments:

Name Description

pEnv An instance of LSenv.

pnOptind Option indices returned.

FUNCTION DEFINITIONS 67

Available Parameters

In this section, a detailed description of all the parameters available through the
LSgetxxxyyyParameter() and LSsetxxxyyyParameter() routines are described. These parameters are
defined in the /indo.h header file in the LSparameter enumerated type definition. The parameters that
start with LS TPARAM corresponds to integer type parameters. Similarly, parameters that start with

LS DPARAM correspond to double type parameters.

Note: For details on the relationship between environment and model parameters, see the Parameter
Setting and Retrieving Routines section above.

General Solver Parameters

Name Available | Description
for
LS IPARAM_CHECK FOR_ERRORS |Environm |This is a flag indicating if the loaded model will

ent, be checked for errors. Possible values are 0 and 1.
Model 1 means that the loaded model will be checked
for errors. 0 means it will not. The default is 0.
LS IPARAM SPLEX REFACFRQ Environm | This is a positive integer scalar referring to the
ent, simplex iterations between two consecutive basis
Model re-factorizations. For numerically unstable
models, setting this parameter to smaller values
may help. Range for possible values is (0,inf).
The default is 200.
LS IPARAM_BARRIER SOLVER Environm | This is the type of barrier method to be used for
ent, solving the referred model. This macro is
Model reserved for future use.
The default is 4.
LS IPARAM_ALLOW_CNTRLBREAK |Environm |This flag controls if the user can interrupt the
ent, solver using the CTRL+C keys. Possible values
Model are 0 (off) and 1 (on). The default is 1 (on).
LS TPARAM_SOL REPORT_STYLE Model This controls the solution report style produced.
Possible values are 0 (default) and 1. The latter
produces solution reports in LINDO API 1.x
style.
LS DPARAM CALLBACKFREQ Environm | This controls the frequency with which the solver
ent, calls back to your optionally supplied callback
Model routine. Range for possible values is [0,inf). The
default value for this option is 0.5, meaning the
solver calls back once every 0.5 seconds.
LS TPARAM _ INSTRUCT LOADTYPE [Model This is reserved for internal use only.

The default is 0.

68 CHAPTER?2

LS_DPARAM_SOLVER _CUTOFFVAL

Environm
ent,
Model

If the optimal objective value of the LP being
solved is shown to be worse than this (e.g., if the
dual simplex method is being used), then the
solver will exit without finding a feasible
solution. This is a way of saving computer time if
there is no sufficiently attractive solution. Range
for possible values is (-inf,inf). Default is -1e+30.

LS_IPARAM_MPS_OBJ WRITESTYLE

Environm
ent,
Model

Standard MPS format assumes that the
underlying model is of minimization type. This
flag indicates how to handle ‘maximization’ type
models when exporting in MPS format. Possible
values are:

#LS MPS USE MAX NOTE (0): Export the
model as minimization type without flipping the
objective function but a comment is printed in the
file that the model is of maximization type.

#LS MPS USE MAX CARD (1): Export the
model using the non-standard ‘MAX’ operator.
Some MPS parsers, including LINDO API can
process MAX operator.

#LS MPS USE MAX FLIP (2): Export the
model as a minimization problem after flipping
the sign of the objective. This is the default.

The default value is: LS MPS USE_MAX FLIP
().

LS IPARAM_FMT ISSQL

Environm
ent,
Model

Reserved for internal use.
The default is 0.

FUNCTION DEFINITIONS 69

LS_IPARAM_DECOMPOSITION TYPE

Environm
ent,
Model

This refers to the type of decomposition to be
performed on a linear or mixed integer model.
The possible values are identified with the
following macros:

#LS LINK BLOCKS FREE (0): The solver
decides which type of decomposition to use.

LS LINK BLOCKS SELF (1): The solver
does not perform any decompositions and uses
the original model. This is the default.

#LS LINK BLOCKS NONE (2): Attempt total
decomposition (no linking rows or columns).
#LS LINK BLOCKS COLS (3): The
decomposed model will have dual angular
structure (linking columns).
#LS_LINK_BLOCKS _ROWS (4): The
decomposed model will have block angular
structure (linking rows).
#LS_LINK_BLOCKS BOTH (5): The
decomposed model will have both dual and block
angular structure (linking rows and columns).
For more information on decomposing models,
refer to Chapter 10, Analyzing Models and
Solutions.

LS DPARAM_ SOLVER FEASTOL

Environm
ent,
Model

This is the feasibility tolerance. A constraint is
considered violated if the artificial, slack, or
surplus variable associated with the constraint
violates its lower or upper bounds by the
feasibility tolerance. Range for possible values is
[le-10,1e-4). The default value is 1.0e-7.

LS DPARAM_ SOLVER OPTTOL

Environm
ent,
Model

This is the optimality tolerance. It is also referred
to as the dual feasibility tolerance. A dual slack
(reduced cost) is considered violated if it violates
its lower bound by the optimality tolerance.
Range for possible values is [1e-10,1e-4). The
default value is 1.0e-7.

70 CHAPTER?2

LS _IPARAM_LP SCALE

Environm
ent,
Model

This is the scaling mode for linear models,
applies to both simplex methods as well as the
barrier and mixed-integer solver. Scaling
multiplies the rows and columns of the model by
appropriate factors so as to reduce the range of
coefficients. This tends to reduce numerical
difficulties. Possible values are:

-1 Solver decides

0 Scaling is off

1 Scale rows and columns
2 Scale rows only

3 Scale columns only

The default is -1.

LS_IPARAM_LP ITRLMT

Environm
ent,
Model

This is a limit on the number of iterations the
solver will perform before terminating. If this
value is a nonnegative integer, then it will be used
as an upper bound on the number of iterations the
solver will perform. If this value is -1, then no
iteration limit will be used. The solution may be
infeasible. Range for possible values is [-

1,INT MAX].

The default is INT_MAX (2147483647).

Remark: Deprecated name
LS TIPARAM SPLEX ITRLMT

LS DPARAM _LP_ITRLMT

Environm
ent,
Model

This is a limit on the number of iterations (stored
as a double) the solver will perform before
terminating. If this value is a nonnegative double,
then it will be used as an upper bound on the
number of iterations the solver will perform. If
this value is -1.0, then no iteration limit will be
used. The solution may be infeasible. Range for
possible values is [-1.0,inf). The default is -1.0.

LS IPARAM SOLVER IUSOL

Environm
ent,
Model

This is a flag that, when set to 1, will force the
solver to compute a basic solution to an infeasible
model that minimizes the sum of infeasibilities
and a basic feasible solution to an unbounded
problem from which an extreme direction
originates. When set to 0, the solver will return
with an appropriate status flag as soon as
infeasibility or unboundedness is detected. If
infeasibility or unboundedness is declared with
presolver's determination, no solution will be
computed. The default is 0.

FUNCTION DEFINITIONS 71

LS_IPARAM_LP PRINTLEVEL

Environm
ent,
Model

This controls the level of trace output printed by
the simplex and barrier solvers. 0 means no trace
output. Higher values lead to more trace output.
Range for possible values is [0,inf). The default is
0.

LS DPARAM_OBJPRINTMUL

Model

When printing the objective value, it will first be
multiplied by the value of this parameter. For
example, you may wish to set it to -1.0 if the
original problem was a maximization problem,
but it is being solved as a minimization problem.
Range for possible values is (-inf,inf). The default
value is 1.0.

LS_IPARAM_OBJSENSE

Model

Use this parameter to set the sense of the
objective function. The default value is LS MIN
for minimization. Set this parameter to LS MAX
if you want to maximize the objective.

LS TIPARAM_SPLEX PPRICING

Environm
ent,
Model

This is the pricing option to be used by the primal
simplex method. Possible values are:

#-1: Solver decides the primal pricing method
(default).

#0: Partial pricing.

#1: Devex

LS IPARAM_ SPLEX DPRICING

Environm
ent,
Model

This is the pricing option to be used by the dual
simplex method. Possible values are:

#-1: Solver decides (Default).

0: Dantzig’s rule (partial pricing).

1: Dantzig’s rule (full pricing with fallback to
partial).

2: Steepest edge rule.

3: Dual Devex rule.

4: Approximate dual Devex rule.

LS TPARAM_SOLVER RESTART

Environm
ent,
Model

This is the starting basis flag. Possible values are
1 or 0. 1 means LINDO API will start from a cold
basis discarding any basis resident in memory. 0
means LINDO API will perform warm starts
using any basis currently in memory. The default
is 0.

LS IPARAM PROB TO SOLVE

Environm
ent,

Model

This controls whether the explicit primal or dual
form of the given LP problem will be solved.
Possible values are:

#0: Solver decides (default).
1: Explicit primal form.
#2: Explicit dual form.

72 CHAPTER?2

LS_IPARAM_SOLVER_IPMSOL

Environm

This flag controls whether a basis crossover will

ent, be performed when solving LPs with the barrier
Model solver. A value of 0 indicates that a crossover to a
basic solution will be performed. If the value is 1,
then the barrier solution will be left intact. For
example, if alternate optima exist, the barrier
method will return a solution that is, loosely
speaking, the average of all alternate optima. The
default is 0.
LS DPARAM SOLVER TIMLMT Environm | This is a time limit in seconds for the LP solver.
ent, The default value of -1 imposes no time limit. If
Model LS DPARAM_TIMLMT < -1, then an error is
returned. Range for possible values is [-1, inf).
Remark: Deprecated name
LS IPARAM TIMLMT (integer typed)
LS IPARAM_SOLVER TIMLMT Environm | This specifies an integer valued time limit in
ent, seconds for the LP solver. The default value of -1
Model imposes no time limit. If
LS IPARAM TIMLMT < -1, then an error is
returned. Range for possible values is [-1,
INT_MAX].
Remark: Deprecated name
LS IPARAM _TIMLMT (integer typed)
LS IPARAM SOLVER USECUTOFFV |Environm |This is a flag for the parameter
AL ent, LS DPARAM _SOLVER CUTOFFVAL. The
Model possible value of 0 means
LS DPARAM_SOLVER CUTOFFVAL is not
used, else it is used as defined. Possible values
are 0 (no), 1 (yes) and -1 (the solver decides). The
default is 0.
LS IPARAM_VER NUMBER Environm |This is the version number of LINDO API. This
ent, value cannot be set.
Model
LS TPARAM_VER MAJOR Environm | This is the major version number of LINDO API.
ent, This value cannot be set.
Model
LS TPARAM_VER_MINOR Environm | This is the minor version number of LINDO API.
ent, This value cannot be set.
Model
LS TPARAM_VER BUILD Environm | This is the build number of LINDO API. This
ent, value cannot be set.

Model

FUNCTION DEFINITIONS 73

LS_IPARAM_VER_REVISION

Environm

This is the revision number of LINDO API. This

ent, value cannot be set.
Model
LS IPARAM LP PRELEVEL Environm | This controls the amount and type of LP pre-
ent, solving to be used. Possible values in bit-mask
Model form are:
Simple pre-solving +2
Primal based +4
Coefficient reduction +8
Elimination +16
Dual column based +32
Dual row based +64
Use Max pass limit +128
The default value is:
126 =2+4+8+16+32+64.
LS IPARAM SOLVER PRE ELIM FIL |Environm |This is a nonnegative value that controls the fill-
L ent, in introduced by the eliminations during pre-
Model solve. Smaller values could help when the total
nonzeros in the presolved model is significantly
more than the original model. Range for possible
values is [0,inf). The default is 1000.
LS IPARAM SPLEX DUAL PHASE |Environm |This controls the dual simplex strategy, single-
ent, phase versus two-phase. The possible values are

Model

0,1 and 2. The default is 0, i.e. the solver decides.

74 CHAPTER 2

LS_IPARAM_COPY_MODE

Environm

This value specifies the mode when copying a

ent, model object. Bitmasks to define possible values
Model ~ |ar¢:
#LS RAW_COPY 0
#LS DEEP COPY 1
#LS TIME COPY 2
#LS STOC COPY 4
#LS SNGSTG COPY 8
The default is LS RAW_COPY (0).
LS IPARAM SBD NUM THREADS |[Environm |This value specifies the number of parallel
ent, threads to be used when solving a model with
Model SBD method. Possible values are positive
integers. The default is 1.
LS DPARAM SOLVER PERT FEAST |Environm |Reserved for future use.
OL ent, Default is 1.0e-12.
Model
LS IPARAM SOLVER PARTIALSOL [Environm [Reserved for future use. Default is O.
LEVEL ent,
Model
LS IPARAM_MULTITHREAD MODE |Environm |This parameter controls the threading mode for
ent, solvers with multithreading support. Possible
Model values are:

#LS MTMODE FREE = -1, solver decides.

#LS MTMODE EXPLCT =0, reserved for
future.

#LS MTMODE PPCC = 1, try parallel mode
(PP), but if it is not available try concurrent mode
(CO).

#LS MTMODE PP =2, try parallel mode (PP)
only.

#LS MTMODE CCPP = 3, try concurrent mode
(CQC), but if it is not available try parallel mode
(PP).

LS MTMODE CC =4, try concurrent mode
(CC) only.

The default is LS MTMODE FREE, implying
the best performing mode will be used.

FUNCTION DEFINITIONS 75

LS_IPARAM_FIND BLOCK

Environm
ent,

Model

Specifies the graph partitioning method to find
block structures. Possible values are:

0: Use an edge-weight minimizing graph
partitioning heuristic.

1: Use a vertex-weight minimizing graph
partitioning heuristic.

The default is 0.

LS_IPARAM_NUM_THREADS

Environm
ent,

Model

Number of threads to use in the solver routine to
be called.

It is a solver-independent parameter which
internally sets solver-specific threading
parameters automatically.

Possible values are positive integers. The default
is 1.

LS _IPARAM_INSTRUCT SUBOUT

Environm
ent,

Model

This is a flag indicating whether 1) fixed
variables are substituted out of the instruction list,
2) performing numerical calculation on constant
numbers and replacing with the results.

Possible values are:

-1: Solver decides (default)

0: substitutions will not be performed

1: substitutions will be performed

LS TPARAM_STRING LENLMT

Model

This specifies the maximum number of characters
of strings in an instruction lists.

Possible values are positive integers. The default
is 20.

LS _IPARAM USE NAMEDATA

Model

This specifies whether to use name data or not
when exporting models in a portable file format.
Possible values are:

0: do not use name data

1: use name data

The default is 1.

LS IPARAM SPLEX USE EXTERNAL

Environm
ent,

Model

This specifies whether to use an external simplex
solver or not.

Possible values are:

0: do not use external simplex solver

1: use external simplex solver

The default is 0.

76 CHAPTER?2

LS_IPARAM_PROFILER LEVEL

Environm

Specifies the profiler level to break down the total
cpu time into.

ent Possible val
ossible values are:
Model # 0: Profiler is off.
1: Enable for simplex solver.
2: Enable for integer solver.
4: Enable for multistart solver.
8: Enable for global solver.
The default is 0.
LS IPARAM INSTRUCT READMODE |Environm |This controls the input mode when reading from
- - - ent, MPI file.
Model Possible values are the following
0: High memory utilization, fast access speed
1: Low memory utilization, moderate access
speed (default)
2: Conservative memory utilization, slow
access speed
3: Reserved for future use
LS DPARAM LP MIN FEASTOL Environm |Minimum feasibility tolerance for LPs. Possible
- - - ent, values are (0,inf).
Model Default is 1e-009. Reserved for future use.
LS DPARAM LP MAX FEASTOL Environm Maximum feasibility tolerance for LPs. Possible
- o B ent values are (0,inf).
Model |Default is 1e-005. Reserved for future use.
LS DPARAM LP MIN OPTTOL Environm |Minimum optimality tolerance for LPs. Possible
N T - ent, values are (0,inf).
Model Default is 1e-009. Reserved for future use.
LS DPARAM LP MAX OPTTOL Environm Maximum optimality tolerance for LPs. Possible
- - - ent, values are (0,inf).
Model Default is 1e-005. Reserved for future use.
LS DPARAM LP AlJ ZEROTOL Environm | Coefficient matrix zero tolerance. Possible values
- -7 ent are (0,inf).
Model |Default is 2.22045¢-016.
LS DPARAM LP PIV ZEROTOL Environm |Simplex pivot zero tolerance. Possible values are
- - 0T ent, (0,inf).
Model Default is 1e-008.
LS DPARAM LP PIV BIGTOL Environm Simplex maximum pivot tolerance. Possible
h T ent, values are (0,inf).
Model Default is 1e-005.
LS DPARAM LP BIGM Environm |Big-M for phase-I. Possible values are (0,inf).
B - ent, Default is 1e6.
Model
LS DPARAM LP BNDINF Environm |Big-M to truncate lower and upper bounds in
B o ent single phase dual-simplex.
M(;del Possible values are (0,inf).

Default is 1e+015.

FUNCTION DEFINITIONS 77

LS_DPARAM_LP_INFINITY

Environm

Numeric infinity used by LP solvers. This value
cannot be set. It is 1e+030.

ent,
Model
LS IPARAM LP PPARTIAL Environm |Primal simplex partial pricing method. Possible
- o ent, values are:
Model |# 0 : solver decides (default)
1 : use method 1
2 : use method 2
3 : use method 3
LS IPARAM LP DPSWITCH Environm |Flag specifies whether LP primal-dual simplex
- - ent, switch is enabled or not. Default is 1.
Model
LS IPARAM LP PALLOC Environm |Reserved for internal use.
ent, Default is 5.
Model
LS TIPARAM LP PRTFG Environm |LP Simplex print level. Possible values are
- - ent, nonnegative integers. Default is 0.
Model
LS IPARAM LP OPRFREE Environm |Reserved for internal use.
ent, Default is 33.
Model
LS IPARAM LP SPRINT SUB Environm |LP method for subproblem in Sprint method.
- - - ent, Possible values are macros for available LP
Model solvers.
Default is 0.
LS_IPARAM_LU_NUM_CANDITS Environm | Number of pivot candidates in LU
- - - ent, decomposition. Possible values are positive
Model integers. Default is 4.
LS_IPARAM_LU_MAX_UPDATES |Environm |Number of maximum updates in LU
ent, decomposition. Possible values are positive
Model integers. Default is 500.
LS IPARAM LU PRINT LEVEL Environm Print level for LU decomposition. Possible values
B o B ent, are positive integers. Default is 0.
Model
LS IPARAM LU UPDATE TYPE Environm |Basis update type in simplex. Possible values are:
B T - ent, #-1: Solver decides.
Model |# 0: Eta updates.
1: Forrest-Tomlin updates.
Default is 1.
LS IPARAM LU MODE Environm |Reserved for internal use. Default is 0.
ent,
Model
LS IPARAM LU PIVMOD Environm |LU pivot mode. Reserved for internal use.
B o ent, Default is 0.

Model

78 CHAPTER?2

LS DPARAM LU _EPS DIAG

Environm

LU Pivot tolerance. Possible values are (0,1).
Default is 2.22045¢-016.

ent,
Model

LS DPARAM LU EPS NONZ Environm |LU Nonzero tolerance. Possible values are (0,1).
ent, Default is 2.22045¢-016.
Model

LS DPARAM LU EPS PIVABS Environm |Absolute pivot tolerance. Possible values are
ent, (0,1). Default is 1e-008.
Model

LS DPARAM LU EPS PIVREL Environm |LU Relative pivot tolerance. Possible values are
ent, (0,1). Default is 0.01
Model

LS DPARAM LU INI RCOND Environm |LU Initial reciprocal condition estimator
ent, tolerance.
Model Possible values are (0,1).

Default is 0.01.

LS DPARAM LU SPVTOL UPDATE |[Environm [LU Threshold for sparse update. Reserved for
ent, internal use.
Model Default is 0.001.

LS DPARAM LU SPVTOL FTRAN Environm |LU threshold for sparse FTRAN. Reserved for
ent, internal use.
Model Default is 0.2.

LS DPARAM LU SPVTOL BTRAN |Environm |LU threshold for sparse BTRAN. Reserved for
ent, internal use.
Model Default is 0.1.

LS IPARAM_LP RATRANGE Environm | This controls the number of pivot-candidates to
ent, consider when searching for a stable pivot in LU
Model decomposition. Range for possible values is

[1,inf). The default is 4.

LS DPARAM LP MAX PIVTOL Environm |Reserved for future use.
ent, The default is 0.00001.
Model

LS DPARAM LP MIN PIVTOL Environm |Reserved for future use.
ent, The default is 1e-10.
Model

LS TPARAM_LP DPARTIAL Environm |Reserved for future use.
ent,
Model

LS TPARAM_LP DRATIO Environm | This controls the dual min-ratio strategy. Possible
ent, values are 0,1 and 2. The default is 1.

Model

FUNCTION DEFINITIONS 79

LS IPARAM_LP PRATIO Environm |Reserved for future use.
ent,
Model
LS IPARAM_LP PERTMODE Environm | This specifies the perturbation mode in simplex
ent, solvers. Reserved for future use.
Model
LS IPARAM LP PCOLAL FACTOR [Environm [Reserved for future use.
ent,
Model
LS IPARAM_SOLPOOL LIM Environm | This specifies the solution pool limit when
ent, searching for alternate optimal solutions for LPs.
Model Possible values are positive integers.
The default value is 20.
LS IPARAM_SOLVER MODE Environm | This specifies solver bitmask to enable/disable
ent, available strategies. Possible values are:
Model |#LS_SOLVER MODE_POOLBAS (1)
#LS SOLVER_MODE_POOLEDGE (2)
#LS SOLVER_MODE_INTBAS: (4)
#LS_SOLVER_MODE LEX_EXPEACH (32)
#LS SOLVER MODE_LEX_EXPFAIL (64)
LS SOLVER MODE LEX RESOLVEFAIL (128)
The default is 1.
LS IPARAM LP DYNOBJMODE Environm |Dynamic objective mode when searching
ent, alternate optima. Possible values are in [0,inf)
Model | pefault is 0 which means dynamic objective
adjustments is turned off. Positive values
correspond to the level of adjustments to the
objective function.
LS DPARAM_ LP MERGEFACT Environm |Reserved for internal use only.
ent, Values are in the range (0.001,1).
Model
LS IPARAM_TUNER PRINT LEVEL |Environm |This specifies the amount of print to do during
ent, parameter tuning. Possible values are:
Model # 0: Do not print anything.
#>0: Print more information (default).
Default is 1.
LS TPARAM LP_SPRINT MAXPASS |Environm [Maximum number of passes in Sprint method.
ent, Possible values are positive integers. Default is
Model 100.
LS TIPARAM_LP SPRINT COLFACT |Environm |Specifies the max number of columns in Sprint as
ent, a factor of number of rows. Possible values are
Model positive integers. Default is 10.

80 CHAPTER?2

LS TPARAM_NLP_CONIC REFORM |Environm | This determines if to explore conic reformulation.
ent, The available options are:
Model |4 0: No.
#1: Yes.
The default is 1.
LS IPARAM GOP CONIC REFORM |Environm |This is a flag indicating if GOP explore conic
ent, reformulation. Possible values are 0 (no) and 1
Model (yes).The default value is 1.
LS TPARAM_SOLVER METHOD Environm | This values specifies the method to use when
ent, generic solver is invoked. Possible values are:
Model |#LS_METHOD FREE (0)
#LS_METHOD PSIMPLEX (1)
#LS_METHOD DSIMPLEX (2)
#LS_METHOD BARRIER (3)
#LS METHOD_NLP (4)
#LS METHOD_MIP (5)
#LS METHOD_ MULTIS (6)
LS METHOD_GOP (7)
LS METHOD IIS (8)
LS METHOD IUS (9)
#LS METHOD_ SBD (10)
#LS_METHOD_SPRINT (11)
#LS METHOD_GA (12)
The default is LS METHOD_FREE (0)
LS IPARAM_DEFAULT_ SEED Environm |Reserved for future use.
ent,
Model
LS TPARAM_SOLVER DUALSOL Environm |Reserved for future use.
ent,
Model
LS IPARAM_NLP_QP REFORM LEV |Environm |Reserved for future use.
EL ent,
Model

Nonlinear Optimization Parameters

LS_IPARAM NLP_SOLVE_AS _LP

Environment, | This is a flag indicating if the nonlinear model

Model

will be solved as an LP. Possible values are 0
and 1. 1 means that an LP using first order
approximations of the nonlinear terms in the
model will be used when optimizing the model
with the LSoptimize() function. The default is
0.

FUNCTION DEFINITIONS 81

LS_IPARAM_NLP_SOLVER

Environment,
Model

This refers to the type of nonlinear solver. The
possible values are:

LS NMETHOD FREE(4): solver decides,
LS NEMTHOD_ LSQ(5): uses Levenberg-
Marquardt method to solve nonlinear least-
squares problem.

LS NMETHOD QP(6): uses Barrier solver
for convex QCP models.

#LS NMETHOD CONOPT(7): uses
CONOPT’s reduced gradient solver. This is
the default.

LS NEMTHOD SLP(8): uses SLP solver.

#LS NMETHOD MSW_GRG(9): uses
CONOPT with multistart feature enabled.

LS IPARAM NLP_SUBSOLVER

Environment,
Model

This controls the type of linear solver to be
used for solving linear sub problems when
solving nonlinear models. The possible values
are:

#LS METHOD FREE (0)

#LS METHOD_PSIMPLEX (1): primal
simplex method.

#LS_METHOD DSIMPLEX(2): dual
simplex method,

LS METHOD_ BARRIER(3): barrier solver
with or without crossover.

The default is LS METHOD_FREE.

LS DPARAM NLP PSTEP FINITEDI
FF

Environment,
Model

This controls the value of the step length in
computing the derivatives using finite
differences. Range for possible values is [1e-
12, inf). The default value is 5.0e-07.

LS_IPARAM_NLP_USE_CRASH

Environment,
Model

This is a flag indicating if an initial solution
will be computed using simple crash routines.
Possible values are 0 (no), 1 (yes) and -1 (the
solver decides). The default is 0.

LS IPARAM NLP USE STEEPEDGE

Environment,
Model

This is a flag indicating if steepest edge
directions should be used in updating the
solution. Possible values are 0 (no), 1 (yes) and
-1 (the solver decides). The default value is 0.

LS_IPARAM NLP USE_SLP

Environment,
Model

This is a flag indicating if sequential linear
programming step directions should be used in
updating the solution. Possible values are 0
(no), 1 (yes) and -1 (the solver decides). The
default value is 1.

82 CHAPTER?2

LS_IPARAM_NLP_USE_SELCONEVA
L

Environment,
Model

This is a flag indicating if selective constraint
evaluations will be performed in solving a
nonlinear model. Possible values are 0 (no), 1
(yes) and -1 (the solver decides). The default
value is 0.

LS_IPARAM NLP PRELEVEL

Environment,
Model

This controls the amount and type of NLP pre-
solving. Possible options are:

Simple pre-solving +2

Probing +4

Coefficient reduction +8

Elimination +16

#Dual reductions +32

Use dual information +64

Maximum pass +512

The default value is: 0

LS IPARAM _NLP AUTODERIV

Environment,
Model

This is a flag to indicate if automatic
differentiation is the method of choice for
computing derivatives and select the type of
differentiation. If the value is 0, then the Finite
Differences approach will be used. If the value
is 1, then the forward type of Automatic
Differentiation will be used. If the value is 2,
then the backward type of Automatic
Differentiation will be used. The default is 2.
Note: Automatic Differentiation can be used
only with Instruction style input. It is only
useful when the instructions are loaded.

LS_IPARAM_NLP_LINEARZ

Environment,
Model

This determines the extent to which the solver
will attempt to linearize nonlinear models. The
available options are

#0: Solver decides.

1: No linearization occurs.

#2: Linearize ABS, MAX, and MIN functions.
#3: Same as option 2 plus IF, AND, OR,
NOT, and all logical operators (i.e., <, =, >,
and <>) are linearized.

The default is 0.

LS TPARAM NLP PRINTLEVEL

Environment,
Model

This controls the level of trace output printed
by the nonlinear solver. 1 means normal trace
output. Higher values for this parameter lead to
more trace output. Range for possible values
is [0,inf). The default is 1.

FUNCTION DEFINITIONS 83

LS_IPARAM_NLP_FEASCHK

Environment,
Model

This input parameter specifies how the NLP
solver reports the results when an optimal or
local-optimal solution satisfies the feasibililty
tolerance (LS DPARAM NLP FEASTOL) of
the scaled model but not the original (descaled)
one. Possible values for

LS _IPARAM_NLP_FEASCHK are

0 - Perform no action, accept the final
solution and model status.

1 - Declare the model status as

LS STATUS FEASIBLE if maximum
violation in the unscaled model is not higher
than 10 times of the current feasibililty
tolerance (LS DPARAM NLP FEASTOL),
otherwise declare the status as

LS STATUS UNKNOWN.

2 - Declare the model status as

LS STATUS _UNKNOWN if maximum
violation in the unscaled model is higher than
the current feasibililty tolerance
(LS_DPARAM NLP_FEASTOL). The default
is (0).

LS DPARAM NLP FEASTOL

Environment,
Model

This is the feasibility tolerance for nonlinear
constraints. A constraint is considered violated
if the artificial, slack, or surplus variable
associated with the constraint violates its lower
or upper bounds by the feasibility tolerance.
Range for possible values is [1e-10,1). The
default value is 1.0e-6.

LS_DPARAM NLP_REDGTOL

Environment,
Model

This is the tolerance for the gradients of
nonlinear functions. The (projected) gradient
of a function is considered to be the zero-
vector if its norm is below this tolerance.
Range for possible values is [1e-10,1). The
default value is 1.0e-7.

84 CHAPTER?2

LS_IPARAM_NLP_DERIV_DIFFTYPE

Environment,

This is a flag indicating the technique used in

Model computing derivatives with Finite Differences.
The possible values are:
LS DERIV_FREE: the solver decides,
LS DERIV_FORWARD DIFFERENCE:
use forward differencing method,
LS DERIV_BACKWARD_DIFFERENCE:
use backward differencing method,
LS DERIV_CENTER DIFFERENCE: use
center differencing method.
The default value is 0.
LS TIPARAM_NLP ITRLMT Environment, | This controls the iteration limit on the number
Model of nonlinear iterations performed. Range for
possible values is [-1,INT MAX]. The default
is INT MAX (2147483647).
LS TPARAM NLP STARTPOINT Environment, | This is a flag indicating if the nonlinear solver
Model should accept initial starting solutions.
Possible values are 0 (no), 1 (yes). The default
is 1.
LS IPARAM NLP CONVEXRELAX |Environment,|This is reserved for internal use only.
Model The default is 0.
LS TPARAM NLP CR ALG REFOR |Environment,|This is reserved for internal use only.
M Model The default is 0.
LS IPARAM_NLP_QUADCHK Environment, | This is a flag indicating if the nonlinear model
Model should be examined to check if it is a quadratic
model. . Possible values are 0 (no), 1 (yes).
The default value is 1.
LS IPARAM _NLP_MAXLOCALSEAR |Environment,|This controls the maximum number of local
CH Model searches (multistarts) when solving a NLP
using the multistart solver. Range for possible
values is [0,inf). The default value is 5.
LS TPARAM NLP_CONVEX Environment, | This is a flag indicating if the quadratic model
Model is convex or not. If the value is 1, the
minimization (maximization) model is convex
(concave). This value cannot be set. Default is
1.
LS TPARAM_NLP_CONOPT_ VER Environment, | This specifies the CONOPT version to be used
Model in NLP optimizations. Possible values are 3

(default) and 4.

FUNCTION DEFINITIONS 85

LS_IPARAM_NLP_USE LINDO CRA

Environment,

This is a flag indicating if an initial solution

SH Model will be computed using advanced crash
routines. Possible values are 0 (no), 1 (yes) and
-1 (the solver decides). The default is 0.
LS_IPARAM_NLP_STALL_ITRLMT |Environment,|This specifies the iteration limit before a
Model sequence of non-improving NLP iterations is
declared as stalling, thus causing the solver to
terminate. The default is 100.
LS_IPARAM_NLP_AUTOHESS Environment, | This is a flag to indicate if Second Order
Model Automatic Differentiation will be performed in

solving a nonlinear model. The second order
derivatives provide an exact/precise Hessian
matrix to the SQP algorithm, which may lead
to less iterations and better solutions, but may
also be quite expensive in computing time for
some cases. If the value is 1, then the Second
Order Automatic Differentiation will be used.
The default is 0.

Note: Automatic Differentiation can be used
only with Instruction style input. It is only
useful when the instructions are loaded.

86 CHAPTER?2

LS_IPARAM_NLP_MSW_SOLIDX

Environment,
Model

Index of the multistart solution to be loaded
main solution structures Range of possible
values are [0,+inf]. Default is 0.

LS_IPARAM_NLP_ITERS PER_LOGL

Environment,

Number of nonlinear iterations to elapse before

INE Model next progress message. Range of possible
values are [1,+inf]. Default is 50.
LS IPARAM NLP MAX RETRY Environment, | Maximum number refinement retries to purify
Model the final NLP solution. Range of possible
values are [-1,+inf]. Default is 5.
LS IPARAM NLP MSW NORM Environment,|Norm to measure the distance between two
Model points in multistart search. Range of possible
values are [-1,+inf]. Default is 2.
LS IPARAM NLP MSW POPSIZE Environment, | Maximum number of reference points in the
Model solution space to generate trial points in
multistart search. Range of possible values are
[-1,+inf]. Default is -1 (solver decides).
LS IPARAM NLP MSW _MAXPOP |Environment,|Maximum number of populations to generate
Model in multistart search. Range of possible values
are [-1,+inf].
Default is -1 (solver decides).
LS IPARAM _NLP MSW_MAXNOIM |Environment,|Maximum number of consecutive populations
P Model to generate w/o any improvements. Range of
possible values are [-1,+inf]. Default is -1
(solver decides).
LS DPARAM NLP ITRLMT Environment, | This controls the iteration limit (stored as a
Model double) on the number of nonlinear iterations

performed. Range for possible values is [-
LLINT MAX]. The default is INT MAX
(2147483647).

FUNCTION DEFINITIONS 87

LS_IPARAM_NLP_MSW_FILTMODE

Environment,
Model

Filtering mode to exclude certain domains
during sampling in multistart search. Bitmasks
for possible values are

-1 - Solver decides

1 - filter-out the points around known KKT
or feasible points previously visited.

2 - filter-out the points whose p() are in the
vicinity of p(x), where x is an initial point of a
previous local optimizations with p() being an
internal merit function.

4 - filter-out the points in the vicinity of x,
where x are initial points of all previous local
optimizations.

8 - filter-out the points whose p(.) values are
below a dynamic threshold tolerance, which is
computed internally.

Default is -1.

LS DPARAM_NLP MSW_POXDIST
THRES

Environment,
Model

Penalty function neighborhood threshold in
multistart search. Possible values are (0,inf).
Default is 0.01.

LS DPARAM_NLP MSW_EUCDIST _
THRES

Environment,
Model

Euclidean distance threshold in multistart
search. Possible values are (0,inf). Default is 0.001.

LS DPARAM _NLP_MSW_XNULRAD
_FACTOR

Environment,
Model

Initial solution neighborhood factor in
multistart search. Possible values are (0,inf).
Default is 0.5.

LS_DPARAM_NLP_MSW_XKKTRAD
_FACTOR

Environment,
Model

KKT solution neighborhood factor in
multistart search. Possible values are (0,inf).
Default is 0.85.

LS_IPARAM_NLP_MAXLOCALSEAR
CH_TREE

Environment,
Model

Maximum number of multistarts (at tree

nodes). Possible values are positive integers.
Defaultis 1.

LS_IPARAM NLP_MSW NUM THRE
ADS

Environment,

This value specifies the number of parallel

Model threads to be used when solving an NLP model
with the multistart solver. Possible values are
positive integers. The default is 1.
LS IPARAM_NLP MSW_RG_SEED |Environment,|This value specified the random number
Model generator seed for the multistart solver.

Possible values are nonnegative integers. The
default is 1019.

88 CHAPTER?2

LS_IPARAM_NLP_MSW_PREPMODE

Environment,
Model

This value specifies the preprocessing
strategies in multistart solver. Bitmasks
defining possible values are:

-1: Solver decides

#LS MSW_MODE TRUNCATE FREE:
Truncate free variables

#LS MSW _MODE SCALE REFSET: Scale
reference points to origin

#LS MSW_MODE_EXPAND RADIUS:
Enable expansive scaling of radius[k] by hit[k]

#LS MSW_MODE SKEWED SAMPLE:
Skewed sampling allowing values in the
vicinity of origin.

#LS MSW_MODE BEST LOCAL BND:
Get best bounds by presolver

#LS_MSW_MODE_BEST GLOBAL_BND:
Get best bounds using GOP

#LS_MSW_MODE_SAMPLE FREEVARS:
Enable sampling of free variables (not
recommended)

LS MSW_MODE PRECOLLECT:
Collect sufficiently many trial points prior to
local solves

#LS MSW_MODE POWER SOLVE:
Enable power solver, trying several different
local strategies

The default is : -1

LS_IPARAM _NLP_MSW_RMAPMOD
E

Environment,
Model

This value specifies the mode to map reference
points in the unit cube into the original space.

Possible values are:

-1 Solver decides

0 Use original variable bounds

1 Use min-max values over all sample points
per each dimension

2 Use min-max values over all sample points
over all dimensions.

The default value is -1.

LS_IPARAM NLP_XSMODE

Environment,
Model

This value controls the bitmask for advanced
local optimization modes. Reserved for future
use. Default value is: 197152.

FUNCTION DEFINITIONS 89

LS_DPARAM _NLP_MSW_OVERLAP
_RATIO

Environment,
Model

This value specifies the rate of replacement in
successive populations. Higher values favors
survival of points in the parent population.
Possible values are (0,1). The default value is
0.1.

LS_DPARAM NLP_INF

Environment,
Model

Specifies the numeric infinity for nonlinear
models. Possible values are positive real
numbers.

Default is 1€30. Smaller values could cause
numerical problems.

LS _IPARAM NLP_USE_SDP

Environment,
Model

This is a flag to use SDP solver for POSD
constraint. Possible values are 0 and 1. The
default is 1 (yes).

LS _IPARAM NLP _MAXSUP

Environment,
Model

This specifies the superbacic variable limit in
nonlinear solver. Range for possible values is
[-1,LINT MAX]. The default is INT MAX
(2147483647).

LS_IPARAM_NLP_IPM2GRG

Environment,
Model

This is a flag to switch from IPM solver to the
standard NLP (GRG) solver when IPM fails
due to numerical errors. Possible values are 0
and 1. The default is 1.

LS_IPARAM_NLP_LINEARZ WB_CO
NSISTENT

Environment,
Model

This determines if linearization process is
consistent with WB/excel calculation. The
available options are:

#0: No

#1: Yes

The default is 0.

LS DPARAM _NLP _CUTOFFOBJ

Environment,
Model

If the current best objective of the NLP being
solved in a multistart run is better than this
value, the solver will terminate early without
exhausting the maximum number of
multistarts. This is a way of saving computer
time if the current best solution is sufficiently
attractive. Range for possible values is (-
inf,inf). Default is -1e+30

LS IPARAM NLP_USECUTOFFOBJ

Environment,
Model

This is a flag for the parameter

LS DPARAM_NLP CUTOFFOBIJ. The value
of 0 means

LS DPARAM NLP CUTOFFOBIJ will be
ignored, else it will be used as specified.
Possible values are 0 (no), 1 (yes) and -1 (the
solver decides). The default is 0.

90 CHAPTER?2

Interior-Point (Barrier) Solver Parameters

LS_DPARAM IPM_TOL INFEAS

Environment,
Model

This is the tolerance to declare the
model primal or dual infeasible using
the interior-point optimizer. A smaller
number means the optimizer gets more
conservative about declaring the model
infeasible. Range for possible values is
(0,inf). The default is 1e-10.

LS DPARAM_IPM_CO TOL_INFEAS

Environment,
Model

This controls when the conic optimizer
declares the model primal or dual
infeasible. Smaller values mean the
optimizer gets more conservative about
declaring the model infeasible.

The default is le-12.

LS DPARAM IPM_TOL PATH

Environment,
Model

Controls how close the interior-point
optimizer follows the central path. A
large value of this parameter means the
central path is followed very closely.
For numerically unstable problems it
might help to increase this parameter.
Range for possible values is (0,0.5). The
default is 1e-08.

LS_DPARAM_IPM_TOL PFEAS

Environment,
Model

Primal feasibility tolerance used for
linear and quadratic optimization
problems. Range for possible values is
(0,inf). The default is 1e-8.

LS_DPARAM_IPM_TOL REL_STEP

Environment,
Model

Relative step size to the boundary for
linear and quadratic optimization
problems. Range for possible values is
(0,9.99999¢-1). The default is 0.9999.

LS DPARAM_IPM_TOL PSAFE

Environment,
Model

Controls the initial primal starting point
used by the interior-point optimizer. If
the interior-point optimizer converges
slowly and/or the constraint or variable
bounds are very large, then it might be
worthwhile to increase this value. Range
for possible values is [le-2,inf). The
default is 1.0.

LS_DPARAM_IPM_TOL DFEAS

Environment,
Model

Dual feasibility tolerance used for linear
and quadratic optimization problems.
Range for possible values is (0,inf). The
default is le-8.

FUNCTION DEFINITIONS 91

LS DPARAM _IPM_TOL DSAFE

Environment,
Model

Controls the initial dual starting point
used by the interior-point optimizer. If
the interior-point optimizer converges
slowly and/or the dual variables
associated with constraint or variable
bounds are very large, then it might be
worthwhile to increase this value. Range
for possible values is [1e-4,inf). The
default is 1.0.

LS_DPARAM_IPM_TOL MU _RED

Environment,
Model

Relative complementarity gap tolerance.
Range for possible values is (0,inf). The
default is le-16.

LS DPARAM_IPM BASIS REL TOL S

Environment,
Model

Maximum relative dual bound violation
allowed in an optimal basic solution.
Range for possible values is (0,inf). The
default is le-12.

LS_DPARAM_IPM_BASIS TOL S

Environment,
Model

Maximum absolute dual bound violation
in an optimal basic solution. Range for
possible values is (0,inf). The default is
le-07.

LS_DPARAM IPM BASIS TOL X

Environment,
Model

Maximum absolute primal bound
violation allowed in an optimal basic
solution. Range for possible values is
(0,inf). The default is 1e-07.

LS DPARAM IPM BI LU TOL REL PIV

Environment,
Model

Relative pivot tolerance used in the LU
factorization in the basis identification

procedure. Range for possible values is
(1e-6,9.99999¢-1). The default value is
0.01.

LS _IPARAM IPM_MAX_ITERATIONS

Environment,
Model

Controls the maximum number of
iterations allowed in the interior-point
optimizer. Range for possible values is
[0,inf). The default is 1000.

LS_IPARAM_IPM_OFF _COL_TRH

Environment,
Model

Controls the extent for detecting the
offending columns in the Jacobian of
the constraint matrix. Range for possible
values is [0,inf). 0 means no offending
columns will be detected. | means
offending columns will be detected. In
general, increasing the parameter value
beyond the default value of 40 does not
improve the result.

92 CHAPTER?2

LS_IPARAM_IPM_NUM_THREADS

Environment,
Model

Number of threads to run the interior-
point optimizer on.

Possible values are positive integers.
The default is 1.

LS_IPARAM_IPM_CHECK_CONVEXITY

Environment,
Model

This is a flag to check convexity of a
quadratic program using barrier solver.
Possible values are:

-1: check convexity only without
solving the model.

0: use barrier solver to check
convexity.

1: do not use barrier solver to check
convexity.

The default is 1.

LS_IPARAM_SOLVER_CONCURRENT_OP

TMODE

Environment,
Model

Controls if simplex and interior-point
optimizers will run concurrently, 0
means no concurrent runs will be
performed,1 means both optimizers will
run concurrently if at least two threads
exist in system, 2 means both optimizers
will run concurrently. The default is 0.

LS DPARAM_IPM_CO TOL PFEAS

Environment,
Model

Primal feasibility tolerance for Conic
solver.

Range for possible values is (0,inf). The
default is 1e-008.

LS DPARAM _IPM_CO TOL DFEAS

Environment,
Model

Dual feasibility tolerance for Conic
solver.

Range for possible values is (0,inf). The
default is 1e-008.

LS_DPARAM_IPM_CO_TOL _MU_RED

Environment,
Model

Optimality tolerance for Conic solver.

Range for possible values is (0,inf). The
default is 1e-008.

FUNCTION DEFINITIONS 93

Mixed-Integer Optimization Parameters

LS_IPARAM_MIP_USE_INT_ZERO TOL

Environment,
Model

This flag controls if all MIP calculations
would be based on the integrality
tolerance specified by

LS _DPARAM_MIP_INTTOL. The flag
will be disregarded if the following
conditions fail to hold

All coefficients of the coefficient matrix
and the right-hand side vector are integers

Any continuous variable that is not yet
proved to be an implied integer has
coefficients all -1 or +1.

All continuous variables have integer
bounds or, —inf or +inf

All continuous variables have only one
nonzero in each constraint.

Possible values are 0 (no), 1 (yes) and -1
(the solver decides). The default for this
flag is 0.

LS IPARAM _MIP_USE _CUTS_HEU

Environment,
Model

This flag controls if cut generation is
enabled during MIP heuristics. Possible
values are 0 (no), 1 (yes) and -1 (the
solver decides). The default is -1.

LS_DPARAM_MIP_BIGM_FOR_INTTOL

Environment,
Model

This value specifies the threshold for
which the coefficient of a binary variable
would be considered as big-M (when
applicable). Range for possible values is
[1e-6,inf). The default is 1.0e8.

LS _IPARAM _MIP_STRONGBRANCHDO
NUM

Environment,
Model

This value specifies the minimum number
of variables, among all the candidates, to
try the strong branching on. Range for

possible values is [0,inf). The default is 3.

LS IPARAM MIP MAKECUT INACTIVE
_COUNT

Environment,
Model

This value specifies the threshold for the
times a cut could remain active after
successive reoptimization during branch-
and-bound. If the count is larger than the
specified level the solver will inactive the
cut. Range for possible values is [0,inf).
The default is 20.

94 CHAPTER?2

LS_IPARAM_MIP_PRE_ELIM FILL

Environment,
Model

This is a nonnegative value that controls
the fill-in introduced by the eliminations
during pre-solveSmaller values could help
when the total nonzeros in the presolved
model is significantly more than the
original model. Range for possible values
is [0,inf). The default is 100.

LS_IPARAM_MIP_HEU MODE

Environment,
Model

This controls the MIP heuristic mode.
Possible values are:

<0 solver is free to decide when to stop the
heuristic (default),

<I solver uses a pre-specified time limit to
stop the heuristic.

<2 solver uses a pre-specified iteration
limit to stop the heuristic.

The default is 0.

LS_IPARAM_MIP_FP_MODE

Environment,
Model

Controls the mode for the feasibility pump
heuristic. Possible values are:

-1: Solver decides

0: Off,
1: Solver decides,
2: On until the first solution,

3: Try to get more than one solutions.
The default is -1.

LS DPARAM MIP_FP_WEIGHT

Environment,
Model

Controls the weight of the objective
function in the feasibility pump. Possible
values are in the closed interval [0,1]. The
default is 1.0.

LS_IPARAM_MIP_FP_OPT_METHOD

Environment,
Model

This specifies optimization and
reoptimization method for feasibility
pump heuristic. Possible values are:

#0: Solver decides (default).

#1: Use primal method.

#2: Use dual simplex.

#3: Use barrier solver (with or without
basis crossover, depending on

LS IPARAM SOLVER IPMSOL
parameter setting described above)

LS_DPARAM_MIP_FP_TIMLIM

Environment,
Model

This is the time limit in seconds for
feasibility pump heuristic. A value of -1
implies no time limit is imposed. Range
for possible values is [-1,inf). The default
value is 1800.

FUNCTION DEFINITIONS 95

LS_IPARAM_MIP_FP_ITRLIM

Environment,
Model

This is the iteration limit for feasibility
pump heuristic. A value of -1 means no
iteration limit is imposed. Range for
possible values is [-1,inf). The default
value is 500.

LS_IPARAM_MIP_CUTLEVEL TOP

Environment,
Model

This controls the combination of cut types
to try at the root node when solving a
MIP. Bit settings are used to enable the
various cut types. Add the following
values to enable the specified cuts:

GUB cover +2

Flow cover +4

Lifting +8

Plant location +16

Disaggregation +32

Knapsack cover +64

Lattice +128
Gomory +256
Coefficient reduction +512
GCD +1024
Obj integrality +2048
Basis Cuts +4096
Cardinality Cuts +8192

Disjunctive Cuts +16384
Soft Knapsack Cuts +32768

The default is 57342 which means all cut
types except cardinality cuts are
generated.

LS_IPARAM_MIP_CUTLEVEL_TREE

Environment,
Model

This controls the combination of cut types
to try at child nodes in the B&B tree when
solving a MIP. The bit settings to enable
cuts at child nodes are the same as those
used to enable cuts at the root node. The
default is 53246.

LS DPARAM MIP CUTTIMLIM

Environment,
Model

This controls the total time to be spent in
cut generation throughout the solution of a
MIP. Range for possible values is [-1,inf).

The default value is -1.0 indicating that
no time limits will be imposed when
generating cuts.

LS_IPARAM_MIP_CUTFREQ

Environment,
Model

This controls the frequency of invoking
cut generation at child nodes. Range for
possible values is [0,inf). The default
value is 10, indicating that the MIP solver
will try to generate cuts at every 10 nodes.

96 CHAPTER?2

LS_IPARAM_MIP_CUTDEPTH

Environment,
Model

This controls a threshold value for the
depth of nodes in the B&B tree, so cut
generation will be less likely at those
nodes deeper than this threshold. Range
for possible values is [0,inf). The default
is 5.

LS_DPARAM_MIP_LBIGM

Environment,
Model

This refers to the Big-M value used in
linearizing nonlinear expressions. Range
for possible values is (0,inf). The default
value is 1.0e+5.

LS _DPARAM_MIP DELTA

Environment,
Model

This refers to a near-zero value used in
linearizing nonlinear expressions. Range
for possible values is (0,inf). The default
value is 1.0e-6.

LS_IPARAM_MIP_BRANCH_PRIO

Environment,
Model

This controls how variable selection
priorities are set and used. Possible values
are:

0: Ifuser has specified priorities, then
use them. Otherwise, let LINDO API
decide.

1: If user has specified priorities, then
use them. However, also allow
overwriting user’s choices if necessary.
#2: If user has specified priorities, then
use them. Otherwise, do not use any
priorities.

#3: Let LINDO API set the priorities
and ignore any user specified priorities.
#4: Binaries always have higher priority
over general integers.

The default is 0.

LS IPARAM_MIP_SCALING BOUND

Environment,
Model

This controls the maximum difference
between the upper and lower bounds of an
integer variable that will enable the
scaling in the simplex solver when solving
a sub problem in the branch-and-bound
tree. Range for possible values is [-1,inf).
The default value is 10000.

LS IPARAM MIP MAXCUTPASS TOP

Environment,
Model

This controls the number passes to
generate cuts on the root node. Each of
these passes will be followed by a re-
optimization and a new batch of cuts will
be generated at the new solution. Range
for possible values is [0,inf). The default
value is 100.

FUNCTION DEFINITIONS ~ 97

LS_IPARAM_MIP_MAXCUTPASS_TREE

Environment,
Model

This controls the number passes to
generate cuts on the child nodes. Each of
these passes will be followed by a re-
optimization and a new batch of cuts will
be generated at the new solution. Range
for possible values is [0,inf). The default
value is 2.

LS_IPARAM_MIP_MAXNONIMP CUTPA
SS

Environment,
Model

This controls the maximum number of
passes allowed in cut-generation that does
not improve the current relaxation. Range
for possible values is [0,inf). The default
value is 3.

LS DPARAM MIP ADDCUTOBIJTOL

Environment,
Model

This specifies the minimum required
change in the objective function for the cut
generation phase to continue generating
cuts. Range for possible values is [0,1].
The default, based on empirical testing, is
set at 1.5625e-5.

LS DPARAM MIP HEUMINTIMLIM

Environment,
Model

This specifies the minimum time in
seconds to be spent in finding heuristic
solutions to the MIP model.

LS _IPARAM_MIP_HEULEVEL (below)
controls the heuristic used to find the
integer solution. Range for possible values
is [0,inf). The default is 0.

LS DPARAM_MIP_REDCOSTFIX_CUTO
FF

Environment,
Model

This specifies the cutoff value as a
percentage of the reduced costs to be used
in fixing variables when using the reduced
cost fixing heuristic. Range for possible
values is [0,9.9¢-1]. The default is 0.99.

LS DPARAM MIP_ADDCUTPER

Environment,
Model

This determines how many constraint cuts
can be added as a percentage of the
number of original rows in an integer
programming model. Range for possible
values is [0,100). 0.75 is the default value,
which means the total number of
constraint cuts LINDO API adds will not
exceed 75% of the original row count.

98 CHAPTER?2

LS DPARAM_MIP_ADDCUTPER_TREE

Environment,
Model

This determines how many constraint cuts
can be added at child nodes as a
percentage of the number of original rows
in an integer programming model. Range
for possible values is [0,100). 0.75 is the
default value, which means the total
number of constraint cuts LINDO API
adds will not exceed 75% of the original
row count.

LS_DPARAM_MIP_AOPTTIMLIM

Environment,
Model

This is the time in seconds beyond which
the relative optimality tolerance,

LS DPARAM MIP PEROPTTOL, will

be applied. Range for possible values is [-
1,inf). The default value is 100 seconds.

LS IPARAM_MIP_BRANCHDIR

Environment,
Model

This specifies the direction to branch first
when branching on a variable. Possible
values are:

#0: Solver decides (default),
#1: Always branch up first,
#2: Always branch down first.

LS DPARAM MIP INTTOL

Environment,
Model

An integer variable is considered integer
feasible if the absolute difference from the
nearest integer is smaller than this. Range
for possible values is [1e-10,0.5). The
default value is 0.000001. Note, this is
similar to the tolerance

LS DPARAM_MIP RELINTTOL, but it
uses absolute differences rather than
relative differences.

LS _IPARAM MIP_KEEPINMEM

Environment,
Model

If this is set to 1, the integer pre-solver
will try to keep LP bases in memory. This
typically gives faster solution times, but
uses more memory. Setting this parameter
to 0 causes the pre-solver to erase bases
from memory. The default is 1.

LS DPARAM MIP_ABSOPTTOL

Environment,
Model

This is the MIP absolute optimality
tolerance. Solutions must beat the
incumbent by at least this absolute amount
to become the new, best solution. Range
for possible values is [0,inf). The default
value is 0.

FUNCTION DEFINITIONS 99

LS_DPARAM_MIP RELOPTTOL

Environment,
Model

This is the MIP relative optimality
tolerance. Solutions must beat the
incumbent by at least this relative amount
to become the new, best solution. Range
for possible values is [1e-10,1). The
default value is 1e-6.

LS DPARAM MIP PEROPTTOL

Environment,
Model

This is the MIP relative optimality
tolerance that will be in effect after T
seconds following the start. The value T’
should be specified using the

LS DPARAM_MIP_AOPTTIMLIM
parameter. Range for possible values

is [1e-10,1). The default value is le-5.

LS IPARAM MIP HEULEVEL

Environment,
Model

This specifies the heuristic used to find the
integer solution. Possible values are:

#0: No heuristic is used.

#1: A simple heuristic is used.
Typically, this will find integer solutions
only on problems with a certain structure.
However, it tends to be fast.

>2: This is an advanced heuristic that
tries to find a "good" integer solution fast.
In general, a value of 2 will not increase
the total solution time and will find an
integer solution fast on many problems.

A higher value may find an integer
solution faster, or an integer solution
where none would have been found with a
lower level. Try level 3 or 4 on "difficult"
problems where 2 does not help.

Higher values cause more time to be spent
in the heuristic. The value may be set
arbitrarily high. However, >20 is probably
not worthwhile.

The default is 3.

LS DPARAM_MIP _HEUMINTIMLIM
(above) controls the time to be spent in
searching heuristic solutions.

LS TPARAM_MIP SOLVERTYPE

Environment,
Model

This specifies the optimization method to
use when solving mixed-integer models.
Possible values are:

#0: Solver decides (default).

#1: Use B&B only.

#2: Use Enumeration and Knapsack
solver only.

100 CHAPTER 2

LS_IPARAM_MIP_NODESELRULE

Environment,
Model

This specifies the node selection rule for
choosing between all active nodes in the
branch-and-bound tree when solving
integer programs. Possible selections are:

#0: Solver decides .

1: Depth first search.

#2: Choose node with worst bound.
#3: Choose node with best bound.
#4: Start with best bound. If no
improvement in the gap between best
bound and best integer solution is obtained
for some time, switch to:

if (number of active nodes<10000)
Best estimate node selection (5).

else

Worst bound node selection (2).

#5: Choose the node with the best
estimate, where the new objective estimate
is obtained using pseudo costs.

6: Same as (4), but start with the best
estimate.

The default value is 4.

LS TPARAM_MIP BRANCHRULE

Environment,
Model

This specifies the rule for choosing the
variable to branch on at the selected node.
Possible selections are:

#0: Solver decides (default).

1. Basis rounding with pseudo reduced
costs.

#2: Maximum infeasibility.

#3: Pseudo reduced costs only.

#4: Maximum coefficient only.

#5: Previous branching only.

FUNCTION DEFINITIONS 101

LS_IPARAM_MIP_PRELEVEL

Environment,
Model

This controls the amount and type of MIP
pre-solving at root node. Possible options
are:

Simple pre-solving +2

Probing +4

Coefficient reduction +8

Elimination +16

Dual reductions +32

Use dual information +64

Binary row presolving +128

Row aggregation +256

Coefficient lifting +512

Maximum pass +1024
Similar row +2048
The default value is:

3070 = 2+4+8+16+32+64+128+256+
512+2048.

LS IPARAM_MIP PREPRINTLEVEL

Environment,
Model

This specifies the trace print level for the
MIP presolver. Possible selections are:

0: Do not print anything (default).
1: Print summary of preprocessing.

LS IPARAM_MIP PRINTLEVEL

Environment,
Model

This specifies the amount of printing to
do. Possible values are:

#0: Do not print anything.

1: Print most basic information for
branch-and-bound iterations.

#2: Level 1 plus print information
regarding addition of cuts, etc (default).

LS DPARAM MIP_CUTOFFOBJ

Environment,
Model

If this is specified, then any part of the
branch-and-bound tree that has a bound
worse than this value will not be
considered. This can be used to reduce the
running time if a good bound is known.
Set to a large positive value
(LS_INFINITY) to disable if a finite value
had been specified. Range for possible
values is (-inf,inf). Default is

LS INFINITY.

102 CHAPTER 2

LS_IPARAM_MIP_USECUTOFFOBJ

Environment,
Model

This is a flag for the parameter

LS DPARAM MIP CUTOFFOBIJ. The
value of 0 means that the current cutoff
value is ignored, else it is used as defined.
If you don’t want to lose the value of the
parameter

LS DPARAM_MIP_CUTOFFOBJ, this
provides an alternative to disabling the
cutoff objective. Possible values are 0
(no), 1 (yes) and -1 (the solver decides).
The default is 0.

LS _DPARAM_MIP RELINTTOL

Environment,
Model

An integer variable is considered integer
feasible if the difference between its value
and the nearest integer value divided by
the value of the nearest integer is less than
this. Range for possible values is [le-
10,0.5). The default value is 8e-6. Note
this is a relative version of the

LS DPARAM MIP INTTOL tolerance.

LS _IPARAM_MIP_REOPT

Environment,
Model

This specifies which optimization method
to use when doing reoptimization from a
given basis. Possible values are:

LS METHOD_ FREE (default)
#LS METHOD PSIMPLEX

LS METHOD DSIMPLEX

#LS METHOD BARRIER

#LS METHOD NLP

LS IPARAM MIP_STRONGBRANCHLEV
EL

Environment,
Model

This specifies the depth from the root in
which strong branching is used. Range for
possible values is [0,inf). The default
value of 10 means that strong branching is
used on a level of 1 to 10 measured from
the root. Strong branching finds the real
bound for branching on a given variable,
which, in most cases, requires a solution
of a linear program and may therefore also
be quite expensive in computing time.
However, if used on nodes close to the
root node of the tree, it also gives a much
better bound for that part of the tree and
can therefore reduce the size of the
branch-and-bound tree.

LS TPARAM_MIP TREEREORDERLEVE
L

Environment,
Model

This specifies the tree reordering level.
Range for possible values is [0,inf). The
default is 10.

FUNCTION DEFINITIONS 103

LS_IPARAM_MIP_ANODES SWITCH_DF

Environment,
Model

This specifies the threshold on active
nodes for switching to depth-first search
rule. Range for possible values is [-1,inf).
The default is 50,000.

LS_DPARAM_MIP_SWITCHFAC_SIM_IP
M_ITER

Environment,
Model

This specifies the (positive) factor that
multiplies the number of constraints to
impose an iteration limit to simplex
method and trigger a switch over to the
barrier method. Range for possible values
is [-1,inf).

The default value is —1, which means that
no iteration limit is imposed.

LS DPARAM_MIP TIMLIM

Environment,
Model

This is the time limit in seconds for MIP
solver.

Range for possible values is [-1.0, inf).
The default value is -1, which means no
time limit is imposed. If the time limit,
LS_DPARAM_MIP_TIMLIM, is reached
and a feasible integer solution was found,
it will be installed as the incumbent (best
known) solution.

LS_IPARAM _MIP_BRANCH_LIMIT

Environment,
Model

This is the limit on the total number of
branches to be created during branch-and-
bound. Range for possible values is [-
1,inf). The default value is —1, which
means no limit is imposed.

If the branch limit,

LS IPARAM_MIP_BRANCH_LIMIT, is
reached and a feasible integer solution was
found, it will be installed as the incumbent
(best known) solution.

LS_IPARAM_MIP_TOPOPT

Environment,
Model

This specifies which optimization method
to use when there is no previous basis.
Possible values are:

#LS METHOD_FREE (default)
#LS METHOD PSIMPLEX
#LS_METHOD DSIMPLEX

#LS METHOD BARRIER

#LS METHOD NLP

LS DPARAM MIP LSOLTIMLIM

Environment,
Model

This value controls the time limit until
finding a new integer solution since the
last integer solution found. Range for
possible values is [-1,inf). The default
value is -1, which means no time limit is
imposed.

104 CHAPTER 2

LS_IPARAM_MIP_DUAL _SOLUTION

Environment,
Model

This flag controls whether the dual
solution to the LP relaxation that yielded
the optimal MIP solution will be
computed or not. Possible values are 0
(no), 1 (yes). The default is 0.

LS_IPARAM_MIP_AGGCUTLIM_TOP

Environment,
Model

This specifies an upper limit on the
number of constraints to be involved in
the derivation of an aggregation cut at the
root node. Range for possible values is [-
1,inf). The default is —1, which means that
the solver will decide.

LS _IPARAM_MIP_AGGCUTLIM_TREE

Environment,
Model

This specifies an upper limit on the
number of constraints to be involved in
the derivation of an aggregation cut at the
tree nodes. Range for possible values is [-
1,inf). The default is 3.

LS DPARAM MIP_MINABSOBIJSTEP

Environment,
Model

This specifies the value to update the
cutoff value each time a mixed integer
solution is found. Range for possible
values is (-inf,inf). The default is 0.0

LS_IPARAM_MIP_PSEUDOCOST RULE

Environment,
Model

This specifies the rule in pseudocost
computations for variable selection.
Possible values are

0: solver decides (default).

1: only use min pseudo cost.

2: only use max pseudo cost.

3: use quadratic score function and the
pseudo cost weigth.

4: same as 3 without quadratic score.

LS_IPARAM_MIP_ENUM_HEUMODE

Environment,
Model

This specifies the frequency of
enumeration heuristic. Possible values are

0: off

1: only at top (root) node without cuts.
2: both at top (root) and tree nodes
without cuts.

3: same as 1 with cuts.

4: same as 2 with cuts (default).

FUNCTION DEFINITIONS 105

LS_IPARAM_MIP_PRELEVEL TREE

Environment,
Model

This controls the amount and type of MIP
pre-solving at tree nodes. Possible options
are:

Simple pre-solving +2

Probing +4

Coefficient reduction +8

Elimination +16

Dual reductions +32

Use dual information +64

Binary row presolving +128

Row aggregation +256

Maximum pass +512

The default value is:
686 = 2+4+8+32+128+512.

LS DPARAM_MIP_PSEUDOCOST WEIG

T

Environment,
Model

This specifies the weight in pseudocost
computations for variable selection. Range
for possible values is (0,inf). The default
is 6.25.

LS_DPARAM_MIP_REDCOSTFIX_CUTO

FF_TREE

Environment,
Model

This specifies the cutoff value as a
percentage of the reduced costs to be used
in fixing variables when using the reduced
cost fixing heuristic at tree nodes. Range
for possible values is [0,9.9¢-1]. The
default is 0.9.

LS_DPARAM_MIP_OBJ THRESHOLD

Environment,
Model

This value specifies the threshold of
objective value in the MIP solver.

For min problem, if current incurmbent
solution is less than the threshold MIP
solver will stop.

Range for possible values is (-inf, inf).

The default value is -inf.

LS IPARAM_MIP_LOCALBRANCHNUM

Environment,
Model

Reserved for future use. Default is 0.

LS DPARAM MIP_SWITCHFAC SIM IP

M_TIME

Environment,
Model

This specifies the (positive) factor that
multiplies the number of constraints to
impose a time limit to simplex method and
trigger a switch over to the barrier method.
Range for possible values is [-1.0,inf). The
default value is —1.0, which means that no
time limit is imposed.

106 CHAPTER 2

LS_DPARAM_MIP_ITRLIM

Environment,
Model

This is the total LP iteration limit (stored
as a double variable) summed over all
branches for branch-and-bound. Range for
possible values is [-1,inf). The default
value is —1, which means no iteration limit
is imposed. If this iteration limit is
reached, branch-and-bound will stop and
the best feasible integer solution found
will be installed as the incumbent (best
known) solution.

Remark: Deprecated name
LS IPARAM MIP ITRLIM (integer

typed)

LS_IPARAM_MIP_MAXNUM MIP_SOL
STORAGE

Environment,
Model

This specifies the maximum number of k-
best solutions to store. Possible values are
positive integers. Default is 10.

LS_IPARAM _MIP_FP_HEU MODE

Environment,
Model

This specifies the feasibility-pump (FP)
heuristic mode. Possible values are :

0 : FP is disabled.

1 : Solver decides.

2 : Enable FP if no cutoff value or initial
mip solution was defined

3 : Enable FP independent of cutoff
values and initial mip solutions

4 : Same as 2 but also enable FP on
child nodes in branch-bound tree.

5 : Same as 3 but also enable FP on
child nodes in branch-bound tree.

The default is 0.

LS_DPARAM_MIP_ITRLIM_SIM

Environment,
Model

This specifies the simplex-iteration limit
for the MIP solver. Possible values are
nonnegative integers and -1 (no limit). The
default is -1.

LS DPARAM MIP ITRLIM NLP

Environment,
Model

This specifies the nonlinear-iteration limit
for the MIP solver. Possible values are
nonnegative integers and -1 (no limit). The
default is -1.

FUNCTION DEFINITIONS 107

LS_DPARAM MIP_ITRLIM_IPM

Environment,

This specifies the barrier-iteration limit for

Model the MIP solver. Possible values are
nonnegative integers and -1 (no limit). The
default is -1.
LS IPARAM_MIP PREHEU LEVEL Environment,| The heuristic level for the prerelax solver.
Model -1 is for solver decides, 0 is for nothing. 1
is for one-change, 2 is for one-change and
two-change, and 3 is for depth first
enumeration. Default is -1.
LS IPARAM MIP PREHEU VAR SEQ |Environment,|The sequence of the variable considered
Model by the prerelax heuristic. If 1, then

forward; if -1, then backward. Default is -
1.

LS IPARAM MIP_PREHEU TC ITERLIM

Environment,
Model

Iteration limit for the two change heuristic.
Default is 20000000.

LS_IPARAM_MIP PREHEU DFE_VSTLI
M

Environment,
Model

Limit for the variable visit in depth first
enumeration. Default is 200.

LS_IPARAM_MIP_CONCURRENT TOPO
PTMODE

Environment,
Model

This value specifies the concurrent
optimization mode with cold start.

See:

LS TPARAM SOLVER CONCURREN
T_OPTMODE for possible values. The
default is 0

LS_IPARAM_MIP_CONCURRENT STRA
TEGY

Environment,
Model

Environment, Model This parameter
controls the concurrent MIP strategy.
Possible values are:

LS MTMODE FREE = -1, Solver
decides

#LS STRATEGY USER =0, Use the
custom search strategy defined via a
callback function for each thread.

LS STRATEGY_ PRIMIP = 1, Defines
built-in priority lists for each thread.

#LS STRATEGY NODEMIP =2,
Reserved for future use

LS STRATEGY HEUMIP = 3, Defines
heuristic based strategies for each thread.
Default is -1.

LS IPARAM MIP_CONCURRENT REOP
TMODE

Environment,
Model

This value specifies the concurrent
optimization mode with warm start.

See:

LS IPARAM SOLVER CONCURREN
T OPTMODE for possible values. The
default is 0

108 CHAPTER 2

LS_IPARAM_MIP_NUM_THREADS

Environment,

This parameter specifies the number of

Model parallel threads
to use by the parallel MIP solver.
Possible values are positive
integers. The default is 1 implying that
the parallel solver is disabled.
LS IPARAM MIP PREHEU PRE LEVEL |Environment,|This values specifies the presolver level
Model for the prerelax MIP solver.
See: LS IPARAM LP PRELEVEL for
possible values. The default is 10.
LS_IPARAM_MIP_PREHEU_PRINT_LEV |Enyironment,|This value specifies the print level for the
EL Model prerelax MIP solver. Possible values are
nonnegative integers. The default is 0.
LS_IPARAM_MIP_BASCUTS_DONUM Environment, |Reserved for future use. Default is 3.

Model

FUNCTION DEFINITIONS 109

LS TPARAM_MIP USE PARTIALSOL LE [Environment,|Reserved for future use. Default is 2.

VEL Model

LS IPARAM_ MIP GENERAL MODE Environment, | This value specifies the general strategy in
Model solving MIPs. Bitmasks defining possible

values are:

LS MIP MODE NO TIME EVENTS:
Disable all time-driven events for
reproducibility of runs.

#
LS MIP MODE FAST FEASIBILITY:
Favor finding feasible solutions quickly
(reserved for future use).

#
LS_MIP_MODE_FAST OPTIMALITY:
Favor proving optimality quickly
(reserved for future use).

#
LS MIP MODE NO BRANCH CUTS:
Disable cut generation before branching.
LS MIP MODE NO LP BARRIER:
Do not use barrier solver when solving
relaxations.

The default is 0.

LS _IPARAM MIP_POLISH NUM_BRANC
H NEXT

Environment,
Model

This value specifies the number of
branches to polish in the next round.
Possible values are nonnegative integers.
The default is 4000.

LS_IPARAM_MIP_POLISH MAX BRANC
H_COUNT

Environment,
Model

This value specifies the maximum number
of branches to polish. Possible values are
nonnegative integers. The default is 2000.

LS_DPARAM_MIP_POLISH ALPHA TAR

Environment,

This value specifies the proportion

GET Model solutions in the pool to initiate a
polishing-task at the current node.
Possible values are:
In the range of [0.01,0.99].
The default is 0.6.
LS DPARAM_MIP_BRANCH_TOP_ VAL _ |Environment, |Reserved for future use.
DIFF WEIGHT Model The default is 1.0.
LS_IPARAM_MIP_PARA_SUB Environment, | This is a flag for whether to use MIP
Model parallelization on subproblems solved in

MIP preprocessing.
#0: donotuse
1: use (default)

110 CHAPTER 2

LS DPARAM_MIP_PARA RND ITRLMT

Environment,
Model

This value specifies the iteration limit of
each round in MIP parallelization, it is a
weighted combination of simplex and
barrier iterations.

Possible values are positive integers. The
default is 2.0.

LS_DPARAM_MIP _PARA_INIT NODE

Environment,
Model

This value specifies the number of initial
nodes for MIP parallelization.

Possible values are nonnegative integers
and -1 (solver decides).
The default is -1.

LS IPARAM MIP_PARA_ITR_MODE

Environment,
Model

This is a flag for iteration mode in MIP
parallelization.

Possible values are:

0: each thread terminates as soon as
it reaches the iteration limit.

1: each thread waits until all threads
reach their iteration limit (default).

LS_IPARAM_MIP_HEU DROP_OBJ

Environment,
Model

This specifies whether to use without OBJ
heu.

Possible values are:

0 : Not Use

#1: Use.

The default value is 0.

LS DPARAM_ MIP_ABSCUTTOL

Environment,
Model

This specifies the MIP absolute cut
tolerance.

Possible values are:

<0: Internally decided tolerance.
>=0: User defined tolerance.
The default value is -1.0.

LS IPARAM_MIP PERSPECTIVE REFOR
M

Environment,
Model

This specifies whether to use Perspective
Reformulation.

Possible values are:

0: Off.

#1:on.

The default value is 1.

FUNCTION DEFINITIONS 111

LS TPARAM_MIP_TREEREORDERMODE

Environment,
Model

This specifies the tree reordering mode.

Possible values are:

1: Use tree reordering only for
subproblems.

2: Use tree reordering for subproblems
and the main bnb loop only when LP
status is infeasible.

3: Not use tree reordering.

4: Use tree reordering based on

LS IPARAM MIP TREEREORDERLE
VEL.

The default value is 1.

LS _IPARAM_MIP_PARA_FP

Environment,
Model

This is a flag for whether to use
parallelization on the feasibility pump
heuristic.

Possible options are:
0: not use

#1: use

The default value is 1.

LS _IPARAM MIP_PARA FP MODE

Environment,
Model

This specifies the mode of parallel
feasibility pump.

Possible options are:

0: terminate when all threads finish
1: terminate as soon as the master
thread finishes

The default value is 0.

LS_IPARAM_MIP_TIMLIM

Environment,
Model

This is the time limit in seconds (integer)
for MIP solver. Range for possible values
is [-1, inf). The default value is -1, which
means no time limit is imposed. However,
the value of

LS DPARAM_SOLVER_TIMLMT will
be applied to each continuous sub problem
solve.

If the value of this parameter is greater
than 0, then thevalue of

LS DPARAM_SOLVER_TIMLMT will
be disregarded.

If the time limit,

LS DPARAM_MIP_TIMLIM, is reached
and a feasible integer solution was found,
it will be installed as the incumbent (best
known) solution.

112 CHAPTER 2

LS_IPARAM_MIP_AOPTTIMLIM

Environment,
Model

This is the time in seconds (integer)
beyond which the relative optimality
tolerance,

LS DPARAM_MIP PEROPTTOL, will
be applied. Range for possible values is [-
1,inf). The default value is 100 seconds.

LS IPARAM MIP LSOLTIMLIM

Environment,
Model

This value controls the time limit until
finding a new integer solution since the
last integer solution found. Range for
possible values is [-1,inf). The default
value is -1, which means no time limit is
imposed.

LS IPARAM MIP CUTTIMLIM

Environment,
Model

This controls the total time to be spent in
cut generation throughout the solution of a
MIP. Range for possible values is [0,inf).
The default value is -1, indicating that no
time limits will be imposed when
generating cuts.

LS IPARAM_ MIP HEUMINTIMLIM

Environment,
Model

Specifies the minimum time in seconds to
be spent in finding heuristic solutions to
the MIP model.

LS _IPARAM_MIP_HEULEVEL (below)
controls the heuristic used to find the
integer solution. Range for possible values
is [0,inf).

The default is 0.

LS _IPARAM_MIP_REP MODE

Environment,
Model

Reserved for future use.

LS_IPARAM_MIP_BNB_TRY BNP

Environment,
Model

Reserved for future use.

LS TPARAM_FIND SYMMETRY LEVEL

Environment,
Model

Specifies the symmetry finding level.

-1: solver decides; 0: Find orbit only
without MIP preprocessing; 1: Find orbit
only with MIP preprocessing;

2: Find generators without MIP
preprocessing;

3: Find generators with MIP
preprocessing;

4: Find the first generator without MIP
preprocessing;

5: Find the first generator with MIP
preprocessing;

The default is -1.

FUNCTION DEFINITIONS 113

LS_IPARAM_FIND SYMMETRY PRINT

LEVEL

Environment,
Model

This specifies print level for symmetry
finding. Bit settings are used to enable
various print levels.

0: nothing printed;

2: general information;

4: time information,;

8: orbit information;

#16:partition information;

The default is 0.

LS IPARAM MIP_KBEST USE_GOP

Environment,
Model

Specifies whether to use GOP solver in
MIP KBest. 0: do not use GOP; 1: use
GOP; Default is 0.

LS _IPARAM_MIP_SYMMETRY_ MODE

Environment,
Model

This specifies mip symmetry handling
methods.

-1: solver decides,

0: do not use symmetries,

1: adding symmetry breaking cuts,
2: orbital fixing.

The default is -1.

LS_IPARAM_MIP_SOLLIM

Environment,
Model

This is the integer solution limit for MIP
solver. Range for possible values is [-1,
INT_MAX). The default value is -1,
which means no solution limit is imposed.

LS _IPARAM_MIP_FP_PROJECTION

Environment,
Model

Controls the type of objective function of
LPs in projection step of the feasibility
pump heuristic. The possible values are 0
and 1. Both options are based on the idea
of the objective feasibility pump method,
but the details are different. The default
value is 0.

LS_IPARAM_MIP_SYMMETRY NONZ

Environment,
Model

Solver does not look for symmetries when
the totalnnonzeros in the presolved model
is more than this value and the parameter
LS IPARAM_MIP_SYMMETRY_ MOD
E is set to -1. Range for possible values is
[0,

INT MAX). The default value is 50000.

LS _IPARAM MIP_FIXINIT ITRLIM

Environment,
Model

This specifies the iteration limit of the LP
solved after fixing

integer variables to their initial values.
Range for

possible values is [-1, INT_MAX). The
default value is -1,

which means the solver decides on the
limit. Setting this limit

to zero (0) disables the feature.

114 CHAPTER 2

Global Optimization Parameters

LS_DPARAM_GOP_ABSOPTTOL

Environment,
Model

This is the GOP absolute optimality
tolerance. Solutions must beat the
incumbent by at least this absolute
amount to become the new, best
solution. Range for possible values is
[0,inf). The default value is 1e-6.

LS DPARAM GOP RELOPTTOL

Environment,
Model

This value is the GOP optimality
tolerance. Solutions must beat the
incumbent by at least this amount to
become the new best solution. Range
for possible values is [0,1].

The default value is le-5.
Remark: Deprecated name
LS DPARAM GOP OPTTOL

LS_DPARAM_GOP_BOXTOL

Environment,
Model

This value specifies the minimal width
of variable intervals in a box allowed to
branch. Range for possible values is
[0,1]. The default value is 1.0e-6.

LS DPARAM_GOP_WIDTOL

Environment,
Model

This value specifies the maximal width
of variable intervals for a box to be
considered as an incumbent box
containing an incumbent solution. It is
used when

LS TIPARAM GOP MAXWIDMD is
set at 1. Range for possible values is
[0,1]. The default value is 1e-4.

LS DPARAM_ GOP_DELTATOL

Environment,
Model

This value is the delta tolerance in the
GOP convexification. It is a measure of
how closely the additional constraints
added as part of convexification should
be satisfied. Range for possible values is
[0,1]. The default value is 1e-7.

LS DPARAM_GOP BNDLIM

Environment,
Model

This value specifies the maximum
magnitude of variable bounds used in
the GOP convexification. Any lower
bound smaller than the negative of this
value will be treated as the negative of
this value. Any upper bound greater
than this value will be treated as this
value. This helps the global solver focus
on more productive domains. Range for
possible values is [0,inf). The default
value is lel0.

FUNCTION DEFINITIONS 115

LS_IPARAM_GOP_TIMLIM

Environment,
Model

This is the integer time limit in seconds
for GOP branch-and-bound. Range for
possible values is [-1, INT_MAX). The
default value is -1, which means no time
limit is imposed.

LS_IPARAM_GOP_OPTCHKMD

Environment,
Model

This specifies the criterion used to
certify the global optimality. Possible
values are:

0: the absolute deviation of objective
lower and upper bounds should be
smaller than

LS DPARAM_GOP RELOPTTOL at
the global optimum.

1: the relative deviation of objective
lower and upper bounds should be
smaller than

LS DPARAM GOP RELOPTTOL at
the global optimum.

2: which means either absolute or
relative tolerance is satisfied at global
optimum (default).

LS IPARAM_GOP MAXWIDMD

Environment,
Model

This is the maximum width flag for the
global solution. The GOP branch-and-
bound may continue contracting a box
with an incumbent solution until its
maximum width is smaller than

LS DPARAM_GOP_WIDTOL.

The possible value are:

0: the maximum width criterion is
suppressed (default).

1: the maximum width criterion is
performed.

116 CHAPTER 2

LS_IPARAM_GOP_BRANCHMD

Environment,

This specifies how the branching

Model variable is selected in GOP. The branch
variable is selected as the one that holds
the largest magnitude in the measure.
Possible values are:

#0: Absolute width of interval.
#1: Locally relative width.
#2: Globally relative width.
#3: Globally relative distance from
the convex minimum to the bounds.
#4: Absolute violation between the
function and its convex envelope at the
convex minimum.
#5: Relative violation between the
function and its convex envelope at the
convex minimum.
The default value is 5.

LS TPARAM_ GOP_PRELEVEL Environment, | This controls the amount and type of

Model GOP pre-solving. Possible options are:
Initial model reduction +1
Initial local optimization +2
Initial linear constraint
propagation +4
Recursive linear constraint
propagation +8
Recursive nonlinear constraint
propagation +16
Search for good near feasible
solutions. +32
Check for unboundedness +64
Alter derivative methods +128
MIP pre-optimizations +256
NLP pre-optimizations +512
The default value is 1022 =
2+4+8+16+32+64+128+256+512

LS IPARAM_ GOP_POSTLEVEL Environment, | This controls the amount and type of

Model GOP post-solving. Possible options are:

Apply LSgetBestBound|() +2
Reoptimize variable bounds +4

Reoptimize variable bounds on
selected node only +8

The default value is: 14 = 2+4+8

FUNCTION DEFINITIONS 117

LS_IPARAM_GOP_BBSRCHMD

Environment,
Model

This specifies the node selection rule for
choosing between all active nodes in the
GOP branch-and-bound tree when
solving global optimization programs.
Possible selections are:

#0: Depth first search.

#1: Choose node with worst bound.
The default value is 1.

LS_IPARAM_GOP_DECOMPPTMD

Environment,
Model

This specifies the decomposition point
selection rule. In the branch step of
GOP branch-and-bound, a branch point
M is selected to decompose the selected
variable interval [Lb, Ub] into two sub-
intervals, [Lb, M] and [M, Ub]. Possible
options are:

#0: mid-point.

#1: local minimum/convex minimum.
The default value is 1.

LS TPARAM GOP_ALGREFORMMD

Environment,
Model

This controls the algebraic
reformulation rule for a GOP. The
algebraic reformulation and analysis is
very crucial in building a tight convex
envelope to enclose the nonlinear/non-
convex functions. A lower degree of
overestimation on convex envelopes
helps increase the convergence rate to
the global optimum. Possible options
are:

Rearrange and collect terms +2
Expand all parentheses +4
Retain nonlinear functions +8
Selectively expand parentheses +16

The default value is: 18 =2+16

LS TPARAM_GOP_PRINTLEVEL

Environment,
Model

This specifies the amount of print to do
for the global solver. Possible selections
are:

#0: Do not print anything.
1: Print information for GOP branch-
and-bound iterations (default).

LS TPARAM_GOP_CORELEVEL

Environment,
Model

Reserved for future use. The default is
30.

118 CHAPTER 2

LS_IPARAM_GOP_RELBRNDMD

Environment,
Model

This controls the reliable rounding rule
in the GOP branch-and-bound. The
global solver applies many sub-
optimizations to estimate the lower and
upper bounds on the global optimum. A
rounding error or numerical instability
could unintentionally cut off a good
solution. A variety of reliable
approaches are available to improve the
precision. Possible values are:

No rounding 0

Use smaller optimality/feasibility
tolerances and appropriate pre-solving
options +2
Apply interval arithmetic to re-verify
the solution feasibility +4

The default value is 0.

LS_IPARAM_GOP_BNDLIM_MODE

Environment,
Model

This value is associated with the
parameter

LS DPARAM_GOP_BNDLIM and
determines the mode how the specified
bound limit will be used.

Possible values are:

0:Do not use the bound limit on the
variables.

1: Use the bound limit right at the
beginning of global optimization.

2: Use the bound limit after the initial
local optimization, if selected. This
properly sets the bound limit for each
variable to include the initial solution, if
any, within the range.

The default is 2.

LS IPARAM _GOP_OPT MODE

Environment,
Model

This specifies the mode for global
search. Possible values are

0: global search for a feasible solution
(thus a feasibility certificate).

1: global search for an optimal
solution (default).

2: global search for an unboundedness
certificate.

The default value is 1.

FUNCTION DEFINITIONS 119

LS_IPARAM_GOP_BRANCH_LIMIT

Environment,
Model

This is the integer limit on the total
number of branches to be created during
branch-and-bound in GOP tree. Range
for possible values is [-1,INT MAX].
The default is INT MAX
(2147483647). If the branch limit,

LS IPARAM_GOP_BRANCH_LIMIT,
is reached and a feasible solution was
found, it will be installed as the
incumbent (best known) solution.

120 CHAPTER 2

LS_IPARAM_GOP_CORELEVEL

IEnvironment,
Model

This controls the strategy of GOP
branch-and-bound procedure.
Possible options are:

LP convex relaxation +2

Honor NLP solutions +4

Box Branching +8

Honor IPM solutions +16

The default is 30.

LS IPARAM_GOP_HEU MODE

Environment,
Model

This specifies the heuristic used in the
global solver to find good solution.
Possible values are:

0: No heuristic is used.

1: A simple heuristic is used.
Typically, this will put more efforts in
searching for good solutions, and less in
bound tightening. The default is 0.

LS_IPARAM_GOP_SUBOUT MODE

IEnvironment,
Model

This is a flag indicating whether fixed
variables are substituted out of the
instruction list used in the global solver.
Possible values are 0 (no), 1 (yes). The
default is 1.

LS_IPARAM_GOP_USE NLPSOLVE

Environment,
Model

This is reserved for internal use only.

The default value is 1.

LS TPARAM_GOP_LSOLBRANLIM

Environment,
Model

This value controls the branch limit until
finding a new nonlinear solution since
the last nonlinear solution is found.
Range for possible values is [-1,inf). The
default value is —1, which means no
branch limit is imposed.

LS IPARAM_GOP_LPSOPT

IEnvironment,
IModel

This is reserved for internal use only.

The default is 2.

LS DPARAM GOP _TIMLIM

IEnvironment,
Model

This is the time limit in seconds for GOP
branch-and-bound. Range for possible
values is [-1.0,inf). The default value is
-1.0, which means no time limit is
imposed.

FUNCTION DEFINITIONS 121

LS DPARAM_GOP_BRANCH_LIMIT

IEnvironment,
Model

This is the limit on the total number of
branches (stored as a double) to be
created during branch-and-bound in
GOP tree. Range for possible values

is [-1, +inf). The default value is —1,
which means no limit is imposed. If the
branch limit,

LS DPARAM_GOP BRANCH_LIMIT
, is reached and a feasible solution was
found, it will be installed as the
incumbent (best known) solution.

LS IPARAM_GOP_QUADMD

IEnvironment,
Model

This is a flag indicating if GOP exploits
quadratic feature.

Possible values are:

-1 Solver decides (default), 0 (no) and 1

(yes).

LS IPARAM_GOP_LIM_MODE

IEnvironment,
Model

This is a flag indicating which heuristic
limit on sub-solver in GOP is based.
Possible values are:

0: No limit.

1: time based limit.

2: iteration based limit.

3: both time and iteration based limit.

The default value is 1 (time based limit).

LS DPARAM_GOP_ITRLIM

Environment,
Model

This is the total iteration limit (including
simplex, barrier and nonlinear iteration)
summed over branches in GOP. Range
for possible values is [-1, inf). The
default value is -1, which means no
iteration limit is imposed. If this limit is
reached, GOP will stop.

LS DPARAM_GOP_ITRLIM_SIM

IEnvironment,
IModel

This is the total simplex iteration limit
summed over all branches in GOP.
Range for possible values is [-1, inf).
The default value is -1, which means no
iteration limit is imposed. If this limit is
reached, GOP will stop.

LS DPARAM_GOP_ITRLIM IPM

IEnvironment,
Model

This is the total barrier iteration limit
summed over all branches in GOP.
Range for possible values is [-1, inf).
The default value is -1, which means no
iteration limit is imposed. If this limit is

reached, GOP will stop.

122 CHAPTER 2

LS DPARAM_GOP_ITRLIM_NLP

IEnvironment,

This is the total nonlinear iteration limit

Model summed over all branches in GOP.
Range for possible values is [-1, inf).
The default value is -1, which means no
iteration limit is imposed. If this limit is
reached, GOP will stop.
LS DPARAM GOP PEROPTTOL Environment, [Reserved for future use.
Model
LS DPARAM GOP AOPTTIMLIM Environment, [Reserved for future use.
Model
LS IPARAM GOP_LINEARZ Environment, {This is a flag indicating if GOP exploits
Model lineariable model.Possible values are 0
(no) and 1 (yes).The default value is 1.
LS IPARAM GOP NUM THREADS Environment, [This value specifies the number of
Model parallel threads to be used when solving
a nonlinear model with the global
optimization solver. Possible values are
positive integers. The default is 1.
LS DPARAM_GOP _FLTTOL [Environment, (Option GOP floating-point tolerance.
Model The default is 1e-010.
LS IPARAM_ GOP_MULTILINEAR Environment, {This is a flag indicating if GOP exploits
Model multi linear feature. Possible values are:
0 (no) and 1 (yes). The defaultis 1.
LS DPARAM_GOP OBJ THRESHOLD Environment, {This value specifies the threshold of
Model objective value in the GOP solver. For
min problem, if current incurmbent
solution is less than the threshold GOP
solver will stop. Range for possible
values is (-inf, inf).
The default value is -inf.
LS IPARAM_GOP QUAD METHOD [Environment, [This specifies if the GOP solver should
Model solve the model as a QP when

applicable. Possible values are:
-1: (solver decided),

0: (general GOP solver) and
1: (specified QP solver).

The default is -1.

FUNCTION DEFINITIONS 123

LS DPARAM_GOP _QUAD METHOD IEnvironment, [Reserved for future use.
Model
LS TPARAM_GOP_SOLLIM Environment,
Model
LS TPARAM_GOP_CMINLP [Environment, (This is a flag indicate if GOP will
Model lexploits convex MINLP model. Possible
values are 0 (no) and 1 (yes). The default
value is 0.

124 CHAPTER 2

License Information Parameters

LS_IPARAM_LIC_PLATFORM

Environment,
Model

This returns the platform identifier for a
given license key. This value cannot be
set.

LS _IPARAM_LIC_CONSTRAINTS

Environment,
Model

This returns an integer containing the
number of constraints allowed for a
single model. It returns -1 if the number
is unlimited. This value cannot be set.

LS _IPARAM _LIC_VARIABLES

Environment,
Model

This returns an integer containing the
maximum number of variables allowed
in a single model. It returns -1 if the
number is unlimited. This value cannot
be set.

LS IPARAM LIC INTEGERS

Environment,
Model

This returns an integer containing the
maximum number of integer variables
allowed in a single model. It returns -1
if the number is unlimited. This value
cannot be set.

LS TPARAM_LIC NONLINEARVARS

Environment,
Model

This returns an integer containing the
maximum number of nonlinear
variables allowed in a single model. It
returns -1 if the number is unlimited.
This value cannot be set.

LS IPARAM LIC GOP_INTEGERS

Environment,
Model

This returns an integer containing the
maximum number of integer variables
allowed in a global optimization model.
It returns -1 if the number is unlimited.
This value cannot be set.

LS TPARAM_LIC GOP_NONLINEARVARS

Environment,
Model

This returns an integer containing the
maximum number of nonlinear
variables allowed in a global
optimization model. It returns -1 if the
number is unlimited. This value cannot
be set.

LS IPARAM LIC DAYSTOEXP

Environment,
Model

This returns an integer containing the
number of days until the license expires.
It returns -2 if there is no expiration
date. This value cannot be set.

LS TPARAM_LIC DAYSTOTRIALEXP

Environment,
Model

This returns an integer containing the
number of days until the trial features of
the license expires. It returns -2 if there
is no trial period. This value cannot be
set.

FUNCTION DEFINITIONS 125

LS_IPARAM_LIC_BARRIER

Environment,
Model

This returns an integer containing a 1 if
the barrier solver option is available and
0 if it is not. The barrier solver, also
known as the “interior point” solver,
tends to be faster on some large models.
A license for the barrier solver may be
obtained through LINDO Systems. This
value cannot be set.

LS TPARAM_LIC NONLINEAR

Environment,
Model

This returns an integer containing a 1 if
the nonlinear solver option is available
and 0 if it is not. A license for the
nonlinear solver may be obtained
through LINDO Systems. This value
cannot be set.

LS_IPARAM_LIC_GLOBAL

Environment,
Model

This returns an integer containing a 1 if
the global solver option is available and
0 if it is not. A license for the global
solver may be obtained through LINDO
Systems. This value cannot be set.

LS IPARAM_LIC EDUCATIONAL

Environment,
Model

This returns an integer containing a 1 or
a 0. 1 means that the current license is
for educational use only. This value
cannot be set.

LS _IPARAM LIC NUMUSERS

Environment,
Model

This returns an integer specifying the
maximum number of concurrent users
allowed to use the current license. This
value cannot be set.

LS TPARAM_LIC RUNTIME

Environment,
Model

This returns an integer containing a 1 or
a 0. 1 meaning the license is for runtime
use only. This value cannot be set.

LS_IPARAM_LIC_CONIC

Environment,
Model

This returns an integer containing a 1 if
the conic solver option is available and
0 if it is not. A license for the conic
solver may be obtained through LINDO
Systems. This value cannot be set.

LS_IPARAM_LIC_MIP

Environment,
Model

This returns an integer containing a 1 if
the mixed-integer solver option is
available and 0 if it is not. A license for
the mixed-integer solver may be
obtained through LINDO Systems. This
value cannot be set.

126 CHAPTER 2

LS_IPARAM_LIC_SP

Environment,
Model

This returns an integer containing a 1 if
the stochastic-programming solver
option is available and 0 if it is not. A
license for the stochastic-programming
solver may be obtained through LINDO
Systems. This value cannot be set.

Model Analysis Paramete

rs

LS_IPARAM _IIS METHOD

Environment,
Model

This specifies the method to use in
analyzing infeasible models to locate an
1IS. Possible values are:

#LS_IIS_ DEFAULT =0,
#LS 1IS_DEL FILTER =1,
#LS 1IS_ADD FILTER =2,
#LS 1IS_GBS_FILTER =3,
#LS 1IS_DFBS_FILTER =4,
#LS IIS_FSC_FILTER =5,
#LS IIS_ELS_FILTER =6

The defaultis LS IIS DEFAULT

LS_IPARAM IIS_USE_EFILTER

Environment,
Model

This flag controls whether the Elastic
Filter should be enabled as the
supplementary filter in analyzing
infeasible models when the Elastic
Filter is not the primary method.
Possible values are 0 (no), 1 (yes) and -
1 (the solver decides). The default is 0.

LS IPARAM IIS_USE_GOP

Environment,
Model

This flag controls whether the global
optimizer should be enabled in
analyzing infeasible NLP models.
Possible values are 0 (no), 1 (yes) and -
1 (the solver decides). The default is 0.

FUNCTION DEFINITIONS 127

LS_IPARAM IIS_ANALYZE LEVEL

Environment,
Model

This controls the level of analysis when
locating an IIS to debug an infeasible
model. Bit mask values are:

#LS NECESSARY ROWS= 1, Search
for necessary rows,

#LS NECESSARY COLS =2, Search
for necessary columns,

LS SUFFICIENT ROWS=4,
Search for sufficient rows,

#LS SUFFICIENT COLS = 8, Search
for sufficient columns ,

#LS IIS INTS =16, Consider
integrality restrictions as the potential
cause of infeasibilities and include it in
the analysis. If this option is disabled,
all integrality restrictions will be
considered permanent in the model and
will not be relaxes.

LS IISRANK LTF =32, Compute
the underlying LTF matrix and use this
as the basis of a ranking score to guide
the IIS run. E.g. one could start from the
bottom of the triangulated matrix and
move up.

#LS_IISRANK_DECOMP = 64, If the
underlying matrix is totally
decomposable, rank blocks w.r.t their
sizes and debug the smallest
independent infeasible block,

LS IISRANK NNZ =128, Use the
nonzero structure of the underlying
matrix to compute a ranking score to
guide the IIS run. E.g. remove rows
with more nonzero first etc...
#LS_IISLIMIT MIS = 256, Treat
iter/time limits as intractability.

LS TPARAM IUS ANALYZE LEVEL

Environment,
Model

This controls the level of analysis when
locating an IUS to debug an unbounded
LP. Bit mask values are:

#LS NECESSARY_COLS =2,
#LS SUFFICIENT COLS =3&.

The default is 2.

128 CHAPTER 2

LS_IPARAM_IIS_REOPT

Environment,
Model

This specifies which optimization
method to use when starting from a
given basis. Possible values are:

#LS METHOD FREE
#LS METHOD PSIMPLEX
#LS METHOD DSIMPLEX
#LS METHOD BARRIER
#LS METHOD NLP

The default is LS METHOD FREE.

LS_IPARAM _IIS_ TOPOPT

Environment,
Model

This specifies which optimization
method to use when there is no previous
basis. Possible values are:

#LS_METHOD FREE
#LS_METHOD PSIMPLEX
#LS_METHOD DSIMPLEX
#LS_METHOD BARRIER
#LS_METHOD NLP

The default is LS METHOD_ FREE.

LS _IPARAM IIS_USE_SFILTER

Environment,
Model

This is a flag indicating is sensitivity
filter will be used during IIS search.
Possible values are 0 (no), 1 (yes) and -
1 (the solver decides). The default is 1.

LS_IPARAM IIS_PRINT LEVEL

Environment,
Model

This specifies the amount of print to do
during IIS search. Possible values are:

#0: Do not print anything (default).
#>0: Print more information.

Default is 2.

LS _IPARAM IIS_INFEAS_NORM

Environment,
Model

This specifies the norm to measure
infeasibilities in IIS search. Possible
values are:

#LS IIS NORM_FREE : Solver
decides

#LS _IIS NORM_ONE: Use L-1 norm.
#LS_IIS NORM_INFINITY: Use L-
infinity norm.

The default is 0.

LS IPARAM IIS ITER LIMIT

Environment,
Model

This is the iteration limit for IIS search.
The default value is -1, which means no
iteration limit is imposed.

LS IPARAM IIS TIME LIMIT

Environment,
Model

This is the time limit for IIS search. The
default value is -1, which means no time
limit is imposed.

FUNCTION DEFINITIONS 129

LS_IPARAM_IIS_ NUM_THREADS

Environment,
Model

This value specifies the number of
parallel threads to be used when using
the IIS finder. Possible values are
positive integers. Reserved for future
use.

LS_DPARAM IIS_ITER_LIMIT

Environment,
Model

This is the iteration limit (double
precision) for IIS search. The default
value is -1.0, which means no iteration
limit is imposed.

LS_IPARAM _IIS GETMODE

Environment,
Model

This flag controls whether LSgetIIS()
function should retrieve variable bounds
in the IIS or the integer restrictions. This
parameter is effective only for infeasible
integer models. For continuous models,
it will be ignored.

Possible values are:

0 (variable bound), 1 (integer
restrictions).

The default is 0.

Stochastic Parameters

LS IPARAM STOC NSAMPLE SPAR

Environment,
Model

Common sample size per stochastic
parameter. Possible values are positive
integers or -1. Default is -1, which
implies 'not specified'.

LS TPARAM STOC NSAMPLE STAGE

Environment,
Model

Common sample size per stage. Possible
values are positive integers or -1.
Default is -1, which implies not
specified'.

LS_IPARAM_STOC_RG_SEED

Environment,
Model

Seed to initialize the random number
generator. Possible values are positive
integers. The default is 1031.

LS IPARAM_STOC METHOD

Environment,
Model

Stochastic optimization method to solve
the model. Possible values are:

#LS METHOD STOC FREE
#LS METHOD _STOC _DETEQ
#LS METHOD_ STOC _NBD

#LS METHOD _STOC_ALD
The default is

LS METHOD STOC FREE.

130 CHAPTER 2

LS_IPARAM_STOC_REOPT

Environment,
Model

Reoptimization method to solve the
node-models. Possible values are:

#LS_METHOD_FREE (default)
#LS_METHOD PSIMPLEX

#LS METHOD DSIMPLEX

#LS METHOD BARRIER

#LS METHOD NLP

LS _IPARAM_STOC_TOPOPT

Environment,
Model

Optimization method to solve the root
problem. Possible values are:

#LS METHOD_FREE (default)
#LS METHOD PSIMPLEX
#LS_METHOD DSIMPLEX
#LS_METHOD BARRIER
#LS_METHOD NLP
#LS_METHOD MULTIS

#LS METHOD GOP

LS_IPARAM_STOC_ITER_LIM

Environment,
Model

Iteration limit for stochastic solver.
Possible values are positive integers or
(-1) no limit. Default is -1.

LS_IPARAM_STOC_PRINT LEVEL

Environment,
Model

Print level to display progress
information during optimization.
Possible values are nonnegative
integers. Default is 2.

LS _IPARAM STOC DETEQ TYPE

Environment,
Model

Type of deterministic equivalent to be
used by the solver. Possible values are:

LS DETEQ FREE (-1)

LS DETEQ IMPLICIT (0)

#LS DETEQ EXPLICIT (1)

#LS DETEQ CHANCE (2)

LS DETEQ IMPLICIT is valid for
linear and integer models only.

Default value is LS DETEQ_FREE(-1).

LS IPARAM STOC CALC EVPI

Environment,
Model

Flag to enable/disable calculation of
lower bounds on EVPI. Possible values
are (0): disable, (1) enable. Default is 1.

LS IPARAM_STOC DEBUG MASK

Environment,
Model

Specifies the bitmask to export
stochastic model data for advanced
debugging. Possible values are 0, 1, 2, 4
and 8. Default is 0.

LS IPARAM STOC_SAMP CONT ONLY

Environment,
Model

Flag to restrict sampling to continuous
stochastic parameters only or not.
Possible values are (0): disable, (1)
enable. Default is 0.

FUNCTION DEFINITIONS 131

LS_IPARAM_STOC_BUCKET_SIZE

Environment,
Model

Bucket size in Benders decomposition.
Possible values are positive integers or
(-1) for solver decides. Default is -1.

LS_IPARAM_STOC_MAX_NUMSCENS

Environment,
Model

Maximum number of scenarios allowed
when solving an SP. Possible values are
positive integers. Default is 40,000.

If the model contains stochastic
parameters from distributions with
infinite populations, the solver will
return error:

LSERR STOC SCENARIO LIMIT
unless a sampling scheme is specified.

Sampling shemes can be specified either
parametrically (using

LS TIPARAM STOC NSAMPLE STA
GE or

LS IPARAM STOC NSAMPLE SPA
R) or by calling LSloadSampleSizes()
function.

LS IPARAM STOC_SHARE BEGSTAGE

Environment,
Model

Stage beyond which node-models share
the same model structure. Possible
values are positive integers less than or
equal to number of stages in the model
or (-1) for solver decides. Default is -1.

LS TPARAM_STOC NODELP PRELEVEL

Environment,
Model

Presolve level solving node-models.
Possible values are bitmasks defined in
LS IPARAM _LP PRELEVEL.

Default is 0.

LS DPARAM _STOC_TIME_LIM

Environment,
Model

Time limit for stochastic solver.
Possible values are nonnegative real
numbers or -1.0 for solver decides.
Default is -1.0.

LS DPARAM_STOC RELOPTTOL

Environment,
Model

Relative optimality tolerance (w.r.t
lower and upper bounds on the true
objective) to stop the solver. Possible
values are reals in (0,1) interval. Default
is le-7.

LS DPARAM STOC ABSOPTTOL

Environment,
Model

Absolute optimality tolerance (w.r.t
lower and upper bounds on the true
objective) to stop the solver. . Possible
values are reals in (0,1) interval. Default
is le-7.

132 CHAPTER 2

LS_IPARAM_STOC_VARCONTROL _METH
oD

Environment,
Model

Sampling method for variance
reduction. Possible values are:
#LS MONTECARLO (0)

LS LATINSQUARE (1)

LS ANTITHETIC (2)

LS LATINSQUARE +

LS ANTITHETIC (3)

LS MONTECARLO implies the use of
standard sampling with no variance
reduction. LS ANTITHETIC implies
the use of antithetic pairs of uniform
variates to control variance.

LS LATINSQUARE implies the use of
basic Latin-hypercude sampling which
is known to be efficient for most
distributions. Default is

LS LATINSQUARE.

LS TPARAM_STOC CORRELATION TYPE

Environment,
Model

Correlation type associated with the
correlation matrix. Possible values are:

#LS_CORR_TARGET (-1)

#LS _CORR_PEARSON (0)

#LS CORR_KENDALL (1)
#LS_CORR_SPEARMAN (2)

Default is LS CORR PEARSON.

LS_IPARAM_STOC_WSBAS

Environment,
Model

Warm start basis for wait-see model .
Possible values are:

#LS WSBAS FREE =-1 Solver
decides (Default)

#LS WSBAS NONE =0, No warm-
starts

#LS WSBAS AVRG =1, Use the
optimal basis from Average (Expected
Value) model

#LS WSBAS LAST =2, Use the last
valid basis, typically the optimal basis
from the last scenario solved.

LS TPARAM STOC ALD OUTER ITER LI

Environment,

Outer loop iteration limit for ALD.

M Model Possible values are positive integers.
Default is 200.

LS IPARAM STOC ALD INNER ITER LI |Environment,|Inner loop iteration limit for ALD.

M Model Possible values are positive integers.

Default is 1000.

LS_DPARAM_STOC_ALD DUAL FEASTO
L

Environment,
Model

Dual feasibility tolerance for ALD.
Range for possible values is [1e-16,inf).
The default value is 0.0001.

FUNCTION DEFINITIONS 133

LS_DPARAM _STOC_ALD PRIMAL FEAST

Environment,

Primal feasibility tolerance for ALD.

OL Model Range for possible values is [1e-16,inf).
The default value is 0.0001.

LS DPARAM STOC ALD DUAL STEPLE [Environment,|Dual step length for ALD. Range for

N Model possible values is [1e-16,inf). The

default value is 0.9.

LS DPARAM STOC ALD PRIMAL STEPL
EN

Environment,
Model

Primal step length for ALD. Range for
possible values is [1e-16,inf). The
default value is 0.5.

LS IPARAM _CORE_ORDER _BY STAGE

Environment,
Model

Flag to specify whether to order non-
temporal models or not. Default is 1.

LS SPARAM _STOC_FMT NODE NAME

Environment,
Model

Node name format. Reserved for
internal use.

LS SPARAM _STOC _FMT SCENARIO NA
ME

Environment,
Model

Scenario name format. Reserved for
internal use.

LS _IPARAM _STOC_MAP MPI2LP

Environment,
Model

Flag to specify whether stochastic
parameters in MPI will be mapped as
LP matrix elements. Default is 0. It is
required to set this flag to 1 to use
Nested-Benders Method to solve linear
SPs.

Remark: This parameter is relevant only
when the underlying SP model is
formulated using the instruction-list
interface (MPI). When the parameter is
set to 1, the solver converts the model
into matrix format. For this conversion
to be successful, it is required that
expressions that involve stochastic
parameters are simple univariate linear
functions like (alpha*r+beta) where
alpha and beta are scalars and r is the
random parameter. See 'Using Nested-
Benders Method' section in Chapter 8.

LS IPARAM STOC AUTOAGGR

Environment,
Model

Flag to enable or disable
autoaggregation of stages. Default is 1.

134 CHAPTER 2

LS_IPARAM_STOC_BENCHMARK_SCEN

Environment,
Model

Benchmark scenario to compare EVPI
and EVMU against. Possible values are:

#LS SCEN ROOT (-1) Root
scenario, usually corresponds to the first
scenario.

#LS SCEN_AVRG (-2) Average
(expected value) scenario.

LS SCEN_MEDIAN (-3) Median
scenario

#LS SCEN _USER (-4) User specified
scenario

LS SCEN NONE (-5) No
benchmark scenarios.

Default is LS_SCEN_AVRG.

LS DPARAM_STOC_INFBND

Environment,
Model

Value to truncate infinite bounds at non-
leaf nodes. Range for possible values is
(0,inf). Default is 1e+9.

LS_IPARAM_STOC_ADD_MPI

Environment,
Model

Flag to use add-instructions mode when
building deteq. Default is 0.

LS_IPARAM_STOC_ELIM_FXVAR

Environment,
Model

Flag to enable elimination of fixed
variables from deteq MPI. Default is 1.

LS_DPARAM _STOC SBD_OBJCUTVAL

Environment,
Model

RHS value of objective cut in SBD
master problem. . Range for possible
values is (-inf,inf). Default is -1e+30. If
this value is set to a finite value, then an
objective cut with specified RHS will be
added to the master problem.

LS _IPARAM_STOC_SBD OBJCUTFLAG

Environment,
Model

Flag to enable objective cut in SBD
master problem. Default is 1.

LS TPARAM_STOC SBD NUMCANDID

Environment,
Model

Maximum number of candidate
solutions to generate at SBD root .
Possible values are nonnegative integers
or -1 (solver decides). The default is -1.

LS DPARAM STOC BIGM

Environment,
Model

Big-M value for linearization and
penalty functions. Range for possible
values is (0,inf). Default is 1e+008.

FUNCTION DEFINITIONS 135

LS_IPARAM_STOC_NAMEDATA_LEVEL

Environment,
Model

This value controls the creation and
loading of name-date in DETEQ and
SCENARIO models when working with
an SP model. Possible values are
positive integers. Default is 0, which
implies no name data will be generated
and the DETEQ and SCENARIO
models will have generic variable and
constraint names.

LS_IPARAM _STOC_SBD MAXCUTS

Environment,
Model

Max cuts to generate for master
problem. Possible values are non-
negative integers and -1. Default is -1,
which imples 'solver decides'.

LS_IPARAM_STOC_DEQOPT

Environment,
Model

This specifies the method to use when
solving the deterministic equivalent.
Possible values are:

#LS METHOD FREE (0) Solver
decides.

#LS METHOD_ SBD (10) Use simple
Benders Decomposition.

The default is LS METHOD FREE (0)

LS_IPARAM_STOC DS_SUBFORM

Environment,
Model

This parameter specifies the type of
subproblem formulation to be used in
heuristic search.

Possible values are nonnegative integers
and -1.

0 - Perform heuristic search in the
original solution space.

1 - Perform heuristic search in the
space of discrete variables coupled with
optimizations in the linear space.

The default is -1 (solver decides).

LS DPARAM_STOC_REL PSTEPTOL

Environment,
Model

This value specifies the primal-step
tolerance in decomposition based
algorithms. Possible values are in the
range of (0,1). The default is le-8.

LS DPARAM _STOC_REL DSTEPTOL

Environment,
Model

This value specifies the dual-step
tolerance in decomposition based
algorithms. Possible values are in the
range of (0,1). The default is le-7.

136 CHAPTER 2

LS_IPARAM_STOC_NUM_THREADS

Environment,
Model

This value specifies the number of
parallel threads to be used when solving
a stochastic programming model.
Possible values are positive integers.The
default is 0.

LS_IPARAM_STOC_DETEQ NBLOCKS

Environment,
Model

This value specifies the number of
implict blocks when exporting a
DETEQ model. Reserved for internal
use. Default is -1.

Sampling Parameters

LS _IPARAM_SAMP NCM_ITERLIM

Environment

Iteration limit for NCM method.
Possible values are integers in [-1,inf).
The default is 100.

LS DPARAM_SAMP_NCM_OPTTOL

Environment

Optimality tolerance for NCM method.
Possible values are (0,1).

Default is le-7.

LS IPARAM_SAMP_NUM_THREADS

Environment

This value specifies the number of
parallel threads to be used when
sampling. Possible values are positive
integers. The default is 0.

LS IPARAM_SAMP_RG BUFFER_SIZE

Environment

This value specifies the buffer size for
random number generators in running in
parallel mode. Possible values are
nonnegative integers. The default is 0
(solver decides).

LS_IPARAM_SAMP_NCM_METHOD

Environment

Bitmask to enable available methods for
solving the nearest correlation matrix
(NCM) subproblem.

Possible values are :

Solver decides = 0

#LS NCM _STD =1

#LS NCM_GA =2

#LS NCM_ALTP=4

#LS NCM_L2NORM _CONE =38

#LS NCM_L2NORM NLP =16
Default is 5.

LS_DPARAM_SAMP_NCM_CUTOBJ

Environment

SP Objective cutoff (target) value to
stop the nearest correlation matrix
(NCM) subproblem.

Possible values are (-inf,inf). Default is
-1e+30 (for minimization type
problems).

FUNCTION DEFINITIONS 137

LS_IPARAM_SAMP_NCM_DSTORAGE

Environment

Level for using partial point in solver.
Possible values are nonnegative
integers.

Default is -1.

LS_DPARAM_SAMP_CDSINC

Environment

SP Correlation matrix diagonal shift
increment. Possible values are (-inf,inf).
Default is 1e-006.

LS _IPARAM_SAMP SCALE

Environment

SP Flag to enable scaling of raw sample
data. Possible values are 0: don't scale,
1: scale. The default is 0.

BNP Parameters

LS DPARAM BNP_INFBND

Environment,
Model

This parameter specifies the limited
bound for those unbounded continuous
variables.

Possible values are in (0, +Inf).

The default is 100000.

LS_IPARAM BNP LEVEL

Environment,
Model

This parameter specifies the computing
level of BNP solver.

Possible values are integers in [0,4].

0 - A pure Lagrangean Relaxation
procedure.

1 - Best-First search branch and price
procedure.

2 - Worst-First search branch and
price procedure.

3 - Depth-First search branch and
price procedure.

4 - Breadth-First search branch and
price procedure.

The default is 1.

LS_IPARAM_BNP_PRINT LEVEL

Environment,
Model

This parameter speciefies the print level
for BNP solver.

Possible values are nonnegative
integers. The default is 2.

LS_DPARAM_BNP_BOX_SIZE

Environment,
Model

This parameter specifies the box size for
the Box-Step method used in BNP
solver.

Possible values are nonnegative real
numbers. The default is 0.0(no box).

LS _IPARAM BNP NUM THREADS

Environment,
Model

This parameter speciefies the number of
parallel threads used in BNP solver.
Possible values are positive integers.
The default is 1.

138 CHAPTER 2

LS_DPARAM_BNP_SUB_ITRLMT

Environment,
Model

This parameter specifies iteration limit
when solving subproblems.

Possible values are -1 and nonnegative
real numbers. The default is -1.0.

LS_IPARAM _BNP_FIND BLK

Environment,
Model

This parameter specifies the method for
finding block structure in BNP solver.
Possible values are 1, 2, and 3.

1 - Use heuristic #1 to find block
structure.

2 - Use heuristic #2 to find block
structure.

3 - Read user defined block structure
from a .tim file.

The default is 1.

LS_IPARAM_BNP PRELEVEL

Environment,
Model

This parameter specifies the presolve
level for BNP solver. Possible values
are nonnegative integers. The default is
0 (no presolve).

LS_DPARAM BNP_COL LMT

Environment,
Model

This parameter specifies the limit on the
number of generated columns in BNP
solver. Possible values are -1 and
nonnegative real numbers. The default
is -1.0 (no limit).

LS DPARAM BNP_TIMLIM

Environment,
Model

This parameter specifies time limit for
BNP solver. Possible values are -1 and
nonnegative real numbers. The default
is -1.0 (no limit).

LS DPARAM BNP_ITRLIM_SIM

Environment,
Model

This parameter specifeis the limit on
simplex iterations in BNP solver.
Possible values are -1 and nonnegative
real numbers. The default is -1.0 (no
limit).

LS_DPARAM_BNP_ITRLIM_IPM

Environment,
Model

This parameter specifies the IPM limit
in BNP solver. Possible values are -1
and nonnegative real numbers. The
default is -1.0 (no limit).

LS TPARAM BNP BRANCH LIMIT

Environment,
Model

This parameter specifies the limit on the
total number of branches in BNP solver.
Possible values are -1 and nonnegative
integers. The default is -1 (no limit).

LS DPARAM_ BNP ITRLIM

Environment,
Model

This parameter specifies the iteration
limit in BNP solver. Possible values are
-1 and nonnegative real numbers. The
default is -1.0 (no limit).

FUNCTION DEFINITIONS 139

GA Parameters

LS_DPARAM_GA_CXOVER_PROB

Environment,
Model

This value specifies the probability of
crossover for continuous variables.
Possible values are in [0,1]. The default
is 0.8.

LS DPARAM_GA_XOVER_SPREAD

Environment,
Model

This value specifies the spreading factor
for crossover. Possible values are
positive integers. Higher values imply
lesser spread. The default is 10.

LS_DPARAM_GA_IXOVER _PROB

Environment,
Model

This values specifies the probability of
crossover for integer variables. Possible
values are in [0,1]. The default is 0.8.

LS DPARAM_GA_CMUTAT PROB

Environment,
Model

This value specifies the probability of
mutation for continuous variables.
Possible values are in [0,1]. The default
is 0.05.

LS DPARAM_GA MUTAT SPREAD

Environment,

This value specifies the spreading factor

Model for mutation. Possible values are
positive integers. Higher values imply
lesser spread. The default is 20.
LS DPARAM GA IMUTAT PROB Environment, |This values specifies the probability of
Model mutation for integer variables. Possible
values are in [0,1]. The default is 0.1.
LS DPARAM_GA TOL ZERO Environment, |This value specifies the zero tolerance.
Model Possible values are in (0,1). The default
is le-14
LS DPARAM_GA TOL PFEAS Environment, |This values specifies the primal
Model feasibility tolerance. Possible values are
in (0,1). The default is 0.0000001.
LS DPARAM_GA INF Environment, |This values specifies the numeric
Model infinity. Possible values are positive real
numbers in (1e10, 1e30). The default is
lel5.
LS DPARAM GA INFBND Environment, |This values specifies the infinity
Model threshold for finite bounds. Possible
values are in (1e-6,1e12). The default is
100000000.
LS DPARAM GA BLXA Environment, |This values specifies the 'Alpha’
Model parameter in Blending Alpha Crossover

method. Possible values are in (0,+inf).
The default is 5.

140 CHAPTER 2

LS DPARAM_GA BLXB

Environment,
Model

This values specifies the 'Beta'
parameter in Blending Alpha-Beta
Crossover method. Possible values are
in (0,+inf). The default is 5.

LS _IPARAM_GA_CXOVER_METHOD

Environment,
Model

This values specifies the method of
crossover for continuous variables.
Possible values are:

-1 Solver decides

LS GA CROSS BLXA : Blending
Alpha Crossover

#LS GA CROSS BLXAB : Blending
Alpha-Beta Crossover

#LS GA_CROSS_SBX : Simulated
(Binary) Crossover
The default is: -1.

LS_IPARAM_GA_IXOVER_METHOD

Environment,
Model

This values specifies the method of
crossover for integer variables. Possible
values are:

-1 Solve decides

#LS GA CROSS TWOPOINT Two-
point Binary Crossover.

#LS GA CROSS ONEPOINT One-
point Binary Crossover.

The default is: -1

LS_IPARAM_GA_CMUTAT METHOD

Environment,
Model

This values specifies the method of
mutation for continuous variables.
Reserved for future use.

The default is -1.

LS IPARAM_GA_IMUTAT METHOD

Environment,
Model

This values specifies the method of
mutation for integer variables. Reserved
for future use. The default is -1.

LS IPARAM_GA_SEED

Environment,
Model

This values specifies the random seed.
Possible values are nonnegative
integers. The default value is 1031.

LS_IPARAM_GA_NGEN

Environment,
Model

This values specifies the number of
generations. Possible values are positive
integers. The default is 500.

LS IPARAM_GA_POPSIZE

Environment,
Model

This values specifies the population
size. Possible values are positive
integers. The default is 200.

FUNCTION DEFINITIONS 141

LS_IPARAM_GA_FILEOUT

Environment,

This values specifies the print level to

Model log files. Possible values are
nonnegative integers. The default is 0.
LS IPARAM_GA PRINTLEVEL Environment, |This values specifies the print level.
Model Possible values are nonnegative
integers. The default is 1.
LS_IPARAM_GA_INJECT_OPT Environment, |This values specifies the flag to specify
Model whether an optimum individual will be
injected. Possible values are:
0 - do not inject an optimum
individual
1 - inject an optimum individual
The default is 0.
LS IPARAM_GA NUM THREADS Environment, |This value specifies the number of
Model parallel threads to be used when solving
a model with genetic algorithm.
Possible values are positive integers.
The default is 1.
LS IPARAM GA OBIJDIR Environment, |This values specifies the objective
Model function sense. Possible values are
LS MIN and LS MAX. The default is
1.
LS DPARAM_GA OBIJSTOP Environment, |This values specifies the target objective
Model function value. Possible values are real
numbers in (-1€30,+1e30). The default
is +1e30.
LS DPARAM_GA MIGRATE PROB Environment, |This values specifies the probability of
Model migration of individuals to the next
generation. Possible values are in [0,1].
The default is 0.0
LS IPARAM_GA_SSPACE Environment, |This values specifies the search space or
Model search mode. Reserved for future use.

The default is 0.

Available Information

These macros refer to available information about the model, solution or sample associated with the

specified object.

142 CHAPTER 2

General Model and Solution Information

LS IINFO_METHOD Model Optimization method used.

LS IINFO_NUM_ CONES Model Number of cones.

LS IINFO NUM CONE NONZ Model Number of nonzeros in the conic
structure.

LS IINFO_ LEN CONENAMES Model Length of cone names.

LS DINFO_INST VAL MIN COEF Model Minimum coefficient in instruction list.

LS IINFO_INST VARNDX MIN COEF Model Variable index of the minimum
coefficient.

LS _IINFO_INST _CONNDX MIN COEF Model Constraint index of the minimum
coefficient.

LS DINFO_INST VAL MAX COEF Model Maximum coefficient in instruction list.

LS IINFO_INST VARNDX MAX COEF Model Variable index of the maximum
coefficient.

LS IINFO_INST VARNDX MAX COEF Model Variable index of the maximum
coefficient.

LS IINFO_INST _CONNDX MAX COEF Model Constraint index of the maximum
coefficient.

LS IINFO NUM_CALL FUN Model Number of function evaluations.

LS IINFO_ NUM_CALL DEV Model Number of first-derivative (Jacobian)
evaluations.

LS IINFO NUM_CALL HES Model Number of second-derivative (Hessian)
evaluations.

LS IINFO_ELAPSED_ TIME Model Total CPU time elapsed solving the
continuous problem.

LS IINFO MODEL STATUS Model The status of given model based on the
result of last optimization.

LS IINFO_PRIMAL STATUS Model The status of the primal model based on
the result of the last optimization.

LS IINFO_IPM_STATUS Model The status of the interior-point solution
based on the barrier solver.

LS IINFO_DUAL STATUS Model Dual solution status.

LS IINFO_BASIC STATUS Model Basic solution status.

LS IINFO_SIM ITER Model Number of simplex iterations performed

when solving a continuous problem.

FUNCTION DEFINITIONS 143

LS _IINFO_BAR_ITER Model Number of barrier iterations performed
when solving a continuous problem.

LS IINFO _NLP_ITER Model Number of nonlinear iterations
performed when solving a continuous
problem.

LS _DINFO_POBIJ Model Primal objective value of a continuous
problem.

LS DINFO _DOBJ Model Dual objective value of a continuous
problem.

LS DINFO_PINFEAS Model Maximum primal infeasibility.

LS DINFO_DINFEAS Model Maximum dual infeasibility.

LS DINFO_MSW_POBJ Model Value of the incumbent objective value
when using the multistart solver.

LS IINFO_MSW_PASS Model Number of multistart passes.

LS IINFO_MSW_NSOL Model Number of distinct solutions found
when using the multistart solver.

LS DINFO_IPM_POBJ Model Primal objective value w.r.t the
interior-point solution.

LS DINFO IPM DOBIJ Model Dual objective value w.r.t the interior-
point solution.

LS_DINFO_IPM_PINFEAS Model Primal infeasibility w.r.t the interior-
point solution.

LS DINFO_IPM DINFEAS Model Dual infeasibility w.r.t the interior-point
solution.

LS IINFO NUM_CONS Model Number of constraints in the model.

LS IINFO NUM_VARS Model Number of variables in the model.

LS IINFO_NUM_NONZ Model Number of nonzeros in the linear
portion of the model.

LS IINFO_NUM NLP CONS Model Number of NLP constraints in the
model.

LS IINFO_NUM_ NLP VARS Model Number of NLP variables in the model.

LS IINFO_NUM_QC NONZ Model Number of nonzeros in the quadratic
matrices.

LS IINFO_NUM_NLP_NONZ Model Number of nonzeros in the nonlinear
portion of the model.

LS IINFO_NUM_ NLPOBJ NONZ Model Number of nonzeros in the nonlinear

objectives in the model.

144 CHAPTER 2

LS IINFO_NUM_RDCONS Model Number of constraints in the presolved
(reduced) model.

LS IINFO_NUM RDVARS Model Number of variables in the presolved
(reduced) model.

LS IINFO_NUM RDNONZ Model Number of nonzeros in the linear
portion of the presolved (reduced)
model.

LS IINFO_ NUM RDINT Model Number of integer (including binary)
variables in the presolved (reduced)
model.

LS IINFO LEN VARNAMES Model Cumulative size of the variable names
in the model.

LS IINFO LEN CONNAMES Model Cumulative size of the constraint names
in the model.

LS IINFO NUM_BIN Model Number of binary variables in the
model.

LS IINFO NUM_INT Model Number of general integer variables in
the model.

LS IINFO NUM_CONT Model Number of continuous variables in the
model.

LS IINFO_PRE NUM RED Model Number of reductions in pre-solve.

LS IINFO _PRE TYPE RED Model Type of last reduction.

LS IINFO PRE NUM RDCONS Model Number of constraints in the pre-solved
model.

LS IINFO PRE NUM RDVARS Model Number of variables in the pre-solved
model.

LS IINFO_PRE NUM RDNONZ Model Number of nonzeros in the pre-solved
model.

LS IINFO PRE NUM RDINT Model Number of integer variables in the pre-
solved model.

LS IINFO_NUM_SUF ROWS Model Number of sufficient rows in IIS.

LS IINFO_NUM IIS ROWS Model Number of necessary rows in IIS.

LS IINFO_NUM_SUF BNDS Model Number of sufficient variable bounds in
IIS.

LS IINFO_NUM_IIS BNDS Model Number of necessary variable bounds in
IIS.

LS IINFO_NUM SUF _COLS: Model Number of sufficient columns in IUS.

FUNCTION DEFINITIONS 145

LS IINFO_NUM IUS COLS: Model Number of necessary columns in TUS.

LS IINFO_ERR OPTIM Model The error code produced at last
optimization session.

LS DINFO_INST VAL MIN COEF Model Values of the minimum matrix
coefficient in the model.

LS IINFO_INST VARNDX MIN COEF Model Variable index of the minimum matrix
coefficient in the model.

LS IINFO_INST CONNDX MIN COEF Model Constraint index of the minimum matrix
coefficient in the model.

LS DINFO_INST VAL MAX COEF Model Values of the maximum matrix
coefficient in the model.

LS IINFO_INST VARNDX MAX COEF Model Variable index of the maximum matrix
coefficient in the model.

LS IINFO_INST CONNDX MAX COEF Model Constraint index of the maximum
matrix coefficient in the model.

LS IINFO NUM VARS CARD Model Number of cardinality sets.

LS IINFO NUM_VARS SOS1 Model Number of type-1 SOS variables.

LS IINFO_NUM_VARS SOS2 Model Number of type-2 SOS variables.

LS IINFO_NUM_VARS SOS3 Model Number of type-3 SOS variables.

LS IINFO_NUM VARS SCONT Model Number of semi-continous variables.

LS IINFO_NUM_CONS L Model Number of ‘less-than-or-equal-to’
constraints.

LS IINFO_NUM_CONS E Model Number of ‘equality’ type constraints.

LS IINFO_NUM_CONS_G Model Number of ‘greater-than-or-equal-to’
type constraints.

LS IINFO_ NUM_CONS R Model Number of ranged constraints.

LS IINFO NUM_CONS N Model Number of neutral (objective)
constraints.

LS IINFO_NUM_VARS LB Model Number of variables with only a lower
bound.

LS IINFO NUM_VARS UB Model Number of variables with only an upper
bound.

LS IINFO_NUM_VARS LUB Model Number of variables with both lower
and upper bounds.

LS IINFO NUM _VARS FR Model Number of free variables.

LS IINFO NUM_VARS FX Model Number of fixed variables.

146 CHAPTER 2

LS_IINFO_MODEL_STATUS

Model

The status of given model based on the

result of last optimization.

LS_IINFO_PRIMAL_STATUS

Model

The status of the primal solution. If the
model is infeasible or unbounded, there
may be no solution available. In such
cases, solution status will not be
available. A typical case is when the
infeasibility or unboundedness is
determined by the presolver.

LS_IINFO_ NUM_POSDS

Model

Number of POSD blocks in the SDP
model.

LS DINFO ACONDEST

Model

Approximate condition-estimate of the
basis matrix.

LS DINFO BCONDEST

Model

Reserved for internal use.

LS IINFO_LPTOOL

Model

Reserved for internal use.

LS_IINFO NUM_SUF_INTS

Model

Number of sufficient integer restrictions
in IIS.

LS _IINFO_NUM_IIS_INTS

Model

Number of necessary integer
restrictions in IIS.

LS_IINFO NUM_OBJPOOL

Model

Number of objective functions in the
objective pool.

LS_IINFO NUM_SOLPOOL

Model

Number of distinct solutions in the
solution pool.

LS IINFO _NLP LINEARITY

Model

This is used to check the linearity
characteristic of the solved model. If the
returned value equals 1, then the model
is linear or has been completely
linearized in the linearization step.
Thus, the global optimality of the
solution can be ensured.

LS IINFO_NUM_ALLDIFF

Model

Number of ALLDIFF constraints in the
model.

LS IINFO MIP STRATEGY MASK

Model

MIP solver strategy mask, 1 for whether
uses symmetry breaking.

LS IINFO_OBJIDX

Model

Index of the objective function
associated with the resident solution
following a multiobjective optimization
session.

FUNCTION DEFINITIONS 147

LS IINFO_SOLIDX

Model

Index of the solution associated with the
resident solution following a
multiobjective optimization session.

LS DINFO_OBJRANK

Model

Rank of the specified objective in the
objective pool. This macro is valid for
LSsetObjPoolParam function.

LS DINFO OBJWEIGHT

Model

Weight of the specified objective in the
objective pool. This macro is valid for
LSsetObjPoolParam function.

148 CHAPTER 2

Integer Optimization Information

LS DINFO_MIP _OBJ Model MIP objective value.

LS DINFO _MIP_BESTBOUND Model Best bound on MIP objective.

LS DINFO MIP TOT TIME Model Total CPU time spent for solving a MIP.

LS DINFO _MIP OPT TIME Model CPU time spent for optimizing the MIP.

LS DINFO MIP HEU TIME Model CPU time spent in MIP presolver and
other heuristics.

LS IINFO_MIP_LPCOUNT Model Number of LPs solved for solving a
MIP.

LS IINFO_MIP_BRANCHCOUNT Model Number of branches generated for
solving a MIP.

LS IINFO MIP ACTIVENODES Model Number of remaining nodes to be
explored.

LS IINFO MIP LTYPE Model Step at which the last integer solution
was found during the optimization of a
MIP. Possible values are:
10: backward strong branching or tree
reordering
9: simple enumerator
8: advanced branching
7: advanced heuristics
6: after adding cuts
5: on the top
4: simple rounding heuristic
3: strong branching
2: knapsack solver or enumerator
1: normal branching

LS IINFO_MIP_AOPTTIMETOSTOP Model Time to approximate optimality.

LS IINFO MIP _STATUS Model Status of MIP solution.

LS IINFO MIP SIM ITER Model Number of simplex iterations performed
when solving a MIP.

LS IINFO_MIP BAR ITER Model Number of barrier iterations performed
when solving a MIP.

LS IINFO MIP NLP ITER Model Number of nonlinear iterations

performed for solving a MIP.

FUNCTION DEFINITIONS 149

LS IINFO_MIP NUM TOTAL CUTS Model Number of total cuts generated.

LS IINFO_MIP GUB_COVER CUTS Model Number of GUB cover cuts generated.

LS IINFO_MIP_FLOW_COVER _CUTS Model Number of flow cover cuts generated.

LS IINFO_MIP_LIFT CUTS Model Number of lifted knapsack covers
generated.

LS IINFO_MIP_PLAN LOC _CUTS Model Number of plant location cuts
generated.

LS IINFO_MIP_DISAGG_CUTS Model Number of disaggregation cuts
generated.

LS IINFO_MIP_ KNAPSUR COVER CUTS [Model Number of surrogate knapsack covers
generated.

LS IINFO MIP _LATTICE CUTS Model Number of lattice cuts generated.

LS IINFO_MIP_GOMORY_CUTS Model Number of Gomory cuts generated.

LS IINFO_MIP_COEF REDC CUTS Model Number of coefficient reduction cuts
generated.

LS IINFO_MIP_GCD_CUTS Model Number of GCD cuts generated.

LS IINFO_MIP OBJ CU Model Number of objective cuts generated.

LS IINFO_MIP_BASIS CUTS Model Number of basis cuts generated.

LS IINFO_MIP_CARDGUB_CUTS Model Number of cardinality/GUB cuts
generated.

LS IINFO_MIP_CONTRA_ CUTS Model Number of contra cuts generated.

LS IINFO_MIP_CLIQUE CUTS Model Number of clique cuts generated.

LS IINFO_MIP_GUB_CONS Model Number of GUB constraints in the
formulation.

LS IINFO_MIP_GLB_CONS Model Number of GLB constraints in the
formulation.

LS IINFO_MIP_PLANTLOC_ CONS Model Number of plant location constraints in
the formulation.

LS IINFO_MIP_DISAGG_CONS Model Number of disaggregation constraints in
the formulation.

LS IINFO_MIP_SB_CONS Model Number of single bound constraints in
the formulation.

LS IINFO_MIP IKNAP CONS Model Number of pure integer knapsack
constraints in the formulation.

LS IINFO_MIP_KNAP_CONS Model Number of knapsack constraints in the

formulation.

150 CHAPTER 2

LS IINFO_MIP NLP CONS Model Number of nonlinear constraints in the
formulation.

LS IINFO MIP_CONT_CONS Model Number of objective constraints in the
formulation.

LS DINFO MIP TOT TIME Model Total MIP time including model I/O,
optimization, heuristics.

LS DINFO _MIP OPT TIME Model Total MIP optimization time.

LS DINFO MIP HEU TIME Model Total MIP heuristic time.

LS IINFO MIP SOLSTATUS LAST BRAN [Model Solution status of the relaxation at the

CH

last branch.

LS DINFO MIP_SOLOBJVAL LAST BRAN Model Objective value of the relaxation at the

CH last branch.

LS IINFO_MIP HEU LEVEL Model The current level for MIP heuristic
engine.

LS DINFO_MIP PFEAS Model Primal infeasibility of the resident
integer solution.

LS DINFO_MIP_INTPFEAS Model Integer infeasibility of the resident
integer solution.

LS _IINFO_MIP_THREADS Model The number of parallel threads used in
MIP solver

LS _SINFO_MIP_ THREAD LOAD Model The string containing the thread
workload in the last LSsolveMIP call.

LS IINFO_MIP_WHERE IN CODE Model The location macro specifying where
the program control is in LSsolveMIP.

LS DINFO MIP_ABSGAP Model Absolute gap at current MIP solution.
Also see:
LS DPARAM_MIP_ABSOPTTOL.

LS DINFO_MIP_RELGAP Model Relative gap at current MIP solution.
Also see:
LS DPARAM MIP RELOPTTOL.

LS IINFO_MIP_SOFTKNAP_ CUTS Model Number of soft-knapsack cuts used.

LS _IINFO_MIP_PERSPECTIVE CUTS

Number of perspective cuts used.

FUNCTION DEFINITIONS 151

Global Optimization Information

LS DINFO _GOP _OBJ Model Objective value of the global optimal
solution of a GOP.

LS IINFO_GOP_SIM ITER Model Number of simplex iterations performed
for solving a GOP.

LS IINFO_GOP_BAR ITER Model Number of barrier iterations performed
for solving a GOP.

LS IINFO GOP NLP ITER Model Number of NLP iterations performed
for solving a GOP.

LS DINFO_GOP_BESTBOUND Model Best bound on the objective value of a
GOP.

LS IINFO_GOP_STATUS Model Solution status of a GOP.

LS IINFO_GOP_LPCOUNT Model Number of LPs solved for solving a
GOP.

LS IINFO_GOP_NLPCOUNT Model Number of NLPs solved for solving a
GOP.

LS IINFO_GOP_MIPCOUNT Model Number of MIPs solved for solving a
GOP.

LS IINFO_GOP_NEWSOL Model Whether a new GOP solution has been
found or not.

LS IINFO_GOP BOX Model Number of explored boxes.

LS IINFO_GOP BBITER Model Number of iterations performed during
a major GOP iteration.

LS IINFO_GOP_SUBITER Model Number of iterations performed during
a minor GOP iteration.

LS IINFO_GOP_ACTIVEBOXES Model Number of active boxes at current state
for solving a GOP.

LS IINFO_GOP_TOT _TIME Model Total CPU time spent for solving a
GOP.

LS IINFO_GOP_MAXDEPTH Model Maximum depth of stack reached to
store active boxes.

LS IINFO_GOP_MIPBRANCH Model Number of branches created for solving
a GOP.

LS DINFO_GOP_TOT TIME Model The total CPU time in GOP solver.

LS IINFO_GOP_THREADS Model The number of parallel threads used in

GOP solver.

152 CHAPTER 2

LS SINFO GOP THREAD LOAD Model The string containing the thread
workload in the last LSsolveGOP call.
LS DINFO_GOP_ABSGAP Model Absolute gap at current GOP solution.
Also see:
LS DPARAM GOP ABSOPTTOL.
LS DINFO_GOP_RELGAP Model Relative gap at current GOP solution.
Also see:
LS DPARAM GOP ABSOPTTOL.
LS IINFO_GOP_WARNING Model

FUNCTION DEFINITIONS 153

Model Analysis Information

LS IINFO_IIS SIM_ITER Model Number of simplex iterations in IIS
search.

LS IINFO_IIS BAR ITER Model Number of barrier iterations in IIS
search.

LS IINFO IIS TOT TIME Model Total CPU time spent for IIS search.

LS IINFO IIS ACT NODE Model Number of active sub problems
remaining to complete the IIS search.

LS IINFO_IIS LPCOUNT Model Number of LPs solved during IIS
search.

LS IINFO_IIS NLPCOUNT Model Number of NLPs solved during IIS
search.

LS IINFO_IIS MIPCOUNT Model Number of MIPs solved during IIS
search.

LS IINFO_IUS BAR ITER Model Number of barrier iterations in ITUS
search.

LS IINFO_IUS SIM _ITER Model Number of simplex iterations in [US
search.

LS IINFO_IUS TOT TIME Model Total CPU time spent for IIS search.

LS IINFO_IUS ACT NODE Model Number of active sub problems
remaining to complete the IUS search.

LS IINFO_IUS LPCOUNT Model Number of LPs solved during IUS
search.

LS IINFO_IUS NLPCOUNT Model Number of NLPs solved during IUS
search.

LS IINFO_IUS MIPCOUNT Model Number of MIPs solved during TUS
search.

LS IINFO_IIS THREADS Model The number of parallel threads used in
IIS finder. Reserved for future use.

LS SINFO _IIS THREAD LOAD Model The string containing the thread
workload in the last LSfindIIS call.
Reserved for future use.

LS IINFO_IUS THREADS Model The number of parallel threads used in
IUS finder. Reserved for future use.

LS SINFO IUS THREAD LOAD Model The string containing the thread

workload in the last LSfindIUS call.
Reserved for future use.

154 CHAPTER 2

Stochastic Information

LS_DINFO_STOC_EVOBI

Model

Expected value of the SP objective
function, also called the Here-and-Now
(HN) objective.

LS _DINFO STOC _EVWS

Model

Expected value of the Wait-and-See
(WS) model, which is a relaxation to the
SP obtained by dropping the
nonanticipativity restrictions.

LS DINFO STOC EVPI

Model

Expected value of perfect information,
which is defined as the difference
between the expected value of the Wait-
and-See objective value and the Here-
and-Now objective function value.

LS_DINFO_STOC_EVAVR

Model

Optimal objective value of the restricted
WS model where all stage-0 decisions
are fixed at their respective values from
the optimal solution of the Average-
Model. The Average Model is the
deterministic version of the original
model constructed by replacing all
random parameters with their expected
values.

LS_DINFO_STOC_EVMU

Model

Expected value of modeling
uncertainity, which is defined as the
difference between the the Here-and-
Now objective and the optimal value of
the restricted-Wait-See objective. This
value is also called the ‘Value of
Stochastic Solution’.

LS_DINFO_STOC_PINFEAS

Model

Primal infeasibility of the first stage
solution.

LS DINFO_STOC DINFEAS

Model

Dual infeasibility of the first stage
solution.

LS DINFO_STOC_RELOPT GAP

Model

Relative optimality gap at current
solution.

LS DINFO_STOC_ABSOPT GAP

Model

Absolute optimality gap at current
solution.

LS IINFO_STOC_SIM ITER

Model

Number of simplex iterations
performed.

LS IINFO_STOC_BAR_ITER

Model

Number of barrier iterations performed.

LS_IINFO_STOC_NLP_ITER

Model

Number of nonlinear iterations
performed.

FUNCTION DEFINITIONS 155

LS IINFO_NUM_STOCPAR_RHS Model Number of stochastic parameters in the
RHS.

LS IINFO_ NUM STOCPAR _OBJ Model Number of stochastic parameters in the
objective function.

LS IINFO NUM STOCPAR LB Model Number of stochastic parameters in the
lower bound.

LS IINFO_ NUM STOCPAR _UB Model Number of stochastic parameters in the
upper bound.

LS IINFO NUM STOCPAR_INSTR OBJS [Model Number of stochastic parameters in the
instructions constituting the objective.

LS IINFO_NUM_STOCPAR_INSTR CONS [Model Number of stochastic parameters in the
instructions constituting the constraints.

LS IINFO_ NUM_STOCPAR_INSTR Model Total number of stochastic parameters
in the instructions constituting the
constraints and the objective.

LS IINFO NUM_STOCPAR_All Model Number of stochastic parameters in the
LP matrix.

LS DINFO STOC TOTAL TIME Model Total time elapsed in seconds to solve
the model

LS IINFO_STOC STATUS Model Status of the SP model.

LS IINFO _STOC STAGE BY NODE Model Stage of the specified node.

LS IINFO_STOC NUM_SCENARIOS Model Number of scenarios (integer) in the
scenario tree.

LS DINFO STOC NUM_SCENARIOS Model Number of scenarios (double) in the
scenario tree.

LS IINFO_STOC NUM_STAGES Model Number of stages in the model.

LS IINFO_STOC NUM NODES Model Number of nodes in the scenario tree
(integer).

LS DINFO_STOC NUM NODES Model Number of nodes in the scenario tree
(double).

LS TINFO_STOC NUM NODES STAGE Model Number of nodes that belong to
specified stage in the scenario tree
(integer).

LS DINFO_STOC NUM NODES STAGE |Model Number of nodes that belong to
specified stage in the scenario tree
(double).

LS IINFO STOC NUM_NODE MODELS [Model Number of node-models created or to be

created.

156 CHAPTER 2

LS_IINFO_STOC_NUM_COLS_BEFORE N
ODE

Model

Column offset in DEQ of the first
variable associated with the specified
node.

LS_IINFO_STOC_NUM_ROWS_BEFORE N
ODE

Model

Row offset in DEQ of the first variable
associated with the specified node.

LS IINFO_STOC NUM COLS DETEQI Model Total number of columns in the implicit
DEQ (integer).

LS DINFO_STOC NUM COLS DETEQI Model Total number of columns in the implicit
DEQ (double).

LS IINFO_STOC NUM ROWS DETEQI Model Total number of rows in the implicit
DEQ (integer).

LS DINFO_STOC NUM _ROWS DETEQI [Model Total number of rows in the implicit
DEQ (double).

LS IINFO_STOC NUM COLS DETEQE Model Total number of columns in the explicit
DEQ (integer).

LS DINFO_STOC NUM _COLS DETEQE Model Total number of columns in the explicit
DEQ (double).

LS IINFO STOC NUM ROWS DETEQE Model Total number of rows in the explicit
DEQ (integer).

LS DINFO STOC NUM ROWS DETEQE [Model Total number of rows in the explicit
DEQ (double).

LS IINFO_STOC NUM COLS NAC Model Total number of columns in non-
anticipativity block.

LS IINFO_STOC NUM ROWS NAC Model Total number of rows in non-
anticipativity block.

LS IINFO_STOC NUM COLS CORE Model Total number of columns in core model.

LS IINFO_STOC NUM_ROWS CORE Model Total number of rows in core model.

LS IINFO_STOC NUM COLS STAGE Model Total number of columns in core model
in the specified stage.

LS IINFO_STOC NUM_ROWS STAGE Model Total number of rows in core model in
the specified stage.

LS IINFO_STOC NUM BENDERS FCUTS |Model Total number of feasibility cuts
generated during NBD iterations.

LS TIINFO_STOC NUM BENDERS OCUTS |Model Total number of optimality cuts
generated during NBD iterations.

LS TINFO_DIST TYPE Model Distribution type of the sample

LS IINFO_SAMP_SIZE Model Sample size.

FUNCTION DEFINITIONS 157

LS DINFO_SAMP _MEAN Model Sample mean.

LS DINFO _SAMP_STD Model Sample standard deviation.

LS DINFO_SAMP SKEWNESS Model Sample skewness.

LS DINFO_SAMP _KURTOSIS Model Sample kurtosis.

LS IINFO_STOC NUM_QCP_CONS_DETE [Model Total number of quadratic constraints in
QE the explicit deterministic equivalent.

LS IINFO_STOC NUM CONT_CONS DET [Model Total number of continuous constraints

EQE

in the explicit deterministic equivalent.

LS_IINFO_STOC_NUM_INT_CONS_DETEQ
E

Model

Total number of constraints with
general integer variables in the explicit
deterministic equivalent.

LS_IINFO_STOC_NUM BIN_CONS_DETEQ
E

Model

Total number of constraints with binary
variables in the explicit deterministic
equivalent.

LS_IINFO_STOC_NUM_QCP_VARS DETE |mModel Total number of quadratic variables in

QE the explicit deterministic equivalent.

LS IINFO_STOC NUM NONZ DETEQE Model Total number of nonzeros in the explicit
deterministic equivalent.

LS IINFO_STOC NUM BIN DETEQE Model Total number of binaries in the explicit
deterministic equivalent.

LS IINFO_STOC NUM_INT DETEQE Model Total number of general integer
variables in the explicit deterministic
equivalent.

LS_IINFO_STOC_NUM_CONT_DETEQE Model Total number of continuous variables in
the explicit deterministic equivalent.

LS IINFO_STOC NUM _QC NONZ DETEQ |Model Total number of quadratic nonzeros in

E the explicit deterministic equivalent.

LS IINFO_STOC NUM NLP NONZ DETE |Model Total number of nonlinear nonzeros in

QE

the constraints of explicit deterministic
equivalent.

LS_IINFO_STOC_NUM_NLPOBJ_NONZ_DE |nfode] Total number of nonlinear nonzeros in
TEQE the objective function of explicit
deterministic equivalent.
LS_IINFO_STOC_NUM_QCP_CONS_DETE |\fodel Total number of quadratic constraints in
QI the implicit deterministic equivalent.
LS_IINFO_STOC_NUM_CONT_CONS_DET |\fodel Total number of continuous constraints

EQI

in the implicit deterministic equivalent.

158 CHAPTER 2

LS_IINFO_STOC_NUM_INT_CONS_DETEQ
I

Model

Total number of constraints with
general integer variables in the implicit
deterministic equivalent.

LS_IINFO_STOC_NUM _BIN_CONS_DETEQ
I

Model

Total number of constraints with binary
variables in the implicit deterministic
equivalent.

LS_IINFO_STOC_NUM_QCP_VARS_DETE |Model Total number of quadratic variables in

QI the implicit deterministic equivalent.

LS_IINFO_STOC_NUM_NONZ_DETEQI Model Total number of nonzeros in the implicit
deterministic equivalent.

LS_IINFO_STOC_NUM_BIN_DETEQI Model Total number of binaries in the implicit
deterministic equivalent.

LS IINFO STOC NUM INT DETEQI Model Total number of general integer
variables in the implicit deterministic
equivalent.

LS IINFO_STOC _NUM CONT_DETEQI Model Total number of continuous variables in

the implicit deterministic equivalent.

LS IINFO STOC NUM_QC_NONZ DETEQI

Model

Total number of quadratic nonzeros in
the implicit deterministic equivalent.

LS_IINFO_STOC_NUM _NLP_NONZ DETE
QI

Model

Total number of nonlinear nonzeros in
the constraints of implicit deterministic
equivalent.

LS_IINFO_STOC_NUM_NLPOBJ_NONZ_DE |\fodel Total number of nonlinear nonzeros in

TEQI the objective function of implicit
deterministic equivalent.

LS_IINFO_STOC_NUM_EVENTS_BLOCK |Model Total number of block events.

LS IINFO_STOC _NUM_EVENTS_ DISCRET [(Model Total number of independent events

E with a discrete distribution.

LS IINFO STOC NUM_EVENTS PARAME [Model Total number of independent events

TRIC

with a parametric distribution.

LS IINFO_STOC_NUM EVENTS SCENARI
OS

Model

Total number of events loaded explicitly
as a scenario.

LS IINFO STOC PARENT NODE Model Index of a node's parent.

LS IINFO_STOC _ELDEST CHILD NODE [Model Index of a node's eldest child.

LS_[INFO_STOC_NUM_CHILD_NODES Model Total number of childs a node has.

LS_IINFO_INFORUNB_SCEN_IDX Model Index of the infeasible or unbounded
scenario.

LS IINFO_DIST NARG Model Number of arguments of a distribution

sample.

FUNCTION DEFINITIONS 159

Variance reduction/control method used

LS_IINFO_SAMP_VARCONTROL_METHO |podel
D in generating the sample.
LS_IINFO_STOC_NUM_NLP_VARS DETE |pModel Total number of nonlinear variables in
QE the explicit deterministic equivalent.
LS_IINFO_STOC_NUM_NLP_CONS_DETE |pModel Total number of nonlinear constraints in
QE the explicit deterministic equivalent.
LS DINFO STOC EVOBJ LB Model Best lower bound on expected value of
the objective function.
LS_DINFO_STOC_EVOBJ_UB Model Best upper bound on expected value of
the objective function.
LS_DINFO_STOC_AVROBJ Model Expected value of average model's
objective.
LS DINFO SAMP MEDIAN Model Sample median.
LS_DINFO_DIST_MEDIAN Model Distribution (population) median.
LS IINFO_STOC NUM_EQROWS CC Model Number of equality type rows in all
chance-constraints.
LS _TINFO_STOC_NUM_ROWS Model Number of stochastic rows
LS_[INFO_STOC_NUM_CC_VIOLATED Model Number of chance sets violated over all
scenarios.
LS_[INFO_STOC_NUM_COLS_DETEQC Model Total number of columns in the chance
deterministic equivalent.
LS_IINFO_STOC_NUM_ROWS_DETEQC Model Total number of rows in the chance
deterministic equivalent.
LS_IINFO_STOC_NUM_QCP_CONS_DETE |mModel Total number of quadratic constraints in
QC the chance deterministic equivalent.
LS_IINFO_STOC_NUM_CONT_CONS_DET |mMmodel Total number of continuous constraints
EQC in the chance deterministic equivalent.

LS_IINFO_STOC_NUM_INT_CONS_DETEQ
C

Model

Total number of constraints with
general integer variables in the chance
deterministic equivalent.

LS_IINFO_STOC_NUM _BIN_CONS_DETEQ
C

Model

Total number of constraints with binary
variables in the chance deterministic
equivalent.

LS_IINFO_STOC_NUM_QCP_VARS_DETE |Model Total number of quadratic variables in
QC the chance deterministic equivalent.
LS_IINFO_STOC_NUM_NONZ_DETEQC Model Total number of nonzeros in the chance
deterministic equivalent.
LS_IINFO_STOC_NUM_BIN_DETEQC Model Total number of binaries in the chance

deterministic equivalent.

160 CHAPTER 2

LS_IINFO_STOC_NUM_INT_DETEQC Model Total number of general integer
variables in the chance deterministic
equivalent.

LS_[INFO_STOC_NUM_CONT_DETEQC Model Total number of continuous variables in
the chance deterministic equivalent.

LS_IINFO_STOC_NUM_QC_NONZ_DETEQ |pModel Total number of quadratic nonzeros in

C the chance deterministic equivalent.

LS_[INFO_STOC_NUM_NLP_NONZ_DETE |\fodel Total number of nonlinear nonzeros in

QC

the constraints of chance deterministic
equivalent.

LS_IINFO_STOC_NUM_NLPOBJ NONZ DE
TEQC

Model

Total number of nonlinear nonzeros in
the objective function of chance
deterministic equivalent.

LS_IINFO_STOC_NUM_NLP_CONS_DETE |Model Total number of nonlinear constraints in
QC the constraints of chance deterministic
equivalent.
LS_IINFO_STOC_NUM_NLP_VARS DETE |Model Total number of nonlinear variables in
QC the constraints of chance deterministic
equivalent.
LS_IINFO_STOC_NUM_NONZ_OBJ _DETE |Model Total number of nonzeros in the
QC objective of chance deterministic
equivalent.
LS_IINFO_STOC_NUM_NONZ_OBJ_DETE |podel Total number of nonzeros in the
QE objective of explict deterministic
equivalent.
LS_DINFO_STOC_CC_PLEVEL Model P-level for chance constraint.
LS_IINFO_STOC_THREADS Model The number of parallel threads used in
stochastic solver.
LS_DINFO_STOC_THRIMBL Model The work imbalance across threads in
stochastic solver. Reserved for future
use.
LS_IINFO_STOC_NUM_EQROWS Model The number of EQ type stochastic rows
LS_SINFO_STOC_THREAD_LOAD Model The string containing the thread
workload in the last LSsolveSP call.
LS_SINFO_CORE_FILENAME Model The name of the file containing the core
model data.
LS_SINFO_STOC_FILENAME Model The name of the file containing the
stochastic data.
LS_SINFO_TIME_FILENAME Model The name of the file containing the time

data.

FUNCTION DEFINITIONS 161

BNP Information

LS TINFO BNP SIM ITER Model The number of simplex iterations in
B B - BNP solver.
LS IINFO BNP LPCOUNT Model The number of solved LPs in BNP
B B B solver.
LS IINFO BNP NUMCOL Model The number of generated columns in
B B B BNP solver.
LS DINFO BNP BESTBOUND Model Current best bound on objective in BNP
B B B solver.
LS DINFO BNP BESTOBIJ Model Objevtive for current best solution.

Miscellaneous Information

The name of the file the model was

LS_SINFO MODEL _FILENAME Model _
imported from.

LS SINFO MODEL SOURCE Model The name of the path the model file.

LS IINFO MODEL TYPE Model An integer macro specifying the model

B B - type. Possible values are given in

Common Parameter Macro Definitions
section under Model Types heading.

LS IINFO ASSIGNED MODEL TYPE Model An integer macro specifying the derived

model type. Possible values are given in
Common Parameter Macro Definitions
section under Model Types heading.

162 CHAPTER 2

Model Loading Routines

The routines described in this section allow you to pass a model to LINDO API directly through
memory. LINDO API expects the formulation to be in sparse format. In other words, only nonzero
coefficients are passed. For details on sparse representation, see the section titled Sparse Matrix
Representation in Chapter 1, Introduction. Before using routines described in this section, be aware
that another way of passing a model to the LINDO API is by using one of the LSreadLINDOFile,
LSreadMPSFile, and LSreadMPIFile routines described earlier in this chapter. In fact, for debugging
reasons, you may want to consider passing your model to the LINDO API by file using the
LSreadXXFile routines rather than with the direct memory methods described below. If a model is not
behaving as you think it should, it is relatively easy to send a file to the Tech support people at
LINDO. Ifyou are confident that your formulation is debugged, and you need high performance, or
the ability to run several models simultaneously, as in a web-based application, then you can always
switch to the direct memory transfer routines described below.

Note: LINDO API keeps its own copies of the data passed via the input arguments in the model
space. Therefore, the user can free the local copies after the call completes successfully.

LSloadConeData()

Description:
Loads quadratic cone data into a model structure.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadConeData (pLSmodel pModel, int nCone, char
*pszConeTypes, double *padConeAlpha, int
*paiConebegcone, int *paiConecols)

FUNCTION DEFINITIONS 163

Input Arguments:

Name

Description

pModel

A pointer to an instance of LSmodel in which to place the
problem data.

nCone

Number of cones to add.

pszConeTypes

A pointer to a character vector containing the type of each cone
being added. Valid values for each cone are ‘Q’ and ‘R’. The
length of this vector is equal to nCone.

padConeAlpha

Alpha values of power cones.

paiConebegcone

A pointer to an integer vector containing the index of the first
variable that appears in the definition of each cone. This vector
must have nCone+1 entries. The last entry will be the index of
the next appended cone, assuming one was to be appended. If
paiConebegcone [i] < paiConebegcone [i-1], then
LSERR_ERROR_IN_INPUT is returned.

paiConecols

A pointer to an integer vector containing the indices of
variables representing each cone. The length of this vector is
equal to paiConebegcone[nCone].

LSloadInstruct()

Description:

Loads instruction lists into a model structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSloadInstruct (pLSmodel pModel, int nCons, int nObjs, int
nVars, int nNums, int *panObjSense, char *pacConType, char
*pacVarType, int *panCode, int nCode, int *paiVars, double
*padVals, double *padXO0, int *paiObj, int *panObj, int
*paiRows, int *panRows, double *padL, double *padU)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

nCons Number of constraints in the model.

nObjs Number of objectives in the model. Currently, there is only
support for a single objective (i.e., nObjs = 1).

nVars Number of variables in the model.

nNums

Number of real numbers in the model.

164 CHAPTER 2

panObjSense

A pointer to an integer vector containing the indicator stating
whether the objective is to be maximized or minimized. Valid
values are LS MAX or LS MIN, respectively. The length of
this vector is equal to nObjs. Currently, there is only support
for a single objective.

pacConType

A pointer to a character vector containing the type of each
constraint. Each constraint is represented by a single byte in the
array. Valid values for each constraint are ‘L’, ‘E’, ‘G’, or ‘N’
for less-than-or-equal-to, equal to, great-than-or-equal-to, or
neutral, respectively. The length of this vector is equal to
nCons.

pacVarType

A pointer to a character vector containing the type of each
variable. Valid values for each variable are ‘C’, ‘B’, ‘I’, or ‘S’
for continuous, binary, general integer or semi-continuous
variables, respectively. The length of this vector is equal to
nVars. This value may be NULL on input, in which case all
variables will be assumed to be continuous.

panCode

A pointer to an integer vector containing the instruction list.
The length of this vector is equal to nCode. For details on
instruction list representation, see the section titled /nstruction-
List Style Interface in Chapter 7, Solving Nonlinear Programs.

nCode

Number of items in the instruction list.

paiVars

A pointer to an integer vector containing the variable index.
The length of this vector is equal to nVars. This pointer may be
set to NULL if the variable index is consistent with the variable
position in the variable array.

padVals

A pointer to a double precision vector containing the value of
each real number in the model. The length of this vector is
equal to nNums.

padXO0

A pointer to a double precision vector containing starting
values for each variable in the given model. The length of this
vector is equal to nVars.

paiObj

A pointer to an integer vector containing the beginning
positions on the instruction list for each objective row. The
length of this vector is equal to nObjs. Currently, there is only
support for a single objective.

panObj

A pointer to an integer vector containing the length of
instruction code (i.e., the number of individual instruction
items) for each objective row. The length of this vector is equal
to nObjs. Currently, there is only support for a single objective.

paiRows

A pointer to an integer vector containing the beginning
positions on the instruction list for each constraint row. The
length of this vector is equal to nCons.

FUNCTION DEFINITIONS 165

panRows

A pointer to an integer vector containing the length of
instruction code (i.e., the number of individual instruction
items) for each constraint row. The length of this vector is
equal to nCons.

padL

A pointer to a double precision vector containing the lower
bound of each variable. If there is no lower bound on the
variable, then this value should be set to -LS _INFINITY. If
padL is NULL, then the lower bounds are internally set to zero.

padU

A pointer to a double precision vector containing the upper
bound of each variable. If there is no upper bound on the
variable, then this value should be set to LS INFINITY. If
padU is NULL, then the upper bounds are internally set to
LS INFINITY.

Remarks:

e The instruction lists for the objective and constraints are all carried by the same code
vector, *panCode, to load into LINDO API model structure.

e The index vector *paiVars can be used to store the user-specified variable index.
Currently, the values supplied in paiVars[| are unimportant.

LSloadLPData()

Description: v

Loads the given LP data into the LSmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadLPData (pLSmodel pModel, int nCons, int nVars, int
dObjsense, double dObjconst, double *padC, double *padB,
char *pachContypes, int nAnnz, int *paiAcols, int *pacAcols,
double *padAcoef, int *paiArows, double *padL, double
*padU)
Arguments:
Name Description
pModel A pointer to an instance of LSmodel in which to place the
problem data.
nCons Number of constraints in the model.
nVars Number of variables in the model.
dObjsense An indicator stating whether the objective is to be maximized
or minimized. Valid values are LS MAX or LS MIN.
dObjconst A constant value to be added to the objective value.

166 CHAPTER 2

padC

A pointer to a double precision vector containing the objective
coefficients.

padB

A pointer to a double precision vector containing the constraint
right-hand side coefficients.

pachContypes

A pointer to a character vector containing the type of each
constraint. Each constraint is represented by a single byte in the
array. Valid values for each constraint are 'L', 'E', 'G', or ‘N’ for
less-than-or-equal-to, equal-to, greater-than-or-equal-to, or
neutral, respectively.

nAnnz

The number of nonzeros in the constraint matrix.

paiAcols

A pointer to an integer vector containing the index of the
element in padAcoef (and paiArows) that corresponds to the
first nonzero element for each column.

This vector must have nVars+1 entries. The last entry will be
the index of the next appended column, assuming one was to
be appended.

If paiAcols[i] < paiAcols[i-1], then

LSERR ERROR IN INPUT is returned.

pacAcols

A pointer to an integer vector containing the length of each
column. Note that the length of a column can be set to be
smaller than the values paiAcols would suggest (i.e., it is
possible for pacAcols[i] < paiAcols[i+1] — paiAcols[i]). This
may be desirable in order to prevent memory reallocations in
the event that any rows are added to the model. If the columns
are packed tight (i.e., the length of a column i is equal to
paiAcols[i+1] — paiAcols[{] for all i), then pacAcols can be set
to NULL on input.

padAcoef

A pointer to a double precision vector containing the nonzero
coefficients of the constraint matrix.

paiArows

A pointer to an integer vector containing the row indices of the
nonzeros in the constraint matrix. If any row index is not in the
range [0, nCons -1], LSERR _INDEX OUT_OF RANGE is
returned.

padL

A pointer to a double precision vector containing the lower
bound of each variable. If there is no lower bound on the
variable, then this value should be set to -LS INFINITY. If it
is NULL, then the lower bounds are internally set to zero.

padU

A pointer to a double precision vector containing the upper
bound of each variable. If there is no upper bound on the
variable, then this value should be set to LS INFINITY. If it is
NULL, then the upper bounds are internally set to
LS_INFINITY.

FUNCTION DEFINITIONS 167

Remarks:

e The data from each of the arrays passed to this routine are actually copied into arrays
within the LSmodel structure. Therefore, the calling routine can free the memory if the
information is no longer needed.

e To retrieve the LP’s data from the model structure, see routine LSgetLPData().

168 CHAPTER 2

LSloadNameData()

Description:

Loads the given name data (e.g., row and column names), into the LSmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadNameData(pLSmodel pModel, char *pszTitle, char
*pszObjName, char *pszRhsName, char *pszRngName, char
*pszBndname, char **paszConNames, char **paszVarNames,
char **paszConeNames)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel in which to place the
problem data.
pszTitle A pointer to a null terminated string containing the title of the
problem.
pszObjName A pointer to a null terminated string containing the name of the
objective.
pszRhsName A pointer to a null terminated string containing the name of the
right-hand side vector.
pszRngName A pointer to a null terminated string containing the name of the
range vector.
pszBndname A pointer to a null terminated string containing the name of the
bounds vector.
paszConNames A pointer to an array of pointers to the null terminated
constraint names.
paszVarNames A pointer to an array of pointers to the null terminated variable
names.
paszConeNames A pointer to an array of pointers to the null terminated cone
names.
Remarks:

e The data from each of the arrays passed to this routine are actually copied into arrays
within the LSmodel structure. Therefore, the calling routine can free the memory if the
information is no longer needed.

e Any of the pointers to name data passed to this routine may be set to NULL if the
information is not relevant.

FUNCTION DEFINITIONS 169

LSloadNLPData()

Description:

Loads a nonlinear program’s data into the model data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadNLPData (pLSmodel pModel, int * paiCols,
int * pacCols, double * padCoef, int * paiRows, int nObj, int
*paiObj, double *padObjCoef)

Input Arguments:

Name Description

pModel Pointer to an instance of LSmodel.

paiCols A pointer to an integer vector containing the index of the first
nonlinear nonzero in each column. This vector must have
nVars+1 entries, where nVars is the number of variables. The
last entry will be the index of the next appended column,
assuming one was to be appended.

pacCols A pointer to an integer vector containing the number of
nonlinear elements in each column.

padCoef A pointer to a double precision vector containing initial values
of the nonzero coefficients in the (Jacobian) matrix. It may be
set to NULL, in which case, LINDO API will compute an
initial matrix.

paiRows A pointer to an integer vector containing the row indices of the
nonlinear elements.

nObj An integer containing the number of nonlinear variables in the
objective.

paiObj A pointer to an integer vector containing the column indices of
nonlinear variables in the objective function.

padObjCoef A pointer to double precision vector containing the initial
nonzero coefficients in the objective. It may be set to NULL, in
which case, LINDO API will compute an initial gradient
vector.

170 CHAPTER 2

Remarks:

o Currently, the values supplied in padCoef are unimportant and can always be set to
NULL.

e Note, a nonzero constraint matrix must be established before calling LSloadNLPData().
This is accomplished through a call to LSloadLPData(). The subsequent call to
LSloadNLPData() simply identifies the nonzeros in the matrix that are nonlinear (i.e., not
constant). As an example, consider the nonlinear row: 3x + »"2 —1 < 0. In this row, x
appears linearly and, therefore, has a fixed coefficient of value 3. The variable y, on the
other hand, appears nonlinearly and does not have a fixed coefficient. Its coefficient at
any given point must be determined through finite differences or a call to pGradcalc().
Note that a variable appearing in both linear and nonlinear terms should be treated
nonlinearly and has no fixed coefficient (e.g., x + x*2). Identifying the fixed coefficients
allows LINDO API to minimize the amount of work required to compute gradients.

LSloadQCData()

Description:
Loads quadratic program data into the LSmodel data structure.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadQCData(pLSmodel pModel, int nQCnnz, int
*paiQCrows, int *paiQCcolsl, int *paiQCcols2, double
*padQCcoef)
Arguments:
Name Description
pModel An instance of LSmodel in which to place the problem data.
nQCnnz The total number of nonzeros in quadratic coefficient matrices.
paiQCrows A pointer to a vector containing the index of the constraint
associated with each nonzero quadratic term. This vector must
have nQCnnz entries.
paiQCcolsl A pointer to a vector containing the index of the first variable
defining each quadratic term. This vector must have nQCnnz
entries.
paiQCcols2 A pointer to a vector containing the index of the second
variable defining each quadratic term. This vector must have
nQCnnz entries.
padQCcoef A pointer to a vector containing the nonzero coefficients in the
quadratic matrix. This vector must also have nQCnnz entries.

FUNCTION DEFINITIONS 171

Remarks:
[]

The data from each of the arrays passed to this routine are actually copied into arrays
within the LSmodel structure. Therefore, the calling routine can free the memory if the
information is no longer needed.

The quadratic matrices are assumed to be symmetric.

Only the upper triangular part of the quadratic matrices must be specified.

For variations on the above, e.g. if a matrix is not naturally symmetric, see Chapter 5,
Solving Quadratic Programs, for more information.

LSloadSemiContData()

Description:

Loads semi-continuous data into the Lsmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadSemiContData(pLSmodel pModel, int nSC, int
*piVarndx, double *padl, double *padu)
Arguments:
Name Description
pModel An instance of LSmodel in which to place the problem data.
nSC The number of semi-continuous variables.
piVarndx A pointer to a vector containing the indices of semi-
continuous variables. This vector must have nSC entries.
padl A pointer to a vector containing the lower bound associated
with each semi-continuous variable. This vector must also have
nSC entries.
padu A pointer to a vector containing the upper bound associated
with each semi-continuous variable. This vector must also have
nSC entries.
Remarks:

It is required to load all semi-continuous data in a single call. For example, if you have
two disjoint semi-continuous sets SC1 and SC2, you should merge them into a single set
SC3 and call LSloadSemiContData with SC3. If you just load SC1 and then try to load
SC2, the LINDO API will return an error.

To delete existing semi-continuous data, use LSdeleteSemiContVars.

172 CHAPTER 2

LSloadSETSData()

Description:
Loads special sets data into the Lsmodel data structure.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadSETSData(pLSmodel pModel, int nSETS, char
*pszSETStype, int *paiCARDnum, int *paiSETSbegcol, int
*paiSETScols)

Arguments:

Name Description

pModel An instance of LSmodel in which to place the problem data.

nSETS Number of sets to load.

pszSETStype A pointer to a character vector containing the type of each set.
Valid values for each set are :

LS_MIP_SET _CARD
LS_MIP_SET SOSI
LS_MIP_SET SOS2
LS_MIP_SET SOS3

paiCARDnum A pointer to an integer vector containing set cardinalities. This
vector must have nSETS entries. The set cardinalities are taken
into account only for sets with pszSETStype[i] =

LS _MIP_SET_CARD.

paiSETSbegcol A pointer to an integer vector containing the index of the first
variable in each set. This vector must have nSETS+1 entries.
The last entry will be the index of the next appended set,
assuming one was to be appended. If paiSETSbegcol[i] <
paiSETSbegcol [i-1], then LSERR_ERROR _IN INPUT is
returned.

paiSETScols A pointer to an integer vector containing the indices of
variables in each set. If any index is not in the range [0, nVars
-1], LSERR INDEX OUT OF RANGE is returned.

Remarks:

e Itisrequired to load all sets-data with a single call. For example, if you have two disjoint
sets S1 and S2, you should merge them into a single set S3 and call LSloadSETSData
with S3. If you just load S1 and then try to load S2, the LINDO API will return an error.

e To delete existing sets-data, use LSdeleteSETS.

FUNCTION DEFINITIONS 173

LSloadVarType()

Description:
Loads the given MIP (mixed-integer program) data into the LSmodel data structure. The old
name for this function is LSloadMIPData().

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadVarType(pLSmodel pModel, char *pachVartypes)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the MIP
data.

pachVartypes A pointer to a character vector containing the type of each

variable. Valid values for each variable are ‘C’, ‘B’, ‘I’, or ‘S’
for continuous, binary, general integer or semi-continuous,
respectively.

This value may be NULL on input, in which case all variables
will be assumed to be continuous.

Remarks:

e The ability to solve mixed-integer programs is an optional feature. Not all installations
will have this capability. To determine if your license includes MIP functionality, use
LSgetModellntParameter() with license information access macros.

e The data from each of the arrays passed to this routine are actually copied into arrays
within the LSmodel structure. Therefore, the calling routine can free the memory if the
information is no longer needed.

LSloadLPData() must be called prior to calling this routine.
LScreateModel() must be called prior to calling this routine.

To load variable branching priorities, see LSloadVarPriorities().
LSloadLPData must have been called previously.

174 CHAPTER 2
LSloadStringData()

Description:
Loads a vector of strings into the LSmodel data structure and gets sort order.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadStringData(pLSmodel pModel, int nStrings, char
**paszStrings)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel in which to place the
string data.
nStrings Number of strings to load
PaszStrings A pointer to an array of pointers to the null terminated strings..
Remarks:

e All strings to be used in a model need to be loaded into LINDO API with either a
sequence of calls to LSloadString followed by a final call to LSbuildStringData, or a
single call to LSloadStringData. These calls must be made before strings can be referred
to in the instruction list through the operators EP PUSH STR or EP_ VPUSH_STR. The
vector of strings loaded is automatically sorted by finalizing the loading with a call to
LSbuildStringData. An index, starting from 1, is assigned to each unique string and this
index can be used to access the string values by a call to LSgetStringValue.

LSloadString()

Description:
Load a single string into the LSmodel data structure.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadString(pLSmodel pModel, char *szString)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel in which to place the
string data.
szString A pointer to a null terminated string .
Remarks:

e See also LSbuildStringData, and LSloadStringData.

FUNCTION DEFINITIONS 175

LSbuildStringData()

Description:
Gets sort order of all strings loaded by previous calls to LSloadString, and assigns a unique
value to each unique string.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSbuildStringData(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the
string data.

Remarks:
See also, LSloadString and LSloadStringData.

LSdeleteStringData()

Description:
Delete the string values data

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteStringData(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the
string data.

Remarks:
e Please refer to LSloadStringData for the detailed string support.

176 CHAPTER 2

LSdeleteString()

Description:
Delete the complete string data, including the string vector and values.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteString(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel in which to place the
string data.

Remarks:
e Please refer to LSloadStringData for the detailed string support.

LSgetStringValue()

Description:
Retrieve a string value for a specified string index.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetStringValue(pLSmodel pModel, int nStringldx, double
pdStrinVal)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel in which to place the
string data.
nStringldx An integer containing the index of the string whose value you
wish to retrieve.
pdStrinVal A pointer to a double precision quantity that returns the string
value.
Remarks:

e Please refer to LSloadStringData for the detailed string support.

FUNCTION DEFINITIONS 177

LSloadSampleSizes ()

Description:
Loads sample sizes per stage for the stochastic model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSloadSampleSizes (pLSmodel pModel, int * panSampleSize)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

panSampleSize An integer vector specifying the stage sample sizes. The length
of this vector should be at least the number of stages in the
model.

LSsetNumStages ()

Description:
Set number of stages in the model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsetNumStages (pLSmodel pModel, int numStages)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

numStages An integer specifying the number of stages in the model.

178 CHAPTER 2

LSloadConstraintStages ()

Description:

Load stage structure of the constraints in the model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSloadConstraintStages (pLSmodel pModel, int * panRstage)

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel object.
panRstage A vector in which information about the stage membership of

the constraints is held. The length of this vector is equal to the
number of constraints in the model. If constraint i belongs to
stage k , then panRstage([i] = k-1

LSloadVariableStages ()

Description:

Load stage structure of the variables in the model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSloadVariableStages (pLSmodel pModel, int * panCstage)

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel object.
panCstage A vector in which information about the stage membership of

the variables is held. The length of this vector is equal to the
number of variables in the model. If variable i belongs to stage
k, then panCstage[i] =k-1

FUNCTION DEFINITIONS 179

LSloadStocParData ()

Description:
Load stage structure of the stochastic parameters (SPARs) in the model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadStocParData (pLSmodel pModel, int * panSvarStage,
double * padSvarValue)

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel object.
panSvarStage An integer vector specifying the stages of SPARs. The length

of this vector is equal to the number of SPARs in the model. if
SPAR i belongs to stage k , then panSvarStage[i] = k-1

padSvarValue A double vector specifying the default values of SPARs. The
length of this vector is equal to the number of SPARs in the
model. If NULL, a value of zero is assumed for all SPARS.

Remarks:
o Length of SPARS can be retrieved with LS IINFO_NUM_SPARS macro.

LSaddDiscretelndep ()

Description:
Adds a new discrete independent stochastic parameter to the SP model. The positions of
stochastic parameters are specified with either (iRow,jCol) or iStv, but not with
both. For SP models where core model is described with an instruction list, 1 Stv have to be
used.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSaddDiscreteIlndep (pLSmodel pModel, int iRow, int jCol, int
iStv, int nRealizations, double * padProbs, double * padVals,
int iModifyRule)

180 CHAPTER 2

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel object.
iRow An integer specifying the row index of the stochastic

parameter. It should be ignored if iStv will be specified.

jCol An integer specifying the column index of the stochastic
parameter. It should be ignored if iStv will be specified.

iStv An integer specifying the index of stochastic parameter in the
instruction list. It should ignored if (iRow,jCol) is specified.

nRealizations An integer specifying the number of all possible realizations
for the specified stochastic parameter.

padProbs A double vector of probabilities associated with the
realizations of the stochastic parameter. The length of this
vector should be nRealizations or more.

padVals A double vector of values associated with the probabilities.
The length of this vector should be nRealizations or more.

iModifyRule A flag indicating whether stochastic parameters update the core
model by adding or replacing.

LSaddParamDistindep ()

Description:
Adds a new independent stochastic parameter with a parameteric distribution to the SP model.
The positions of stochastic parameters are specified with either (iRow, jCol) or
iStv, but not with both. For SP models where core model is described with an instruction
list, 1Stv have to be used.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSaddParamDistIndep (pLSmodel pModel, int iRow, int jCol,
int iStv, int nDistType, int nParams, double * padParams, int
iModifyRule)

FUNCTION DEFINITIONS 181

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel object.
iRow An integer specifying the row index of the stochastic
parameter. It should be ignored if iStv will be specified.
jCol An integer specifying the column index of the stochastic
parameter. It should be ignored if iStv will be specified.
iStv An integer specifying the index of stochastic parameter in the
instruction list. It should ignored if (iRow, jCol) is specified.
nDistType An integer specifying the parametric distribution type. See the
‘Distributions’ table for possible values.
padParams An double vector specifying the parameters of given
distribution.
nParams An integer specifying the length of padParams .
iModifyRule A flag indicating whether stochastic parameters update the core
model by adding or replacing. Possible values are:
e LS REPLACE
e LS ADD

LSaddDiscreteBlocks ()

Description:

Adds a new discrete stochastic block to the SP model. The positions of stochastic parameters
are specified with either (paiArows,paiAcols) orpaiStvs, butnot with both. For
SP models where core model is described with an instruction list, paiStvs have to be used.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSaddDiscreteBlocks (pLSmodel pModel, int iStage, int
nBlockEvents, double * padProb, int * pakEvent, int *
paiArows, int * paiAcols, int * paiStvs, double * padVals, int
iModifyRule)

182 CHAPTER 2

Input Arguments:

Name

Description

pModel

A reference to an instance of LSmodel object.

iStage

An integer specifying the stage of the stochastic block.

nBlockEvents

An integer specifying the number of discrete events in the
block.

padProb

An double vector of event probabilities.

pakEvent

An integer vector of starting positions of events in the sparse
matrix or instruction list. This vector should have
nBlockEvents+1 elements or more.

paiArows

An integer vector of row indices of stochastic parameters. This
vector should have pakEvent[nBlockEvents] elements. It
should be NULL when paiStvs is specified.

paiAcols

An integer vector of column indices of stochastic parameters.
This vector should have pakEvent[nBlockEvents] elements.
It should be NULL when paiStvs is specified.

paiStvs

An integer vector of indices of stochastic parameters in the
instruction list. The length of this vector should be
pakEvent[nBlockEvents] or more. It should be NULL when
(paiArows,paiAcols) is specified.

padVals

A double vector of stochastic values associated with the
stochastic parameters listed in paiStvs or (paiArows,paiAcols)
The length of this vector should be pakEvent[nBlockEvents]
or more.

iModifyRule

A flag indicating whether stochastic parameters update the core
model by adding or replacing.

LSaddScenario ()

Description:

Adds a new scenario block to the SP model. The positions of the stochastic parameters are
specified with either (paiArows, paiBAcols) orpaiStvs, butnot with both.
For SP models where core model is described with an instruction list, paiStvs have to be

used.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSaddScenario (pLSmodel pModel, int jScenario, int
iParentScen, int iStage, double dProb, int nElems, int *
paiArows, int * paiAcols, int * paiStvs, double * padVals, int
iModifyRule)

FUNCTION DEFINITIONS 183

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the index of the new scenario to be
added.

iParentScen Index of the parent scenario.

iStage Index of the stage the new scenario branches from its parent.

dProb A double scalar specifying the scenario probability.

nElems The number of stochastic parameters realized at stage iStage
in the new scenario.

paiArows An integer vector of the row indices of stochastic parameters.
This vector should have nElems elements or more. It should
be NULL when paiStvs is specified.

paiAcols An integer vector of the column indices of stochastic
parameters. This vector should have nElems elements or more.
It should be NULL when paiStvs is specified.

paiStvs An integer vector of indices of stochastic parameters in
instruction list. This vector should have nElems elements or
more. It should be NULL when (paiArows,paiAcols) is
specified.

padVals A double vector of values of stochastic parameters. This vector
should have nElems elements or more.

iModifyRule A flag indicating whether stochastic parameters update the core
model by adding or replacing.

LSloadStocParNames ()

Description:

This routine loads name data for stochastic parameters into the specified LSmodel structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSloadStocParNames (pLSmodel pModel, int numVars, char
** stv_names)

184 CHAPTER 2

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel object.
numVars An integer specifying the number of stochastic parameters.
stv_names An array of pointers to the stochastic parameter names. This
value can be NULL.
Remarks:

The data from each of the arrays passed to this routine are actually copied into arrays within
the LSmodel structure. Therefore, the calling routine can free the memory if the information

is no longer needed.

LSloadCorrelationMatrix ()

Description:

Load a correlation matrix to be used by the sampling scheme in stochastic programming.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSloadCorrelationMatrix (pLSmodel pModel, int nDim, int
nCorrType, int QCnonzeros, int *QCvarndx1, int *QCvarndx2,
double *QCcoef)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel object.
nDim An integer specifying the number of stochastic parameters
involved in the correlation structure. This value cannot be
larger than the number of stochastic parameters in the model.
nCorrType Correlation type. Possible values are:
e LS CORR PEARSON
e LS CORR SPEARMAN
e LS CORR KENDALL
QCnonzeros The number of nonzero correlation coefficients.
QCvarndx1 A vector containing the first index of variable the correlation
term belongs to (\c QCnonzeros long).
QCvarndx2 A vector containing the second index of variable the
correlation term belongs to (\c QCnonzeros long).
QCcoef A vector containing the correlation terms (\c QCnonzeros
long).

FUNCTION DEFINITIONS 185

Remarks:
Suppose the correlation matrix, involving variables 2, 4, 5, and 7 is:
@ @ 6 O
1 0.5796 -0.953 0.5409 (2)
0.5796 1 -0.4181 0.6431 (4)
-0.953 -04181 1 -0.2616 (5)
0.5409 0.6431 -0.2616 |)]
The parameters would be:
nDim =4,
QCnonzeros = 6; (in general for a dense matrix, nDim*(nDim - 1)/2)
QCvarndx1= 2 2 2 4 4 5;
QCvarndx2= 4 5 7 5 7 7;
QCcoef =0.5796 -0.953 0.5409 -0.4181 0.6431 -0.2616;

LSloadMultiStartSolution ()

Description:
Loads the multistart solution at specified index to the main solution structures for access with
solution query routines.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSloadMultiStartSolution(pLSmodel pModel, int nIndex)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel.

nlndex Index of the multistart solution

186 CHAPTER 2

LSloadVarStartPointPartial ()

Description:

Loads a partial initial point for NLP models.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSloadVarStartPointPartial(pLSmodel pModel, int nCols, int
*paiCols, double *padPrimal)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel.
nCols Number of variables in the partial solution.
paiCols A vector containing the indicies of variables in the partial
solution.
padPrimal A vector containing the values of the partial solution.

Remark:

Use LSloadBasis for LP models.

LSloadMIPVarStartPointPartial ()

Description:

Loads a partial MIP initial point for MIP/MINLP models.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSloadMIPVarStartPointPartial(pLSmodel pModel, int nCols,
int *paiCols, double *padPrimal)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel.

nCols Number of variables in the partial solution.

paiCols A vector containing the indicies of variables in the partial

solution.

padPrimal

A vector containing the values of the partial solution.

FUNCTION DEFINITIONS 187

Remark:
Values for non-integer variables are ignored except for set-variables.
In case of semi continuous variables, specify 0 or 1 to indicate whether the variable is zero or
greater-than zero.

LSreadSDPAFile ()

Description:
Read SDP model from an SDPA formatted file.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSreadSDPAFile(pLSmodel pModel, char *pszFname);

Input Arguments:

Name Description

pModel An instance of LSmodel in which to place the model.

pszFname The name of the SDPA file.

188 CHAPTER 2

LSloadPOSDData ()

Description:

This routine loads the given POSD data into the LSmodel data structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSloadPOSDData(pLSmodel pModel, int nPOSD, int
*paiPOSDdim, int *paiPOSDbeg, int *paiPOSDrowndx, int
*paiPOSDcolndx, int *paiPOSDvarndx) ;
Input Arguments:
Name Description
pModel An instance of LSmodel in which to place the problem data.
nPOSD The number of PSD diagonal blocks to load.
paiPOSDdim A vector containing the dimensions of PSD diagonal blocks.
This vector should have at least nPOSD entries.
paiPOSDbeg A vector containing beginning position of each PSD matrix in
paiPOSDrowndx, paiPOSDcolndx and paiPOSDvarndx
vectors.
paiPOSDrowndx A vector specifying the row indices of variables within PSD
matrix blocks.
paiPOSDcolndx A vector specifying the column indices of variables within
PSD matrix blocks.
paiPOSDvarndx A vector specifying the original indices of variables within
PSD matrix blocks.

LSaddObjPool()

Description:

Add a new linear objective function to the objective pool.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSaddObjPool(pLSmodel pModel, double *padC, int
objSense, int nRank, double dRelOptTol)

Input Output Arguments:

Name

Description

pModel

An instance of LSmodel in which to load the new objective
function.

FUNCTION DEFINITIONS 189

padC A vector containing the linear objective coefficients.

objSense An indicator stating whether the objective is to be maximized
or minimized. Valid values are: LS MAX or LS MIN,
respectively.

nRank A positive integer specifying the rank of this objective function

relative to others in the pool. Ties are broken arbitrarily.
(Reserved for future)

Input Arguments:

Name

Description

dRelOptTol

Relative optimality tolerance in (0,1) range specifying the
maximum deviation allowed for this objective function from its
true optimum value. Higher values allow a wider range of
admissible solutions.

Remark:

e Mixing LS MAX and LS_MIN objectives in the objective pool is allowed. But all of
them will be converted to the original objective-sense specified with LSloadLPData or
LSloadlInstruct. For instance if the original objective function is of LS MAX type and
another objective function with LS _MIN type is loaded, its objective coefficients will flip
sign (thereby converting it to a LS MAX type). Note that this change will affect the sign
of objective-function value in the solution report and the interim objective values
reported back to the callback functions.

LSremObjPool()

Description:

Removes the specified linear objective vector from the objective pool.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSremObjPool(pLSmodel pModel, int iObj)
Input Output Arguments:
Name Description
pModel An instance of LSmodel from which the objective function will
be removed.
iObj Index specifying the objective function to remove from the
pool.

190 CHAPTER 2

LSFreeObjPool()

Description:
Frees objective pool.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSFreeObjPool(pLSmodel pModel)
Input Output Arguments:
Name Description
pModel An instance of LSmodel for which the objective pool will be
freed

LSsetObjPoolParam()

Description:
Set specified parameter for the objective specified by its index.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsetObjPoolParam(pLSmodel pModel, int iObj, int mParam,
double dValue)
Input Output Arguments:
Name Description
pModel An instance of LSmodel with multiple objectives.
i0bj An index specifying the objective function.

FUNCTION DEFINITIONS 191

Input Arguments:

Name

Description

mParam

An integer macro specifying the parameter (attribute) to set for
the selected objective function. Possible values are:

LS_DINFO_POBJ
LS_DINFO_MIP_OBJ
LS_DINFO_OBJRANK
LS_DINFO_OBJWEIGHT
LS_DINFO_OBJSENSE
LS _DINFO_OBJRELTOL
LS_DINFO_OBJABSTOL

dValue

Attribute value.

192 CHAPTER 2

LSsetObjPoolName()

Description:

Set the name of the objective specified specified by its index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsetObjPoolName(pLSmodel pModel, int iObj, char
*szObjName)
Input Output Arguments:
Name Description
pModel An instance of LSmodel from which the objective function will
be removed.
i0bj An index specifying the objective function.
Input Argument:
Name Description
szObjName Name attribute value.

LSgetObjPoolParam()

Description:

Get specified parameter for the objective specified by its index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetObjPoolParam(pLSmodel pModel, int iObj, int mParam,
double *pdValue)
Input Output Arguments:
Name Description
pModel An instance of LSmodel with multiple objectives.
i0bj An index specifying the objective function you want to get the
info.

FUNCTION DEFINITIONS 193

Input Arguments:

Name

Description

mParam

An integer macro specifying the parameter (attribute) to get for
the selected objective function. Possible values are:

e LS _DINFO_POBI

e LS _DINFO_MIP_OBIJ

e LS DINFO OBJRANK
e LS _DINFO OBJWEIGHT
e LS DINFO_OBJSENSE
e LS DINFO OBJRELTOL
e LS DINFO OBJABSTOL

pdValue

An attribute value.

LSloadALLDIFFData ()

Description:

This routine loads the given ALLDIFF data into the LSmodel instance structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSloadALLDIFFData(pLSmodel pModel, int nALLDIFF, int
*paiAlldiffDim, int *paiAlldiffL, int *paiAlldiffU, int
*paiAlldiffBeg, int *paiAlldiffVar) ;

Input Arguments:

Name Description

pModel An instance of LSmodel in which to place the problem data.
nALLDIFF The number of ALLDIFF constraints to load.
paiAlldiffDim A vector containing dimension of ALLDIFF to load.
paiAlldiffL A vector containing lower bound of ALLDIFF to load.
paiAlldiffU A vector containing upper bound of ALLDIFF to load.
paiAlldiffBeg A vector containing begin position of each ALLDIFF.

paiAlldiffVar

A vector containing the scalar variable index in ALLDIFF.

194 CHAPTER 2

LSloadindData ()

Description:
This routine loads the given indicator data into the LSmodel instance structure.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadIndData(pLSmodel pModel, int nIndicRows, int
*pailndicRows, int *pailndicCols, int *pailndicVals);
Input Arguments:
Name Description
pModel An instance of LSmodel in which to place the problem data.
nlndicRows The number of indicator rows to load.
pailndicRows A vector containing the indices of indicator rows.
pailndicCols A vector containing the indices of indicator vars.
pailndicVals A vector containing the values of indicator vars.

Solver Initialization Routines

The routines in this section allow you to pass the internal solver starting-point information when
solving linear models and branching priorities when solving mixed-integer models.

LSloadBasis()

Description:
Provides a starting basis for the simplex method. A starting basis is frequently referred to as

being a “warm start”.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadBasis(pLSmodel pModel, int *panCstatus, int
*panRstatus)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel containing the model for

which you are providing the basis.

panCstatus A pointer to an integer vector containing the status of each
column in the given model. The length of this vector is equal to

FUNCTION DEFINITIONS 195

the number of variables in the model. The i-th element of the
array corresponds to the i-th variable in the model. Set each
variable’s element to 0, —1, =2, or —3 for Basic, Nonbasic at
lower bound, Nonbasic at upper bound, or Free and nonbasic at
zero value, respectively.

panRstatus

A pointer to an integer vector in which information about the
status of the rows is to be placed. The length of this vector is
equal to the number of constraints in the model. The i-th
element of the array corresponds to the i-th row in the model.
Set each row’s element to 0 or —1 if row’s associated slack
variable is basic or row’s associated slack variable is nonbasic
at zero, respectively.

Remarks:

e To retrieve a basis use LSgetBasis().

e LSloadBasis() does not require the row indices that the variables are basic in. Setting all
basic variables to a nonnegative integer is sufficient to specify a basis.

e LSgetBasis(), in addition to the indices of basic variables, returns also the indices of the
rows that variables are basic in.

LSloadVarPriorities()

Description:

Provides priorities for each variable for use by mixed-integer and global solvers.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadVarPriorities(pLSmodel pModel, int *panCprior)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
panCprior A pointer to a vector containing the priority of each column in
the given model. The length of this vector is equal to the
number of variables in the model. A valid priority value is any
nonnegative integer value. Variables with higher priority
values are given higher branching priority.
Remarks:

e Although this routine requires priorities for all variables, the mixed-integer solver only
makes use of the priorities on the integer variables and ignores those of continuous
variables. The global solver makes use of priorities on both continuous and integer

variables.

e To read priorities from a disk file, see LSreadVarPriorities().

196 CHAPTER 2

LSloadVarStartPoint()

Description:

Provides an initial starting point for nonlinear and mixed-integer solvers.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadVarStartPoint(pLSmodel pModel, double *padPrimal)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
padPrimal A pointer to a double precision vector containing starting
values for each variable in the given model. The length of this
vector is equal to the number of variables in the model.
Remarks:

e The nonlinear solver may modify the initial solution to improve its quality if sequential
linear programming (SLP) step directions are allowed.

e Although this routine requires values for all variables, the mixed-integer solver will only
make use of the values for the integer variables.

LSloadMIPVarStartPoint()

Description:

Provides an initial starting point for LSsolveMIP.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSloadMIPVarStartPoint(pLSmodel pModel, double
*padPrimal)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
padPrimal A pointer to a double precision vector containing starting

values for each variable in the given model. The length of this
vector is equal to the number of variables in the model.

LSloadBlockStructure()

Description:

FUNCTION DEFINITIONS 197

Provides a block structure for the constraint matrix by specifying block memberships of each

variable and constraint.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSloadBlockStructure(pLSmodel pModel, int nBlock, int
*panRblock, int *panCblock, int nType)

Input Arguments:

Name

Description

pModel

A pointer to an instance of LSmodel.

Output Arguments:

Name

Description

nBlock

An integer scalar that contains the number of blocks the model
matrix decomposes into.

panRblock

A pointer to an integer vector in which information about the
block membership of the constraints is placed. The length of
this vector must be > the number of constraints in the model.
The i-th element of this array keeps the information on the i-th
constraint as follows:

0: The row is a member of the linking (row) block.
k>0: The row is a member of the k-th block.
where 1 <= k <= nBlock.

panCblock

A pointer to an integer vector in which information about the
block membership of the variables is placed. The length of this
vector must be > the number of variables in the model. The j-th
element of this array contains information on the j-th column
as follows:

0: The column is a member of the linking (column) block.
k>0: The column is a member of the &-th block.
where 1 <=k <= nBlock.

nType

An integer scalar indicating the type of decomposition loaded.
The possible values are identified with the following macros:

. LS LINK BLOCKS COLS: The decomposed
model has dual angular structure (linking columns).

. LS LINK BLOCKS ROWS: The decomposed
model has block angular structure (linking rows).

. LS LINK BLOCKS BOTH: The decomposed
model has both dual and block angular structure
(linking rows and columns)

Remarks:

198 CHAPTER 2

e For more information on decomposition and linking structures, refer to Chapter 10,
Analyzing Models and Solutions.
e See also LSfindBlockStructure().

LSreadVarPriorities()

Description:
Reads branching priorities of variables from a disk file. This information is used by mixed-
integer and global solvers.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadVarPriorities(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
pszFname A pointer to a null terminated string containing the name of the

file from which to read the priorities.

Remarks:

e This routine expects one variable name and one integer priority value per record. The
variable name must appear first followed by a nonnegative integer priority value. You
need not specify priorities on all variables. If desired, you may specify priorities on only
a subset of the variables.

e To pass priorities directly through an array, see LSloadVarPriorities().

LSreadVarStartPoint()

Description:
Provides initial values for variables from a file.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadVarStartPoint(pLSmodel pModel, char *pszFname)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
pszFname A pointer to a null terminated string containing the name of the

file from which to read the starting values.

Remarks:

FUNCTION DEFINITIONS 199

e This routine expects one variable name and one value per record. The variable name
must appear first followed by a starting value. To pass initial values directly through an
array, see LSloadVarStartPoint().

LSloadPrimalStartPoint()

Description:

Loads a partial or full initial point for the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSloadPrimalStartPoint(pLSmodel pModel, int nCols, int
*paiCols, double *padPrimal)
Input Output Arguments:
Name Description
pModel A reference to an instance of LSmodel.
nCols Number of variables in the partial starting point. If paiCols is
NULL, this argument is ignored and the starting point given is
assumed to be full.
paiCols A vector containing the indices of variables in the partial/full
starting point. If it is NULL, the point given is assumed to be
full.
padPrimal A vector containing the values of the partial/full starting point.
Remarks:

e This function serves as a wrapper for the following API functions:

- LSloadVarStartPoint()

- LSloadVarStartPointPartial()
- LSloadMIPVarStartPoint()
- LSloadMIPVarStartPointPartial()
e The one called is chosen based on whether the model has integer variables and/or

paiCols is NULL.

e Therefore the input arguments should conform with the requirements of these functions

when applies.

200 CHAPTER?2

Optimization Routines

The routines in this section are called to invoke LINDO API’s solver. There are three routines—
LSsolveMIP(), LSoptimize(), and LSsolveGOP(). LSsolveMIP() should be called when the model has
one or more integer variables, while LSoptimize() should be called when all the variables are
continuous. LSsolveGOP() should be called for global optimization of nonlinear models.

LSoptimize()

Description:

Optimizes a continuous model by a given method.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSoptimize(pLSmodel pModel, int nMethod, int *pnStatus)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nMethod A parameter indicating the solver to be used in optimizing the
problem. Current options for this parameter are
e LS METHOD FREE:0,
e LS METHOD PSIMPLEX: I,
e LS METHOD DSIMPLEX: 2,
e LS METHOD BARRIER: 3,
e LS METHOD NLP: 4.
When the method is set to LS METHOD FREE, LINDO API
will decide the best solver to use. The remaining four methods
correspond to the primal simplex, dual simplex, barrier solver,
and nonlinear solvers, respectively. The barrier solver, also
known as the interior point solver, and the nonlinear solver are
optional features and require additional purchases.
Output Arguments:
Name Description
pnStatus A pointer to an integer variable containing the status of the
optimization. For possible values, refer to the Common Macro
Definitions table.
Remarks:

e The solver returns LS STATUS INFORUNB as solution status if primal or dual model is
found to be infeasible. This could be determined either by the presolver or by phase-1 of
dual simplex (LS METHOD DSIMPLEX) provided the dual is infeasible. In the former
case, the solver computes no solutions and hence all solution access routines, such as
LSgetPrimalSolution, returns an LSERR NOT AVAILABLE error. However, the solver

FUNCTION DEFINITIONS 201

can be forced to compute a basis by setting LS IPARAM SOLVER IUSOL to 1. In the
second case, the actual status of the primal model can be found by re-optimizing the
model using the primal simplex method (LS METHOD PSIMPLEX).

LINDO API is equipped with advanced recovery techniques that resolve numeric issues
stemming from

(a) Poor scaling,

(b) Linear dependency among model variables (columns).
(c) Degeneracy (redundancies in the formulation) in primal and or dual space.

In rare pathological instances, it is possible that the solver returns a

LSERR NUMERIC INSTABILITY error using the default tolerance setting. In this case,
accumulated errors that occurred during numeric computations were so severe that the
solver could not take further steps towards optimality. For all such cases, however, there
exist a certain tolerance settings that would render the model solvable. The main
tolerances that affect the numerical properties are primal and dual feasibility tolerances.
The latter is also known as the optimality tolerance.

e Ifthe LS METHOD BARRIER is used, a crossover to a basic solution is done at the
end. If, instead, you want the nonbasic interior point solution, then use
LSsetModIntParameter() to set the parameter LS IPARAM_SOLVER IPMSOL=1.

e Prior to solving the problem, LS IPARAM_DECOMPOSITION TYPE parameter can
be setto LS LINK BLOCKS NONE to force the linear solver to exploit total

decomposition.

e The solution process can be lengthy on large models. LINDO API can be set to
periodically callback to your code to allow you to monitor the solver’s progress. For
more information, see LSsetCallback().

e To solve mixed-integer models, see LSsolveMIP().

LSsolveFileLP()

Description:

Optimizes a large LP from an MPS file. This routine is appropriate only for LP models with
many more columns, e.g., millions, than rows. It is appropriate for LP’s that might otherwise
not easily fit into available memory.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSsolveFileLP(pLSmodel pModel, szFileNameMPS, szFileNameSol,
int nNoOfColsEvaluatedPerSet, int nNoOfColsSelectedPerSet,

int nTimeLimitSec, int *pnSolStatusParam, int *pnNoOfConsMps,

int *pINoOfColsMps, int *plErrorLine)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.
sFileNameMPS The name of the input MPS file.
szFileNameSol The name of the output solution file.

202 CHAPTER 2

nNoOfColsEvaluatedPerSet | The number of columns evaluated together in one set.
nNoOfColsSelectedPerSet The number of columns selected from one set.
nTimeLimitSec The time limit for the program in seconds
Output Arguments:
Name Description
pnSolStatusParam A pointer to an integer variable containing the status of the
optimization. For possible values, refer to the Common Macro
Definitions table.
pnNoOfConsMps The number of constraints in the problem.
pINoOfColsMps The number of variables (columns) in the problem.
plErrorLine The line number at which a structural error was found.
Remarks:

e L[SsolveLP can solve an LP model that is stored in an MPS file.

LSsolveGOP()

Description:

Optimizes a global optimization problem.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsolveGOP(pLSmodel pModel, int *pnStatus)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pnStatus A pointer to an integer variable containing the status of the
optimization. For possible values, refer to the Common Macro
Definitions table.
Remarks:

e LINDO API’s global optimization solver is specifically designed to solve hard nonlinear
models with multiple local solutions.

e See the Global Optimiza
could be used to fine tun

tion Parameters section above for available parameters that
e the global optimizer to yield improved performance in solving

different problem classes.

FUNCTION DEFINITIONS 203

The solution process can be lengthy on medium to large models with multiple extrema.
LINDO API can be set to periodically callback to your code to allow you to monitor the
solver’s progress. For more information, see LSsetCallback() and LSsetMIPCallback().
Global solver requires the model to be expressed in the form of an instruction-list (See
Chapter 7).

Global solver cannot solve models expressed using the black-box interface. This is
because the solver requires lower and upper bounds for the functional values of nonlinear
expressions and their derivatives for any given interval. In black-box interface, these
bounds are not available.

If the user has installed a black-box function with LSsetFuncalc, subsequent calls to
LSsolveGOP will return an error.

204 CHAPTER 2

LSsolveMIP()

Description:
Optimizes a mixed-integer programming model using branch-and-cut.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsolveMIP(pLSmodel pModel, int *pnStatus)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pnStatus A pointer to an integer variable containing the status of the
optimization. For possible values, refer to the Common Macro
Definitions table.
Remarks:

e To solve continuous models, see LSoptimize().

e To establish branching priority amongst the variable, see LSloadVarPriorities().

e The solution process can be lengthy on large models. LINDO API can be set to
periodically callback to your code to allow you to monitor the solver’s progress. For
more information, see LSsetCallback() and LSsetMIPCallback().

e Prior to solving the problem, LS IPARAM_DECOMPOSITION TYPE parameter can
be setto LS LINK BLOCKS NONE to force the mixed-integer solver to exploit total
decomposition.

e LShnbSolve(), from LINDO API 1.x, has been deprecated. LINDO API is equipped with
a state-of-the-art MIP (LP) presolver that performs a wide range of reduction and
elimination techniques that aims at reducing the size of a given problem before
optimizing it. The preprocessing phase terminates with one of the following outputs,

1) A reduced model ready to be submitted to the solver engine.
2) A solution status indicating infeasibility (LS STATUS INFEASIBLE)
3) A solution status indicating unboundedness (LS STATUS UNBOUNDED)
4) A solution status indicating infeasibility or unboundedness
(LS_STATUS INFORUNB), but no certificate of which.

FUNCTION DEFINITIONS 205

LSsolveSP ()

Description:
Solves the SP models. All parameters controlling the solver should be set before calling the
routine.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSsolveSP (pLSmodel pModel, int * pnStatus)

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel object.
pnStatus An integer reference for the status

LSoptimizeQP()

Description:
Optimizes a quadratic model with the best suitable solver.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSoptimizeQP(pLSmodel pModel, int *pnStatus)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pnStatus A pointer to an integer variable containing the status of the
optimization. For possible values, refer to the Common Macro
Definitions table.

LSPreRelaxMIP()

Description:
This method use the one-change, two-change, and the depth first enumeration heuristics to
find a feasible solution for 0-1 pure integer programs or 0-1 mixed integer programs with
only soft constraints.

206 CHAPTER?2

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSPreRelaxMIP(pLSmodel pModel, int nPreRelaxLevel, int
nPreLevel,int nPrintLevel)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nPreRelaxLevel The heuristic level.
- Set to 1, try only one-change heuristic with all Os initial
solution and reverse order.
-Set to 2, try level 1, and then try two-change heuristic.
- Set to 3, try depth-first enumeration heuristic.
nPreLevel Set an MIP presolve level, add flags.
nPrintLevel The print level for the solver.
Remarks:

e If the solver finds a feasible solution that is better than the current incumbent for the

MIP problem, then it will store the solution to pLSmodel->mipsol->primal.

LSsolveSBD()

Description:
Optimizes a given LP or MILP model with Benders’ decomposition. The model should have
dual angular block structure to be solved with this routine. The dual angular structure is
specified explicitly with the argument list.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSsolveSBD(pLSmodel pModel, int nStages, int
*panRowStage, int *panColStage, int *pnStatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nStages An integer specifying the number of stages/blocks in the dual
angular model.

panRowStage An integer array specifying the stage indices of constraints.

Stage-0 indicates linking row or column.

FUNCTION DEFINITIONS 207

panColStage An integer array specifying the stage indices of variables.
Stage-0 indicates linking row or column.
Output Arguments:
Name Description
pnStatus A pointer to an integer variable containing the status of the
optimization. For possible values, refer to the Common Macro
Definitions table.
Remarks:

e Models with block angular structure (linking rows) can be dualized and solved with
this routine.

e If the model has too many linking columns, the efficiency would be diminished
substantially. This routine is best fitted to models with several explicit blocks and a few
linking variables (e.g. 5-10% of all variables).

LSsolveHS()

Description:
Solves the given model heuristically using the specified search method. All parameters
controlling the solver should be set before calling the routine.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsolveHS(pLSmodel pModel, int nSearchMethod, int
*pnStatus)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nSearchMethod An integer macro specifying the heuristic search method.
Output Arguments:
Name Description
pnStatus An integer reference for the status.
Remark:

The solutions found by this routine are not guaranteed to be globally optimal.
If any feasible solution is found, the solution status at termination would be
LS STATUS FEASIBLE.

208 CHAPTER 2

LSsolveMipBnp()

Description:
Solve the MIP model with the branch-and-price method..

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsolveMipBnp(pLSmodel pModel, int nBlock, char
*pszFname, int *pnStatus)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nBlock An integer specifying the number of blocks.

pszFname An input file specifying the block structure (optional).
pnStatus A pointer to an integer variable containing the status of the

optimization. For possible values, refer to the Common Macro
Definitions table.

FUNCTION DEFINITIONS 209

Solution Query Routines

The routines in this section allow you to retrieve information regarding a model’s solution values
following optimization.

Note: LINDO API requires that sufficient memory is allocated for each output argument of the
retrieving function.

LSgetBasis()

Description:
Gets information about the basis that was found after optimizing the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetBasis(pLSmodel pModel, int *panCstatus, int
*panRstatus)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
panCstatus A pointer to an integer vector in which information about the
status of the variables is to be placed. The length of this vector
must be > the number of variables in the model. The i-th
element of this array returns information on the i-th variable as
follows:
>0: Index of the row that variable is basic in
—1: Nonbasic at lower bound
-2: Nonbasic at upper bound
-3: Free and nonbasic at zero value
This value may be set to NULL if column basis information is
not needed.
panRstatus A pointer to an integer vector in which information about the
status of the constraints is to be placed. The length of this
vector must be > the number of constraints in the model. The
i-th element of this array returns information on the i-th
constraint as follows:
>0: Row’s associated slack variable is basic
—-1: Row’s associated slack variable is nonbasic at zero
This value may be set to NULL if constraint information is not
needed.

210 CHAPTER 2

Remarks

e To load a basis, use LSloadBasis().

e LSloadBasis() does not require the row indices that the variables are basic in. Setting all
basic variables to a nonnegative integer is sufficient to specify a basis.

e LSgetBasis(), in addition to the indices of basic variables, returns also the indices of the
rows that variables are basic in.

e If the LP presolver was on during LP optimization, the column status of basic variables
that were eliminated from the original LP will not correspond to row indices. In order to
obtain the row indices of all the basic variables, you will need to turn off the LP
presolver and call LSoptimize() again. This reoptimization would normally take zero
iteration because the last basis is already optimal. Calling LSgetBasis() after the
reoptimization would return panCstatus with correct row indices for all basic columns.

Note: Solution query routines will return an error code of 2009 -the requested info not available-
whenever they are called after the optimization halts without a solution being computed. The
main reasons for not having a solution after optimization are

1) optimization halts due to a time or iteration limit

2) optimization halts due to numerical errors

3) optimization halts due to CTRL-C (user break)

4) presolver determines the problem to be infeasible or unbounded

5) the solver used in current optimization session (e.g. LSsolveMIP) did not produce any
results for the queried solution object (e.g. GOP solution).

The last error code returned by the optimizer can be retrieved by calling LSgetInfo() function.

LSgetDualSolution()

Description:
Returns the value of the dual variables for a given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetDualSolution(pLSmodel pModel, double *padDual)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padDual A pointer to a double precision vector in which the dual

solution is to be placed. The length of this vector must be equal
to or exceed the number of constraints in the model. It is

FUNCTION DEFINITIONS 211

assumed that sufficient memory has been allocated for this
vector.

Remarks:

e The dual variable associated with a constraint is the increase in the objective function
value per unit of increase in the right-hand side of the constraint, given the change is
within the sensitivity limits of that RHS. Thus, if the objective is MAX, then a “<”
constraint has a nonnegative dual price and a “>” constraint has a nonpositive dual price.
If the objective is MIN, then a “<” constraint has a nonpositive dual price and a “>”
constraint has a nonnegative dual price.

e To learn more about sensitivity analysis, see Chapter 10.

e To get slack values on the constraints, see LSgetSlacks().

LSgetinfo()

Description:
Returns model or solution information about the current state of the LINDO API solver after
model optimization is completed. This function cannot be used to access callback
information.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetInfo(pLSmodel pModel, int nQuery, void *pvValue)

Input Arguments:

Name Description
pModel A pointer to an instance of Lsmodel.
nQuery For possible values, refer to the tables under ‘Available

Information’ section.

Output Arguments:
Name Description
pvValue This is a pointer to a memory location where LINDO API will
return the requested information. You must allocate sufficient
memory for the requested information prior to calling this
function.
Remarks:

e This function cannot be used to access callback information. LSgetCallbackinfo() should
be used instead.

e Query values whose names begin with LS _TINFO return integer values, while those
whose names begin with LS _DINFO return double precision floating point values.

212 CHAPTER 2

LSgetProfilerinfo()

Description:
Get profiler info for the specified context.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetProfilerInfo(pLSmodel pModel, int mContext, int *pnCalls,
double *pdElapsedTime);
Input Arguments:
Name Description
pModel A pointer to an instance of Lsmodel.
mContext An integer macro specifying the profiler context.
pnCalls An integer reference to return the number of calls/hits to the
context.
pdElapsedTime A double reference to return the elapsed time in the context.

LSgetProfilerContext()

Description:
Return the profiler context description.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetProfilerContext(pLSmodel pModel, int mContext);

Input Arguments:

Name Description

pModel A pointer to an instance of Lsmodel.

mContext An integer macro specifying the profiler context.

FUNCTION DEFINITIONS 213

LSgetMIPBasis()

Description:
Gets information about the basis that was found at the node that yielded the optimal MIP
solution.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetMIPBasis(pLSmodel pModel, int *panCstatus, int
*panRstatus)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
panCstatus A pointer to an integer vector in which information about the
status of the variables is to be placed. The length of this vector
must be > the number of variables in the model. The i-th
element of this array returns information on the i-th variable as
follows:
>0: Index of row that variable is basic in
-1: Nonbasic at lower bound
-2: Nonbasic at upper bound
-3: Free and nonbasic at zero value
This value may be set to NULL if column basis information is
not needed..
panRstatus A pointer to an integer vector in which information about the
status of the constraints is to be placed. The length of this
vector must be > the number of constraints in the model. The
i-th element of this array returns information on the i-th
constraint as follows:
0: Slack is basic
—1: Slack is nonbasic at zero
This value may be set to NULL if constraint information is not
needed.
Remarks:

e For information on loading a mixed-integer program’s formulation data into the system,
see LSloadVarType().

214 CHAPTER 2

LSgetMIPDualSolution()

Description:

Gets the current dual solution for a MIP model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetMIPDualSolution(pLSmodel pModel, double *padDual)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padDual A pointer to a double precision vector containing the optimal
dual solution to the LP relaxation of a MIP model by fixing all
integer variables with respect to the resident MIP solution. The
number of elements in this vector must equal, or exceed, the
number of constraints in the model.
Remarks:

e For information on loading a mixed-integer program’s formulation data into the system,

see LSloadVarType().

LSgetMIPPrimalSolution()

Description:

Gets the current primal solution for a MIP model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetMIPPrimalSolution(pLSmodel pModel, double
*padPrimal)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padPrimal A pointer to a double precision vector in which the primal

solution to the integer model is to be placed. The length of this

FUNCTION DEFINITIONS 215

vector is equal to or exceeds the number of variables in the
model—continuous and integer.

Remarks:
e For information on loading a mixed-integer program’s formulation data into the system,
see LSloadVarType().
e To get the solution for a continuous model, see LSgetPrimalSolution().

LSgetMIPReducedCosts()

Description:
Gets the current reduced cost for a MIP model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetMIPReducedCosts(pLSmodel pModel, double
*padRedCostl)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padRedCostl A pointer to a double precision vector containing the optimal
reduced costs to the LP relaxation of a MIP model by fixing all
integer variables with respect to the resident MIP solution. The
number of elements in this vector must equal, or exceed, the
number of variables in the model.
Remarks:

e For information on loading a mixed-integer program’s formulation data into the system,
see LSloadVarType().

216 CHAPTER 2

LSgetMIPSlacks()

Description:

Gets the slack values for a mixed-integer model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetMIPSlacks(pLSmodel pModel, double *padSlacks)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padSlacks A pointer to a double precision vector in which the slack values
are to be placed. The number of elements in this vector must
equal, or exceed, the number of constraints in the model.
Remarks:

e The ability to solve mixed-integer programs is an optional feature. Not all installations
will have this capability. To determine if your license includes MIP functionality, use
LSgetModellntParameter() with license information access macros.

e To get the slacks on a continuous LP model, see LSgetSlacks().

LSgetPrimalSolution()

Description:

Returns the primal solution values for a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetPrimalSolution(pLSmodel pModel, double *padPrimal)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padPrimal A pointer to a vector in which the primal solution is to be

placed. The length of this vector must equal or exceed the
number of variables in the model.

FUNCTION DEFINITIONS 217

Remarks:
e To get reduced costs on the variables, see LSgetReducedCosts().

218 CHAPTER 2

LSgetSDPSolution()

Description:

Gets the SDP matrix primal and dual values at the current solution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetSDPSolution(pLSmodel model, double *padPrimal,
double *padDual)

Input Arguments:

Name Description
model An instance of LSmodel.
Output Arguments:

Name Description

padPrimal A vector of in which the primal matrix values are to be placed.
The length of this vector is equal to sum of the number of
elements in the triangular of each SDP matrix. It is assumed
that memory has been allocated for this vector.

padDual A vector of in which the dual matrix values are to be placed.

The length of this vector is equal to sum of the number of
elements in the triangular of each SDP matrix. It is assumed
that memory has been allocated for this vector.

LSgetMIPSDPSolution()

Description:

Gets the SDP matrix primal and dual values w.r.t the given MIP solution
after fixing integer variables to their optimum value.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetMIPSDPSolution(pLSmodel model, double *padPrimal,
double *padDual)

Input Arguments:

Name Description

model An instance of LSmodel.
Output Arguments:

Name Description

FUNCTION DEFINITIONS 219

padPrimal A vector of in which the primal matrix values is to be placed.
The length of this vector is equal to sum of the number of
elements in the triangular of each SDP matrix. It is assumed
that memory has been allocated for this vector.

padDual A vector of in which the dual matrix values is to be placed.

The length of this vector is equal to sum of the number of
elements in the triangular of each SDP matrix. It is assumed
that memory has been allocated for this vector.

Note: The most parts of this function are from LSgetDualMIPsolution() and the logic is the same.

LSgetReducedCosts()

Description:

Returns the reduced cost of all variables of a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetReducedCosts(pLSmodel pModel, double
*padRedcosts)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padRedcosts A pointer to a double precision vector in which the reduced
costs of the variables are to be returned. The vector length must
be equal to or exceed the number of variables in the model.
Remarks:

e The reduced cost is the dual price of the simple lower or upper bound constraint of a
variable. Thus, if the objective is MIN, then a binding lower bound will have a positive
reduced cost, and a binding upper bound will have a negative reduced cost. If the
objective is MAX, then a binding lower bound will have a negative reduced cost, and a
binding upper bound will have a positive reduced cost.

e To get primal values on the variables, see LSgetPrimalSolution().

LSgetReducedCostsCone()

Description:

Returns the reduced cost of all cone variables of a given model.

Returns:

220 CHAPTER 2

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetReducedCostsCone(pLSmodel pModel, double
*padRedcosts)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padRedcosts A pointer to a double precision vector in which the reduced

costs of the variables are to be returned. The vector length must
be equal to or exceed the number of variables in the model.

LSgetSlacks()

Description:

Returns the value of the slack variable for each constraint of a continuous model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetSlacks(pLSmodel pModel, double *padSlacks)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padSlacks A pointer to a double precision vector in which the slack
variables are to be returned. The length of this vector must
equal or exceed the number of constraints in the model. Slack
values are computed using the formula: s = b — Ax, where s is
the vector of slacks, b is the right-hand side vector, A4 is the
nonzero matrix for the basic columns, and x is the solution
vector. Thus, less-than-or-equal-to constraints will return
nonnegative values when feasible, while
greater-than-or-equal-to constraints will return nonpositive
values when feasible.
Remarks:

e To get dual values of the constraints, see LSgetDualSolution().
e To get the slacks for a MIP model, see LSgetMIPSlacks().

FUNCTION DEFINITIONS 221

LSgetSolution()

Description:

Gets the solution specified by the second argument,

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetSolution(pLSmodel pModel, int nWhich, double
*padValues)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nWhich An integer parameter specifying the solution to be retrieved.
Possible values are:
] LSSOL BASIC PRIMAL
o LSSOL BASIC DUAL
o LSSOL BASIC SLACK
o LSSOL BASIC REDCOST
] LSSOL _INTERIOR PRIMAL
o LSSOL INTERIOR DUAL
o LSSOL INTERIOR SLACK
o LSSOL INTERIOR REDCOST
Output Arguments:
Name Description
padValues A pointer to a double precision vector in which the specified
solution is to be placed. The length of this vector must be equal
to or exceed the number of elements to be retrieved (e.g.
number of constraints or variables). It is assumed that
sufficient memory has been allocated for this vector.

222 CHAPTER 2

LSgetNodePrimalSolution ()

Description:
Returns the primal solution for the specified node.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetNodePrimalSolution (pLSmodel pModel, int iScenario,
int iStage, double * padX)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario the node belongs to.
iStage An integer specifying the stage the node belongs to.

padX A double array to return specified nodes's dual solution The

length of this vector is equal to the number of variables in the
stage associated with the node. It is assumed that memory has
been allocated for this vector.

Remarks:
The number of variables or constraints in a stage can be accessed via LSgetStocInfo().

LSgetScenarioObjective ()

Description:
Returns the objective value for the specified scenario.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetScenarioObjective (pLSmodel pModel, int iScenario,
double * pObj)

FUNCTION DEFINITIONS 223

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.
iScenario An integer specifying the scenario index.

pObj A reference to a double variable to return the result.

LSgetScenarioPrimalSolution ()

Description:

Returns the primal solution for the specified scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetScenarioPrimalSolution (pLSmodel pModel, int
iScenario, double * padX, double * pObj)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel object.
iScenario An integer specifying the scenario index.
padX A double array to return scenario's primal solution. The length
of this vector is equal to the number of variables in the core
model. It is assumed that memory has been allocated for this
vector.
pObj A reference to a double to return the objective value for the
specified scenario.

LSgetScenarioReducedCost ()

Description:

Returns the reduced cost for the specified scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSgetScenarioReducedCost (pLSmodel pModel, int iScenario,
double * padD)

224 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario index.

padD A double array to return scenario's reduced cost. The length of

this vector is equal to the number of variables in the core
model. It is assumed that memory has been allocated for this
vector.

LSgetNodeDualSolution ()

Description:

Returns the dual solution for the specified node.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSgetNodeDualSolution (pLSmodel pModel, int iScenario, int
iStage, double * padY)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario the node belongs to
iStage An integer specifying the stage the node belongs to.

padY A double array to return specified nodes's dual solution The

length of this vector is equal to the number of constraints in the
stage associated with the node. It is assumed that memory has
been allocated for this vector.

LSgetNodeSlacks ()

Description:

Returns the dual solution for the specified node.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSgetNodeSlacks (pLSmodel pModel, int iScenario, int
iStage, double * padS)

FUNCTION DEFINITIONS 225

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario the node belongs to

iStage An integer specifying the stage the node belongs to.

padS a double array to return specified nodes's dual solution The
length of this vector is equal to the number of constraints in the
stage associated with the node. It is assumed that memory has
been allocated for this vector.

LSgetScenarioDualSolution ()

Description:

Returns the dual solution for the specified scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSgetScenarioDualSolution (pLSmodel pModel, int iScenario,
double * padY)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario index.

iStage An integer specifying the stage the node belongs to.

padY A double array to return scenario's dual solution The length of

this vector is equal to the number of constraints in the core
model. It is assumed that memory has been allocated for this
vector.

226 CHAPTER 2

LSgetScenarioSlacks ()

Description:

Returns the primal slacks for the specified scenario.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSgetScenarioSlacks (pLSmodel pModel, int iScenario,
double * padS)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iScenario An integer specifying the scenario index.

iStage An integer specifying the stage the node belongs to.

padS A double array to return scenario's primal slacks. The length of

this vector is equal to the number of constraints in the core
model. It is assumed that memory has been allocated for this
vector.

LSgetNextBestMIPSoln()

Description:

Generates the next best (in terms of objective value) solution for the current mixed-integer
model. Repeated calls to LSgetNextBestMIPSoln() will allow one to generate the so-called
K-Best solutions to mixed-integer model. This is useful for revealing alternate optima.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetNextBestMIPSoln(pLSmodel pModel, int
*pnIntModStatus)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pnIntModStatus A pointer to an integer varaible that will return the status on the

new, next-best solution.

FUNCTION DEFINITIONS 227

Remarks:

LSgetNextBestMIPSoln() may not be used on models containing general integer
variables; all integer variables must be binary.

LSgetNextBestMIPSoln() modifies the original, base model by adding one constraint to
the end of the model for each call to LSgetNextBestMIPSoln(). To return to the original
model, you must delete these additional constraints after the final call to
LSgetNextBestMIPSoln().

To generate the K-Best solutions for a MIP, one would perform the following steps:

1. Generate the base MIP model.

2. Call LSsolveMIP() to optimize the base model.

3. Seti=0.

4. If current solution status is not optimal, go to step 10.

5. Call one or more model solution query routines to retrieve the current solution.
6. Seti=i+l.

7. Ifi>=K goto 10.

8. Call LSgetNextBestMIPSoln() to find the next best solution.

9. Gotostep 4.

10. Exit.

LSgetNextBestSol()

Description:

Compute the next best (alternate) solution to the given LP.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetNextBestSol(pLSmodel pModel, int *pnStatus)
Input Output Arguments:

Name Description

pModel An instance of LSmodel.

pnStatus An integer reference to return the status of next solution.
Remarks:

The first call to this routines creates a pool of alternate optimal solutions.

The pool has a capacity specified by LS IPARAM SOLPOOL_LIM parameter.

Each successive call to the function fetches the next solution and loads it to the main
solution structures to access with solution-query routines (e.g. LSgetPrimalSolution,
LSgetDualSolution etc..).

228 CHAPTER 2

LSreadSolutionFromSolFile()

Description:
This method reads the LP solution from a binary file. Since the number of columns can be too
large to handle in a single array, the method takes in two parameters, IBeginIndexPrimalSol
and 1EndIndexPrimalSol and returns all the primal values for the columns whose index lies
between these two values.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSreadSolutionFileLP(char *szFileNameSol, int nFileFormat,
long long IBeginlndexPrimalSol, long long
IEndIndexPrimalSol, int *pnSolStatus, double *pdObjValue,
int *pnNoOfCons, long long *pINoOfCols, int
*pnNoOfColsEvaluated, int *pnNoOflterations, double
*pdTimeTakenInSeconds, double *padPrimalValues, double

*padDualValues)
Input Arguments:
Name Description
szFileNameSol The name of the binary file from which the solution is to be
read.
nFileFormat The format of the binary file. We are currently supporting a

single format in which data is written to the file in the
following sequence:

1) File format: Possible values are:
LS _SPRINT OUTPUT FILE FREE (default)
LS SPRINT OUTPUT FILE BIN
LS SPRINT OUTPUT FILE TXT

2) Solution status

3) Objective value

4) No of constraints

5) No of columns (total)

6) No of columns (evaluated)
7) Primal solution

8) Dual solution

IBeginIndexPrimalSol The starting index for the set of columns whose primal value is
to be retuned.

IEndIndexPrimalSol The ending index of the set of columns whose primal value is
to be retuned.

FUNCTION DEFINITIONS 229

Output Arguments:

Name Description

nSolStatus The status of the solution: feasible, infeasible,etc...

dObjValue Objective function value.

nNoOfCons Number of constraints.

INoOfCols Number of columns in the MPS file.

nNoOfColsEvaluated Number of columns that were evaluated and added to the LP at
some stage.

pnNoOflterations Number of iterations.

pdTimeTakenInSeconds | Time elapsed in seconds.

padPrimalValues Primal solution, this array must be assigned memory
equivalent to (IEndIndexPrimalSol - 1BeginIndexPrimalSol +
1) doubles.

padDualValues Dual solution.

LSloadGASolution()

Description:

Loads the GA solution at specified index in the final population to the main solution
structures for access with solution query routines.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSloadGASolution(pLSmodel pModel, int nindex);

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
nlndex Index of the individual in the final population

230 CHAPTER 2

LSgetObjPoolNumSol()

Description:
Get the total number of alternate solutions found w.r.t the objective function at specified
index.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int SgetObjPoolNumSol(pLSmodel pModel, int nObjIndex,

int *pNumSol)

Input Arguments:

Name Description
pModel An instance of LSmodel.
nObjlndex Index of the objective function for which the solution is

queried for.

Output Arguments:
Name Description
pNumSol An integer reference to return the number of solutions found.

LSloadSolutionAt()

Description:
Loads the solution at specified index and objective level to the main solution structures for
access with solution query routines.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadSolutionAt(pLSmodel pModel, int nObjIndex, int

nSollndex)

Input Arguments:

Name Description

pModel An instance of LSmodel.

nObjIndex Index of the objective function for which the solution is

queried for.

nSollndex Index of the alternative solution for the specified objective
function.

FUNCTION DEFINITIONS 231

Model Query Routines

The routines in this section allow you to retrieve the components of the model data.

LSgetConeDatai()

Description:

Retrieve data for cone i.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetConeDatai(pLSmodel pModel, int iCone, char
*pachConeType, double *pdConeAlpha, int *piNnz, int
*piCols)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
iCone The index of the cone to retrieve the data for.
Output Arguments:
Name Description
pachConeType A pointer to a character variable that returns the constraint’s
type. The returned value will be “'Q', or ‘R’.
pdConeAlpha Alpha of power cone.
piNnz A pointer to an integer variable that returns the number of
variables characterizing the cone.
piCols A pointer to an integer vector that returns the indices of
variables characterizing the cone.

232 CHAPTER 2

LSgetConelndex()

Description:
Gets the index of a cone with a specified name.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetConelndex(pLSmodel pModel, char *pszConeName, int
*piCone)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
pszConeName A pointer to a null-terminated string containing the name of the

cone for which the index is requested.

Output Arguments:
Name Description
piCone A pointer to an integer scalar that returns the index of the cone

requested.

LSgetConeNamei()

Description:
Gets the name of a cone with a specified index.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetConeNamei(pLSmodel pModel, int iCone, char
*pachConeName)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
iCone Index of the cone whose name is to be retrieved.
Output Arguments:
Name Description
pachConeName A pointer to a character array that contains the cone’s name
with a null terminator.

FUNCTION DEFINITIONS 233

LSgetConstraintDatai()

Description:
Gets data on a specified constraint.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetConstraintDatai(pLSmodel pModel, int iCon, char
*pchContype, char *pchlsNlp, double *pdB)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iCon The index of the constraint you wish to receive information on.
Output Arguments:

Name Description

pchContype A pointer to a character variable that returns the constraint’s

type. The returned value will be “'L', 'E', 'G', or ‘N’, for less-
than-or-equal-to, equal to, greater-than-or-equal-to, or neutral,
respectively.

pchlsNlp A pointer to a character that returns 0 if the constraint is linear
and 1 if it is nonlinear.

pdB A pointer to a double precision variable that returns the
constraint’s right-hand side value.

234 CHAPTER 2

LSgetConstraintindex()

Description:

Gets the index of a constraint with a specified name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetConstraintIndex(pLSmodel pModel, char *pszConname,
int *piCon)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
pszConname A pointer to a character array that contains the constraint’s
name with a null terminator.
Output Arguments:
Name Description
piCon A pointer to an index of the constraint whose name is to be
retrieved.

LSgetConstraintNamei()

Description:

Gets the name of a constraint with a specified index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetConstraintNamei(pLSmodel pModel, int iCon, char
*pszConname)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iCon Index of the constraint whose name is to be retrieved.
Output Arguments:

Name Description

pszConname A pointer to a character array that contains the constraint’s

name with a null terminator.

FUNCTION DEFINITIONS 235

LSgetLPConstraintDatai()

Description:

Retrieves the formulation data for a specified constraint in a linear or mixed integer linear
program. Individual pointers may be set to NULL if a particular item is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetLPConstraintDatai(pLSmodel pModel, int iCon, char
*pchContype, double *pdB, int *pnNnz, int *paiVar, double
*padAcoef)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
iCon An integer containing the index of the constraint whose data
you wish to retrieve.
Output Arguments:
Name Description
pchContype A pointer to a character that returns the constraint’s type.
Values returned are 'L' for less-than-or-equal-to, 'E' for
equal-to, 'G' for greater-than-or-equal-to, or ‘N’ for neutral.
pdB A pointer to a double precision quantity that returns the
constraint’s right-hand side coefficient.
pnNnz A pointer to an integer that returns the number of nonzero
coefficients in the constraint.
paiVar A pointer to an integer array that returns the indices of the
variables with nonzero coefficients in the constraint. You must
allocate all required space for this array before calling this
routine.
padAcoef A pointer to a double precision array that returns the
constraint’s nonzero coefficients. You must allocate all
required space for this array before calling this routine.
Remarks:

e Ifyou know a constraint’s name, but don’t know its internal index, you can obtain the
index with a call to LSgetConstraintindex(). To get a constraint’s name, given its index,
see LSgetConstraintNamei().

236 CHAPTER 2

LSgetLPData()

Description:

Retrieves the formulation data for a given linear or mixed integer linear programming model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetLPData(pLSmodel pModel, int *pObjsense, double
*pdObjconst, double *padC, double *padB, char
*pachContypes, int *paiAcols, int *pacAcols, double
*padAcoef, int *paiArows, double *padL, double *padU)

Input Arguments:

Name

Description

pModel

A pointer to an instance of LSmodel.

Output Arguments:

Name

Description

pObjsense

A pointer to an integer indicating whether the objective is to be
maximized or minimized. Valid values are LS MAX or
LS MIN, respectively.

pdObjconst

A pointer to a double precision constant to be added to the
objective value.

padC

A pointer to a double precision vector that returns the linear
program’s objective coefficients. This vector must have at least
one element for each variable in the model.

padB

A pointer to a double precision vector that returns the
constraint right-hand side coefficients. This vector must have at
least one element for each constraint in the model.

pachContypes

A pointer to a character vector that returns the type of each
constraint. Values returned are 'L', 'E', 'G', or ‘N’ for
less-than-or-equal-to, equal-to, greater-than-or-equal-to, or
neutral, respectively. This array must contain at least one byte
for each constraint.

paiAcols

A pointer to an integer vector returning the index of the first
nonzero in each column. This vector must have »n + 1 entries,
where 7 is the number of variables in the model. The last entry
will be the index of the next appended column, assuming one
was to be appended.

pacAcols

A pointer to an integer vector returning the length of each
column. Note that the length of a column can be set to be
greater than the values of paiAcols would suggest. In other
words, it is possible for pacAcols[i] < paiAcols[i+1] —

FUNCTION DEFINITIONS 237

paiAcols[{].

padAcoef

A pointer to a double precision vector returning the nonzero
coefficients of the constraint matrix. This vector must contain
at least one element for each nonzero in the constraint matrix.

paiArows

A pointer to an integer vector returning the row indices of the
nonzeros in the constraint matrix. You must allocate at least
one element in this vector for each nonzero in the constraint
matrix.

padL

A pointer to a double precision vector containing the lower
bound of each variable. If there is no lower bound on the
variable, then this value will be equal to -LS INFINITY. You
must allocate at least one element in this vector for each
variable in the model.

padU

A pointer to a double precision vector containing the upper
bound of each variable. If there is no upper bound on the
variable, then this value will be equal to LS INFINITY. You
must allocate at least one element in this vector for each
variable in the model.

Remarks:

e For information on loading a linear program’s formulation data into the system, see

LSloadLPData().

e Pointers may be set to NULL for any information not required.

238 CHAPTER 2

LSgetLPVariableDataj()

Description:

Retrieves the formulation data for a specified variable. Individual pointers may be set to
NULL if a particular item is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetLPVariableDataj(pLSmodel pModel, int iVar, char
*pchVartype, double *pdC, double *pdL, double *pdU, int
*pnAnnz, int *paiArows, double *padAcoef)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
iVar An integer containing the index of the variable whose data you
wish to retrieve.
Output Arguments:
Name Description
pchVartype A pointer to a character that returns the variable’s type. Values
returned are 'B' for binary, 'C' for continuous, or 'I' for general
integer.
pdC A pointer to a double precision quantity that returns the
variable’s objective coefficient.
pdL A pointer to a double precision quantity that returns the
variable’s lower bound.
pdU A pointer to a double precision quantity that returns the
variable’s upper bound.
pnAnnz A pointer to an integer that returns the number of nonzero
constraint coefficients in the variable’s column.
paiArows A pointer to an integer array that returns the row indices of the
variable’s *pnAnnz nonzeros. You must allocate the required
space for this array before calling this routine.
padAcoef A pointer to a double precision array that returns the variable’s
nonzero coefficients. You must allocate all required space for
this array before calling this routine.
Remarks:

e Ifyou know a variable’s name, but don’t know its internal index, you can obtain the
index with a call to LSgetVariableIndex(). To get a variable’s name given its index, see

LSgetVariableNamej().

FUNCTION DEFINITIONS 239

LSgetNameData()

Description:

Returns the names—objective, right-hand side vector, range vector, bound vector, constraints,
and variables—of a given model. Any of the pointers to the names can be input as NULL if
the corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetNameData(pLSmodel pModel, char *pszTitle, char
*pszObjname, char *pszRhsname, char *pszRngname, char
*pszBndname, char **paszConnames, char *
pachConNameData , char **paszVarnames, char
*pachVarNameData)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pszTitle A pointer to a character array that returns the title of the
problem. A model’s title can be of any length, so be sure to
allocate sufficient space to store the title you originally passed
to LINDO API. The returned title will be null terminated.
pszObjname A pointer to a character array that will return the name of the
objective, null terminated.
pszRhsname A pointer to a character array that returns the name of the
right-hand side vector, null terminated.
pszRngname A pointer to a character array that returns the name of the range
vector, null terminated. This pointer is reserved for future use.
pszBndname A pointer to a character array that returns the name of the
bound vector, null terminated.
paszConnames A pointer to an array of pointers of length equal to or
exceeding the number of constraints. On return, these pointers
will point to the constraint names stored in the character array
pointed to by paszConNameData. You must allocate space for
m pointers, where m is the number of rows.
pachConNameData A pointer to an array of characters used to store the actual
constraint name data.
paszVarnames A pointer to an array of pointers of length equal to or
exceeding the number of variables. On return, the pointers will

240 CHAPTER 2

point to the variable names stored in the character array
pointed to by paszVarNameData. Y ou must allocate space for
n pointers, where n is the number of variables.

pachVarNameData

A pointer to an array of characters used to store the actual
variable name data.

Remarks:

e The right-hand side name, range name, and bound name are typically only used if the
model was read from an MPS file.

e You may set any of the pointers to NULL if the particular name data is not relevant.

e The constraint and variable name data in the output arguments pachConNameData and
pachVarNameData are created internally by LINDO API with LSloadNameData.

LSgetNLPConstraintDatai()

Description:

Gets data about the nonlinear structure of a specific row of the model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetNLPConstraintDatai (pLSmodel pModel, int i, int
*pnNnzi, int *paiColi, double *padCoefi);
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
i An integer indicating the constraint to retrieve the data for.
Output Arguments:
Name Description
pnNnzi A pointer to an integer returning the number of nonlinear
nonzeros in constraint i.
paiColi A pointer to an integer vector returning the column indices of
the nonlinear nonzeros in the i row of the constraint matrix.
padCoefi A pointer to a double precision vector returning the current
values of the nonzero coefficients in the i row of the coefficient
(Jacobian) matrix.
Remarks:

e It is the caller’s responsibility to make sure that the vectors paiColi and padCoefi have
room for at least *pnNnzi elements.

FUNCTION DEFINITIONS 241

LSgetNLPData()

Description:

Gets data about the nonlinear structure of a model, essentially the reverse of

LSloadNLPData().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetNLPData(pLSmodel pModel, int *paiCols, int *pacCols,
double *padCoef, int *paiRows, int *pnObj, int *paiObyj,
double *padObjCoef, char *pachConType)
Input Arguments:
Name Description
pModel Pointer to an instance of LSmodel.
Output Arguments:
Name Description
paiCols A pointer to an integer vector returning the index of the first
nonlinear nonzero in each column. This vector must have
nVars+1 entries, where nVars is the number of variables. The
last entry will be the index of the next appended column,
assuming one was to be appended.
pacCols A pointer to an integer vector returning the number of
nonlinear elements in each column.
padCoef A pointer to a double precision vector returning the current
values of the nonzero coefficients in the (Jacobian) matrix.
This can be NULL.
paiRows A pointer to an integer vector returning the row indices of the
nonlinear nonzeros in the coefficient matrix.
pnObj An integer returning the number of nonlinear variables in the
objective function.
paiObj A pointer to an integer vector returning column indices of the
nonlinear terms in the objective.
padObjCoef A pointer to a double precision vector returning the current
partial derivatives of the objective corresponding to the
variables paiObj [].
pachConType A pointer to a character vector whose elements indicate
whether a constraint has nonlinear terms or not. If
pachConType [i] > 0, then constraint i has nonlinear terms.

242 CHAPTER 2

LSgetNLPObjectiveData()

Description:
Gets data about the nonlinear structure of the objective row.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetNLPObjectiveData (pLSmodel pModel, int *pnObj, int
*paiObj, double *padObjCoef);

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pnObj A pointer to an integer returning the number of nonlinear

variables in the objective function.

paiObj A pointer to an integer vector returning column indices of the
nonlinear terms in the objective.

padObjCoef A pointer to a double precision vector returning the current
partial derivatives of the objective corresponding to the
variables in paiObj with respect to the last primal solution
computed during the iterations

Remarks:
e Itis the caller’s responsibility to make sure that the vectors paiObj and padObjCoef have
room for at least *pnObj elements.

FUNCTION DEFINITIONS 243

LSgetNLPVariableDataj()

Description:

Gets data about the nonlinear structure of a specific variable of the model

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetNLPVariableDataj (pLSmodel pModel,int j, int
*pnNnzj, int *paiRowj, double * padCoef));
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
j An integer indicating the column to retrieve the data for.
Output Arguments
Name Description
pnNnzj A pointer to an integer returning the number of nonlinear
nonzeros in column j.
paiRowj A pointer to an integer vector returning the row indices of the
nonlinear nonzeros in the j column of the constraint matrix.
padCoefj A pointer to a double precision vector returning the current
values of the nonzero coefficients in the /" column of the
coefficient (Jacobian) matrix with respect to the last primal
solution computed during the iterations.
Remarks:

e It is the caller’s responsibility to make sure that the vectors paiRowj and padCoefj have
room for at least *pnNnzj elements.

244 CHAPTER 2

LSgetQCData()

Description:

Retrieves the quadratic data from an LSmodel data structure. Any of the pointers in the output
argument list can be set to NULL if the corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error codes.

Prototype:
int LSgetQCData(pLSmodel pModel, int *paiQCrows, int
*paiQCcolsl, int *paiQCcols2, double *padQCcoef)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel from which to retrieve the
problem data.
Output Arguments:
Name Description
paiQCrows A pointer to an integer vector containing the index of the
constraint associated with each quadratic term with a nonzero
coefficient. The objective row is indicated with an index of
-1.This vector must have room for all nonzero entries.
PaiQCcolsl A pointer to an integer vector containing the index of the first
variable defining each quadratic term. This vector must have
one element for each nonzero in the matrix.
paiQCcols2 A pointer to an integer vector containing the index of the second
variable defining each quadratic term. This vector must have
one element for each nonzero in the matrix.
padQCcoef A pointer to a double vector containing the nonzero coefficients
in the quadratic matrix. This vector must also have space for
each nonzero matrix element.
Remarks:

o LSgetQCData does not return the number of nonzeros in the Q matrices. You can get that
information using LSgetInfo().

FUNCTION DEFINITIONS 245

LSgetQCDatai()

Description:

Retrieves the quadratic data associated with constraint i from an LSmodel data structure. Any
of the pointers in the output argument list can be set to NULL if the corresponding

information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error codes.

Prototype:
int LSgetQCDatai(pLSmodel pModel, int iCon, int *pnQCnnz, int
*paiQCcolsl, int *paiQCcols2, double *padQCcoef)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel from which to retrieve the
problem data.
iCon An integer scalar specifying the constraint for which the
quadratic data will be retrieved.
Output Arguments:
Name Description
pnQCnnz A pointer to an integer containing the number of nonzeros in the
coefficient matrix of the quadratic term.
paiQCcolsl A pointer to an integer vector containing the index of the first
variable defining each quadratic term. This vector must have
one element for each nonzero in the matrix.
paiQCcols2 A pointer to an integer vector containing the index of the second
variable defining each quadratic term. This vector must have
one element for each nonzero in the matrix.
padQCcoef A pointer to a double vector containing the nonzero coefficients
in the quadratic matrix. This vector must also have space for
each nonzero matrix element.

246 CHAPTER 2

LSgetSemiContData()

Description:
Retrieves the semi-continuous data from an LSmodel data structure. Any of the pointers in the
output argument list can be set to NULL if the corresponding information is not required.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error codes..

Prototype:

int LSgetSemiContData(pLSmodel pModel, int *piNvars, int
*piVarndx, double *padl, double *padu)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel from which to retrieve the
problem data.
Output Arguments:
Name Description
piNvars A pointer to an integer variable to return the number of semi-

continuous variables.

piVarndx A pointer to an integer vector to return the indices of semi-
continuous variables.

padl A pointer to a vector to return the lower bounds of semi-
continuous variables.

padu A pointer to a vector to return the upper bounds of semi-
continuous variables.

FUNCTION DEFINITIONS 247

LSgetSETSData()

Description:

Retrieves sets data from an LSmodel data structure. Any of the pointers in the output
argument list can be set to NULL if the corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error codes

Prototype:
int LSgetSETSData(pLSmodel pModel, int *piNsets, int *piNtnz,
char *pachSETtype, int *piCardnum, int *piNnz, int piBegset,
int *piVarndx)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel from which to retrieve the
problem data.
Output Arguments:
Name Description
piNsets A pointer to an integer variable to return the number of sets in
the model.
piNtnz A pointer to an integer variable to return the total number of
variables in the sets.
pachSETtype A pointer to a character array to return the type of sets in the
model. The size of this array should be at least (*piNsets)
piCardnum A pointer to an integer array to return the cardinalities of sets in
the model. The size of this array should be at least (*piNsets)
piNnz A pointer to an integer array to return the number of variables in
each set in the model. The size of this array should be at least
(*piNsets)
piBegset A pointer to an integer array returning the index of the first
variable in each set. This vector must have (*piNsets + 1)
entries, where *piNsets is the number of sets in the model. The
last entry will be the index of the next appended set, assuming
one was to be appended.
piVarndx A pointer to an integer vector returning the indices of the
variables in the sets. You must allocate at least one element in
this vector for each <variable,set> tuple (i.e. at least *piNtnz
elements are required.)

248 CHAPTER 2

LSgetSETSDatai()

Description:

Retrieves the data for set i from an LSmodel data structure. Any of the pointers in the output
argument list can be set to NULL if the corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error codes.

Prototype:
int LSgetSETSDatai(pLSmodel pModel, int iSet, char
*pachSETType, int *piCardnum, int *piNnz, int *piVarndx)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel from which to retrieve the
problem data.
iSet The index of the set to retrieve the data for.
Output Arguments:
Name Description
pachSETType A pointer to a character variable to return the set type.
piCardnum A pointer to an integer variable to return the set cardinality.
piNnz A pointer to an integer variable to return the number of
variables in the set.
piVarndx A pointer to an integer vector to return the indices of the
variables in the set. This vector should have at least (*piNnz)
elements.

FUNCTION DEFINITIONS 249

LSgetVariableIndex()

Description:

Retrieves the internal index of a specified variable name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetVariableIndex(pLSmodel pModel, char *pszVarname,
int *piVar)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
pszVarname A pointer to a null terminated character string containing the
name of the variable.
Output Arguments:
Name Description
piVar A pointer to an integer that returns the variable’s index.
Remarks:

e To get a variable’s name given its index, see LSgetVariableNamej().
e Ifyou have problems with this routine, watch out for embedded blanks. For example,

"X005

" (four trailing blanks) is not the same as " X005" (four leading

blanks), is not the same as "X005" (no blanks).
o Refer to LSreadMPSFile() for a detailed description of the internal formatting of the

name data.

250 CHAPTER 2

LSgetVariableNamej()

Description:
Retrieves the name of a variable, given its index number.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetVariableNamej(pLSmodel pModel, int iVar, char
*pszVarname)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
iVar An integer containing the index of the variable whose name

you wish to retrieve.

Output Arguments:
Name Description
pszVarname A pointer to a character array that returns the variable’s name
with a null terminator.
Remarks:

e To get a variable’s formulation data given its index, see LSgetLPVariableDataj().

LSgetVarStartPoint()

Description:
Retrieves the values of the initial primal solution.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetVarStartPoint(pLSmodel pModel, double *padPrimal)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padPrimal A pointer to a double precision vector containing starting

values for each variable in the given model. The length of this
vector is equal to the number of variables in the model.

FUNCTION DEFINITIONS 251

LSgetVarType()

Description:

Retrieves the variable types and their respective counts in a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetVarType(pLSmodel pModel, char *pachVartypes)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pachVartypes A pointer to a vector returning the type of each variable.
Return value for each variable is either
‘C’ for a continuous variable,
‘B’ for a binary variable, or
‘I’ for a general integer variable.
The length of this vector must be at least that of the current
number of variables in the model. This pointer can be set to
NULL if the variable types are not required.
Remarks:

e For information on loading a mixed-integer program’s formulation data into the system,

see LSloadVarType().

LSgetStageName ()

Description:

Get stage name by index.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSgetStageName (pLSmodel pModel, int stagelndex, char *
stageName)

252 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

stageIndex An integer specifying the index of the stage to retrieve the
name for.

stageName A string to retrieve the stage name (max length is 255
characters).

LSgetStagelndex ()

Description:
Get index of stage by name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSgetStageIndex (pLSmodel pModel, char * stageName, int *
stagelndex)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

stageName A string specifying the name of the stage to return the index
for.

stageIndex A reference to an integer to return the index of the stage.

LSgetStocParindex ()

Description:

Get the index of stochastic parameter by name.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSgetStocParIndex (pLSmodel pModel, char * svName, int *
svindex)

FUNCTION DEFINITIONS 253

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

svName A string specifying the name of the stochastic parameter to
return the index for.

svindex A reference to an integer to return the index of the stochastic
parameter.

LSgetStocParName ()

Description:
Get name of stochastic parameter by index.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetStocParName (pLSmodel pModel, int svindex, char *
svName)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel object.
svindex A reference to an integer to return the index of the stochastic
parameter.
svName A string specifying the name of the stochastic parameter to
return the index for.

LSgetScenarioName ()

Description:
Get scenario name by index.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetScenarioName (pLSmodel pModel, int jScenario, char *
scenarioName)

254 CHAPTER 2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the scenario index.

scenarioName A string reference to return the name of the scenario (Max
lengt 255 characters).

LSgetScenariolndex ()

Description:
Get index of a scenario by its name.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetScenariolndex (pLSmodel pModel, char * scenarioName,
int * jScenario)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

scenarioName A string specifying the name of the scenario to return the index
for.

jScenario A reference an integer to return the index of the scenario.

LSgetProbabilityByScenario ()

Description:
Returns the probability of a given scenario.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetProbabilityByScenario (pLSmodel pModel, int jScenario,
double * dprob)

FUNCTION DEFINITIONS 255

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the scenario index.

dprob A reference to a double to return the probabability of the
scenario.

LSgetProbabilityByNode ()

Description:
Returns the probability of a given node in the stochastic tree.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes
Prototype:

int LSgetProbabilityByNode (pLSmodel pModel, int iNode,
double * dprob)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iNode An integer specifying the node index.

dprob A reference to a double to return the probabability of the node.

LSgetDeteqModel ()

Description:
Get the deterministric equivalent (DEQ) of the SP model, building it if not existent.

Returns:
ideModel an instance of LSmodel object referring to the DEQ model

Prototype:

int LSgetDeteqModel (pLSmodel pModel, int iDeqType, int *
perrorcode)

256 CHAPTER 2

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel object.
iDeqType An integer specifying the DEQ type (implicit or explicit).

Possible values are:
LS DETEQ FREE
LS DETEQ IMPLICIT
LS DETEQ EXPLICIT

perrorcode an reference to an integer to return the error code.

LSgetNodeListByScenario ()

Description:
Retrieves the indices of the nodes that belong to a given scenario.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetNodeListByScenario (pLSmodel pModel, int jScenario,
int * pNodesOnPath, int * pnNodes)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.
jScenario An integer specifying the scenario index
pNodesOnPath An integer array to return the node list constituting the

scenario. The length of this vector is equal to the number of
stages in the model. It is assumed that memory has been
allocated for this vector.

pnNodes An integer pointer to return the actual number of nodes on the
scenario.

Remarks:
Also loads the nodes of the specified scenario into an internal buffer.

LSgetStocParOutcomes ()

Description:
Retrieve the outcomes of stochastic parameters for the specified scenario.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 257

Prototype:
int LSgetStocParOutcomes (pLSmodel pModel, int jScenario,
double * padVals, double * pdProbability)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel object.
jScenario An integer specifying the scenario index. be at least the number
of stochastic parameters in the model.
padVals a double vector to return the values of stochastic parameters for
the specified scenario. The length of this vector should be at
least the number of stochastic parameters in the model.
pdProbability probability of the scenario.
Remarks:

Total number of stochastic parameters could be retrived with LS IINFO NUM_SPARS.

LSgetStocParData ()

Description:

Retrieve the data of stochastic parameters.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetStocParData (pLSmodel pModel, int * paiStages, double
* padVals)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel object.
paiStages an integer vector to return the stages of stochastic parameters.
The length of this vector should be at least the number of
stochastic parameters in the model.
padVals a double vector to return the values of stochastic parameters for
the specified scenario. The length of this vector should be at
least the number of stochastic parameters in the model.
Remarks:

Total number of stochastic parameters could be retrived with LS IINFO NUM_SPARS.

258 CHAPTER 2

LSgetDiscreteBlocks ()

Description:
Gets the stochastic data for the discrete block event at specified index.

Returns:
errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetDiscreteBlocks (pLSmodel pModel, int iEvent, int *
nDistType, int * iStage, int * nRealzBlock, double * padProbs,
int * iModifyRule)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iEvent An integer specifying the index of the discrete block event.
nDistType A reference to an integer to return the distribution type of the

event (optional).

iStage A reference to an integer to return the stage index of the block
event.
nRealzBlock A reference to an integer to return the number of block

realizations in the event.

padProbs An double vector to return event probabilities. The length of
this vector should be *nRealzBlock or more.
iModifyRule A reference to an integer to return the flag indicating whether
stochastic parameters update the core model by adding or
replacing.
Remarks:

iEvent cannot be larger than the total number of discrete block events in the SP model. You
can use LSgetStocInfo() or LSgetInfo() with LS IINFO_STOC _NUM_ EVENTS BLOCK to
retrieve the maximum possible value for iEvent .

FUNCTION DEFINITIONS 259

LSgetDiscreteBlockOutcomes ()

Description:
Gets the outcomes for the specified block-event at specified block-realization index.

Returns:
errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetDiscreteBlockOutcomes (pLSmodel pModel, int iEvent,
int iRealz, int * nRealz, int * paiArows, int * paiAcols, int *
paiStvs, double * padVals)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iEvent An integer specifying the index of the discrete block event.
iRealz An integer specifying the index of a block realization in the

specified block event.

nRealz A reference to an integer to return the number of individual
stochastic parameters consitituting the block realization
iRealz.

paiArows An integer vector to return the row indices of stochastic

parameters. in the block realization iRealz . This vector should
have *nRealz elements or more.

paiAcols An integer vector to return the column indices of stochastic
parameters. in the block realization iRealz . This vector should
have *nRealz elements or more.

paiStvs An integer vector to return the (instruction-list) indices of
stochastic parameters. in the block realization iRealz . This
vector should have *nRealz elements or more.

padVals A double vector to return the values associated with the
stochastic parameters listed in paiStvs or (paiArows,paiAcols)
The length of this vector should be *nRealz or more.

Remarks:
Only one of the following, paiStvs or (paiArows,paiAcols) , will take sensible values on
return. paiStvs should be used with instruction-based input, whereas (paiArows,paiAcols)
should be used with matrix-based input. The argument(s) of the other group can be NULL.

iEvent cannot be larger than the total number of discrete block events in the SP model. You
can use LSgetStocInfo() or LSgetInfo() to retrieve the maximum possible value for iEvent .

260 CHAPTER 2

LSgetDiscretelndep ()

Description:

Gets the stochastic data for the (independent) discrete stochastic parameter at the specified

event index.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetDiscretelndep (pLSmodel pModel, int iEvent, int *
nDistType, int * iStage, int * iRow, int * jCol, int * iStv, int *
nRealizations, double * padProbs, double * padVals, int *
iModifyRule)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iEvent An integer specifying the index of the discrete independent
event.

nDistType A reference to an integer to return the distribution type of the
event (optional).

iStage A reference to an integer to return the stage index of the
discrete-independent event.

iRow A reference to an integer to return the row index of the
stochastic parameter.

jCol A reference to an integer to return the column index of the
stochastic parameter.

iStv A reference to an integer specifying the index of stochastic
parameter in the instruction list.

nRealizations A reference to an integer to return the number of all possible
realizations for the stochastic parameter.

padProbs A double vector to return the probabilities associated with the
realizations of the stochastic parameter. The length of this
vector should be *nRealizations or more.

padVals A double vector to return the values associated with the
realizations of the stochastic parameter. The length of this
vector should be *nRealizations or more.

iModifyRule A reference to an integer to return the flag indicating whether
stochastic parameters update the core model by adding or
replacing.

FUNCTION DEFINITIONS 261

Remarks:
Only one of the following, iStvs or (iRow,jCol) , will take sensible values on return. iStvs
should be used with instruction-based input, whereas (iRow,jCol) should be used with
matrix-based input. The argument(s) of the other group can be NULL.

iEvent cannot be larger than the total number of discrete independent events in the SP model.
You can use LSgetStocInfo() or LSgetInfo() with

LS IINFO_STOC NUM EVENTS DISCRETE to retrieve the maximum possible value for
iEvent .

LSgetSampleSizes ()

Description:
Retrieve the number of nodes to be sampled in all stages.

Returns:
errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetSampleSizes (pLSmodel pModel, int * panSampleSizes)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

panSampleSizes an integer vector to return the sample size per stage The length
of this vector should be the number of stages in the model or
more.

LSgetVariableStages ()

Description:
Retrieve the stage indices of variables.

Returns:
errorcode An integer error code listed in Appendix A.

Prototype:

int LSgetVariableStages (pLSmodel pModel, int * panStage)

262 CHAPTER 2

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel object.
panStage an integer vector to return the stage indices of variables in the

core model. The length of this vector should be at least the
number of variables in the core model.

LSgetHistogram ()

Description:

Retrieves the histogram for given data with given bin specs.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int

LSgetHistogram(pLSmodel pModel, int nSampSize,

double *padVals, double dHistLow, double dHistHigh,

int *pnBins, int *panBinCounts, double *padBinLow, double
*padBinHigh, double *padBinLeftEdge, double *
padBinRightEdge)

FUNCTION DEFINITIONS 263

Input Arguments:

Name Description

pModel An instance of LSmodel object.

nSampSize An integer specifying the length of the input array.

padVals A double reference to the input array

dHistLow A double scalar specifying the low end of the histogram

dHistHigh A double scalar specifying the high end of the histogram

pnBins An integer reference to specify (or return) the number of bins
(optional).

panBinCounts An integer array to return bin counts. Length of this array
should at least be (*pnBins).

padBinLow An double array to return bin lows. Length of this array should
at least be (*pnBins).

padBinHigh An double array to return bin highs. Length of this array should
at least be (*pnBins).

padBinLeftEdge A double array to return bins left edges. Length of this array
should at least be (*pnBins).

padBinRightEdge A double array to return bins right edges. Length of this array
should at least be (*pnBins).

Remarks:

o Set dHistLow = dHistHigh on input for the module to choose a suitable pair for low and high
values defining the histogram.

e If *pnBins is set to zero on input, the module will choose a suitable value for the number of
bins and on return this value will contain the number of bins.
During calls with (*pnBins) = 0, all other output arguments should preferably be NULL.

e Make sure to allocate at least (*pnBins) elements for panBinCounts, panBinProbs,
padBinLow, padBinHigh arrays.
Populating these output will require a second call to the function after (*pnBins) is
determinated by a previous call.

e On return padBinLow[0] = smallest value found in padVals, and padBinHigh[*pnBins-1] =
largest value found in padVals.

264 CHAPTER 2

LSgetScenarioModel ()

Description:

Get a copy of the scenario model.

Returns:

scenModel An instance of pLSmodel containing the scenario model.

Prototype:

pLSmodel

LSgetScenarioModel(pLSmodel pModel, int jScenario, int
*pnErrorcode)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.
jScenario An integer specifying the scenario to retrieve.
pnErrorcode A reference to an integer to return the error code.

LSgetScenario ()

Description:

Gets the outcomes for the specified specified scenario.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int

LSgetScenario(pLSmodel pModel, int jScenario, int
*iParentScen, int *iBranchStage, double *dProb, int
*nRealz, int *paiArows, int *paiAcols, int *paiStvs, double
*padVals, int *iModifyRule)

FUNCTION DEFINITIONS 265

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

jScenario An integer specifying the index of a scenario realization.

iParentScen A reference to an integer specifying the index of the parent
scenario.

iBranchStage A reference to an integer specifying the branching stage.

dProb A reference to a double to return event probability of scenario.

nRealz A reference to an integer to return the number of individual
stochastic parameters consitituting the scenario.

paiArows An integer vector to return the row indices of stochastic
parameters in the scenario. This vector should have *nRealz
elements or more.

paiAcols An integer vector to return the column indices of stochastic
parameters in the scenario. This vector should have*nRealz
elements or more.

paiStvs An integer vector to return the (instruction-list) indices of
stochastic parameters. in the scenario. This vector should
have*nRealz elements or more.

padVals A double vector to return the values associated with the
stochastic parameters listed in paiStvs or (paiArows,paiAcols)
The length of this vector should be *1nRealz or more.

iModifyRule A reference to an integer to return the flag indicating
whether stochastic parameters update the core model by adding
or replacing.

Remark :

Only one of the following, paiStvs or (paiArows,paiAcols),
will take sensible values on return. \c paiStvs should be used with instruction-based input,
whereas (paiArows,paiAcols) should be used with matrix-based input. The argument(s) of the

other group can be NULL.

LSgetParamDistindep ()

Description:
Gets the stochastic data for the (independent) parametric stochastic parameter at the specified
event index.

Returns:
errorcode An integer error code listed in Appendix A.

266 CHAPTER 2

Prototype:

int LSgetParamDistIndep(pLSmodel pModel, int iEvent, int
*nDistType, int *iStage, int *iRow, int *jCol, int *iStv, int
*nParams, double *padParams, int *iModifyRule)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iEvent An integer specifying the index of the discrete independent
event.

nDistType A reference to an integer to return the distribution type of the
event (optional).

iStage A reference to an integer to return the stage index of the

discrete-independent event.

iRow A reference to an integer to return the row index of the
stochastic parameter.

jCol A reference to an integer to return the column index of the
stochastic parameter.

iStv A reference to an integer specifying the index of stochastic
parameter in the instruction list.

nParams A reference to an integer to return the length of \c padParams.

padParams A double vector to return the parameters defining the
underlying distribution.

iModifyRule A reference to an integer to return the flag indicating whether
stochastic parameters update the core model by adding or
replacing.

Remark:
Only one of the following, iStvs or (iRow,jCol), will take sensible values on return.
iStvs should be used with instruction-based input, whereas (iRow,jCol) should be used with
matrix-based input. The argument(s) of the other group can be NULL.
iEvent cannot be larger than the total number of discrete independent events in the SP model.
You can use LSgetStocInfo() or LSgetinfo() with
LS IINFO_STOC NUM EVENTS PARAMETRIC to retrieve the maximum possible value
for iEvent.

LSgetStocCCPInfo ()

Description:
Get information about the current state of the stochastic model.

Returns:
errorcode An integer error code listed in Appendix A.

FUNCTION DEFINITIONS 267

Prototype:
int LSgetStocCCPInfo(pLSmodel pModel, int query, int
jscenario, int jchance, void *result)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel object.
query A valid information macro. Possible values are:
e LS DINFO PINFEAS
e LS IINFO STOC NUM CC VIOLATED
jscenario An optional argument to specify the scenario index.
jchance An optional argument to specify the chance constraint index.
result A reference to a variable of appropriate type to return the
result.

Remark:

Query values whose names begin with LS _TINFO take integer values, while those whose
names begin with LS DINFO take double-precision floating point values.

LSgetChanceConstraint ()

Description:

Gets the stochastic data for the specified chance constraint

Returns:

errorcode An integer error code listed in Appendix A.

268 CHAPTER 2

Prototype:
int LSgetChanceConstraint(pLSmodel pModel, int iChance, int
*piSense, int *pnCons, int *paiCons, double *pdProb, double
*pdObjWeight)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel object.
iChance An integer specifying the index of the chance constraint.
piSense A reference to an integer to return the sense of the chance
constraint.
pnCons A reference to an integer to return the number of constraints in
the chance-constraint.
paiCons An integer vector to return the indices of the constraints
in the constraints in the chance-constraint *pnCons or more.
pdProb A reference to a double to return the probability level required.
pdObjWeight A reference to a double to return the weight of the chance-
constraint in the probabilistic objective.

Remark:

iChance cannot be larger than the total number of chance constraints in the SP model. You
can use LSgetStocInfo() or LSgetInfo() with LS IINFO_STOC NUM_ _CC to retrieve the
maximum possible value for iChance.

LSgetStocRowindices ()

Description:

Retrieve the indices of stochastic rows.

Returns:

errorcode An integer error code listed in Appendix A.

Prototype:

int

LSgetStocRowlIndices(pLSmodel pModel, int *paiSrows);

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel object.
Output Arguments:
Name Description
paiSrows an integer vector to return the indices of stochastic rows in the

core model. The length of this vector should be at least the
number of constraints in the core model.

FUNCTION DEFINITIONS 269

LSgetVarStartPointPartial ()

Description:
Retrieves the resident partial initial point for NLP models.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetVarStartPointPartial(pLSmodel pModel, int *pnCols,
int *paiCols, double *padPrimal)

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel.

pnCols An integer reference to return the number of variables in the
partial solution.

paiCols A vector to return the indicies of variables in the partial
solution.

padPrimal A vector to return the values of the partial solution.

270 CHAPTER 2

LSgetMIPVarStartPointPartial ()

Description:

Retrieves the resident initial point for MIP/MINLP models.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetMIPVarStartPointPartial(pLSmodel pModel, int
*pnCols, int *paiCols, double *padPrimal)
Input Arguments:
Name Description
pModel A reference to an instance of LSmodel.
pnCols An integer reference to return the number of variables in the
partial solution.
paiCols A vector to return the indicies of variables in the partial
solution.
padPrimal A vector to return the values of the partial solution.

LSgetMIPVarStartPoint ()

Description:

Retrieves the values of the initial MIP primal solution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSgetMIPVarStartPoint(pLSmodel pModel, double
*padPrimal)

Input Arguments:

Name Description
pModel A reference to an instance of LSmodel.
padPrimal A pointer to a double precision vector containing starting

values for each variable in the given MIP model. The length of
this vector is equal to the number of variables in the model.

FUNCTION DEFINITIONS 271

LSgetQCEigs()

Description:

Finds a few eigenvalues and eigenvectors of a quadratic matrix
Q_{i} for the specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetQCEigs(pLSmodel pModel, int iRow,
char *pachWhich, double *padEigval, double **padEigvec,
int nEigval,int nCV, double dTol, int nMaxlIter)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
iRow The row index of the quadratic constraint for which the
eigenvalues of the associated Q matrix will be computed.
pachWhich A character array specifying the type of eigenvalues to return.
Possible values are:
'LM' or 'SM' - Largest or Smallest Magnitude
For real symmetric problems:
'LA' or 'SA' - Largest or Smallest Algebraic
'BE' - Both Ends, one more from high end if K is odd
For nonsymmetric and complex problems:
'LR' or 'SR' - Largest or Smallest Real part
'LI' or 'SI' - Largest or Smallest Imaginary part
padEigval A double vector of length nEigval to return the eigenvalues
padEigvec A double vector of length nEigval by NVARS to return the
eigenvectors or NULL
nEigval The Number of eigenvalues to be computed.
0 <nEigval <NVARS should hold and if nEigval<=0,
nEigval=4 is assumed.
nCV The number of columns of the matrix padEigvec (which should
be less than or equal to NVARS). This will indicate how many
Lanczos vectors are generated at each iteration.
dTol Stopping tolerance which is the relative accuracy of the Ritz
value. If dTol<O0 is passed a default value of le-16 is used.
nMaxlIter Maximum number of iterations. If nMaxlIter < 0 is passed, a
default of 300 is used

272 CHAPTER 2

LSgetALLDIFFData()

Description:

Get ALLDIFF data in specified LSmodel instance.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetALLDIFFData(pLSmodel pModel, int *pinALLDIFF,
int *paiAlldiffDim, int *paiAlldiffL, int *paiAlldiffU, int
*paiAlldiffBeg, int *paiAlldiffVar) ;

Input Arguments:

Name Description

pModel An instance of LSmodel in which to place the problem data.
pinALLDIFF The number of ALLDIFF constraints.

paiAlldiffDim Dimension of ALLDIFF constraints.

paiAlldiffL Lower bound of variables in ALLDIFF constraints.
paiAlldiffU Upper bound of variables in ALLDIFF constraints
paiAlldiffBeg The begin position of each ALLDIFF constraint.

paiAlldiffVar

The variable indices in ALLDIFF constraints.

FUNCTION DEFINITIONS 273

LSgetALLDIFFDatai()

Description:
Get ALLDIFF data for the specified ALLDIFF constraint in specified LSmodel instance.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetALLDIFFDatai(pLSmodel pModel, int *iALLDIFF, int
*piAlldiffDim, int *piAlldiffL, int *piAlldiffU, int
*paiAlldiffVar) ;
Input Arguments:
Name Description
pModel An instance of LSmodel.
iALLDIFF Index of ALLDIFF constraints.
piAlldiffDim Number of variables in specified ALLDIFF constraint.
piAlldiffL Lower bound associated with specified ALLDIFF constraint.
piAlldiffU Upper bound associated with specified ALLDIFF constraint.
paiAlldiffVar The variable indices in specified ALLDIFF constraint.

LSgetGOPVariablePriority()

Description:
Get processing priority of variables for the GOP solver in the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetGOPVariablePriority(pLSmodel pModel, int ndxVar, int
*pnPriority);
Input Arguments:
Name Description
pModel An instance of LSmodel.
ndxVar A valid variable index.
pnPriority The priority level of specified variable.

274 CHAPTER 2

LSsetGOPVariablePriority()

Description:
Set processing priority of variables for the GOP solver in the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsetGOPVariablePriority(pLSmodel pModel, int ndxVar, int
nPriority);
Input Arguments:
Name Description
pModel An instance of LSmodel.
ndxVar A valid variable index.
nPriority A valid priority level. Possible values are in the range [-100,
100]. Default is 0.0

Model Modification Routines

The routines in this section can modify the structure of a model on an incremental basis. For instance,
these routines may be used to add and/or delete constraints and/or variables. After modifying a model,
the LINDO API solver will restart using the remains of the last solution basis. Thus, after applying
modest modifications to a model, re-solving should be relatively fast. These routines are intended for
making minor modifications to a model. If you need to pass a new formulation, it is faster to use a
routine such as LSloadLPData(), which is discussed above in the Model Loading Routines section.

LSaddCones()

Description:
Adds cones to a given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSaddCones(pLSmodel pModel, int nCone, char
*pszConeTypes, double *padConeAlpha, char
**pcConenames, int *paiConebegcol, int *paiConecols)

Input Arguments:

Name Description

model A pointer to an instance of LSmodel.

FUNCTION DEFINITIONS 275

nCone An integer containing the number of cones to append.

pszConeTypes A pointer to a character array containing the type of each cone
to be added to the model.

padConeAlpha A pointer to a vector containing the alpha of power cone.

pcConenames A pointer to a vector of pointers to null terminated strings
containing the name of each new cone.

paiConebegcol A pointer to an integer vector containing the index of the first
variable in each new cone. This vector must have nCone +1
entries. The last entry should be equal to the number of
variables in the added cones.

paiConecols A pointer to an integer vector containing the indices of the
variables in the new cones.

LSaddConstraints()

Description:

Adds constraints to a given model. If both constraints and variables need to be added to a
model and adding the new information in row format is preferred, then this routine can be
called after first calling LSaddVariables().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSaddConstraints(pLSmodel pModel, int nNumaddcons, char
*pachContypes, char **paszConnames, int *paiArows, double
*padAcoef, int *paiAcols, double *padB)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nNumaddcons An integer containing the number of constraints to append.

pachContypes A pointer to a character array containing the type of each
constraint to be added to the model. Valid values for each
constraint are 'L', 'E', 'G', or ‘N’ for less-than-or-equal-to,
equal-to, greater-than-or-equal-to, or neutral, respectively.

paszConnames A pointer to a vector of pointers to null terminated strings
containing the name of each new constraint.

paiArows A pointer to an integer vector containing the index of the

element in padAcoef (and paiAcols) that corresponds to the
first nonzero element for each new constraint. This vector must
have nNumaddcons +1 entries. The last entry should be equal
to the number of nonzeros in the added constraints.

276 CHAPTER 2

padAcoef A pointer to a double precision vector containing the nonzero
coefficients of the new constraints.
paiAcols A pointer to an integer vector containing the column indices of
the nonzeros in the new constraints.
padB A pointer to a double precision vector containing the
right-hand side coefficients for each new constraint.
Remarks:

e If; in addition, variables need to be added to a model, then LSaddVariables() must be
called prior to this routine. The call to LSaddVariables() should pass NULL as the
paiAcols, padAcoef, and paiArows arguments.

e If you need to load a new model, LSloadLPData() is a more efficient routine

LSaddChanceConstraint ()

Description:

Adds a new chance-constraint to the SP model, which is characterized by a set of constraint
indices from the original model and the probability levels to be satisfied.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSaddChanceConstraint (pLSmodel pModel,
int iSense, int nCons, int *paiCons, double dPrLevel, double
dObjWeight)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
iSense An integer macro specifying the sense of the chance-constraint.
Possible values are LS CONTYPE LE and
LS CONTYPE GE.
nCons An integer specifying the number of rows in this chance-
constraint.
paiCons An integer vector specifying the row indices in the chance-
constraint.
dPrLevel A double scalar specifying the probability level of this chance-
constraint.
dObjWeight A double scalar specifying the constraint's weight in the
probabilistic objective relative to the orignal objective
function. Typically this value is zero.

FUNCTION DEFINITIONS 277

LSsetConstraintProperty ()

Description:
Sets the property of the specified constraint of the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsetConstraintProperty (pLSmodel pModel, int ndxCons, int
nProp)
Input Arguments:
Name Description
pModel A pointer to an instance of Lsmodel.
ndxCons An integer specifying the index of the constraint to set the

property for.

nProp An integer macro to specify the constraint property. Possible
values are:

LS_PROPERTY_ UNKNOWN

LS PROPERTY_LINEAR

LS PROPERTY_CONVEX
LS_PROPERTY_CONCAVE
LS_PROPERTY QUASI CONVEX
LS_PROPERTY QUASI_ CONCAVE
LS PROPERTY MAX

LSgetConstraintProperty ()

Description:
Returns the property of the specified constraint of the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

278 CHAPTER 2

Prototype:
int LSgetConstraintProperty (pLSmodel pModel, int ndxCons, int
*pnProp)
Input Arguments:
Name Description
pModel A pointer to an instance of Lsmodel.
ndxCons An integer specifying the index of the constraint for which the
property is requested.
Output Arguments:
Name Description
pnProp A reference to an integer to return the constraint property.

LSaddSETS|()

Description:

Adds sets to a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSaddSETS(pLSmodel pModel, int nSETS, char
*pszSETStypes, int *paiCARDnum, int *paiSETSbegcol, int
*paiSETScols)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nSETS An integer containing the number of sets to add.
pszSETStypes A pointer to a character array containing the type of each set to
be added to the model.
paiCARDnum An integer array containing the cardinalities of the sets to be
added.
paiSETSbegcol A pointer to an integer vector containing the index of the first
variable in each new set. This vector must have nSETS +1
entries. The last entry should be equal to the total number of
variables in the new sets.
paiSETScols A pointer to an integer vector containing the indices of the
variables in the new sets.

FUNCTION DEFINITIONS 279

LSaddVariables()

Description:

Adds variables to a given model. If both constraints and variables need to be added to a model
and adding the new information in column format is preferred, then this routine can be called
after first calling LSaddConstraints().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSaddVariables(pLSmodel pModel, int nNumaddvars, char
*pachVartypes, char **paszVarnames, int *paiAcols, int
*pacAcols, double *padAcoef, int *paiArows, double *padC,
double *padL, double *padU)

Input Arguments:

Name

Description

pModel

A pointer to an instance of LSmodel.

nNumaddvars

The number of variables to append to the model.

pachVartypes

A pointer to a character array containing the types of each
variable to be added to the model. Valid values for each
variable are 'B', 'C', or ' for binary, continuous, or general
integer, respectively.

paszVarnames

A pointer to a vector of pointers to null terminated strings
containing the name of each new variable.

paiAcols

A pointer to an integer vector containing the index of the
element in padAcoef (and paiArows) that corresponds to the
first nonzero element for each new column. This vector must
have nNumaddvars+1 entries. The last entry should be equal to
the number of nonzeros in the new columns.

pacAcols

A pointer to a vector containing the length of each column.
Note that the length of a column can be set to be shorter than
the values of paidcols would suggest (i.e., it is possible for
pacAcols[i] < paiAcols[i+1] — paiAcols[i]). This may be
desirable in order to prevent memory reallocations if rows are
subsequently added to the model. If the length of each column i
is equal to paidcols[i+1] — paiAcols[i], then pacAcols can be
set to NULL on input.

padAcoef

A pointer to a double precision vector containing the nonzero
coefficients of the new columns.

paiArows

A pointer to an integer vector containing the row indices of the
nonzeros in the new columns.

padC

A pointer to a double precision vector containing the objective

280 CHAPTER?2

coefficients for each new variable.

padL A pointer to a double precision vector containing the lower
bound of each new variable. If there is no lower bound on a
variable, then the corresponding entry in the vector should be
set to -LS INFINITY. If padL is NULL, then the lower bounds
are internally set to zero.

padU A pointer to a double precision vector containing the upper
bound of each new variable. If there is no upper bound on the
variable, then this value should be set to LS INFINITY. If
padU is NULL, then the upper bounds are internally set to
LS INFINITY.

Remarks:

o If, in addition, constraints need to be added to a model and adding the new information in
column format is preferred, then this routine can be called after first calling
LSaddConstraints(). The call to LSaddConstraints() should pass NULL as the paidrows,
padAcoef, and paiAcols arguments.

e NULL may be passed for paidcols, padAcoef, and paidrows.

LSaddQCterms()

Description:
Adds quadratic elements to the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSaddQCterms (pLSmodel pModel, int nQCnonzeros, int
*paiQCconndx, int *paiQCvarndx1, *paiQCvarndx2, double
*padQCcoef)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nQCnonzeros The total number of nonzeros in quadratic coefficient matrices
to be added.
paiQCconndx A pointer to a vector containing the index of the constraint

associated with each nonzero quadratic term. This vector must
have nQCnonzeros entries.

paiQCvarndx1 A pointer to a vector containing the indices of the first variable
defining each quadratic term. This vector must have
nQCnonzeros entries.

paiQCvarndx2 A pointer to a vector containing the indices of the second

FUNCTION DEFINITIONS 281

variable defining each quadratic term. This vector must have
nQCnonzeros entries.

padQCcoef

A pointer to a vector containing the nonzero coefficients in the
quadratic matrix. This vector must also have nQCnonzeros
entries.

282 CHAPTER 2

LSaddNLPAj()

Description:

Adds NLP elements to the specified column for the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSaddNLPAj (pLSmodel pModel, int iVarl, int nRows, int
*paiRows, double *padA))
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
iVarl The index of the variable to which NLP elements will be
added.
nRows The total number of constraints for which NLP elements will
be added.
paiRows A pointer to an integer vector containing the row indices of the
nonlinear elements. The indices are required to be in ascending
order.
padAj A pointer to a double vector containing the initial nonzero
coefficients of the NLP elements. If padAj is NULL, the solver
will set the initial values.
Remarks:

e paiRows should be sorted in ascending order.

FUNCTION DEFINITIONS 283

LSaddNLPobj()

Description:
Adds NLP elements to the objective function for the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSaddNLPobj (pLSmodel pModel, int nCols, int *paiCols,
double *padColj)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nCols The total number of variables for which NLP elements will be
added.
paiCols A pointer to an integer vector containing the variable indices of
the nonlinear elements.
padColj A pointer to a double vector containing the initial nonzero
coefficients of the NLP elements. If padColj is NULL, the
solver will set the initial values.

Remarks:
e paiCols should be sorted in ascending order.

LSdeleteCones()

Description:
Deletes a set of cones in the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

Int LSdeleteCones(pLSmodel pModel, int nCones, int *paiCones)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCones The number of cones in the model to delete.

paiCones A pointer to a vector containing the indices of the cones that

are to be deleted.

284 CHAPTER 2

LSdeleteConstraints()

Description:
Deletes a set of constraints in the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSdeleteConstraints(pLSmodel pModel, int nCons, int
*paiCons)
Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nCons The number of constraints in the model to delete.
paiCons A pointer to a vector containing the indices of the constraints
that are to be deleted.

LSdeleteQCterms()

Description:
Deletes the quadratic terms from a set of constraints in the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdeleteQCterms(pLSmodel pModel, int nCons, int *paiCons)

Input Arguments:

Name Description

pModel An instance of LSmodel.

nCons The number of constraints in the model whose quadratic terms
will be deleted.

paiCons A pointer to a vector containing the indices of the constraints

whose quadratic terms will be deleted.

FUNCTION DEFINITIONS 285

LSdeleteNLPobij()

Description:
Deletes NLP elements from the objective function for the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
Int LSdeleteNLPobj (pLSmodel pModel, int nCols, int *paiCols)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCols The number of variables for which NLP elements will be
deleted.

paiCols A pointer to a vector containing the indices of the variables

whose NLP elements are to be deleted.

286 CHAPTER 2

LSdeleteAj()

Description:

Deletes the elements at specified rows for the specified column for the given model. The
elements deleted are set to zero.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

Int

LSdeleteAj (pLSmodel pModel, int iVarl, int nRows, int
*paiRows)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iVarl The index of the variable whose elements will be deleted.
nRows The number of constraints at which elements will be deleted.
paiRows A pointer to an integer vector containing the row indices of the

elements to be deleted. The indices are required to be in
ascending order.

LSdeleteSemiContVars()

Description:

Deletes a set of semi-continuous variables in the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSdeleteSemiContVars(pLSmodel pModel, int nSC, int
*SCndx)

Input Arguments:

Name Description
Model A pointer to an instance of LSmodel.
p p
nSC The number of semi-continuous variables in the model to
delete.
SCndx A pointer to a vector containing the indices of the semi-

continuous variables that are to be deleted.

FUNCTION DEFINITIONS 287

LSdeleteSETS()

Description:
Deletes the sets in the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSdeleteSETS(pLSmodel pModel, int nSETS, int *SETSndx)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nSETS The number of sets in the model to delete.

SETSndx A pointer to a vector containing the indices of the sets that are

to be deleted.

LSdeleteVariables()

Description:
Deletes a set of variables in the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSdeleteVariables(pLSmodel pModel, int nVars, int *paiVars)

Input Arguments:

Name Description

pModel An instance of LSmodel.

nVars The number of variables in the model to delete.

paiVars A pointer to a vector containing the indices of the variables that

are to be deleted.

288 CHAPTER 2

LSmodifyAj()

Description:
Modifies the coefficients for a given column at specified constraints.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSmodifyAj(pLSmodel pModel, int iVarl, int nRows, int *
paiCons, double *padAj)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
iVarl The index of the variable to modify the constraint coefficients.
nCons Number of constraints to modify.
paiCons A pointer to an array of the indices of the constraints to
modify.
padAj A pointer to a double precision array containing the values of
the new coefficients.

LSmodifyCone()

Description:
Modifies the data for the specified cone.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyCone(pLSmodel pModel, char cConeType, int
iConeNum, int iConeNnz, int *paiConeCols, double
dConeAlpha)

FUNCTION DEFINITIONS 289

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

cConeType A character variable specifying the new type of the cone.
iConeNum An integer scalar that refers to the index of the cone to modify.
iConeNnz An integer scalar that refers to the number of variables

characterizing the cone.

paiConeCols An integer vector that keeps the indices of the variables
characterizing the cone. Its size should be iConeNnz.

dConeAlpha New alpha of power cone.

LSmodifyConstraintType()

Description:
Modifies the type or direction of a set of constraints.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSmodifyConstraintType(pLSmodel pModel, int nCons, int
*paiCons, char *pachContypes)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCons Number of constraints to modify.

paiCons A pointer to an array of the indices of the constraints to
modify.

pachContypes A pointer to a character vector in which each element is either:

‘L’, °E’, ‘G’ or ‘N’ indicating each constraint's type.

Remarks:
e A constraint can be disabled by making its type ‘N’.
e To modify the direction of the objective, use the function LSsetModIntParameter (model,
LS IPARAM OBIJSENSE, value), where value is either LS MIN or LS MAX.

290 CHAPTER?2

LSmodifyObjConstant()

Description:

Modifies the objective’s constant term for a specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSmodifyObjConstant(pLSmodel pModel, double dObjconst)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

dObjconst The new objective constant term.
Remarks:

e To modify the objective’s coefficients, see LSmodifyObjective().

FUNCTION DEFINITIONS 291

LSmodifyLowerBounds()

Description:

Modifies selected lower bounds in a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSmodifyLowerBounds(pLSmodel pModel, int nVars, int
*paiVars, double *padL)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nVars The number of bounds in the model to modify.

paiVars A pointer to an integer vector containing the indices of the
variables for which to modify the lower bounds.

padL A pointer to a double precision vector containing the new

values of the lower bounds on the variables.

LSmodifyObjConstant()

Description:

Modifies the objective’s constant term for a specified model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSmodifyObjConstant(pLSmodel pModel, double dObjconst)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

dObjconst The new objective constant term.
Remarks:

e To modify the objective’s coefficients, see LSmodifyObjective().

292 CHAPTER 2

LSmodifyObijective()

Description:

Modifies selected objective coefficients of a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSmodifyObjective(pLSmodel pModel, int nVars, int
*paiVars, double *padC)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nVars Number of objective coefficients to modify.
paiVars A pointer to an integer vector containing a list of the indices of
the objective coefficients to modify.
padC A pointer to a double precision vector containing the new
values for the modified objective coefficients.
Remarks:

e To modify the objective’s constant term, see LSmodifyObjConstant().

LSmodifyRHS()

Description:

Modifies selected constraint right-hand sides of a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSmodifyRHS(pLSmodel pModel, int nCons, int *paiCons,
double *padB)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCons The number of constraint right-hand sides to modify.

paiCons A pointer to an integer vector containing the indices of the
constraints whose right-hand sides are to be modified.

padB A pointer to a double precision vector containing the new

right-hand side values for the modified right-hand sides.

FUNCTION DEFINITIONS 293

LSmodifySemiContVars()

Description:
Modifies data of a set of semi-continuous variables in the given model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.
Prototype:

int LSmodifySemiContVars(pLSmodel pModel, char nSC, int
*piVarndx, double *padl, double *padu)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nSC The number of semi-continuous variables to modify.
piVarndx A pointer to an integer vector containing the indices of the

variables whose data are to be modified.

padl A pointer to a double precision vector containing the new
lower bound values for the semi-continuous variables.

padu A pointer to a double precision vector containing the new
upper bound values for the semi-continuous variables.

LSmodifySET()

Description:
Modifies set data in the given model.
Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSmodifySET(pLSmodel pModel, char cSETtype, int
iSETnum, int iSETnnz, int *paiSETcols)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
cSETtype A character variable containing the new type for the specified
set.
iSETnum An integer variable containing the index of the set to apply the
modification.
iSETnnz An integer variable containing the number of variables in the
set specified with iSETnum.

294 CHAPTER 2

paiSETcols

A pointer to an integer array containing the indices of variables
in the set specified with iSETnum.

LSmodifyUpperBounds()

Description:

Modifies selected upper bounds in a given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSmodifyUpperBounds(pLSmodel pModel, int nVars, int
*paiVars, double *padU)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nVars The number of bounds in the model to modify.

paiVars A pointer to an integer vector containing the indices of the
variables for which to modify the upper bounds.

padU A pointer to a double precision vector containing the new

values of the upper bounds.

LSmodifyVariableType()

Description:

Modifies the types of the variables of the given model.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSmodifyVariableType(pLSmodel pModel, int nVars, int
*paiVars, char *pachVartypes)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nVars Number of variables to modify.

paiVars A pointer to an array of the indices of the variables to modify.
pachVartypes A pointer to a character vector containing the types of

variables. Valid values for each variable are 'C', 'B', or 'I' for
continuous, binary, or general integer, respectively.

FUNCTION DEFINITIONS 295

Remarks:

e To modify the direction of the objective, use the function LSsetModellntParameter(
model, LS IPARAM OBIJSENSE, value), where value is either LS MIN or LS MAX.

LSaddUserDist ()

Description:
Adds a new user-defined stochastic parameter function to the SP model. The positions of
stochastic parameters are specified with either (iRow, jCol) or iStv, but not with both. For SP
models where core model is described with an instruction list, iStv have to be used.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSaddUserDist(pLSmodel pModel, int iRow, int jCol, int
iStv, UserPdf t pfUserFunc, int nSamples, pLSsample
*paSamples, void *pvUserData, int iModifyRule)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
iRow An integer specifying the row index of the stochastic

parameter. It should be ignored if iStv will be specified.

jCol An integer specifying the column index of the stochastic
parameter. It should be ignored if iStv will be specified.

iStv An integer specifying the index of stochastic parameter in the
instruction list. It should be ignored if (iRow, jCol) is specified.

pfUserFunc A callback function to compute generate samples.

nSamples An integer specifying the number of LSsample objects
(independent parameters) required in the computation of the
stochastic parameter.

paSamples A vector of LSsample objects associated with the independent
parameters required in the computation of the stochastic
parameter. These sample objects need to be created explictly
before passing to this function.

pvUserData A reference to user's data object.
iModifyRule A flag indicating whether stochastic parameters update the core
model by adding or replacing. Possible values are:
e LS REPLACE

e LS _ADD

296 CHAPTER 2

LSaddQCShift ()

Description:

Shift diag(Q_{i}) by lambda, i.e. Q {i} =Q_{i} +1 {i}*dShift.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSaddQCShift(pLSmodel pModel, int iRow, double dShift);

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iRow An integer specifying the index of the QC row.
dShift A double specifying the shift parameter.

LSgetQCShift ()

Description:

Get the current value of the shift parameter associated with Q {i}.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetQCShift(pLSmodel pModel, int iRow, double *pdShift)

b

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

iRow An integer specifying the index of the QC row.
pdShift A double pointer to return the shift parameter.

LSresetQCShift ()

Description:

Reset to zero any shift previously made to diag(Q {i}),i.e. Q {i} =Q {i} -

I {i}*currentShift.

FUNCTION DEFINITIONS

297

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSresetQCShift(pLSmodel pModel, int iRow);

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
iRow An integer specifying the index of the QC row.

LSdeleteIndConstraints ()

Description:

Delete a set of indicator constraints.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSdeleteIndConstraints(pLSmodel pModel, int nCons, int
*paiCons);

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
nCons Number of indicator constraints to delete

paiCons

Vector of indicator constraints to delete

298 CHAPTER 2

Model and Solution Analysis Routines

The routines in this section allow you to analyze models and their solutions, such as performing
sensitivity analysis of optimal solutions or debugging infeasible or unbounded linear programs. For a
more detailed overview, see Chapter 10, Analyzing Models and Solutions.

LSfindBlockStructure

Description:
Examines the nonzero structure of the constraint matrix and tries to identify block structures
in the model. If neither linking rows nor linking columns exist, then the model is called
“totally decomposable”. Unless total decomposition is requested, the user should specify as
an input the number of blocks to decompose the matrix into.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSfindBlockStructure(pLSmodel pModel, int nBlock, int
nType)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nBlock An integer indicating the number of blocks to decompose the

coefficient matrix into. The value of this argument is ignored if
total decomposition is requested.

nType An integer scalar indicating the type of decomposition
requested. The possible values are identified with the following
macros:

LS LINK BLOCKS NONE: Try total decomposition (no
linking rows or columns).

LS LINK BLOCKS COLS: The decomposed model will
have dual angular structure (linking columns).

LS LINK BLOCKS ROWS: The decomposed model will
have block angular structure (linking rows).

LS LINK BLOCKS BOTH: The decomposed model will
have both dual and block angular structure (linking rows
and columns).

LS LINK BLOCKS FREE: Solver decides which type of
decomposition to use.

FUNCTION DEFINITIONS 299

Remarks:
e Only one stage of decomposition is attempted (i.e., no attempt is made to find further
decomposition within a sub-block).
e The block structure obtained can be accessed by LSgetBlockStructure().
e Refer to Chapter 10, Analyzing Models, for details on block structures.
e Parameter LS IPARAM_ FIND BLOCK controls which heuristic algorithm to be used.

LSfindIIS()

Description:
Finds an irreducibly inconsistent set (IIS) of constraints for an infeasible model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSfindIIS(pLSmodel pModel, int nLevel)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
nLevel An integer indicating the level of analysis in finding the IIS. Bit

mask values are:

LS NECESSARY ROWS =1, Search for necessary rows.
LS NECESSARY COLS =2, Search for necessary columns.
LS SUFFICIENT ROWS =4, Search for sufficient rows.

LS SUFFICIENT _COLS =8, Search for sufficient columns.

LS IIS_INTS = 16, Consider integrality restrictions as the
potential cause of infeasibilities and include it in the
analysis. If this option is disabled, all integrality
restrictions will be considered permanent in the model and
will not be relaxes.

LS IISRANK LTF =32, Compute the underlying LTF matrix
and use this as the basis of a ranking score to guide the IIS
run. E.g. one could start from the bottom of the
triangulated matrix and move up.

LS IISRANK DECOMP = 64, If the underlying matrix is
totally decomposable, rank blocks w.r.t their sizes and
debug the smallest independent infeasible block.

LS IISRANK NNZ =128 Use the nonzero structure of the
underlying matrix to compute a ranking score to guide the
IIS run. E.g. remove rows with more nonzero first etc...

LS IISLIMIT MIS =256 Treat iter/time limits as

intractability.

Remarks:
e The IIS obtained can be accessed by LSgetIIS().
e Refer to Chapter 10, Analyzing Models, for details on debugging a model.

300 CHAPTER?2

LSfindIUS()

Description:

Finds an irreducibly unbounded set (IUS) of columns for an unbounded linear program.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
Int LSfindIUS(pLSmodel pModel, int nLevel)
Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
nLevel An integer indicating the level of detail of the analysis in
finding the IUS. Significant bit mask values are:
LS NECESSARY COLS =2,
LS SUFFICIENT COLS =8.
Remarks:

e The IUS obtained, can be accessed by LSget/US().
e Refer to Chapter 10, Analyzing Models, for details on debugging a model.

LSgetBestBounds()

Description:

Finds the best implied variable bounds for the specified model by improving the original
bounds using extensive preprocessing and probing.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetBestBounds(pLSmodel pModel, double *padBestL,
double *padBestU)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
padBestL A double precision vector containing the best implied lower
bounds if different from NULL. This vector must at least have
as many entries as the number of variables in the model.
padBestU A double precision vector containing the best implied upper

FUNCTION DEFINITIONS 301

bounds if different from NULL. This vector must at least have
as many entries as the number of variables in the model.

LSgetBlockStructure()

Description:
Retrieves the block structure information following a call to LSfindBlockStructure.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetBlockStructure(pLSmodel pModel, int *pnBlock, int
*panRblock, int *panCblock, int *pnType)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pnBlock A pointer to an integer scalar that contains the number of

blocks to decompose the model matrix into. If nType =

LS LINK BLOCKS NONE, then *pnBlock functions as an
output argument, which will contain the number of
independent blocks identified (provided that total
decomposition is successful). Otherwise, it serves as an input
argument where the solver attempts to decompose the model
into *pnBlock blocks linked by a set of rows or/and columns.

panRblock A pointer to an integer vector in which information about the
block membership of the constraints is to be placed. The length
of this vector must be > the number of constraints in the model.
The i-th element of this array returns information on the i-th
constraint as follows:

0: The row is a member of the linking (row) block.
k>0: The row is a member of the k-th block.
where 1 <= k <= *pnBlock.

panCblock A pointer to an integer vector in which information about the
block membership of the variables is to be placed. The length
of this vector must be > the number of variables in the model.
The j-th element of this array contains information on the j-th
column as follows:

0: The column is a member of the linking (column) block.
k>0: The column is a member of the £-th block.
where 1 <=k <= *pnBlock.

pnType A pointer to an integer returning the type of the decomposition.

302 CHAPTER?2

The following macros identify possible values:

LS LINK BLOCKS NONE: Try total decomposition (no
linking rows or columns).

LS LINK BLOCKS COLS: The decomposed model will
have dual angular structure (linking columns).

LS LINK BLOCKS ROWS: The decomposed model will
have block angular structure (linking rows).

LS LINK BLOCKS BOTH: The decomposed model will
have both dual and block angular structure (linking rows
and columns).

LS LINK BLOCKS FREE: Solver decides which type of
decomposition to use.

Remarks:

e For more information on decomposition and linking structures, refer to Chapter 10,

Analyzing Models.

LSgetBoundRanges()

Description:

Retrieves the maximum allowable decrease and increase in the primal variables for which the
optimal basis remains unchanged.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetBoundRanges (pLSmodel pModel, double *padDec,
double *padlnc)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:

Name Description

padDec A pointer to a double precision vector that keeps the maximum
allowable decrease in the lower and upper bounds. The vector
size should be greater-than-or-equal-to the number of
variables.

padlnc A pointer to a double precision vector that keeps the maximum

allowable increase in the lower and upper bounds. The vector
size should be greater-than-or-equal-to the number of
variables.

FUNCTION DEFINITIONS 303

LSgetConstraintRanges|)

Description:

Retrieves the maximum allowable decrease and increase in the right-hand side values of
constraints for which the optimal basis remains unchanged.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetConstraintRanges (pLSmodel pModel, double *padDec,
double *padlnc)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:

Name Description

padDec A pointer to a double precision vector that keeps the maximum
allowable decrease in the right-hand sides of constraints. The
size of this vector should be greater-than-or-equal-to the
number of constraints.

padInc A pointer to a double precision vector that keeps the maximum

allowable increase in the right-hand sides of constraints. The
size of this vector should be greater-than-or-equal-to the
number of constraints.

304 CHAPTER?2

LSgetliS()

Description:

Retrieves the irreducibly inconsistent set (IIS) of constraints for an infeasible model following
a call to LSfindIIS(). Any of the pointers to the names can be input as NULL if the
corresponding information is not required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetlIS(pLSmodel pModel, int *pnSuf r, int *pnlIS r, int
*paiCons, int *pnSuf c, int *pnllS _c, int *paiVars, int
*panBnds)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pnSuf r A pointer to the number of constraints in the sufficient set.
pnllS r A pointer to the number of rows in the IIS.
paiCons A pointer to a vector of size *pnlIS r containing the indices of
the rows in the IIS. The locations paiCons[0] to
paiCons[*pnSuf r—1] keep the indices of the sufficient rows.
pnSuf ¢ A pointer to the number of column bounds in the sufficient set.
pnlIS ¢ A pointer to the number of column bounds in the IIS.
paiVars A pointer to a vector of size *pnlIS ¢ containing the indices of
the column bounds in the IIS. The locations paiVars[0] to
paiVars[*pnSuf c —1] store the indices of the members of the
sufficient column bounds.
panBnds A pointer to a vector of size *pnllS c indicating whether the
lower or the upper bound of the variable is in the IIS. Its
elements are —1 for lower bounds and +1 for upper bounds.
Remarks:

e This tool assumes that the user has recently attempted optimization on the model and the
solver returned a basic, but infeasible, solution. If an infeasible basis is not resident in the
solver, the diagnostic tool cannot initiate the processes to isolate an IIS. Cases that
violate this condition are: the pre-solver has detected the infeasibility of the model, or the
barrier solver has terminated without performing a basis crossover. To obtain an IIS for
such cases, the pre-solve option should be turned off and the model must be optimized

again.

e Refer to Chapter 10, Analyzing Models, for details on debugging a model.

FUNCTION DEFINITIONS 305

LSgetliSints()

Description:

Retrieves the integrality restrictions as part of an IIS determined by a call to LSfindIIS(). Any
of the pointers to the names can be input as NULL if the corresponding information is not

required.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetlISInts(pLSmodel pModel, int *pnSuf i, int *pnlIS i, int
*paiVars)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pnSuf i A pointer to the number of integrality restrictions in the
sufficient set.
pnllS i A pointer to the number of integrality restrictions in the IIS.
paiVars A pointer to a vector of size *pnlIS i containing the indices of
the integrality restrictions in the IIS. The locations paiVars[0]
to paiVars[*pnSuf i —1] store the indices of the members of the
sufficient integrality restrictions.
Remarks:

e This tool assumes that the solver returned an infeasible status for the underlying integer
model and LSfindIIS has been called with LS IIS INTS flag turned on. This flag enables
the IIS finder to include integrality restrictions in the analysis. If the cause of infeasibility
is not related to integer restrictions, the argument *pnlIS i will be zero.

e Refer to Chapter 10, Analyzing Models, for details on debugging a model.

306 CHAPTER?2

LSgetlUS()

Description:

Retrieves the irreducibly unbounded set (IUS) of columns for an unbounded linear program
following a call to LSfindIUS(). Any of the pointers to the names can be input as NULL if the
corresponding information is not required

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetlUS(pLSmodel pModel, int *pnSuf, int *pnlUS, int
*paiVars)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
pnSuf A pointer to the number of columns in the sufficient set.
pnlUS A pointer to the number of columns in the [US.
paiVars A pointer to a vector of size *pnlUS containing the indices of
the columns in the IUS. The locations paiVars[0] to
paiVars[*pnSuf —1] store the indices of the members of the
sufficient set.
Remarks:

e Refer to Chapter 10, Analyzing Models, for details on debugging a model.

FUNCTION DEFINITIONS 307

LSgetObjectiveRanges()

Description:

Retrieves the maximum allowable decrease and increase in objective function coefficients for
which the optimal basis remains unchanged.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetObjectiveRanges(pLSmodel pModel, double *padDec,
double *padlnc)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:

Name Description

padDec A pointer to a double precision vector that keeps the maximum
allowable decrease in the objective function coefficients. The
size of this vector should be greater-than-or-equal-to the
number of variables.

Padlnc A pointer to a double precision vector that keeps the maximum

allowable increase in the objective function coefficients. The
vector size should be greater-than-or-equal-to the number of
variables.

LSfindLtf ()

Description:

Finds an approximately lower triangular form for the underlying model's matrix structure.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

308 CHAPTER?2

Prototype:

int

LSfindLtf(pLSmodel pModel, int *panNewColldx, int
*panNewRowldx, int *panNewColPos, int *panNewRowPos)

Input Arguments:

Name Description

pModel An instance of the LSmodel object.

panNewColldx Entry j means the index of the column that is in the postion j of
new matrix.

panNewRowldx Entry i means the index of the row that is in the postion i of
new matrix.

panNewColPos Entry j means the new position of column j in the new matrix.

panNewRowPos

Entry i means the new position of row i in the new matrix.

FUNCTION DEFINITIONS 309

Error Handling Routines

The routines in this section allow you to get detailed information about the errors that occur during
calls to LINDO API routines and while accessing a text file for I/O.

LSgetErrorMessage()

Description:
Retrieves the error message associated with the given error code.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetErrorMessage(pLSenv pEnv, int nErrorcode, char
*pszMessage)
Input Arguments:
Name Description
pEnv A pointer to an instance of LSenv. Error messages are stored in

this environment.

nErrorcode An integer referring to the error code.
Output Arguments:
Name Description
pszMessage The error message associated with the given error code. It is

assumed that memory has been allocated for this string.

Remarks:
e The length of the longest message will not exceed
LS MAX ERROR MESSAGE LENGTH, including the terminating null character. So,
be sure to allocate at least this many bytes before calling LSgetErrorMessage().

310 CHAPTER?2

LSgetErrorRowindex()

Description:

Retrieves the index of the row where a numeric error has occurred.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

(pLSmodel pModel, int *piRow);

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
Output Arguments:
Name Description
piRow A pointer to an integer variable to return the row index with

numeric error.

LSgetFileError()

Description:

Provides the line number and text of the line in which an error occurred while reading or

writing a file.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetFileError (pLSmodel pModel, int *pnLinenum, char
*pszLinetxt)
Input Arguments:
Name Description
pModel Pointer to an instance of LSmodel.
Output Arguments:
Name Description
pnLinenum A pointer to an integer that returns the line number in the I/O
file where the error has occurred.
pszLinetxt A pointer to a null terminated string that returns the text of the
line where the error has occurred.

FUNCTION DEFINITIONS 311

Advanced Routines

The routines in this section perform specialized functions. Users interested in only building and
solving a model will not need to access the routines detailed in this section. Users who are developing
customized solution procedures, however, may find these routines useful.

LSdoBTRAN()

Description:
Does a so-called backward transformation. That is, the function solves the linear system
BTX =Y, where BT is the transpose of the current basis of the given linear program and Y is a
user specified vector.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSdoBTRAN(pLSmodel pModel, int *pcYnz, int *paiY,
double *padY, int *pcXnz, int *paiX, double *padX)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
pcYnz A pointer to an integer containing the number of nonzeros in

the right-hand side vector Y.

paiY A pointer to an integer vector containing the positions of the
nonzeros in Y.

padY A pointer to a double precision vector containing the
coefficients of the nonzeros in Y.

Output Arguments:
Name Description
pcXnz A pointer to an integer containing the number of nonzeros in
the solution vector X.
paiX A pointer to an integer vector containing the positions of the
nonzeros in X. You must allocate the memory for this vector,
and should allocate at least m elements, where m is the number
of constraints.
padX A pointer to a double precision vector containing the
coefficients of the nonzeros in X. You must allocate the
memory for this vector, and should allocate at least m
elements, where m is the number of constraints.
Remarks:

e This routine should be called only after optimizing the model.

312 CHAPTER?2

LSdoFTRAN()

Description:

Does a so-called forward transformation. That is, the function solves the linear system
B X =Y, where B is the current basis of the given linear program, and Y is a user specified

vector.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSdoFTRAN(pLSmodel pModel, int *pcYnz, int *paiY,
double *pady, int *pcXnz, int *paiX, double *padX)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
pcYnz A pointer to an integer containing the number of nonzeros in
the right-hand side vector Y.
paiY A pointer to an integer vector containing the positions of the
nonzeros in Y.
padY A pointer to a double precision vector containing the
coefficients of the nonzeros in Y.
Output Arguments:
Name Description
pcXnz A pointer to an integer containing the number of nonzeros in
the solution vector, .X.
paiX A pointer to a vector containing the positions of the nonzeros
in X.
padX A pointer to a double precision vector containing the
coefficients of the nonzeros in X.
Remarks:

e This routine should be called only after optimizing the model.

FUNCTION DEFINITIONS 313

LScalcConFunc()

Description:

Calculates the constraint activity at a primal solution. The specified model should be loaded

by using LSloadlInstruct().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LScalcConFunc(pLSmodel pModel, int iCon, double
*padPrimal, double *pdValue,)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
iCon An integer containing the index of the constraint whose activity
is requested.
padPrimal A pointer to a double precision vector that contains the primal
solution at which the constraint activity will be computed.
Output Arguments:
Name Description
pdValue A double precision variable that returns the constraint activity
at the given primal solution padPrimal.

314 CHAPTER 2

LScalcConGrad()

Description:
Calculates the partial derivatives of the function representing a constraint with respect to a set
of primal variables. The specified model should be loaded by using LSloadlnstruct().

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LScalcConGrad(pLSmodel pModel, int iCon, double
*padPrimal, int nVar, int *paiVar, double *padVar)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
iCon An integer containing the index of the constraint whose partial

derivatives is requested.

padPrimal A pointer to a double precision vector that contains the primal
solution at which the partial derivatives of the constraint will
be evaluated.

nVar An integer scalar indicating the number of variables to
compute the partial derivatives for.

paiVar A pointer to an integer vector that contains the indices of the
variables to compute the partial derivatives for.

Output Arguments:
Name Description
padVar A pointer to a double precision vector that returns the partial

derivatives of the variables indicated by paiVar(].

FUNCTION DEFINITIONS 315

LScalcObjFunc()

Description:
Calculates the objective function value at a primal solution. The specified model should be

loaded by using LSloadInstruct().

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LScalcObjFunc(pLSmodel pModel, double *padPrimal ,
double *pdPobjval,)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
padPrimal A pointer to a double precision vector that contains the primal

solution at which the objective function will be evaluated.

Output Arguments:
Name Description
pdPobjval A double precision variable that returns the objective value for

the given primal solution.

316 CHAPTER 2

LScalcObjGrad()

Description:

Calculates the partial derivatives of the objective function with respect to a set of primal
variables. The specified model should be loaded by using LSloadInstruct().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LScalcObjGrad(pLSmodel pModel, double *padPrimal,
int nVar, int *paiVar, double *padVar)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
padPrimal A pointer to a double precision vector that contains the primal
solution at which the partial derivatives of the objective
function will be evaluated.
nVar An integer scalar indicating the number of variables to
compute the partial derivatives for.
paiVar A pointer to an integer vector that contains the indices of the
variables to compute the partial derivatives for.
Output Arguments:
Name Description
padVar A pointer to a double precision vector that returns the partial
derivatives of the variables indicated by paiVar(].

FUNCTION DEFINITIONS 317

LScomputeFunction()

Description:

Computes many of the functions that correspond to the EP_xxx instruction codes described in
the “Solving Nonlinear Programs “ chapter.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LScomputeFunction(int ninst, double *padinput, double
*padoutput)
Input Arguments:
Name Description
ninst ID of a function operator.
padInput Pointer to a double precision vector of the input arguments..
Output Arguments:
Name Description
padOutput Pointer to a double precision vector that returns the results of
the function operator.
Remarks:

e LScomputeFunction() returns an integer error code
- LSERR_NO ERROR: no error, result in pdaOutput
- LSERR_NOT_SUPPORTED: not supported function operator
- LSERR ILLEGAL NULL POINTER: illegal output argument

*pdaOutput stores the index of input argument causing error

k
k
k
* - LSERR_ERROR _IN_INPUT: input argument error,
k
*

LSERR NUMERIC INSTABILITY: numerical error

318 CHAPTER 2

LScheckQterms|()

Description:

Checks the definiteness of quadratic terms in the specified set of constraints.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LScheckQterms(pLSmodel pModel, int nCons, int*paiCons,
int *paiType)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nCon An integer specifying the number of constraints whose
quadratic terms will be checked.

paiCons A pointer to a vector containing the indices of the constraints

whose quadratic terms will be checked. Use index -1 for the
objective function. When this variable is set to NULL, the
check will be performed on all constraints including the
objective function. In this case, the size of the paiType vector
should be at least n_cons+1, where n_cons is the number of
constraints in the model.

QOutput Arguments:

Name

Description

paiVar

A pointer to an integer vector to return the type of quadratic
terms in associated rows. Possible values for the type of
quadratic terms are
LS_QTERM NONE
LS _QTERM INDEF
LS _QTERM POSDEF
LS _QTERM NEGDEF
LS _QTERM POS_SEMIDEF

LS _QTERM NEG SEMIDEF

4= o e W 3
G oW R o

FUNCTION DEFINITIONS 319

LSrepairQterms()

Description:
Repairs the quadratic terms in the specified set of constraints by shifting
the diagonals to make them semi-positive-definite or semi-negative-definite to achieve
a convex approximation to the model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSrepairQterms(pLSmodel pModel, int nCons, int*paiCons,
int *paiType)

Input Arguments:

Name Description
pModel A pointer to an instance of LSmodel.
nCon An integer specifying the number of constraints whose

quadratic terms will be repaired.

paiCons A pointer to a vector containing the indices of the constraints
whose quadratic terms will be repaired. Use index -1 for the
objective function. When this variable is set to NULL, the
repair will be performed on all constraints including the
objective function. In this case, the size of the paiType vector
should be at least n_cons+1, where n_cons is the number of
constraints in the model.

Output Arguments:
Name Description
paiVar A pointer to an integer vector to return the type of quadratic

terms in associated rows after the repair. Possible values for the
type of quadratic terms are

LS _QTERM NONE 0
LS _QTERM INDEF 1
LS QTERM POSDEF 2
LS QTERM NEGDEF 3
LS _QTERM POS_SEMIDEF 4
LS _QTERM NEG SEMIDEF 5

S+ o S 3 o

If the repair is unsuccessful for some of the constraints, then
the value for those rows will remain as LS QTERM INDEF.

320 CHAPTER?2

Matrix Operations

LSgetEigs()

Description:

Get eigenvalues and eigenvectors of symmetric matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetEigs(int nDim, char chUL, double *padA, double
*padD, double *padV, int *pninfo);
Input Arguments:
Name Description
nDim An integer indicating the dimension of matrix padA.
chUL Upper ("U' or 'u'") or lower ('L' or 'I') triangler of padA is stored.
padA nDim by nDim double symmetric matrix.
Output Arguments:
Name Description
padD nDim double vector, eigenvalues in ascending order.
padV nDim by nDim double matrix, orthonormal eigenvectors.
pnlInfo A reference to an integer exit code. Possible values are:
= 0: successful exit.
< 0: if (*pnInfo) = -i, the i"th argument had an illegal
value.
> 0: internal error.

FUNCTION DEFINITIONS 321

LSgetMatrixTranspose()

Description:

Get general m by n matrix transpose.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int int LSgetMatrix Transpose(int nRows, int nCols, double
*padA, double *padAT);
Input Arguments:
Name Description
nRows An integer indicating the number of rows of the matrix.
nCols An integer representing the number of columns of the matrix.
padA nRows by nCols double matrix.
Output Arguments:
Name Description
padAT nCols by nRows double matrix transpose.

LSgetMatrixinverse()

Description:

Get general m by m matrix inverse.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetMatrixInverse(int nRows, double *padA, double
*padAinv, int *pnlnfo);
Input Arguments:
Name Description
nRows An integer indicating the dimension of the square matrix.
padA nRows by nRows double matrix.
Output Arguments:
Name Description
padAinv nRows by nRows double matrix inverse.
pnInfo A reference to an integer exit code. Possible values are:
= 0: successful exit.
< 0: if (*pnlnfo) = -i, the i-th argument had an illegal

322 CHAPTER?2

value.

> 0: if (*pnlnfo) =1, padU(i,i) is exactly zero. The
factorization has been completed, but the factor padU is
exactly singular, so the solution could not be computed.

LSgetMatrixinverseSY()

Description:

Get symmetric m by m matrix inverse.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetMatrixInverseSY (int nRows, char chUpLo, double
*padA, double *padAinv, int *pnlnfo);

Input Arguments:

Name Description
nRows An integer indicating the dimension of the square matrix.
chUpLo A character to indicate if upper ('U") or lower ('L') triangle of
padA is stored.
padA nRows by nRows double matrix.
Output Arguments:
Name Description
padAinv nRows by nRows double matrix inverse.
pnlInfo A reference to an integer exit code. Possible values are:

= 0: successful exit.

< 0: if (*pnlnfo) = -i, the i-th argument had an illegal
value.

> 0: 1, D(i,i) is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular,
so the solution could not be computed.

LSgetMatrixLUFactor()

Description:

Get LU factorization of a general m by n matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetMatrixLUFactor(int nRows, int nCols, double *padA, int
*panP, double *padL, double *padU, int *pnInfo);

FUNCTION DEFINITIONS 323

Input Arguments:
Name Description
nRows An integer indicating the number of rows of the matrix.
nCols An integer indicating the number of columns of the matrix.
padA nRows by nCols double matrix.
Output Arguments:
Name Description
panP nRows by nRows permutation matrix.
padL If nRows > nCols
nRows by nCols matrix, lower trapezoidal with unit diagonal
elements;
Else:
nRows by nRows matrix, lower triangular with unit diagonal
elements.
padU If nRows > nCols
nCols by nCols matrix, upper triangular;
Else:
nRows by nCols matrix, upper trapezoidal.
pnlInfo A reference to an integer 'exit code. Possible values are:
= 0: successful exit.
< 0: if (*pnlnfo) = -i, the i-th argument had an illegal
value.
> 0: 1, U(i,i) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, and division by
zero will occur if it is used to solve a system of equations.

LSgetMatrixQRFactor()

Description:

Get QR factorization of a general m by n matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetMatrixQRFactor(int nRows, int nCols, double *padA,
double *padQ, double *padR, int *pnlnfo);
Input Arguments:
Name Description
nRows An integer indicating the number of rows of the matrix.
nCols An integer indicating the number of columns of the matrix.

324 CHAPTER 2

padA nRows by nCols double matrix.
Output Arguments:
Name Description
padQ nRows by nRows orthogonal matrix.
padR nRows by nCols matrix, upper triangular (nRows >= nCols) or
upper trapezoidal (nRows < nCols).
pnlnfo A reference to an integer exit code. Possible values are:
= 0: successful exit.
< 0: if (*pnlnfo) = -i, the i-th argument had an illegal
value.

LSgetMatrixDeterminant()

Description:

Get the determinant of a square matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetMatrixDeterminant(int nRows, double *padA, double
*padDet, int *pnlnfo);

Input Arguments:

Name Description
nRows An integer indicating the dimension of the square matrix padA.
padA nRows by nRows double matrix.
Output Arguments:
Name Description
padDet The determinant of the square matrix padA.
pnlnfo A reference to an integer exit code. Possible values are:

= 0: successful exit.

< 0: if (*pnlnfo) = -i, the i-th argument had an illegal
value.

> 0: 1, U(i,) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, and division by
zero will occur if it is used to solve a system of equations.

LSgetMatrixCholFactor()

Description:

Get Cholesky factorization of symmetic matrix.

FUNCTION DEFINITIONS 325

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetMatrixCholFactor(int nRows, char chUpLo, double
*padA, double *padUL, int *pnlnfo);

Input Arguments:

Name Description

nRows An integer indicating the dimension of the square matrix padA.

chUpLo A character to indicate if upper ('U") or lower ('L'") triangle of
padA is stored.

padA nRows by nRows double symmetric matrix.

Output Arguments:

Name Description

padUL If chUpLo ="U', upper triangular matrix.
If chUpLo ='L', lower triangular matrix.

pnlInfo A reference to an integer exit code. Possible values are:

= 0: successful exit.

< 0: if (*pnlnfo) = -i, the i-th argument had an illegal
value.

> 0: 1, the leading minor of order i is not positive
definite, and the factorization could not be completed.

LSgetMatrixSVDFactor()

Description:

Get SVD factorization of a general m by n matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSgetMatrixSVDFactor(int nRows, int nCols, double *padA,
double *padU, double *padS, double *padVT, int *pninfo);

Input Arguments:

Name Description
nRows An integer indicating the number of rows of the matrix.
nCols An integer indicating the number of columns of the matrix.

padA

nRows by nCols double matrix.

326 CHAPTER?2

Output Arguments:
Name Description
padU nRows by nRows orthogonal matrix.
padS Dimension min(nRows, nCols), singular values of padA, sorted
in descending order.
padVT nCols by nCols orthogonal matrix.
pnlInfo A reference to an integer exit code. Possible values are:
= 0: successful exit.
< 0: if (*pnlnfo) = -i, the i-th argument had an illegal
value.
> 0: did not converge, updating process failed.

LSgetEigg()

Description:

Compute the eigenvalues and, optionally, the left and/or right eigenvectors of a general
(nonsymmetric) real square matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetEigg(int nDim, char chJOBV, double *padA, double
*padWR, double *padWI, double *padVRR, double *padVRI,
double *padVLR, double *padVLI, int *pnlnfo) ;
Input Arguments:
Name Description
nDim Dimension of matrix 4.
chJOBV An integer specifying which eigenvectors should be computed.
Possible values are:
- 'N'": no eigenvectors are computed
- 'L" left eigenvectors are computed
- 'R" right eigenvectors are computed
- 'B': both left and right are computed
padA A double matrix of dimension nDim x nDim.
Output Arguments:
Name Description
padWR A double array of size nDim for the real part of computed
eigenvalues.

FUNCTION DEFINITIONS 327

padWI

A double array of size nDim for the imaginary part of
computed eigenvalues. Complex conjugate pairs of eigenvalues
appear consecutively with the eigenvalue having the positive
imaginary part first.

padVRR

The real part of right eigenvectors.

padVRI

The imaginary part of right eigenvectors

if JOBV ="N'or 'L, padVRR and padVRI are not referenced

if JOBV ="R' or 'B', padVRR and padVRI are nDim by nDim
matrix

padVRR and padVRI are stored one after another in the same in
the same order as their eigenvalues.

padVLR

The real part of left eigenvectors.

padVLI

The imaginary part of left eigenvectors

if JOBV ="N'or 'R', padVLR and padVLI are not referenced
if JOBV ="L' or 'B', padVLR and padVLI are nDim by nDim
matrix

padVLR and padVLI are stored one after another in the same
order as their eigenvalues.

The computed eigenvectors are normalized so the sum of
squares of both real and imaginary parts equal to 1.

pnlnfo

A reference to an integer exit code. Possible values are:

= 0: successful exit.

< 0: if (*pnlnfo) = -i, the i-th argument had an illegal
value.

> 0: if (*pnInfo) =1, the QR algorithm failed to compute
all the eigenvalues, and no eigenvectors have been computed;
elements i+1:N of padWR and padW1I contain eigenvalues
which have converged.

328 CHAPTER?2

LSloadNLPDense()

Description:

Set up a dense nonlinear model with specified dimensions.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSloadNLPDense(pLSmodel pModel, int nCons, int nVars, int
dObjSense, char *pszConTypes, char *pszVarTypes, double
*padXO0, double *padL, double *padU);

Input Arguments:

Name Description

pLSmodel An instance of LSmodel in which to load the problem data.

nCons Number of constraints in the model.

nVars Number of variables in the model.

dObjSense An indicator stating whether the objective function is to be
maximized or minimized. Valid values are: LS MAX or
LS MIN, respectively.

pszConTypes A vector containing the type of each constraint. Valid values
for each constraint are 'L', 'E', 'G' or 'N' for less than or equal
to, equal to, or greater than or equal to, or free, respectively.

pszVarTypes A vector containing the type of each variable. Valid values for
each variable are 'C', 'B', 'I' or 'S' for continuous, binary,
general integer or semi-continuous, respectively. This value
may be NULL on input.

padX0 A vector containing a guess for primal values which a given
method can use to start with. This value may be NULL on
input.

padL A vector containing the lower bound of each variable. If there
is no lower bound on the variable, then this value should be set
to -LS INFINITY. If this value is NULL, then the lower
bounds are internally set to zero.

padU A vector containing the upper bound of each variable. If there
is no upper bound on the variable, then this value should be set
to LS _INFINITY. If this value is NULL, then the upper bounds
are internally set to LS INFINITY.

FUNCTION DEFINITIONS 329

LSloadlISPriorities()

Description:

Provide priorities for constraints and variables in IIS search.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSloadIISPriorities(pLSmodel pModel, int *panRprior, int
*panCprior);

Input Arguments:

Name Description

pModel An instance of LSmodel.

panRprior A integer vector containing the priority of each row in the
given model. The length of this vector is equal to the number
of constraints in the model. If (panRprior==NULL) then the
default priority scheme will be used.

panCprior A integer vector containing the priority of each column in the

given model. The length of this vector is equal to the number
of variables in the model. If (panCprior=—=NULL) then the
default priority scheme will be used.

330 CHAPTER?2

LSgetJac()

Description:

Get Cholesky factorization of symmetic matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetJac(pLSmodel pModel, int *pnJnonzeros, int
*pnJobjnnz, int *paiJrows, int *paiJcols, double *padJcoef,
double *padX) ;
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
padX A pointer to a double vector containing values of each variable
in the model.
Output Arguments:
Name Description
pnJnonzeros A reference to an integer to return nonzeros in the Jacobian
matrix.
pnJobjnnz A reference to an integer to return the nonzeros in the objective
function.
paiJrows A pointer to an integer of vector returning the index of the first
nonzero element in Jacobian matrix. This vector must have
m+2 entries, where m is the number of constraints in the
model. The first entry is for objective the next m entries are for
constraints. The last entry will be the total number of nonzeros.
paiJcols A pointer to an integer vector returning the column indices of
nonzeros in the Jacobian matrix.
padJcoef A pointer to a double vector returning the nonzero coefficients
of the Jacobian matrix at padX, when padJcoef and padX is
not NULL.

FUNCTION DEFINITIONS 331

LSgetHess()

Description:

Get Hessian (second order derivative) matrix.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetHess(pLSmodel pModel, int *pnHnonzeros, int
*paiHrows, int *paiHcoll, int *paiHcol2, double *padHcoef,
double *padX) ;
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
padX A pointer to a double vector containing values of each variable
in the model.
Output Arguments:
Name Description
pnHnonzeros A reference to an integer returning the number of nonzero in
the Hessian.
paiHrows A pointer to an integer of vector returning the index of the first
nonzero element in Hessian matrix. This vector must have m+2
entries, where m is the number of constraints in the model. The
first entry is for objective the next m entries are for constraints.
The last entry will be equal to the total number of nonzeros.
paiHcoll A pointer to an integer vector returning the partial columnl
indices.
paiHcol2 A pointer to an integer vector returning the partial column2
indices.
padHcoef A pointer to a double vector returning the coefficients of the
Hessian matrix at padX, when padHcoef and padX is not
NULL.

332 CHAPTER?2

LSregress()

Description:

Compute the linear regression coefficients in the linear model ¥ = B0 + X*B.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSregress(int nNdim, int nPdim,double *padY,double
*padX,double *padB, double *pdBO0, double *padR, double
*padstats) ;
Input Arguments:
Name Description
nNdim The number of observations.
nPdim The number of predictors.
padY A double vector of observed responses with nNdim dimension.
padX A double matrix of predictors with nNdim x pPdim dimension.
Output Arguments:
Name Description
padB A double vector of size nPdim for regression coefficients.
pdBO A reference to a double scalar for the intercept (optional), i.e.
this argument could be set to NULL.
padR A double vector of size nNdim for residuals (optional), i.e. this
argument could be set to NULL.
padstats A 4-dimensional double vector (optional) to return regression
statistics. The following values will be returned at specified
positions:
padstats[0]: R-squared statistic.
padstats[1]: F-statistic value.
padstats[2]: p-value for the F-test on the regression model.
padstats[3]: estimate of error variance.

FUNCTION DEFINITIONS 333

Callback Management Routines

The routines in this section allow the user to set callback functions and manage callback information.
Refer to Chapter 9, Using Callback Functions, for examples of using callback management routines.

LSgetCallbackinfo()

Description:
Returns information about the current state of the LINDO API solver during model
optimization. This routine is to be called from your user supplied callback function that was
set with LSsetCallback().

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetCallbackInfo(pLSmodel pModel, int nLocation, int
nQuery, void *pvValue)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel. This should be the same
instance as was passed to your user callback function from the
LINDO API solver.

nLocation The solver’s current location. This parameter is passed to your
callback function by the LINDO API solver.

nQuery The information desired from LINDO API. Only the following

select information can be obtained from the callback function:

e LS IINFO_SIM_ITER: Number of simplex iterations
performed for solving a continuous problem.

e LS IINFO _BAR ITER: Number of barrier iterations
performed for solving a continuous problem.

e LS IINFO NLP_ITER: Number of nonlinear
iterations performed for solving a continuous
problem.

e LS DINFO POBIJ: Primal objective value of a
continuous problem.

e LS DINFO DOBIJ: Dual objective value of a
continuous problem.

e LS DINFO PINFEAS: Maximum primal
infeasibility.

e LS DINFO DINFEAS: Maximum dual infeasibility.

e LS DINFO MSW_POBIJ: Value of the incumbent
objective value when using the multistart solver.

e LS IINFO MSW_PASS: Number of multistart
passes.

e LS IINFO MSW_NSOL: Number of distinct

334 CHAPTER?2

solutions found when using the multistart solver.

LS DINFO MIP OBJ: MIP objective value.

LS DINFO_MIP_BESTBOUND: Best bound on MIP
objective.

LS IINFO_MIP LPCOUNT: Number of LPs solved
for solving a MIP.

LS IINFO _MIP BRANCHCOUNT: Number of
branches generated for solving a MIP.

LS IINFO MIP_ ACTIVENODES: Number of
remaining nodes to be explored.

LS IINFO MIP_LTYPE: Type of the last MIP
solution.

LS IINFO MIP_SIM ITER: Number of simplex
iterations performed for solving a MIP.

LS IINFO_MIP _BAR ITER: Number of barrier
iterations performed for solving a MIP.

LS IINFO_MIP NLP ITER: Number of nonlinear
iterations performed for solving a MIP.

LS IINFO MIP NUM TOTAL CUTS: Number of
total cuts generated.

LS IINFO MIP_GUB COVER_CUTS: Number of
GUB cover cuts generated.

LS IINFO MIP FLOW_COVER_CUTS: Number of
flow cover cuts generated.

LS _IINFO_MIP_LIFT _CUTS: Number of lifted
knapsack covers generated.

LS IINFO MIP PLAN LOC CUTS: Number of
plant location cuts generated.

LS IINFO _MIP DISAGG CUTS: Number of
disaggregation cuts generated.

LS IINFO MIP KNAPSUR COVER CUTS:
Number of surrogate knapsack cover cuts generated.
LS _IINFO_MIP_LATTICE_CUTS: Number of
lattice cuts generated.

LS IINFO_MIP_GOMORY _ CUTS: Number of
Gomory cuts generated.

LS IINFO_MIP_COEF REDC CUTS: Number of
coefficient reduction cuts generated.

LS IINFO MIP_GCD_CUTS: Number of GCD cuts
generated.

LS IINFO MIP OBJ CUT: Number of objective
cuts generated.

LS TIINFO_MIP BASIS CUTS: Number of basis
cuts generated.

LS IINFO_MIP_CARDGUB_CUTS: Number of
cardinality/GUB cuts generated.

LS IINFO_MIP_CONTRA_ CUTS: Number of
contra cuts generated.

FUNCTION DEFINITIONS 335

e LS IINFO MIP CLIQUE CUTS: Number of clique
cuts generated.

e LS DINFO GOP_OBIJ: Objective value of the global
optimal solution of a GOP.

e LS DINFO GOP BESTBOUND: Best bound on the
objective value of a GOP.

e LS IINFO GOP_STATUS: Solution status of a GOP.

e LS IINFO GOP_LPCOUNT: Number of LPs solved

for solving a GOP.

e LS IINFO GOP NLPCOUNT: Number of NLPs
solved for solving a GOP.

e LS IINFO _GOP_MIPCOUNT: Number of MIPs
solved for solving a GOP.

e LS IINFO GOP NEWSOL: If a new GOP solution
has been found or not.

e LS IINFO _GOP_BOX: Number of explored boxes

e LS IINFO GOP_BBITER: Number of iterations
performed during a major GOP iteration.

e LS IINFO _GOP_SUBITER: Number of iterations
performed during a minor GOP iteration.

e LS IINFO GOP ACTIVEBOXES: Number of active
boxes at current state for solving a GOP.

e LS IINFO GOP MIPBRANCH: Number of
branches created for solving a GOP.

Output Arguments:
Name Description
pvValue This is a pointer to a memory location where LINDO API will
return the requested information. You must allocate sufficient
memory for the requested information prior to calling this
function.
Remarks:

LSgetinfo() cannot be used during callbacks.

Query values whose names begin with LS TINFO return integer values, while those
whose names begin with LS _DINFO return double precision floating point values.
Refer to Chapter 9, Using Callback Functions, for additional information.

336 CHAPTER?2

LSgetMIPCallbackinfo()

Description:
Returns information about the current state of the LINDO API branch-and-bound solver. This
routine is to be called from your user supplied callback functions that were established with
the calls LSsetCallback()and LSsetMIPCallback().

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSgetMIPCallbackInfo(pLSmodel pModel, int nQuery, void
*pvValue)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel. This should be the same
instance as was passed to your user callback function from the
LINDO API solver.
nQuery This is the information desired from LINDO API. All
information that can be accessed via LsgetCallbackiInfo() is
available.
Output Arguments:
Name Description
pvValue This is a pointer to a memory location where LINDO API will
return the requested information. You must allocate sufficient
memory for the requested information prior to calling this
function.
Remarks:

e Query values whose names begin with LS _TINFO return integer values, while those
values whose names begin with LS _DINFO return double precision floating point values.

e Refer to Chapter 9, Using Callback Functions, for additional information on the use of
callback functions.

FUNCTION DEFINITIONS 337

LSgetProgressinfo()

Description:
Get information about the current state of the solver from the perspective of given location in
the solution process.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSgetProgressinfo(pLSmodel pModel, int nLocation, int
nQuery, void *pvValue)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

nLocation Location of the caller.

nQuery The information to request from the solver. Possible values are:

e LS DINFO SUB OBI: current objective value of the
continuous relaxation or subproblem.

e LS DINFO SUB PINF: current infeasibility of the
continuous relaxation or subproblem.

e LS DINFO CUR_OBIJ: current objective value of the
model (e.g. incumbent solution).

e LS IINFO_CUR_ITER: current iteration count so far.

e LS DINFO CUR _BEST BOUND: best-bound with
respect to current iteration.

e LS IINFO_CUR_STATUS: current status (e.g.
feasible or unknown).

e LS IINFO _CUR LP_COUNT: total number of LP
relaxations solved so far.

e LS DINFO CUR_BRANCH COUNT: total number
of branches/subproblems solved so far.

e LS DINFO CUR_ACTIVE COUNT: total number
of active branches/subproblems waiting to be solved.

e LS IINFO CUR NLP COUNT: total number of
NLP relaxations solved so far.

e LS IINFO CUR MIP_COUNT: total number of MIP
subproblems solved so far.

e LS DINFO CUR_CUT_COUNT: total number of
cuts generated so far.

e LS IINFO CUR _OBIJIDX: Index of the current
objective function during a multiobjective
optimization session.

pvValue A pointer to data that is passed back to the callback function.
This pointer can be a pointer to a double or integer variable.

338 CHAPTER?2

Note:

e Query values whose names begin with LS IINFO take integer values while those whose
names begin with LS DINFO take double-precision floating point values.

LSsetCallback()

Description:
Supplies LINDO API with the address of the callback function that will be called at various
points throughout all components of LINDO API. The user supplied callback function can be
used to report the progress of the solver routines to a user interface, interrupt the solver, etc.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetCallback(pLSmodel pModel, int (CALLBACKTYPE
pcbFunc)(LSmodel, int, void*), void *pvData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pcbFunc A pointer to the user supplied callback function.

pvData A pointer to any data you wish to access within the callback

function. Of course, this can be a pointer to a structure,
allowing any amount of information to be passed.

Remarks:

e To disable the callback function, call this routine with the callback function set to NULL.

e To control the frequency of callbacks, use LSsetEnvDouParameter() to set parameter
LS DPARAM_CALLBACKFREQ. This parameter is the number of seconds
(approximately) between callbacks.

o If the value returned by the callback function is nonzero, the solver will interrupt and the
control of the application program will pass to the user.

e Refer to the lindo.h file for CALLBACKTYPE macro definition.

e Refer to Chapter 9, Using Callback Functions, for additional information.

FUNCTION DEFINITIONS 339

LSsetEnvLogFunc ()

Description:

Supplies the specified environment with the addresses of a) the pLogfunc() that will be called
each time LINDO API logs message and b) the address of the user data area to be passed
through to the pUsercalc() routine.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSsetEnvLogFunc (pLSenv pEnv, printLOG_t *pLogfunc,
void *pUserData)

Input Arguments:

Name Description

pEnv A pointer to an instance of LSenv.

pLogfunc A pointer to the subroutine that will be called to log messages.
pUserData A pointer to a “pass through” data area in which your calling

application may place information about the functions to be
calculated. Whenever LINDO API calls your subroutine
pUsercalc(), it passes through the pointer pUserData which
could contain data to be used in the computation of the final
value. Passing data in this manner will ensure that your
application remains thread safe.

340 CHAPTER?2

LSsetFuncalc ()

Description:

Supplies LINDO API with the addresses of a) the user-supplied function computing the
routine pFuncalc() (see Chapter 7) that will be called each time LINDO API needs to
compute a row value, and b) the address of the user data area to be passed through to the

pFuncalc() routine.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsetFuncalc (pLSmodel pModel, Funcalc_type *pFuncalc,
void *pUserData)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
pFuncalc A pointer to the subroutine that computes the value of a
specified nonlinear row. See the definition of pFuncalc() in
Chapter 7, Solving Nonlinear Programs, for details on this
function’s prototype.
pUserData A pointer to a “pass through” data area in which your calling
application may place information about the functions to be
calculated. Whenever LINDO API calls your subroutine
pFuncalc(), it passes through the pointer pUserData. All data
that pFuncalc() needs to compute function values should be in
the pUserData memory block. Passing data in this manner will
ensure that your application remains thread safe.
Remarks:

e Visual Basic users can use the AddressOf operator to pass the address of a routine to
LSsetFuncalc(). The supplied routine must be in a VB module, or the AddressOf operator

will fail.

FUNCTION DEFINITIONS 341

LSsetGradcalc()

Description:

Supplies LINDO API with the addresses of a) the pGradcalc () callback function (see Chapter
7, Solving Nonlinear Programs) that will be called each time LINDO API needs a gradient
(i.e., vector of partial derivatives), and b) the data area to be passed through to the gradient
computing routine. This data area may be the same one supplied to LSsetFuncalc().

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSsetGradcalc (pLSmodel pModel, Gradcalc_type
*pGradcalc, void *pUserData, int nLenUseGrad, int
*pnUseGrad);

Input Arguments:

Name

Description

pModel

A pointer to an instance of LSmodel.

pGradcalc

A pointer to the subroutine that computes the gradients for
specified nonlinear rows. See the definition of pGradcalc () in
Chapter 7, Solving Nonlinear Programs, for details on this
function’s interface.

pUserData

A pointer to a “pass through” data area in which your calling
application may place information about the partial derivatives
to be calculated. Whenever LINDO API calls your subroutine
pGradcalc(), it passes through the pointer pUserData. All data
that pGradcalc() needs to compute gradients should be in the
pUserData memory block. Passing data in this manner will
ensure that your application remains thread safe.

nLenUseGrad

An integer indicating how many nonlinear rows will make use
of the pGradcalc() routine. 0 is interpreted as meaning that no
functions use a pGradcalc() routine, thus meaning that partials
on all functions are computed with finite differences. A value
of -1 is interpreted as meaning the partials on all nonlinear
rows will be computed through the pGradcalc() routine. A
value greater than 0 and less-than-or-equal-to the number of
nonlinear rows is interpreted as being the number of nonlinear
rows that make use of the pGradcalc () routine. And, the list of
indices of the rows that do so is contained in the following
array, pnUseGrad.

pnUseGrad

An integer array containing the list of nonlinear rows that make
use of the pGradcalc() routine. You should set this pointer to
NULL if nLenUseGrad is 0 or -1. Otherwise, it should point to
an array of dimension nLenUseGrad, where pnUseGrad]j] is
the index of the j-th row whose partial derivatives are supplied
through the pGradcalc() function. A value of -1 indicates the

342 CHAPTER 2

| | objective row.

Remarks:
e LSsetGradcalc() need not be called. In that case, gradients will be approximated by finite
differences.
e Visual Basic users can use the AddressOf operator to pass the address of a routine to
LSsetGradcalc(). The supplied routine must be in a VB module, or the AddressOf
operator will fail.

LSsetMIPCallback()

Description:
Supplies LINDO API with the address of the callback function that will be called each time a
new integer solution has been found to a mixed-integer model.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetMIPCallback(pLSmodel pModel, int (
CALLBACKTYPE *pMIP_caller)(LSmodel*, void*, double,
double*), void *pvData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pMIP_caller A pointer to your user supplied callback function.

pvData A pointer to any data you wish to access within the callback

function. Of course, this can be a pointer to a structure,
allowing any amount of information to be passed.

Remarks:

e To disable the MIP callback function, call this routine with the callback function set to
NULL.

e To retrieve information in your MIP callback routine, see LSgetMIPCallbackinfo().

e To interrupt the mixed-integer optimizer before a new integer solution is found or in
between new integer solutions, set a general callback function via LSsetCallback().

e Refer to the lindo.h file for the CALLBACKTYPE macro definition.

e Refer to Chapter 9, Callback Functions, for additional information.

FUNCTION DEFINITIONS 343

LSsetGOPCallback()

Description:
Supplies LINDO API with the address of the callback function that will be called each time a
the global solver updates the incumbent solution, i.e. finds a solution with objective value
better than the best known solution.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetGOPCallback(pLSmodel pModel, int (
CALLBACKTYPE *pGOP_caller)(LSmodel*, void*, double,
double*), void *pvData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pGOP_caller A pointer to your user supplied callback function.

pvData A pointer to any data you wish to access within the callback

function. Of course, this can be a pointer to a structure,
allowing any amount of information to be passed.

LSsetModelLogFunc()

Description:
Supplies the specified model with the addresses of a) the pLogfunc () that will be called each
time LINDO API logs message and b) the address of the user data area to be passed through
to the pUsercalc() routine.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int LSsetModelLogFunc (pLSmodel pModel, printLOG t
*pLogfunc, void *pUserData)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

pLogfunc A pointer to the subroutine that will be called to log messages.
pUserData A pointer to a “pass through” data area in which your calling

application may place information about the functions to be
calculated. Whenever LINDO API calls your subroutine

pUsercalc(), it passes through the pointer pUserData which
could contain data to be used in the computation of the final

344 CHAPTER 2

value. Passing data in this manner will ensure that your
application remains thread safe.

FUNCTION DEFINITIONS 345

LSsetUsercalc ()

Description:

Supplies LINDO API with the addresses of a) the pUsercalc() (see Chapter 7) that will be
called each time LINDO API needs to compute the value of the user-defined function and b)
the address of the user data area to be passed through to the pUsercalc() routine.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSsetFuncalc (pLSmodel pModel, user callback t
*pUsercalc, void *pUserData)
Input Arguments:
Name Description
pModel A pointer to an instance of LSmodel.
pUsercalc A pointer to the subroutine that computes the value of a user-
defined function. See the definition of pUsercalc() in Chapter
7, Solving Nonlinear Programs, for details on this function’s
prototype.
pUserData A pointer to a “pass through” data area in which your calling
application may place information about the functions to be
calculated. Whenever LINDO API calls your subroutine
pUsercalc(), it passes through the pointer pUserData which
could contain data to be used in the computation of the final
value. Passing data in this manner will ensure that your
application remains thread safe.
Remarks:

o LSsetGradcalc() need not be called. In that case, gradients will be approximated by finite

differences.

346 CHAPTER 2

LSsetMIPCCStrategy ()

Description:

Set the callback function that will be called to define competing strategies
for each thread when in a concurrent MIP run.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSsetMIPCCStrategy(pLSmodel pModel, cbStrategy t
MIP_strategy, int nRunld, char *szParamFile, void
*puserData)

Input Arguments:

Name

Description

pModel

A pointer to an instance of LSmodel.

MIP_strategy

A pointer to the callback function to define a MIP strategy in
the concurrent run.

nRunld The index of the instance in the concurrent run.
szParamFile A parameter file to import strategy parameters.
puserData A pointer to data that is passed back to the callback function.

This pointer can be a pointer to a structure so that any amount
of information can be passed back.

Note:

e To disable the callback function, call this routine again with the callback function set to

NULL.

FUNCTION DEFINITIONS 347

Memory Management Routines

The routines in this section allow the user to manage the memory used by the LINDO API solvers.

LSfreeGOPSolutionMemory()

Description:
This routine frees up the arrays associated with the GOP solution of a given model. After
freeing the memory, you will lose all access to the information associated to GOP solutions.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:
int LSfreeGOPSolutionMemory(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

LSfreeHashMemory()

Description:
This routine frees up work arrays associated with a given model’s variable name hashing.
This will release memory to the system pool, but will cause any subsequent variable name
lookup to pause to regenerate these tables.

Returns:
if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

void LSfreeHashMemory(pLSmodel pModel)

Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.

Remarks:
e A model also stores work arrays for the solver. These arrays may be freed by a call to
LSfireeSolverMemory().

348 CHAPTER 2

LSfreeMIPSolutionMemory()

Description:

This routine frees up the arrays associated with the MIP solution of a given model. After
freeing the memory, you will lose all access to the information associated to MIP solutions.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSfreeMIPSolutionMemory(pLSmodel pModel)

Input Arguments:

Name

Description

pModel

A pointer to an instance of LSmodel.

LSfreeSolutionMemory()

Description:

This routine frees up the arrays associated with the solution of a given model. This will
release the associated memory blocks to the system, but will not cause the solver to loose any
warm start capability for the model on its next run. However, you will lose all access to the
model’s solution information.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

int

LSfreeSolutionMemory(pLSmodel pModel)

Input Arguments:

Name

Description

pModel

A pointer to an instance of LSmodel.

FUNCTION DEFINITIONS 349

LSfreeSolverMemory()

Description:
This routine frees up solver work arrays associated with a given model. This will release the
associated memory to the system, but will cause any subsequent reoptimization of the model
to take more time. In other words, the solver will lose its warm start capability for the model
on its next run. Note that by freeing solver memory, you will not lose access to the model’s
solution information.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes.

Prototype:

void LSfreeSolverMemory(pLSmodel pModel)
Input Arguments:

Name Description

pModel A pointer to an instance of LSmodel.
Remarks:

e A model also stores work arrays for variable name hashing. These arrays may be freed by
a call to LSfreeHashMemory().

350 CHAPTER?2

Random Number Generation Routines

Random Number Generator Functions.

LScreateRG ()

Description:
Create a new random generator object.

Returns:
PRG A reference to a random number generator.
Prototype:
pLSrandGen LScreateRG (pLSenv pEnv, int nMethod)

Input Arguments:

Name Description
pEnv A reference to an instance of LSenv.
nMethod An integer specifying the random number generator to use.

Possible values are:
e LS RANDGEN FREE
e LS RANDGEN SYSTEM
e LS RANDGEN LINDOI1
e LS RANDGEN _LINDO2
e LS RANDGEN LINI
e LS RANDGEN MULTI1
e LS RANDGEN MERSENNE

Remark:
Call LScreateRGMT() for multithreaded random number generation.

LSgetDoubleRYV ()

Description:
Get the next standard uniform random variate in the stream.

Prototype:

double LSgetDoubleRV (pLSrandGen pRG)

Input Arguments:

Name Description

pRG A reference to the random number generator.

FUNCTION DEFINITIONS

351

LSgetDistrRV ()

Description:
Get the next double random variate of underlying distribution.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSgetDistrRV (pLSrandGen pRG, void * dResult)

Input Arguments:

Name Description
pRG A reference to the random number generator.
dResult The next random value from underlying distribution

LSgetinitSeed ()

Description:
Get the seed initiated this random generator.

Prototype:

int LSgetInitSeed (pLSrandGen pRG)

Input Arguments:

Name Description

pRG A reference to the random number generator.

LSgetint32RV ()

Description:
Get the next integer random variate in the stream.

352 CHAPTER 2

Prototype:

int

LSgetInt32RV (pLSrandGen pRG, int ib, int ie)

Input Arguments:

Name Description
pPRG A reference to the random number generator.
ib lower bound for random variate

ie

upper bound for random variate

LSsetRGSeed ()

Description:

Set an initialization seed for the random number generator.

Prototype:

void

LSsetRGSeed (pLSrandGen pRG, int seed)

Input Arguments:

Name Description
pRG A reference to the random number generator.
seed An integer specifying the seed to set.

LSdisposeRG ()

Description:

Delete the specified random generator object.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

void

LSdisposeRG (pLSrandGen * ppRG)

Input Arguments:

Name

Description

PPRG

A reference to the address of a random number generator.

FUNCTION DEFINITIONS

353

LSsetDistrRG ()

Description:
Set a cdfinv for the random generator.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsetDistrRG (pLSrandGen pRG, int nDistType)

Input Arguments:

Name Description
pRG A reference to the random number generator.
nDistType An integer specifying the distribution type. See

LSsampCreate() for possible values.

LSsetDistrParamRG ()

Description:
Set distribution parameters for internal cdfinv.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSsetDistrParamRG (pLSrandGen pRG, int iParam, double
dParam)
Input Arguments:
Name Description
pRG A reference to the random number generator.
iParam A parameter index
dParam A parameter value

LSgetRGNumThreads ()

Description:
Get the number of parallel threads for specified pLSrandGen instance.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

354 CHAPTER 2

Prototype:

int LSgetRGNumThreads(pLSrandGen pRG, int *pnThreads);
Input Arguments:

Name Description

pPRG A reference to the random number generator.
Output Arguments:

Name Description

pnThreads An integer reference to return the number of parallel threads

used.

LSfillRGBuffer ()

Description:
Generate next batch of random numbers into random number buffer.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSfillRGBuffer(pLSrandGen pRG)

Input Arguments:

Name Description
pRG A reference to the random number generator.
Remark:
This function is used only with parallel random number generator created with
LScreateRGMT().

LSgetRGBufferPtr ()

Description:
Get buffer pointer for fast access.

Returns:
A pointer to a double array of size (*pnBufferLen).

FUNCTION DEFINITIONS 355

Prototype:

double LSgetRGBufferPtr(pLSrandGen pRG, int *pnBufferLen)
Input Arguments:

Name Description

pPRG A reference to the random number generator.

pnBufferLen An integer reference to return the length of output buffer.

356 CHAPTER?2

Sampling Routines

Sampling Functions.

LSsampCreate ()

Description:

Create an instance of a sample (pLSsample) of specified distribution.

Returns:

A reference to an instance of LSsample object.

Prototype:

pLSsample

LSsampCreate (pLSenv pEnv, int nDistrType, int *
perrorcode)

Input Arguments:

Name Description

pEnv A reference to an instance of LSenv object.

nDistrType An integer specifying the distribution type. Possible values:
one of the distribution functions listed in the table above
Distribution Function Macros.

perrorcode An reference to an integer returning the error code. See

Appendix-A for possible values.

LSsampDelete ()

Description:

Delete the specified pLSsample object.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSsampDelete (pLSsample * pSample)

Input Arguments:

Name

Description

pSample

A reference to an instance of LSsample object.

FUNCTION DEFINITIONS 357

LSsampLoadDiscretePdfTable ()

Description:
Load a PDF table for a user defined discrete distribution.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSsampLoadDiscretePdfTable (pLSsample pSample, int nLen,
double * padProb, double * padVals)
Input Arguments:
Name Description
pSample A reference to an instance of LSsample object.
nLen An integer specifying the table length.
padProb A double array specifying the probabilities of outcomes.
padVals A double array specifying the values of outcomes (optional)
Remarks:

e ifnlLen <=0, the table length will be set to default (100)

LSsampGetDiscretePdfTable ()

Description:
Get the PDF table from a discrete distribution sample.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSsampGetDiscretePdfTable (pLSsample pSample, int nLen,
double * padProb, double * padVals)
Input Arguments:
Name Description
pSample A reference to an instance of LSsample object.
nLen An integer to return the table length.
padProb A double array to return the probabilities of outcomes.
padVals A double array to return the values of outcomes (optional)
Remarks:

e Normally, this function should be called twice. The first call to get pnLen (with other
arguments set to NULL) to allocate space for padProb and padVals. In the second call,
padProb and padVals would be populated.

358 CHAPTER 2

LSsampSetUserDistr ()

Description:

Specify a custom function to compute the PDF.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSsampSetUserDistr (pLSsample pSample, UserPdf * pFunc)

Input Arguments:

Name Description
pSample A reference to an instance of LSsample object.
pFunc A user defined routine.

LSsampSetDistrParam ()

Description:

Set the specified parameter of the given distribution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSsampSetDistrParam (pLSsample pSample, int iarg, double
dargv)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

iarg An integer specifying the index of the parameter.

dargv A double precision value specifying the parameter value.

LSsampGetDistrParam ()

Description:

Get the specified parameter of a given distribution.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 359

Prototype:
int LSsampGetDistrParam (pLSsample pSample, int iarg, double *
dargv)
Input Arguments:
Name Description
pSample A reference to an instance of LSsample object.
iarg An integer specifying the index of the parameter.
dargv A double precision value specifying the parameter value.

LSsampEvalDistr ()

Description:
Evaluate the specified function associated with given distribution at specified point.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampEvalDistr (pLSsample pSample, int nFuncType,
double dX, double * dResult)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.

nFuncType An integer specifying the function type to evaluate. Possible
values are:

e LS PDF: probability density function.
e LS CDF: cummulative density function.

e LS CDFINV: inverse of cummulative density
function.

e LS PDFDIFF: derivative of the probability
density function.

dX A double precision value to evaluate the specified function.

dResult A reference to a double value to return the result.

LSsampSetRG ()

Description:
Set a random number generator object to the specified distribution.

360 CHAPTER?2

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSsampSetRG (pLSsample pSample, void * pRG)

Input Arguments:

Name Description
pSample A reference to an instance of LSsample object.
pRG A reference to a random number generator.

LSsampGenerate ()

Description:
Generate a sample of size nS
distribution.

Returns:

ampSize with specified method from the underlying

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSsampGenerate (pLSsample pSample, int nSampMethod, int
nSampSize)
Input Arguments:
Name Description
pSample A reference to an instance of LSsample object.
nSampMethod An integer specifying the sampling method. Possible values
are:
e LS MONTECARLO
e LS LATINSQUARE (default)
e LS ANTITHETIC
nSampSize An integer specifying the sample size. Possible values are
nonnegative integers > 2.

LSsampGetPoints ()

Description:

Get a copy of the generated sample points.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 361

Prototype:
int LSsampGetPoints (pLSsample pSample, int * pnSampSize,
double * pX)
Input Arguments:
Name Description
pSample A reference to an instance of LSsample object.
pnSampSize A reference to an integer specifying the sample size.
pX A reference to a double pointer containing the sample.

Remarks:
Use LSdistGetSamplePtr for fast access to the sample.

LSsampGetPointsPtr ()

Description:
Get a reference to the generated sample points.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsampGetPointsPtr (pLSsample pSample, int * pnSampSize,
double ** pX)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.
pnSampSize A reference to an integer specifying the sample size.
pX A reference to a double pointer containing the sample.

LSsampGetCIPoints ()

Description:
Get a copy of the correlation induced sample points.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

362 CHAPTER?2

Prototype:

int

LSsampGetCIPoints (pLSsample pSample, int * pnSampSize,
double *pX)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.
pnSampSize A refernce to an integer specifying the sample size.
pX A reference to a double vector containing the sample.

LSsampGetCIPointsPtr ()

Description:

Get a reference to the correlation induced sample points.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSsampGetCIPointsPtr (pLSsample pSample, int *
pnSampSize, double ** pX)

Input Arguments:

Name Description

pSample A reference to an instance of LSsample object.
pnSampSize A reference to an integer specifying the sample size.
pX A reference to a double pointer containing the sample.

LSsampGetCorrelationMatrix ()

Description:

Get the correlation structure between variables.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 363

Prototype:

int LSsampGetCorrelationMatrix (pLSsample * paSample, int
nDim, int iFlag, int nCorrType, int * QCnonzeros, int *
QCvarndx1, int * QCvarndx2, double * QCcoef)

Input Arguments:

Name Description

paSample An array of instances of pLSsample

nDim An integer specifying the number of variables (length of
paSample)

iFlag An integer specifying the sample (original or corr-induced).

Possible values are:

e 0 use independent sample
e 1 use dependent (correlation induced) sample.

nCorrType Correlation type. Possible values are:

e LS CORR_PEARSON (default)
e LS CORR_SPEARMAN

e LS CORR KENDALL

e LS CORR TARGET

QCnonzeros A reference to an integer to return the number of nonzero
correlation coefficients.

QCvarndx1 A vector containing the first index of variable the correlation
term belongs to (QCnonzeros long)..

QCvarndx2 A vector containing the second index of variable the
correlation term belongs to (QCnonzeros long)..

QCcoef A vector containing the correlation terms (QCnonzeros long).

LSsampinduceCorrelation ()

Description:
Induce a target dependence structure between the stochastic elements via the specified
correlation matrix. This matrix can be retrieved with LSgetCorrelationMatrix function with
LS CORR_TARGET as the argument.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

364 CHAPTER?2

Prototype:
int LSsampInduceCorrelation (pLSsample * paSample, int nDim,
int nCorrType, int QCnonzeros, int * QCvarndx]1, int *
QCvarndx2, double * QCcoef)
Input Arguments:
Name Description
paSample An array of instances of LSsample
nDim An integer specifying the number of variables (length of
paSample)
nCorrType Correlation type. Possible values are:
e LS CORR PEARSON
e LS CORR SPEARMAN
e LS CORR KENDALL
QCnonzeros The number of nonzero correlation coefficients.
QCvarndx1 A vector containing the first index of variable the correlation
term belongs to (QCnonzeros long)..
QCvarndx2 A vector containing the second index of variable the
correlation term belongs to (QCnonzeros long)..
QCcoef A vector containing the correlation terms (QCnonzeros long).
Remarks:

Use LSdistGetSamplePtr for fast access to the sample.

LSsampGetinfo ()

Description:

Get information about the sample.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 365

Prototype:
int LSsampGetInfo (pLSsample pSample, int query, void * result)
Input Arguments:
Name Description
paSample An array of instances of LSsample
query An integer specifying the information requested from the
sample. Possible values are:
e LS IINFO DIST TYPE
e LS IINFO_SAMP SIZE
e LS DINFO SAMP MEAN
e LS DINFO SAMP STD
e LS DINFO SAMP SKEWNESS
e LS DINFO SAMP KURTOSIS
result A reference to the appropriate type to return the result.

Note:

Query values whose names begin with LS IINFO take integer values while those whose
names begin with LS _DINFO take double-precision floating point values.

LSgetStocParSample ()

Description:

Get a handle for the LSsample object associated with the specified stochastic parameter.

Returns:

A reference to an instance of LSsample object.

Prototype:

pLSsample

LSgetStocParSample (pLSmodel pModel, int iStv, int iRow,
int jCol, int * nErrorCode)

366 CHAPTER?2

Input Arguments:

Name Description

pModel A reference to an instance of LSmodel object.

iStv An integer specifying the index of stochastic parameter in the
instruction list. It should be ignored if (iRow,jCol) is
specified.

iRow An integer specifying the row index of the stochastic
parameter. It should be ignored if 1 Stv will be specified.

jCol An integer specifying the column index of the stochastic
parameter. It should be ignored if 1Stv will be specified.

nErrorCode A reference to an integer error code.

LSsampEvalUserDistr ()

Description:

Evaluate the specified multivariate function associated with given distribution at specified

point.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

FUNCTION DEFINITIONS 367

Prototype:
int (pLSsample pSample, int nFuncType, double *padX, int nX,
double *dResult)
Input Arguments:
Name Description
pSample A reference to an instance of LSsample object.
nFuncType An integer specifying the function type to evaluate. Possible
values are:
e LS PDF: probability density function.
e LS CDF: cummulative density function.
e LS CDFINV: inverse of cummulative density
function.
e LS PDFDIFF: derivative of the probability density
function.
e LS USER: a user-defined function. The UserPDF()
will
padX A double precision vector containing the values required to
evaluate the specified function. This vector has nX elements.
nX An integer specifying the number of values required in the
computation of the sample point.
dResult A reference to a double value to return the result.

LSsampAddUserFuncArg ()

Description:

Adds other samples as arguments to a sample with a user-defined distribution or a function

with random arguments.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSsampAddUserFuncArg(pLSsample pSample, pLSsample
pSampleSource)

Input Arguments:

Name

Description

pSample

An instance of LSsample which depends on pSampleSource

pSampleSource

Another instance of LSsample

368 CHAPTER?2

Distribution Function Macros

Symbol Value Distribution Parameters
Param 1 Param 2 | Param 3
Parametric Discrete Distributions
success N/A
no. of trials prob.
LSDIST TYPE_BINOMIAL 701 [0, +inf) [0, 1] N/A
r- factor success N/A
prob.
LSDIST TYPE NEGATIVE BINOMIAL | 704 (0, +inf) 0, 1) N/A
success prob. | N/A N/A
LSDIST TYPE _GEOMETRIC 705 0, 1] N/A N/A
mean N/A N/A
LSDIST TYPE POISSON 706 (0, +inf) N/A N/A
p-factor N/A N/A
LSDIST TYPE LOGARITHMIC 707 ©,1) N/A N/A
sample defective
total pop. (N) | size (n) factor (m)
LSDIST TYPE HYPER GEOMETRIC 708 [0, +inf) [0, N] [0, N]
Parametric Continuous Distributions
Shape 1 Shape 2 N/A
LSDIST TYPE BETA 801 (0,+inf) (0,+inf) | N/A
location scale N/A
LSDIST TYPE CAUCHY 802 (-inf, +inf) (0,+inf) N/A
deg. of N/A N/A
freedom
LSDIST TYPE CHI SQUARE 803 (0,+inf) N/A N/A
Rate N/A N/A
LSDIST TYPE EXPONENTIAL 804 (0,+inf) N/A N/A
deg. of deg. of N/A
freedom 1 freedom 2
LSDIST TYPE F DISTRIBUTION 805 (0,+inf) (0,+inf) N/A
LSDIST TYPE GAMMA 806 shape scale N/A

FUNCTION DEFINITIONS 369

(0,+inf) (0,+inf) N/A
location scale N/A
LSDIST TYPE GUMBEL 807 (-inf, +inf) (0,+inf) N/A
location scale N/A
LSDIST TYPE LAPLACE 808 (-inf, +inf) (0,+inf) N/A
location scale N/A
LSDIST TYPE LOGNORMAL 809 (-inf, +inf) (0,+inf) | N/A
location scale N/A
LSDIST TYPE LOGISTIC 810 (-inf, +inf) (0,+inf) N/A
mean standard | N/A
deviation
LSDIST TYPE NORMAL 811 (-inf, +inf) (0,+inf) N/A
scale shape N/A
LSDIST TYPE PARETO 812 (0,+inf) (0,+inf) N/A
deg. of N/A N/A
freedom
LSDIST TYPE STUDENTS T 814 (0,+inf) N/A N/A
lower limit upper
(a) limit (b) mode (c)
LSDIST TYPE TRIANGULAR 815 (-inf, b] [a, +inf) [a, b]
lower limit upper N/A
(a) limit (b)
LSDIST TYPE_UNIFORM 816 (-inf, b] [a, +inf) | N/A
scale shape N/A
LSDIST TYPE WEIBULL 817 (0,+inf) (0,+inf) | N/A
LSDIST TYPE BETABINOMIAL 819 N>0 shapel>0 | shape2>0
LSDIST TYPE SYMMETRICSTABLE 820 2>alpha>0.02 | N/A N/A
Customized Distributions
LSDIST TYPE DISCRETE 702 N/A N/A N/A
LSDIST TYPE DISCRETE BLOCK 703 N/A N/A N/A
LSDIST TYPE_LINTRAN BLOCK 709 N/A N/A N/A
LSDIST TYPE SUB BLOCK 710 N/A N/A N/A
LSDIST TYPE SUB 711 N/A N/A N/A

370 CHAPTER?2

LSDIST TYPE USER |72 |wa | vA | vA

FUNCTION DEFINITIONS 371

Date and Time Routines

The routines in this section provide basic date-time-calendar functionality.

LSdateDiffSecs ()

Description:
Computes number of seconds between two instants in Yr, Mon, Day, Hr, Mn, Sec form. Leap
years are properly accounted for.

Returns:
0 if successful, else an error code if one of the inputs is incorrect, e.g., Mon < 1 or Mon > 12,
etc. See error codes listed in Appendix A, Error Codes.

Prototype:

int LSdateDiffSecs (int nYrl, int nMonl, int nDayl, int nHrl, int
nMinl, double dSecl, int nYr2, int nMon2, int nDay2, int
nHr2, int nMin2, double dSec2, double *pdSecdiff)

Input Arguments:

Name Description

nYrl Year, e.g., 1981, of first instant. May be negative for a BC
date.

nMonl Month of first instant. An integer in [1, 12].

nDay1 Day of month of first instant. An integer in [1, 31].

nHrl Hour of day of first instant. An integer in [1, 24].

nMinl Minute of hour of first instant. An integer in [1, 60].

dSecl Second of hour of first instant. A floating point number in [0,

59.99999], i.e., accurate to 5 decimal places.

nYr2 Year of second instant. May be negative for a BC date.
nMon2 Month of second instant. An integer in [1, 12].

nDay?2 Day of month of second instant. An integer in [1, 31].

nHr2 Hour of day of second instant. An integer in [1, 24].

nMin2 Minute of the hour of second instant. An integer in [1, 60].
dSec2 Second of hour of second instant. A floating point number in

[0, 59.99999], i.e., accurate to 5 decimal places.

*dSecdiff Pointer to a double precision variable into which to place the
difference in seconds, including fraction, between the two
instants.

372 CHAPTER?2

LSdateYmdhms ()

Description:

Given an elapsed time in seconds and a first instant in Yr, Mon, Day, Hr, Min, Sec form, this
function computes the Yr, Mon, Day, Hr, Min, Sec, and Day of week of a second instant that
exceeds the first by the specified elapsed seconds. Leap years are properly accounted for.

Returns:

0 if successful, else an error code if one of the inputs is incorrect, e.g., Mon < 1 or Mon > 12,
etc. See error codes listed in Appendix A, Error Codes.

Prototype:
int LSdateYmdhms (double dSecdiff, int nYrl, int nMonl, int
nDayl, int nHrl, int nMin1, double dSecl, int *pnY12, int
*pnMon2, int*pnDay?2, int *pnHr2, int *pnMin2, double
*pdSec2, int *pnDow,)
Input Arguments:

Name Description

dSecdiff A double precision value giving an elapsed time in seconds.
The second instant will differ from the first instant by this
number of seconds.

nYrl Year, e.g., 1981, of first instant. May be negative for a BC
date.

nMonl Month of first instant. An integer in [1, 12].

nDayl Day of month of first instant. An integer in [1, 31].

nHrl Hour of day of first instant. An integer in [1, 24].

nMinl Minute of hour of first instant. An integer in [1, 60].

dSecl Second of hour of first instant. A floating point number in [0,
59.99999], i.e., accurate to 5 decimal places.

*pnYr2 Pointer to an integer variable into which the year of second
instant will be placed. May be negative for a BC date.

*pnMon2 Pointer to an integer variable into which the month of second
instant will be placed. An integer in [1, 12].

*pnDay?2 Pointer to an integer variable into which the day of month of
second instant will be placed. An integer in [1, 31].

*pnHr2 Pointer to an integer variable into which the hour of day of
second instant will be placed. An integer in [1, 24].

*pnMin2 Pointer to an integer variable into which the minute of the hour
of second instant will be placed. An integer in [1, 31].

FUNCTION DEFINITIONS 373

*pdSec2 Pointer to a double variable into which the second of minute of
second instant will be placed. A floating point number in [0,
59.99999], i.e., accurate to 5 decimal places.

*pnDow Pointer to an integer variable into which the day of the week of
the second instant will be placed, where 0 is Sunday, 1 is
Monday, ..., 6 is Saturday.

LSdateToday ()

Description:
Returns the Yr, Mon, Day, Hr, Min, Sec, and Day of week at the instant when the function
was called. Leap years are properly accounted for.

Returns:
0 if successful, else an error code if one of the input pointers is invalid. See error codes listed
in Appendix A, Error Codes.

Prototype:

int LSdateYmdhms (int *pnYr1, int *pnMonl, int *pnDay]l, int
*pnHrl, int *pnMinl, double *pdSecl, int *pnDow,)

Input Arguments:

Name Description

*pnYrl Pointer to an integer variable into which the year of today will
be placed.

*pnMon1 Pointer to an integer variable into which the month of today

will be placed. An integer in [1, 12].

*pnDay1 Pointer to an integer variable into which the day of month of
today will be placed. An integer in [1, 31].

*pnHrl Pointer to an integer variable into which the current hour of
today will be placed. An integer in [1, 24].

*pnMinl Pointer to an integer variable into which the current minute of
the hour of today will be placed. An integer in [1, 31].

*pdSecl Pointer to a double variable into which the current second of
the minute of today will be placed. A floating point number in
[0, 59.99999], i.e., accurate to 5 decimal places.

*pnDow Pointer to an integer variable into which the day of the week of
the today will be placed, where 0 is Sunday, 1 is Monday, ..., 6
is Saturday.

374 CHAPTER 2

Tuner Routines

The routines in this section provide tuner functionality.

LSprintTuner ()

Description:
Prints the current configuration of the tuner to stdout.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSprintTuner(pLSenv pEnv)
Input Output Argument:

Name Description

pEnv Pointer to an instance of LSenv.

LSrunTuner ()

Description:
Runs the tuner with current configuration.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSrunTuner(pLSenv pEnv)
Input Output Argument:

Name Description

pEnv Pointer to an instance of LSenv.

LSsetTunerOption ()

Description:
Sets the value of a configuration option in tuner.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsetTunerOption(pLSenv pEnv, char *szKey, double dValue)

FUNCTION DEFINITIONS 375

Input Output Arguments:
Name Description
pEnv Pointer to an instance of LSenv.
szKey A string identifying the option.
dValue A double precision variable containing the tuning option's new
value.

LSsetTunerStrOption ()

Description:
Sets the value of a string configuration option in tuner.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int LSsetTunerStrOption(pLSenv pEnv, char *szKey, char

*szValue)

Input Output Arguments:

Name Description

pEnv Pointer to an instance of LSenv.

szKey A string identifying the option.

szValue A string variable containing the tuning option's new value.

LSgetTunerOption ()

Description:
Gets the value of a configuration option in tuner.

Returns:
0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetTunerOption(pLSenv pEnv, char *szKey, double
*pdValue)
Input Output Arguments:
Name Description
pEnv Pointer to an instance of LSenv.
szKey A string identifying the option.
pdValue A pointer to a double precision variable to return the tuning
option's value.

376 CHAPTER 2

LSgetTunerStrOption ()

Description:

Gets the value of a string configuration option in tuner.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:
int LSgetTunerStrOption(pLSenv pEnv, char *szKey, char
*szValue)
Input Output Arguments:
Name Description
pEnv Pointer to an instance of LSenv.
szKey A string identifying the option.
szValue A string variable to return the tuning option's value.

LSgetTunerResult ()

Description:

Gets the specified result from the last run of tuner.

Returns:

0 if successful, else one of the error codes listed in Appendix A, Error Codes

Prototype:

int

LSgetTunerResult(pLSenv pEnv, char *szKey, int jInstance,
int kConfig, double *pdValue)

FUNCTION DEFINITIONS 377

Input Output Arguments:

Name

Description

pEnv

