LINGO

The Modeling
Language
and
Optimizer

COPYRIGHT The LINGO software and its related documentation are copyrighted. You may not
copy the LINGO software or related documentation except in the manner authorized in the related
documentation or with the written permission of LINDO Systems Inc.

TRADEMARKS
LINGO is a trademark, and LINDO is a registered trademark, of LINDO Systems Inc. Other product
and company names mentioned herein are the property of their respective owners.

DISCLAIMER

LINDO Systems, Inc. warrants that on the date of receipt of your payment, the software provided
contains an accurate reproduction of the LINGO software and that the copy of the related
documentation is accurately reproduced. Due to the inherent complexity of computer programs and
computer models, the LINGO software may not be completely free of errors. You are advised to verify
your answers before basing decisions on them. NEITHER LINDO SYSTEMS, INC. NOR ANYONE
ELSE ASSOCIATED IN THE CREATION, PRODUCTION, OR DISTRIBUTION OF THE LINGO
SOFTWARE MAKES ANY OTHER EXPRESSED WARRANTIES REGARDING THE DISKS OR
DOCUMENTATION AND MAKES NO WARRANTIES AT ALL, EITHER EXPRESSED OR
IMPLIED, REGARDING THE LINGO SOFTWARE, INCLUDING THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR OTHERWISE.
Further, LINDO Systems, Inc. reserves the right to revise this software and related documentation and
make changes to the content hereof without obligation to notify any person of such revisions or
changes.

Copyright © 2024 by LINDO Systems Inc. All rights reserved.

Published by

LINDO SHSTEMS INC.

1415 North Dayton Street
Chicago, Illinois 60642
Technical Support: (312) 988-9421
E-mail: tech@lindo.com
WWW: http://www.lindo.com

Contents

CONEENES ..o s iii
PrefaCe ... s vii
NEW FEALUIEScvccciii i e s e Xi
1o g IR 0 T Xi
1 Getting Started With LINGO ... ssssssssesesssssssssssssssssssssssssssnns 1
Getting Started 0N WINAOWS..........ccoiiiiiciiee et 1
Getting Started 0N @ MAC ..o 9
Getting Started ON LINUX........c.cciiiiiecceccte ettt 20
Creating and Solving @ Model in LINGOcoiiiirneeiesees e 32
Examining the SolUtion REPOM ..ot 45
Intro to LINGO’s Modeling LaNQUAGEcccueveieiriictctcte ettt 47
Additional Modeling Language FEALUIESccviiiirce e 59
Indicating Convexity and CONCAVILYcccoeeriiiiiiiereree et 63
Maximum Problem DIMENSIONS..........ccerrririiicceesssse et 64
How t0 Contact LINDO SYSIEMScccueieiiiiecccccs et 65
P U 4T T 67
WY USE SEES......iiiecectctce sttt bbb bbbt st bbbttt 67
WREEAIE SEES? ...ttt n e 67
The Sets Section 0f @ MOGEccirrircee s 68
THE DATA SECHON........ouieeeeeeieieisieeiee ettt sn st nens 75
Set LOOPING FUNCHONS.......coeviiiirieicieisice s 76
Set-Based Modeling EXAMPIEScoiriiriiesiesse e 83
SUMMEIY .ttt 102
3 Using Variable Domain FUNCLIONS ... sssssssssssssssesssses 103
INTEGET VAIADIES ...ttt 103
FIE8 VaNADIESvcvviieee et 125
BOUNAEd VAITADIES ...t 130
SOS VaANIADIES........cveiciiieie sttt 131
CANINGIILY ...t 135
SemICONtINUOUS VAMADIEScueiieeirieesice s 135
Positive SEMI-DefiNite MatfiCES.........viueieieriiiicce s 137
4 Data, Init and CalC SECIONSccccvverirrierrrr e e sa s e 141
The DATA Section of @ MOGEL...........ccceiiiiicccee s 141
The INIT Section 0f @ MOGEL..........couieirireseee s 146
The CALC Section of @ MOGEL...........ccoceiiiiicccees e 147

iv. CONTENTS

5 Menu COMMANGS........cccoviiiicccrerer s s se e sp s e s ne e p s 155
Accessing Menu COMMANGS.........cccoviiiiicieierissce et 155
Menu Commands IN BrET ... s 159
Menu Commands IN DEPHN ... 163
1Rl IMBNUL ...t 163
2. EQIEMENU ...t e 182
3. SOIVEI IMBNU ...ttt 196
4, WINAOW MENU.....oooiiietetctccee ettt bbbt bbbttt s s s s bbb bt 319
D HEID MBNU ...ttt bee 327

6 Command-Line COMMANdS.........ccunmmmnmmmmmm s 335
The Commands [N BFIEcoiee s 335
The CommaNdS IN DEPENcvviiiecce s 337

7 LINGO’s Operators and FUNCHIONS..........cccoumrrrmmmmncessmmsnenesmsssssssssssesesessssssssssssssesssssssssssssseseneas 437
StANAAIA OPEIALOIS.......cvcveviiiccctcte ettt bbbt bbbttt 437
Mathematical FUNCHONScccuiuiiiiiicccee ettt bbb s 441
FINANCIAI FUNCHIONS ...vcvivieiici ettt ettt bbbt s 444
Probability FUNCHONSc.viiicceee ettt 444
Variable Domain FUNCHONS ...ttt bbbt bbb 447
Set Handling FUNCHONScoiiieiieecce ettt s 448
Set LOOPING FUNCHONS. ..ot 455
INtErfaCe FUNCHONS ... 456
DISHDULIONS. ..ttt 457
REPOM FUNCHONS ...ttt 463
Date, Time and Calendar FUNCHONSovoe e eeeeee et et e et ee e st en et e e sneeseeneeeenennenennes 474
MaFX FUNCHONSviviiiiiiiice ettt ettt bbb bbb 478
MiISCElIANEOUS FUNCHONSuviiiicicieeeiess ettt 492

8 Interfacing with External Files.........c.ccounmnnnnnsssssssssssssssesssesses 495
Cut and Paste TraNSTErSc.overiereieses st 495
Text File Interface FUNCHONSc.cciiiiiiiccteectcee e 497
LINGO Command SCHPLS......cccviiriiiicteteest ettt bbb bbb s s 505
Specifying Files in the CommMand-lNe ..o 508
RUNLINGO .t 511
Redirecting Input and OULPUL ..o 514
Managing LINGO FilES ..o 514

9 Interfacing With Spreadsheets............conrn s —————— 517
Importing Data from Spreadsheets..........ccvieiieee e 517
Exporting Solutions t0 Spreadsheets ... 522
LINGO EXCEI AG-IN........oiiiiiiiie e 524
OLE Automation LINKS 10 EXCEL.........cviirrieiririeieiiieisise s 537
Embedding LINGO Models in EXCEL ..o 544

Embedding Excel Sheets in LINGO ... 549

CONTENTS v

RS0 411172 TP 552
10 Interfacing with Databases ... ————— 553
ODBC Dat8 SOUICESouvuvrireiircieieeeisisee it 554
Importing Data from Databases with @ODBCcccoieiirniceeee e 562
Importing Data with ODBC in @ PERT MOGEL...........coveuiiiiiicncesceeee e 564
Exporting Data With @ODBC ... 566
Exporting Data with ODBC in @ PERT MOGEL..........ceirrrieeirieie s 569
11 Interfacing with Other AppliCations ... s 575
The LINGO Dynamic LinK LIDIary.........ccccccveicceesiicieee st sssssesenens 575
User DEefiNed FUNCHONSc.cuiiirieiiceeie ettt 619
12 Developing More Advanced MOdelscccourrnnnnnssscsnnnsssss s ssseseses 623
Production Management MOGEIS............ciueririiiriieesieees e 624
LOGISHICS MOTEIS ...ttt 640
FINANCIAI MOGEIS ...ttt bbb 647
QUEUING MOTEIS ...t 664
Marketing MOGEIS ..o 672
13 Programming LINGO ... sesess s ss s e ssssssssssssesesssssssssssssssssasas 681
Programming FEALUIES...........cvuiuririiiiee b 681
Programming Example: Binary SEArch ... 732
Programming Example: Markowitz Efficient Frontier..............cooeovrnnicecenee 736
Programming Example: CUtting StOCK.........c.cueeiririrreercese e 743
Programming Example: ACCESSING EXCEI.......oovveiririrrrceeee e 749
RS0 41117 TP 756
14 Stochastic Programming ... 757
Multistage Decision Making Under UnCertaintycocoveerrennnnencees e 757
RECOUISE MOTEIS ...ttt 759
SCENAMO THEE ... vttt bbbttt e s bbb b s st ten 761
Monte Carlo SAMPLING ... 763
SEttiNg UP SP MOGEIS ... 764
Language Features for SP MOGEIS.........c.cceiririrrenee e 765
Declaring DIStrDULIONSc.cuvvieririieiie e 767
Gas BUYING EXAMPIE.........cuiiiieiiiee bbb 774
StOCK OPtioN EXAMPIE........cveviiieeiciesie e 785
Investing Under Uncertainty EXamPIEccvviiiniiniccereesee e 794
Chance-Constrained Programs (CCPS)ouiriiiniirieissieiesssesissseessissse e 801
15 On Mathematical MOdeling ... 815
Solvers Used Internally by LINGO..........coiiiiiiiriincesesseessee s 815
TYPE OF CONSEIAINES ...t s 816
Local Optima vs. GIobal OPtiMa..........cceuiueririeicirsesee e 818
Smooth vs. NonSMOOth FUNCHIONS............cuueuiiiciiriciie s 824

Guidelines for Nonlinear MOGEIING ..ot 825

vi CONTENTS

Appendix A: Additional Examples of LINGO Modeling...........cccorerensnnmmeresesmssssssssnesesesessssssssssenes 827
AppendiX B: Error MESSAQEScccocourrrrmrmrmsmsmssmsmssssesesssssssssssssessssssssssssssssssesssssssssssssesssssssssssssses 917
Appendix C: Bibliography and Suggested Reading............cosurnmmnnssmnsnn: 973
ACKNOWIEAGEMENES......ccuiicrrii i —————————— 975

Preface

LINGO is a comprehensive tool designed to make building and solving mathematical optimization
models easier and more efficient. LINGO provides a completely integrated package that includes a
powerful language for expressing optimization models, a full-featured environment for building and
editing problems, and a set of fast built-in solvers capable of efficiently solving most classes of
optimization models. LINGO's primary features include:

Q Algebraic Modeling Language

LINGO supports a powerful, set-based modeling language that allows users to express math
programming models efficiently and compactly. Multiple models may be solved iteratively using
LINGO's internal scripting capabilities.

U Convenient Data Options

LINGO takes the time and hassle out of managing your data. It allows you to build models that
pull information directly from databases and spreadsheets. Similarly, LINGO can output solution
information right into a database or spreadsheet making it easier for you to generate reports in the
application of your choice. Complete separation of model and data enhance model maintenance
and scalability.

QO Model Interactively or Create Turnkey Applications

You can build and solve models within LINGO, or you can call LINGO directly from an
application you have written. For developing models interactively, LINGO provides a complete
modeling environment to build, solve, and analyze your models. For building turn-key solutions,
LINGO comes with callable DLL and OLE interfaces that can be called from user written
applications. LINGO can also be called directly from an Excel macro or database application.
LINGO currently includes programming examples for C/C++, FORTRAN, Java, C#NET,
VB.NET, ASP.NET, Visual Basic, Delphi, and Excel.

Q Extensive Documentation and Help

LINGO provides all of the tools you will need to get up and running quickly. You get the LINGO
Users Manual (in printed form and available via the online Help), which fully describes the
commands and features of the program. Also included with Super versions and larger is a copy of
Optimization Modeling with LINGO, a comprehensive modeling text discussing all major classes
of linear, integer and nonlinear optimization problems. LINGO also comes with dozens of real-
world based examples for you to modify and expand.

Q Powerful Solvers and Tools

LINGO is available with a comprehensive set of fast, built-in solvers for linear, nonlinear (convex
& nonconvex), quadratic, quadratically constrained, and integer optimization. You never have to
specify or load a separate solver, because LINGO reads your formulation and automatically
selects the appropriate one. A general description of the solvers and tools available in LINGO
follows:

viii

PREFACE

General Nonlinear Solver
LINGO provides both general nonlinear and nonlinear/integer capabilities. The nonlinear license
option is required in order to use the nonlinear capabilities with LINDO API.

Global Solver

The global solver combines a series of range bounding (e.g., interval analysis and convex
analysis) and range reduction techniques (e.g., linear programming and constraint propagation)
within a branch-and-bound framework to find proven global solutions to nonconvex nonlinear
programs. Traditional nonlinear solvers can get stuck at suboptimal, local solutions. This is no
longer the case when using the global solver.

Multistart Solver

The multistart solver intelligently generates a sequence of candidate starting points in the solution
space of NLP and mixed integer NLPs. A traditional NLP solver is called with each starting point
to find a local optimum. For non-convex NLP models, the quality of the best solution found by the
multistart solver tends to be superior to that of a single solution from a traditional nonlinear solver.
A user adjustable parameter controls the maximum number of multistarts to be performed.

Barrier Solver
The barrier solver is an alternative way for solving linear, quadratic and conic problems. LINGO's
state-of-the-art implementation of the barrier method offers great speed advantages for large-scale,
sparse models.

Simplex Solvers

LINGO offers two advanced implementations of the primal and dual simplex methods as the
primary means for solving linear programming problems. Its flexible design allows the users to
fine tune each method by altering several of the algorithmic parameters.

Mixed Integer Solver

The mixed integer solver’s capabilities of LINGO extend to linear, quadratic, and general
nonlinear integer models. It contains several advanced solution techniques such as cut generation,
tree reordering to reduce tree growth dynamically, and advanced heuristic and presolve strategies.

Stochastic Solver

The stochastic programming solver supports decision making under uncertainty through
multistage stochastic models with recourse. The user describes the uncertainty by identifying the
distribution functions, either built-in or user-defined, describing each random variable. The
stochastic solver will optimize the model to minimize the cost of the initial stage plus the expected
cost of future recourse actions over the planning horizon. Advanced sampling modes are also
available for approximating continuous distributions. LINGO's stochastic solver also supports
chance-constrained models, where one or more sets of constraints are allowed to be violated
according to a specified probability.

PREFACE ix

Model and Solution Analysis Tools

LINGO includes a comprehensive set of analysis tools for debugging infeasible linear, integer and
nonlinear programs, using advanced techniques to isolate the source of infeasibilities to the
smallest subset of the original constraints. It also has tools to perform sensitivity analysis to
determine the sensitivity of the optimal basis to changes in certain data components (e.g. objective
vector and right-hand-size values).

Quadratic Recognition Tools

The QP recognition tool is a useful algebraic pre-processor that automatically determines if an
arbitrary NLP is actually a convex, quadratic model. QP models may then be passed to the faster
quadratic solver, which is available as part of the barrier solver option. When the barrier solver
option is combined with the global option, LINGO will automatically recognize conic models, in
addition to convex quadratic models.

Linearization Tools

Linearization is a comprehensive reformulation tool that automatically converts many non-smooth
functions and operators (e.g., max and absolute value) to a series of linear, mathematically
equivalent expressions. Many non-smooth models may be entirely linearized. This allows the
linear solver to quickly find a global solution to what would have otherwise been an intractable
nonlinear problem.

New Features
for LINGO 21.0

LINDO Systems is proud to introduce LINGO 21.0. The new features added to LINGO include the
following:

*

*

* & o o

Improved reproducibility when solving a problem repeatedly, particularly with the concurrent
option when solving with fastest of Barrier, Primal simplex, and dual simplex Global solver,
improved handling of IF statements and polynomials.

New symmetry detection capabilities have been added to the integer (MIP) solver. This may
dramatically reduce the time needed to prove optimality on some models with integer
variables.

Improved Multi-start.
Links to many third-party external solvers.

Windows: Improved model editor, with the ability to split the edit window into multiple
panes.

Windows: Auto-completion of common keywords when typing.
Windows: Larger toolbar buttons.
Windows: Larger Undo Redo buffer with support for more operations.

Windows: Faster find and replace method.

xii PREFACE

¢ Windows: Improved Unicode handling.

We hope you enjoy this new release of LINGO. Many of the new features in this release are due to
suggestions from our users. In particular, we'd like to thank both Robert Coughlan and Wu Jian (Jack)
for their many useful suggestions for improving LINGO. If there are any features you'd like to see in
the next release of LINGO, please let us know. Feel free to reach us at:

LINDO Systems Inc.
1415 N. Dayton St.
Chicago, Illinois 60642
(312) 988-7422

info@lindo.com
http.//www.lindo.com

March 2024

mailto:info@lindo.com
http://www.lindo.com/

1 Getting Started with
LINGO

LINGO is a simple tool for utilizing the power of linear and nonlinear optimization to formulate large
problems concisely, solve them, and analyze the solution. Optimization helps you find the answer that
yields the best result; attains the highest profit, output, or happiness; or the one that achieves the lowest
cost, waste, or discomfort. Often these problems involve making the most efficient use of your
resources-including money, time, machinery, staff, inventory, and more. Optimization problems are
often classified as linear or nonlinear, depending on whether the relationships in the problem are linear
with respect to the variables.

If you are a new user, it is recommended you go through the first seven chapters of this document to
familiarize yourself with LINGO. Then you may want to see On Mathematical Modeling for more
information on the difference between linear and nonlinear models and how to develop large models. It
may also be helpful to view some sample models in Developing More Advanced Models or Additional
Examples of LINGO Modeling to see if a particular template example is similar to a problem you have.
For users of previous versions of LINGO, the new features are summarized in the Preface at the
beginning of the manual.

Getting Started on Windows

Installing LINGO on Windows

Installing the LINGO software is straightforward. To setup LINGO for Windows, place your CD in the
appropriate drive and run the installation program SETUP contained in the LINGO folder.
Alternatively, if you downloaded LINGO from the LINDO website, locate the download installation
program and double-click it to run the installation. The LINGO installation program will open and
guide you through the steps required to install LINGO on your hard drive.

Note: 1If there is a previous version of LINGO installed on your machine, then you may need to
uninstall it before you can install the new copy of LINGO. To uninstall the existing copy of
LINGO, click on the Windows Start button, select the Settings command, select Control
Panel, then double-click on the Add or Remove Programs icon. You should then be able to
select LINGO and have the old version removed from your system.

2 CHAPTER 1

Starting LINGO on Windows

Once LINGO is installed, you will find a new Lingo icon on your desktop:

Lingo

You may double-click on the icon to start LINGO. Once LINGO is running, your screen will resemble
the following:

.Iu::;:|.-"'|| Lingo Mode LIMGOT O o
File Edit Scher Window Help

Ne2B® s TH 5S¢ A0 oA HBE ?7@
B Lingo Model - LINGON E=ErE]

1
Fiot Help, press F1 [[nl.Coll [&50pm

The outer window labeled LINGO is the main frame window. All other windows will be contained
within this window. The top of the frame window also contains all the command menus and the
command toolbar. See Menu Commands for details on the toolbar and menu commands. The lower
edge of the main frame window contains a status bar that provides various pieces of information
regarding LINGO's current state. Both the toolbar and the status bar can be suppressed through the use
of the Options command.

The smaller child window labeled LINGO Model - LINGOI is a new, blank model window. In the next
section, we will be entering a sample model directly into this window.

Many copies of LINGO come with their licenses pre-installed. However, some versions of LINGO
require you to input a license key. If your version of LINGO requires a license key, you will be
presented with the following dialog box when you start LINGO:

GETTING STARTED 3

LINGO License Key *

Pleaze enter your Lingo license key below:

[f wou don't have a licensze key you can press the "Demo’’ button to
automatically generate a temporan icense for a demonstration wversion
aof Lingo. Demo versiong function the same az standard versions with
the one exception that maximumn problem dimenzions are restricted.

IF pour icenze key iz available in the Windows chpboard you may pazte
it inka thig dialog box by prezzing Chely. Othenwize, carefully enter your
licenze key az one long string.

Y'ou can access thiz dailog box at any time uzing the FilglLicensze
command.

Help Cancel Demo

Your license key may have been included in an email sent to you when you ordered your software.
The license key is a string of letters, symbols and numbers, separated into groups of four by hyphens
(e.g., r82m-XCW2-dZu?-%72S-£D?S-WpQ). Carefully enter the license into the edit field,
including hyphens. License keys are case sensitive, so you must be sure to preserve the case of the
individual letters when entering your key. Click the OK button and, assuming the key was entered
correctly, LINGO will then start. In the future, you will be able to run LINGO directly without
entering the key.

Note: If you received your license key by email, then you have the option of cutting-and-pasting it
into the license key dialog box. Cut the key from the email that contains it with the Ctrl+C
key, then select the key field in LINGO dialog box and paste the key with the Ctrl+V key.

If you don’t have a key, you can choose to run LINGO in demo mode by clicking the Demo button. In
demo mode, LINGO has all the functionality of a standard version of LINGO with the one exception
that the maximum problem size is restricted. Demo licenses expire after 180 days.

4 CHAPTER 1

Opening a Sample Model on Windows

LINGO is shipped with a directory containing many sample models. These models are drawn from a
wide array of application areas. For a complete listing of these models, see Additional Examples of
LINGO Modeling. The sample model directory is titled Samples and is stored directly off the many
LINGO directory.

To open a sample model in LINGO, follow these steps:

1. Pull down the File menu and select the Open command. You should see the following dialog

box:
E File Open... x
€ *- T o Windaws (C:) » LINGOSS_ 21 r earch LIM : 2
Organize = Mew folder EE ~ B ﬂ

Hillserl ieberman Text
Notepad++
Programming Samples
Sarmples

User

™ Thiz PC - Shortcut

File name: ’ L:n.gu- Models (‘.Ig-!]

Open Cancel

GETTING STARTED 5§

2. Double-click on the folder titled Samples contained in the main LINGO folder installed off your
root folder, at which point you should see:

r .l
B Fite open... »
= ¥ w i b « LINGDG&S 21 » Samples » . " search Samples y
Clrgam:t - Mew folder 5E - E. ﬂ
SampText B eavesigd B CHARTCITIES.Ig4 B CHARTS g
B ALTOPTg4 B Einfun_1.1g4 B CHARTDISTROUgS B CHARTSPACETIME.Igt
P ALTOPTCALC Jgd [EPELEND g BP cHARTFAMIGS ¥ CHARTSTACKEDEAR Igs
EP AROUTESC 244 EPELENDCCPIGS EF CHARTGANTTIg4 ¥ CHARTSTAFF Ig4
B asieaLigs BPeoiig: B CHARTMET.Ig4 ¥ CHARTSURFIg4
B 45 TROCOSTRNDOg4 P oarocig: B cHARTPSURF.Ig4 B cHEss. g4
Fibe narme || vl Linge Madels (*Jgd) -

I

Open Cancel

6 CHAPTER 1

3. To read in a small transportation model, type Tran in the File Name field in the above dialog
box and press the Open button. You should now have the model in an open window in LINGO as
follows:

B Lingo 210 - Lingo Mosdel - TRAN - o =
File Edit Soher Window Help

DNafl@: 9B 9¢ A0 ol ERE 70

! A 3 Wasehouss, 4 Costcses
Tranaporcacion Frobles;

SETS:
WAREHOUZE / WHL, WHI, WH3/S
COSTOMER J ci, c2, C3, C4) =
ROUTES [WAREHOUSE, CUSTOMER) 3

! The chbiective:
[987] HIN = @SUH{ ROUTE3: COST =

! The demand constralnse:

BFOR{ CUSTCMER(J): [DEM]

@S| WARFHMOUSE(I): WOLUME(I,
DEMAND(1)

PRPa— [E e e e e [

For details on developing a transportation model in LINGO see 4 Sample Transportation Model in this
chapter.

GETTING STARTED 7

You may now solve the model using the Solver|Solve command or by pressing the @ button on the
toolbar. The optimal objective value for this model is 161. When solved, you should see the following
solver status window:

F ~
Lingo 21.0 Solver Status [TRAN] =
Sobver Status ' ariables
Model Clazs: P Total 12
Morkrear:]
Sitate: Glabal Opt Irkegers:]
Objective: 161 Conetraints
Infeazibibiy] Totalk g
Monlinear: 0
Iberation:s: 6
Honzeros
Extended Solver Status Totak 36
Solver Type: Morkrear:]
Best Oby o Generator Memany Used (K]
Oby Bound 28
Steps: 2 oo Elspsed Runtime [hhcmencss)
Ackee: o 00:00:00
Update Intervat 2 Irsbermupt & Cloze
L

Note the objective field has a value of 161 as expected. For an interpretation of the other fields in this
window, see Solver Status Window in Getting Started with LINGO.

8 CHAPTER 1

Behind the solver status window, you will find the solution report for the model. This report contains
summary information about the model as well as values for all the variables. This report’s header is
reproduced below:

B cclution Report - TRAN = | &= E
Global optimal solution found.
Objective value: LEL.0000
Infeasibilities: 0.000000
Total solver iterations: g
Elapsed runtime seconds: 0.13
Hodel Class: LP
Total variables: 12
Honlinear variables: L]
Integer variables: 1]
Total conscraincs: 8
Honlinear constraints: 1]
Total nonzeros: &
Honlinear nonzsros: 1]
Variable Value Reduced Cost
CAPRCITY(WEL) 30.00000 0. 000000
CAFRCITY(WHZ) 25.00000 0. 000000
CAPACITY{ WHI) 21.00000 0.000000
DEMAHD(C1) 15.00000 0. 000000
DEMAND(C2) 17.00000 0. 000000
DEMRHD([C3) 2200000 0. 000000
DEMAND| C4) 12.00000 0. 000000
COST(WHL, Cl) €.000000 0.000000
COST(WHL, C2) 2.000000 0. 000000
COST(WHL, C3) 6.000000 0. 000000
COST(WHL; C4) T.000000 0. 000000
0O5T(WHZ, C1) 4.000000 0. 000000
. P A AARARA

For information on interpreting the fields in the solution report, see Sample Solution Report in Getting
Started with LINGO.

GETTING STARTED 9

Getting Started on a Mac

Installing LINGO on a Mac

LINGO for the Mac is distributed as a .DMG file, or disk image file,
titled LINGO-OSX-64x86-21.0.dmg. If you double-click on this file you should see a window similar

to the following:

| NN — Lingo

Applications

Lingo

...Drag the Lingo icon to the Applications
folder above to install Lingo...

LingoDocs

...It's also recommended that you drag the LingoDocs folder
above to your hard drive to install the Sample Models and
Documentation. You may want to drag this folder to your
Home folder...

To install LINGO onto your Mac, drag the LINGO icon in the window to the Applications folder icon.
This will place a copy of LINGO in the /Applications folder of your hard drive. The Mac version of
LINGO requires that you have installed OS X 10.7, or later, on your system.

10 CHAPTER 1

We also recommend that you drag a copy of the LingoDocs folder in the above window to your hard
drive. The LingoDocs folder contains copies of LINGO's sample models and documentation. You may
want to place this folder in your SHOME folder (subsequent documentation will assume this is the
case).

Starting LINGO on a Mac

Once LINGO is installed, you will find a new LINGO icon in the /Applications folder on your Mac's
hard drive. The icon should appear as follows:
®_o® [#% Applications

< o m ol ==~ 3%~ 5>

Favaorites

&3 Dropbox
£ All My Files
¢’ iCloud Drive
@ AirDrop

7~ Applications Lingo
] Desktop

@ Documents

O Downloads

GETTING STARTED 11

You may double-click on the icon to start LINGO. Once LINGO is running, your screen will resemble
the following:

0@ Lingo Mudai- Lingo1.Ing

Lingo Model - Lingol.Ing
BLingo Model - Lingol.lng

The outer window is the main frame window, and all other windows will be contained within this main
frame window. The top of the main frame window also contains a toolbar for executing various
LINGO commands.

The smaller child window labeled Lingo Model - Lingol.Ing is a new, blank model window. In the
Developing a LINGO Model section, we will be entering a sample model directly into this window.

12 CHAPTER 1

Unlike the Windows version of LINGO, the command menus do not appear at the top of the main
frame window, but appear in the Finder's menu bar whenever LINGO is the active application. Below,
we see the six LINGO menus — Lingo, File, Edit, Solver, Window and Help — in the Finder's menu

bar at the top of the screen:

@ Lingo File Edit Solver Window Help
@

NAMe® 9¢ « 3R

@00 BLingo Model

See the LINGO Commands section for details on the toolbar and menu commands. The lower edge of
the main frame window contains a status bar that provides various pieces of information regarding
LINGO's current state. Both the toolbar and the status bar can be suppressed through the

LINGO|Preferences command.

GETTING STARTED 13

Many copies of LINGO come with their licenses pre-installed. However, some versions of LINGO
require you to input a license key. If your version of LINGO requires a license key, you will be
presented with the following dialog box when you start LINGO:

[NN Lingo License Key

Please enter your Lingo license key below:

If you don't have a license key you can press the "Demo” button to
automatically generate a temporary license for a demonstration version
of Lingo. Demo versions function the same as standard versions with the
one exception that maximum problem dimensions are restricted.

If your license key is available in the clipboard, you may paste it into this
dialog box by pressing 38-V. Otherwise, carefully enter your license key
as one long string.

You can access this dailog box at any time using the File|License
command.

_ Cancel OK, Help

Your license key may have been included in an email sent to you when you ordered your software.
The license key is a string of letters, symbols and numbers, separated into groups of four by hyphens
(e.g., r82m-XCW2-dZu?-%72S-tD?S-Wp@). Carefully enter the license into the edit field, including
hyphens. License keys are case sensitive, so you must be sure to preserve the case of the individual
letters when entering your key. Click the OK button and, assuming the key was entered correctly,
LINGO will then start. In the future, you will be able to run LINGO directly without entering the key.

Note: If you received your license key by email, then you have the option of copying-and-pasting it
into the license key dialog box. Copy the key from the email with the Command+C key, then
select the key field in LINGO dialog box and paste the key with the Command+V key.

14 CHAPTER 1

If you don’t have a key, you can choose to run LINGO in demo mode by clicking the Demo button. In
demo mode, LINGO has all the functionality of a standard version of LINGO with the one exception
that the maximum problem size is restricted. Demo licenses expire after 180 days.

Opening a Sample Model on a Mac

In the Installing LINGO on a Mac section above, we suggested that you install the LingoDocs folder in
your $HOME directory. The LingoDocs folder contains a folder called Samples with numerous sample
model. These models are drawn from a wide array of application areas. For a complete listing of these
models, see Additional Examples of LINGO Modeling. The sample model directory is titled Samples
and is stored directly off the main LINGO directory.

To open a sample model in LINGO, follow these steps:

1. Pull down the File menu and select the Open command. Migrate to where you installed your
copy of the LingoDocs folder:

@ Open
< 2B m o =y | @ user z Q
Favorites Name ~ Date Modified
@ All My Files » B Desktop Today, 9:11 AM
Y iCloud Drive ¢ [0 Documents Jun 27, 2014, 2:36 PM
— » [& Downloads Jun 27, 2014, 2:36 PM
#*; Applications » BB LingoDocs Oct 10, 2014, 10:41 AM
I.:J Desktop b Movies Jun 27, 2014, 2:36 PM
»] Music Jun 27, 2014, 2:36 PM
[Documents » [Pictures Jun 27, 2014, 2:36 PM
) Downloads » [Public Jun 27, 2014, 2:36 PM
Devices
[} use pIsK a
I .
| Lingo S

All Lingo Files (*.Ing *.Idt *.Itf *.Igr... E

New Folder Cancel pen

GETTING STARTED 15

2. Double-click on the LingoDocs folder then double-click on the Samples folder contained in
the LingoDocs folder, at which point you should see:

@ Open
< 2B o v e samples ° Q

Favorites Name ~ Date Modified
@ All My Files aroute2.Ing Oct 1, 2014, 4:30 PM
. § aslbal.Ing Oct 1, 2014, 4:30 PM
R bayes.Ing Oct 1, 2014, 4:30 PM
#%; Applications blend.Ing Oct 1, 2014, 4:30 PM
[l Desktop blendcep.ing Oct 1, 2014, 4:30 PM
box.Ing Oct 1, 2014, 4:30 PM
[Documents caploc.ing Oct 1, 2014, 4:30 PM
©) pownloads chess.Ing Oct 1, 2014, 4:30 PM
) chmbl1.Ing Oct 1, 2014, 4:30 PM
e compuquick.ing Oct 1, 2014, 4:30 PM
[} usB Disk e conjnt.Ing Oct 1, 2014, 4:30 PM

Q Lingo

New Folder

1k

convex.ng
costing.Ing
crashcpm.ing
deamod.ing
demrnd.Ing
dnrisk.lng
Annc It

All Lingo Files (*.Ing ".Idt “.Itf “.Igr... B

Oct 1, 2014, 4:30 PM
Oct 1, 2014, 4:30 PM
Oct 1, 2014, 4:30 PM
Oct 1, 2014, 4:30 PM
Oct 1, 2014, 4:30 PM

Oct 1, 2014, 4:30 PM
Net 4 2014 A-A0 BAA

16 CHAPTER 1

3. To read in a small transportation model, select the tran./ng model from the Sample folder and
press the Open button. You should now have the model in an open window in LINGO as
follows:

GETTING STARTED

17

Lingo Model - tran.Ing
F¥Lingo Model - tran.Ing

1 MODEL:

2! A 3 Warehouse, 4 Customer

3 Transportation Problem;

4 5ETS:

5 WAREHOUSE / WH1, WH2, WH3/
6 CUSTOMER / C1, C2, C3, C4/
7 ROUTES{ WAREHOUSE, CUSTOMER)
B ENDSETS

g

1@ ! The objective;

CAPACITY;
DEMAND ;
COST, VOLUME;

11 [0OBJ] MIN = @SUM{ ROUTES: COST = VOLUME};

12
13 ! The demand constraints;
14 @FOR({ CUSTOMER(J): [DEM]

15 @SUM{ WAREHOUSE(I): VOLUME(I, 1)) ==

16 DEMAND(J}};

17

18 ! The supply constraints;

19 @FOR(WAREHOUSE(I): [SUP]
28 @suUM{ CUSTOMER(J): VOLUME(
21 CAPACITY(I));

22

23 ! Here are the parameters;

24 DATA:

25 CAPACITY = 3@, 25, 21 ;
26 DEMAND = 15, 17, 22, 12;
27 COST = &g, 2, 6, 7,
28 4, 9, 5, 3,
29 g, 8, 1, 5;
3@ ENDDATA

31 END

3z

18 CHAPTER 1

For details on developing a transportation model in LINGO see A Sample Transportation Model in this

chapter.

You may now solve the model using the Solver|Solve command, or by pressing the Solve button on the

toolbar:

The optimal objective value for this model is 161. When solved, you should see the following solver

status window:

& O [tran.Ing] - Solver Status
Solver Status: Variables:
Total: 12
Model Class: LF . ota
Naonlinear: L]
State: Global Opt Integers: 0
Objective: 161 Constraints:
Infeasibility: e Total: 8
Iterations: 6 Nonlinear: i
Monzeros:
Extended Solver Status: []
— Total: 36
Solver Type: A Nonlinear: @
Best Obj: PP i) Generator Memory Used (K): B
0Ohj Bound: e 28
Steps: ol . Elapsed Runtime [hh:mm:ss]:
Active: SO

ge:0a:20

Update Interval:

Note the objective field has a value of 161 as expected. For an interpretation of the other fields in this
window, see Solver Status Window in Getting Started with LINGO.

GETTING STARTED

19

Behind the solver status window, you will find the solution report for the model. This report contains
summary information about the model as well as values for all the variables. This report’s header is

reproduced below:
O & wSolution Report - tran.Ing

Global optimal solution fTound.

Objective wvalue: 161. 00698
Infeasibilities: B.0ee004a
Total solver iterations: 3]
Elapsed runtime seconds: B.a5
Model Class: LP
Total variables: 12

Monlinear wvariables: a

Integer variables: a

Total constraints: 8

Monlinear constraints: a

Total nonzeros: 36

Monlinear nonzeros: a

Variable
CAPACITY(WH1)
CAPACITY(WH2)
CAPACITY(WH3)

DEMAND{ C1)
DEMAND({ C2)
DEMAND({ C3)
DEMAND({ C4)

Value
30.00000
25.000060
21.00008
15.00008
17.00208
22.00008
12.00008

FReduced Cost
@.0ee008
@.0ee008
@.0ee0a8a
@.0ee0a8a
@.0ee0a8a
@.0ee0a8a
@.0e80a8a

|
Ll

For information on interpreting the fields in the solution report, see Sample Solution Report in Getting

Started with LINGO.

20 CHAPTER 1

Features Not Currently Supported on the Mac

The Mac version of LINGO is a new addition and currently doesn't support the entire feature set found
under Windows. The currently unsupported features are listed below:

¢ Excel interface

¢ ODBC database connectivity

¢ Callable LINGO API

¢ (@USER user supplied function

We encourage you to check back at www.lindo.com frequently to see if any of these features have
become available on Mac LINGO.

Getting Started on Linux

Installing LINGO on Linux

Linux versions of LINGO are distributed as a Run file, titled LINGO-LINUX-64x86-21.0.run, which is
an automated installation program that will do the work required to set up LINGO on your Linux
machine. Once you've copied this file onto your machine, you should first set the file's protections so
that it is executable. You may do this by opening a Linux terminal window, changing to the directory
with the Run file, and entering the command:

chmod 755 ./LINGO-LINUX-64x86-21.0.run -v

You may then start the install program by entering:

./LINGO-LINUX-64x86-21.0.run

If you are installing LINGO with normal user rights, the install program defaults to putting LINGO in
your $HOME/lingo21 folder. If your LINGO license permits multiple users, then you can install
LINGO as a super user, in which case, LINGO defaults to installing in the /opt/lingo21 folder, where it
may be accessed by other users on the machine. In either case, the default location may be changed to
suit your needs.

GETTING STARTED 21

Starting LINGO on Linux

Once LINGO is installed, a new LINGO icon will appear on your desktop. The icon should appear as
follows:

Ubuntu Desktop

Lingo

You may double-click on the icon to start LINGO.

22 CHAPTER 1

Once LINGO is running, your screen will resemble the following:

Lingo Model - Lingo1.lng — Lingo

File Edit Solver Window Help

DQE@‘)(" of = »;;‘@»;;@},;;?

Lingo Model - Lingol.Ing

Lingo Mode| - Lingol.lng

| | | Ln 1, Col 1 |a;42 am

The outer window is the main frame window, and all other windows will be contained within this main
frame window. The top of the main frame window also contains a toolbar for executing various
LINGO commands.

The smaller child window labeled Lingo Model - Lingol.Ing is a new, blank model window. In the
Developing a LINGO Model section, we will be entering a sample model directly into this window.

See the Menu Commands section for details on the toolbar and menu commands. The lower edge of
the main frame window contains a status bar that provides various pieces of information regarding
LINGO's current state. Both the toolbar and the status bar can be suppressed through the
Solver|Options command.

GETTING STARTED 23

Many copies of LINGO come with their licenses pre-installed. However, some versions of LINGO
require you to input a license key. If your version of LINGO requires a license key, you will be
presented with the following dialog box when you start LINGO:

& Lingo License Key — Lingo

Please enter your Lingo license key below:

If you don't have a license key you can press the "Demo” button to
automatically generate a temporary license for a demonstration version
of Lingo. Demo versions function the same as standard versions with the
one exception that maximum problem dimensions are restricted.

If your license key is available in the clipboard, you may paste it into this
dialog box by pressing CtrlV. Otherwise, carefully enter your license key
as one long string.

You can access this dailog box at any time using the File|License
command.

Demo Cancel OK Help

Your license key may have been included in an email sent to you when you ordered your software.
The license key is a string of letters, symbols and numbers, separated into groups of four by hyphens
(e.g., r82m-XCW2-dZu?-%72S-£D?S-Wp(@). Carefully enter the license into the edit field,
including hyphens. License keys are case sensitive, so you must be sure to preserve the case of the
individual letters when entering your key. Click the OK button and, assuming the key was entered
correctly, LINGO will then start. In the future, you will be able to run LINGO directly without
entering the key.

Note: If you received your license key by email, then you have the option of copying-and-pasting it
into the license key dialog box. Copy the key from the email with the Ctrl+C key, then select the key
field in LINGO dialog box and paste the key with the Ctrl+V key.

24 CHAPTER 1

If you don’t have a key, you can choose to run LINGO in demo mode by clicking the Demo button. In
demo mode, LINGO has all the functionality of a standard version of LINGO with the one exception
that the maximum problem size is restricted. Demo licenses expire after 180 days.

Opening a Sample Model on Linux

LINGO's installation program also copies a number of sample LINGO models onto your hard drive.
These models can be found in the samples folder, immediately beneath the main /ingo21 folder. In
most cases, the folder containing the samples will be $HOME/lingo21/samples. These models are
drawn from a wide array of application areas. For more discussion of these models, see Additional
Examples of LINGO Modeling.

To open a sample model in LINGO, follow these steps:

1. Pull down the File menu and select the Open command. You will be presented with the
following file selection dialog, and it will be open to the samples folder:

. Open — Lingo

Look in: E,.fh{:me,.fmg,raccl;.flingo.fsamples ~ Q@ Q@ Q @ @ E]
[computer Name - Size Type Date Modified =

| laroute.lng 8 KB Ing File 5/19/1...:03 AM

| aslbal.lng 1 KB Ing File 5/19/1...:03 AM

| bayes.Ing 944..tes IngFile 5/19/1...:03 AM

| blend.Ing 2 KB Ing File 5/19/1...:03 AM

| blendeccp.ing 3 KB Ing File 5/19/1...:03 AM

| box.Ing 363...tes IngFile 5/19/1...:03 AM

| caploc.ing 937..tes Ing File 5/19/1...:03 AM

| chartcities.Ing 3 KB Ing File 5/19/1...:03 AM

| chartdistro.Ing 866...tes Ing File 5/19/1...:03 AM

| chartfan.lng 1KE Ing File 5/19/1...:03 AM

| chartnet.Ing 1KE Ing File 5/19/1...:03 AM

| chartpsurf.ing 568...tes Ing File 5/19/1...:03 AM

| charts.Ing S KB Ing File 5/19/1...:03 AM

| chartstaff.Ing 907..tes Ing File 5/19/1...:03 AM

| chartsurf.Ing 764..tes Ing File 5/19/1...:03 AM

| chess.Ilng 415...tes Ing File 5/19/1...:03 AM

| chmbll.Ing 913..tes Ing File 5/19/1..:03 AM | _
File name:

Files of type: | All Lingo Files (*.Ing *.1dt =.Itf *.Igr *.mps *.ltx *.mpi *.Ip) - Cancel

GETTING STARTED 25

2. Double-click on the LingoDocs folder then double-click on the Samples folder contained in the
LingoDocs folder, at which point you should see:

x Open — Lingo

Look in: B /home/myacctflingo15/samples ~ Q@ ©Q Q@ i @ E]
[E computer Name - Size Type Date Modified =
B kevin aroute2.lng 8 KE Ing File 5/19/1...:03 AM
aslbal.lng 1KBE Ing File 5/19/1...:03 AM
| bayes.Ing 944..tes Ing File 5/19/1...:03 AM
| blend.Ing 2KB Ing File 5/19/1...:03 AM
| blendccp.Ing 3 KB Ing File 5/19/1...:03 AM
| box.Ing 363..tes Ing File 5/19/1...:03 AM
| caploc.ng 937..tes Ing File 5/19/1...:03 AM
| chartcities.Ing 3 KE Ing File 5/19/1...:03 AM
| chartdistro.Ing 866...tes Ing File 5/19/1...:03 AM
| chartfan.Ing 1KE Ing File 5/19/1...:03 AM
| chartnet.lng 1 KB Ing File 5/19/1...:03 AM
| chartpsurfing 568...tes Ing File 5/19/1...:03 AM
| charts.Ing S KB Ing File 5/19/1...:03 AM
| chartstaff.Ing 907...tes Ing File 5/19/1...:03 AM
| chartsurf.Ing 764..tes Ing File 5/19/1...:03 AM
| chess.Ing 415...tes Ing File 5/19/1....03 AM
| chmbll.Ing 913..tes Ing File 5/19/1....03 AM |_
File name:

Files of type: | All Lingo Files (*.Ing *.1dt =.Itf *.Igr *.mps *.ltx *.mpi *.Ip) - Cancel

26 CHAPTER 1

3. To read in a small transportation model, select the tran./ng model from the samples folder and
press the Open button. You should now have the model in an open window in LINGO as follows:

Lingo Model - tran.lng — Lingo
File Edit Solver Window Help

Nefle 9 » 9> B> ?

/ Lingo Model - tran.Ing > \

1 MODEL :

2! A 3 Warehouse, 4 Customer

3 Transportation Problem;

4 SETS:

5 WAREHOUSE 7 WH1, WHZ, WH3/ . CAPACITY;
5] CUSTOMER S, Cc2, C3, ¢4/ . DEMAND;
7 ROUTES(WAREHOUSE, CUSTOMER) : COST, VOLUME;
8 ENDSETS

9

10 ! The objective;

11 [0BJ] MIN = @SUM{ ROUTES: COST * VOLUME);
12

13! The demand constraints:

14 @FOR(CUSTOMER(J): [DEM]

15 @5UM{ WAREHOUSE(I): VOLUME{ I, J)) ==
16 DEMAND(1))

17

18 | The supply constraints;

19 @FOR({ WAREHOUSE(I): [5UFP]

20 @SUM({ CUSTOMER(J): VOLUME(C I, J)) ==
21 CAPACITY(I));

22

23 ! Here are the parameters;

24 DATA:

25 CAPACITY = 30, 25, 21

26 DEMAND = 15, 17, 22, 12:

27 COST = 6, 2, 6, 7,

28 4, 9, 5, 3,

29 a8 8, 1, 5;

30 ENDDATA

31 END =
i 3

I I | Ln 1, Col 1 |5:10 pm

GETTING STARTED 27

For details on developing a transportation model in LINGO see A Sample Transportation Model in this
chapter.

You may now solve the model using the Solver|Solve command, or by pressing the Solve button on the

toolbar: .@ . The optimal objective value for this model is 161. When solved, you should see the
following solver status window:

[Eran.lng] - Solver Status — Lingo

Solver Status: p— Variables:
Total: 12
Model Class: LP ,
Nonlinear:
Objective: Lo) Constraints:
Infeasibility: 0 Total:
Iterations: 6 Nonlinear:
g MNonzeros:
Extended Solver Status:) Tatak 16
Solver Type: S Nonlinear: o
Best Obj: - - ___ Generator Memory Used (K): _
Obj Bound: - e 28
Liskt e 2 __ Elapsed Runtime [hh:mm:ss]: _
Active: U 00:00:00
Update Interval: |2 Close

Note the objective field has a value of 161 as expected. For an interpretation of the other fields in this
window, see Solver Status Window in Getting Started with LINGO.

28 CHAPTER 1

Behind the solver status window, you will find the solution report for the model. This report contains
summary information about the model as well as values for all the variables. This report’s header is
reproduced below:

x Solution Report - tran.lng — Lingo

File Edit Solver Window Help

DaB® ¢ « IRAEG 9k ~ B- 7
/ Lingo Model - tran.lng X V'ﬂa:'? Solution Report - tran.Ing X\
Global optimal solution found.

Objective value: 161.0000
Infeasibilities: 0.000000
Total solver iterations: 6
Elapsed runtime seconds: 0.05
Model Class: LP
Total variables: 12
Nonlinear variables: 0
Integer wvariables: 0
Total constraints: 8
Nonlinear constraints: 0
Total nonzeros: 36
Nonlinear nonzeros: 0
Variable Value Reduced Cost
CAPACITY(WH1) 30.00000 0. 000000
CAPACITY(WH2) 25.00000 0. 000000
CAPACITY(WH3) 21.00000 0. 000000
DEMAND({ C1) 15.00000 0. 000000
DEMAMD({ C2) 17.00000 0. 000000
DEMAND{ C3) 22.00000 0. 000000
DEMAMD({ C4) 12.00000 0.000000 |«
| | | Ln 1, Col 1 | 6:21 pm

For information on interpreting the fields in the solution report, see Sample Solution Report in Getting
Started with LINGO.

GETTING STARTED 29

Features Not Currently Supported on Linux

The Linux version of LINGO is a new addition and currently doesn't support the entire feature set
found under Windows. The currently unsupported features are listed below:

¢ Excel interface
¢ ODBC database connectivity
¢ (@USER user supplied function

We encourage you to check back at www.lindo.com frequently to see if any of these features have
become available on the Linux version of LINGO.

Command-Line Prompt

On machines other than Windows, Mac and Linux, you may have to interface with LINGO through the
means of a command-line prompt. All instructions are issued to LINGO in the form of text command
strings.

When you start a command-line version of LINGO, you will see a colon command prompt as follows:

LINGO

Copyright (C) LINDO Systems Inc. Licensed material, all
rights reserved. Copying except as authorized in license
agreement is prohibited.

The colon character (:) at the bottom of the screen in LINGO’s prompt for input. When you see the
colon prompt, LINGO is expecting a command. When you see the question mark prompt, you have
already initiated a command and LINGO is asking you to supply additional information related to this
command such as a number or a name. If you wish to "back out" of a command you have already
started, you may enter a blank line in response to the question mark prompt and LINGO will return
you to the command level colon prompt. All available commands are listed in Command-line
Commands.

Entering the Model from the Command-Line

When you enter a model in the command-line interface, you must first specify to LINGO that you are
ready to begin entering the LINGO statements. This is done by entering the MODEL: command at the
colon prompt. LINGO will then give you a question mark prompt and you begin entering the model
line by line.

30 CHAPTER 1

As an example, we will use the CompuQuick model discussed in the previous section. After entering
the CompuQuick model, your screen should resemble the following (note that user input is in bold):

MODEL:

MAX = 100 * STANDARD + 150 * TURBO;
STANDARD <= 100;

TURBO <= 120;

STANDARD + 2 * TURBO <= 160;

END

e 00 D) D) e

The END command tells LINGO you are finished inputting the model. Once you enter the END
command and return to the colon prompt, the model is in memory and ready to be solved.

Solving the Model from the Commanad-Line

To begin solving the model, type the GO command at the colon prompt and press the enter key.
LINGO will begin compiling the model. This means LINGO will determine whether the model
conforms to all syntax requirements. If the LINGO model doesn’t pass these tests, you will be
informed by an error message. For more information on error codes, see Error Messages.

GETTING STARTED 31

If there are no formulation errors during the compilation phase, LINGO will invoke the appropriate
internal solver to begin searching for the optimal solution to your model. When LINGO is done
solving the CompuQuick model, it will send the following solution report to your screen:

GO

Global optimal solution found.

Objective value: 14500.00

Infeasibilities: 0.000000

Total solver iterations: 0

Elapsed runtime seconds: 0.03

Model Class: LP
Total variables: 2
Nonlinear variables: 0
Integer variables: 0
Total constraints: 4
Nonlinear constraints: 0
Total nonzeros: 6
Nonlinear nonzeros: 0

Variable Value Reduced Cost

STANDARD 100.0000 0.000000

TURBO 30.00000 0.000000

Row Slack or Surplus Dual Price

1 14500.00 1.000000

2 0.000000 25.00000

3 90.00000 0.000000

4 0.000000 75.00000

This solution tells us that CompuQuick should build 100 Standards and 30 Turbos each day to give
them a total daily profit of $14,500. Click here for additional details on the various fields in this report.

Printing and Saving Your Work from the Commana-Line

For command-line versions of LINGO, the DIVERT file command may be used to send all LINGO
reports to a file rather than to the screen. You may then route this file to a printer or load it into a word

processing program for printing.

For example, to create a text file for printing that contains a copy of your model and solution, issue the

commands:

DIVERT MYFILE
LOOK ALL

GO

RVRT

'Opens an output file called MYFILE;
!Sends formulation to the file;
!Sends solution to the file;

!Closes down output file;

32 CHAPTER 1

To save your model to disk, issue the SAVE command followed by the name of a file to store your
model under. For example, the command:

SAVE MYFILE.LNG

saves a copy of the current model to the file titled MYFILE.LNG. The model may be retrieved for use
later with the TAKE command.

Please refer to Command-line Commands for more detailed information on these and other commands.

Creating and Solving a Model in LINGO

Developing a LINGO Model

For our sample model, we will create a small, product mix example. Let's imagine that the
CompuQuick Corporation produces two models of computers - Standard and Turbo. CompuQuick can
sell every Standard unit it produces for a profit contribution of $100, and each Turbo unit for a
contribution of $150. At the CompuQuick factory, the Standard computer production line can
produce, at most, 100 computers per day. At the same time, the Turbo computer production line can
turn out 120 computers per day. Furthermore, CompuQuick has a limited supply of daily labor. In
particular, there is a total of 160 hours of labor available each day. Standard computers require 1 hour
of labor, while Turbo computers are relatively more labor intense requiring 2 hours of labor. The
problem for CompuQuick is to determine the mix of Standard and Turbo computers to produce each
day to maximize total profit without exceeding line and labor capacity limits.

GETTING STARTED 33

In general, an optimization model will consist of the following three items:

& Objective Function -- The objective function is a formula that expresses exactly what it is you
want to optimize. In business oriented models, this will usually be a profit function you wish
to maximize, or a cost function you want to minimize. Models may have, at most, one
objective function. In the case of our CompuQuick example, the objective function will
compute the company's profit as a function of the output of Standards and Turbos.

& Variables -- Variables are the quantities you have under your control. You must decide what
the best values of the variables are. For this reason, variables are sometimes also called
decision variables. The goal of optimization is to find the values of a model's variables that
generate the best value for the objective function, subject to any limiting conditions placed on
the variables. We will have two variables in our example--one corresponding to the number
of Standards to produce and the other corresponding to the number of Turbos to produce.

¢ Constraints -- Almost without exception there will be some limit on the values the variables
in a model can assume--at least one resource will be limited (e.g., time, raw materials, your
department's budget, etc.). These limits are expressed in terms of formulas that are a function
of the model's variables. These formulas are referred to as constraints because they constrain
the values the variables can take. In our CompuQuick example, we will have one constraint
for each of our production lines and one constraint on the total labor used.

We will now construct the objective function for our example. We will let the variables STANDARD
and TURBO denote the number of Standard and Turbo computers to produce, respectively.
CompuQuick's objective is to maximize total profit. Total profit is calculated as the sum of the profit
contribution of the Standard computer ($100) multiplied by the total Standard computers produced
(STANDARD) and the profit contribution of the Turbo computer ($150) multiplied by the total Turbo
computers produced (TURBO). Finally, we tell LINGO we want to maximize an objective function
by preceding it with "MAX =". Therefore, our objective function is written on the first line of our
model window as:

MAX = 100 * STANDARD + 150 * TURBO;

Note: Each mathematical expression in LINGO is terminated with a semicolon. These semicolons
are required. Your model will not solve without them. For more information on the syntax of
LINGO, see below.

Next, we must input our constraints on line capacity and labor supply. The number of Standard and
Turbo computers produced must be constrained to the production line limits of 100 and 120,
respectively. Do this by entering the following two constraints just below the objective function:

STANDARD <= 100;
TURBO <= 120;

In words, the first constraint says the number of Standard computers produced daily (STANDARD)
must be less-than-or-equal-to (<=) the production line capacity of 100. Likewise, the second

34 CHAPTER 1

constraint says the number of Turbo computers produced daily (TURBO) must be less-than-or-equal-
to (<=) its line capacity of 120.

Note: Since most computers do not have less-than-or-equal-to keys (<), LINGO has adopted the
convention of using the two character symbol <= to denote <. As an alternative, you may
simply enter < to signify less-than-or-equal-to. In a similar manner, >= or > are used to
signify greater-than-or-equal-to (>).

The final constraint on the amount of labor used can be expressed as:

STANDARD + 2 * TURBO <= 160;
Specifically, the total number of labor hours used (STANDARD + 2 * TURBO) must be less-than-or-
equal-to (<=) the amount of labor hours available of 160.

After entering the above and entering comments to improve the readability of the model, your model
window should look like the following:

B¥ Lingo Model - CompuQuick o[- | (S|
1 'Here i= the total profit objective function;

2 MAX = 100 * STANDARD + 150 * TURBO:

3

4 Constraints on the production line capacity;

5 STANDARD <= 100;

i TURBO <= 120;

7

a8 1Cur labor supply is limited:;

9 STANDARD + 2 * TURBO <= 1&0;

An expression may be broken up into as many lines as you want, but the expression must be
terminated with a semicolon. As an example, we could have used two lines rather than just one to
contain the objective function:

MAX = 100 * STANDARD
+ 150 * TURBO;

We have also entered some comments to improve the readability of our model. Comments begin with
an exclamation point (!) and end with a semicolon (;). All text between an exclamation point and
terminating semicolon is ignored by LINGO. Comments can occupy more than one line and can share
lines with other LINGO expressions. For example:

X=1.5*Y + 2Z / 2 * Y; !This is a comment;
X = 1.5 * IThis is a comment in the middle
of a constraint; Y + 2 / 2 * Y;

GETTING STARTED 35

You may have noticed we used all uppercase letters for our variable names. This is not a requirement.
LINGO does not distinguish between uppercase and lowercase in variable names. Thus, the following
variable names would all be considered equivalent:

TURBO
Turbo
turbo

When constructing variable names in LINGO, all names must begin with an alphabetic character (A-
Z). Subsequent characters may be either alphabetic, numeric (0-9), or the underscore (_). Names may
be up to 64 characters in length.

A final feature you will notice is that LINGO’s editor is "syntax aware." In other words, when it
encounters LINGO keywords it displays them in blue, comments are displayed in green, and all
remaining text is displayed in black. Matching parentheses are also highlighted in red when you place
the cursor immediately following a parenthesis. You should find this feature useful in tracking down
syntax errors in your models.

Solving the Model

Your model has now been entered and it is ready to be solved. To begin solving the model, select the

Solve command from the LINGO menu, or press the Solve button (@) on the toolbar at the top of the
main frame window. LINGO will begin compiling the model. During this step, LINGO will determine
whether the model conforms to all syntax requirements. If the LINGO model doesn’t pass these tests,
you will be informed by an error message. In this model, for instance, if you forget to use the
multiplication sign, you will get an error like the following:

LINGO Error Message

Eiror Code:

Etror Text:
Invalid input. A s=vntax error has occurred.

2] HAX = 100 %TEHDQHD + 150 = TURBO:

x

11 Copy Explair . 0K]

LINGO lets you know there is a syntax error in your model, lists the line of the model it is in, and
points to the place in the line where it occurred. For more information on error codes, see Error
Messages.

36 CHAPTER 1

Solver Status Window

If there are no formulation errors during the compilation phase, LINGO will invoke the appropriate
internal solver to begin searching for the optimal solution to your model. When the solver starts, it
displays a solver status window on your screen resembling the following:

Solver Status W ariables
Madel Class: LP ek z
Maonlinear: 0
State: Global Opt Integers: 1]
Objective: 14500 Canstraints
Infeasibility: 0 Tatal 4
Maonlinear: 0
[terations: 1]
Maonzeros
Extended Salver Status Tatal: &
Manlinear: 0
Salver Type:
Best Obj; L Generator Memamy L sed (K]
Obj Bound: 23
Sl Elapzed Buntirme [hh:mm:zz)
Achve: L 000000
Ilpdate Interval: 2 Interrupt Solver Cloze

The solver status window is useful for monitoring the progress of the solver and the dimensions of
your model. The various fields are described in more detail below.

The solver status window also provides you with an Interrupt Solver button. Interrupting the solver
causes LINGO to halt the solver on the next iteration. In most cases, LINGO will be able to restore and
report the best solution found so far. The one exception is in the case of linear programming models
(i.e., linear models without integer variables). If a linear programming model is interrupted, the
solution returned will be meaningless and should be ignored. This should not be a problem because
linear programs generally solve quickly, thus minimizing the need to interrupt.

GETTING STARTED 37

Note: You must be careful how you interpret solutions after interrupting the solver. These solutions
1) will definitely not be optimal, 2) may not be feasible to all the constraints, and 3) are
worthless if the model is a linear program.

Next to the Interrupt Solver button is another button labeled Close. Hitting the Close button will close
the solver status window. This window can be reopened at any time by selecting the Window/|Status
Window command.

At the bottom of the solver status window, you will find a field titled: Update Interval. LINGO will
update the solver status window every n seconds, where n is the value contained in the Update Interval
field. You may set this interval to any value you desire. However, setting it to 0 will result in longer
solution times—LINGO will spend more time updating the solver status window than solving your
model. On larger models, LINGO may not always be able to update the solver status window on a
regular interval. So, don't be concerned if you sometimes must wait longer than the indicated interval.

Variables Box

The Variables box shows the total number of variables in the model. The Variables box also displays
the number of the total variables that are nonlinear. A variable is considered to be nonlinear if it enters
into any nonlinear relationship in any constraint in the model. For instance, the constraint:

X + Y = 100;

would be considered linear because the graph of this function would be a straight line. On the other
hand, the nonlinear function:

X * Y = 100;

is quadratic and has a curved line as its graph. If we were to solve a model containing this particular
nonlinear constraint, the nonlinear variable count would be at least 2 to represent the fact that the two
variables X and Y appear nonlinearly in this constraint.

As another example, consider the constraint:

X * X + Y =100;

In this case, X appears nonlinearly while Y appears as a linear variable. This constraint would not cause
Y to be counted as one of the nonlinear variables. See On Mathematical Modeling for more
information on the difference between linear and nonlinear equations.

The Variables box in the solver status window also gives you a count of the total number of integer
variables in the model. In general, the more nonlinear and integer variables your model has, the more
difficult it will be to solve to optimality in a reasonable amount of time. Pure linear models without
integer variables will tend to solve the fastest. For more details on the use of integer variables, refer to
Using Variable Domain Functions.

38 CHAPTER 1

The variable counts do not include any variables LINGO determines are fixed in value. For instance,
consider the following constraints:

X 1;
X Y

+

= 3;

From the first constraint, LINGO determines X is fixed at the value of 1. Using this information in
constraint 2, LINGO determines Y is fixed at a value of 2. X and Y will then be substituted out of the
model and they will not contribute to the total variable count.

Constraints Box

The Constraints box shows the total constraints in the expanded model and the number of these
constraints that are nonlinear. A constraint is considered nonlinear if one or more variables appear
nonlinearly in the constraint.

LINGO searches your model for fixed constraints. A constraint is considered fixed if all the variables
in the constraint are fixed. Fixed constraints are substituted out of the model and do not add to the total
constraint count.

Nonzeroes Box

The Nonzeros box shows the total nonzero coefficients in the model and the number of these that
appear on nonlinear variables. In a given constraint, only a small subset of the total variables typically
appears. The implied coefficient on all the non-appearing variables is zero, while the coefficients on
the variables that do appear will be nonzero. Thus, you can view the total nonzero coefficient count as
a tally of the total number of times variables appear in all the constraints. The nonlinear nonzero
coefficient count can be viewed as the number of times variables appear nonlinearly in all the
constraints.

Generator Memory Used Box

The Generator Memory Used box lists the amount of memory LINGO’s model generator is currently
using from its memory allotment. You may change the size of the generator’s memory allotment using
the Solver|Options command.

Elapsed Runtime Box
The Elapsed Runtime box shows the total time used so far to generate and solve the model. This is an
elapsed time figure and may be affected by the number of other applications running on your system.

GETTING STARTED 39

Solver Status Box
The Solver Status box shows the current status of the solver. A description of the fields appear in the
table below followed by a more in depth explanation:

Field ‘ Description

Model Class | Displays the model’s
classification. Possible classes are
HLPH’ HQPH’ HCONE"’ NNLPH’
"MILP", "MIQP", "MICONE",

"MINLP"
"PILP", "PIQP", "PICONE", and
"PINLP".

State Gives the Status of the current

solution. Possible states are
"Global Optimum", "Local
Optimum", "Feasible",
"Infeasible", "Unbounded",
"Interrupted", and
"Undetermined".

Objective Current value of the objective
function.

Infeasibility | Amount constraints are violated
by.

Iterations Number of solver iterations.

Model Class Field
The Model Class field summarizes the properties of your model. The various classes you will
encounter are listed below:

Abbreviation ‘ Class Description

LP Linear Program All expressions are linear and
the model contains no integer
restrictions on the variables.

QP Quadratic Program All expressions are linear or
quadratic, and there are no integer
restrictions.

CONE Conic Program The model is a conic (second-

order cone) program and all
variables are continuous.

NLP Nonlinear Program At least one of the relationships
in the model is nonlinear with
respect to the variables.

40 CHAPTER 1

MILP

Mixed Integer Linear Program

All expressions are linear, and a
subset of the variables is
restricted to integer values.

MIQP

Mixed Integer Quadratic
Program

All expressions are either linear
or quadratic, and a subset of the
variables has integer
restrictions.

MICONE

Mixed Integer Conic Program

The model is a conic (second-
order cone) program, and a
subset of the variables is
restricted to integer values.

MINLP

Integer Nonlinear Program

At least one of the expressions
in the model is nonlinear, and a
subset of the variables has
integer restrictions. In general,
this class of model will be very
difficult to solve for all but the
smallest cases.

PILP

Pure Integer Linear Program

All expressions are linear, and
all variables are restricted to
integer values.

PIQP

Pure Integer Quadratic
Program

All expressions are linear or
quadratic, and all variables are
restricted to integer values.

PICONE

Pure Integer Conic (Second-
Order Cone) Program

The model is a conic (second-
order cone) program, and all the
variables are restricted to
integer values.

PINLP

Pure Integer Nonlinear
Program

At least one of the expressions
in the model is nonlinear, and
all variables have integer
restrictions. In general, this
class of model will be very
difficult to solve for all but the
smallest cases.

Note: Certain model classes may not be available on your installation of LINGO: nonlinear models
require the nonlinear option, quadratic models require the barrier option and conic models

require the barrier, global and conic options.

GETTING STARTED 41

State Field

When LINGO begins solving your model, the initial state of the current solution will be
"Undetermined". This is because the solver has not yet had a chance to generate a solution to your
model.

Once the solver begins iterating, the state will progress to "Infeasible". In the infeasible state, LINGO
has generated tentative solutions, but none that satisfy all the constraints in the model.

Assuming a feasible solution exists, the solver will then progress to the "Feasible" state. In the feasible
state, LINGO has found a solution that satisfies all the constraints in your model, but the solver is not
yet satisfied it has found the best solution to your model.

Once the solver can no longer find better solutions to your model, it will terminate in either the
"Global Optimum" or "Local Optimum" state. If your model does not have any nonlinear constraints,
then any locally optimal solution will also be a global optimum. Thus, all optimized linear models will
terminate in the global optimum state. If, on the other hand, your model has one or more nonlinear
constraints, then any locally optimal solution may not be the best solution to your model. There may
be another "peak" that is better than the current one, but the solver's local search procedure is unable to
"see" the better peak. Thus, on nonlinear models, LINGO can terminate only in the local optimum
state. LINGO may, in fact, have a globally optimal solution, but, given the nature of nonlinear
problems, LINGO is unable to claim it as such. Given this fact, it is always preferred to formulate a
model using only linear constraints whenever possible. For more details on the concept of global vs.
local optimal points, refer to On Mathematical Modeling.

Note: LINGO’s optional global solver may be used to find globally optimal solutions to nonlinear
models. For more information on the global solver, refer to the Nonlinear Solver Tab help
topic.

Note: If a model terminates in the "Unbounded" state, it means LINGO can improve the objective
function without bound. In real life, this would correspond to a situation where you can
generate infinite profits. Because such a situation is rare, if not impossible, you have most
likely omitted or misspecified some constraints in your model.

Finally, the "Interrupted" state will occur when you prematurely interrupt LINGO's solver before it has
found the final solution to your model. The mechanics of interrupting the solver are discussed in more
detail above.

Objective Field
The Objective field gives the objective value for the current solution. If your model does not have an
objective function, then "N/A" will appear in this field.

42 CHAPTER 1

Infeasibility Field

The Infeasibility field lists the amount that all the constraints in the model are violated by. Keep in
mind that this figure does not track the amount of any violations on variable bounds. Thus, it is
possible for the Infeasibility field to be zero while the current solution is infeasible due to violated
variable bounds. The LINGO solver may also internally scale a model such that the units of the
Infeasibility field no longer correspond to the unscaled version of the model. To determine whether
LINGO has found a feasible solution, you should refer to the State field discussed above.

Iterations Field

The Iterations field displays a count of the number of iterations completed thus far by LINGO's solver.
The fundamental operation performed by LINGO's solver is called an iteration. An iteration involves
finding a variable, currently at a zero value, which would be attractive to introduce into the solution at
a nonzero value. This variable is then introduced into the solution at successively larger values until
either a constraint is about to be driven infeasible or another variable is driven to zero. At this point,
the iteration process begins anew. In general, as a model becomes larger, it will require more iterations
to solve and each iteration will require more time to complete.

Extended Solver Status Box
The Extended Solver Status box shows status information pertaining to several of the specialized
solvers in LINGO. These solvers are:

¢ BNP Solver

¢ Branch-and-Bound Solver
¢ Global Solver, and

¢ Multistart Solver.

The fields in this box will be updated only when one of these three specialized solvers is running. The
fields appearing in the Extended Solver Status box are:

Field ‘ Description

Solver Type The type of specialized solver in use, and will be either "B-
and-B", "Global", "Multistart", or "BNP".

Best Obj The objective value of the best solution found so far.

Obj Bound The theoretical bound on the objective.

Steps The number of steps taken by the extended solver.

Active The number of active subproblems remaining to be
analyzed.

GETTING STARTED 43

Solver Type Field
This field displays either "BNP", "B-and-B", "Global", or "Multistart", depending on the specialized
solver in use.

LINGO employs a strategy called branch-and-bound to solve models with integer restrictions. Branch-
and-bound is a systematic method for implicitly enumerating all possible combinations of the integer
variables. Refer to Hillier and Lieberman (1995) for more information on the branch-and-bound
algorithm.

In addition to the branch-and-bound solver, there are three other specialized solvers that may be
invoked, which are: the global solver, the multistart solver, and the BNP Solver.

Many nonlinear models are non-convex and/or non-smooth. For more information see the Chapter 15,
On Mathematical Modeling. Nonlinear solvers that rely on local search procedures (as does LINGO’s
default nonlinear solver) will tend to do poorly on these types of models. Typically, they will converge
to a local, sub-optimal point that may be quite distant from the true, globally optimal point. The
multistart solver and the global solver are specialized solvers that attempt to find the globally optimal
solution to non-convex models. You can read more about these solvers in the Nonlinear Solver Tab

section in Chapter 5.

The BNP solver is a mixed integer programming solver for solving linear models with block structure.
Based on the decomposition structure, the solver divides the original problem into several subproblems
and solves them (almost) independently, exploiting parallel processing if multiple cores are available.
You can read more about the BNP solver in the BNP Solver section in Chapter 5.

Best Obj and Obj Bound Fields

The Best Obj field displays the best feasible objective value found so far. Obj Bound displays the
bound on the objective. This bound is a limit on how far the solver will be able to improve the
objective. At some point, these two values may become very close. Given that the best objective value
can never exceed the bound, the fact that these two values are close indicates that LINGO's current
best solution is either the optimal solution, or very close to it. At such a point, the user may choose to
interrupt the solver and go with the current best solution in the interest of saving on additional
computation time.

Steps Field
The information displayed in the Steps field depends on the particular solver that is running. The table
below explains:

mk:@MSITStore:C:/Users/Stephane/Desktop/Lingo_15_Users_Manual.chm::/ch_13_-_on_mathematical_modeling.htm
mk:@MSITStore:C:/Users/Stephane/Desktop/Lingo_15_Users_Manual.chm::/nonlinear_solver_tab.htm

44 CHAPTER 1

Solver Steps Field Interpretation

BNP Number of branches in the branch-and-bound tree.

Branch-and- | Number of branches in the branch-and-bound tree.

Bound
Global Number of subproblem boxes generated.
Multistart Number of solver restarts.

Active Field
This field pertains to the BNP, branch—and—bound and global solvers. It lists the number of open

subproblems remaining to be evaluated. The solver must run until this valve goes to zero.

Sample Solution Report
When LINGO is done solving the CompuQuick model, there will be a new window created on your
screen titled Solution Report containing the details of the solution to your model. The solution report

should appear as follows:

Solution Report - CompuQuick = (=] i "
Global optimal solution found.
Objective wvalue: 14500.00
Variable Value Reduced Cost
TANDARD 100,0000 Q. 000000
TUREQ 30. 00000 Q. 000000
Row

s L B =

This solution tells us that CompuQuick should build 100 Standards and 30 Turbos each day for a total
daily profit of $14,500. Refer to the Examining the Solution section for additional details on the

various fields in this report.

GETTING STARTED 45

Printing Your Work

In Windows versions of LINGO, use the Print command in the File menu to print the active

[I:dj
(frontmost) window, or click on the Print button (). You may print any window, including both
model and report windows. If you wish to print just a portion of a window, use the Cut and Paste
commands in the Edit menu to put the desired text in a new window before printing. You can also

access the Cut command by clicking on the Cut button (%). Likewise, the Paste command can be

accessed through the Paste button ~ = (). To create a new window, use the File]New command, or

click the New button (==).

Saving Your Work

To save your model to a disk file, use the File|Save command, or press the Save button (H) in the
toolbar. Unless you specify otherwise, LINGO will automatically append a .LG4 extension to your file
name on Windows. The .LG¥ file format is a binary RTF file format. On Mac and Linux, LINGO
automatically saves model in the .LNG file format, which is a plain text file format, generally readable
by any other programs that can read text files.

Examining the Solution Report

First, the solution report us that LINGO took 0 iterations to solve the model (the preprocessor was able
to deduce the optimal solution without having to iterate). Second, the maximum profit attainable is
$14,500. Third, the quantities of each computer to produce, STANDARD and TURBO, are 100 and 30,
respectively. What’s interesting to note is we make less of the relatively more “profitable” Turbo
computer due to its more intensive use of our limited supply of labor. The Reduced Costs, Slack or
Surplus, and Dual Price columns are explained in other sections.

Reduced Cost

In a LINGO solution report, you’ll find a reduced cost figure for each variable. There are two valid,
equivalent interpretations of a reduced cost.

First, you may interpret a variable’s reduced cost as the amount that the objective coefficient of the
variable would have to improve before it would become profitable to give the variable in question a
positive value in the optimal solution. For example, if a variable had a reduced cost of 10, the objective
coefficient of that variable would have to increase by 10 units in a maximization problem and/or
decrease by 10 units in a minimization problem for the variable to become an attractive alternative to
enter into the solution. A variable in the optimal solution, as in the case of STANDARD or TURBO,
automatically has a reduced cost of zero.

46 CHAPTER 1

Second, the reduced cost of a variable may be interpreted as the amount of penalty you would have to
pay to introduce one unit of that variable into the solution. Again, if you have a variable with a reduced
cost of 10, you would have to pay a penalty of 10 units to introduce the variable into the solution. In
other words, the objective value would fall by 10 units in a maximization model or increase by 10
units in a minimization model.

Reduced costs are valid only over a range of values for the variable in questions. For more information
on determining the valid range of a reduced cost, see the Solver|Range command in Chapter 5,
Windows Commands.

Slack or Surplus

The Slack or Surplus column in a LINGO solution report tells you how close you are to satisfying a
constraint as an equality. This quantity, on less-than-or-equal-to (<) constraints, is generally referred to
as slack. On greater-than-or-equal-to (>) constraints, this quantity is called a surplus.

If a constraint is exactly satisfied as an equality, the slack or surplus value will be zero. If a constraint
is violated, as in an infeasible solution, the slack or surplus value will be negative. Knowing this can
help you find the violated constraints in an infeasible model—a model for which there doesn't exist a
set of variable values that simultaneously satisfies all constraints. Nonbinding constraints, will have
positive, nonzero values in this column.

In our CompuQuick example, note that row 3 (TURBO <= 120) has a slack of 90. Because the optimal
value of TURBO is 30, this row is 90 units from being satisfied as an equality.

Dual Price

The LINGO solution report also gives a dual price figure for each constraint. You can interpret the
dual price as the amount that the objective would improve as the right-hand side, or constant term, of
the constraint is increased by one unit. For example, in the CompuQuick solution, the dual price of 75
on row 4 means adding one more unit of labor would cause the objective to improve by 75, to a value
of 14,575.

Notice that “improve” is a relative term. In a maximization problem, improve means the objective
value would increase. However, in a minimization problem, the objective value would decrease if you
were to increase the right-hand side of a constraint with a positive dual price.

Dual prices are sometimes called shadow prices, because they tell you how much you should be
willing to pay for additional units of a resource. Based on our analysis, CompuQuick should be willing
to pay up to 75 dollars for each additional unit of labor.

As with reduced costs, dual prices are valid only over a range of values. Refer to the Solver|Range
command in Chapter 5, Windows Commands, for more information on determining the valid range of a
dual price.

GETTING STARTED 47

Intro to LINGO'’s Modeling Language

One of LINGO’s most powerful features is its mathematical modeling language. LINGO’s modeling
language lets you express your problem in a natural manner that is very similar to standard
mathematical notation. Rather than entering each term of each constraint explicitly, you can express a
whole series of similar constraints in a single compact statement. This leads to models that are much
easier to maintain and scale up.

Another convenient feature of LINGO’s modeling language is the data section. The data section
allows you to isolate your model’s data from the formulation. In fact, LINGO can even read data from
a separate spreadsheet, database, or text file. With data independent of the model, it’s much easier to
make changes, and there’s less chance of error when you do.

The simple CompuQuick model discussed above uses scalar variables. Each variable is explicitly listed
by name (e.g., STANDARD and TURBO) and each constraint is explicitly stated

(e.g., TURBO <=120). In larger models, you’ll encounter the need to work with a group of several
very similar constraints and variables. Using the scalar modeling approach we have illustrated to this
point, you would need to undertake the repetitive task of typing in each term of each constraint.
Fortunately, LINGO’s ability to handle sets of objects allows you to perform such operations much
more efficiently.

The section below is an example of how to use sets to solve a shipping problem. After reviewing this
example, it should become clear that coupling the power of sets with LINGO’s modeling language
allows you to build large models in a fraction of the time required in a scalar oriented approach to
modeling (See Chapter 2, Using Sets, for a detailed description of sets).

Developing a Set-Based Transportation Model

The Problem

For our example, suppose that the Wireless Widget (WW) Company has six warehouses supplying
eight vendors with their widgets. Each warehouse has a supply of widgets that cannot be exceeded, and
each vendor has a demand for widgets that must be satisfied. WW wants to determine how many
widgets to ship from each warehouse to each vendor so as to minimize the total shipping cost. This is a
classic optimization problem referred to as the transportation problem.

48 CHAPTER 1

The following diagram illustrates the problem:

Wireless Widget’s Shipping Network

Since each warehouse can ship to each vendor, there are a total of 48 possible shipping paths, or arcs.
We will need a variable for each arc to represent the amount shipped on the arc.

The following data is available:

Warehouse Widgets On Hand

1 60
2 55
3 51
4 43
5 41
6 52

Widget Capacity Data

Vendor \ Widget Demand

1 35
37
22
32
41
32
43
8 38
Vendor Widget Demand

N[N B (W]

GETTING STARTED 49

VI V2 (V3 (V4 V5 V6 VI V8

Whi 6 2 6 7 4 2 5 9
Wh2 4 9 5 3 8 5 8 2
Wh3 5 2 1 9 7 4 3 3
Wh4 7 6 7 3 9 2 7 1
WhS 2 3 9 5 7 2 6 5
Whé 5 5 2 2 8 1 4 3

Shipping Cost per Widget ($)

The Objective Function

Our first pass at formulating the model will be to construct the objective function. As mentioned, WW
wants to minimize total shipping costs. We will let the VOLUME 1 J variable denote the number of
widgets shipped from warehouse / to vendor J. Then, if we were to explicitly write out our objective
function using scalar variables, we would have:

MIN = 6 * VOLUME 1 1 + 2 * VOLUME 1 2 +
6 * VOLUME 1 3 + 7 * VOLUME 1 4 +
4 * VOLUME 1 5 +

8 * VOLUME 6 5 + VOLUME 6 6 + 4 * VOLUME 6 7 +
3 * VOLUME 6 8;

For brevity, we included only 9 of the 48 terms in the objective. As one can see, entering such a
lengthy formula would be tedious and prone to errors. Extrapolate to the more realistic case where
vendors could number in the thousands, and it becomes apparent that scalar based modeling is
problematic at best.

If you are familiar with mathematical notation, you could express this long equation in a much more
compact manner as follows:

Minimize Zy- COSTij o VOLUMEij
In a similar manner, LINGO’s modeling language allows you to express the objective function in a
form that is short, easy to type, and easy to understand. The equivalent LINGO statement is:

MIN = @SUM(LINKS(I,J): COST(I,J) * VOLUME(I,J));
In words, this says to minimize the sum of the shipping COST per widget times the VOLUME of

widgets shipped for all LINKS between the warehouses and vendors. The following table compares the
mathematical notation to the LINGO syntax for our objective function:

Math Notation LINGO Syntax

Minimize MIN =
i @SUM(LINKS (I, J):
COST}; COST (I, J)

*
o

VOLUME;; VOLUME (I,J));

50 CHAPTER 1

The Constraints

With the objective function in place, the next step is to formulate the constraints. There are two sets of
constraints in this model. The first set guarantees that each vendor receives the number of widgets
required. We will refer to this first set of constraints as being the demand constraints. The second set of
constraints, called the capacity constraints, ensures no warehouse ships out more widgets than it has on
hand.

Starting with the demand constraint for Vendor 1, we need to sum up the shipments from all the
warehouses to Vendor 1 and set them equal to Vendor 1’s demand of 35 widgets. Thus, if we were
using scalar-based notation, we would need to construct the following:

VOLUME 1 1+ VOLUME_2_1 + VOLUME 3_1 +
VOLUME 4_1 + VOLUME_5_I + VOLUME_6_I = 35;

You would then need to type seven additional demand constraints, in a similar form, to cover all eight
vendors. Again, as one can see, this would be a tedious and error prone process. However, as with our
objective function, we can use LINGO’s set-based modeling language to simplify our task.

Using mathematical notation, all eight demand constraints can be expressed in the single statement:

% VOLUME, = DEMAND,, for all j in VENDORS

The corresponding LINGO modeling statement appears as follows:

@FOR (VENDORS (J) :
@SUM (WAREHOUSES (I) : VOLUME (I, J)) =
DEMAND (J)) ;

This LINGO statement replaces all eight demand constraints. In words, this says for all VENDORS, the
sum of the VOLUME shipped from each of the WAREHOUSES to that vendor must equal the
corresponding DEMAND of the vendor. Notice how closely this statement resembles the mathematical
notation above as the following table shows:

Math Notation \ LINGO Syntax
Foralljin VENDORS @FOR (VENDORS (J) :
% @SUM (WAREHOUSES (I) :
VOLUME; VOLUME (I, J))
DEMAND,; DEMAND (J)) ;

Now, we will move on to constructing the capacity constraints. In standard mathematical notation, the
six capacity constraints would be expressed as:

Zj VOLUMEU <= CAP,, for all i in WAREHOUSES

The equivalent LINGO statement for all capacity constraints would be:

@FOR (WAREHOUSES (I) :
@SUM (VENDORS (J) : VOLUME (I, J))<=
CAPACITY (I));

GETTING STARTED 51

In words, this says, for each member of the set WAREHOUSES, the sum of the VOLUME shipped to
each of the VENDORS from that warehouse must be less-than-or-equal-to the CAPACITY of the
warehouse.

Putting together everything we’ve done so far yields the following complete LINGO model:

MODEL:
MIN = @SUM(LINKS (I, J):
COST (I, J) * VOLUME(I, J));
@FOR (VENDORS (J) :
@SUM (WAREHOUSES (I) : VOLUME (I, J)) =
DEMAND (J)) ;
@FOR (WAREHOUSES (I) :
@SUM (VENDORS (J) : VOLUME (I, J)) <=
CAPACITY (I));
END

Model: WIDGETS

However, we still need to define sets of objects used in the model (vendors, warehouses and shipping
arcs) as well as the data. We will do this in two additional model sections called the sets section and
the data section.

Defining the Sets

Whenever you are modeling some situation in real life, you will typically find there are one or more
sets of related objects. Examples would be such things as factories, customers, vehicles, and
employees. Usually, if a constraint applies to one member of a set, then it will apply equally to each
other member of the set. This simple concept is at the core of the LINGO modeling language. LINGO
allows you to define the sets of related objects in the sets section. The sets section begins with the
keyword SETS: on a line by itself and ends with ENDSETS on a line by itself. Once your set members
are defined, LINGO has a group of set looping functions (e.g., @FOR), which apply operations to all
members of a set using a single statement. See Chapter 2, Using Sets for more information.

In the case of our Wireless Widget model, we have constructed the following three sets:

¢ warehouses,
¢ vendors, and
¢ shipping arcs from each warehouse to customer.

The three sets are defined in the model's sets section as follows:

SETS:

WAREHOUSES: CAPACITY;

VENDORS: DEMAND;

LINKS (WAREHOUSES, VENDORS): COST, VOLUME;
ENDSETS

The second line says that the set WAREHOUSES has an attribute called CAPACITY. The following
line declares the vendor set and that it has an attribute called DEMAND.

52 CHAPTER 1

The final set, titled LINKS, represents the links in the shipping network. Each link has a COST and a
VOLUME attribute associated with it. The syntax used to define this set differs from the previous two.
By specifying:

LINKS (WAREHOUSES, VENDORS)

we are telling LINGO that the LINKS set is derived from the WAREHOUSES and VENDORS sets. In
this case, LINGO generates each ordered (warehouse, vendor) pair. Each of these 48 ordered pairs
becomes a member in the LINKS set. To help clarify this, we list selected members from the LINKS set
in the following table.

Member Index Shipping Arc

1 WHI2V1
2 WHI12V2
3 WHI2>V3
47 WH6>V7
48 WH6>V8

A nice feature of LINGO is that it will automatically generate the members of the LINKS set-based on
the members of the WAREHOUSES and VENDORS sets, thereby saving us considerable work.

Inputting the Data
LINGO allows the user to isolate data within the data section of the model. In our Wireless Widget
example, we have the following data section:

DATA:
!set members;
WAREHOUSES = WH1 WH2 WH3 WH4 WH5 WHo6;
VENDORS = V1 V2 V3 V4 V5 V6 V7 V8;

lattribute values;
CAPACITY = 60 55 51 43 41 52;

DEMAND = 35 37 22 32 41 32 43 38;

COST =6 2 6 74259
4 9538582
52197433
7673927171
239572¢605
5522814 3;

ENDDATA

The data section begins with the keyword DATA: on a line by itself and ends with ENDDATA on a line
by itself.

Next, we input the list of warehouses and vendors. Had we preferred, we could have also used the
following shorthand notation to the same end:
!set members;

WAREHOUSES = WH1..WHG6;
VENDORS = V1..V8;

GETTING STARTED 53

LINGO interprets the double-dots to mean that it should internally generate the six warehouses and
eight vendors.

Both the CAPACITY attribute of the set WAREHQOUSES and DEMAND attribute of the set VENDORS
are initialized in a straightforward manner. The COST attribute of the two-dimensional set LINKS is a
little bit trickier, however. When LINGO is initializing a multidimensional array in a data section, it
increments the outer index the fastest. Thus, in this particular example, COST(WH1, V1) is initialized
first, followed by COST(WH1, V2) through COST (WH1, V8). Then, the next one to be initialized with
be COST(WH?2, V1), and so on.

In this particular example, we have isolated all the model’s data within a single data section. Given
that the data is the most likely feature to change from one run of a model to the next, isolating data, as
we have done here, makes modifications considerably easier. Contrast this to how difficult it would be
to track down and change the data in a large, scalar model where data is spread throughout all the
constraints of the model.

In order to facilitate data management further, LINGO has the ability to import data from external
sources. More specifically, a LINGO model can import data from external text files, establish real-time
OLE links to Excel, and/or create ODBC links to databases.

54 CHAPTER 1

Putting together the data section, the sets section, the objective, and the constraints, the completed
model is as follows:

MODEL:
! A 6 Warehouse 8 Vendor Transportation Problem;
SETS:
WAREHOUSES: CAPACITY;
VENDORS: DEMAND;
LINKS (WAREHOUSES, VENDORS): COST, VOLUME;
ENDSETS
! Here is the data;
DATA:
!set members;
WAREHOUSES = WH1 WH2 WH3 WH4 WHS5 WHo6;
VENDORS = V1 V2 V3 V4 V5 V6 V7 V8;

lattribute values;
CAPACITY = 60 55 51 43 41 52;

DEMAND = 35 37 22 32 41 32 43 38;

COST =6 2 6 74259
4 9538582
52197433
76739271
239572¢605
5522814 3;

ENDDATA

! The objective;
MIN = @SUM(LINKS(I, J):
COST(I, J) * VOLUME(I, J));
! The demand constraints;
@FOR(VENDORS (J) :
@SUM(WAREHOUSES(I): VOLUME(I, J)) =
DEMAND (J)) ;
! The capacity constraints;
@FOR(WAREHOUSES(I):
@SUM(VENDORS(J): VOLUME(I, J)) <=
CAPACITY(I));
END

Model: WIDGETS

Note that we have again added comments to improve the readability of the model. The model
is named WIDGETS, and can be found in the SAMPLES subdirectory off the main LINGO
directory.

GETTING STARTED 55

Solving the Transportation Model

Now, let’s solve the model to determine the optimal shipping volume for each warehouse to vendor
link. In LINGO for Windows, choose Solve from the LINGO menu or press the So/ve button (). On

other platforms, enter the GO command at the command-line prompt. LINGO will respond by solving
the model and returning a somewhat lengthy solution report containing the values for all the variables,
constraints, and data in the model. Most of this information is not of immediate interest. What we

would really like to know is the amount of widgets being shipped from the warehouses to the vendors.

Note: Anytime you find the amount of LINGO’s output overwhelming, you can choose Options...
from the LINGO menu, select the Interface tab, and set the Output Level option to Terse.
LINGO will then display only the solutions status, objective value and number of iterations in
the solution window. In non-Windows versions of LINGO, enter the TERSE command
before giving the GO command.

Note: To obtain a report containing only the nonzero values for VOLUME, we select the Solution
command from the LINGO menu. We are then presented with the following dialog box:

r .
Solution Report or Chart X
Altribute(s) or Row Name(s): T D ' 0K |
O Text
Header Text: _ Cancel
() Chart
Help

[] Nonzero Vars and Binding Rows Only

Chart Properties:
Chart Type: Values:

Bai Bubble Contour)
Prima Dual

56 CHAPTER 1

Press down on the arrow button in the Attribute or Row Name field and select VOLUME from the list
of names in the drop-down box. To suppress the printing of variables with zero value, click on the
Nonzero Vars and Binding Rows Only checkbox. Once you have done this, the dialog box should
resemble:

F |
Solution Report or Chart X
Attﬂhuﬂ[s] of Row Nam[S]: T}m of uutm:
[‘U’DLLIME y \
Header Text T e
() Chart
Help
() Nonzero Vars and Binding Rows Only
Chart Properties:
Chart Type: Values:
B Bubbl Cont
o e oo Primal Dual

Now, click the OK button and you will be presented with the following report that contains the
nonzero VOLUME variables:

B solutic NIDGETS
Global optimal solution found.
Objective value: 664.0000
Infeasibilities: 0.000000
Total solver iterations: 17
Elapsed runtime seconds: 0.14
Variable Value Reduced Cost
VOLUME ({ WH1, V1) 0.000000 5. 000000
VOLUME (WH1, V2) 19.00000 0. 000000
VOLUME (WH1, V3) 0.000000 5.000000
VOLUME (WHL1, V4) 0.000000 7.000000
VOLUME (WHLl, V3) 41.00000 0.000000
VOLUME (WH1, V&) 0.000000 2.000000
VOLUME (WH1, V7) 0.000000 2.000000
VOLUME (WHL1, V83) 0.000000 10.00000
VOLUME (WH2, V1) 1.000000 0.000000
VOLUME { WH2, V2) 0.000000 4,000000
VOLUME (| WH2, V3) 0.000000 1.000000
VOLUME (WH2, V4) 32.00000 0.000000
VOLUME { WH2, V5) 0.000000 1.000000
VOLUME (WH2, V&) 0.000000 2.000000
VOLUME (| WH2. VT7) 0.000000 2.000000

GETTING STARTED 57

If you are running LINGO on a platform other than Windows, you can generate the same report by
issuing the NONZERO VOLUME command.

LINGO can also display various forms of charts depicting your solution. Suppose you would like to
display a pie chart of VOLUME. You may do this by first clicking on the Chart button in the Type of
Output box, which will enable the Chart Properties box, where you select a chart type of Pie:

Solution Report or Chart X
Attribute(s) or Row Name(s): Type of Dutput:
VOLUME v
O Tent Cancel
Header Text: O Chat
ar
Help

Monzero Yars and Binding Rows Only

Chart Properties:
Chart Type: Values:
O Y Y Cont
_) Bar () Bubble () Contour OFins ODu
OCuve OHisto O Line
(O Netarc () Netnode © Pie Bounds:
() Radar () Scatter () Surface Lower: None
Histo Bins: Upper: MNone

0

58 CHAPTER 1

Clicking OK will cause LINGO to open a new window with the requested pie chart:

C:\LINGO64_21\Samples\WIDGETS.Ig4

Summary

This section has begun to demonstrate the virtues of LINGO’s set-based modeling language. By
moving to a set-based approach to modeling, you will find that your models become easier to build,
easier to understand, and easier to maintain. Set-based modeling takes a little more work to become
comfortable with, but the benefits should substantially outweigh the extra effort involved in the
learning process. We will delve further into the concepts of set-based modeling in the following
chapter, Using Sets.

GETTING STARTED 59

Additional Modeling Language Features

Constraint Names

LINGO gives you the ability to name the constraints in your model. This is a good practice for two
reasons. First, the constraint names are used in solution reports making them easier to interpret.
Secondly, many of LINGO’s error messages refer to a given constraint by name. If you don’t name
your constraints, tracking down the source of these errors may, at best, be difficult.

Note: LINGO does not require you to name your constraints. However, if you do not name your
constraints, LINGO defaults to using a name that corresponds to the internal index of the
constraint. This internal index may have little to do with the order in which you defined the
constraint, thus making the job of interpreting solution reports and error messages difficult.
Therefore, it is strongly recommended that you always use constraint names in your models.

Naming a constraint is quite simple. All you need do is insert a name in square brackets at the very
start of the constraint. The name must obey the standard requirements for a LINGO name. More
specifically, all names must begin with an alphabetic character (A-Z). Subsequent characters may be
either alphabetic, numeric (0-9), or the underscore (_). Names may be up to 64 characters in length.
Some examples of constraint names follow:

Example 1: [OBJECTIVE] MIN = X;
assigns the name OBJECTIVE to the model’s objective row,

Example 2: @FOR (CUSTOMERS (J) : [DEMAND ROW]
@SUM (SOURCES(I): SHIP(I, J)) >=
DEMAND (J)) ;
assigns the name DEMAND ROW to the demand constraints in a transportation model.

60 CHAPTER 1

To further illustrate the use of row names, we have updated the WIDGETS model from the previous
section to include constraint names (shown in bold):

MODEL:
! A 6 Warehouse 8 Vendor Transportation Problem;
SETS:
WAREHOUSES: CAPACITY;
VENDORS: DEMAND;
LINKS (WAREHOUSES, VENDORS): COST, VOLUME;
ENDSETS
DATA:
!'set members;
WAREHOUSES = WH1 WH2 WH3 WH4 WH5 WHG;
VENDORS = V1 V2 V3 V4 V5 Vo6 V7 VS8;

lattribute wvalues;
CAPACITY = 60 55 51 43 41 52;
DEMAND = 35 37 22 32 41 32 43 38;

COST =6 2 6 74259
4 9538582
52197433
76739271
239572¢65
5522814 3;

ENDDATA

! The objective;
[OBJECTIVE] MIN = @SUM(LINKS(I, J):
COosST(I, J) * VOLUME(I, J));
! The demand constraints;
@FOR(VENDORS (J) : [DEMAND_ROW]
@SUM(WAREHOUSES(I): VOLUME(I, J)) =
DEMAND (J));
! The capacity constraints;
@FOR (WAREHOUSES (I): [CAPACITY_BOW]
@SUM(VENDORS(J): VOLUME(I, J)) <=
CAPACITY (I));
END

WIDGETS with Constraint Names

GETTING STARTED 61

The row section of the solution report is now considerably easier to interpret:

Row Slack or Surplus Dual Price

OBJECTIVE 664.0000 1.000000
DEMANDiROW(Vl) 0.0000000 -4.000000
DEMAND_ROW (V2) 0.0000000 -5.000000
DEMAND ROW (V3) 0.0000000 -4.000000
DEMAND_ROW (V4) 0.0000000 -3.000000
DEMAND ROW (V5) 0.0000000 -7.000000
DEMAND_ROW (V6) 0.0000000 -3.000000
DEMAND ROW (V7) 0.0000000 -6.000000
DEMAND_ROW (V8) 0.0000000 -2.000000
CAPACITY ROW (WHI1) 0.0000000 3.000000
CAPACITY ROW (WH2) 22.00000 0.000000
CAPACITY ROW(WH3) 0.0000000 3.000000
CAPACITY ROW (WH4) 0.0000000 1.000000
CAPACITY ROW(WHS) 0.0000000 2.000000
CAPACITY ROW (WH6) 0.0000000 2.000000

Row Report for WIDGETS with Constraint Names

Note that each row now has a name rather than a simple index number. Furthermore, if the constraint
is generated over a set using the @FOR function, LINGO qualifies the constraint name by appending
the corresponding set member name in parentheses.

62 CHAPTER 1

Model Title

You can insert a title for a model anywhere you would normally enter a constraint. If a title is
included, it will be printed at the top of solution reports. The title is also used as a default argument in
the @ODBC function (see Chapter 10, Interfacing with Databases).

The model’s title must begin with the keyword TITLE and end with a semicolon. All text between
TITLE and the semicolon will be taken as the title of the model.

In the following, we have added a title to the beginning of the WIDGETS model:

MODEL:
TITLE Widgets;

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:
WAREHOUSES :

CAPACITY;

Excerpt from WIDGETS Model with a Title

Note that when we display the solution report, the title is now displayed along the top:

Model Title: Widgets

Variable
CAPACITY (WHI1)
CAPACITY (WH2)
CAPACITY (WH3)
CAPACITY (WH4)

60.
55.
.00000

51

43.

Value
00000
00000

00000

Reduced Cost
0.0000000
0.0000000
0.0000000
0.0000000

Excerpt from Solution Report to WIDGETS Model with a Title

GETTING STARTED 63

Indicating Convexity and Concavity

LINGO's global solver can exploit the fact that a constraint is either convex or concave to improve
performance. In many cases, the global solver can automatically identify a constraint as either convex
or concave. In other cases, though, the global solver can't make this determination. If you know a
constraint is convex or concave then you can flag it as such. In order to do this, replace the standard
equality and inequality operators (=, <= and >=) with either: =C=, <C= and >C=. The interpretations
of these operators are:

Operator ‘ Interpretation

<C= The constraint F(X) <= b is convex.
>C= The constraint F(X) >= b is concave.
=C= The function F(X) of the constraint F(X) = b is a convex function.

As an example, consider the nonlinear model:

MODEL:

MAX= 5 * Wl - 3 * X1 - 4 * Y1
* W2 - 3 % X2 - 4 * Y2
+ 5 * W3 - 3 * X3 - 4 * Y3;

+
[€)]

- Wl <= 1;

Wl <= 1;

X1 + Y1 >= 1;

[NLROW1] W1 ~ 3 - X1 * Y1 <C= 0;

- W2 <= 1;

W2 <= 1;

X2 + Y2 >= 1;

[NLROW2] W2 ~ 3 - X2 * Y2 <C= 0;

- W3 <= 1;

W3 <= 1;

X3 4+ Y3 >= 1;

[NLROW3] W3 ~ 3 - X3 * Y3 <C= 0;

Model: CONVEX

The three nonlinear rows in this model: NLROW1, NLROW2 and NLROW3, are convex, and we have
marked them as such using the convexity inequality operator (<C=). This will allow the global solver
to exploit the convexity of these rows and solve the model almost instantly. The global solver would
run considerably longer on this model if we were to remove the convexity operators, reverting back to
the standard inequality operator <=.

Note: If you have a constraint for which F(x) is only quasi-convex or quasi-concave, you may still
apply the convexity markers to the same advantage. A convex objective, Min = F(x), can be
identified by rewriting it: Min = z; z>C = F(x);

64 CHAPTER 1

Maximum Problem Dimensions

Some versions of LINGO limit one or more of the following model properties: total variables, integer
variables, nonlinear variables, global variables, and constraints. The total variable limit is on the total
number of optimizable variables in your model (i.e., variables LINGO was unable to determine as
being fixed at a particular value). The integer variable limit applies to the total number of optimizable
variables restricted to being integers with either the @BIN or @GIN functions. The nonlinear variable
limit applies to the number of optimizable variables that appear nonlinearly in the model’s constraints.
As an example, in the expression: X + ¥, both X and Y appear linearly. However, in the expression:
X" 2+ Y, Xappears nonlinearly while Y appears linearly. Thus, X would count against the nonlinear
variable limit. In some cases, nonlinear variables are allowed only if you have purchased the nonlinear
option for your LINGO software. The global variable limit applies to the total number of nonlinear
variables when using the global solver. The constraint limit refers to the number of formulas in the
model that contain one or more optimizable variables. Keep in mind that a single @FOR function may
generate many constraints.

The maximum sized problem your LINGO can handle depends on the version you have. The current
limits for the various versions are:

Total Integer | Nonlinear Global
Version Variables Variables Variables Variables Constraints

Demo/Web 300 30 30 5 150
Solver Suite 500 50 50 5 250
Super 2,000 200 200 10 1,000
Hyper 8,000 800 800 20 4,000
Industrial 32,000 3,200 3,200 50 16,000
Extended Unlimited Unlimited Unlimited Unlimited Unlimited

You can also determine the limits of your version by selecting the About LINGO command from the
Help menu in Windows, or by typing HELP at the command-line prompt on other platforms. If you
determine you need a larger version of LINGO, upgrades are available from LINDO Systems. Please
feel free to contact us for pricing and availability.

Note 1: The limits of different LINGO versions are subject to change. Check our website,
http://www.lindo.com, for the most current sizes.

Note 2: In some versions of LINGO, the Nonlinear Variable limit will be 0 if you have not purchased
the nonlinear option for your copy of LINGO. Similarly, the global variable limit will be o if
the global solver option is not enabled.

GETTING STARTED 65

Note 3: LINGO has two other implicit limits not given by the table above—memory and time. Large
models may require more memory to solve than is available on your system, or they may
require more time to solve than one would normally be willing to wait. So, when building
large models, be aware that just because your model falls within LINGO’s limits there is no
guarantee it will be solvable in a reasonable amount of time on a particular machine.

How to Contact LINDO Systems

LINDO Systems can be reached at the following address and telephone numbers:

LINDO Systems, Inc.
1415 North Dayton Street
Chicago, IL 60642

Tel: 312-988-7422
Fax: 312-988-9065

e-mail: info@lindo.com
web: http://www.lindo.com

For sales and product information, please contact us at:

Tel: 1-800-441-2378 or 312-988-7422
e-mail: sales@lindo.com

For technical support, we prefer you send your model and questions by email to tech@lindo.com. You
may also speak to our technical support staff at 312-988-9421. Our technical support staff can help you
with questions regarding the installation and operation of LINGO. If you have simple modeling
questions, we can generally help get you pointed in the right direction. If you have extensive modeling
questions, we can recommend third party consultants well versed in the specifics of LINGO and
mathematical modeling in general, who can assist you in your modeling efforts.

2 Using Sets

As we mentioned in the previous chapter, whenever you are modeling situations in real life there will
typically be one or more groups of related objects. Examples of such objects might include factories,
customers, vehicles, or employees. LINGO allows you to group these related objects together into sets.
Once the objects in your model are grouped into sets, you can make use of set-based functions to
unleash the full power of the LINGO modeling language.

Having given you a brief introduction into the use of sets in Chapter 1, Getting Started with LINGO,
we will now go into greater depth as to how you construct sets and initialize set attributes with data.
This will then give us the ability to begin constructing some interesting and useful examples. Once
you’ve read this chapter, you should have a basic understanding of how to go about applying set-based
modeling techniques to your own models.

Why Use Sets?

Sets are the foundation of LINGO’s modeling language—the fundamental building block of the
program’s most powerful capabilities. With an understanding of sets, you can write a series of similar
constraints in a single statement and express long, complex formulas concisely. This allows you to
express your largest models very quickly and easily. In larger models, you’ll encounter the need to
express a group of several very similar calculations or constraints. Fortunately, LINGO’s ability to
handle sets of information allows you to perform such operations efficiently.

For example, preparing a warehouse-shipping model for 100 warehouses would be tedious if you had
to write each constraint explicitly (e.g., “Warehouse 1 must ship no more than its present inventory,
Warehouse 2 must ship no more than its present inventory, Warehouse 3 must ship no more than its
present inventory...”, and so on). LINGO allows you to express formulas in the form easiest for you to
read and understand (e.g., “Each warechouse must ship no more than its present inventory”).

What Are Sets?

Sets are simply groups of related objects. A set might be a list of products, trucks, or employees. Each
member in the set may have one or more characteristics associated with it. We call these
characteristics attributes. Attribute values can be known in advance or unknowns that LINGO solves
for. For example, each product in a set of products might have a price attribute; each truck in a set of
trucks might have a hauling capacity attribute; and each employee in a set of employees might have a
salary attribute, as well as a birth date attribute.

68 CHAPTER 2

Types of Sets

LINGO recognizes two kinds of sets: primitive and derived.

A primitive set is a set composed only of objects that can’t be further reduced. In the Wireless Widgets
example (page 47), the WAREHOUSES set, which is composed of six warehouses, is a primitive set.
Likewise, the set composed of eight vendors is a primitive set.

A derived set is defined using one or more other sets. In other words, a derived set derives its members
from other preexisting sets. Again, using the Wireless Widgets example, the set composed of the links
between the six warehouses and eight vendors (LINKS) is a derived set. It derives its members from
the unique pairs of members of the WAREHOUSES and VENDORS sets. Although the LINKS set is
derived solely from primitive sets, it is also possible to build derived sets from other derived sets as
well. See the section below, Defining Derived Sets, for more information.

The Sets Section of a Model

Sets are defined in an optional section of a LINGO model called the sets section. Before you use sets
in a LINGO model, you have to define them in the sets section of the model. The sets section begins
with the keyword SETS: (including the colon), and ends with the keyword ENDSETS. A model may
have no sets section, a single sets section, or multiple sets sections. A sets section may appear
anywhere in a model. The only restriction is you must define a set and its attributes before they are
referenced in the model’s constraints.

Defining Primitive Sets

To define a primitive set in a sets section, you specify:

¢ the name of the set,
¢ optionally, its members (objects contained in the set), and
¢ optionally, any attributes the members of the set may have.

A primitive set definition has the following syntax:

setname [/ member list /] [: attribute_list];

Note: The use of square brackets indicates an item is optional. In this particular case, a primitive
set’s attribute list and member _list are both optional.

The setname is a name you choose to designate the set. It should be a descriptive name that is easy to
remember. The set name must conform to standard LINGO naming conventions. In other words, the
name must begin with an alphabetic character, which may be followed by up to 31 alphanumeric
characters or the underscore (). LINGO does not distinguish between upper and lowercase characters
in names.

A member list is a list of the members that constitute the set. If the set members are included in the set
definition, they may be listed either explicitly or implicitly. If set members are not included in the set

USING SETS 69

definition, then they may be defined subsequently in a data section of the model. For details on
defining set members in a data section, refer to Introduction to the Data Section.

When listing members explicitly, you enter a unique name for each member, optionally separated by
commas. As with set names, member names must also conform to standard naming conventions. In the
Wireless Widgets model, we could have used an explicit member list to define the set WAREHOUSES
in the sets section as follows:

WAREHOUSES / WH1 WH2 WH3 WH4 WHS5 WH6/: CAPACITY;

When using implicit set member lists, you do not have to list a name for each set member. Use the
following syntax when using an implicit set member list:

setname | memberl..memberN / [: attribute list];

where member] is the name of the first member in the set and memberN is the name of the last
member. LINGO automatically generates all the intermediate member names between memberl and
memberN. While this can be a very compact and convenient method for building a primitive set, there
is one catch in that only certain formats of names are accepted for the initial and terminal member
names. The following table details the available options:

Implicit Member List Example Set Members

Format

1..n 1..5 1, 2, 3, 4, 5

alpaM.alphaN a..g alblcldlelflg

stringM.stringN TRUCKS3..TRUCKS204 TRUCKS3, TRUCKS4, ..,
TRUCKS204

dayM..dayN MON. .FRI MON, TUE, WED, THU,
FRIT

monthM..monthN OCT. .JAN OoCT, NOV, DEC, JAN

monthYearM..monthYearN OCT2001..JAN2002 0CT2001, NOV2001,
DEC2001, JAN2002

When using the 1..n format, » may be any positive integer value, and the initial member must always
beal.

The stringM..stringN format allows you to use any string to start both the initial and terminal member
names as long as the string conforms to standard LINGO naming conventions. M and N must be
nonnegative and integer, such that M < N. Also, you may pad the M value to the left with Os in order to
generate set member names of matching lengths. For example, TRUCKS003..TRUCKS204 would yield
set members TRUCKS003, TRUCKS004, ..., TRUCKS204, so that all set members will be padded with
0Os in order to contain 8 characters.

The dayM..dayN format allows you to choose the initial and terminal member names for the names of
the days of the week. All names are abbreviated to three characters. Thus, the available options are:
Mon, Tue, Wed, Thu, Fri, Sat, and Sun.

70 CHAPTER 2

The monthM..monthN format allows you to select from the months of the year, where all names are
abbreviated to three characters. The available options are: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, and Dec.

The monthYearM..monthYearN option allows you to specify a month and a four digit year.

As further illustration, in the Wireless Widgets example, we could have also defined the
WAREHOUSES set as:

WAREHOUSES / 1..6/: CAPACITY;

As an alternative, when using this 1..n form of implicit definition, you may also place the length of the
set in a data section, and then reference this length in a subsequent sets section as we do here:

DATA:
NUMBER OF WH = 6;
ENDDATA

SETS:
WAREHOUSES / 1..NUMBER OF WH/: CAPACITY;
ENDSETS

Set members may have one or more attributes specified in the attribute list of the set definition. An
attribute is simply some property each member of the set displays. For instance, in the WAREHOUSES
set above, there is a single attribute titled CAPACITY, which is used to represent the shipping capacity
of the WAREHOUSES. Attribute names must follow standard naming conventions and be separated by
commas.

For illustration, suppose our warehouses had additional attributes related to their location and the
number of loading docks. These additional attributes could be added to the attribute list of the set
declaration as follows:

WAREHOUSES / 1..6/: CAPACITY, LOCATION, DOCKS;

In addition to listing a primitive set's members in a model's sets section, primitive set members may
also be listed in a model's data section. Some users may prefer this alternative approach in that a set's
members are actually input data for the model. Therefore, listing set members in a model's data
section, along with all other data, is a more natural approach that makes a model more readable. All
the various techniques listed above for enumerating a primitive set's members are also valid in a data
section. Some examples of defining primitive set members in a data section follow:

SETS:
WAREHOUSES: CAPACITY;
ENDSETS
DATA:
WAREHOUSES = WH1 WH2 WH3 WH4 WH5 WHG6;
ENDDATA

Example 1: Listing a Primitive Set in a Data Section

USING SETS T1

SETS:
WAREHOUSES: CAPACITY;
ENDSETS
DATA:
NUMBER OF WH = 6;
WAREHOUSES = 1..NUMBER OF WH;
ENDDATA

Example 2: Listing a Primitive Set in a Data Section

Defining Derived Sets

To define a derived set, you specify:

the name of the set,

its parent sets,

optionally, its members, and

optionally, any attributes the set members may have.

* & o o

A derived set definition has the following syntax:
setname(parent_set _list) [/ member _list /] [: attribute_list];
The setname is a standard LINGO name you choose to name the set.

The parent_set list is a list of previously defined sets, separated by commas. Without specifying a
member_list element, LINGO constructs all combinations of members from each parent set to create
the members of the new derived set. As an example, consider the following sets section:

SETS:

PRODUCT / A B/;

MACHINE / M N/;

WEEK / 1..2/;

ALLOWED (PRODUCT, MACHINE, WEEK) ;
ENDSETS

Sets PRODUCT, MACHINE, and WEEK are primitive sets, while ALLOWED is derived from parent
sets, PRODUCT, MACHINE, and WEEK. Taking all the combinations of members from the three
parent sets, we come up with the following members in the ALLOWED set:

Index \ Member

1 (AM,1)
(A.M.2)
(A,N,1)
(4.N.2)
(B.M.1)
(B.M.2)
(B.N.1)
8 (B,N.2)
ALLOWED Set Membership

N ||| ||

72 CHAPTER 2

The member_list is optional, and is used when you want to limit the set to being some subset of the full
set of combinations derived from the parent sets. The member_list may alternatively be specified in a
model’s data section (for details on this see Introduction to the Data Section in Chapter 4, Data and
Init Sections).

If the member _list is omitted, the derived set will consist of all combinations of the members from the
parent sets. When a set does not have a member_list and, therefore, contains all possible combinations
of members, it is referred to as being a dense set. When a set includes a member _list that limits it to
being a subset of its dense form, we say the set is sparse.

A derived set’s member_list may be constructed using either:

¢ an explicit member list, or
& a membership filter.

When using the explicit member list method to specify a derived set’s member_list, you must
explicitly list all the members you want to include in the set. Each listed member must be a member of
the dense set formed from all possible combinations of the parent sets. Returning to our small example
above, if we had used an explicit member list in the definition of the derived set, ALLOWED, as
follows:

ALLOWED (PRODUCT, MACHINE, WEEK)
/ AM1, AN2, BN 1/;

then ALLOWED would not have had the full complement of eight members. Instead, ALLOWED
would have consisted of the three member sparse set: (4,M,1), (4,N,2), and (B,N,1). Note that the
commas in the list of set members are optional and were added only for readability purposes.

If you have a large, sparse set, explicitly listing all members can become cumbersome. Fortunately, in
many sparse sets, the members all satisfy some condition that differentiates them from the
nonmembers. If you could just specify this condition, you could save yourself a lot of effort. This is
exactly how the membership filter method works. Using the membership filter method of defining a
derived set’s member _list involves specifying a logical condition that each potential set member must
satisfy for inclusion in the final set. You can look at the logical condition as a filfer to keep out
potential members that don’t satisfy some criteria.

As an example of a membership filter, suppose you have already defined a set called TRUCKS, and
each truck has an attribute called CAPACITY. You would like to derive a subset from TRUCKS that
contains only those trucks capable of hauling big loads. You could use an explicit member list, and
explicitly enter each truck that can carry heavy loads. However, why do all that work when you could
use a membership filter as follows:

HEAVY DUTY (TRUCKS) |CAPACITY (&1) #GT# 50000:

USING SETS 73

We have named the set HEAVY DUTY and have derived it from the parent set, TRUCKS. The vertical
bar character (]) is used to mark the beginning of a membership filter. The membership filter allows
only those trucks that have a hauling capacity (CAPACITY(&1)) greater than (#GT#) 50,000 into the
HEAVY DUTY set. The &1 symbol in the filter is known as a set index placeholder. When building a
derived set that uses a membership filter, LINGO generates all the combinations of parent set
members. Each combination is then “plugged” into the membership condition to see if it passes the
test. The first primitive parent set’s member is plugged into &/, the second into &2, and so on. In this
example, we have only one parent set (TRUCKS), so &2 would not have made sense. The symbol
#GT# is a logical operator and means “greater than”.

The logical operators recognized by LINGO are:

#EQ# equal

#NE# not equal

#GE# greater-than-or-equal-to

#GT# greater than

#LT# less than

#LE# less-than-or-equal-to
In addition to listing a derived set's members in a model's sets section, derived set members may also
be listed in a model's data section. Some users may prefer this alternative approach in that a set's
members are actually input data for the model. Therefore, listing set members in a model's data
section, along with all other data, is a more natural approach that makes a model more readable. All
the various techniques listed above for enumerating a primitive set's members are also valid in a data
section, with the exception of the membership filter method. An example of defining derived set
members in a data section follow:

SETS:
PRODUCT;
MACHINE;
WEEK;
ALLOWED (PRODUCT, MACHINE, WEEK);
ENDSETS
DATA:
PRODUCT = P1..P3;
MACHINE = Ml..M3;
WEEK = Wl..wW4;
ALLOWED =
P1 M1 Wl
P2 M1 W3
P3 M1 W2
P3 M3 W4
ENDDATA

Inputting a Derived Set in a Data Section

For some models, it may be useful to create an empty, or null, derived set. This is particularly true if
you wish to create the set dynamically through the use of the @/NSERT function. To do this, add a
statement such as the following to a data section: MYDERIVEDSET = ;. In other words, simply omit

74 CHAPTER 2

the list of set members. For example, suppose in the previous example we wanted the ALLOWED set
to be initialized to being null. We could do this with the following:

SETS:

PRODUCT;

MACHINE;

WEEK;

ALLOWED (PRODUCT, MACHINE, WEEK);
ENDSETS
DATA:

PRODUCT = P1..P3;

MACHINE = M1l..M3;

WEEK Wl..w4;

ALLOWED = ;
ENDDATA

Inputting a Null Derived Set in a Data Section

Summary

In summary, keep in mind that LINGO recognizes two types of sets—primitive and derived.

Primitive sets are the fundamental objects in a model and can't be broken down into smaller
components. Primitive sets can be defined using either an explicit or implicit list. When using an
explicit list, you enter each member individually in the set member list. With an implicit list, you enter
the initial and terminal set members and LINGO generates all the intermediate members.

Derived sets, on the other hand, are created from other component sets. These component sets are
referred to as the parents of the derived set, and may be either primitive or derived. A derived set can
be either sparse or dense. Dense sets contain all combinations of the parent set members (sometimes
this is also referred to as the Cartesian product or cross of the parent sets). Sparse sets contain only a
subset of the cross of the parent sets, and may be defined by two methods——explicit listing or
membership filter. The explicit listing method involves listing the members of the sparse set. The
membership filter method allows you to specify the sparse set members compactly through the use of a
logical condition that all members must satisfy. The relationships amongst the various set types are
illustrated in the graph below.Derived sets, on the other hand, are created from other component sets.
These component sets are referred to as the parents of the derived set, and may be either primitive or
derived. A derived set can be either sparse or dense. Dense sets contain all combinations of the parent
set members (sometimes this is also referred to as the Cartesian product or cross of the parent sets).
Sparse sets contain only a subset of the cross of the parent sets and may be defined by two
methods—explicit listing or membership filter. The explicit listing method involves listing the
members of the sparse set. The membership filter method allows you to specify the sparse set members
compactly through the use of a logical condition all members must satisfy. The relationships amongst
the various set types are illustrated in the graph below:

USING SETS 75

Membership Filter

LINGO Set Types

At this point, you are probably thinking that set definition is, at best, somewhat complicated. We will
be presenting you with plenty more examples in subsequent sections that should help to illustrate the
concepts introduced in this section, and demonstrate that set definition is nowhere near as difficult as it
may seem. For now, however, we will turn our attention to how data is input into a model. Then, we
will examine a group of functions that are designed to operate on set members. Once we have
accomplished this, we will be able to bring together all we have learned in order to begin building
some interesting and relevant examples of set-based modeling.

The DATA Section

Typically, you will want to initialize the members of certain sets and assign values to certain set
attributes. For this purpose, LINGO uses a second optional section called the data section. The data
section allows you to isolate data from the equations of your model. This is a useful practice in that it
leads to easier model maintenance and facilitates scaling up a model to larger dimensions.

Similar to the sets section, the data section begins with the keyword DATA: (including the colon) and
ends with the keyword ENDDATA. In the data section, you can have statements to initialize the sets
and/or attributes you defined in a sets section. These expressions have the syntax:

object_list = value_list;

The object list contains the names of a set and/or attributes you want to initialize, optionally separated
by commas. If there is more than one attribute name on in the object list, then all attributes must be
defined on the same set. Furthermore, if a set name appears in the object list, then it must be the parent
set of any attributes also in the object list. The value list contains the values to assign to the objects in
the object list, optionally separated by commas. For example, consider the following model:

MODEL:
SETS:

76 CHAPTER 2

SET1: X, Y;
ENDSETS
DATA:

SET1 = A B C;

X =1
Y = 4
ENDDATA
END

2 3;
56

’

We have two attributes, X and Y, defined on the set SET. The three values of X are set to 1, 2, and 3,
while Yis set to 4, 5, and 6. We could have also used the following compound data statement to the
same end:

MODEL:
SETS:

SET1: X, Y;
ENDSETS
DATA:

SET1 X Y =A1
B 2
Cc 3

oY U1 W

ENDDATA
END

An important fact to remember is that when LINGO reads a compound data statement's value list, it
assigns the first # values in the list to the first position of each of the n objects in the object list, the
second # values to the second position of each of the n objects, and so on. In other words, LINGO is
expecting the input data in column format rather than row format, which mirrors the flat file approach
used in relational databases.

This section has served to give you a brief introduction into the use of the data section. In Data and
Init Sections, you will learn more about the capabilities of the data section. You will learn data does
not have to actually reside in the data section as shown in examples here. In fact, your data section can
have OLE links to Excel, ODBC links to databases, and connections to text based data files.

Set Looping Functions

We have mentioned the power of set-based modeling comes from the ability to apply an operation to
all members of a set using a single statement. The functions in LINGO that allow you to do this are
called set looping functions. If your models don’t make use of one or more set looping function, then
you are missing out on the power of set-based modeling and, even worse, you’re probably working too
hard!

USING SETS 77

Set looping functions allow you to iterate through all the members of a set to perform some operation.
There are currently four set looping functions in LINGO. The names of the functions and their uses

are:
Function \ Use

@FOR The most powerful of the set looping
functions, @FOR is primarily used to
generate constraints over members of a set.
@FOR may also be used in calc sections to
assign values to attributes across the
members of a set.

@SUM Probably the most frequently used set
looping function, @SUM computes the sum
of an expression over all members of a set.

@MIN Computes the minimum of an expression
over all members of a set.
@MAX Computes the maximum of an expression

over all members of a set.
@PROD Computes the product of an expression over
all members of a set.

The syntax for a set looping function is:
@function(setname [(set_index_list) [|conditional qualifier]] : expression_list),

where @function corresponds to one of the four set looping functions listed in the table above. setname
is the name of the set you want to loop over.

set_index_list is optional. It is used to create a list of indices. Each index corresponds to one of the
parent, primitive sets that form the set specified by setname. As LINGO loops through the members of
the set setname, it will set the values of the indices in the set_index_list to correspond to the current
member of the set setname.

The conditional _qualifier is optional, and may be used to limit the scope of the set looping function.
When LINGO is looping over each member of setname, it evaluates the conditional qualifier. If the
conditional_qualifier evaluates to true, then the @function is performed for the set member.
Otherwise, it is skipped.

The expression_list is a list of expressions that are to be applied to each member of the set setname.
When using the @FOR function, the expression list may contain multiple expressions, separated by
semicolons. These expressions will be added as constraints to the model. When using the remaining set
looping functions (@SUM, @MAX, @MIN and @PROD), the expression list must contain one
expression only. If the set index list is omitted, all attributes referenced in the expression_list must be
defined on the set setname.

The following examples should help to illustrate the use of set looping functions.

78 CHAPTER 2

@SUM Set Looping Function

In this example, we will construct several summation expressions using the @SUM function in order
to illustrate the features of set looping functions in general, and the @SUM function in particular.

Consider the model:

MODEL:
SETS:
VENDORS: DEMAND;
ENDSETS
DATA:
VENDORS, DEMAND = V1,5 V2,1 V3,3 V4,4 V5,6;
ENDDATA
END

Each vendor of the VENDORS set has a corresponding DEMAND. We could sum up the values of the
DEMAND attribute by adding the following expression after the ENDDATA statement:

TOTAL DEMAND = @SUM(VENDORS (J) : DEMAND(J)) ;

LINGO evaluates the @SUM function by first initializing an internal accumulator to zero. LINGO then
begins looping over the members in the VENDORS set. The set index variable, J, is set to the first
member of VENDORS (i.e., V1) and DEMAND (V1) is then added to the accumulator. This process
continues until all DEMAND values have been added to the accumulator. The value of the sum is then
stored in the TOTAL DEMAND variable.

Since all the attributes in our expression list (in this case, only DEMAND appears in the expression
list) are defined on the index set (VENDORS), we could have alternatively written our sum as:

TOTAL DEMAND = @SUM(VENDORS: DEMAND) ;

In this case, we have dropped the superfluous index set list and the index on DEMAND. When an
expression uses this shorthand, we say the index list is implied. Implied index lists are not allowed
when attributes in the expression list have different parent sets.

Next, suppose we want to sum the first three elements of the attribute DEMAND. We can use a
conditional qualifier on the set index to accomplish this as follows:

DEMAND 3 = @SUM(VENDORS (J) |J #LE# 3: DEMAND(J)) ;

The #LE# symbol is called a logical operator (see p. 439 for more details). This operator compares the
operand on the left (J) with the one on the right (3), and returns t7ue if the left operand is
less-than-or-equal-to the one on the right. Otherwise, it returns false. Therefore, when LINGO
computes the sum this time, it plugs the set index variable, J, into the conditional qualifier J #LE# 3. If
the conditional qualifier evaluates to true, DEMAND(J) will be added to the sum. The end result is
LINGO sums up the first three terms in DEMAND, omitting the fourth and fifth terms, for a total sum
of 9.

USING SETS 79

Note:

Before leaving this example, one subtle aspect to note in this last sum expression is the value
that the set index J is returning. Note, we are comparing the set index variable to the quantity
3 in the conditional qualifier J #LE# 3. In order for this to be meaningful, J must represent a
numeric value. Because a set index is used to loop over set members, one might imagine a set
index is merely a placeholder for the current set member. In a sense, this is true, but what set
indices really return is the index of the current set member in its parent primitive set. The
index returned is one-based. In other words, the value 1 is returned when indexing the first set
member, 2 when indexing the second, and so on. Given that set indices return a numeric
value, they may be used in arithmetic expressions along with other variables in your model.

@MIN and @MAX Set Looping Functions

The @MIN and @MAX functions are used to find the minimum and maximum of an expression over
members of a set.

Again, consider the model:

MODEL:
SETS:
VENDORS: DEMAND;
ENDSETS
DATA:
VENDORS, DEMAND = V1,5 V2,1 V3,3 V4,4 V5,6;
ENDDATA
END

To find the minimum and maximum DEMAND, all one need do is add the two expressions:

MIN DEMAND = @MIN(VENDORS (J): DEMAND(J));
MAX DEMAND = @MAX(VENDORS (J): DEMAND(J));

The resulting model with the new statements in bold would then be as follows:

MODEL:
SETS:
VENDORS: DEMAND;
ENDSETS
DATA:
VENDORS, DEMAND = V1,5 V2,1 V3,3 V4,4 V5,6;
ENDDATA
MIN_ DEMAND
MAX DEMAND
END

@MIN(VENDORS(J): DEMAND(J)) ;
@MAX (VENDORS(J): DEMAND(J));

As with the @SUM example, we can use an implied index list since the attributes are defined on the
index set. Using implied indexing, we can recast our expressions as:

MIN DEMAND = @MIN(VENDORS: DEMAND) ;
MAX DEMAND = @MAX(VENDORS: DEMAND) ;

80 CHAPTER 2

In either case, when we solve this model, LINGO returns the expected minimum and maximum
DEMAND of:

Variable Value
MIN DEMAND 1.000000
MAX DEMAND 6.000000

For illustration purposes, suppose we had just wanted to compute the minimum and maximum values
of the first three elements of DEMAND. As with the @SUM example, all we need do is add the
conditional qualifier J #LE# 3. We then have:

MIN DEMAND3 =

@MIN(VENDORS(J) | J #LE# 3: DEMAND(J));
MAX DEMAND3 =
@MAX (VENDORS(J) | J #LE# 3: DEMAND(J));

with solution:

Variable Value
MIN_DEMAND3 1.000000
MAX_DEMAND3 5.000000

@FOR Set Looping Function

The @FOR function is used to generate constraints across members of a set. Whereas scalar based
modeling languages require you to explicitly enter each constraint, the @FOR function allows you to
enter a constraint just once, and LINGO does the work of generating an occurrence of the constraint
for each set member. Thus, the @FOR statement provides the set-based modeler with a very powerful
tool.

To illustrate the use of @FOR, consider the following set definition:

SETS:
TRUCKS / MAC, PETERBILT, FORD, DODGE/: HAUL;
ENDSETS

Specifically, we have a primitive set of four trucks with a single HAUL attribute. If HAUL is used to
denote the amount a truck hauls, then we can use the @FOR function to limit the amount hauled by
each truck to 2,500 pounds with the following expression:

@FOR (TRUCKS (T) : HAUL(T) <= 2500);

In this case, it might be instructive to view the constraints LINGO generates from our expression. You
can do this by using the Solver|Generate|Display model command under Windows, or by using the
GENERATE command on other platforms. Running this command, we find LINGO generates the
following four constraints:

HAUL (MAC) <= 2500

HAUL (PETERBILT) <= 2500
HAUL (FORD) <= 2500

HAUL (DODGE) <= 2500

In other words, as we anticipated, LINGO generated one constraint for each truck in the set limiting it
to a load of 2,500 pounds.

USING SETS 81

Here is a model that uses an @FOR statement (listed in bold) to compute the reciprocal of any five
numbers placed into the VALUE attribute:

MODEL:
SETS:

NUMBERS /1..5/: VALUE, RECIPROCAL;
ENDSETS
DATA:

VALUE = 3 4 2 7 10;
ENDDATA

@FOR(NUMBERS(I):

RECIPROCAL(I) = 1 / VALUE(I)

)

END

Solving this model gives the following values for the reciprocals:

Variable Value
RECIPROCAL (1) 0.3333333
RECIPROCAL (2) 0.2500000
RECIPROCAL (3) 0.5000000
RECIPROCAL (4) 0.1428571
RECIPROCAL (5) 0.1000000

Since the reciprocal of zero is not defined, we could put a conditional qualifier on our @FOR
statement that causes us to skip the reciprocal computation whenever a zero is encountered. The
following @FOR statement accomplishes this:

@FOR (NUMBERS (I) | VALUE (I) #NE# O:
RECIPROCAL(I) = 1 / VALUE(I)
)

The conditional qualifier (listed in bold) tests to determine if the value is not equal (#¥NE#) to zero. If
so, the computation proceeds.

This was just a brief introduction to the use of the @FOR statement. There will be many additional
examples in the sections to follow.

@PROD Set Looping Function

The @PROD function is used to find the product of an expression across members of a set. As an
example, consider the model:

MODEL:
SETS:
COMPONENTS: P;
ENDSETS
DATA:
P = .95 .99 .98;
ENDDATA
P FAIL = 1 - QPROD(COMPONENTS(I): P(I));
END

82 CHAPTER 2

Here we have a system of three components arranged in a series. The probability that each component
functions successfully (.95, .99, and .98) is loaded into attribute P in the model’s data section. We
then compute the probability that the entire system will fail, P_FAIL, by taking the product of the
component probabilities and subtracting it from 1:

P FAIL = 1 - QPROD(COMPONENTS(I): P(I));

As an aside, an interesting feature to note about this model is that we never initialized the
COMPONENTS set. When LINGO sees that an attribute of an undefined primitive set being
initialized to n values in a data section, it automatically initializes the parent primitive set to contain
the members: 1, 2, ..., n. So, in this example, LINGO automatically assigned the member 1, 2 and 3 to
the COMPONENTS set.

Nested Set Looping Functions

The simple models shown in the last section use @FOR to loop over a single set. In larger models,
you’ll encounter the need to loop over a set within another set looping function. When one set looping
function is used within the scope of another, we call it nesting.

An example of a nested set looping function can be found in the Wireless Widgets shipping model
(p.47). If you remember, WW’s vendors had a demand for widgets that had to be met. The LINGO
statement that enforces this condition is:

! The demand constraints;
QFOR (VENDORS (J) :
@SUM (WAREHOUSES (I): VOLUME (I, J)) =
DEMAND (J)) ;

Specifically, for each vendor, we sum up the shipments going from all the warehouses to that vendor
and set the quantity equal to the vendor’s demand. In this case, we have nested an @SUM function
within an @FOR function.

@SUM, @MAX, and @MIN can be nested within any set looping function. @FOR functions, on the
other hand, may only be nested within other @FOR functions.

Summary

This section demonstrated that set looping functions can be very powerful and can simplify the
modeler's task. If you aren't making use of sets and set looping functions, you will have a considerably
more difficult time building your models. Furthermore, the difficulty will grow dramatically as the
sizes of your models grow.

We now know how to create sets, how to initialize sets and attributes using the data section, and how
to work with sets using set looping functions. At this point, we now have the ability to start
constructing some meaningful example models.

USING SETS 83

Set-Based Modeling Examples

Recall from the earlier discussion in this chapter, there are four types of sets that can be created in
LINGO. These set types are:

1. primitive,

2. dense derived,

3. sparse derived - explicit list, and
4. sparse derived - membership filter.

If you would like to review the four set types, refer to the sections What are Sets? and The Sets Section
of a Model at the beginning of this chapter. The remainder of this section will help develop your
talents for set-based modeling by building and discussing four models, each introducing one of the set
types listed above.

Primitive Set Example

The following staff scheduling model illustrates the use of a primitive set. In a staff scheduling model,
there is demand for staffing over a time horizon. The goal is to come up with a work schedule that
meets staffing demands at minimal cost.

The model used in this example may be found in the SAMPLES subdirectory off the main LINGO
directory under the name STAFFDEM.

The Staff Scheduling Problem

Suppose you run the popular Pluto Dogs hot dog stand that is open seven days a week. You hire
employees to work a five-day workweek with two consecutive days off. Each employee receives the
same weekly salary. Some days of the week are busier than others and, based on past experience, you
know how many workers are required on a given day of the week. In particular, your forecast calls for
these staffing requirements:

Day Mon Tue Wed Thu Fri Sat Sun
Staff Req'd | 20 16 13 16 | 19 [14] 12

You need to determine how many employees to start on each day of the week in order to minimize the
total number of employees, while still meeting or exceeding staffing requirements each day of the
week.

The Formulation
The first question to consider when building a set-based model is, "What are the relevant sets and their
attributes?". In this model, we have a single primitive set, the days of the week. If we call this set
DAYS, we can begin by writing our sets section as:

SETS:

DAYS;
ENDSETS

84 CHAPTER 2

Next, we can add a data section to initialize the set members of the DAYS set:

SETS:
DAYS;
ENDSETS
DATA:
DAYS = MON TUE WED THU FRI SAT SUN;
ENDDATA

Alternatively, we could use LINGO’s implicit set definition capability and express this equivalently as:

SETS:
DAYS;
ENDSETS
DATA:
DAYS = MON. .SUN;
ENDDATA

We will be concerned with two attributes of the DAYS set. The first is the number of staff required on
each day, and the second is the number of staff to start on each day. If we call these attributes
REQUIRED and START, then we may add them to the sets section to get:

SETS:
DAYS: REQUIRED, START;
ENDSETS

After defining the sets and attributes, it is useful to determine which of the attributes are data, and
which are decision variables. In this model, the REQUIRED attribute is given to us and is, therefore,
data. The START attribute is something we need to determine and constitutes the decision variables.
Once you've identified the data in the model, you may go ahead and initialize it. We can do this by
extending the data section as follows:

DATA:
DAYS = MON TUE WED THU FRI SAT SUN;
REQUIRED = 20 16 13 16 19 14 12;
ENDDATA

We are now at the point where we can begin entering the model's mathematical relations (i.e., the
objective and constraints). Let's begin by writing out the mathematical notation for the objective. Our
objective is to minimize the total number of employees we start during the week. Using standard
mathematical notation, this objective may be expressed as:

Minimize: 2; START;
The equivalent LINGO statement is very similar. Substitute "MIN=" for "Minimize:" and "@SUM(
DAYS(I):" for 2; and we have:

MIN = @SUM(DAYS(I): START(I));

Now, all that is left is to come up with our constraints. There is only one set of constraints in this
model. Namely, we must have enough staff on duty each day to meet or exceed staffing requirements.
In words, what we want is:

Staff on duty today 2 Staff required today, for each day of the week

USING SETS 85

The right-hand side of this expression, Staff required today, is easy to calculate. It is simply the
quantity REQUIRED(I). The left-hand side, Staff on duty today, is a bit trickier to compute. Given that
all employees are on a "five day on, two day off" schedule, the number of employees working today is:

Number working today = Number starting today +
Number starting 1 day ago + Number starting 2 days ago +
Number starting 3 days ago + Number starting 4 days ago.

In other words, to compute the number of employees working today, we sum up the number of people
starting today plus those starting over the previous four days. The number of employees starting five
and six days back don't count because they are on their days off. So, using mathematical notation, what
one might consider doing is adding the constraint:

3; = .4, j START; >REQUIRED ; , for j € DAYS

Translating into LINGO notation, we can write this as:

@FOR(DAYS(J):
@SUM(DAYS(I) | I #LE# 5: START(J - I + 1))
>= REQUIRED(J)
);

In words, the LINGO statement says, for each day of the week, the sum of the employees starting over
the five day period beginning four days ago and ending today must be greater-than-or-equal-to the
required number of staff for the day. This sounds correct, but there is a slight problem. If we try to
solve our model with this constraint we get the error message:

Eror Code:
= 20 Copy Explain 0K

Emor Text

Subscript out of range on attribute:

START(-3)

The error occurred on or near the following line
14] @SUM({ DAYS(I) | I #LE# 5: START(J = I + 1))

To see why we get this error message, consider what happens on Thursday. Thursday has an index of 4
in our set DAYS. As written, the staffing constraint for Thursday will be:

START(4 - 1 + 1) + START(4 - 2 + 1) +
START(4 - 3 + 1) + START(4 - 4 + 1) +
START(4 - 5 + 1) >= REQUIRED(4);

Simplifying, we get:
START (4) + START(3) +

86 CHAPTER 2

START(2) + START(1) +
START (0) >= REQUIRED(4);

The START(0) term is the root of our problem. START is defined for days 1 through 7. START(0) does
not exist. An index of 0 on START is considered "out of range.”

We would like to have any indices less-than-or-equal-to 0 wrap around to the end of the week.
Specifically, 0 would correspond to Sunday (7), -1 to Saturday (6), and so on. LINGO has a function
that does just this: @WRAP.

The @WRAP function takes two arguments—call them /INDEX and LIMIT.

Formally, J = @WRAP(INDEX, LIMIT) returns J such that J = INDEX - K * LIMIT, where K is
an integer such that 1 <=J < LIMIT+1. Informally, @ WRAP will subtract or add LIMIT to
INDEX until it falls in the range 1 to LIMIT + 0.99999. Therefore, this is just what we need to
"wrap around" an index in multiperiod planning models.

Incorporating the @WRAP function, we get the corrected, final version of our staffing constraint:

@FOR(DAYS(J):
@SUM(DAYS(I) | I #LE# 5:
START(@WRAP(J - I + 1, 7)))
>= REQUIRED(J)
)

The Solution

Below is our staffing model in its entirety:

MODEL:
SETS:

DAYS: REQUIRED, START;
ENDSETS

DATA:
DAYS = MON TUE WED THU FRI SAT SUN;
REQUIRED = 20 16 13 16 19 14 12;
ENDDATA

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):
@SUM(DAYS(I) | I #LE# 5:
START(@WRAP(J - I + 1, 7)))
>= REQUIRED(J)
)
END

Model: STAFFDEM

USING SETS 87

Solving the model, we get the solution report:

Global optimal solution found.

Objective wvalue: 22.00000
Infeasibilities: 0.000000
Total solver iterations: 5
Variable Value Reduced Cost
REQUIRED (MON) 20.00000 0.000000
REQUIRED (TUE) 16.00000 0.000000
REQUIRED (WED) 13.00000 0.000000
REQUIRED (THU) 16.00000 0.000000
REQUIRED (FRI) 19.00000 0.000000
REQUIRED (SAT) 14.00000 0.000000
REQUIRED (SUN) 12.00000 0.000000
START (MON) 8.000000 0.000000
START (TUE) 2.000000 0.000000
START (WED) 0.000000 0.000000
START (THU) 6.000000 0.000000
START (FRI) 3.000000 0.000000
START (SAT) 3.000000 0.000000
START (SUN) 0.000000 0.3333333
Row Slack or Surplus Dual Price
1 22.00000 -1.000000
2 0.000000 -0.3333333
3 0.000000 0.000000
4 0.000000 -0.3333333
5 0.000000 0.000000
6 0.000000 -0.3333333
7 0.000000 -0.3333333
8 0.000000 0.000000

Solution to STAFFDEM
The objective value of 22 means we need to hire 22 workers.

We start our workers according to the schedule:

3 Mon Tue Wed Thu Fri Sat Sun
Start 8 2 0 6 3 3 0

If we look at the surpluses on our staffing requirement rows (rows 2 - 7), we see that the slack values
are 0 on all of the days. This means there are no more workers than required and we just meet staffing
requirements on every day. Even though this is a small model, trying to come up with a solution this
efficient "by hand" would be a difficult task.

88 CHAPTER 2

Dense Derived Set Example - Blending

This following model illustrates, among other things, the use of a dense derived set in a blending
model. In a blending model, one is blending raw materials into a finished product that must meet
minimal quality requirements on one or more dimensions. The goal is to come up with a blend of the
raw materials to satisfy the quality requirements at minimal cost.

This model may be found in the SAMPLES subdirectory off the main LINGO directory under the name
CHESS.

The Problem

The Chess Snackfoods Co. markets four brands of mixed nuts. The four brands of nuts are called
Pawn, Knight, Bishop, and King. Each brand contains a specified ratio of peanuts and cashews. The
table below lists the number of ounces of the two nuts contained in each pound of each brand and the
price the company receives per pound of each brand.

Pawn Knight | Bisho King
10

Peanuts (0z.) 15 6 2
Cashews (0z.) 1 6 10 14
Selling Price ($) 2 3 4 5

Chess has contracts with suppliers to receive 750 pounds of peanuts/day and 250 pounds of
cashews/day. Our problem is to determine the number of pounds of each brand to produce each day to
maximize total revenue without exceeding the available supply of nuts.

The Formulation
The primitive sets in this model are the nut types and the brands of mixed nuts. We can declare them in
the sets section as follows:

SETS:

NUTS: SUPPLY;

BRANDS: PRICE, PRODUCE;
ENDSETS

The NUTS set has the single attribute SUPPLY, which we will use to store the daily supply of nuts in
pounds. The BRANDS set has PRICE and PRODUCE attributes, where PRICE stores the selling price
of the brands, and PRODUCE represents the decision variables of how many pounds of each brand to
produce each day.

We need one more set, however, which is the dense derived set we have been promising. In order to
input the brand formulas, we will need a two dimensional table defined on the nut types and the
brands. To do this, we will generate a derived set named NCROSSB from the cross of the NUTS and
BRANDS sets. Adding this derived set, we get the completed sets section:

USING SETS 89

SETS:

NUTS: SUPPLY;

BRANDS: PRICE, PRODUCE;

NCROSSB (NUTS, BRANDS): FORMULA;
ENDSETS

We have titled the derived set NCROSSB. It has the single attribute FORMULA, which will be used to
store the ounces of nuts used per pound of each brand. Since we have not specified the members of this
derived set, LINGO assumes we want the complete, dense set that includes all pairs of nuts and brands,
for a total of eight (nut,brand) pairs.

Now that our sets are declared, we can move on to building the data section. We initialize our three
sets, NUTS, BRANDS and NCROSSB, as well as the two data attributes SUPPLY and PRICE as
follows:

DATA:
NUTS, SUPPLY =
PEANUTS 750
CASHEWS 250;

BRANDS, PR
PAWN 2
KNIGHT 3
BISHOP 4
KING 5

FORMULA = 15 10 6 2
1 6 10 14;
ENDDATA

With the sets and data established, we can begin to enter our objective function and constraints. The
objective function of maximizing total revenue is straightforward. We can express this as:

MAX = @SUM(BRANDS(I): PRICE(I) * PRODUCE(I));

Our model has only one class of constraints: We can't use more nuts than we are supplied with on a
daily basis. In words, we would like to ensure:

For each nut i, the number of pounds of nut i used must be
less-than-or-equal-to the supply of nut i.

We can express this in LINGO as:

@FOR(NUTS(I):

@SUM(BRANDS (J) :

FORMULA(I, J) * PRODUCE(J) / 16) <= SUPPLY(I)
)

We divide the sum on the left-hand side by 16 to convert from ounces to pounds.

90 CHAPTER 2

The Solution
Our completed blending model is:
MODEL:
SETS:
NUTS: SUPPLY;
BRANDS: PRICE, PRODUCE;
NCROSSB(NUTS, BRANDS): FORMULA;
ENDSETS
DATA:
NUTS, SUPPLY =
PEANUTS 750
CASHEWS 250;
BRANDS, PRICE =
PAWN 2
KNIGHT 3
BISHOP 4
KING 5;
FORMULA = 15 10 6 2
1 o6 10 14;
ENDDATA
MAX = @SUM(BRANDS(I): PRICE(I) * PRODUCE(I));

@FOR(NUTS(I):

@SUM(BRANDS (J) :

FORMULA(I, J) * PRODUCE(J) / 16) <= SUPPLY(I)
)
END

Model: CHESS

An abbreviated solution report for the model follows:

Global optimal solution found.

Objective value: 2692.308
Infeasibilities: 0.000000
Total solver iterations: 2
Variable Value Reduced Cost
PRODUCE (PAWN) 769.2308 0.0000000
PRODUCE (KNIGHT) 0.000000 0.15384061
PRODUCE (BISHOP) 0.000000 0.7692297E-01
PRODUCE (KING) 230.7692 0.0000000
Row Slack or Surplus Dual Price
1 2692.308 1.000000
2 0.000000 1.769231
3 0.000000 5.461538

Solution to CHESS

USING SETS 91

Sparse Derived Set Example - Explicit List

In this example, we will introduce the use of a sparse derived set with an explicit listing. As you recall,
when we use this technique to define a sparse set, we must explicitly list all members belonging to the
set. This will usually be some small subset of the dense set resulting from the full Cartesian product of
the parent sets.

For our example, we will set up a PERT (Project Evaluation and Review Technique) model to
determine the critical path of tasks in a project involving the roll out of a new product. PERT is a
simple, but powerful, technique developed in the 1950s to assist managers in tracking the progress of
large projects. PERT is particularly useful in identifying the critical activities within a project, which,
if delayed, will delay the project as a whole. These time critical activities are referred to as the critical
path of a project. Having such insight into the dynamics of a project goes a long way in guaranteeing it
won't get sidetracked and become delayed. In fact, PERT proved so successful, the Polaris project that
it was first used on was completed 18 months ahead of schedule. PERT continues to be used
successfully on a wide range of projects. For more information on PERT, and a related technique
called CPM (Critical Path Method), please refer to Schrage (2005) or Winston (1995).

The formulation for this model is included in the SAMPLES subdirectory off the main LINGO
directory under the name PERT.

A Project Scheduling Problem

Wireless Widgets is about to launch a new product: The Solar Widget. In order to guarantee the launch
will occur on time, WW wants to perform a PERT analysis of the tasks leading up to the launch. Doing
so will allow them to identify the critical path of tasks that must be completed on time in order to
guarantee the Solar Widget's timely introduction. The tasks that must be accomplished before
introduction and their anticipated times for completion are listed in the table below:

Task Weeks

Finalize Design 10
Forecast Demand 14
Survey Competition 3
Set Prices 3
Schedule Production Run 7
Cost OQut 4
Train Salesmen 10

92 CHAPTER 2

Certain of the tasks must be completed before others can commence. These precedence relations are

shown in the following graph:
Forecast Schedule
Demand Production Ru

Finalize
Design

Train
Salesman

Survey
Competition

Product Launch Precedence Relations

For instance, the two arrows originating from the Forecast Demand node indicate the task must be
completed before the Schedule Production Run and the Set Prices tasks may be started.

Our goal is to construct a PERT model for the Solar Widget's introduction in order to identify the tasks
on the critical path.

The Formulation
We will need a primitive set to represent the tasks of the project. We can add such a set to the model
using the set definition:

SETS:
TASKS: TIME, ES, LS, SLACK;
ENDSETS

We have associated four attributes with the 7ASKS set. The definitions of the attributes are:

TIME Time to complete the task
ES Earliest possible start time for the task
LS Latest possible start time for the task

SLACK Difference between LS and ES for the task

The TIME attribute is given to us as data. We will compute the values of the remaining three attributes.
If a task has a 0 slack time, it means the task must start on time or the whole project will be delayed.
The collection of tasks with 0 slack time constitute the critical path for the project.

In order to compute the start times for the tasks, we will need the precedence relations. The precedence
relations can be viewed as a list of ordered pairs of tasks. For instance, the fact that the DESIGN task
must be completed before the FORECAST task could be represented as the ordered pair (DESIGN,
FORECAST). Creating a two-dimensional derived set on the TASKS set will allow us to input the list
of precedence relations. Specifically, we add the derived set definition PRED:

SETS:
TASKS: TIME, ES, LS, SLACK;
PRED (TASKS, TASKS);
ENDSETS

USING SETS 93

Next, we can input the TASKS set and task times in the data section by including:

DATA:

TASKS, TIME
DESIGN
FORECAST
SURVEY
DUMMY
PRICE
SCHEDULE
COSTOUT
TRAIN

=

O JWOo wd ol

=

’

ENDDATA

The set PRED is the sparse derived set with an explicit listing that we want to highlight in this
example. The set is a subset derived from the cross of the TASKS set upon itself. The set is sparse
because it contains only 8 out of a possible 49 members found in the complete cross of TASKS on
TASKS. The set is said to be an "explicit list" set, because we will explicitly list the members we want
included in the set. Explicitly listing the members of a sparse set may not be convenient in cases where
there are thousands of members to select from, but it does make sense whenever set membership
conditions are not well defined and the sparse set size is small relative to the dense alternative. Adding
the initialization of PRED to the data set give us:

DATA:

TASKS, TIME
DESIGN
FORECAST
SURVEY
DUMMY
PRICE
SCHEDULE
COSTOUT
TRAIN

_ o

OB JWOo W ol

=

PRED =
DESIGN, FORECAST,
DESIGN, SURVEY,
FORECAST, DUMMY
FORECAST, SCHEDULE,
SURVEY, PRICE,
SCHEDULE, COSTOUT,
PRICE, TRAIN,
COSTOUT, TRAIN,
DUMMY, PRICE

ENDDATA

94 CHAPTER 2

Keep in mind that the first member of this set is the ordered pair (DESIGN, FORECAST)—not just the
single task DESIGN. Therefore, this set has a total of 9 members that all correspond to a directed arc in
the precedence relations diagram. We added a dummy task to accommodate the fact that both
FORECAST and SURVEY must precede PRICE. For more information on the use of dummy tasks,
refer to: http://people.brunel.ac.uk/~mastjjb/jeb/or/netaoa.html.

Now, with our sets and data established, we can turn our attention to building the formulas of the
model. We have three attributes to compute: earliest start (ES), latest start (LS), and slack time
(SLACK). The trick is computing ES and LS. Once we have these times, SLACK is merely the
difference of the two.

Lets start by coming up with a formula to compute ES. A task cannot begin until all its predecessor
tasks are completed. Thus, if we find the latest finishing time of all predecessors to a task, then we
have also found its earliest start time. Therefore, in words, the earliest start time for task ¢ is equal to
the maximum over all predecessors of task ¢ of the sum of the earliest start time of the predecessor plus
its completion time. The corresponding LINGO notation is:

QFOR(TASKS(J)| J #GT# 1:
ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I))
)

Note that we skip the computation for the first task by adding the conditional qualifier J #GT# 1. We
do this because the first task has no predecessors. We will give the first task an arbitrary start time as
shown below.

Computing LS is slightly trickier, but very similar to ES. In words, the latest time for task # to start is
the minimum over all successor tasks of the sum of the successor's earliest start minus the time to
perform task z. If task ¢ starts any later than this, it will prohibit at least one successor from starting at
its earliest start time. Converting into LINGO syntax gives:

@FOR(TASKS(I)| I #LT# LTASK:
LS(I) = @MIN(PRED(I, J): ES(J) - TIME(I))
);

Here, we omit the computation for the last task since it has no successor tasks.
Computing slack time is just the difference between LS and ES, and may be written as:
@FOR(TASKS(I): SLACK(I) = LS(I) - ES(I));

We can set the start time of the first task to some arbitrary value. For our purposes, we will set it to 0
with the statement:

We have now input formulas for computing the values of all the variables with the exception of the
latest start time for the last task. It turns out, if the last project were started any later than its earliest
start time, the entire project would be delayed. So, by definition, the latest start time for the last project
is equal to its earliest start time. We can express this in LINGO using the equation:

LS(8) = ES(8);

USING SETS 95

This would work, but it's probably not the best way to express the relation. Suppose you were to add
some tasks to your model. You'd have to change the 8 in this equation to the new number of tasks was.
The whole idea behind LINGO's set-based modeling language is the equations in the model should be
independent of the data. Expressing the equation in this form violates data independence. Here's a
better way to do it:

LTASK = Q@SIZE(TASKS);
LS (LTASK) = ES(LTASK);

The @SIZE function returns the size of a set. In this case, it will return the value 8, as desired.
However, if we changed the number of tasks, @SIZFE would also return the new, correct value. Thus,
we preserve the data independence of our model's equations.

96 CHAPTER 2

The Solution

The entire PERT formulation and portions of its solution appear below.

MODEL:
SETS:

TASKS: TIME, ES, LS, SLACK;

PRED (TASKS, TASKS);
ENDSETS

DATA:

TASKS, TIME
DESIGN
FORECAST
SURVEY
DUMMY
PRICE
SCHEDULE
COSTOUT
TRAIN

=

OB JWOo W ol

=

PRED =
DESIGN, FORECAST,
DESIGN, SURVEY,
FORECAST, DUMMY
FORECAST, SCHEDULE,
SURVEY, PRICE,
SCHEDULE, COSTOUT,
PRICE, TRAIN,
COSTOUT, TRAIN,
DUMMY, PRICE

ENDDATA
@FOR(TASKS(J)| J #GT# 1:

ES(J) = @MAX(PRED(I, J):
);

@FOR(TASKS(I)| I #LT# LTASK:

LS(I) = @MIN(PRED(I, J):
)

@FOR(TASKS(I): SLACK(I) =

ES(1) = 0;

LTASK = @SIZE(TASKS);
LS(LTASK) = ES(LTASK);
END

+ TIME (I))
- TIME(I));
- ES(I));

Model: PERT

USING SETS 97

Feasible solution found.

Total solver iterations: 0
Variable Value
LTASK 7.000000
ES(DESIGN) 0.0000000
ES (FORECAST) 10.00000
ES (SURVEY) 10.00000
ES(PRICE) 24.00000
ES (SCHEDULE) 24.00000
ES(COSTOUT) 31.00000
ES (TRAIN) 35.00000
LS (DESIGN) 0.0000000
LS (FORECAST) 10.00000
LS (SURVEY) 21.00000
LS (PRICE) 32.00000
LS (SCHEDULE) 24.00000
LS (COSTOUT) 31.00000
LS (TRAIN) 35.00000
SLACK (DESIGN) 0.0000000
SLACK (FORECAST) 0.0000000
SLACK (SURVEY) 11.00000
SLACK (PRICE) 8.000000
SLACK (SCHEDULE) 0.0000000
SLACK (COSTOUT) 0.0000000
SLACK (TRAIN) 0.0000000

Solution to PERT

The interesting values are the slacks for the tasks. Both SURVEY and PRICE have slack in their start times
of 11 weeks and 8 weeks, respectively. Their start times may be delayed by as much as these slack values
without compromising the completion time of the entire project. The tasks DESIGN, FORECAST,
SCHEDULE, COSTOUT, and TRAIN, on the other hand, have 0 slack times. These tasks constitute the
critical path for the project and, if any of their start times are delayed, the entire project will be delayed.
Management will want to pay close attention to these critical path projects to be sure they start on time and
are completed within the allotted amount of time. Finally, the ES(TRAIN) value of 35 tells us the estimated
time to the start of the roll out of the new Solar Widget will be 45 weeks 35 weeks to get to the start of
training, plus 10 weeks to complete training.

A Sparse Derived Set Using a Membership Filter

In this example, we introduce the use of a sparse derived set with a membership filter. Using a
membership filter is the third method for defining a derived set. When you define a set using this
method, you specify a logical condition each member of the set must satisfy. LINGO then filters out
potential set members that don't satisfy the membership condition.

For our example, we will formulate a matching problem. In a matching problem, there are N objects
we want to match into pairs at minimum cost. The pair (7,J) is indistinguishable from the pair (J,/).
Therefore, we arbitrarily require / be less than J in the pair. Formally, we require / and J make a set of
ordered pairs. In other words, we do not wish to generate redundant ordered pairs of 7 and J, but only
those with 7 less than J. This requirement that / be less than J will form our membership filter.

98 CHAPTER 2

The file containing this model may be found in the SAMPLES subdirectory off the main LINGO
directory under the name MATCHD.

A Matching Problem

Suppose you manage your company’s strategic planning department. You have a total of eight analysts
in the department. Furthermore, your department is about to move into a new suite of offices. There
are a total of four offices in the new suite and you need to match up your analysts into 4 pairs, so each
pair can be assigned to one of the new offices. Based on past observations, you know some of the
analysts work better together than they do with others. In the interest of departmental peace, you would
like to come up with a pairing of analysts that results in minimal potential conflicts. To this goal, you
have come up with a rating system for pairing your analysts. The scale runs from 1 to 10, with a 1
rating of a pair meaning the two get along fantastically. Whereas, a rating of 10 means all sharp objects
should be removed from the pair’s office in anticipation of mayhem. The ratings appear in the
following table:

Analysts 1 | 2 3 4 ‘ 5 6 7 ‘ 8
1 -1 9131421]5(]6
2 -l -1 117315121
3 -l -1 -1414]12]19]2
4 -l -1 -1-11]15]5]2
5 -l -1 -1-1-1817/]6¢6
6 -l -1 -1-1-1-1213
7 - - -14

Analysts’ Incompatibility Ratings

Since the pairing of analyst / with analyst J is indistinguishable from the pairing of J with I, we have
only included the above diagonal elements in the table. Our problem is to find the pairings of analysts
that minimizes the sum of the incompatibility ratings of the paired analysts.

The Formulation
The first set of interest in this problem is the set of analysts. This is a primitive set that can be declared
simply as:

SETS:
ANALYSTS;
ENDSETS

The final set we want to construct is a set consisting of all the potential pairings. This will be a derived
set that we will build by taking the cross of the ANALYST set on itself. As a first pass, we could build
the dense derived set:

PAIRS (ANALYSTS, ANALYST);

USING SETS 99

This set, however, would include both PAIRS(I, J) and PAIRS(J, I). Since only one of these pairs is
required, the second is wasteful. Furthermore, this set will include "pairs" of the same analyst of the
form PAIRS(I, I). As much as each of the analysts might like an office of their own, such a solution is
not feasible. The solution is to put a membership filter on our derived set requiring each pair (Z,J) in
the final set to obey the condition J be greater than /. We do this with the set definition:

PAIRS (ANALYSTS, ANALYSTS) | &2 #GT# &1;

The start of the membership filter is denoted with the vertical bar character (|). The &/ and &2
symbols in the filter are known as set index placeholders. Set index placeholders are valid only in
membership filters. When LINGO constructs the PAIRS set, it generates all combinations in the cross
of the ANALYSTS set on itself. Each combination is then "plugged" into the membership filter to see if
it passes the test. Specifically, for each pair (1,J) in the cross of the ANALYST set on itself, [is
substituted into the placeholder &/ and J into &2 and the filter is evaluated. If the filter evaluates to
true, (1,J) is added to the pairs set. Viewed in tabular form, this leaves us with just the diagonal
elements of the (1,J) pairing table.

We will also be concerned with two attributes of the PAIRS set. First, we will need an attribute that
corresponds to the incompatibility rating of the pairings. Second, we will need an attribute to indicate
if analyst [is paired with analyst J. We will call these attributes RATING and MATCH. We append
them to the PAIRS set definition as follows:

PAIRS (ANALYSTS, ANALYSTS) | &2 #GT# &1:
RATING, MATCH;

The completed sets section containing both set declarations is then:

SETS:
ANALYSTS;
PAIRS (ANALYSTS, ANALYSTS) | &2 #GT# &l1:
RATING, MATCH;

ENDSETS

Next, we initialize the ANALYSTS set and the RATING attribute to the incompatibility ratings in the
data section:

DATA:
ANALYSTS = 1..8;
RATING =
9 3 4 2 1 5 o6
1 7 3 5 2 1
4 4 2 9 2
1 5 5 2
8 7 6
2 3
4;
ENDDATA

We will use the convention of letting MATCH(I, J) be 1 if we pair analyst / with analyst J, otherwise
0. Given this, the MATCH attribute contains the decision variables for the model.

100 CHAPTER 2

Our objective is to minimize the sum of the incompatibility ratings of all the final pairings. This is just
the inner product on the RATING and MATCH attributes and is written as:

MIN = @SUM(PAIRS(I, J):
RATING(I, J) * MATCH(I, J));

There is just one class of constraints in the model. In words, it is:
For each analyst, ensure that the analyst is paired with exactly one other analyst.

Putting the constraint into LINGO syntax, we get:

@FOR (ANALYSTS (
@SUM(PAIRS(J,
MATCH(J, K))
);

I):
K

) | J #EQ# I #OR# K #EQ# I:
=1

The feature of interest in this constraint is the conditional qualifier (J #EQ# I #OR# K #EQ# I) on the
@SUM function. For each analyst /, we sum up all the MATCH variables that contain / and set them
equal to 1. In so doing, we guarantee analyst / will be paired up with exactly one other analyst. The
conditional qualifier guarantees we only sum up the MATCH variables that include / in its pairing.

One other feature is required in this model. We are letting MATCH(I, J) be 1 if we are pairing [with J.
Otherwise, it will be 0. Unless specified otherwise, LINGO variables can assume any value from 0 to
infinity. Because we want MATCH to be restricted to being only 0 or 1, we need to apply the @BIN
variable domain function to the MATCH attribute. Variable domain functions are used to restrict the
values a variable can assume. Unlike constraints, variable domain functions do not add equations to a
model. The @BIN function restricts a variable to being binary (i.e., 0 or 1). When you have a model
that contains binary variables, it is said to be an integer programming (IP) model. IP models are much
more difficult to solve than models that contain only continuous variables. Carelessly formulated large
IPs (with several hundred integer variables or more) can literally take forever to solve! Thus, you
should limit the use of binary variables whenever possible. To apply @BIN to all the variables in the
MATCH attribute, add the @FOR expression:

@FOR(PAIRS(I, J): @BIN(MATCH(I, J)));

The Solution

The entire formulation for our matching example and parts of its solution appear below.

USING SETS 101

MODEL:

SETS:
ANALYSTS;
PAIRS (ANALYSTS, ANALYSTS) | &2 #GT# &1:
RATING, MATCH;

ENDSETS

DATA:
ANALYSTS
RATING =

9 3 4
1

Il
-
o]
~.

~J
s wN
o U1 N o
N J 01O N,
S wo DN R oY

ENDDATA

MIN = @SUM(PAIRS(I, J):
RATING(I, J) * MATCH(I, J));

@FOR (ANALYSTS (
@SUM(PAIRS(J,
MATCH(J, K))
);

I):
K

) | J #EQ# I #OR# K #EQ# I:
=1

@FOR(PAIRS(I, J): @BIN(MATCH(I, J))):;

END

Model: MATCHD

102 CHAPTER 2

Global optimal solution found.

Objective wvalue: 6.000000
Extended solver steps: 0
Total solver iterations: 0
Variable Value Reduced Cost
MATCH(1, 2) 0.0000000 9.000000
MATCH(1, 3) 0.0000000 3.000000
MATCH(1, 4) 0.0000000 4.000000
MATCH(1, 5) 0.0000000 2.000000
MATCH(1, 6) 1.000000 1.000000
MATCH(1, 7) 0.0000000 5.000000
MATCH(1, 8) 0.0000000 6.000000
MATCH(2, 3) 0.0000000 1.000000
MATCH(2, 4) 0.0000000 7.000000
MATCH(2, 5) 0.0000000 3.000000
MATCH(2, ©6) 0.0000000 5.000000
MATCH(2, 7) 1.000000 2.000000
MATCH(2, 8) 0.0000000 1.000000
MATCH(3, 4) 0.0000000 4.000000
MATCH(3, 5) 0.0000000 4.000000
MATCH(3, 6) 0.0000000 2.000000
MATCH(3, 7) 0.0000000 9.000000
MATCH(3, 8) 1.000000 2.000000
MATCH(4, 5) 1.000000 1.000000
MATCH(4, 6) 0.0000000 5.000000
MATCH(4, 7) 0.0000000 5.000000
MATCH(4, 8) 0.0000000 2.000000
MATCH(5, 6) 0.0000000 8.000000
MATCH(5, 7) 0.0000000 7.000000
MATCH(5, 8) 0.0000000 6.000000
MATCH(6, 7) 0.0000000 2.000000
MATCH(6, 8) 0.0000000 3.000000
MATCH(7, 8) 0.0000000 4.000000
Solution to MATCHD

From the objective value, we know the total sum of the incompatibility ratings for the optimal pairings
is 6. Scanning the Value column for 1s, we find the optimal pairings: (1,6), (2,7), (3,8), and (4,5).

Summary

In this chapter, we’ve discussed the concept of sets, how to declare sets, and demonstrated the power
and flexibility of set-based modeling. You should now have a foundation of knowledge in the
definition and use of both primitive and derived sets. The next chapter will discuss the use of variable
domain functions, which were briefly introduced in this chapter when we used @BIN in the previous
matching model.

3 Using Variable Domain
Functions

Unless specified otherwise, variables in a LINGO model default to being non-negative and continuous.
More specifically, variables can assume any real value from zero to positive infinity. In many cases,
this default domain for a variable may be inappropriate. For instance, you may want a variable to
assume negative values, or you might want a variable restricted to purely integer values. LINGO
provides nine variable domain functions, which allow you to override the default domain of a variable,
and, in the case of @POSD, the domain of a matrix of variables. The names of these functions and a
brief description of their usage are:

@GIN restricts a variable to being an integer value

@BIN makes a variable binary (i.e., 0 or 1)

@FREE allows a variable to assume any real value, positive or negative

@BND limits a variable to fall within a finite range

@SOS defines a set of binary variables and places restrictions on their collective values
@CARD defines a set of binary variables and places an upper limit on their sum

@SEMIC restricts variables to being either zero or greater-than a specified constant
@PRIORITY used to assign branching priorities to variables.

@POSD restricts a square matrix to being symmetric matrix and positive semi-definite

In the remainder of this section, we'll investigate the mechanics of using these functions, and present a
number of examples illustrating their usage.

Integer Variables

LINGO gives the user the ability to define two types of integer variables—general and binary. A
general integer variable is required to be a whole number. A binary integer variable is further required
to be either zero or one. Any model containing one or more integer variables is referred to as an
integer programming (IP) model.

In many modeling projects, you will be faced with Yes/No types of decisions. Some examples would
include Produce/Don’t Produce, Open Plant/Close Plant, Supply Customer / from Plant J/Don’t
Supply Customer 7 from Plant J, and Incur a Fixed Cost/Don’t Incur a Fixed Cost. Binary variables are
the standard method used for modeling these Yes/No decisions.

104 CHAPTER3

General integer variables are useful where rounding of fractional solutions is problematic. For
instance, suppose you have a model that dictates producing 5,121,787.5 blue crayons in your crayon
factory. Whether you round the solution to 5,121,787 or 5,121,788 is inconsequential. On the other
hand, suppose your planning model for NASA determines the optimal number of space stations to
deploy is 1.5. Because building 0.5 space stations is impossible, you must very carefully consider how
to round the results. When whole numbers are required and rounding can make a significant
difference, general integer variables are appropriate.

LINGO does not simply round or truncate values to come up with an integer answer. Rounding of a
solution will typically lead to either infeasible or suboptimal solutions. To illustrate this point, consider
the small model:

MAX = X;
X + Y = 25.5;
X <=Y;

By examining this model, one can deduce the optimal solution is X=Y=12.75. Now, suppose we want
an optimal solution with X being integer. Simply rounding X to 13 would make the model infeasible,
because there would be no value for Y that would satisfy both the constraints. Clearly, the optimal
solution is X=12 and Y=13.5. Unfortunately, “eyeballing” the optimal solution on larger models with
many integer variables is virtually impossible.

To solve these problems, LINGO performs a complex algorithm called branch-and-bound that
implicitly enumerates all combinations of the integer variables to determine the best feasible answer to
an IP model. Because of the extra computation time required by this algorithm, formulating your
problem to avoid the use of integer variables is advised whenever possible. Even so, although
computation times may grow dramatically when you add integer variables, it often makes sense to ask
LINGO for integer solutions when fractional values are of little or no use.

General Integer Variables

By default, LINGO assumes all variables in a model are continuous. In many applications, fractional
values may be undesirable. You won’t be able to hire two-thirds of a person, or sell half an
automobile. In these instances, you will want to make use of the general integer variable domain
function, @GIN.

The syntax of the @GIN function is:
@GIN(variable_name);

VARIABLE DOMAIN FUNCTIONS 105

where variable _name is the name of the variable you wish to make general integer. The @GIN
function may be used in a model anywhere you would normally enter a constraint. The @GIN function
can be embedded in an @FOR statement to allow you to easily set all, or selected, variables of an
attribute to be general integers. Some examples of @GIN are:

Example 1: @GIN (X) ;
makes the scalar variable X general integer,

Example 2: @GIN (PRODUCE (5)) ;
makes the variable PRODUCE(S) general integer,

Example 3: @FOR (DAYS (I): @GIN(START(I)));
makes all the variables of the START attribute general integer.

General Integer Example - CompuQuick Product Mix

To illustrate the use of @GIN in a full model, we will consider a variation on the CompuQuick
Corporation model in Getting Started with LINGO. CompuQuick has successfully rebalanced the
Standard computer's assembly line. In so doing, they are now able to build an additional 3 Standard
computers on the line each day, for a daily total of 103 computers. As a result, the constraint on the
Standard's assembly line will now be:

STANDARD <= 103;

Incorporating this constraint into the original CompuQuick model, we have:

! Here is the total profit objective function;
MAX = 100 * STANDARD + 150 * TURBO;

! Constraints on the production line capacity;
STANDARD <= 103;
TURBO <= 120;

! Our labor supply is limited;
STANDARD + 2 * TURBO <= 160;

106 CHAPTER 3

Solving this modified model, we get the solution:

Global optimal solution found.

Objective value: 14575.00
Infeasibilities: 0.000000
Total solver iterations: 0
Elapsed runtime seconds: 0.03
Model Class: LP
Total variables: 2
Nonlinear variables: 0
Integer variables: 0
Total constraints: 4
Nonlinear constraints: 0
Total nonzeros: 6
Nonlinear nonzeros: 0
Variable Value Reduced Cost
STANDARD 103.0000 0.000000
TURBO 28.50000 0.000000
Row Slack or Surplus Dual Price
1 14575.00 1.000000
2 0.000000 25.00000
3 91.50000 0.000000
4 0.000000 75.00000

Note that the new optimal number of Turbo computers, 28.5, is no longer an integer quantity.
CompuQuick must produce whole numbers of computers each day. To guarantee this, we add @GIN
statements to make both the STANDARD and TURBO variables general integer. The revised model
follows:

! Here is the total profit objective function;
MAX = 100 * STANDARD + 150 * TURBO;

! Constraints on the production line capacity;
STANDARD <= 103;
TURBO <= 120;

! Our labor supply is limited;
STANDARD + 2 * TURBO <= 160;

! Integer values only;
@GIN(STANDARD); @GIN(TURBO) ;

VARIABLE DOMAIN FUNCTIONS 107

Solving the modified model results in the integer solution we were hoping for:

Global optimal solution found.

Objective value: 14550.00
Objective bound: 14550.00
Infeasibilities: 0.000000
Extended solver steps: 0
Total solver iterations: 0
Elapsed runtime seconds: 0.06
Model Class: PILP
Total variables: 2
Nonlinear variables: 0
Integer variables: 2
Total constraints: 4
Nonlinear constraints: 0
Total nonzeros: 6
Nonlinear nonzeros: 0
Variable Value Reduced Cost
STANDARD 102.0000 -100.0000
TURBO 29.00000 -150.0000
Row Slack or Surplus Dual Price
1 14550.00 1.000000
2 1.000000 0.000000
3 91.00000 0.000000
4 0.000000 0.000000

Note that we now have a two new solution statistics: Extended solver steps and Objective bound.

For models with integer variables, such as this one, the extended solver steps statistic is a tally of the
number of times integer variables had to be forced to an integer value during the branch-and-bound
solution procedure. In general, this value is not of much practical use to the normal user, other than to
give you a notion of how hard LINGO is working at finding an integer solution. If the number of steps
gets quite large, LINGO is having a hard time finding good integer solutions to your model. In this
case, given that the model is quite small, LINGO's preprocessor was able to find the optimal solution
without having to resort to the branch-and-bound solver.

The objective bound statistic gives us a bound on the best possible solution for the model. In other
words, there is no feasible solution to the model with an objective value better than the objective
bound statistic. Here we see that the bound and the objective value are both equal, which is further
evidence that we have a globally optimal solution. On larger models that take a while to run, you may
decide to interrupt LINGO before a global solution is found. In this case, the objective bound and the
objective value will probably not agree. In this case, the bound will let you know how far you are
from the true optimal solution. You may also find it useful to interrupt the solver once the bound and

108 CHAPTER 3

objective value get close to one another, with the idea being that any further potential gains in the best
objective aren't worth the additional solve time.

Also of interest is the Model Class, which has changed from LP (Linear Program) to PILP (Pure
Integer Linear Program).

General Integer Example - Staff-Scheduling

Recalling the staff-scheduling example in Chapter 2, Using Sets, for the Pluto hot dog stand, you will
remember the solution told us how many employees to start on any given day of the week. You may
also remember the optimal solution had us starting whole numbers of employees on every day even
though we weren’t using integer variables. It turns out this was just a happy coincidence. Let’s return
to the staffing model to demonstrate this.

In the original staffing model, we required the following number of people on duty for the seven days
of the week: 20, 16, 13, 16, 19, 14, and 12. Let’s change the second day requirement from 16 to 12 and
the third day’s requirement from 13 to 18. Incorporating this change into the model, we have:

MODEL:
SETS:

DAYS: REQUIRED, START;
ENDSETS

DATA:
DAYS = MON TUE WED THU FRI SAT SUN;
REQUIRED = 20 12 18 16 19 14 12;
ENDDATA

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):
@SUM(DAYS(I) | I #LE# 5:
START(@WRAP(J - I + 1, 7)))
>= REQUIRED(J)
);
END

After making this modest change and re-solving, we no longer have a pure integer solution. In fact, all
the START variables are now fractional as the following, abbreviated solution report shows:

Global optimal solution found.

Objective value: 23.66667

Total solver iterations: 0
Variable Value Reduced Cost
START (MON) 9.666667 0.000000
START (TUE) 2.000000 0.000000
START (WED) 1.666667 0.000000
START (THU) 5.666667 0.000000
START (FRI) 0.000000 0.000000
START (SAT) 4.666667 0.000000
START (SUN) 0.000000 0.333333

VARIABLE DOMAIN FUNCTIONS 109

In this particular model, we can always round the solution up and remain feasible. (In most models, we
won’t tend to be as lucky. Rounding the continuous solution in one direction or the other can lead to an
infeasible solution.) There may be some extra staff on some of the days, but, by rounding up, we will
never have a day without enough staff. Rounding the continuous solution up gives an objective of
10+2+2+6+5=25 employees.

Now, let’s apply integer programming to the revised staffing model. First, we will need to use the
@GIN function to make the START variables general integers. We could do this by adding the
following to our model:

@GIN(START(MON)) ;
@GIN(START(TUE));
@GIN(START(WED));
@GIN(START(THU)) ;
@GIN(START(FRI));
@GIN(START(SAT));
@GIN(START(SUN));

However, an easier approach would be to embed the @GIN function in an @FOR function, so we can
apply @GIN to each member of START using the single statement:

@FOR(DAYS(I): QGIN(START(I))):

This new statement says, for each day of the week, make the variable corresponding to the number of
people to start on that day a general integer variable.

After inserting this @FOR statement at the end of our model and reoptimizing, we get the pure integer
solution:

Global optimal solution found.

Objective value: 24.00000

Extended solver steps: 0

Total solver iterations: 6
Variable Value Reduced Cost
START (MON) 10.00000 1.000000
START (TUE) 2.000000 1.000000
START (WED) 1.000000 1.000000
START (THU) 6.000000 1.000000
START (FRI) 0.000000 1.000000
START (SAT) 5.000000 1.000000
START (SUN) 0.000000 1.000000

Note that the objective of 24 beats the objective of 25 obtained by rounding. Thus, had we gone with
the rounded solution, we would have hired one more employee than required.

Alldiff - All Different General Integer Variables

A common situation in integer programming is to have a set of general integer variables that are all
required to take on different values. Examples would include the sequence of cities visited in a
traveling salesman problem, or the 9 values in a square of a Sudoku puzzle.

110 CHAPTER 3

The syntax of the @ALLDIFF function is:
@ALLDIFF('set name', variable name);

where 'set_name' is the name assigned to this set of general integer variables, and variable _name is the
name of a variable belonging to the set. Note that the @ALLDIFF function can be used inside an
@FOR looping function to place multiple variables into the same set. Some examples of @ALLDIFF
are:

Example 1: @QALLDIFF('SET1', X); QALLDIFF('SET1', Y);
makes the scalar variables X and Y members of the all-different set called 'SET1’,

Example 2: @FOR(CITIES(I): @ALLDIFF('SEQSET', Z(I))):;
assigns all variables of attribute Z to the all-different set 'SEQSET".

By all-different, we mean that the variables in the set will all take on different integer values ranging
from 1 to N, when N is the number of variables in the set.

Note: All-different variables must be general integer variables. However, you do not have to
explicitly declare them as such, because LINGO will automatically mark them as general
integer.

For an interesting application of @ALLDIFF, you can refer to the SUDOKUALLDIFF.LG4 model in
the LINGO Samples folder. This model solves the well-know Sudoku puzzle, where one fills a 9x9
grid with the digits 1,2,...9, so that each digit appears once in:

a) each column,

b) each row,

c) each of the nine 3x3 subsquares,
d) the main diagonal,

e) the reflected diagonal.

Some versions of the puzzle do not require (d) and (e).

VARIABLE DOMAIN FUNCTIONS 111

Looking at the sample model SUDOKUALLDIFF, we find the following constraints that enforce
properties a) through c) above:

! Each entry is in the interval [1, 9];
@for(sxs(i,J):
@bnd (1, y(i,3), 9);

)

! For each row i, the entries must be all different integers;
@for(side(1):
@for (side(7):
@alldiff('row'+side(i), v(i,3));
)
)

! For each col j, the entries must be all different;
@for(side(J):
@Qfor(side (i) :
@alldiff('col'+side(j), v(i,3));
)
)

! For each subblock, the entries must be all different;
@for(sxs(il,jl) | @mod(il,3) #eqg# 1 #and# Qmod(jl,3) #eqg# 1:
@for(sxs(i,3) | il #le# 1 #and# i #le# 1il1+2
#and# J1 #le# j #and# j #le# jl+2:
@alldiff ('blk'+side (il)+side(31), v(i,3));
)

)

Model: SUDUKOALLDIFF

Note that Y(i,j) represents the value stored in row i and column j of the puzzle.

An interesting feature of the calls to the @ALLDIFF function in this model are the references to the set
SIDE, where SIDE is used to represent the 9 rows and 9 columns of the puzzle. Using set names allows
us to construct unique names for the different sets of all-different variables. Generating the scalar
version of this model, we find find the following @ALLDIFF references to enforce the all-different
condition for row 1 of the puzzle:

@ALLDIFF('ROWL', Y 1 1); @ALLDIFF('ROWl', Y 1 2);
@ALLDIFF('ROW1', Y 1 3); @ALLDIFF('ROW1', Y 1 4);
@ALLDIFF('ROWL', Y 1 5); @ALLDIFF('ROWl', Y 1 6);
@ALLDIFF('ROW1', Y 1 7); @ALLDIFF('ROW1', Y 1 8);
@ALLDIFF('ROW1', Y 1 9);

In this case, we concatenated the set name of the first row (i.e., "1") to the word "ROW" to construct
the all-different set name for the first row of the puzzle: "ROW1".

112 CHAPTER 3

Solving this models gives us the following solution to the puzzle:

Sudoku Puzzle Solution:

3 5 4 1 6 2 7 8 9
2 9 1 7 8 3 6 5 4
7 6 8 9 4 5 2 3 1
6 1 2 8 3 9 4 7 5
8 4 5 6 7 1 9 2 3
9 3 7 2 5 4 1 6 8
1 7 6 3 9 8 5 4 2
5 2 3 4 1 7 8 9 6
4 8 9 5 2 6 31 7

Specifying Bounds on Variables on an Alldiff Set

You will note from above that the default values of the variables in an Alldiff set with N members will
be contained in the set of positive integers {1..N}, with each variable having a unique value. For most
applications this should be sufficient. However, there may be times when you wish to override these
bounds of 1 to N, so that the variables can take on a different set of values. In the model fragment
below, we create an Alldiff set called MYALLDIFF that contains the three variables X, Y and Z.

!First call passed the lower and upper bounds on
the Alldiff variables;
@ALLDIFF('MYALLDIFF', 10, 20);

'Add X, Y amd Z variables to the set;
@ALLDIFF('"MYALLDIFF', X);
QALLDIFF('MYALLDIFF', Y);
@ALLDIFF('MYALLDIFF', Z);

Note the additional @ALLDIFF call at the top to explicitly specify the variable bounds: @ALLDIFF(
'"MYALLDIFF', 10, 20). In this case, instead of the variable values running from 1 to 3, they will now
values contained in the interval of 10 to 20. Subsequent @ALLDIFF calls are as before, with two
arguments consisting of the set name and a new variable name to add to the set.

VARIABLE DOMAIN FUNCTIONS 113

Binary Integer Variables

A binary integer variable—also called a 0/1 variable—is a special case of an integer variable that is
required to be either zero or one. It’s often used as a switch to model Yes/No decisions.

The syntax of the @BIN function is:
@BIN(variable_name);

where variable name is the name of the variable you wish to make binary. The @BIN function may be
used in a model anywhere you would normally enter a constraint. The @BIN function can be
embedded in an @FOR statement to allow you to easily set all, or selected, variables of an attribute to
be binary integers. Some examples of @BIN are:

Example 1: @BIN(X);
makes the scalar variable, X, a binary integer,

Example 2: @BIN(INCLUDE(4));
makes the variable INCLUDE(4) binary,

Example 3: @FOR(ITEMS: @BIN(INCLUDE));
makes all variables in the INCLUDE attribute binary.

Binary Integer Example - The Knapsack Problem

The knapsack model is a classic problem that uses binary variables. In this problem, you have a group
of items you want to pack into your knapsack. Unfortunately, the capacity of the knapsack is limited
such that it is impossible to include all items. Each item has a certain value, or utility, associated with
including it in the knapsack. The problem is to find the subset of items to include in the knapsack that
maximizes the total value of the load without exceeding the capacity of the knapsack.

Of course, the knapsack euphemism shouldn’t lead one to underestimate the importance of this class of
problem. The “knapsack” problem can be applied to many situations. Some examples are vehicle
loading, capital budgeting, and strategic planning.

114 CHAPTER 3
The Problem

As an example, suppose you are planning a picnic. You’ve constructed a list of items you would like to
carry with you on the picnic. Each item has a weight associated with it and your knapsack is limited to
carrying no more than 15 pounds. You have also come up with a 1 to 10 rating for each item, which
indicates how strongly you want to include the particular item in the knapsack for the picnic. This
information is listed below:

Item ‘ Weight Rating ‘
Ant Repellent 1 2
Beer 3 9
Blanket 4 3
Bratwurst 3 8
Brownies 3 10
Frisbee 1 6
Salad 5 4
Watermelon 10 10

The Formulation
We have only one set in this model—the set of items we are considering carrying in the knapsack. This
is a primitive set, and we can define it in the sets section:

SETS:
ITEMS: INCLUDE, WEIGHT, RATING;
ENDSETS

We have associated the three attributes INCLUDE, WEIGHT, and RATING with the set. INCLUDE
will be the binary variables used to indicate if an item is to be included in the knapsack. WEIGHT is
used to store the weight of each item, and RATING is used to store each item's rating.

Next, we will need to construct a data section to input the set members of set /TEMS and their
associated weights and ratings. Here is a data section that accomplishes the task:

DATA:

ITEMS WEIGHT RATING =
ANT REPEL 1 2
BEER 3 9
BLANKET 4 3
BRATWURST 3 8
BROWNIES 3 10
FRISBEE 1 6
SALAD 5 4
WATERMELON 10 10;

KNAPSACK CAPACITY = 15;
ENDDATA

Note that we have also included the knapsack’s capacity in the data section. This is a good practice in
that it isolates data from the constraints of the model.

VARIABLE DOMAIN FUNCTIONS 115

Given that all the sets and data have been defined, we can turn to building our objective function. We
want to maximize the sum of the ratings of the items included in our knapsack. Note that INCLUDE(I)
will be 1 if item [is included. Otherwise, it will be 0. Therefore, if we take the inner product of
INCLUDE with the RATING attribute, we will get the overall rating of a combination of included
items. Putting this into LINGO syntax, we have:

MAX = @SUM(ITEMS: RATING * INCLUDE);

Note that we did not specify a set index variable in the @SUM function. Since all the attributes in the
function (RATING and INCLUDE) are defined on the index set (/TEMS), we can drop the set index
variable and use implicit indexing.

Our next step is to input our constraints. There is only one constraint in this model. Specifically, we
must not exceed the capacity of the knapsack. In a similar manner as the objective, we compute the
weight of a given combination of items by taking the inner product of the INCLUDE attribute with the
WEIGHT attribute. This sum must be less-than-or-equal-to the capacity of the knapsack. In LINGO
syntax, we express this as:

@SUM(ITEMS: WEIGHT * INCLUDE) <= KNAPSACK CAPACITY;

Finally, we must make the INCLUDE variable binary. We could do this by adding:

@BIN(INCLUDE(QINDEX(ANT REPEL)));
@BIN(INCLUDE (QINDEX(BEER)));

@BIN(INCLUDE(QINDEX (BLANKET))) ;
@BIN(INCLUDE (QINDEX (BRATWURST)));
@BIN(INCLUDE (@INDEX (BROWNIES)));
@BIN(INCLUDE(QINDEX(FRISBEE)));
@BIN(INCLUDE (@INDEX(SALAD)));
@BIN(INCLUDE (QINDEX(WATERMELON))) ;

(Note that the @INDEX function simply returns the index of a primitive set member in its set.)
However, a more efficient and data independent way of doing this would be to embed an @BIN
function in an @FOR function as follows:

@FOR(ITEMS: @BIN(INCLUDE)) ;

116 CHAPTER 3

The Solution

The entire model for our knapsack example and excerpts from its solution are listed below. The model
formulation file may be found in your SAMPLES subdirectory off the main LINGO directory under the
name KNAPSACK:

MODEL:

SETS:
ITEMS: INCLUDE, WEIGHT, RATING;
ENDSETS

DATA:
ITEMS WEIGHT RATING =
ANT REPEL 1 2
BEER
BLANKET
BRATWURST
BROWNIES
FRISBEE
SALAD
WATERMELON 1

CU R WWb W
—

KNAPSACK CAPACITY = 15;
ENDDATA

MAX = @SUM(ITEMS: RATING * INCLUDE);

@SUM(ITEMS: WEIGHT * INCLUDE) <=
KNAPSACK CAPACITY;

@FOR(ITEMS: @BIN(INCLUDE)) ;

END
Model: KNAPSACK

VARIABLE DOMAIN FUNCTIONS 117

Global optimal solution found.

Objective value: 38.00000
Objective bound: 38.00000
Infeasibilities: 0.000000
Extended solver steps: 0
Total solver iterations: 0
Elapsed runtime seconds: 0.03
Model Class: PILP
Variable Value Reduced Cost
INCLUDE (ANT REPEL) 1.000000 -2.000000
INCLUDE (BEER) 1.000000 -9.000000
INCLUDE (BLANKET) 1.000000 -3.000000
INCLUDE (BRATWURST) 1.000000 -8.000000
INCLUDE (BROWNIES) 1.000000 -10.00000
INCLUDE (FRISBEE) 1.000000 -6.000000
INCLUDE (SALAD) 0.000000 -4.000000
INCLUDE (WATERMELON) 0.000000 -10.00000

Solution to KNAPSACK

Your knapsack is fully packed at 15 pounds, and we take along everything but the salad and
watermelon. Your lunch of beer, bratwurst, and brownies may not be very healthy, but at least you will
be happy!

An Extension - Modeling a Logical Or Condition

Binary variables are very useful for modeling logical conditions. For instance, suppose your physician
reviews your picnic plans and, fearing for your health, insists you must take either the salad or the
watermelon along on your picnic. You could add this condition to your model by simply appending the
constraint:

INCLUDE (QINDEX (SALAD)) +
INCLUDE (QINDEX (WATERMELON)) >= 1;

In order to satisfy this constraint, either the salad, the watermelon, or both must be included in the
knapsack. Unfortunately, constraints of this form are not good practice in that they are not data
independent. Suppose that your list of picnic items changes. You may need to modify this new
constraint to reflect those changes. A well formulated model should require no changes to the
constraints as a result of changes to the data. The following model demonstrates a data independent
way of incorporating your physician's request (additions to the original model are listed in bold).

118 CHAPTER 3

MODEL:
SETS:

ITEMS: INCLUDE, WEIGHT, RATING;
MUST_EAT ONE(ITEMS) ;
ENDSETS

DATA:
ITEMS WEIGHT RATING =
ANT REPEL 1 2
BEER 3 9
BLANKET 4 3
BRATWURST 3 8
BROWNIES 3 10
FRISBEE 1 6
SALAD 5 4
WATERMELON 10 10;

MUST_EAT ONE = SALAD WATERMELON;

KNAPSACK CAPACITY = 15;
ENDDATA

MAX = @SUM(ITEMS: RATING * INCLUDE);

@SUM(ITEMS: WEIGHT * INCLUDE) <=
KNAPSACK CAPACITY;

@FOR(ITEMS: @BIN(INCLUDE)) ;

@SUM(MUST EAT ONE(I): INCLUDE(I)) >= 1;

END

We have derived a set called MUST EAT ONE from the original picnic items, and used an explicit
list to include the items we must carry as members. Then, at the end of the model, we added a
constraint that forces at least one of the "must eat" items into the solution.

VARIABLE DOMAIN FUNCTIONS

119

For those interested, the solution to the modified model is:

Global optimal solution found.

Objective value:
Objective bound:
Infeasibilities:
Extended solver steps:
Total solver iterations:
Elapsed runtime seconds:

Variable

INCLUDE (ANT REPEL)
INCLUDE (BEER)
INCLUDE (BLANKET)
INCLUDE (BRATWURST)
INCLUDE (BROWNIES)
INCLUDE (FRISBEE)
INCLUDE (SALAD)
INCLUDE (WATERMELON)

O KRR RPRORO

37.00000

37.00000

0.000000

0

0

0.03
Value
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

Reduced Cost
-2.000000
-9.000000
-3.000000
-8.000000
-10.00000
-6.000000
-4.000000
-10.00000

In short, we drop the ant repellent and blanket, and replace them with the salad.

Binary Integer Example — Product-Mix with Fixed Costs

In many situations, it is not unusual for a particular activity to incur a fixed cost. Examples where one

might incur a fixed cost include opening a plant, producing a product, paying a commission on an

order to buy stock, or retooling an assembly line.

In this next example, we will put together a product-mix model much like the CompuQuick example

from Chapter 1, Getting Started with LINGO. In this case, however, there is a fixed setup charge
associated with the production of an item. In other words, whenever we produce any amount of a

product, we incur a fixed charge independent of the output level of the product.

The Problem

You’re the manager of an airplane plant and you want to determine the best product-mix of your six

models to produce. The six models currently under production are the Rocket, Meteor, Streak, Comet,
Jet, and Biplane. Each plane has a known profit contribution. There is also a fixed cost associated with

the production of any plane in a period. The profit and fixed costs are given in the following table:

Plane \ Profit \ Setup \

Rocket 30 35
Meteor 45 20
Streak 24 60
Comet 26 70
Jet 24 75
Biplane 30 30

120 CHAPTER 3

Each plane is produced using six raw materials—steel, copper, plastic, rubber, glass, and paint. The
units of these raw materials required by the planes as well as the total availability of the raw materials
are:

Rocket \ Meteor

Steel 1 4 0 4 2 1 800
Copper 4 5 3 0 1 0 1160
Plastic 0 3 8 0 1 0 1780
Rubber 2 0 1 2 1 5 1050
Glass 2 4 2 2 2 4 1360
Paint 1 4 1 4 3 4 1240

The problem is to determine the final mix of products that maximizes net profit (gross profit - setup
costs) without exceeding the availability of any raw material. Your brand new Meteor model has the
highest profit per unit of anything you’ve ever manufactured and the lowest setup cost. Maybe you
should build nothing but Meteors? Then again, maybe not.

The Formulation
As you might guess, we will need two primitive sets in this model—one to represent the airplane
models and one to represent the raw materials. We can construct these sets as follows:

PLANES:

PROFIT, SETUP, QUANTITY, BUILD;
RESOURCES: AVAILABLE;

We added the following four attributes to the PLANES set:

¢ PROFIT stores profit contribution for the plane,

¢ SETUP stores setup cost to begin producing the plane,

¢ QUANTITY avariable for quantity of planes to produce, and

¢ BUILD a binary variable, 1 if we produce the plane, else 0.

The AVAILABLE attribute on the RESOURCES set will be used to store the availability of each
resource.

We will also need to derive a dense set by taking the cross of the RESOURCES set with the PLANES
set. We need this set in order to define a USAGE attribute to store the resource usage of each plane.
We will call this derived set RXP, which, after inclusion into the sets section, gives us:

SETS:
PLANES:
PROFIT, SETUP, QUANTITY, BUILD;
RESOURCES: AVAILABLE;
RXP (RESOURCES, PLANES): USAGE;
ENDSETS

VARIABLE DOMAIN FUNCTIONS 121

In our data section, we will initialize the set members: PLANES and RESOURCES, along with the data
attributes: PROFIT, SETUP, AVAILABLE, and USAGE. Here is the data section we will use:

DATA:

PLANES PROFIT SETUP =
ROCKET 30 35
METEOR 45 20
STREAK 24 60
COMET 26 70
JET 24 75
BIPLANE 30 30;

RESOURCES AVAILABLE =
STEEL, 800 COPPER, 1160 PLASTIC,1780
RUBBER, 1050 GLASS,1360 PAINT,1240;

USAGE = 1 40420
453010
038010
2012105
242 2 2 4
1414 3 4;

ENDDATA

With the sets and data sections complete, we can now turn our attention to the objective function. For
our objective, we want to maximize total net profit. Specifically, this is computed as the sum of profit
times quantity produced of each plane, minus its setup cost multiplied by the BUILD binary variable.
In LINGO syntax, we express the objective as:

MAX = @SUM(PLANES:
PROFIT * QUANTITY - SETUP * BUILD);

Since all attributes are defined on the index set, we can drop the set index variable and use implicit
indexing.
For our first set of constraints, we want to be sure raw material supplies are not exceeded. In words,

what we want is:

For each resource i, the sum over each plane j of the quantity of plane j built
multiplied by the resource usage of resource i by plane j must be
less-than-or-equal-to the availability of resource i.

122 CHAPTER 3

Given the vagaries of the English language, it's highly likely one would find the equivalent LINGO
notation more concise and easier to understand:

@FOR(RESOURCES(I):

@SUM(PLANES (J):

USAGE (I, J) * QUANTITY(J)) <=
AVAILABLE (I)

);

Our next set of constraints is not quite as intuitive. We are using the binary variable BUILD to
represent if a plane is being built, so we can incorporate a fixed cost for the plane in the objective
function. What we need is some constraint mechanism to force BUILD(1) to be 1 when we produce a
nonzero quantity of plane /. The following constraint will do just that:

@FOR(PLANES:
QUANTITY <= 400 * BUILD;
@BIN(BUILD)
)

Given that BUILD is 0/1, as soon as QUANTITY goes nonzero the only feasible solution is for BUILD
to go to 1. Constraints of this form used to force a binary variable to an appropriate value are
sometimes referred to as forcing constraints.

The coefficient of 400 in our forcing constraints was chosen because we know from scanning our data
that no more than 400 of any plane can be built. Can you verify this? Coefficients used in this manner
are sometimes called BigM coefficients. For solver efficiency reasons, it's best to try to keep BigM
values as small as reasonably possible.

Because the BigM coefficient of 400 is dependent upon the model's data, it is actually bad modeling
practice to embed the coefficient in the model's constraints as we have done here. As we have
discussed, it is best to try to keep the constraints of your model independent of the data to facilitate
model maintenance. A more data independent formulation would actually involve calculations to come
up with a good BigM value. Can you think of how you might add such a feature to this model?

A reasonable question at this point would be: "We have the machinery to force BUILD to 1 when we
build a plane. What forces BUILD to zero when we don't build a plane?" The fact that BUILD appears
in the objective with a negative coefficient (we multiply it by SETUP and then subtract it from the
objective) guarantees this. If a plane was not being built and the corresponding BUILD variable was 1,
we could get a better solution by simply setting BUILD to 0. Since the goal is to maximize the
objective, BUILD will always be driven to 0 when a plane is not built.

One final feature of our forcing constraints to note is that we have piggybacked the @BIN function call
onto the @F OR statement for the forcing constraints. As you recall from the discussion of set looping
functions in Using Sets, an @FOR function may contain multiple expressions as long as they are
separated by a semicolon. We have capitalized on this feature by including the @BIN expression as
well.

As a final feature, we can make the QUANTITY variables general integers with the expression:

@FOR(PLANES: @GIN(QUANTITY))

VARIABLE DOMAIN FUNCTIONS 123

The Solution

The formulation in its entirety and a selected portion of the solution appear below. The formulation file
may be found in file PRODMIX.

MODEL:
SETS:
PLANES:
PROFIT, SETUP, QUANTITY, BUILD;
RESOURCES: AVAILABLE;
RXP (RESOURCES, PLANES): USAGE;

ENDSETS
DATA:

PLANES PROFIT SETUP =
ROCKET 30 35
METEOR 45 20
STREAK 24 60
COMET 26 70
JET 24 75
BIPLANE 30 30;

RESOURCES AVAILABLE =
STEEL, 800 COPPER, 1160 PLASTIC, 1780
RUBBER, 1050 GLASS,1360 PAINT,1240;
USAGE = 1 4 4 20

R NN O
S O W ol
= N 0 wo
SN DN OO
W NP
S O O O

ENDDATA

MAX = Q@SUM(PLANES:
PROFIT * QUANTITY - SETUP * BUILD);
@FOR (RESOURCES(I):
@SUM(PLANES(J) :

USAGE (I, J) * QUANTITY(J)) <=

AVAILABLE (I);
);
@FOR (PLANES:

QUANTITY <= 400 * BUILD;

@BIN(BUILD);
);
@FOR(PLANES: @GIN(QUANTITY));

END
Model: PRODMIX

Global optimal solution found.

Objective value: 14764.00
Objective bound: 14764.00
Infeasibilities: 0.000000

124 CHAPTER 3

Extended solver steps: 18

Total solver iterations: 332

Elapsed runtime seconds: 0.11
Variable Value Reduced Cost
QUANTITY (ROCKET) 96.00000 -30.00000
QUANTITY (METEOR) 0.000000 -45.00000
QUANTITY (STREAK) 195.0000 -24.00000
QUANTITY (COMET) 0.000000 -26.00000
QUANTITY (JET) 191.0000 -24.00000
QUANTITY (BIPLANE) 94.00000 -30.00000
BUILD(ROCKET) 1.000000 35.00000
BUILD(METEOR) 0.000000 20.00000
BUILD(STREAK) 1.000000 60.00000
BUILD(COMET) 0.000000 70.00000
BUILD(JET) 1.000000 75.00000
BUILD(BIPLANE) 1.000000 30.00000

Solution to PRODMIX

Surprisingly, we see from the solution that we build none of the "profitable" Meteors. Can you
determine why this is so? On the other hand, the Rocket, Streak, Jet and Biplane are produced, and,
as we anticipated, the BUILD variable for each of these planes has been correctly set to 1.

Dual Values and IP

In Chapter 1, Getting Started with LINGO, we introduced the concept of dual values. The dual values
of a solution are the reduced costs of the variables and dual prices on the constraints. We also
discussed the useful information that can be obtained from dual values. Unfortunately, in IP models
the interpretation of the dual values breaks down. Due to the discreet nature of IP models, the dual
values in the solution to an IP model are of no practical use to the average user. Given this, the dual
values should be ignored when your model contains integer variables created through the use of @BIN
or @GIN.

Variable Priorities

The time required for branch-and-bound algorithm to converge is highly dependent on the order in
which the solver branches on the integer variables. Some integer variables impact the solution more
than others. An example would be a plant location model, where we are deciding a) which plants to
open, and b) which customers to assign to which plants. Clearly, the decision of opening a plant
influences the solution considerably more than the decision of which plant to assign a given customer
to. In general, performance will improve if the solver branches on the more critical integer variables
first, while branching on the less critical variables later. LINGO provides the @PRIORITY function
for controlling the branching priority of the variables.

The syntax of the @PRIORITY function is:

@PRIORITY (variable_name, relative_priority);

where variable _name is the name of the variable and relative priority is a non-negative integer
representing the relative priority of the variable. The @PRIORITY function may be used in a model
anywhere you would normally enter a constraint. The @PRIORITY function can be embedded in an

VARIABLE DOMAIN FUNCTIONS 125

@FOR statement to allow you to easily set the priority of all, or selected, variables of an attribute. If a
variable is not assigned a priority, it is assumed to have the lowest priority level of 0.
Some examples of @PRIORITY are:

Example 1: @PRIORITY (X, 100);
assigns variable X a priority of 100,

Example 2: @PRIORITY (PRODUCE(5), 10);
assigns variable PRODUCE(5) a priority of 10,
Example 3: @FOR(DAYS(I): @PRIORITY(START(I), 30));

assigns all the variables of the START a priority of 30.

Summary

You should now be familiar with the use of the variable domain functions @BIN and @GIN, and how
they are used to introduce integer variables into a model. This section has shown how integer variables
bring a whole new dimension of power to the mathematical modeler. Given that we have only briefly
delved into the topic of modeling with integer variables, the user that would like to become more
familiar with the many practical applications of integer programming and their formulations can refer
to Schrage (2006), or Winston (1995).

Free Variables

By default, a LINGO variable has a lower bound of zero and an upper bound of infinity. @FREE
removes the lower bound of zero and lets a variable take negative values, rendering it unconstrained in
sign, or free. The syntax is:

@FREE(variable_name);
where variable_name is the name of the variable you wish to make free.

The @FREE function may be used in a model anywhere you would normally enter a constraint. The
@FREE function can be embedded in an @FOR statement to allow you to easily make all, or selected,
variables of an attribute to be free. Some examples of @FREFE are:

Example 1: QFREE (X);
makes the scalar variable, X, free,

Example 2: @FREE (QUANTITY (4));
makes the variable QUANTITY(4) free,

Example 3: @FOR(ITEMS: QFREE(QUANTITY)) ;
makes all variables in the QUANTITY attribute free.

FREE Variable Example - Forecasting

You are the inventory controller for the successful new Shack4Shades retail chain. Your business
specializes exclusively in the retailing of sunglasses to the lover of the outdoors. You need to come up
with a model to forecast sales of sunglasses in the coming quarter in order to build up inventory levels.

126 CHAPTER 3

You have created the following chart of your sales for the last eight quarters:

ShackiShades Sales

30
23 7
20
13 A
10
5 -

Sunglas=es Sold (000

Quarter

Looking at this chart, you theorize that sales are growing according to a linear trend line, but with
rather sizable seasonal variations. Sales pick up in the summer months when people head to the
beaches and again in winter when they head for the ski slopes. Given this, you have come up with the
following theoretical function to forecast sales as a function of time:

Predicted Sales(f) = Seasonal_Factor(f) * (Base + Trend * t)

where,
Predicted Sales(t) represents predicted sales for quarter ¢,
Seasonal_Factor(t) is one of four multipliers (one for each quarter of the
year) to account for seasonal variations,
Base is the y-intercept of the hypothesized linear function, and
Trend is the slope of the linear function.

You would like to come up with a LINGO model to estimate the six parameters of your function (i.e.,
the four seasonal factors, the trend line base, and the trend line slope). To do this, you will let LINGO
choose values for the parameters that minimize the sum of the squared differences between predicted
and observed sales for the historical data.

VARIABLE DOMAIN FUNCTIONS 127

The Formulation

We will need two primitive sets in our model. The first set will have eight members to represent the
quarters that we have historical data for. The second set will have four members corresponding to the
four quarters of the year. This second set is used for defining the four seasonal factors. Here is our sets
section that incorporates these two sets:

SETS:
PERIODS: OBSERVED, PREDICT, ERROR;
QUARTERS: SEASFAC;

ENDSETS

The three attributes on the PERIODS set—OBSERVED, PREDICT, and ERROR—correspond to the
observed sales values, predicted sales values, and the prediction error. The prediction error is simply
predicted sales minus observed sales. The SEASFAC attribute on the SEASONS set corresponds to the
seasonal sales factors and will be computed by LINGO.

We will also need to add a data section to initialize the set members and the OBSERVED attribute with
the historical sales data. We can do this with the following:

DATA:

PERIODS = P1l..P8;

QUARTERS = Q1..04;

OBSERVED = 10 14 12 19 14 21 19 26;
ENDDATA

Next, we must add a formula to compute the error terms. As mentioned, the error term in a period is
the difference between the observed and predicted sales. We can express this in LINGO as:

@FOR (PERIODS: ERROR =
PREDICT - OBSERVED) ;

Our objective is to minimize the sum of the squared error terms, which may be written as:

MIN = @SUM(PERIODS: ERROR " 2);

We choose to use squared error terms as a measure to minimize because we want to weight large errors
relatively more heavily. Another option might be to minimize the sum of the absolute values of the
errors, which would weight large and small errors proportionally the same.

In order to compute the error terms, we will also need to compute predicted sales. Using our
theoretical formula, we compute predicted sales as follows:

@FOR(PERIODS(P): PREDICT(P) =
SEASFAC (QWRAP(P, 4))
* (BASE + P * TREND));

The @WRAP function is used here to allow us to apply the four seasonal factors over a time horizon
exceeding four periods. Had we simply used the index P, instead of @WRAP(P, 4), we would have
generated a subscript out of range error. For a more in depth explanation of the use of the @WRAP
function, please see the staff-scheduling example on page 83.

For esthetic reasons, we would like the seasonal factors to average out to a value of one. We can do
this by adding the constraint:

@SUM(QUARTERS: SEASFAC) = 4;

128 CHAPTER 3

Finally, it is possible for the error terms to be negative as well as positive. Given that variables in
LINGO default to a lower bound of zero, we will need to use the @FREE function to allow the error
terms to go negative. By embedding the @FREE function in an @FOR loop, we can apply @FREE to
all the ERROR variables in the statement:

@FOR(PERIODS: @FREE (ERROR));

The Solution

The entire formulation and excerpts from the solution appear below.

MODEL:

SETS:
PERIODS: OBSERVED, PREDICT, ERROR;
QUARTERS: SEASFAC;

ENDSETS

DATA:

PERIODS = Pl..P8;

QUARTERS = Q1..04;

OBSERVED = 10 14 12 19 14 21 19 26;
ENDDATA

MIN = @SUM(PERIODS: ERROR " 2);

@FOR (PERIODS: ERROR =
PREDICT - OBSERVED) ;

@FOR(PERIODS(P): PREDICT(P) =
SEASFAC (QWRAP(P, 4))

* (BASE + P * TREND));
@SUM(QUARTERS: SEASFAC) = 4;

@FOR(PERIODS: @FREE (ERROR) ;
@BND(-1000, ERROR, 1000));

END
Model: SHADES

VARIABLE DOMAIN FUNCTIONS 129

Local optimal solution found.

Objective value: 1.822561
Total solver iterations: 32

Variable Value
BASE 9.718878
TREND 1.553017
OBSERVED (P1) 10.00000
OBSERVED (P2) 14.00000
OBSERVED (P3) 12.00000
OBSERVED (P4) 19.00000
OBSERVED (P5) 14.00000
OBSERVED (P6) 21.00000
OBSERVED (P7) 19.00000
OBSERVED (P8) 26.00000
PREDICT (P1) 9.311820
PREDICT (P2) 14.10136
PREDICT (P3) 12.85213
PREDICT (P4) 18.80620
PREDICT (P5) 14.44367
PREDICT (P6) 20.93171
PREDICT (P7) 18.40496
PREDICT (P8) 26.13943
ERROR(P1) -0.6881796
ERROR (P2) 0.1013638
ERROR (P3) 0.8521268
ERROR (P4) -0.1938024
ERROR (P5) 0.4436688

ERROR (P6) -0.6828722E-01
ERROR(P7) -0.5950374
ERROR (P8) 0.1394325
SEASFAC (Q1) 0.8261096
SEASFAC (Q2) 1.099529
SEASFAC (Q3) 0.8938789
SEASFAC (Q4) 1.180482

Solution to SHADES

The solution is: TREND, 1.55; BASE, 9.72. The four seasonal factors are .826, 1.01, .894, and 1.18.
The spring quarter seasonal factor is .826. In other words, spring sales are 82.6% of the average. The
trend of 1.55 means, after the effects of season are taken into account, sales are increasing at an
average rate of 1,550 sunglasses per quarter. As one would expect, a good portion of the error terms
are negative, so it was crucial to use the @FREE function to remove the default lower bound of zero
on ERROR.

130 CHAPTER 3

Our computed function offers a very good fit to the historical data as the following graph illustrates:

ShackdShades Sales - Observed vs,

Predicted
a0
M - o Observed
mFredicted
10
1]
12 3 4 . Chsered

Using this function, we can compute the forecast for sales for the upcoming quarter (quarter 1). Doing
SO0 gives:

Predicted Sales(9) = Seasonal Factor(l) * (Base + Trend * 9)
0.826 * (9.72+1.55 *9)
19.55

Given this, inventory levels should be brought to a level sufficient to support an anticipated sales level
of around 19,550 pairs of sunglasses.

Bounded Variables

Whereas @FREE sets the upper and lower bounds of the specified variable to plus and minus infinity
(effectively removing any bounds on the variable), the @BND function lets you set specific upper and
lower bounds on a variable. In other words, @BND limits a variable’s range within some specified
interval. The syntax for @BND is:

@BND(lower_bound, variable _name, upper_bound);

where variable_name is the variable to be bounded below by the quantity lower bound and bounded
above by the quantity upper bound. Both lower bound and upper bound must be either numeric
values or variables whose values have been set in a data section or calc section. @BND may be used
wherever you would normally enter a constraint in a model—including inside an @FOR looping
function.

In mathematical terms, LINGO interprets this @BND function as:

lower_bound < variable_name < upper_bound

VARIABLE DOMAIN FUNCTIONS

131

It is certainly possible to add constraints in lieu of the @BND function, but, from the standpoint of the

optimizer, @BND is an extremely efficient way of representing simple bounds on variables.

Specifying variable bounds using @BND rather than explicitly adding constraints can noticeably speed

up the solution times for larger models. Furthermore, @BND does not count against the limit on the

total number of constraints LINGO imposes on some versions. So, in general, it is a good idea to use
@BND in place of constraints whenever possible.

Some examples of @BND are:

Example 1: @BND (

-1,

X, 1)7

constrains the variable X to lie in the interval [-1,1],

Example 2: @BND (

100,

QUANTITY (4), 200);

constrains the variable QUANTITY(4) to fall within 100 to 200,

Example 3: @FOR (

Example 4: @FOR (

ITEMS: @BND(10, Q, 20));
sets the bounds on all variables in the Q attribute to 10 and 20,

ITEMS: @BND(QL, Q, QU));
sets the bounds on all variables in the Q attribute to QL and QU (QL and
QU must have been previously set to some values in a data section).

SOS Variables

LINGO supports SOS (Special Ordered Sets) variables of Type 1, 2 and 3 via the @SOS, @SOS2 and
@SOS3 functions, respectively. The properties of the three SOS types are:

SOS Type

SOS1

Property

At most, only one variable belonging to an
SOS1 set will be greater than 0.

SOS2

At most, only two variables in an SOS2 set
can be different from 0. If two variables are
nonzero, then the variables will be adjacent to
one another. SOS2 sets are particularly useful
for implementing piecewise-linear functions
in models.

SOS3

Exactly one variable from a given SOS3 set
will be equal to 1. All remaining variables
will be equal to 0.

132 CHAPTER 3

Note: Any variables added to an SOS set will count against the integer variable limit imposed in
limited versions of LINGO.

The syntax for the @SOS declarations is as follows:
@SOS{1|2|3}('set_name', variable reference);

The set_name argument is a unique label, or name, for the particular set of SOS variables. You add
additional variables to an SOS set by making subsequent calls to the @SOS function using the same set
name.

Some examples of SOS sets are:

Example 1: @S0S3('SUM TO 1', X);

@S0S3('SUM TO 1', Y); @SOS3('SUM TO 1', Z);
In this example, an SOS Type 3 set forces either X, Y or Z to be equal to 1. The remaining
variables will be equal to 0.

Example 2: @FOR(CUST(J): @FOR(PLANTS(I):
@SOS1('SNGSRC ' + CUST(J), SHIP(I, J))));

Here, multiple SOS Type 1 sets force each customer to receive shipments from only one plant.
There is one SOSI1 set created for each customer, each bearing the name
SNGSRC _customer _name.

An example of using Type 2 sets follows in the next section.

Piecewise Linear Example - Type SOS2 Set

As we mentioned above, SOS2 sets are particularly useful for implementing piecewise-linear
functions. Many cost curves exhibit the piecewise-linear property. For example, suppose we want to
model the following cost function, where cost is a piecewise-linear function of volume, X:

60

50

30

L
20\

VARIABLE DOMAIN FUNCTIONS

133

Piecewise-Linear Function Example

The breakpoints of the curve lie at the following points: (0,22), (5,10), (12,41) and (20,49).

The following sample model, SOSPIECE.LG4, uses a Type 2 SOS set to model this piecewise-linear

function using what is referred to as the lambda method:

MODEL:

! Demonstrates the lambda method for
representing arbitrary, piecewise-linear
curves using an S0OS2 set;

! See "Optimization Modeling with Lingo",
Section 11.2.7;

SETS:
! 4 breakpoints in this example;
B /1..4/: W, U, V;

ENDSETS

DATA:
! total cost at the breakpoints;
V =22 10 41 49;

! the breakpoints;
U= 0 512 20;
ENDDATA

! set x to any value in interval--the cost
variable will automatically be set to the
correct total cost;

X = 8.5;

! calculate total cost;
COST = @SUM(B(i): V(i) * W(1)),

! force the weights (w);
X = @SUM(B(I): U(I) * W(i));

'weights must sum to 1;
QSUM(B(I): W(I)) = 1;

! the weights are S0S2: at most two adjacent
weights can be nonzero;

@FOR(B(I): @SOS2('SOS2 SET', W(I)));

END

Model: SOSPIECE

134 CHAPTER 3

We defined an attribute, #, whose members act as weights, placing us on an particular segment of the
curve. For example, if W(2)=W(3)=0.5, then we are exactly halfway between the second and third
breakpoints : (5,10) and (12,41), i.e., at point (8.5,25.5). In the case where we lie exactly on a
breakpoint, then only one of the W(i) will be nonzero and equal to 1.

For this strategy to work correctly, only two, at most, of the (i) may be nonzero, and they must be
adjacent. As you recall, this is the definition of an SOS2 set, which we create at the end of the model

with the expression:

! the weights are S0S2: at most two adjacent
weights can be nonzero;
@FOR(B(I): @SOS2('SOS2 SET', W(I)));

In particular, each weight (i) is a member of the Type SOS2 set titled SOS2_SET.

For this particular example, we have chosen to pick an x-value and then let LINGO compute the
corresponding y-value, or cost. Running, the model, as predicted, we see that for an X value of 8.5,

total cost is 25.5:

Variable Value
X 8.500000

COST 25.50000

W(1) 0.000000

W(2) 0.5000000

W(3) 0.5000000

W(4) 0.000000

Solution to SOSPIECE

In addition to allowing the solver to work more efficiently, SOS sets also help to reduce the number of
variables and constraints in your model. In this particular example, had we not had the SOS2
capability, we would have needed to add an additional 0/1 attribute, Z, and the following expressions

to the model:

! Here's what we eliminated by using @sos2:

! Can be on only one line segment at a time;

w(1) <= z(1); w(@size(b)) <= z(@size(b));

@for(b(i) | i #gt# 1 #and# i #1t# @size(b):

w(i) <= z(1i) + z(i1 + 1)

)

@sum(b(i1): z(1)) =1
i

@for(b(i): @bin(z(1i)));

Note: It may seem that piecewise linearity could be implemented in a more straightforward manner
through the use of nested @IF functions. Certainly, the @/F approach would be more natural
than the lambda method presented here. However, @/F functions would add discontinuous
nonlinearities to this model. This is something to try and avoid, in that such functions are
notoriously difficult to solve to global optimality. In the approach used above, we have
maintained linearity, which allows LINGO to use its faster, linear solvers, and converge to a
globally optimal solution.

VARIABLE DOMAIN FUNCTIONS 135

Cardinality

Related to the SOS capability discussed above, LINGO also supports cardinality sets of variables via
the @CARD function. The cardinality feature allows you to specify a set of variables with a
cardinality of N, meaning that, at most, NV of the variables in the set will be allowed to be nonzero.

As with SOS sets, cardinality sets help the integer solver branch more efficiently, and they reduce the
number of variables and constraints in your models. Also, as with SOS sets, each variable added to a
cardinality set will count against any integer variable limits imposed on your installation of LINGO.

The syntax for the @CARD declarations is as follows:
@CARD('set name', variable reference|set cardinality);

The set_name argument is a unique label, or name, for the particular cardinality set. You add
additional variables to an SOS set by making subsequent calls to the @CARD function using the same
set name with a different variable reference. In addition to calling @CARD once for each variable in
a set, you will need to call @CARD once for each set passing an integer value as the second argument.
This integer argument is the set _cardinality, and may be either an actual integer number or a variable
set to an integer value in either a data or calc section.

Some examples of @CARD sets are:

Example 1: @CARD('PICK2', 2);
@CARD('PICK2', X);

@CARD('PICK2', Y); @CARD('PICK2', 7Z);

In this example, at most, two out of the three variable X, Y, and Z will be nonzero.

Example 2: @FOR(PLANT(I): QCARD('OPENLIM', OPEN(I)));
@CARD('OPENLIM', NCARD);

Here, we limit the maximum number of open plants to NCARD, where NCARD must be set
beforehand to an integer value in either a data or calc section.

Semicontinuous Variables

Many models require certain variables to either be 0 or lie within some nonnegative range, e.g., 10 to
20. Variables with this property are said to be semicontinuous. Modeling semicontinuity in LINGO in
the past meant having to add an additional 0/1 variable and two additional constraints. LINGO now
allows you to establish semicontinuous variables directly with the @SEMIC statement.

The syntax for the @SEMIC declarations is as follows:
@SEMIC(lower bound, variable reference, upper bound);

This will restrict the variable, variable reference, to be either 0 or to lie within the range
[lower_bound, upper _bound].

Note: Each semi-continuous variable will be counted against any integer variable limit for your
installation.

136 CHAPTER 3

Some examples of @SEMIC usage are:

Example 1: @SEMIC(10, X, 20);

In this example, X will be restricted to being either 0, or to lie within the range [10,20].
Example 2: @FOR(PLANT(I): QSEMIC(MIN HOURS, HOURS(I),

MAX HOURS)) ;

Here, we restrict the operating hours of each plant to be either 0, or to line in the range
[MIN HOURS,MAX HOURS]. Note that MIN HOURS and MAX HOURS must have been
set to explicit values beforehand in either a data or calc section.

Below, we have taken our familiar transportation model and modified it, via the use of @SEMIC, to
restrict shipments from each warehouse to each customer to be either 0, or between 3 and 10.

MODEL:

! A 3 Warehouse, 4 Customer Transportation Problem
that uses the semi-continuous (Q@SEMIC) to restrict
nonzero shipments to be between 3 and 10 units.;

SETS:
WAREHOUSE: CAPACITY;
CUSTOMER: DEMAND;

ROUTES (WAREHOUSE, CUSTOMER) : COST, VOLUME;
ENDSETS
DATA:
WAREHOUSE, CAPACITY = WH1,30 WH2,25 WH3,21;
CUSTOMER, DEMAND = Cl,15 C2,17 C3,22 C4,12;
COST = 6 2 6 7
4 9 5 3
8 8 1 b5;
ENDDATA

! The objective;
[R_OBJ] MIN = @SUM(ROUTES: COST * VOLUME) ;

! The demand constraints;

@FOR(CUSTOMER(J): [R_DEM]
@SUM(WAREHOUSE(I): VOLUME(I, J)) >=
DEMAND (J)) ;

! The supply constraints;

@FOR(WAREHOUSE (I): [R_SUP]
@SUM(CUSTOMER(J): VOLUME(I, J)) <=
CAPACITY(I));

@FOR(ROUTES: @SEMIC(3, VOLUME, 10));

END
Model: TRANSEMIC

VARIABLE DOMAIN FUNCTIONS

137

Solving this model yields the following optimal values for the semicontinuous attribute, VOLUME:

Global optimal solution found.
Objective value:
Objective bound:
Infeasibilities:

Extended solver steps:
Total solver iterations:

VOLUME (
VOLUME (
VOLUME (
VOLUME (
VOLUME (
VOLUME (
VOLUME (
VOLUME (
VOLUME (
VOLUME (
VOLUME (
VOLUME (

Variable
WH1, C1)
WH1, C2)
WH1, C3)
WH1, C4)
WH2, C1)
WH2, C2)
WH2, C3)
WH2, C4)
WH3, C1)
WH3, C2)
WH3, C3)
WH3, C4)

5.

Value
000000

10.00000

6.
0.

000000
000000

10.00000

0.
.000000
.000000
.000000
.000000

N O W o

000000

10.00000

3.

000000

264.0000
264.0000

0.

000000
1
32

Reduced Cost

0.
-6.

0.

2.
-1.
.000000
.000000
.000000
.000000
.000000
.000000
.000000

000000
000000
000000
000000
000000

Positive Semi-Definite Matrices

LINGO's @POSD function allows one to specify that a matrix of decision variables must be positive

semi-definite. The matrix may be either lower triangular, upper triangular or square. In the case of

square matrices, @POSD will force the matrix to be symmetric. Alternatively, one can think of this as
allowing the user to formulate in terms of decision variables that are matrices rather than just scalars,
and where the non-negativity of a scalar variable is replaced by the positive definiteness of the matrix

of decision variables. It turns out that the barrier algorithms that are used for second-order cone
problems can be generalized to solving models with semi-definite matrix decision variables.

The syntax for @POSD is:

@POSD(matrix);

where matrix refers to a two-dimensional matrix (i.e., attribute on a two-dimensional set) that is either

lower triangular, upper triangular or square. An example of the @POSD function follows.

Note:

The @POSD function requires that your LINGO installation have both barrier and conic
solver licenses. Attempting to solve a model containing @POSD without these license will
trigger an error message.

138 CHAPTER 3

Positive Semi-Definite Matrix Example

To illustrate @POSD, suppose we have a covariance matrix for three stocks, AAPL, AMZN and
GOOG. This covariance matrix was "computed" by making an educated guess of what the covariances
are amongst our three stocks. A requirement for covariance matrices is that they be positive semi-
definite (POSD). It turns out that by estimating the covariance matrix, it's possible that the resulting
matrix is not truly POSD. To resolve this problem, we will find a new matrix that is close to our
original matrix, but with the requirement that the new matrix be positive semi-definite. The model
follows:

VARIABLE DOMAIN FUNCTIONS

139

MODEL:

SETS:

STOCK;

SXS(STOCK, STOCK): XG, XP, ERROR;
ENDSETS

DATA:

STOCK= AAPL GOOG AMZN;

! We have some "guesstimates" of individual entries
of a covariance matrix, however, taken together,
the resulting matrix happens to not be Positive Definite
and thus not a valid covariance matrix;

XG =
.011 -.013 .012
-.013 .061 .07
.012 .07 .06 ;
ENDDATA

! Find a symmetric matrix XP that is close to XG
but is positive definite;

! Minimize some measure of difference between XG and XP;
MIN = QSUM(SXS(I, J): ERROR(I, J)"2);

! Measure the errors;

@QFOR(SXS(I, J):

ERROR(I, J) = XP(I, J) - XG(I, J);

@FREE (ERROR) ;

)

! Off diagonal terms can be negative;
@FOR(SXS(I, J) | I #NE# J: Q@FREE(XP(I, J))):

! The new matrix must be positive semi-definite;
@POSD(XP);

DATA:
QTEXT
QTEXT
QTEXT
QTEXT

() = 'Our initial guess matrix:';

(

(

(
RTEXT (

(

A

)

) = @TABLE (XG) ;

) ="'

) = '"A Positive Semi-Definite matrix close to our guess:';
) = @TABLE (XP) ;

)

Ty .
’

QTEXT
ENDDAT

END
Model: POSDCOVMTX

140 CHAPTER 3

The basic idea behind the model is that the solver should find a new matrix, XP, that is close to our
guess matrix, XG, as measured by the sum of the squared differences of each of the matrix elements,
and that XP must be POSD. The following use of @POSD forces the POSD requirement on XP:

! The new matrix must be positive semi-definite;
@POSD(XP);

The data section of the model uses the @TABLE function to display both the original non-POSD
matrix and the new POSD matrix:

Our initial guess matrix:
AAPL GOOG AMZN
AAPL 0.1100000E-01 -0.1300000E-01 0.1200000E-01
GOOG -0.1300000E-01 0.6100000E-01 0.7000000E-01
AMZN 0.1200000E-01 0.7000000E-01 0.6000000E-01

A Positive Semi-Definite matrix close to our guess:
AAPL GOOG AMZN
AAPL 0.1590567E-01 -0.6982941E-02 0.5975522E-02
GOOG -0.6982941E-02 0.6838027E-01 0.6261064E-01
AMZN 0.5975522E-02 0.6261064E-01 0.6739848E-01

4 Data, Init and Calc
Sections

Typically, when dealing with a model’s data, you need to assign set members to sets and give values to
some set attributes before LINGO can solve your model. For this purpose, LINGO gives the user three
optional sections, the data section for inputting set members and data values, the init section for setting
the starting values for decision variables, and the calc section for performing computations on raw
input data.

The DATA Section of a Model

The data section allows you to isolate data from the rest of your model. This is a useful practice in that
it facilitates model maintenance and scaling of a model’s dimensions.

The data section begins with the keyword DATA: (including the colon) and ends with the keyword
ENDDATA. In the data section, you can have statements to initialize set members and/or the attributes
of the sets you declared in a previous sets section. These expressions have the syntax:

object_list = value_list;

The object_list contains the names of the attributes and/or a set whose members you want to initialize,
optionally separated by commas. There can be no more than one set name in object_list, while there
may be any number of attributes. If there is more than one attribute name in object_list, then the
attributes must be defined on the same set. If there is a set name in object_list, then all attributes in
object list must be defined on this set.

The value_list contains the values you want to assign to the members of object _list, optionally
separated by commas. As an example, consider the following model:

SETS:
SET1 /A, B, C/: X, Y;
ENDSETS
DATA:
X =1, 2, 3;
Y =4, 5, 6;
ENDDATA

142 CHAPTER 4

We have two attributes, X and Y, defined on the SET set. The three values of X are set to 1, 2, and 3,
while Yis set to 4, 5, and 6. We could have also used the following compound data statement to the
same end:

SETS:

SET1 /A, B, C/: X, Y;
ENDSETS
DATA:

—
~
o U1 K

’
’
’

ENDDATA

Looking at this example, you might imagine X would be assigned the values 1, 4, and 2 because they
are first in the values list, rather than the true values of 1, 2, and 3. When LINGO reads a data
statement's value list, it assigns the first # values to the first position of each of the » attributes in the
attribute list, the second n values to the second position of each of the » attributes, and so on. In other
words, LINGO is expecting the input data in column form rather than row form.

As mentioned, we can also initialize the set members in the data section. Modifying our sample model
to use this approach by moving the set members from the sets section to the data section we get:

SETS:
SET1: X, Y;
ENDSETS

ENDDATA

This method is, perhaps, the most elegant of the three methods presented above, in that all model data
(attribute values and set members) are isolated within the data section. Given that a model's data is
subject to frequent change, having all data isolated to one area should make model maintenance
simpler. We also refer to this concept of isolating data as data independence.

One additional method for inputting two-dimensional tables is through the use of a data frames.
Consider the following sets section for a transportation model where we are minimizing the cost of
shipping product from warehouses to customers:

! A 3 Warehouse, 4 Customer

Transportation Problem;

SETS:
WAREHOUSE : CAPACITY;
CUSTOMER : DEMAND;
ROUTES (WAREHOUSE, CUSTOMER) : COST, VOLUME;

ENDSETS

DATA, INIT AND CALC SECTIONS 143

We could enter the data for a four-customer, three-warehouse model with the data section:

DATA:

CUSTOMER = Cl1 C2 C3 C4;
WAREHOUSE = WH1 WH2 WH3;

COST =
6 2 6 7
4 9 5 3
8 8 1 5
CAPACITY = 30, 25, 21;
DEMAND = 15 17 22 12;
ENDDATA

On the other hand, the data frame style of input allows us to enter the first dimension of a two-
dimensional set along with an attribute of the same two-dimensional set, meaning we could use the
alternative data section:

DATA:

CUSTOMER = Cl1 C2 C3 C4;
WAREHOUSE, COST

WH1 6 2 6 7
WH2 4 9 5 3
WH3 8 8 1 5
CAPACITY = 30, 25, 21;
DEMAND = 15 17 22 12;

ENDDATA

Note that the WAREHOUSE set and COST attribute are now both entered in the same data statement.
The data frame method of input can be useful when reading in preexisting data sets from external files
(e.g., linear regression data sets). The complete version of this model can be found in the LINGO
sample models set under the name TRANFRAME

Parameters

You are not limited to putting attributes and sets on the left-hand side of data statements. You may also
initialize scalar variables in the data section. When a scalar variable's value is fixed in a data section,
we refer to it as a parameter.

As an example, suppose your model uses an interest rate of 8.5% as a parameter. You could input the
interest rate as a parameter in the data section as follows:

DATA:
INTEREST RATE = .085;
ENDDATA

144 CHAPTER 4

As with set attributes, you can initialize multiple parameters in a single statement. Suppose you also
add the inflation rate to your model. You could initialize both the interest rate and inflation rate in the
same data statement as follows:

DATA:
INTEREST RATE, INFLATION RATE = .085, .03;
ENDDATA

What If Analysis

In some cases, you may not be sure what values to input for the data in your model. For example,
suppose your model uses the inflation rate as a parameter. You may be uncertain as to the exact rate of
inflation in the future, but you know it will most likely fall within a range of 2 to 6 percent. What you
would like to do is run your model for various values of the inflation rate within this range to see how
sensitive the model's results are to inflation. We refer to this as what if analysis, and LINGO has a
feature to facilitate this. To set up a parameter for what if analysis, input a question mark (?) as its
value in place of a number as in the following example:

DATA:
INFLATION RATE = ?;
ENDDATA

LINGO will prompt you for a value for the INFLATION RATE parameter each time you solve the
model. Under Windows, you will receive a dialog box resembling:

Please input a value for:

INFLATION_RATE

Cancel OK

Simply input the desired value for the inflation rate and then press the OK button. LINGO will then set
INFLATION RATE to the value you input and proceed with solving the model.

On platforms other than Windows, LINGO will write a prompt to your screen asking you to input a
value for INFLATION RATE. Type in the value and then press the Enter key.

In addition to parameters, you can perform what if analysis on individual members of attributes by
initializing them to question marks in the data section, as well.

For an example of a model that uses what if analysis to compute the value of a home mortgage, see the
Home Mortgage Calculation model in Appendix A, Additional Examples of LINGO Modeling.

DATA, INIT AND CALC SECTIONS 145

Initializing an Attribute to a Single Value

Suppose you want to fix all the elements of an attribute to a single value. You can do this by entering a
single value on the right-hand side of the data statement. LINGO will initialize all the elements of the
attribute to this value. To perform what if analysis on the attribute, initialize it to a single question
mark and LINGO will prompt you for the values of all the members of the attribute each time the
model is solved.

As an example, consider the following excerpt from a model:

SETS:
DAYS / MO, TU, WE, TH, FR, SA, SU/:
NEEDS;

ENDSETS

DATA:
NEEDS = 20;
ENDDATA

LINGO will initialize all the members of the NEEDS attribute to the value 20.

If there are multiple attributes on the left-hand side of the data statement, you will need one value on
the right-hand side for each attribute on the left. For instance, let's extend the previous example, so we
have an additional attribute called COST:

SETS:
DAYS / MO, TU, WE, TH, FR, SA, SU/:
NEEDS, COST;
ENDSETS

DATA:
NEEDS, COST = 20, 100;
ENDDATA

All seven members of NEEDS will be initialized to 20 and all seven members of COST to 100.

Omitting Values in a Data Section

You can omit values in a data statement to indicate that you don’t want to fix the values of particular
members. For instance, suppose you have a manufacturing company and you need to do some capacity
planning for the next 5 years. Furthermore, suppose it takes some time to boost capacity. As such, it
would be impossible to increase capacity over the next two years. In such a case, you might do
something like the following:

SETS:

YEARS /1..5/: CAPACITY;
ENDSETS
DATA:

CAPACITY = 34, 34, , , ;
ENDDATA

146 CHAPTER 4

We have set CAPACITY for the first two years to 34, but have omitted values for the last three years.
LINGO will assume, therefore, that it is free to determine the values for CAPACITY in the last three
years.

Note: You must use commas when omitting values. If you do not use the commas, LINGO will
think you did not enter the correct number of values for the attribute, which will trigger an
error message.

The INIT Section of a Model

The INIT section is another optional section offered by LINGO. In the init section, you enter
initialization statements that look much like the data statements found in the data section. The values
you input in the init section are used as starting points by LINGO’s solver. Unlike the variables that
are initialized in the data section, the solver is free to alter the values of variables initialized in the init
section.

Note: Starting points specified in an INIT section are only of use in nonlinear or integer models.
Starting points currently offer no help in purely linear models. If you are not sure whether
your model is linear or nonlinear, you can check the count of nonlinear constraints in the
solver status window. If there are any nonlinear constraints, then your model is nonlinear. For
more information on the nature of nonlinear models and how good starting points can be of
assistance, please see Chapter 15, On Mathematical Modeling.

Note: As an example, in a set defining a group of stocks, you may have a known price of each
stock, but the amount to buy or sell of each stock is unknown. You would typically initialize
the price attribute in the data section. If approximate values of the buy and sell attributes are
known, you can tell LINGO this information by entering it in the init section. LINGO then
uses the values specified as a starting point in its search for the optimal solution. If your
starting point is relatively close to an optimal solution, you may save on the solution time
required to run your model.

An init section begins with the keyword /NIT: and ends with the keyword ENDINIT. The syntax rules
for init statements in the init section are identical to the rules for data section statements. You can have
multiple attributes on the left-hand side of a statement, you can initialize an entire attribute to a single
value, you can omit values in an attribute, and you can use the question mark to have LINGO prompt
you for an initialization value whenever you solve the model.

As an example of how a good starting point may help to reduce solution times, consider the small
model:

Y <= QLOG (X)
<=

X"2 + ¥Y"2 1;

DATA, INIT AND CALC SECTIONS 147

The function @LOG(X) returns the natural logarithm of X. This model has only one feasible point of
(X,Y) = (1,0). If we solve this model without an init section, we get the solution:

Feasible solution found at step: 12
Variable Value
Y 0.5721349E-03
X 1.000419

Note that it required 12 iterations to solve. Now, let’s add an init section to initialize X and Y to a point
close to the solution, so we have:

INIT:
X = .999;
Y = .002;
ENDINIT

Y <= QLOG (X)
<=

X"2 + ¥Y"2 1;

Solving this modified model, we get the solution:

Feasible solution found at step: 3
Variable Value
X 0.9999995
Y 0.0000000

Note our solution required only 3 iterations compared to the 12 iterations required without the init
section.

Note: Variables may also be initialized in a calc section as illustrated in the next section, The Calc
Section of a Model.

The CALC Section of a Model

In many instances, your model’s raw input data will need additional massaging to get it into the proper
form. As an example, suppose your raw data consists of daily observations of a number of securities’
closing prices. Furthermore, let’s suppose that your model ultimately requires the covariance matrix
for the securities to be computed from the raw closing price data. You could certainly compute the
covariance matrix as part of the constraint section in your model. However, entering simple
computations as constraints will make your model artificially large. Another option, although
inconvenient, would be to compute the covariance matrix outside of LINGO and pass it to LINGO as
external data. Actually, what you would really like is a section in LINGO to perform data
manipulation in such a way that it doesn’t increase the size of the final optimization model passed
through to the solver engine. This is the function of the calc section.

A CALC section begins with the keyword CALC: and ends with the keyword ENDCALC. You may
input any expression in a calc section that you would in the constraint section of a model. However,
each expression must be in the form of an assignment statement. In an assignment statement, a single
variable appears on the left-hand side of an expression, followed by an equality sign, followed by an

148 CHAPTER 4

arbitrary mathematical expression on the right-hand side. Furthermore, the right-hand side expression
may only contain references to variables that are set as part of the model’s input data (i.e., set in a
previous data section or calc expression.)

As an example, here’s a model with a calc section that computes the average of three variables:

MODEL:

DATA:
X, Y, 2 =1, 2, 3;
ENDDATA

CALC:
AVG = (X +Y + 2) / 3;
ENDCALC

END
Example of a valid calc section

Now, suppose we did not know the value of Y beforehand. The following model with Y dropped from
the data section would trigger an error in LINGO. The error occurs because the value of Yis an
unknown, which violates the requirement that all right-hand side variables in a calc expression must
have already had their values established in a previous data or calc section:

MODEL:

DATA:
X, z2 =1, 3;
ENDDATA

CALC:
AVG = (X +Y + 2) / 3;
ENDCALC

END
Example of an invalid calc section

DATA, INIT AND CALC SECTIONS 149

You may perform running calculations in a calc section, which means that you may break complex
calc expressions down into a series of smaller expressions. Here we break the computation from
above into two steps:

MODEL:

DATA:
X, Y, Z
ENDDATA

1, 2, 3;

CALC:
AVG = X + Y + Z;
AVG AVG / 3;
ENDCALC

END
Example of a running calc expression

150 CHAPTER 4

There is no limit to the number of times that a variable may appear on the left-hand side of a calc
expression. However, the final calc expression for the variable will determine its value in the final
solution report.

Calc expressions are computed sequentially in the order in which they appear in the model. So, if one
calc expression feeds its value into a subsequent expression, then it must appear before its dependent
expression. For example, the following calc section is valid:

CALC:

X =1;

Y =X + 1;
ENDCALC

while this variation is not valid:

CALC:
Y = X + 1;
X =1;
ENDCALC

In the second example, Y depends on X, but X is not defined until after Y.

Of course, set looping functions may also be used in calc expressions. For example, consider the
following portfolio optimization model. In this model, we take the annual returns for three stocks and
in a calc section compute the following three pieces of information for the stocks: average return, the
covariance matrix, and the correlation matrix. This information is then used in a standard Markowitz
model to determine an optimal portfolio that meets a desired level of return while minimizing overall
risk.

MODEL:

SETS:
STOCKS: AVG RET, WEIGHT;
DAYS;
SXD(DAYS, STOCKS): RETURN;
SXS(STOCKS, STOCKS): COVR, CORR;

ENDSETS
DATA:
DAYS =1..12;
TARGET = .15;
STOCKS = ATT GMC UsX;
RETURN = 0.300 0.225 0.149
0.103 0.290 0.260
0.216 0.216 0.419
-0.046 -0.272 -0.078
-0.071 0.144 0.169
0.056 0.107 -0.035
0.038 0.321 0.133
0.089 0.305 0.732
0.090 0.195 0.021
0.083 0.390 0.131
0.035 =-0.072 0.006
0.176 0.715 0.908;

DATA, INIT AND CALC SECTIONS 151

ENDDATA

CALC:
!Average annual return for each stock;
@FOR(STOCKS(S):
AVG RET(S) =
(@SUM(SXD(
@SIZE (DAYS)
)
!Covariance matrix;
@FOR(SXS(S1, S2):
COVR(S1, S2) =
@SUM(DAYS(D):(RETURN(D, S1) - AVG RET(S1)) *
(RETURN(D, S2) - AVG RET(S2))) / @SIZE(DAYS)
);
!Although not required, compute the correlation matrix;
@FOR(SXS(S1, S2):
CORR(S1, S2) = COVR(S1, S2)
(COVR(S1, S1) * COVR(S2, S2
)i
ENDCALC
'Minimize the risk of the portfolio
(i.e., its wvariance);
[R_OBJ] MIN = @SUM(SXS(S1, S2):
WEIGHT (S1) * WEIGHT(S2) * COVR(S1, S2));
'Must be fully invested;
[R_BUDGET] @SUM(STOCKS: WEIGHT) = 1;
'Must exceed target return;
[R_TARGET] @SUM(STOCKS: AVG RET * WEIGHT) >= TARGET;

D, S): RETURN(D, S)) /
)

/
)) 7.5

END
Model: MARKOW

We demonstrated how to initialize variable values in the previous topic on init sections. Variables may
also be initialized in a calc section. The basic idea is to set the variable's value using one or more
statements in a calc section. Once the variable's value has been set in a calc section, the variable will
be marked as fixed in value, and will not be allowed to be changed the next time you issue a solve
command. Obviously, we don't want an optimizeable to be a fixed variable. To correct this, we use the
@RELEASE function to release the fixed variable so that it is once again optimizable. The following
example illustrates:

152 CHAPTER 4

MODEL:

SETS:
Sl: X;
ENDSETS

DATA:
S1 =1..5;
ENDDATA

CALC:
! Tnitialize the odd members of X to .5;
@FOR(S1(I) | @MOD(I, 2) #NE# O:
X(I) = .5;
! The previous statement fixed X(I) to .5.
We must now release it so that it remains
optimizable;
QRELEASE (X (I));
)
ENDCALC

END

Interrupting Calc Sections

If you are processing a long-running calc section, say solving several large models in a loop, then at
some point you may decide to interrupt processing. When you press the Interrupt Solver button on the
Solver Status Window while processing a calc script, LINGO will display the dialog box:

Interrupt Calc Section X

0 Interrupt both Solver and Calc saript
() Interrupt Selver but continue Cale script

() Don't nterrupt

Cancel OK |

The choices available here are:

¢ Interrupt both Solver and Calc script — This option interrupts both the solver and the calc
script, meaning all processing stops and the solver returns control to the LINGO front-end.

DATA, INIT AND CALC SECTIONS 153

¢ Interrupt solver but continue Calc script — This interrupts the solver, stopping optimization
on the current model. Control, however, is not returned to the front-end, rather it gets returned
to the calc script processor allowing the script to continue running and solving additional
models.

¢ Don't interrupt — Here, the calc section picks up again where it left off before the interrupt
was requested and processing continues normally.

Summary

You should now be comfortable with adding basic data, init and calc sections to your models. Keep in
mind that initialization performed in a data section fixes a variable's value. Initialization done in an init
section is used only as a temporary starting point, which may be of benefit in finding solutions to
nonlinear models. Initialization in a calc section holds until another calc expression redefining a
variable’s value is encountered. The benefit of placing computations in a calc section as opposed to
placing them in the general constraint section is that calc expressions are treated as side computations
and aren’t fed into the main solver, thereby improving execution times.

We have only touched on some of the basic features of data and init sections in this chapter. In
subsequent sections, you will see how to add hooks in your data and init sections to external files,
spreadsheets, and databases.

5 Menu Commands

In this section, we will discuss the pull down menu commands available in the Windows, Mac and
Linux versions of LINGO. The Command-line Commands section deals with the commands available
through LINGO's command-line interface. If you're not using a Windows, Mac or Linux version of
LINGO, then you will be primarily interested in the command-line section. If you are using a
Windows, Mac or Linux version, then you will be primarily interested in this section. Windows Mac
and Linux users may also be interested in the command-line interface if they plan to build command
scripts to automate LINGO.

Accessing Menu Commands

Menu commands may be accessed by either selecting them from a pull down menu, pressing the
command's button in the foolbar, or, if applicable, entering the command's keyboard equivalent (also
referred to as its accelerator key).

Menus

LINGO groups commands under the following five menus:

File
Edit
Solver
Window
Help

* & & o o

The File menu contains commands that primarily deal with handling input and output. The Edit menu
contains commands for editing the document in the current window. The So/ver menu contains
commands to solve a model and generate solution reports. The Window menu has commands that deal
with the mechanics of handling multiple windows. The Help menu provides access to LINGO's online
help facility.

In addition, the Mac has a Lingo menu. This menu is referred to as the application menu, and is a
standard feature of Mac applications. The application menu typically contains commands to set
preferences/options, the application's about box, and the quit command.

The Toolbar

By default, the toolbar runs along the top of the screen and provides a shortcut for accessing the most
commonly used commands in the menus.

156 CHAPTERS

LINGO's toolbar "floats." Thus, you can reposition it by dragging it to any part of the screen. You can
also choose to suppress the toolbar by clearing the Toolbar button on the Interface tab of the
Solver|Options command.

Each button on the toolbar corresponds to a menu command. Not all menu commands have a toolbar
button, but, in general, the most frequently used commands have an equivalent button.

LINGO displays "tool tips" for each button. When you position the mouse over a button, a short

description of what the button does appears in a pop up window and in the status bar at the bottom of
the screen.

The WindowsToolbar

LINGO's toolbar for its Windows version is illustrated in the following graphic:

Nefe« B3/ S5¢ Q0 oxliiMBEE 7@

Here is a list of the buttons and their equivalent commands:

File Menu:
File|New File|Open
E File|Save * File|Print
Edit Menu:
Edit|Undo f Edit|Redo
Edit|Cut @ Edif|Copy
E Edit|Paste \

Edit|Find

MENU COMMANDS

157

>

Edit|Match
Parenthesis
Solver Menu:
Solver|Solve
- Solver|Options
Window Menu:
Window|Send
To Back
E Window|Tile
Help Menu:
o Help|Topics

The Mac and LinuxToolbar

X

Solver|Solution

Solver|Picture

Iy

Window|Close All

Help|Pointer

LINGO's toolbar for its Mac and Linux versions is illustrated in the following graphic:

NAM&® 9 « IRAO 99vHVMBER ?

Here is a list of the buttons and their equivalent commands:

158 CHAPTERS

File Menu:
B File|New — File|Open
E File|Save [' ; File|Print
Edit Menu:
j Edit|Undo : Edit|Redo
03’ Edit|Cut @ Edit|Copy
E Edit|Paste N Edit|Find
E i Edit|Match Parenthesis
Solver Menu:
@ Solver|Solve X=' Solver|Solution
J Solver|Options E Solver|Picture
Window Menu:
Window|Close All Window|Tile
Window|Previous
Help Menu:
L

Help|Topics

MENU COMMANDS

159

Accelerator Keys

Along with accessing commands via the menus and toolbar, most commands may also be accessed by
a single, unique keystroke known as an accelerator. The equivalent accelerator key is listed alongside

each command in the menus.

Menu Commands In Brief

In this section, we give a brief listing of the menu commands available in LINGO. The commands are

categorized into the five main menus:

File
Edit
Solver
Window
Help

* & 6 o o

Note: Not all commands are available under all operating systems. The following command tables
will indicate via check marks if a command is available in either Windows, Mac, or Linux.

File Menu Commands

Command e, A Description

oy

New
Open
Save
Save As
Close
Print

Print Setup

AN N N N N N N N
AN N N N N N N N
AN NN N N N NN

Print Preview

AN

Log Output

Opens a new model window.

Closes the current window.

Configures your printer.

Opens an existing model previously saved to disk.

Saves the contents of the current window to disk.

Prints the contents of the current window.

Displays the contents of the current window as it would
appear if printed.

Opens a log file for logging output to the command

Saves the contents of the current window to a new name.

160 CHAPTERS

Take 4
Commands

Export File v
License v
Excel v

Database User v
Info

Exit v

Edit Menu Commands

Command 2 - ﬂ
-w L)

Undo
Redo
Cut

Copy
Paste

NN NN SR

Paste Special

AN

Select All
Find

AN

Find Next
Replace
Go To Line

Match
Parenthesis

N X X

Paste Function v

v

AN

AN

v

SERNEENEENERN

<

window.

Runs a command script contained in a file.

Exports a model in MPS or MPI file format.
Prompts you for a new license password to upgrade your

system.

Allows you to load a model from Excel into a LINGO
model window, or write a LINGO model to an Excel
workbook range. This is useful for users that maintain
embedded models in Excel workbooks.

Prompts you for a user id and password for database access
via the @ODBC() function.

Exits LINGO.

Description

Undoes the last change.

Redoes the last undo command.

Cuts the current selection from the document.

Copies the current selection to the clipboard.

Pastes the contents of the clipboard into the document.

Pastes the contents of the clipboard into the document,
allowing choice as to how the object is pasted.

Selects the entire contents of the current window.

Searches the document for the occurrence of a specified
text string.

Repeats the find operation for the last string specified.
Replaces a specified text string with a new string.
Moves the cursor to a specified line number.

Finds the parenthesis that closes a selected parenthesis.

Pastes a template of a selected LINGO function.

MENU COMMANDS 161

Select Font

Insert New
Object

Links

Object
Properties

Solver Menu Commands

. {a‘
-)
v v

Command

Solve

Solution

Range
Options

Generate

Picture

Debug

Model
Statistics

Look

AN

v

AN

v

(\

Specifies a font for a selected block of text.

Embeds an OLE object into the document.

Controls the links to external objects in your document.

Specifies the properties of a selected, embedded object.

Description

Solves the model in the current window.

Generates a solution report window for the current
model.

Generates a range analysis report for the current window.
Sets system options.

Generates the algebraic representation for the current
model.

Displays a graphical picture of the models matrix.

Tracks down formulation errors in infeasible and
unbounded linear programs.

Displays a brief report regarding the technical details of a
model.

Generates a formulation report for the current window.

162 CHAPTERS

Window Menu Commands

Command)

Command v v 4
Window

Status v v v
Window

Close All v v v
Tile v v v
Cascade v 4 v
Next v v
Previous v v v

Arrange Icons v

Help Menu Commands
Command é 5
v v

Help Topics v
Register v

AN

AutoUpdate

About LINGO v v v

Description

Opens a command window for command-line operation
of LINGO.

Opens the solver's status window.

Closes all open windows.

Arranges all open windows into a tiled pattern.
Arranges all open windows into a cascading pattern.
Brings the next window to the front.

Brings the previous window to the front.

Aligns all iconized windows at the bottom of the main
frame window.

Description

Accesses LINGO's online help facility.
Registers your version of LINGO online.

Checks to see if an updated copy of LINGO is available
for download on the LINDO Systems Web site

Displays the version and size of your copy of LINGO,
along Systems.with information on how to contact
LINDO

MENU COMMANDS 163

Menu Commands In Depth

In the remainder of this section, we will document all the LINGO commands specific to the Windows,
Mac and Linux versions. The commands are categorized by the five main menus:

File
Edit
Solver
Window
Help

* & & o o

1. File Menu

LINGO's File menu contains commands that generally pertain to the movement of files in and out of
LINGO.

File|New

The New command opens a new, blank window. When you select the New command, you will be
presented with the following dialog box:
F]

File New X

Open a new file of type: —
0K
1. LINGOD Model [*.lg4] |—J

2. Lingo Model [Text Only) [*.Ing)

3. Lingo Data [Idt) Cancel
4. Lingo Command Script [*.Itf) ™
5. Lindo Model [* Itz) elp

k 4

You may then select the type of file you want to create. The file must be one of the four types:

1. LINGO Model (*.1g4)
The LG4 format was established with release 4.0 of LINGO. LG4 is the primary file format used by
LINGO to store models under Windows and is not used on other platforms. This format supports

164 CHAPTERS

multiple fonts, custom formatting, and Object Linking and Embedding (OLE). LG4 files are saved to

disk using a custom binary format. Therefore, these files can't be read directly into other applications

or transported to platforms other than Windows. Use the LNG format (discussed next) to port a file to
other applications or platforms.

2. LINGO Model (Text Only) (*.Ing)

The LNG format is a portable format for storing your models. It is the standard file format used by
LINGO on non-Windows platforms. LNG files are saved to disk as ASCII text and may be read into
any application or word processor that supports text files. The LNG file format is supported by LINGO
on all platforms, and LNG files can be ported from one platform to another. LNG files do not support
multiple fonts, custom formatting, or OLE embedding of objects.

3. LINGO Data (*.ldt)

LDT files are data files that are typically imported into LINGO models using the @FILE function.
@FILE can only read text files. Given this, all LDT files are stored as ASCII text. LDT files do not
support multiple fonts, custom formatting, or OLE embedding.

4. LINGO Command Script (*.1tf)

LTF files are LINGO command scripts. These are ASCII text files containing a series of LINGO
commands that can be executed with the File|Take Commands command. For more information on
commands that can be used in a LINGO script, refer to Command-line Commands. LTF files do not
support multiple fonts, custom formatting, or OLE.

5. LINDO Model (*.1tx)

LTX files are model files that use the LINDO syntax. Longtime LINDO users may prefer LINDO
syntax over LINGO syntax. LINDO syntax is convenient for quickly entering small to medium-sized
linear programs. As long as a file has an extension of .Itx, LINGO will assume that the model is
written using LINDO syntax. Readers interested in the details of LINDO syntax may contact LINDO
Systems to obtain a LINDO user’s manual.

When you simply press either the New toolbar button or the F2 key, LINGO assumes you want a
model file. Thus, LINGO does not display the file type dialog box and immediately opens a model file
of type LG4.

If you have used the Solver|Options command to change the default model file format from LG4 to
LNG, LINGO will automatically open a model of type LNG when you press either the New button or
the F2 key.

You may begin entering text directly into a new model window or paste in text from other applications
using the Windows clipboard and the Edit|Paste command in LINGO.

File|Open

The Open command reads a saved file from disk and places it in a LINGO Window. The file can be a
LINGO model file (*.L.G4), or any other file. If the file is not in LG4 format, it must be in ASCII text
format.

MENU COMMANDS 165

After issuing the Open command, you will be presented with a dialog box resembling the following:

! File Open...
£ S « LINGOE4_ 21 » Samples »

Organize - MNew folder

SampText BFeavesigs B CHARTCITIES Igd
B aLorTigs B inFun_t.igs [CHARTDISTRO g4
B ALTORTCALC Igd BFeLenD.gs B cHaRTRANIg
B 2rouTESC24.194 BFeLEnDCCRIgs [P CHARTGANTT.Ig4
B asieaLigs Feoigs B CHARTNET g2
B A5TROCOSTRNDO.Ig4 BFcarLocigs B CHARTPSURF.Ig4
File name: “

-

=
-]

B cHaRTS g4

¥ CHARTSPACETIME Igd
¥ CHARTSTACKEDBAR Igd
B CHARTSTAFFIg4

[P CHARTSURF.Ig8

B cHEss.g4

“| Lingo Models (*.Ig4)

Open | Cancel

4

You can enter a file name in the File name edit box, or select a file name from the list of existing files
by double-clicking on a file. Press the Open button to open the file, the Cancel button to exit without
opening a file, or the Help button for assistance. You may select a different file type from the Files of
type list box causing LINGO to list only the files of that type. Once you have read in a LINGO model
file (a LG4 or LNG file), you may use the Solver|Solve command to solve the model.

In addition to its native LG4 and LNG file formats, LINGO supports the following three additional file

formats :

¢ MPS - The MPS file format is an industry standard format developed by IBM, which is
useful for passing linear and quadratic models from one solver or platform to another.
¢ MPI - The MPI format was developed by LINDO Systems as a portable format for

representing arbitrary math programming models.

¢ LP - The LP file format is another industry standard file format, as is MPS, for storing linear
and quadratic model. However, with LP format equations are stored using standard algebraic
format, making LP files much easier to read and interpret than MPS files. At present, LINGO

only supports linear models when reading LP format files.

If the file to be opened has an extension of .MPS, .MPI or .LP, then LINGO will invoke, respectively,
its MPS, MPI or LP reader to parse the file. When importing a non-native file, LINGO reads the file
from disk, converts it to an equivalent LINGO model, and places the model into a new model window.

166 CHAPTERS

More details follow immediately below. LINGO can also write MPS and MPI format files (but not LP

files); this is discussed in the File| Export File section below.

Importing MPS, MPI or LP Files

When LINGO reads an MPS, MPI or LP file, it converts the formulation to an equivalent LINGO

model. As an example, consider the following, simple model:

ObjRow)
Subject
Rowl)
Row2)
Row3)

Maximize 20X + 30Y
To:

X < 50

Y < 60

X + 2Y < 120

The MPS file for this model is:

NAME SAMPLE
OBJSENSE
MAX
ROWS
N OBJROW
L ROW1
L ROW2
L ROW3
COLUMNS
X ROW3
X OBJROW
X ROW1
Y OBJROW
Y ROW2
Y ROW3
RHS
RHS ROW1
RHS ROW2
RHS ROW3

ENDATA

50.
60.
120.

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

0000000
0000000
0000000

MENU COMMANDS 167

The MPI version of the model is:

BEGINMODEL SAMPLE
! Number of Objective Functions: 1

! Number of Constraints : 3
! Number of Variables : 2
VARIABLES
! Name Lower Bound Initial Point Upper Bound Type
X 0 1.23457 1e+030 C
Y 0 1.23457 1e+030 C
OBJECTIVES
OBJROW MAXIMIZE
EP_USRCOD -101
EP PUSH NUM 20

EP_PUSH VAR X
EP MULTIPLY
EP_PUSH NUM 30
EP PUSH VAR Y
EP MULTIPLY
EP_PLUS

CONSTRAINTS

ROW1 L
EP_USRCOD -101
EP PUSH VAR X
EP_PUSH NUM 50
EP_MINUS

ROW2 L
EP_USRCOD -101
EP_PUSH VAR Y
EP_PUSH NUM 60
EP_MINUS

ROW3 L
EP_USRCOD -101
EP PUSH VAR X
EP_PUSH NUM 2
EP PUSH VAR Y
EP MULTIPLY
EP_PLUS
EP_PUSH_NUM 120
EP_MINUS

ENDMODEL

168 CHAPTERS

And, the LP format version of the model is:

\ LP format example

Maximize
objrow: 20x + 30y
Subject To

rowl: x <= 50

row2: y <= 60

row3: x + 2y <= 120
END

One thing to notice at this point is that MPS and MPI formats are not very compact methods for
storing a model - they are designed for portability, as opposed to efficiency.

Using the File|Open command to read either of these three versions of the model into LINGO, we are
presented with the following window containing an equivalent LINGO model:

=

Lingo Model - SAMPLE (o][@ |3

1 MODEL

2 TITLE SAMPLE:

3 [OBJROW] MAX= 20 * X + 30 * ¥;
4 [ROW1] X <= 50:

5 [ROW2] ¥ <= 60;

€ [ROW3] X + 2 * Y <= 120;

7 END

Note how the model is automatically converted from MPS, MPI or LP format to native LINGO format.

Should you wish to save the file again using either MPS or MPI format rather than LINGO format, you
must use the File|Export File|MPS Format... command.

Note: The MPS, MPI and LP file formats are intended primarily for exporting (importing) models
to (from) other applications or platforms. These file formats are purely scalar in nature—all
set-based information is lost upon saving a LINGO model in either MPS or MPI format
(LINGO does not currently write LP format files). Thus, when saving copies of a model on
your own machine, you should always use the File[Save command in order to save models in
a native LINGO format (LG4 or LNG) in order to preserve your model in its entirety.

When it comes to acceptable constraint and variable names, the MPS, MPI and LP formats are less
restrictive than LINGO. To compensate for this fact, LINGO attempts to patch names when reading a
file, so that all the incoming names are compatible with its syntax. LINGO does this by substituting an
underscore for any character in a name that is not admissible. In most cases, this will work out OK.
However, there is a chance for name collisions where two or more names get mapped into one. For
instance, the variable names X./ and X%/ would both get mapped into the single LINGO name X /.
Of course, situations such as this entirely alter the structure of the model, rendering it incorrect.
However, you will be warned whenever LINGO has to patch a name with the following error message:

MENU COMMANDS 169

r h]

LINGO Error Message *

Eiod Code:

e Copy Explsin | OK

Emor Text:

The model translator had to patch name==s to make them compatible:
var names patched:
rov names patched:]

Hame collisions may have occurred.

[4

This message displays the number of variable and row names that were patched to get them to conform
to LINGO syntax.

If name collisions are a problem, then LINGO has an option that will ensure that all names remain
unique. This option involves using RC format for names encountered during MPS 1/O. RC format
involves renaming each row (constraint) in a model to be Rn, where n is the row’s index. Similarly,
each column (variable) is renamed to Cn. In addition, LINGO renames the objective row to be ROBJ.
To switch to RC format for MPS names, run the Solver|Options command, select the General Solver
tab, then click the checkbox titled Use R/C format names for MPS 1/O, as illustrated here:

8 Variables assumed non-negative
B Use R/C format names for MPS 1/0

As an example, we will once again import the same MPS format model as above. However, this time
we will use RC naming conventions. Here is the model as it appears after importing it into LINGO:

B¥ Lingo Model - SAMPLE = Bl ™<=
1 MODEL:

2 TITLE SAMPLE:

3 [ROBJ] MAX= 20 * Cl + 30 * C2;

4 [R1] Cl <= 50;

5 [R2] C2 <= &0;

6 [R3] C1 + 2 * C2 <= 120;

T END

Notice how the variable names now use RC format, guaranteeing that name collisions will not occur.

170 CHAPTERS

Another potential conflict is that MPS and MPI allow variable names to be duplicated as constraint
names and vice versa. LINGO does not allow for this. When you go to solve the model, you will
receive either error message 28 (Invalid use of a row name), or error message 37 (Name already in
use). Once again, you can switch to using RC name format to avoid this conflict.

As a final note, LINGO only supports free format MPS files, and does not support fixed format MPS
files. Therefore, variable and row names may not contain embedded blanks.

File|Save

The Save command saves the contents of the active window to disk using the existing file name for the
window. If the window has not been saved before, you will be prompted to provide a name for the file.

File|Save As

The Save As command allows you to save the contents of the active window under a new file name.
When issuing the Save As command, you will be presented with a dialog box that resembles the
following:

] “ LINGO64_21 » Samples y earch Samples o
Organize ~ MNew folder S a9
SampText PP asLeaLigd BPBLENDCCP.Ig4 B CHARTDISTRO.Ig4
B ALTOPT.Ig4 B¥ ASTROCOSTRNDO.Ig4 EFeoxigd ¥ CHARTFAN.Ig4
B ALTOPTCALC.Igd P eavesig B capLocigs EP CHARTGANTT.Ig4
B¥ AROUTESC24.1g4 BLEND.Ig4 ¥ CHARTCITIES Ig4 ¥ CHARTNETIg4
File name: | LINGO1
Save as type: Linge Models (".Igd)
~ Hide Folders Save Cancel
L)

You can enter a new file name in the File name edit box, or select a file name from the list of existing
files by double-clicking on it. If you do not specify a file extension, LINGO will append the extension
of the default model format to the name. If you want to prevent LINGO from appending an extension

to the name, place the file name in double quotes.

MENU COMMANDS 171

Press the Save button to save the model, the Cancel button to exit without saving, or the Help button
for assistance.

You may select a different file type from the Save as type list box. If your model has special fonts or
embedded objects, you must save it using the LG4 file format to preserve them. The LG4 format is a
special binary format readable only by LINGO. If you wish to create a text copy of your model, then
use the LNG file format. For further discussion of the available file formats under LINGO, refer to the
New command.

File|Close

Use the Close command to close the active (frontmost) window. If the window has been modified
without being saved, you’ll be asked whether you want to save the changes.

File|Print F7

Use the Print command to send the contents of the active window to your printer. First, LINGO will
display the Print dialog box:

i Print ot |
Printer
Name Microsoft Print to PDF ’ Properties
Status Ready

Type Microsoft Print To PDF
Where PORTPROMPT

Comment: (] Print to fie
Print range Copies
oA MNumiber of copies: 1 5
(O Pages from: 1 to:

1J1i|]2}] 3)3) =

Help [ok] cCancel

b - |

Select the printer to route the output to from the Name list box. Modify the printer's properties by
pressing the Properties button. Select a range of pages to print in the Print Range group box. If you
need multiple copies, input the number desired in the Number of copies field and specify if you want
the copies collated (assuming your printer is capable of collating). Finally, press the OK button to
begin printing. Press the Cancel button to exit without printing.

172 CHAPTERS

File|Print Setup F8

Use the Print Setup command to configure your printer. You should see a dialog box that resembles
the following:

r - 3
Printer
MName: Microsoft Print to PDF e Properties.
Status Ready

Tvpe Microsoft Print To PDF
Where: PORTPROMPT:

Comment:
Paper Orientation
Size: Letter ~ © Portrait
() Landscape
Help Network oK Cancel

ke 4

Select the target printer from the Name list box. Press the Properties button to set additional printer
properties. Select the type of paper and tray from the Paper group box. In the Orientation group box,
select whether you want portrait or landscape output. Press the Cancel button to exit without changing
the printer configuration. Press the OK button to save your changes and exit the Print Setup command.

MENU COMMANDS 173

File|Print Preview Shift+F8

Use the Print Preview command to display each page of the active window as it will appear when
printed. After issuing the Print Preview command, the contents of the active window will be placed in
a Preview window as follows:

Print... MNext Page Prev Page Zoom In Zoom Out Close

The Print button sends the file to the printer. The Next Page button brings the next page into the
viewer. The Prev Page button brings the previous page into the viewer. The One Page button puts the
viewer into single page mode, while the Two Page button puts the viewer into double page mode. The
Zoom In button is used to have the viewer zoom in on a region of the document. The Zoom Out button
undoes the effect of a Zoom In. Press the Close button to close the print viewer and return to the
normal command mode of LINGO.

If you would like to change some of the printer specifications, such as landscape output, use the Print
Setup command before issuing the Print Preview command.

, '
File|Log Output *
Normally, when you are using LINGO, it is operating in a menu driven mode, where you choose

commands from the pull down menus and reports are displayed in individual windows. LINGO can
also operate in command mode, where text commands or command script files drive the application

174 CHAPTERS

and all output is routed to a window known as the command window. All input and output passes
through the command window when LINGO is in command mode. You can open a command window
at anytime by issuing the Window|Command Window command.

In general, you will only be interested in running LINGO in command mode if you are planning to
embed LINGO in a larger application. If you do use LINGO in command mode, you will find the

command window can only hold a limited amount of output. Should you need to keep a disk based
copy of all that transpires in the command window, you will need to use the Log Output command.

The Log Output command opens a standard Windows file dialog from which you can name the log
file. You can echo the output to the command window as well as the file by checking the Echo to
screen checkbox. If you would like to append output to the end of an existing file, check the Append
output checkbox.

When you have selected a file for logging output, a check mark will appear in the File menu before the
Log Output command. To turn off Log Output, select the command again and the check mark will
disappear.

File| Take Commands

The Take Commands command is used to submit a LINGO command script file for processing. For
more information on LINGO's script language, refer to Command-line Commands.

As an example, we will build a small script file that contains a small product mix model and process it
using Take Commands.

To build a script file, issue the File|New command. LINGO will present you with the following dialog
box:

File New X
Open a new file of type: |T|
[1. LINGO Model [* g4 —
2. Lingo Model [Text Only] [*.Ing) o

3. Lingo Data [*Idt)
4. Lingo Command Script [*.It] H
5. Lindo Model (* Itx) elp

[4

Select item 4, LINGO Command Script, and press the OK button. LINGO will open a blank script file.

MENU COMMANDS 175

Now, enter the following into the script file:

1 Command script to solve small

2 Iproduct mix model:

3 SET ECHOIN 1 'Echo the input

4 SET TERSEO 1 'Put LINGO in terse output mode
5 MODEL: 'Here is the model

() MAX = 20 * X + 30 ~ ¥;

7 X <= 50:

8 Y <= €0;

9 X+ 2*Y <= 120;

10 END

11 LOOK ALL 'Look at thh formulation

12 GO !15o0lve the model

13 DIVERT SOLU.LGR !Open a file for the solution
14 SOLUTION !1Sends solution to open file
15 RVRT ICloses solution file

This is a command script that inputs a small product mix model, solves it, and puts the solution in a
text file. Save the command script to a file titled MyScript.ltf using the File|Save As command.

To run the script, issue the File|Take Commands command. You should see the following:

176 CHAPTERS

E Take Commands...

T « LINGOS&4 21 » Samples
Organize « Mew folder EE ~ El
Organize this folder's contents. |
-:ﬂrlpﬂ!
BPoocs.if
B Myscriptie
Tran,ltf

File name: | MyScript.itf . Linge Seript (*.1tf)

Qpen | Cancel

Double-click on the icon for MyScript.ltf to begin processing the command script. LINGO's command
window will now appear and you should be able to watch LINGO's progress at processing the script by
watching commands and output as they are logged in the command window. When LINGO finishes
the command script, the command window will resemble the following:

MENU COMMANDS 177

: 'Command script to solve small

: '"product mix model:

: S5ET ECHOIN 1 'Echo the input
Paramster 0ld Valus NHew Value
ECHCIN 1 1

: S5ET TERSEO 1 'Put LINGO in terse output mode
Parameter 0ld Value Hew Value
TERSEC 1l 1

: MODEL: 'Here is the model

? MAX = 20 * X + 30 * ¥;

? X <= 50;

? XY <= &0

? X+ 2 %Y <= 120;

? END

: LOOEK ALL 'Look at the formulation

1)]MODEL: 'Here is the model

2] MAX = 20 * X + 30 * X;

3) X <= 50;

4] Y <= 60:

178 CHAPTERS

Also of interest is the solution file, SOLU.LGR, created as part of our command script. If you open this
file, you should find the following solution to the model:

Variable Value Reduced Cost
X 50.00000 0.000000

Y 35.00000 0.000000

Row Slack or Surplus Dual Price

1 2050.000 1.000000

2 0.000000 5.000000

3 25.00000 0.000000

4 0.000000 15.00000

The output that was routed to the command window can be routed to a file using the Log Output
command.

File|Export File

The File|Export File... command allows you to export either MPS or MPI files. The MPS file format
is an industry standard format developed by IBM, and is useful for passing models from one solver or
platform to another. MPI file format was developed by LINDO Systems as a way to store all math
programs, from linear models to, in particular, nonlinear models.

Exporting MPS Files

The File|Export File|MPS format command generates the underlying algebraic formulation for the
current model and then writes it to a selected file in MPS format. MPS format is a common format for
representing linear programming models. MPS files can be ported to any solver that reads MPS files—
this includes most commercial linear programming packages.

As an example of exporting an MPS file, consider the model:

| Lingn Model - ... | = || & ||[nt3m| |

1 MAX = 20 * X + 30 * ¥;
2 X <= 50;

3 Y <= 60;

4 X + 2 * Y <= 120

MENU COMMANDS 179

After issuing the File|Export File|MPS format command and opening the file containing the MPS
model, we will find:

NAME NO TITLE

R R R R kb Sk e gk b gk b b b db b b db gk b b b b db R b b b b db db b dh b b b dh 2b db 2 2b b db 2b 2b db 2b 2 db 2b 2 3
* NOTICE: Generated by the MPS export utility for

* a maximization type problem.

The objective coefficients have flipped signs.
Interpret the objective value from the solution of

* this model accordingly.
khkhkkhkkhkhkhkhkkhkkhkhkhhkhkhkhhhkhkhkhkhhhkhkhhrhkhkhkhhhkhhhkhrhkkhkhkhrhkhkkhkhhrrhkkhkhkxkhk

* % %

ROWS
N 1
L 2
L 3
L 4
COLUMNS
X 1 -20
X 2 1
X 4 1
Y 1 -30
Y 3 1
Y 4 2
RHS
RHS1 2 50
RHS1 3 60
RHS1 4 120
BOUNDS
ENDATA

Note: A model must be linear or quadratic to successfully export it in MPS format.

Note: The MPS file format is intended primarily for exporting models to other applications or
platforms. The MPS format is purely scalar in nature—all set-based information is lost upon
converting a LINGO model to MPS format. Thus, when saving copies of a model on your
own machine, you should always use the File[Save command in order to preserve your model
in its entirety.

Note: When exporting a stochastic program to MPS format, LINGO will write a total of three
SMPS format files, consisting of the core model, its stochastic declarations and its time
structure.

180 CHAPTERS

Exporting MP!I Files

The MPI (Math Programming Interface) file format was developed by LINDO Systems as a way to
store all math programs, from linear models to, in particular, nonlinear models. As with MPS files, the
MPI format is scalar based. Thus, you will lose any sets in your model when saving it in this format.
Most users will not have a need for MPI formatted files. However, LINDO API users can load these
files directly and may find this feature useful.

Note: When exporting a stochastic program to MPI format, LINGO will write a total of four SMPI
format files, consisting of a header file, the core model, its stochastic declarations and its time
structure.

File|License

Some versions of LINGO require the user to input a license key. Also, if you upgrade your copy of
LINGO, then you will need to enter a new password. The File|License command prompts you for a
new license key.

When you run the File|License command, you will be presented with the dialog box:

LINGC License Key *

Pleaze enter your Lingo licenze key below:

[f you don't have a licensze key vou can press the "Demo’ button to
automatically generate a temporan icense for a demonstration wversion
of Lingo. Demo versiong function the same az standard verzions with
the one exception that magimumn problem dimenzions are restricted.

If pour icenze key iz available in the Windows clipboard you may pazte
it ik this dialog box by prezzing Chrl. Othenmize, carefully enter your
licenze key az one long string.

Y'ou can access thiz dailog box at any time uszing the FilelLicensze
commatd.

Help Cancel Demo

MENU COMMANDS 181

Carefully enter the key into the edit field, including hyphens, making sure that each character is
correct. Click the OK button and, assuming the password was entered correctly, LINGO will display
the About LINGO dialog box listing the features in the upgraded license. Verify that these features
correspond to the license you intended to install.

Note: If you were emailed your license key, then you have the option of cutting-and-pasting it into
the dialog box.

File|Excel

On Windows, LINGO has some useful links to Excel, which are discussed in more detail in the
Interfacing With Spreadsheets chapter. One of these features involves embedding a LINGO model in
an Excel workbook. LINGO may then be accessed directly from Excel via a VBA macro. The end
result is that the model appears to be seemlessly linked to Excel, which is helpful for users more
familiar with Excel than they are with LINGO.

The File| Excel command is useful for LINGO models embedded in Excel, in that it facilitates the
movement of models back and forth from Excel for testing within the LINGO GUI. The
File|Excel|Write Model to Range command sends models from LINGO to a range within a specified
Excel workbook. Whereas, the File|Excel|Read Model from Range loads a model from an Excel range
into a LINGO model window. Examples of these commands may be found in the section OLE
Automation Links from Excel.

File|Database User Info

On Windows, LINGO allows models to link directly with databases through use of the @ODBC()
function. Many times, the database you link your model to will require a user id and password. To
avoid having to enter your user id and password each time your model is run, you can input them once
at the start of your session using this command.

When you run the File|User Database Info command, you will be presented with the following dialog
box:

Database User Info x
User ID:
| Ok |
Passwond: =
Help

182 CHAPTERS

Enter any user id and/or password into the appropriate fields. For security reasons, LINGO does not
store this information from one session to the next. So, you will need to run this command at the start
of each session.

If security is not a concern, and you would like to store your database user information, then you can
create an AUTOLG.DAT file containing a DBUID command and a DBPWD command. Commands in
the AUTOLG.DAT file are executed automatically each time LINGO starts. Thus, DBUID and
DBPWD commands contained in an AUTOLG.DAT file will restore your database user information at
the start of each LINGO run.

File|Exit

Use the Exit command to quit LINGO when running on Windows. If any unsaved files are open, you
will be prompted to save them before LINGO shuts down.

2. Edit Menu

LINGO's Edit menu contains commands that generally pertain to editing and modifying the text within
a window.

Edit|{Undo

Use the Undo Command to undo the last modification made to the contents of a Window. Undo can
undo all operations except drag-and-drop text moves. LINGO stores a limited amount of undo
operations, so you won’t be able to depend on LINGO to undo extensive changes.

Edit|Redo

This command will redo the last undo operation. LINGO stores a limited amount of redo operations, so
you won’t be able to depend on LINGO to redo extensive changes.

Edif|Cut

Use the Cut command to clear the selected block of text and place it on the clipboard for pasting. To
select a block of text for cutting, place the cursor immediately before the block and press down on the
left mouse button. Now, drag the mouse until the cursor appears immediately after the block of text.
The text block should now be displayed in reverse video. Now, issue the Cut command to remove the
selected text from the document, placing it in the Windows clipboard.

Edit |Copy
Use the Copy command to copy the selected text to the clipboard for pasting. To select a block of text

for copying, place the cursor immediately before the block and press down on the left mouse button.
Now, drag the mouse until the cursor appears immediately after the block of text. The text block

MENU COMMANDS 183

should now be displayed in reverse video. Now, issue the Copy command to place a copy of the
selected text in the Windows clipboard.

The Copy command is a convenient way to transfer small amounts of data from LINGO to other
applications.

Edit|Paste

Use the Paste command to replace the current selection in the active window with the contents of the
Windows clipboard. The Paste command is a convenient way to import small amounts of data from
other applications into your LINGO models.

Edit|Paste Special *

Use the Paste Special command to insert the contents from the Windows clipboard into the active
window at the cursor insertion point. This command can do much more than insert just plain text as
done by the standard Paste command. Paste Special can be used to insert other objects and links to
other objects. This is particularly useful for adding links to supporting data for your model. By
inserting a link to your data sources, it is much easier to find and view them.

184 CHAPTERS

As an example, suppose we have the following transportation model:

! A 3 Warehouse, 4 Customer
Transportation Problem;
SETS:
WAREHOUSE / WH1, WH2, WH3/: CAPACITY;
CUSTOMER / Cl1, C2, C3, C4/: DEMAND;
ROUTES (WAREHOUSE, CUSTOMER): COST, VOLUME;
ENDSETS
! The objective;
MIN = @SUM(ROUTES: COST * VOLUME) ;

! The demand constraints;

@QFOR(CUSTOMER(J) :

@SUM(WAREHOUSE(I): VOLUME(I, J)) >=
DEMAND (J)) ;

! The supply constraints;

@FOR (WAREHOUSE(I): [SUP]

@SUM(CUSTOMER(J): VOLUME(I, J)) <=
CAPACITY(I));

! Here are the parameters;

DATA:

CAPACITY = QOLE ('D:\LNG\TRANLINKS.XLS"') ;
DEMAND = @OLE ('D:\LNG\TRANLINKS.XLS"') ;
COST = QOLE ('D:\LNG\TRANLINKS.XLS'") ;
QOLE ('D:\LNG\TRANLINKS.XLS') = VOLUME;

ENDDATA

As we can see from the data section, we are importing data from the Excel file TRANLINKS.XLS and
writing the solution back out to the same file.

MENU COMMANDS 185

A nice feature would be to insert a link to the spreadsheet into our model file. This way, we could view
the data and the solution without having to start Excel and load the spreadsheet. To do this, open Excel

and load the spreadsheet as we have done here:

A B C
1
2 Capacity:
3 whil wh2
4 30 25
5
6 Demand:
7 cl c2
8 15 17
9
10 Cost: cl
11 whil 6
12 wh2 4
13 wh3 8
14
15 Volume: cl
16 whil 2
17 wh2 13
18 wh3 0
19
20 Shipping Cost:

wh3

21

c3
22

$161

cd
12

For complete information on importing data from Excel, see Interfacing with Spreadsheets.

186 CHAPTERS

Now, select the range B2:F21 in the spreadsheet. Next, from Excel's Edit menu, choose the Copy
command. Now, click on LINGO, place the cursor right before the data section, and give the
Edit|Paste Special command. Click on the Paste Link button in the dialog box, so you see the

following:

Paste Speaal

Source: Sheet1!'R1C1:R21C6
As:

() Paste

© Paste Link

Inserts the contents of the clipboard into your
document as Microsoft Excel Worksheet. The
data is linked to the source file so that changes to
the file will be reflected in your document.

X
0K
Cancel
(] Display As lcon

MENU COMMANDS 187

Finally, click the OK button and you should be able to see the spreadsheet contents in the LINGO
model:

B¥ Lingo Mode! - TRANOLE

i
Capacity:
whi wh2 wh3
30 25 21
Demand:
ci c2 c3 cd
15 17 ‘22 12
Cost: cl c2 c3 cd
whi 6 2 6 7
wh2 4 9 5 3
wh3 8 8 1 5
Volume: cl c2 c3 cd
whi 2 17 2 0
wh2 13 0 0 12
wh3 0 0 21 0
Shipping Cost: $161
2 Data:
3 CAPACITY, DEMAND, COST = @OLE ("\LINGO\SA}
4 @OLE ("\LINGO\SAMPLES\TRANOLE.XLS", "VOLU}
5 ENDDATA

188 CHAPTERS

This link will be saved as part of your LINGO file. Therefore, whenever you open the model, the
spreadsheet will be visible. Note that whenever you reopen the LINGO model, you may want to open
the link, so the contents are updated automatically.

You can do this by selecting the spreadsheet in the LINGO model, giving the Edit|Links command,
and pressing the Open Links button in the dialog box.

As a final note, all embedded links and objects are ignored by LINGO's compiler. Thus, you are free to
insert links and objects wherever you choose in a model.

Edit|Select All

Use the Select All command to select the entire contents of the active window. This is useful when you
want to copy the entire contents of the window elsewhere, or if you want to delete the contents of the
window.

Edit|Find

Use the Find command to search for a desired string of text in the active window. When you issue the
Find command, you should see the following dialog box:

- b |
Find X
Find what: | |
- Cancel
|| Match whobs word only Direction
|__| Match case up © pown
k

Enter the text you wish to search for in the Find what box. Check the Match whole word only box to
have LINGO find only whole words of text (i.e., don't search for occurrences of the text embedded in
other words). Check the Match case box to have LINGO search only for instances of the text with the
same capitalization. Click the Find Next button to find the next instance of the text.

Edit|Find Next

Use the Find Next command to find the next instance of the text most recently searched for using the
Find command in the active window.

MENU COMMANDS 189

Edit|Replace

Use the Replace command to replace one string of text with another in the active window. When you
issue the Replace command, you will see the following dialog box:

r s |

s

Find what: ||

Replace with:

|_] Match whole word only

Cancel

b o

Enter the name of the text you want to replace in the Find what box. Enter the text you want to replace
the old text with in the Replace with box. Clicking the Find Next button will cause LINGO to find the
next occurrence of the old text. Clicking the Replace button will cause the next occurrence of the old
text to be replaced by the new text. The Replace All button will replace all occurrences of the old text
with the new text throughout the entire document.

Check the Match whole word only box to have LINGO replace only whole words of the text (i.e., don't
replace occurrences of the text embedded in other words). Check the Match case box to have LINGO
replace only instances of the text with the same capitalization.

Edit|Go To Line #

Use the Go To Line command to jump to a selected line in the active window. When you issue the Go
To Line command, you will see the following dialog box:

190 CHAPTERS

r |

Go To Line @
1]
Go to line number: Cancel
1 = Top
Bottom
Help

k 4

Enter a line number in the Go fo line number box. Then, press the OK button and LINGO will jump to
the desired line number. Press the Top button to go to the top of the document, or the Botfom button to
go to the bottom.

Edit|Match Parenthesis

Select a parenthesis in a document. Then, use the Match Parenthesis command to find the closing
parenthesis for selected parenthesis.

This command is useful when using nested statements such as:

@QFOR(FXA(I, J):
JP(I, J) = MPF(I) * CAGF(I, J);
JP(I, J) = MPA(J) * CFGA(I, J));

where it may be difficult to find the close of a given parenthesis.

If no parenthesis is selected prior to issuing the Match Parenthesis command, LINGO will select the
parenthesis nearest to the current cursor position.

In addition to this command, there is one other way to find matching parentheses. LINGO will
highlight matching parentheses in red when the Match Paren option is enabled under the
Solver|Options command. By placing the cursor immediately after one of the parentheses of interest,
you will notice that the color of the parenthesis changes from black to red. LINGO will simultaneously
display the matching parenthesis in red. These parentheses will remain displayed in red until you move
the cursor to another position, at which point they will be returned to a black color.

MENU COMMANDS 191

Edit|Paste Function

Use the Paste Function command to paste any of LINGO’s built-in functions at the current insertion
point. Choose the category of the LINGO function you want to paste from the secondary menu, and
then select the function from the cascading menu.

In the following illustration, we have chosen the External Files category from the secondary menu.

I

Paste Function External Files r @FILEL 'File

Financial k @ODBC('datasource’, table’, 'call, ..., 'caln'T)

Mathematical k @OLEY "«lsFile', rangel, ..., 'rangen'])
Insert Mew Object... Probability 4 @POINTERS M)

Programming r @TEXTL File")

Repork]

Set Handling k

Set Looping 4

Trigonarekric b

Variable Domain *

Other 4

On the right are all the functions that deal with external files. By selecting one of these functions,
LINGO will paste a template for the selected function into your document, with a suggestive
placeholder for each of the function’s arguments. You should then replace the argument placeholders
with actual arguments that are relevant to your model.

Edit|Select Font

Use the Select Font command to select a new font, size, style, color, or effect in which to display the
selected text. You may find it easier to read models and solution reports if you select a monospaced

font such as Courier. Custom fonts are preserved only when saving in the LG4 file format. (Refer to
the File|New command for a description of LINGO's various file types.)

Note: Under Windows you may also change the font color, however, you cannot change the display
color if syntax coloring is enabled. If you need to use specific display colors in your
document, you will need to disable syntax coloring.

Edit|Insert New Object &

Use the Insert New Object command to insert an object or a link to an object into your model. As with
the Edit|Paste Special command, this command is helpful in that it allows you to insert links to your
model's data sources. Unlike the Paste Special command, which links to portions of an external object,
the Insert New Object command can add a link to an entire object.

192 CHAPTERS

As an example, suppose you have the following staff scheduling model:

[=
B Lingo Model - 5taffODBC =N Bl ™™
SETS:
DAY /@ODBC('STAFFING', 'STAFFING®
'DAY')/: NEED, START:
ENDSETS

4 11 S L LV

MIN = @50M(DAY: START):

@5UM(DAY (COUNT)| COUNT #LE# 5:
START (EWRAP (TODAY - COUNT+1,
BSIZE(DAY)))) >= NEED(TODAY):
@GIM(START):
)i

DATA:
NEED = @ODBC('STAFFING',
'STAFFING', 'REQUIREMENTIS'):;
BODBC('STAFFING',
'STAFFING', 'START') = START:
ENDDATA

[N e e e
NEFoOVWD~NObdwhRoP@IBWhE

From the model's data section, we see that we are using the @ODBC function to retrieve the values for
the NEED attribute from an ODBC data source titled STAFFING. We are also using the @ODBC
function to send the optimal values for the START attribute back to the same data source. Because this
data source is an integral part of our model, it would be nice to place a link to it in our model, so we
can retrieve it easily each time we want to refer to it. We can do this with the Edit|Insert New Object
command as follows:

1. Position the cursor in the model where you would like the icon for the link to
appear (Note, the LINGO parser ignores links to external objects, so you can
insert the link anywhere you like.)

MENU COMMANDS 193

2. Issue the Edit|Insert New Object command. You should see the following dialog

box:
Insert Object >
e pe | oK]

0 Create New Microsoft Excel 97-2003 Worksheet
Microsoft Excel Binary Worksheet | Cancel
Microsoft Excel Chart

OCreatefom Fle | Lo Froel Macro-Enabled Work
Microsoft Excel Worksheat
Microsoft Graph Chart
Microsoft PowerPoint 97-2003 Preser | | Display As lcon
Microsoft PowerPoirt 57-2003 Slide

Result
Insarts a new Microsoft Excel 97-2003

Worksheet object into your document.

3. Select the Create from File radio button.
4. Type in the name of the database file containing your data.

5. Click the Display As Icon button, so the box now resembles:

Insert Object x

OK

File: Microsoft Access Cancel
O Create from File CALINGOE4_21\Samples\Saffing.aced|

Browse. .. B Lnk

() Create New

I8 Display As keon

Romdt Staffing.accdb

Insents a shofcut which represents the file. The
@*B shortcut will be bnked to the file 2o that changes
to the file will be reflected in your document.

194 CHAPTERS

6. Finally, click on the OK button, and an icon representing the linked database
will appear in your LINGO model as pictured below:

" P Lingo Mode - StaffODBC o | © |

17 DATA:
18 NEED = BODBC('"STAFFING',
19 'STAFFING', 'REQUIREMENTS'):
20 @ODBC("STAFFING',
21 *STAFFING', 'START') = START:
22 ENDDATA
23 _
24 B

Staffing.accdb (Command Line)

Now, whenever you want to edit or view the supporting database, all you need do is double-click on
the icon. In this case, Microsoft Access will start and load the staffing database, so you will see the
following on the screen:

7] staffing X
D - Requiremen - Start

4

Mon 12 0
TUE 14 5
WED 10 0
THU 19 T
FRI 11 2
SAT 14 0
SUN 16 7

As a final note, keep in mind that linked objects are preserved only when a model is saved in LG4
format (see the File|New command for details on the LG4 file format.)

For complete information on exchanging data and solution values with data sources, see Interfacing
with Databases.

MENU COMMANDS 195
iy '
Edit|Links *
Use the Links command to modify the properties of the links to external objects in a LINGO
document. The dialog box appears as follows:
Links
Cancel
Update Now
Open Source
Change Source.
. Break Link
Source: CALINGOB4_21%\Samples'translink xlex
Type: Microsoft Excel Worksheet
Update: © Automatic (L) Manual

Select the Automatic radio button to have LINGO automatically update the object when the source file
is changed. The Manual radio button allows you to update the object only when you select the Update

Now button.

The Open Source button is used to open the connection to an automatic link. Once the link has been
opened, any changes to the source document will be reflected in the view of the object in your LINGO

model.
The Change Source button is used to attach the link to a different source file.

Finally, the Break Link button is used to break the connection to the external object.

p 4

196 CHAPTERS

Edit|Object Properties

Select a linked or embedded object in your model by single-clicking it, and then you can use the
Object Properties command to modify the properties of the object. Properties you will be able to
modify include:

display of the object,

the object's source,

type of update (automatic or manual),
opening a link to the object,

updating the object, and

breaking the link to the object.

* & 6 O o o

3. Solver Menu

The Solver menu contains commands that generally pertain to solving a model and generating reports.
This menu also contains the Options command for customizing LINGO's configuration.

Solver|Solve

Use the Solve command to have LINGO solve the model in the active window. The So/ve command is
available only for model windows—report, script, and data windows cannot be solved.

When you solve a model, LINGO first examines the model's syntax to determine if it is valid. If
LINGO finds a mistake in the syntax, you will be presented with a dialog box similar to the following:

LINGD Errar Meszage A
Errce Code: "
o 11 Copy Explain l [1].4]
Emos Test

Invalid input. & syntax error has occurred.

2] HMAX = 100 STANDARD + 150 = TURBEO:

In the Error Text box, LINGO prints the line number where the syntax error occurred, the text of the
line, and points to where LINGO determines that the error occurred. In most cases, LINGO is good at
pointing to where the error occurred. Sometimes, however, the error may not be located exactly where
LINGO is pointing. Be sure to examine neighboring lines for possible flaws as well. In this particular

MENU COMMANDS 197

example, the syntax error occurred in line 2, where we forgot to insert the multiplication signs (¥)
between the two coefficients and variable names.

When you issue the Solve command (assuming your model has no further syntax errors), LINGO will
post the solver status window. This window contains information about the composition of your model
and keeps you posted as to the progress of the solver. The solver status window resembles the
following:

Soheer Stabus ‘Variables
Madel Class: 1P Tatal 2
Naonlinear. 0
Shate; Global Opt Integers: 0
O bjectme: 14500 Consiaints
e asibdity: 1] Total 4
MNonlmear 0
Iberations: 1]
MNonzenas
Extended Solver Stabus l_ntal. i
et T MNaonlinear 0
Best Obj: o % Generator Memony Uised ()
Obj Bound: 23
Sleees Elapsed Runtime (hixmimss)
SELIE S 00:00: 00
Updabe Interest 2 Imbesrupt Sober Cloze

For more information on the various fields in the solver status window, refer to the section Solver
Status Window.

198 CHAPTERS

Once the solver has completed processing your model, it will create a new window containing the
solution report for your model. You can scroll through this window to examine its contents, save it to a
text file, or queue it to your printer. The following is a sample solution report window:

BP sclution Report - BOX

Objective valus:
Infeasibilities:
Extended solver steps:

Model Clasa:

Total variables:
Honlinear variables:
Integer variables:

Total constraincs:
Honlinear consctraincs:

Total nonzeros:
Honlinear nonzeros:

Local optimal solution found.

Best multistart soluotion found at step:
Total solver iterations:
Elapsed runtime seconds:

Variable
D
W
H

Row

COST
SURFACE
VOLIME
BROTHRRRO

T

50.96507
0.1362291E-03

5

5

51

0.4%

HLE

Value
23.03057
5.5682194
&.B65855

Slack or Surplus
50.9E8507

0.1745906E~-04

=0.1362291E=03
0.000000

e L T T T

Reduced Cost
0. 000000
0.000000
0. 000000

Dual Price
=1.000000

=0.2342550E-01

=0.1325533E=-01
2.298545

A AR

3

Solver|Solution

Use the Solution command to generate a solution report for the active window. After selecting the
model window that you want to generate a solution for, issue the Solver|Solution command and you

will be presented with this dialog box:

MENU COMMANDS 199

.|

Solution Report or Chart >,
Abtribate(s] o Fow Mamels) Type of Output [oK
O Teut Cancel
Header Text
Faer e Chat
Help
MNonzeso Wars and Binding Fowves Onby
Cheart Properties:
Chart Type: Values:
Bourds:
Histo Bing:
Aoz Labeks Legend
Selz) o Uzer Name(s) Set or User Name{s]

[4

By clicking on the appropriate radio button on the Type of Output box, the solution report may be
viewed in either text or chart format. If you select Text, LINGO will create a new window containing
the solution in text format. If you select Chart, LINGO will create a new window containing the
solution in one of several different graphical formats. Current supported chart formats are: bar, bubble,
contour, curve, histogram, line, pie, radar, scatter and surface.

Note: LINGO maintains only one solution in memory. This is the solution to the last window you
issued the Solver|Solve command for. If you try to issue the Solution command for a window
that LINGO does not currently have a solution, you will receive an error message. Thus, if
you plan to work with two or more models that take a long time to solve, be sure to save
copies of your solutions. This will allow you to refer to them later without having to re-solve
your models.

200 CHAPTERS5

Note: At present, the charting features of the Solution command are only supported in Windows
versions of LINGO. However, Mac and Linux versions of LINGO can generate charts using
the @CHART function set.

Text Solution Reports

In the Attribute(s) or Row Name(s) list box, select an attribute or row name for which you would like a
report. If you do not select a name in this box, LINGO will generate a full solution report that includes
all attributes and rows. You may also specify multiple objects in this box, in which case, each object
will be included in the report.

Both the multi-character (*) and single character (%) wildcards are supported in the Attribute(s) or
Row Name(s) field. For example, inputting "X*" would cause all variables and rows beginning with
the letter X to be displayed, while "X%1" will display all variables and rows with three-character
names that begin with letter X and end with the digit 1.

In the Header Text box, enter whatever text (e.g., "Values for X") you would like to appear at the head
of the report.

Check the Nonzeros Vars and Binding Rows Only box to see a report that contains only the variables
with a nonzero value and constraints that are binding.

When you click OK, LINGO creates a new solution window containing the solution report. You can
use Cut and Paste commands to move the contents of the report to other applications. You may also
use the File|Save command to save the report to a text file.

Charting Solutions &

If you choose to have the solution displayed as a chart, the box titled Chart Properties will be
undimmed, which allows you to select options influencing the display of the chart.

In the Chart Type box, you have the option of selecting a bar, bubble, contour, curve, histogram, line,
netarc, netnode, pie, radar, scatter or surface chart.

One easy way to familiarize yourself with the various chart types is to open and run the sample model
CHARTS.LG4, which displays a sample of each of the chart types.

If you've selected a histogram chart, then you will also have the option of specifying the number of
bins in the histogram in the Histo Bins box. If the number of bins is set to 0, then LINGO will select a
reasonable number of bins for the given data set.

In the Values box, you can select to graph either primal or dual values.

The Attribute(s) or Row Name(s) field works in the same way as mentioned in the previous section,
with the additional feature that a colon may be inserted in between object names to indicate that you

MENU COMMANDS 201

wish to display multiple series on the same graph. Each series of data will be displayed using a
different color. The chart types that support multiple series are: bar, bubble, curve, line, radar, scatter.
Contour, histogram, pie and surface charts do not support multiple data series. As an example,
consider the following staff scheduling model, similar to the one discussed above in section 4 Staff’
Scheduling Problem:

MODEL:

SETS:
DAYS: REQUIRED, START, ONDUTY;
ENDSETS

DATA:
AYS = MON TUE WED THU FRI SAT SUN;
REQUIRED = 20 16 13 16 19 14 12;
ENDDATA

MIN = @SUM(DAYS(I): START(I));
@FOR (DAYS(J):
ONDUTY (J) =
@SUM(DAYS(I) | I #LE# 5:

START(@GWRAP(J - I + 1, 7)));

ONDUTY (J) >= REQUIRED(J)
)

END
Model: STAFFDEM2

202 CHAPTER5

The ONDUTY attribute tells us how many employees are working on each day of the week. To display
a bar chart of this information, you would fill out the Solver|Solution dialog box as below:

r

Solution Report or Chart X

Attribute(s] or Row MName(s):

Type of Dutput:
\ONDUTY v

(O Text
Header Text: Cancel
© Chart
Help
MNonzero Vars and Binding Rows Only
Chart Properties:
Chart Type: Values:

OBar () Bubble () Contour

(OJCurve (OHisto (O lLline O Primal (O Dual
(O Netarc () Netnode () Pie Bounds:
(O Radar () Scatter () Surface Lower: Mone

Histo Bins: Upper. None

0

MENU COMMANDS 203

After pressing OK, a new window will open with the desired chart:

I C:\LINGOG64_21\Samples\STAFFDEM2.1g4

B ONDUTY
30

Along with charting the number on duty, it would also be useful to include the number of staffers
required on each day. This would allow us in one glance to quickly see the days (if any) where we are
over staffed. To do this, change the contents of Attribute(s) or Row Name(s) field from "ONDUTY" to
"ONDUTY : REQUIRED". This tells LINGO we want to view both on duty and required staffing
levels, with the colon inserted to indicate they should be displayed as separate series. Doing this yields
the multi-bar chart:

204 CHAPTER5

| C:\LINGO64_21\Samples\STAFFDEM2.Ig4

B ONDUTY @ REQUIRED
30

MENU COMMANDS 205

Here we see that we just meet our staffing needs Monday through Saturday and are over staffed
slightly on Sunday. Had we not inserted the colon separator between the attribute fields, then LINGO
would have displayed the two attributes as a single series:

YEM?

C:\LINGO64_21\Samples\STAFFDEM2.Ig4

B ONDUTY REQUIRED

206 CHAPTERS5

The Bounds box gives you the option of placing bounds on the values to be included in the graph. If a
number is entered in the Lower bound field, LINGO will only display points in the graph that are
greater-than-or-equal-to the value. Conversely, if a value is placed in the Upper bound field, LINGO
will only graph points less-than-or-equal-to the bound. For example, if we display a bar chart showing
the number of employees starting each day of the week we'd see the following:

=R

I C:\LINGO64_21\Samples\STAFFDEM2.1g4

B START
10

MENU COMMANDS 207

Notice there are several "holes" in the chart due to no one starting on Tuesday, Wednesday and
Sunday. Entering a lower bound of .1 in the Bounds box removes the holes in our chart:

C:\LINGO64_21\Samples\STAFFDEM2.ig4
B START

10

For charts with one-dimensional data (bar, histogram, line, pie and radar), the bounds will be applied
to all data points in the first data series. If a point is eliminated in the first series, then the
corresponding points in any additional series will also be eliminated, regardless of whether or not they
lie within the specified bounds.

Charts with two-dimensional data points (curve and scatter) and three-dimensional data (bubble,
contour and surface) will have the bound applied only to the x-axis data. If the x-axis value lies outside
the bounds, then the entire point will be eliminated from the chart. Of these higher dimension charts,
only curve scatter and bubble allow for multiple series. In this case, the bounds will be applied to the
x-axis value of each series, as opposed to just the first.

Note: Bounds are not currently applied to the two network chart types - netarc and netnode.

208 CHAPTERS5

Next in the Chart Properties box are options for controlling how the axes and legends are labeled. In
both cases, the choices are:

¢ Default - LINGO tries to make intelligent choices in choosing an appropriate labeling
scheme.

¢ None - No labels are displayed.

¢ Set - Use one of the model's sets for labeling. Multiple sets may be specified, if needed, to
supply sufficient labels.

¢ User Specified - Labels are entered explicitly into the Set(s) or User Name(s) field, with
individual labels being separated with colons.

The final option in the Chart Properties box is the Use 3D and Shading checkbox. This option is on
by default and will result in more modern looking charts that utilize shading and 3-dimensional effects.
Disable this option to display simpler, 2-dimensional charts that may display better on certain printers.

Higher Dimension Charts

In addition to the standard charts with one-dimensional data, LINGO offers 2-dimensional curve and
scatter charts, as well as 3-dimensional bubble, contour and surface charts. When a chart requires more
than one dimension of data, you can supply the data in either of two ways. The first method is to
supply one attribute for each dimension. So, for example, a 3-dimensional surface chart might be
specified using the three attributes XVALS, YVALS and ZVALS. The first attribute always stores the x-
axis data, the second stores the y-axis and, if needed, the third attribute stores the z-axis values. The
second option is to provide a data series in an m X n table/attribute, where m is the number of data
points and 7 is the dimension of the chart type.

As an example, suppose we have the following model that generates points of the surface X * SIN('Y)
+ Y *SIN(X):

MODEL:

SETS:
POINTS /1..21/;
POINTS2 (POINTS, POINTS): X, Y, Z;

ENDSETS
CALC:
XS = QFLOOR(- (@SIZE(POINTS) / 2) + .5);
YS = XS;
@FOR(POINTS2(I, J):
X(I, J) =XS+1I-1;
Y(I, J =YS+J-1;
Z(I, J) =X(I, J) * @QSIN(Y(I, J)) +
Y(I, J) * QSIN(X(I, J));
)
ENDCALC
END

Model: CHARTSURF

MENU COMMANDS 209

A surface chart requires 3-dimensional data, which, in this case, is contained in the X, Y and Z

attributes. To request a surface chart after solving the model, we fill out the Solver|Solution dialog box
as follows:

r

Solution Report or Chart X
fhthibute[s] of Row Mame(s) Type of Output
RYZ w
Header Text: 2 Cancel

© Chart
Help

MNonzero Vars and Binding Riows Only
Chart Properties:
Chart Type: Values:
O Bar () Bubble () Contour
(OCuve (OHisto (O Line
(O Netarc (O Netnode () Pie ilis
(JRadar () Scatter @ Surface Lower. None

© Fimal () Dual

210 CHAPTER5

Note that we've listed each of the three attributes in the Attribute(s) or Row Name(s) field. Given that
this is a 3-dimensional graph, the three attributes will be used to create a single chart. Clicking on OK
then gives us the chart:

MENU COMMANDS 211

Below we list the dimensions of each of the various chart types and whether or not they allow for
multiple data series:

Chart Type Dimension Supports Multiple Series
Bar 1 Yes
Histogram 1 No
Line 1 Yes
Pie 1 No
Radar 1 Yes
Curve 2 Yes
Netarc 2 Yes
Netnode 2 Yes
Scatter 2 Yes
Bubble 3 Yes
Contour 3 No
Surface 3 No

Network Charts

Network charts are specified slightly differently from other charts. Although network charts are
technically 2-dimensional charts, they require 4 attributes of data.

212 CHAPTER5

LINGO supports two different formats for specifying network charts -- netarc and netnode. In netarc
format, each arc is specified by two (X, Y) pairs, indicating the two end points of the arc. Whereas in
netnode format, each node in the network is specified with one (X, ¥) pair, and each arc between the
nodes is specified by pair of arc indices from the arcs set. An example of both formats follows:

MODEL:

! Tllustrates the two formats for network charts:
NETARC and NETNODE;

SETS:

NODES /N1..N4/: NODEX, NODEY;

NODESINNET /1..6/: N1, N2;

ARCS (NODES, NODES) /

N1,N2, N2,N3, N3,N4, N4,N1, N4,N2, N1, N3

/: X1, Y1, X2, Y2;

ENDSETS

DATA:
'List locations of all the nodes;
NODEX, NODEY =

10, 10,
20, 10,
20, 40,
10, 40;

'And list the indices of the nodes
that have arcs between them;

N1, N2 =

1, 2,

2, 3,

3, 4,

4, 1,

4, 2,

1, 3;
ENDDATA
CALC:

!Load the arc coordinates into X1, Y1, X2, Y2;
@QFOR(ARCS(I, J):

X1(I, J) = NODEX(I);
Y1(I, J) = NODEY(I);
X2(I, J) = NODEX(J);
Y2(I, J) = NODEY(J);

)

ENDCALC

END

Model: CHARTNET

MENU COMMANDS 213

The CHARTNET model above uses both network chart formats for specifying a rectangular network of
four nodes with each node pair being joined by an arc. After solving the model, you can display the
network using netarc format by running the Solver|Solution command and filling out the dialog box
using the netarc attributes (X1, Y7, X2 and Y2) and clicking on the "Netarc" radio button as follows:

Solution Report or Chart x

Attribute(s) or Row Name(s) Type of Dutput | oK

|

XIY1X2Y2 » e
() Text
Header Text Cancel
O Chart
Help
Monzero Varz and Bindng Rows Only
Chart Plf_‘lpaih'ga;
Chart Type: Walues:
IZF:' Bar I::] Bubble |::::| Coritour) N
- E ~ O Fimal () Dual
(JCuve (JHigto (JLine
O Netaic () Netnode () Pie Bounds:
Lower: None

(O Radar (O Scatter () Surface

llnnar Mane

BaT . e

To display the network using netnode format, you would fill out the dialog box as below, using the
netnode attributes (NODEX, NODEY, N1 and N2) along with checking off the "Netnode" radio button:

214 CHAPTER5

Solution Report or Chart P4
Altribute(s) or Row MName(s): Type of Dulput: 0K
|NODEX NODEY N1 N2 v -

Header Text: Cancel
© Chart
Help
Monzero Wars and Binding Rows Only
Chart Properties:
Chart Type: Values:
(JBar () Bubble () Contour oFi O Dua
(OCuve OHiste O Line
ONetarc © Netnode O Pie Bounde
Lower. MNone

(O Radw (O Scatter (O Surface

In both cases, you should then generate a network chart resembling:

C:\LINGO64_21\Samples\CHARTNET.Ig4
+ MODEX NODEY N1 N2

Solver|Range

Use the Range command to generate a range report for the model in the active window. A range report
shows over what ranges you can: 1) change a coefficient in the objective without causing any of the
optimal values of the decision variables to change, or 2) change a row's constant term (also referred to

MENU COMMANDS 215

as the right-hand side coefficient) without causing any of the optimal values of the dual prices or
reduced costs to change.

Note:

The solver computes range values when you solve a model. Range computations must be
enabled in order for the solver to compute range values. Range computations are not enabled
by default. To enable range computations, run the Solver|Options command, select the
General Solver Tab, and, in the Dual Computations list box, choose the Prices and Ranges
option. Range computations can take a fair amount of computation time, so, if speed is a
concern, you don’t want to enable range computations unnecessarily.

Note:

The example model below, when solved, yields the range report that follows.

OBJECTIVE] MAX = 20 * A + 30 * C;

[

[ALIM] A <= 60;

[CLIM] C <= 50;

[JOINT] A+ 2 *C <=120;

Here is the range report:

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

Current Allowable Allowable

Variable Coefficient Increase Decrease
A 20.00000 INFINITY 5.000000
C 30.00000 10.00000 30.00000

Righthand Side Ranges

Row Current Allowable Allowable
RHS Increase Decrease

ALIM 60.00000 60.00000 40.00000
CLIM 50.00000 INFINITY 20.00000
JOINT 120.0000 40.00000 60.00000

The first section of the report is titled Objective Coefficient Ranges. In the first column, titled Variable,
all the optimizable variables are listed by name. The next column, titled Current Coefficient, lists the
current coefficient of the variable in the objective row. The next column, Allowable Increase, tells us
the amount that we could increase the objective coefficient without changing the optimal values for the
variables. The final column, A/lowable Decrease, lists the amount that the objective coefficient of the
variable could decrease before the optimal values of the variables would change. Information on the
allowable increases and decreases on objective coefficients can be useful when you need answers to
questions like, "How much more (less) profitable must this activity be before we should be willing to
do more (less) of it?".

216 CHAPTER5

Referring to the Objective Coefficient Ranges report for our example, we can say, as long as the
objective coefficient of 4 is greater-than-or-equal-to 15, the optimal values of the variables will not
change. The same may be said for the objective coefficient of variable C, as long as it falls within the
range of [0,40].

Note: Ranges are valid only if you are planning to alter a single objective or right-hand side
coefficient. The range information provided by LINGO cannot be applied in situations where
one is simultaneously varying two or more coefficients. Furthermore, ranges are only lower
bounds on the amount of change required in a coefficient to actually force a change in the
optimal solution. You can change a coefficient by any amount up to the amount that is
indicated in the range report without causing a change in the optimal solution. Whether the
optimal solution will actually change if you exceed the allowable limit is not certain.

The second section of the range report is titled Right-hand Side Ranges. The first column, Row, lists
the names of all the optimizable rows, or constraints, in the model. The second column, Current RHS,
gives the constant term, or right-hand side value, for the row. The next two columns, Allowable
Increase and Allowable Decrease, tell us how far we can either increase or decrease the right-hand
side coefficient of the row without causing a change in the optimal values of the dual prices or reduced
costs. If you recall, the dual prices on rows are, effectively, shadow prices that tell us at what price we
should be willing to buy (or sell) our resources for. The dual prices do not, however, tell us what
quantity we should be willing to buy (or sell) at the dual price. This information is obtained from the
allowable increases and decreases on the right-hand side coefficients for the row. So, for our example,
the dual prices and reduced costs will remain constant as long as the right-hand side of row ALIM falls
within the range [20,120], the right-hand side of CLIM is greater-than-or-equal-to 30, and the right-
hand side of JOINT is in [60,160].

Note: We preceded all the constraints in our model with a name enclosed in square brackets. This is
an important practice if you wish to generate range reports. If you do not name your
constraints, LINGO assigns them a name that corresponds to the internal index of the
constraint. This internal index will not always correspond to the order of the constraint in the
text of the original model. So, to make the Right-hand Side Ranges section of range reports
meaningful, be sure to name all your constraints. (See the section Constraint Names for
details on assigning constraint names.)

Note: 1If a variable is nonlinear in the objective, its value in the Current Coefficient column will be
displayed as NONLINEAR. Similarly, if a row is nonlinear, the value in the Current RHS
column will be displayed as NONLINEAR.

Coefficients that can be increased or decreased indefinitely will display a range of INFINITY.

MENU COMMANDS 217

Fixed variables are substituted out of a model and will not appear in a range report. Rows that contain
only fixed variables are also substituted out of models and will also not appear in range reports. As an
example, suppose we changed the following inequality in our sample model from:

[ALIM] A <= 60;

to the equality:

[ALIM] A = 60;

LINGO can now solve directly for the value of A. The variable A is considered fixed, as is the row
ALIM (since it contains no optimizable variables.) Given this, the variable A will no longer appear in
the Objective Coefficient Ranges section of the range report and the row ALIM will not appear in the
Right-hand Side Ranges section. We can verify this by examining the updated range report:

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

Current Allowable Allowable
Variable Coefficient Increase Decrease
C 30.00000 INFINITY 30.00000

Righthand Side Ranges

Row Current Allowable Allowable
RHS Increase Decrease

CLIM 50.00000 INFINITY 20.00000

J OINT 60.00000 40.00000 60.00000

Note: LINGO maintains the range report for only one model in memory. This is the report for the
window that you last issued the Solver|Solve command for. If you try to issue the Range
command for a window that LINGO does not currently have range information for, you will
receive an error message. If you plan to work with two or more models that take a long time
to solve, be sure to save copies of your range reports to disk, so you can refer to them later
without having to re-solve your models.

Note: The barrier crossover option must be enabled if you plan to do range analysis. Range
computations cannot be performed if the final solution is not a basic solution.

218 CHAPTER5

Solver|Options

Use the Solver|Options command to change a number of parameters that affect LINGO's user
interface, as well as the way LINGO solves your model. When issuing the Options command, you will

be presented with the following dialog box:

F

h]

Lingo Options >,
Monlinear Sclver Integer Pre-Solver integer Solver
Global Solwer Maodel Generator SP Sobver
Intesface General Sohver Linear Solver
General File Format
@ Emorin Dislogs (89 Status Bar © ig4 fextended)
[CJFOut Ranges (B Status Window :_3:?[:;:*;‘:”
8 Splash Screen [Tookar =
Output Lewel Syntax Coloring
Verboge Line Limit
100000
Solution Cisplary: Delay:
Show a3 0 Precision 0
le09 L = B Paren Match

Command VWindow:

(] Send Reports to Command Window [T Echo Input

Line: Count Limits: Page Size Limits

Masrmum: 800 9 Length: Mone 5

Minimum: 400 = Width: 85 :

Hep Cancel | Defout [ok |

[

Set these parameters to your personal preference and press the 4pply button to set them for the extent
of the current LINGO session. The currently selected settings are also applied when you click the OK
button, with the one difference being that the OK button closes the dialog box. Click the Save button if
you would like the current parameter settings to be maintained for use in subsequent LINGO sessions.
The original default settings can be restored at any time by clicking the Default button.

4

MENU COMMANDS 219

There are nine tabs on the Options dialog box:

¢

* & & O o o o

¢

Interface

General Solver
Linear Solver
Nonlinear Solver
Integer Pre-Solver
Integer Solver
Global Solver
Model Generator
SP Solver.

The first time you run the Options command during a session, the /nterface tab will be selected. The
Interface and General Solver tabs contain options of interest to most users. The remaining tabs (Linear
Solver, Nonlinear Solver, Integer Pre-Solver, Integer Solver, Global Solver and SP Solver) contain
advanced options that tend to be of interest primarily to the expert user. Follow the links above for

more details on the options available under each tab.

Note: LINGO uses the LINDO API as its solver engine. The LINDO API has a wealth of advanced
parameter settings to control its various solvers. Most of the more relevant parameters may
be set through the Solver|Options command. However, some of the more advanced

parameters must be set using the APISET command.

220 CHAPTER5

Interface Tab

The Interface tab on the Options dialog box:

r -]

Lingo Options -
Monlnear Sohver Integer Pre-Solver Integer Solver
Global Solver Model Generator 5P Sobver
Irteface General Sobver Linear Solver

General File Format:
@ Erorsin Dislogs () Status Bar O g4 fextended)

OFO4Ranges B Status Window 019 e ori)
B Splash Screen [Tookar

Output Level Syntax Coloring
Verbose Lirie Limt
100000
Sohstion Display: Delay:
Show as 0 Precision; 0
Lol L 8 Paven Match
Command Window:
[l Send Reposts to Command Window [C) Echo Ingat
Line Count Limits: Page Size Limits:
Maoimum: 800 e Length: None 5+
Minimum: 400 Width: 85 o

Hep Cancel Defaut Aph oK

[= 4

can be used to control the appearance of LINGO, LINGO's output, and the default file format.

General Box

The General box on the Interface tab:

MENU COMMANDS 221

General

8 Enors in Dialogs Status Bar
_JFill Out Ranges (@ Status Window
8 Splash Screen 8 Toolbar

Output Level:
Verbose

allows you to set the following general options:

Errors In Dialogs,

Status Bar,

Fill Out Ranges and Tables,
Status Window,

Splash Screen,

Toolbar, and

Output Level.

* & & O 6 0o o

Errors In Dialogs

If the Errors In Dialogs box is checked, LINGO will display error messages issued by the solver in a
modal dialog box. This dialog box must be cleared before LINGO proceeds with any other operation.
In some instances, you may have LINGO embedded in other applications, where it may not be
desirable, or possible, to have users clearing error dialogs. By unchecking this option, LINGO will
route the solver's error messages to the command window, where they will be displayed, and no user
intervention will be required to clear the messages.

The default is for solver errors to be displayed in dialog boxes.

Note: This option allows you to route only those error messages generated by LINGO's solver to the
report window. Error messages displayed by LINGO's interactive front-end will always be
posted in dialog boxes.

Status Bar

If the Status Bar box is checked, LINGO displays a status bar along the bottom of the main frame
window. Among other things, the status bar displays the time of day, location of the cursor, menu tips,

222 CHAPTERS5

and the current status of the program. To remove the status bar from the screen, clear the Status Bar
checkbox.

The default is for LINGO to display the status bar.

Fill Out Ranges

Windows versions LINGO can export a model’s solution to Excel and/or databases. When exporting to
Excel, LINGO sends solutions to user defined ranges in a workbook. Solutions exported to a database
are sent to tables within the database. In either case, the target range or table may contain more space
for values than you are actually exporting. In other words, there may be cells at the end of ranges or
records at the end of tables that will not be receiving exported values from LINGO. The Fill Out
Ranges option determines how these extra cells and records are treated. When the Fill Out Ranges
option is enabled, LINGO overwrites the extra values with null entries. Conversely, when the option is
not enabled, LINGO leaves any extra values untouched.

The Fill Out Ranges option is disabled by default.

MENU COMMANDS 223

Status Window

If the Status Window box is checked, LINGO displays a solver status window whenever you issue the
Solver|Solve command. This window resembles the following:

Solver Status Wariables
Model Class: LE Total 2
Maonlinear: 0
State: Global Opt Integers: 1]
Ohjective: 14500 Canstraints
Infeasibility: 0 Tatal 4
Maorlinear: 0
[terations: 1]
Maonzeros
Extended Salver Status Tatal &
Manlinear: 0
Salver Type:
Best Obj; L Generator Memory sed (K]
Obj Bound: 23
Sl Elapged Runtime [hh:mm:zs]
Achive: L 000000
Ilpdate Interval: 2 Interupt Solver Cloze

The solver status window is useful for monitoring the progress of the solver and the dimensions of
your model. It is updated every n seconds, where 7 is the value in the Update interval field in the lower
right corner of the window. For a detailed description of the various fields in the solver status window,
see the section Solver Status Window.

The default is for the solver status window to be displayed.

Splash Screen

If the Splash Screen box is checked, LINGO will display its splash screen each time it starts up. The
splash screen lists the release number of LINGO and the software's copyright notice. If you disable this
option, LINGO will not display the splash screen.

The default is for the splash screen to be displayed.

224 CHAPTERS5

Output Level

You can use the Output Level setting to control the amount of output LINGO generates. There are four
settings available:

¢

Verbose—Causes LINGO to display the maximum amount of output, including full
solution reports.

Terse—Less output than Verbose, with full solution reports suppressed. This is a good
output level if you tend to solve large models. LINGO also suppresses Export Summary
Reports generated when exporting data to spreadsheets or databases.

Errors Only—All output is suppressed, with the exception of error messages.
Nothing—LINGO suppresses all output. This level may be useful when taking advantage
of the programming capabilities in LINGO, in which case, you will add statements to your
model to generate all required output. Keep in mind all output is suppressed in this mode,
meaning that error messages are also not displayed. Therefore, the Nothing output level
should only be used once a model has been thoroughly debugged.

The default is for LINGO to be in verbose mode.

Toolbar

If the Toolbar box is checked, LINGO displays a toolbar containing buttons, which act as shortcuts to
various commands contained in the LINGO menu. For definitions of the buttons on the toolbar, please
see the The Toolbar section. If the Toolbar checkbox is unchecked, LINGO does not display its

toolbar.

The default is for LINGO to display its toolbar.

Solution Display Box

The Solution Display box on the Interface tab:

Solution Display:

Show as 0: Precision:
1e09 7 =

allows you to set the following options:

¢ Showas 0, and
¢ Precision.

MENU COMMANDS 225

Show as 0

On occasion, due to round-off error, some of the values returned by LINGO’s solver will be very small
(less than 1e-9.) In reality, the true values of these variables are either zero or so small as to be of no
consequence. These tiny values can be distracting when interpreting a solution report. The Show as 0
parameter can be used to suppress small solution values. Any solution value less-than-or-equal-to
Show as 0 will be reported as being zero.

The default value for Show as 0 is 1e-9.

Precision

LINGO defaults to displaying seven significant digits for values in standard solution reports. In some
cases, you may desire more or less than seven digits of precision, in which case, you will need to
adjust the Precision parameter.

For example, suppose we have a very simple model consisting of the single expression:
X=1/3;

The default solution report for this model using seven digits of precision would contain:

Variable Value
X 0.3333333
Row Slack or Surplus
1 0.000000

Increasing the Precision parameter to 16 and resolving yields the following solution report with 16
significant digits:

Variable Value
X 0.3333333333333333
Row Slack or Surplus
1 0.000000000000000

The default value for Precision is seven significant digits.

226 CHAPTERS5

File Format Box

The File Format box on the Interface tab:

File Format:

0 Ig4 (extended)
()ing ttext only)
() ix (LINDO)

is used to select the default file format that LINGO uses to save models to disk. There are three
different formats to choose from: LG4, LNG, or LTX.

The LG4 format is a binary format readable only by LINGO and is available only on Windows
versions of LINGO. This format enables you to have custom formatting, multiple fonts in your models,
and to use LINGO as an OLE server and container. Files saved in the LG4 format are readable only by
Windows versions of LINGO.

The LNG format is a text-based format. Thus, models saved in the LNG format can be read into other
applications. LNG format models are transferable to other platforms running LINGO. Models saved in
LNG format cannot contain custom formatting or embedded objects.

LTX files are model files that use the LINDO syntax. Longtime LINDO users may prefer LINDO
syntax over LINGO syntax. LINDO syntax is convenient for quickly entering small to medium sized
linear programs. As long as a file has an extension of .Itx, LINGO will assume that the model is
written using LINDO syntax. Readers interested in the details of LINDO syntax may contact LINDO
Systems to obtain a LINDO user’s manual.

The default file format is LG4 for Windows versions of LINGO. All other platforms default to LNG
format.

MENU COMMANDS 227

Syntax Coloring Box

The Syntax Coloring box on the Interface tab:

Syntax Coloring
Line Limit:
1000

Delay:
0

& Paren Match

is used to control the syntax coloring capability in LINGO’s editor. LINGO’s editor is "syntax aware”.
In other words, when it encounters LINGO keywords, it displays them in blue. Comments are
displayed in green, and all remaining text is displayed in black. Matching parentheses are also
highlighted in red when you place the cursor immediately following a parenthesis.

The controls available in this box are: Line Limit, Delay, and Paren Match.

Syntax coloring can take a long time if you have very large files. The Line Limit field sets the
maximum acceptable file size for syntax coloring. Files with line counts exceeding this parameter will
not be syntax colored. Setting this parameter to 0 will disable the syntax coloring feature. The default
is 1000 lines.

The Delay field sets the number of seconds LINGO waits after the last keystroke was typed before re-
coloring modified text. Users on slower machines may want to set this higher to avoid having syntax
coloring interfere with typing. Users on faster machines may want to decrease this value, so text is re-
colored quickly. The default is 0 seconds.

If the Paren Match box is checked, LINGO will highlight matching parentheses in red when you place
the cursor immediately following a parenthesis. In other words, by placing the cursor immediately
after one of the parentheses of interest, you will notice that the color of the parenthesis changes from
black to red. LINGO will simultaneously display the matching parenthesis in red. These parentheses
will remain displayed in red until you move the cursor to another position, at which point they will be
returned to a black color. The default is for parenthesis matching to be enabled.

228 CHAPTERS5

Command Window Box

The Command Window box on the Interface tab:

Command Window:

() Send Reports to Command Window | Echo Input
Line Count Limits: Page Size Limits:
Maximum: 00 = Length: None 5
Minimum: 400 = Width: 85 =

is used to customize the configuration of LINGO's command window.

LINGO's command window can be opened using the Window|Command Window command. This
gives the user a command-line interface to LINGO. This interface is identical to ones used by LINGO
on platforms other than Windows. The command window is also useful for testing LINGO command
scripts. For more information on the commands available under LINGO's command-line interface,
refer to Command-line Commands.

Send Reports to Command Window

If the Send Reports to Command Window box is checked, LINGO will send any reports it generates to
the command window rather than to individual report windows. This is useful if you’d like to have two
or more LINGO generated reports contained in a single window.

The default is to not send reports to the command window.

Echo Input

When you run a LINGO command script with File| Take Commands, the commands LINGO processes
are normally not displayed. If the Echo Input box is checked, processed commands will be displayed in
the command window. This can be a useful feature when you are trying to develop and debug a
LINGO command script.

The default is to not echo input.

MENU COMMANDS 229

Line Count Limits

The Line Count Limits box on the Interface tab:

Line Count Limits:
Maximum: 800
Minimum: 400

4k

4k

is used to control the total number of output lines that can be stored in the command window.

When LINGO sends output to the command window, it places it at the bottom of the window. All
previous output is scrolled up to make way for the new output. The Maximum field sets the maximum
number of output lines allowed in the command window. When LINGO hits this limit, it starts
removing lines from the top of the command window until there are » lines left, where # is the value of
the Minimum field.

In general, output to the command window will become slower as the maximum and minimum line
counts are increased, or the difference between the maximum and minimum is decreased. If you have a
long session you need to save, you can use the File|Log Output command to log all command window
output to disk.

The default value for Line Count Limits is 800 lines maximum and 400 lines minimum.

Page Size Limits

The Page Size Limit box on the Interface tab:

Page Size Limits:

4k

Length: None
Width: 85 =

is used to control the page length and width of the command window.

230 CHAPTERS5

If you would like LINGO to pause after a certain number of lines have been written to the command
window, you can do so by setting the Length field in the Page Size Limits box. When LINGO hits this
limit, it will display the following button on your screen:

LINGO will wait until you press the More button to display any subsequent output in the command
window. The default is None, meaning no page length limit is imposed.

When LINGO generates reports, it limits output lines to a certain width. In some reports, lines will be
wrapped, so they fall within the line limit. In other reports, lines may be truncated. Because LINGO
concatenates variable names in performing set operations, a variable name such as SHIPMENTS(
WAREHOUSE1, CUSTOMER?2) may result. This could be truncated in a solution report if too narrow
an output width is used. You can control this line width limit through the Width field of the Page Size
Limits box. You may set it anywhere between 64 and 200, with the default being 85.

231

MENU COMMANDS
General Solver Tab
The General Solver tab on the Options dialog box, shown here:
Lingo Options b
Monlinear Solver Infeger Pre-Solver Integer Solver
Global Sohver Model Generstor 5P Solver
Interface General Solver Linear Salbver
Multihreading: Rurtime Limits:
Threeads: 1 e S =
 — None &1
Mode: R
Solver Decid = Time (sec): N
None =
Dibuaaer: @SOLVE Time Limt:
Outpust Lewel: Tine fsec)
5 hat None =
Cold Stat Solver:
Kill scripts on limit
Sobver Decides — -
Waem Start Solver: Scaling Waming Threshold:
Solver Decides Te+12
Dual Computations: Default Staring Foint:
Prices v 12345678

Solver Log Level: 8 Vanables assumed non-negative
Hone = ([Use R/C format names for MPS L'O

-

B Favor eproducibiiy

Heip Cancel Defaul Save Appiy

[|

can be used to control several general parameters related to the functioning of LINGO's solver.

232 CHAPTER5

Multithreading Box

The Multithreading box on the General Solver tab:

Multithreading:
Threads: 1 =
Mode:

Solver Decides

gives you control over LINGO's use of multithreading. With multithreading, LINGO's model generator
and its solvers can utilize multiple processors to improve performance.

The Threads option controls the maximum number of threads, or processors, to utilize at any given
time. Interesting settings for the thread count are:

¢ Max Available — LINGO determines the number of processors on the system and sets the
thread limit to this number.

¢ [— Only one processor will be used, causing LINGO to run in single-threaded mode.

¢ N — Here, N is some positive integer greater than 1 and LINGO will set the maximum
number of threads to V.

LINGO defaults to running in single-threaded mode with a thread limit of 1.

The second option in the Multithreading box is Mode, which controls the multithreading mode that
LINGO operates in. LINGO offers multicore extensions to its model generator and solvers. The
multicore extensions are of two types: concurrent and parallel. Concurrent algorithms run two or more
different serial algorithms on multiple copies of the same model, using a separate thread for each
algorithm, terminating as soon as the winner thread finishes. These “different algorithms” may in fact
be the same algorithm type, but using different strategies and/or parameters. Parallel algorithms, on the
other hand, parallelize computationally intensive portions of the serial algorithm to distribute the
workload across multiple threads.

MENU COMMANDS 233

The following multicore extensions are currently available in LINGO:

LINGO Component Model Class Parallel Option Concurrent Option

Barrier Solver Linear Programs Yes No
BNP Solver Mixed Integer Programs Yes No
Global Solver Nonlinear Programs Yes No
Integer Solver Mixed Integer Programs Yes Yes
Linear Solver Linear Programs No Yes
Model Generator All Yes No
Multistart Solver Nonlinear Programs Yes No
Stochastic Solver Stochastic Programs Yes No

The available settings for the Mode, or multithreading mode, parameter are as follows:

¢ Solver Decides — The best available multithreading strategy, either parallel or concurrent,
will be selected for each step of the solution process.

¢ Off'in Solver — Multithreading will be disabled in the solvers, but allowed in the model
generator if the number of threads is greater than 1.

& Prefer Parallel — 1f a parallel option is available for a particular solution step, then it will be
selected, otherwise, a concurrent option will be selected when available.

¢ Parallel Only - If a parallel option is available for a particular solution step, then it will be
selected, otherwise, the step will be executed in single-thread mode.

¢ Prefer Concurrent - If a concurrent option is available for a particular solution step, then it
will be selected, otherwise, a parallel option will be selected when available.

¢ Concurrent Only - If a concurrent option is available for a particular solution step, then it will
be selected, otherwise, the step will be executed in single-thread mode.

Note: If the maximum thread count parameter, Threads, is set to 1, then the multithreading mode
setting will be ignored, and LINGO will execute in single-threaded mode.

Note: Setting the maximum thread count parameter, 7hreads, to N does not guarantee than /N cores
will be fully utilized throughout the entire solve. There may be serial sections inside parallel
code that get executed from time to time, causing only one core to be utilized. Concurrent
algorithms may also have fewer than N different serial algorithms to launch, meaning fewer
than N cores will be occupied.

234 CHAPTER5

Debugger Box

The Debugger box on the General Solver tab:

Debugger:
Output Level:
]

Cold Start Solver:
Solver Decides

Wam Start Solver:
Solver Decides

gives you control over the output level and the solver used as part of the model debugging command,
Solver|Debug. The debugger is very useful in tracking down problems in models that are either
infeasible or unbounded.

The Output Level option controls how much output the model debugger generates. Possible output
levels range from 1 (minimum output) to 15 (maximum output). Higher levels of output will generate
more details regarding aspects of the model causing infeasibilities. However, higher output levels will
generally result in longer runtimes for the debugger.

The default setting for the debugger output level is 5, which will search for a subset of constraints that
lead to an infeasibility.

The Cold Start Solver and Warm Start Solver options control the solver used on linear models for cold
starts (starting without an existing basis in memory) and warm starts (restarting from an existing basis)
during the debugging process. In either case, the available options are:

*

L4
.
¢

Solver Decides — LINGO selects the solver it believes is the most appropriate,
Primal — the primal simplex solver will be used,

Dual — the dual simplex solver will be used, and

Barrier — the barrier solver will be used (requires a barrier solver license).

With some models, you may find that choosing a particular solver improves overall performance of the
debugger.

LINGO defaults to Solver Decides for both the cold and warm debug solver.

MENU COMMANDS 235

Runtime Limits Box

The Runtime Limits box on the General Solver tab:

Runtime Limits:
lterations:
None =
Time (sec):
None 3

is used to control the length of time the solver spends on your model.

The first field, Iterations, allows you to place an upper limit on the number of iterations the solver will
perform. An iteration is the fundamental operation performed by the solver. At the risk of
oversimplification, it is a process that involves forcing a variable, currently at 0, to become nonzero
until some other variable is driven to zero, improving the objective as we go. In general, larger models
will take longer to perform an iteration and nonlinear models will take longer than linear models. The
default iteration limit is None, meaning no limit is imposed on the iteration count.

The second field in the Runtime Limits box, Time (sec), is a limit on the amount of elapsed time the
solver is allowed when optimizing a model. The default time limit is None, meaning no limit is
imposed on the length of time the solver can run.

If the solver hits either of these limits, it returns to normal command mode. If the model contains
integer variables, LINGO will restore the best integer solution found so far. You may need to be
patient, however, because the solver may have to perform a fair amount of work to reinstall the current
best solution after it hits a runtime limit.

Note: When the solver is interrupted, the only time it will return a valid solution is when an
incumbent solution exists, as indicated by a Best Objective value in the Extended Solver
Status box of LINGO's solver status window. Interrupting a model without and incumbent
solution will result in an undefined solution. Models that can be interrupted include any
model with integer variables, or nonlinear models solved with either the global or multistart
solvers.

Dual Computations

The Dual Computations box on the General Solver tab:

Dual Computations:

Prices

236 CHAPTERS5

is used to control the level of dual computations performed by the solver.
The choices for this option are:

¢ None,

¢ Prices,

¢ Prices & Ranges, and
¢ Prices, Opt Only.

When the None option is selected, LINGO does not compute any dual and range information. This
option yields the fastest solution times, but is suitable only if you don’t require any dual information.
In fact, the Solver|Range command will not execute when dual computations are turned off.

When the Prices option is selected, LINGO computes dual values, but not the ranges on the duals.
When Prices & Ranges is selected, LINGO computes both dual prices and ranges.

When the Prices, Opt Only option is selected, LINGO computes dual values on the optimizable rows
only—fixed rows simply receive a dual value of 0. Ranges are also not computed under this option.
This can be a useful option if LINGO is spending a lot of time in the "Computing Duals..." phase of
the solution process. This phase is devoted to the computation of dual values on the fixed rows.

LINGO defaults to the Prices option (computing all the dual prices but not ranges.)

Note: If solution times are a concern, you should avoid unnecessarily enabling range computations.

@SOLVE Time Limit Box

The @SOLVE Time Limits box on the General Solver tab:

@S50LVE Time Limit:

Time [sec)
None =

Kill scripts on limit

is used to set time limits on the runtime of @SOLVE commands, which is a command available in calc
sections for solving sub-models. The time limit, if specified, will be applied to each individual
@SOLVE command encountered in calc sections.

When the None option is selected for the Time field, LINGO does not impose a time limit. Any
nonnegative value will be treated as a runtime limit, in seconds, for each @SOLVE command. If the
time limit is hit, the @SOLVE command will be interrupted, and the best solution found, up to that
point, will be returned.

LINGO defaults to the no time limit on @SOLVE commands and will not kill scripting when interrupts
occur.

MENU COMMANDS 237

Scaling Warning Threshold

The Scaling Warning Threshold parameter on the General Solver tab:

Default Stating Point:
1.2345678

controls when LINGO displays its scaling warning message:

LINGO Error Message x

Emor Code: r g
205 Copy Explain ok |
Ernor Tesdt

The nodel is poorly scaled and may yield erratic results. The
units of the rows and variables should be rescaled so the
model 's comfficients cover a much smallsr rangs

Largest coef: 4.5le+021
On variable: X 1
In rov: OBIROW
Snallest comf: 1
On wvariable: X 1
In row: ROWl

[4

When LINGO generates a model, it keeps track of the largest and smallest coefficient values in the
model. LINGO then computes the ratio of the largest to smallest coefficient, and if the absolute value
of this ratio exceeds the setting for Scaling Warning Threshold, LINGO will display the above error
message.

The scaling warning is to reminder that, due to finite precision, round-off error in arithmetic
calculations can result when the largest-to-smallest coefficient ratio becomes too large. Not all models
will necessarily experience round-off problems when the scaling warning is issued, however, it is
something you should be on the lookout for.

The recommended technique for eliminating the scaling warning is to rescale the model so as to reduce
the extreme coefficient ratio. Many times, just scaling units of measure (e.g., dollars to millions of
dollars) is enough the bring a model's scaling into line. If this is not possible, or your model is
performing well in light of the poor scaling, you may choose to increase the Scaling Warning
Threshold in order to suppress the warning message.

The default value for the Scaling Warning Threshold is 1.e12.

Default Starting Point

The Default Starting Point parameter on the General Solver tab:

238 CHAPTERS5

Default Starting Point:
1.2345678

may be used to set the default starting value for variables. This can be useful in some nonlinear
programs, where you want the solver to start in a particular neighborhood close to good solutions to
improve runtimes.

Solver Log Level

The Solver Log Level parameter on the General Solver tab:

Solver Log Level:

MNone =

can be used to control the amount of output the solver engines display while running. By default,
LINGO does not display much solver log output. However, some technical users may be curious to see
this information. Below is a selection of some log output from a small integer program:

Number of constraints: 2 le: 1, ge: 0, eq:
1, rn: 0 (ne:0)

Number of variables 9 1b: 1, ub: 0, fr:
0, bx: 8 (fx:0)

Number of nonzeroes 12 density: 0.0067 (%) , sb:
0

Abs. Ranges Min. Max . Condition.

Matrix Coef. (A): 1.00000 7.00000 7.00000

Obj. Vector (c): 1.00000 10.00000 10.00000

RHS Vector (b) : 15.00000 15.00000 1.00000

Lower Bounds (1) 1.0000e-100 1.0000e-100 1.00000

Upper Bounds (u) 1.00000 1.00000 1.00000

BadScale Measure: O

Binary variables 8 (in 2 constraints)

Integer variables 0 (in O constraints)

Startpoint info (not feasible):

Objvalue 3.500000e+01 (startpoint)

Infeasibility of solution

Integer infeasibility of solution:

Feasible obj wvalue found in MIP pr

1.8e+01
0.0e+00

erelax heu=0.000000

MENU COMMANDS 239

Setting the log level to higher integer values may result in a higher level of output. In general, a level
of 1 is perhaps the most useful and meaningful. Setting the log level to 'None' disables solver logs,
which is the default setting.

Variables Assumed Non-Negative

When enabled, the Variables Assumed Non-Negative checkbox on the General Solver tab:

Varables assumed nonnegative

tells LINGO to place a default lower bound of 0 on all variables. In other words, unless otherwise
specified, variables will not be allowed to go negative. Should you want a variable to take on a
negative value, you may always override the default lower bound of 0 using the @BND() function. If
this option is disabled, then LINGO’s default assumption is that variables are unconstrained and may
take on any value, positive or negative. Unconstrained variables are also referred to as be being free.

By default, LINGO enables the non-negative option, thereby setting a default lower bound of 0 on all
variables.

Use R/C Format Names for MPS I/O

The Use R/C format names for MPS 1/O checkbox on the General Solver tab:

Use R/C format names for MPS 10

tells LINGO to convert all variable and row names to RC notation when performing MPS file format
I/O. Refer to section titled Importing MPS Files for a discussion of why this option may be useful.

By default, LINGO disables the use of RC format names.

Favor Reproducibility

The Favor reproducibility checkbox on the General Solver tab:

@ Favor reproducibility

allows you to indicate if your preference is for reproducible solutions across multiple runs. In general,
being able to reproduce results is a desirable outcome. However, some models may run faster if we opt
to not favor reproducible runs.

A number of solver steps have been found to perform better when using elapsed time as a measure of
work performed. The problem with this approach is that the actual amount of work that gets
performed over a fixed time interval will vary slightly across runs depending on a machine's load
factor. Many models have alternate optimal solutions, with equal objectives but different variable
values. LINGO is indifferent as to which solution is selected; it just wants to find a feasible solution
with the best objective value, regardless of the variables values. The end result of this variability in

240 CHAPTERS5

work performed is that a different solution path may be selected from one run to the next, in which
case, you may end up with a different alternate optimum from a previous run.

On the other hand, enabling the Favor reproducibility option causes LINGO to use fixed measures of
work (such as iteration counts), allowing solutions to be reproducible across runs when using the same
machine.

By default, LINGO enables the Favor reproducibility option.
Model Generator Tab

The Model Generator tab on the Options dialog box, shown here:

F

Lingo Options b
MNonlinear Solver Irteger Pre-Solver Irteger Solver
Interface General Sobver Linear Sobver
Global Sobver Model Generator 5P Solver

Generator Memony Lim (MB): Uinary Minws Priosity
12 = Cilow © High

Foed Var Reduction:
Aways, but inear only with global and multi w

Model Regeneration:

Bpways w

Limearization
Dagres: Big M- Dekta:
Solver Decides w 100000 Te-06

[Mlow unestricted use of primitive sat member names
(] Assume model is inear
[Check for duphcate names in data and moded

[Erfierce bounds in CALC and DATA
8 Loop optimization
[T Mirimize memary usage
Hep Cancel Defo Save ooy | [oKk |
= |

is used to control several parameters related to the generation of the model. The model generator takes
the expressions in your LINGO model and converts them to a format understood by the solver engines
that find the actual solutions to the model.

MENU COMMANDS 241

Generator Memory Limit

The Generator Memory Limit box on the Model Generator tab:

Generator Memory Limit (MB)
32 .

is used to control the amount of memory set aside to use as workspace for generating a model.

Large models may run out of generator memory when you attempt to solve them. In this case, you will
receive the error message "The model generator ran out of memory." To avoid this error, increase the
amount of memory in the Generator Memory Limit field. You will then need to click the Save button
and restart LINGO. Since LINGO sets aside this memory when it starts, changes in LINGO's generator
memory limit are not established until you restart the program.

To determine exactly how much generator memory LINGO was able to successfully allocate, run the
Help|About LINGO command. The About LINGO dialog box displays the amount of generator
memory allocated at startup.

The memory allocated to LINGO’s generator will not be available to the various solver engines
contained in LINGO. Thus, you should not allocate overly excessive amounts of memory to the
generator.

If you set LINGO's generator memory limit to None, LINGO will allocate all available memory when
it starts up. This is not a recommended practice. The default size for the workspace is 32Mb.

Note: By setting LINGO's generator memory limit abnormally high, both LINGO and Windows
will resort to swapping virtual memory to and from the hard drive, which can slow down your
machine dramatically and result in poor performance. In general, set the memory allocation to
a level high enough to comfortably handle your largest models, but not too much higher than
that. You can view the amount of memory used in the allotted workspace at any time by
opening the solver status window and examining the Generator Memory Used field.

Unary Minus Priority

The Unary Minus Priority box on the Model Generator tab:

Unary Minus Priorty:
(O Low © High

is used to set the priority of the unary minus operator. The two available options are High and Low.

242 CHAPTER5

There are two theories as to the priority that should be assigned to the unary minus (i.e., negation)
operator in mathematical expressions. On the one hand, there is the Excel practice that the unary minus
operator should have the highest priority, in which case, the expression -3"2 would evaluate to +9. On
the other hand, there is the mathematicians’ preference for assigning a lower priority to unary minus
than is assigned to exponentiation, in which case, -32 evaluates to -9.

Note that regardless which relative priority is used, one can force the desired result through the use of
parenthesis.

LINGO defaults to the Excel approach of setting a higher priority (High) on negation than on
exponentiation.

Fixed Var Reduction

The Fixed Var Reduction box on the Model Generator tab:
Fixed Var Reduction:
Always, but linear only with global and multi
is used to control the degree to which fixed variables are substituted out of the ultimate math program
passed to the solver engines.

For example, consider the model:
MAX= 20*X + 30*Y + 12*Z;

X = 2*Y;
X+ Y + 7Z <= 110;
Y = 30;

If we run the Solver|Generate command, we see that LINGO is able to reduce this model down to the
equivalent, but smaller model:

MAX= 12 * Z + 2100;
7 <= 20;

From the third constraint of the original model, it is obvious that Y is fixed at the value 30. Plugging
this value for Y into the first constraint, we can conclude that X has a value of 60. Substituting these
two fixed variables out of the original formulation yields the reduced formulation above.

In most cases, substituting out fixed variables yields a smaller, more manageable model. In some
cases, however, you may wish to avoid this substitution. An instance in which you might want to avoid
substitution would be when equations have more than one root. When multiple roots are present,
reduction may select a suboptimal root for a particular equation. On the other hand, the global and
multistart solvers are adept at handling equations containing multiple roots. Thus, when using these
solvers one may wish to forgo fixed variable reduction.

MENU COMMANDS 243

The available options are:

¢ None,

¢ Always,

¢ Always, but linear only with global and multi, and
& Linear rows only.

Selecting None disables all fixed variable reduction. Selecting Always enables reduction. When
Always, but linear only with global and multi is selected, LINGO always enables reduction except
when either the global or multistart solvers are selected, in which case it will only perform reduction
on rows where the key variable appears linearly. The Linear rows only option always limits reduction
to rows in which the key variable is linear.

Note: You should be careful when turning off fixed variable reduction. If the model generator is
unable to substitute out fixed variables, you may end up turning a linear model into a more
difficult nonlinear model.

LINGO defaults to selecting Always, but linear only with global and multi for fixed variable reduction.

Model Regeneration

The Model Regeneration box on the Model Generator tab:
Model Regeneration:

Always o

is used to control the frequency with which LINGO regenerates a model. Commands that will trigger
the model generator are:

Solver|Solve,
Solver|Generate,
Solver|Model Statistics,
Solver|Picture,
Solver|Debug, and
File|Export File.

* & & & o o

The choices available under this option are:

¢ Only when text changes — LINGO regenerates a model only when a change has been
made to the model’s text since the last generation took place.

& When text changes or with external references — LINGO regenerates whenever a change
is made to the model text or when the model contains references to external data sources
(e.g., text files, databases, or spreadsheets.)

¢ Always — (default) LINGO always regenerates the model each time information regarding
the generated model is needed.

244 CHAPTERS5

LINGO defaults to always regenerating the model.

Linearization

The Linearization box on the Model Generator tab:

Linearization:
Degree: Big M: Delta:
Solver Decides . 100000 1e-06

controls the linearization option in LINGO. Many nonlinear operations can be replaced by linear
operations that are mathematically equivalent. The ultimate goal is to replace all the nonlinear
operations in a model with equivalent linear ones, thereby allowing use of the faster and more robust
linear solvers. We refer to this process as linearization. For more information on linearization, please
refer to the section On Mathematical Modeling.

Degree determines the extent to which LINGO will attempt to linearize models.

The available options are:

¢ Solver Decides,
¢ None,

¢ Math Only,

¢ Math and Logic.

Under the None option, no linearization occurs. With the Math Only option, LINGO linearizes the
mathematical functions: @ABS(), @FLOOR(), @IF(), @MAX(), @MIN(), @SIGN(). @SMAX(), and
@SMIN() along with any products of binary and continuous variables. The Math and Logic option is
equivalent to the Math option plus LINGO will linearize all logical operators (#LT# #LE# #EQ#,
#GT# #GE# and #NE#). Under the Solver Decides option, LINGO will do maximum linearization if
the number of variables is less-than-or-equal-to 12, otherwise, LINGO will not perform any
linearization. LINGO defaults to the Solver Decides setting.

The Delta Coefficient is a tolerance indicating how closely you want the additional constraints added
as part of linearization to be satisfied. Most models won’t require any changes to this parameter.
However, some numerically challenging formulations may benefit from increasing Delta slightly.
LINGO defaults to a Delta of 1.e-6.

When LINGO linearizes a model, it will add forcing constraints to the mathematical program
generated to optimize your model. These forcing constraints are of the form:

J(x) <M=y

MENU COMMANDS 245

where M is the BigM Coefficient and y is a 0/1 variable. The idea is that if some activity in the
variables is occurring, then the forcing constraint will drive y to take on the value of 1. Given this, if
we set the BigM value to be too small, we may end up with an infeasible model. Therefore, the astute
reader might conclude that it would be smart to make BigM quite large, thereby minimizing the chance
of an infeasible model. Unfortunately, setting BigM to a large number can lead to numerical stability
problems in the solver resulting in infeasible or sub-optimal solutions. So, getting a good value for the
BigM Coefficient may take some experimentation.

As an example of linearization, consider the following model:

model:
sets:

projects: baths, sgft, beds, cost, est;
endsets
data:
projects, beds, baths, sgft, cost =
pl 5 4 6200 559608
P2 2 1 820 151826
r3 1 1 710 125943
p4 4 3 4300 420801
P5 4 2 3800 374751
P6 3 1 2200 251674
e7 3 2 3400 332426
enddata
min @max (projects: @abs(cost - est));

@for (projects:

est = a0 + al * beds + a2 * baths + a3 * sqgft
) i

end

Model: COSTING

This model estimates the cost of home construction jobs based on historical data on the number of
bedrooms, bathrooms, and square footage. The objective minimizes the maximum error over the
sample project set. Both the @MAX() and @ABS() functions in the objective are non-smooth nonlinear
functions, and, as a result, can present problems for LINGO’s default, local search NLP solver.

Running the model under the default settings with linearization disabled, we get the following result:

Local optimal solution found at step: 91
Objective value: 3997.347
Variable Value Reduced Cost
AO 37441.55 0.000000
Al 27234.51 0.000000
A2 23416.53 0.000000
A3 47.77956 0.000000

246 CHAPTERS5

Enabling linearization and re-optimizing yields the substantially better solution:

Global optimal solution found at step: 186

Objective value: 1426.660
Variable Value Reduced Cost
\0) 46814.064 0.000000
Al 22824.18 0.000000
A2 16717.33 0.000000
A3 53.74674 0.000000

Note that the maximum error has been reduced from 3,997 to 1,426!

Linearization will substantially increase the size of your model. The sample model above, in un-
linearized form, has a mere 8 rows and 11 continuous variables. On the other hand, the linearized
version has 51 rows, 33 continuous variables, and 14 binary variables! Although linearization will
cause your model to grow in size, you will tend to get much better solution results if the model can be
converted entirely to an equivalent linear form.

Note: Linearization will be of most use when a nonlinear model can be 100% linearized. If LINGO
can only linearize a portion of your model, then you may actually end up with a more difficult
nonlinear model.

The linearization option is set to So/ver Decides by default.

Allow Unrestricted Use of Primitive Set Member Names Box

The Allow unrestricted use of primitive set member names checkbox on the Model Generator tab:

| Allow unrestricted use of prmitive set member names
allows for backward compatibility with models created in earlier releases of LINGO.

In many instances, you will need to get the index of a primitive set member within its set. Prior to
release 4 of LINGO, you could do this by using the primitive set member's name directly in the
model's equations. This can create problems when you are importing set members from an external
source. In this case, you will not necessarily know the names of the set members beforehand. When
one of the imported primitive set members happens to have the same name as a variable in your model,
unintended results can occur. More specifically, LINGO will not treat such a variable as optimizable.
In fact, it would treat it as if it were a constant equal to the value of the index of the primitive set
member!

In short, different primitive set names can potentially lead to different results. Therefore, starting with
release 4.0 of LINGO, models such as the following were no longer permitted:

MODEL:
SETS:

MENU COMMANDS 247

DAYS /MO TU WE TH FR SA SU/;
ENDSETS

INDEX OF FRIDAY = FR;

END

If you want the index of FR in the DAYS set, you should now use the @/NDEX function:
INDEX OF FRIDAY = QINDEX(DAYS, FR);

By default, LINGO disables the use of primitive set member names.

Assume Model is Linear

The Assume model is linear checkbox on the Model Generator tab:

() Assume model is linear

can be used for minimizing memory usage on models that are entirely linear. When this option is in
effect, the model generator can take steps to dramatically reduce overall memory consumption without
sacrificing performance. In fact, if all your models are linear, we recommend that you enable this
option permanently as the default for your installation. The one restriction is that the model must prove
to be entirely linear. If a single nonlinearity is detected, you will receive an error message stating that
the model is nonlinear and model generation will cease. At which point, you should clear this option
and attempt to solve the model again.

By default, the Assume model is linear option is disabled.

Check for Duplicate Names

The Check for duplicate names in data and model checkbox on the General Solver tab:

(") Check for duplicate names in data and model

allows you to test your LINGO models from older releases for instances where primitive set members
appear in the model's equations. The next time you run a model, LINGO will issue an error message if
duplicate names appear as set members and as variables in the model.

By default, this option is disabled.

Enforce Bounds In CALC and DATA

The Enforce Bounds In CALC and DATA checkbox on the General Solver tab:

(") Check for duplicate names in data and model

causes LINGO to check the values of any variables input in calc and data sections against their bounds.
Normally, variable bounds apply only to optimizable variables that appear in the model's constraints
and not to variables fixed to constant values in calc and data sections. If you would also like LINGO to

248 CHAPTERS5

check variables fixed in calc and data sections against their bounds, then you will need to enable this
option.

By default, this option is disabled.

Loop Optimization

The Loop optimization checkbox on the Model Generator tab:

Loop optimization

is used to either enable or disable LINGO's loop optimization step. Loop optimization reformulates
expressions containing set looping functions in order to make them more efficient, while maintaining
mathematical equivalency. The end goal of loop optimization is to minimize the number of passes
through the inner loop of any nested loops in an expression.

As an example, consider the following transportation model fragment, that just contains constraints for
satisfying customer demand:

MODEL:
! A transportation problem fragment;
SETS:
WAREHOUSE /1..50/ : CAPACITY;
CUSTOMER /1..5000/ : DEMAND;
ROUTES (WAREHOUSE, CUSTOMER) : COST, VOLUME;
ENDSETS

! The demand constraints;
@FOR(CUSTOMER(J) :

@SUM(ROUTES(I, J): VOLUME(I, J)) >= DEMAND(J)
)

END
Transportation Model Fragment with Inefficient Constraints

In the demand constraints expression there are two loops — an outer @FOR() over the CUSTOMER
set and an inner @SUM() over the ROUTES set. As written, the inner loop must be executed
5000*50*5000=1.25 billion times.

Note that a valid reformulation of these demand constraints would be:

! The demand constraints;
@FOR(CUSTOMER(J) :

@SUM(WAREHOUSE(I): VOLUME(I, J)) >= DEMAND(J)
)

With the expression rewritten in this manner, the inner loop will now only be executed 50*5000 times,
reducing the total number of passes by a factor of 5000. LINGO's loop optimizer seeks out such
inefficient loops and, invisible to the user, rewrites them before the model gets passed to the generator.
Of course, the end result of such reformulations are faster generation times. In fact, the speedup from

MENU COMMANDS 249

reformulation can be quite dramatic in many cases. In this particular example, the reformulated version
ran over 400 times faster in the model generator.

Note that in some cases, particularly with models that primarily contain sparse sets, loop optimization
may actually increase runtimes. So, you should compare runtimes with, and without, the feature being
enabled.

By default, the Loop optimization feature is enabled.

Minimize Memory Usage

The Minimize memory usage checkbox on the General Solver tab:

(] Minimize memory usage
may be used to guide LINGO’s memory usage. Enabling Minimize memory usage causes LINGO to
opt for less memory usage when solving a model. The downside is that opting for less memory may

result in longer runtimes.

LINGO defaults to disabling Minimize memory usage.

250 CHAPTERS5

Linear Solver Tab

The Linear Solver tab on the Options dialog box, pictured here:

r h]

Lingo Options b
Nonlinear Solver Integer Pre-Solver integer Salver
Global Solwer Maodel Generator SP Sobver
Intesface General Solver Linear Solver

Method: Model Reduction;
Solver Decides v Solver Decides w
Initial Linear Feasibiity Tol: Final Linear Feasibilty Tol:
TR 107
Pricing Strategies:
Primal Solver Dual Salver:
Solver Decides Solver Decides
Mukti-Core:
Coresto Use: OF -
Core 1: Core 2 Core 3: Core 4:
Prirnal 1 Dwal Blamier Primal 2

Linear Optimalty Tolerance: At Opt Sohtiors:

le-07 Mumber: 1 v
Basis Refactor Frequency: B Barier Crossover
Solver Decides - (] Matrix Decompostion

Help Cancel Defat Save Aol

[4

can be used to control several options for tailoring the operation of LINGO’s linear solver. The linear
solver is used on linear models and mixed integer linear models as part of the branch-and-bound
process.

MENU COMMANDS 251

Method Box

The Method box on the Linear Solver tab:

Method:
Solver Decides

is used to control the algorithm LINGO’s linear solver employs.

The current choices are:

o Solver Decides — LINGO selects the algorithm it determines is most appropriate.

o Primal Simplex — LINGO uses a primal simplex algorithm.

o Dual Simplex — LINGO uses a dual simplex algorithm.

o Barrier — LINGO uses a barrier algorithm (i.e., interior point.)

The simplex algorithm moves around the exterior of the feasible region to the optimal solution, while
the interior point algorithm, or barrier solver, moves through the interior of the feasible region. In
general, it is difficult to say which algorithm will be fastest for a particular model. A rough guideline is
primal simplex tends to do better on sparse models with fewer rows than columns. Dual simplex does
well on sparse models with fewer columns than rows. And the barrier solver works best on densely
structured models or very large models.

The barrier solver is available only as an additional option to the LINGO package. Furthermore, if the
model has any integer variables, the barrier solver will be used for solving the LP at the initial root
node of the branch-and-bound tree, but may or may not be used on subsequent nodes. From a
performance point-of-view, the barrier solver’s impact will be reduced on integer models.

LINGO defaults to the Solver Decides option.

Model Reduction Box
The Model Reduction box on the Linear Solver tab:
Model Reduction:
Solver Decides

is used to control the amount of model reduction performed by LINGO’s linear solver.

Your options are:

e Off — Disables reduction,
e (On — Reduction is used on all models, and
o Solver Decides — LINGO decides whether or not to use reduction.

252 CHAPTER5

When this option is enabled, LINGO attempts to identify and remove extraneous variables and
constraints from the formulation before solving. In certain cases, this can greatly reduce the size of the
final model to be solved. Sometimes, however, reduction merely adds to solution times without
trimming back much on the size of the model.

LINGO defaults to the Solver Decides option.

Feasibility Tolerance Boxes

The Initial Linear Feasibility Tol and the Final Linear Feasibility Tol boxes on the Linear Solver tab:

Initial Linear Feasibility Tol: Final Linear Feasibilty Tol:
Je-06 1le-07

are used to control the feasibility tolerances for the linear solver. These tolerances are related to how
closely constraints must be satisfied in linear models. In general, if your models are well formulated,
you should not have to modify these tolerances. However, access to these tolerances is provided for the
expert user.

Due to the finite precision available for floating point operations on digital computers, LINGO can't
always satisfy each constraint exactly. Given this, LINGO uses these two tolerances as limits on the
amount of violation allowed on a constraint while still considering it "satisfied”. These two tolerances
are referred to as the Initial Linear Feasibility Tolerance (ILFT) and the Final Linear Feasibility
Tolerance (FLFT.) The default values for these tolerances are, respectively, .000003 and .0000001.

The ILFT is used when the solver begins iterating. In the early stages of the solution process, having
the solver less concerned with accuracy issues can boost performance. When LINGO thinks it has an
optimal solution, it switches to the more restrictive FLFT. At this stage in the solution process, you
want a relatively high degree of accuracy. Thus, the FLFT should be smaller than the ILFT.

One instance where these tolerances can be of use is when LINGO returns a solution that is almost
feasible. You can verify this by checking the values in the Slack or Surplus column in the model's
solution report. If there are only a few rows with small negative values in this column, then you have a
solution that is close to being feasible. Loosening (i.e., increasing) the ILFT and FLFT may help you
get a feasible solution. This is particularly true in a model where scaling is poor (i.e., very large and
very small coefficients are used in the same model), and the units of measurement on some constraints
are such that minor violations are insignificant. For instance, suppose you have a budget constraint
measured in millions of dollars. In this case, a violation of a few pennies would be of no consequence.
Short of the preferred method of re-scaling your model, loosening the feasibility tolerances may be the
most expedient way around a problem of this nature.

MENU COMMANDS 253

Pricing Strategies Box

The Pricing Strategies box on the Linear Solver tab:

Pricing Strategies:
Primal Solves: Dual Solver:
Solver Decides ~ Solver Decides

is used to control the pricing strategy used by LINGO’s simplex solvers. Pricing determines the
relative attractiveness of the variables during the simplex algorithm.

For the Primal Solver, you have the following choices:

Solver Decides — LINGO selects the pricing method it believes is the most appropriate.
Partial — LINGO prices out a small subset of variables at each iteration and intermittently
prices out all the variables to determine a new subset of interesting variables.

Devex — Devex prices out all columns at each iteration using a steepest-edge approximation
(see below.)

Partial pricing tends to yield faster iterations. Devex, while slower, results in fewer overall iterations
and can be helpful when models are degenerate. Thus, it is difficult to determine which method is
superior beforehand.

For the Dual Solver, you have these options:

Solver Decides — LINGO selects the pricing method it believes is the most appropriate.
Dantzig — The dual simplex solver will tend to select variables that offer the highest absolute
rate of improvement to the objective regardless of how far other variables may have to move
per unit of movement in the newly introduced variable.

Steepest-Edge — The dual solver spends a little more time selecting variables by looking at
the total improvement in the objective when adjusting a particular variable.

Devex — Devex prices out all columns at each iteration using a steepest-edge approximation.
Approximate Devex — An simplified implementation of true Devex pricing.

Dantzig pricing generally yields faster iterations, however, the other variables in the model may
quickly hit a bound resulting in little gain to the objective. With the steepest-edge option, each iteration
will tend to lead to larger gains in the objective resulting in fewer overall iterations, however, each
iteration will tend to take more compute time due to increased time spent in pricing. The Devex
options approximate true steepest-edge pricing.

LINGO defaults to Solver Decides for both the primal and dual solvers.

254 CHAPTER5

Multi-Core Box

The Multi-Core box on the Linear Solver tab:

Multi-Core:
Cores to Use: OFf
Core 1: Core 2: Core 3: Core 4:

may be used to perform parallel solves of linear programs on multiple cores. One of four different
linear solvers is chosen for each core. LINGO will take the solution from the solver that finishes first
and then interrupt the remaining solver threads.

The idea behind this approach is that different linear solvers will have relatively better or worse
performance on different classes of models. However, it may be difficult to predict beforehand the
solver that is most likely to outperform. So, by enabling multi-core solves, we guarantee that we will
always get top performance, even without knowledge beforehand of which solver is likely to run the
fastest.

Note: The multi-core feature requires that your machine have at least one core free for each solver
you wish to run. Using this feature with an inadequate number of cores will tend to decrease
overall performance.

For the Cores to Use parameter, you have the following choices: Off, 2, 3, or 4. When the default Off
option is selected, the multi-core feature is disabled, and LINGO will run only one solver on linear
programs, namely the one specified as part of the Solver Method option detailed above. When either
option 2, 3, or 4 is selected, LINGO will run linear solvers in the requested number of cores.

When selecting 2 or more cores, you will have the option to specify which of the linear solvers to use
in each of the running cores as part of the Corel - Core4 list boxes. The available linear solvers are:

Primall - Primal simplex algorithm 1

Dual - Dual simplex algorithm

Barrier - Barrier/Interior point solver (available as a option)

Primal2 - Primal simplex algorithm 2, installed as part of the Barrier option

MENU COMMANDS 255

As an example, the settings of the Multi-Core box below are requesting to run LP solvers in two cores,
with core 1 running the dual simplex solver and core 2 running the barrier solver:

kulti-Care:
Cores to Use; | 2 -
Core 1: Core 2 Core 3 Core 4:

o~ [[=] [P o

While LINGO is solving linear programs it normally displays solver statistics in the Solver Status
Window. This will also be true with muti-core solves. However, LINGO reports the statistics from
only one of the solvers, specifically, the solver selected to run in Core 1. Once optimization is
complete, LINGO will populate the Solver Status Window with statistics from the solver that finished
first. Finally, as part of the solution report, LINGO will display a line indicating the solver that
finished first. In the solution report excerpt below, we see that the barrier solver was the first to
completion:

First returning solver: BARRIER
Global optimal solution found.

Objective value: -247203.9
Infeasibilities: 0.000000
Total solver iterations: 68
Elapsed runtime seconds: 28.35

Linear Optimality Tolerance Box

The Linear Optimality Tolerance box on the Linear Solver tab:

Linear Optimality Tolerance:
1e-07

allows you to control the setting for the linear optimality tolerance. This tolerance is used to determine
whether a reduced cost on a variable is significantly different from zero. You may wish to loosen this
tolerance (make it larger) on poorly scaled and/or large models to improve performance.

The default setting for the Linear Optimality Tolerance is 1.e-7.

mk:@MSITStore:C:/Users/Stephane/Desktop/Lingo_15_Users_Manual.chm::/solver_status_window.htm
mk:@MSITStore:C:/Users/Stephane/Desktop/Lingo_15_Users_Manual.chm::/solver_status_window.htm

256 CHAPTERS5

Alt Opt Solutions

The Alt Opt Solutions box on the Linear Solver tab:

Alt Opt Solutions:
Number: 1 .

allows you to set the number of alternate optimal solutions that the linear solver should attempt to find
for a linear program. A solution is considered an optimal alternate solution if it has the same objective
value as another globally optimal solution, but has different variable values. One might think such a
situation would be uncommon, however, in many instances alternate optimal solutions do exist. In fact,
it is not uncommon for a large number of alternate solutions to exist for some models.

The default setting for the Alt Opt Solutions is 1, in other words, find a single optimal solution without
searching for additional alternate optimal solutions.

Note: The Alt Opt Solutions is available only for linear programs. If your model is a mixed integer
linear program (MILP), then you may wish to refer to the K-Best feature for determining a
selection of best solutions for MILP models.

Note: The Alt Opt Solutions feature is not exhaustive in that for numerically difficult model it's not
guaranteed to find all alternate solutions, potentially finding a subset of them instead.

Alt Opt Solutions Example

In order to illustrate the Alt Opt Solutions feature, consider the following simple linear program (see
http://www.math.clemson.edu/~shierd/Shier/MthSc440/Alternative%200ptimal%20Solutions.pdf):

MODEL:
MAX = 6*X1 + 4*X2
X1 + 4*X2 <= 40 ;
3*X1 + 2*X2 <= 30 ;
3*X1 + X2 <= 24 ;

END
Model: ALTOPT

MENU COMMANDS 257

The graph of this linear program follows:

A 1 E |

6}{1 + 4}{2 = 24

Note that there are two alternate optimal solutions at point C and D, both with an objective value of 60.
We next run the Solver | Options command and set A/t Opt Solutions option to 10 as seen here:

258 CHAPTER 5

B Lingo 21.0 - Lingo Model - ALTOPT -)

File Edit Solver Window Help

Nefe« T/ 5S¢ |46 oxMk

Lingo Options *
Monlinear Sobver Integer Pre-Solver Integer Solver
Global Solver Madel Generator SP Solver
Interface General Solver Linear Salver
Method: Model Reduction:
— Sobver Decides w Sobver Decides w
B Linge Mode! - ALTOF
8 MoDEL: Initial Linear Feasibity Tol: Final Linear Feasibity Tol:
> g 3e-06 Te07
MAX = gvX]
i Pricing Strategies:
5 %1 Primal Sobver: Dueal Solver:
6 IeRL Solver Decides Solver Decides
7 3%%1
8 Muti-Core:
3 END Coresto Use: OF -
s Core 1; Core 2: Core 3: Core 4;

Primal 1 Dual Bamiar Primal?

Linear Optimality Tolerance: At Opt Solutions: —
1e-07 MNumber: 10 ke

=3

In general, you will not know beforehand how many alternate optimal solutions exist (if any), meaning
you may want to request a large number of potential alternate solutions to ensure you find the
maximum solutions possible. If the number of solutions found is less than the maximum requested,
LINGO just displays the solutions that were successfully found.

Next, solving the model with the Solver | Solve command we are presented with the following dialog
box:

MENU COMMANDS 259

AltOpt Solution Selection 4

Tradeoff Variable:

[11 <]

Candidate Solutions:

Solution Objective Tradeoff
1 b0 -]
2 B 4
Help | Cancel | View | Select

Note that there are two solutions listed corresponding to the two alternate optimal solutions in this
model. We can select one, or more, solutions at a time and then examine their solution reports.
Selecting both solutions to view, we are presented with:

Global optimal solution found.

Objective value: 60.00000
Infeasibilities: 0.000000
Total solver iterations: 2
Elapsed runtime seconds: 0.14

Variable Value

X1 6.000000

X2 6.000000

Row Slack or Surplus

1 60.00000

2 10.00000

3 0.000000

4 0.000000

Alt Opt Solution 1

260 CHAPTERS5

Global optimal solution found.

Objective wvalue: 60.00000
Infeasibilities: 0.000000
Total solver iterations: 4
Elapsed runtime seconds: 0.14

Variable Value

X1 4.000000

X2 9.000000

Row Slack or Surplus

1 60.00000

2 0.000000

3 0.000000

4 3.000000

Alt Opt Solution 2
These are the two alternate optimal solutions (point C and D) shown in the diagram above.

There is also a column labeled Tradeoff, which lists the value in each solution of a designated tradeoff
variable. Any scalar variable in a model can be selected as the tradeoff variable. This may be some
secondary value, after the primary objective value, that is of interest. For example, in a staff
scheduling model we might set tradeoff variable to be the number of employees working on Sunday,
which we might prefer to be as low as possible, all other things being equal.

The following buttons are available along the bottom edge of the dialog box:

¢ Help — Displays online help regarding the Alt Opt feature.

¢ Cancel — Cancels out of Alt Opt mode, closing the dialog box.

¢ View — Displays any solutions selected in the Candidate Solutions box.

¢ Select — Allow you to select one of the candidate solutions as the final solution to the model.

Basis Refactor Frequency Box

The Basis Refactor Frequency box on the Linear Solver tab:

Basis Refactor Frequency
Solver Decides =

allows you to control how frequently the linear solver refactors the basis matrix. The options are either
Solver Decides or some positive integer quantity. If an integer value, W, is selected, then the linear
solver will refactor every N iterations. Numerically tough and/or poorly scaled models may benefit
from more frequent refactoring. However, refactoring too frequently will cause the solver to slow
down.

MENU COMMANDS 261

The default setting for the Basis Refactor Frequency is Solver Decides, which will typically result in
refactoring about once every 100 iterations.

Barrier Crossover

The Barrier Crossover box on the Linear Solver tab:

Bamier Crossover

is used to control whether or not the barrier solver performs a crossover operation. Unlike simplex
algorithms, the barrier solver does not automatically find basic (cornerpoint) solutions. Very roughly
speaking, basic solutions have the nice mathematical property that exactly m variables will have
nonzero values, where m is the number of constraints. The crossover procedure takes the barrier’s
non-basic solution, and, through the use of a simplex solver, converts the non-basic solution to a basic
one. If the basic solution property is not important for your models, then you may wish to disable
crossovers to improve performance when using the barrier solver.

Note: Barrier crossover must be enabled if you plan to do range analysis. Range computations
cannot be performed if the final solution is not a basic solution.

The default is to perform crossovers.

Matrix Decomposition

The Matrix Decomposition box on the Linear Solver tab:

|__| Matrix Decomposition
allows you to enable the matrix decomposition feature.
Many large-scale linear and mixed integer problems have constraint matrices that are totally
decomposable into a series of block structures. If total decomposition is possible, LINGO will solve
the independent problems sequentially and report a solution for the original model, resulting in

dramatic speed improvements.

LINGO defaults to not using matrix decomposition.

Scale Model

The Scale Model box on the Linear Solver tab:

Scale Model

allows you to enable the matrix scaling option.

262 CHAPTER5

This option rescales the coefficients in the model’s matrix, so the ratio of the largest to smallest
coefficients is reduced. This reduces the chances of round-off error, which leads to greater numerical
stability and accuracy in the linear solver.

LINGO defaults to using scaling.

Nonlinear Solver Tab
The Nonlinear Solver tab on the Options dialog box, pictured here:
Lingo Options x
Interface General Solwer Linear Sohver
Global Sobver Model Generator SP Solver
Noniinear Solver Integer Pre-Solver Integer Solver
Initial Nonl Feasibiity Tol Final Nonl Feasibiity Tol:
0.001 Te-06
Nonlinear Optimalty Tol: Slow Progress Reration Limit:
1e7 L =
Denvatives: Srategies:
Frst O [Crash Initial Sokution 1
Solver Decides " [C) Crash Initial Sohution 2
— B Guadratic Recagntion
| Use Second Ordar
- [Selective Corvtraint Eval
B 5LP Directions
NLP Solver Viersion: () SLP Solver
Ver 3.0 ~ [[] Steepest Edge

[F

controls several options that affect the operation of LINGO's solver on nonlinear models.

MENU COMMANDS 263

Initial and Final Nonlinear Feasibility Tols

The Initial Nonlinear Feasibility tolerance and the Final Nonlinear Feasibility tolerance boxes on the
Nonlinear Solver tab:
Initial Nonl Feasibility Tol Final Nonl Feasibility Tol
0.001 1e-06

are used to control the feasibility tolerances for the nonlinear solver in the same manner that the /nitial
Linear and Final Linear Feasibility tolerances are used by the linear solver. For information on how
and why these tolerances are useful, refer to the Feasibility Tolerances section on the Linear Solver
Tab.

Default values for these tolerances are, respectively, .001 and .000001.
Nonlinear Optimality Tolerance
The Nonlinear Optimality Tol box on the Nonlinear Solver tab:

Nonlinear Optimality Tol
1e-007

is used to control the adjustments to variables as described below.

While solving a model, the nonlinear solver is constantly computing a gradient. The gradient gives the
rate of improvement of the objective function for small changes in the variables. If the gradient's rate
of improvement computation for a given variable is less-than-or-equal-to the Nonlinear Optimality
Tolerance, further adjustments to the variable's value are not considered to be beneficial. Decreasing
this tolerance towards a limit of 0 will tend to make the solver run longer and may lead to better
solutions for poorly formulated or poorly scaled models.

The default value for Nonlinear Optimality Tolerance is .0000001.

Slow Progress lteration Limit

The Slow Progress Iteration Limit (SPIL) box on the Nonlinear Solver tab:

Slow Progress lteration Limit:
5 -

is used to terminate the solution process if little or no progress is being made in the objective value.

264 CHAPTERS5

Specifically, if the objective function's value has not improved significantly in # iterations, where 7 is
the value of SPIL, the nonlinear solver will terminate the solution process. Increasing this tolerance's
value will tend to force the solver to run longer and may be useful in models with relatively "flat"
objective functions around the optimal solution.

The default value for SPIL is 5 iterations.

Derivative Computation

The Derivatives box on the Nonlinear Solver tab:
Dervatives:

First Order
Solver Decides

| Use Second Order

controls how derivatives are used in the nonlinear solver. There are two settings available: First Order
and Use Second Order.

The First Order option determines how the nonlinear solver computes first order derivatives. There are
two general methods available: numerical or analytical derivatives. Analytical derivatives are
computed directly by symbolically analyzing the arithmetic operations in a constraint. Numerical
derivatives are computed using finite differences. There are two types of numerical derivatives
available using either central differences or forward differences. There are also two types of analytical
derivatives available: backward analytical and forward analytical. Finally, a Solver Decides option is
also available. LINGO defaults to the Solver Decides setting for the First Order option, which
presently involves LINGO using backward analytical derivatives. However, one of the other choices
may be more appropriate for certain classes on nonlinear models. We suggest you try the various
derivative options to see which works best for your particular models.

The Use Second Order option determines if the nonlinear solver will use second order derivatives. If
used, second order derivatives will always be computed analytically. Computing second order
derivatives will take more time, but the additional information they provide may lead to faster runtimes
and/or more accurate solutions. LINGO defaults to not using second order derivatives.

MENU COMMANDS 265

Nonlinear Solver Version

The Nonlinear Solver Version option on the Nonlinear Solver tab:

MLP Solver Viersion:
Ver 3.0

may be used to select the version of the nonlinear solver. Presently, there are two options: Version 3.0
and Version 4.0. LINGO defaults to using Version 3.0, but you may find that on some models Version
4.0 can perform better.

Strategies Box

The Strategies box on the Nonlinear Solver tab:

Strategies:

|] Crash Initial Solution 1
| Crash Initial Solution 2
B Guadratic Recognition
| Selective Constraint Eval
B SLP Directions

] SLP Solver

| Steepest Edge

allows you to set the following options:

Crash Initial Solution 1,
Crash Initial Solution 2,
Quadratic Recognition,
Selective Constraint Eval,
SLP Directions,

SLP Solver, and

Steepest Edge.

Crash Initial Solution 1 and 2

LINGO has two solution "crashing" methods that use different heuristics for generating starting points
for nonlinear models. If at least one of the Crash Initial Solution boxes is checked, LINGO’s nonlinear
solver will invoke a heuristic for generating a "good" starting point when you solve a model. If this
initial point is relatively good, subsequent solver iterations should be reduced along with overall
runtimes. It's possible, however, that runtimes may slow if the selected point turns out to be poor. It is

266 CHAPTERS5

difficult to know beforehand if a particular crashing technique, if any, will help performance. You will
need to experiment with your model to determine the best settings for the two crash procedures.

LINGO defaults to not crashing an initial solution.

Quadratic Recognition

If the Quadratic Recognition box is checked, LINGO will use algebraic preprocessing to determine if
an arbitrary nonlinear model is actually a quadratic programming (QP) model. If a model is found to
be a QP model and convex, then it can be passed to the faster quadratic solver. Note that the QP solver
is not included with the standard, basic version of LINGO, but comes as part of the Barrier option.

LINGO defaults to using quadratic recognition.

Selective Constraint Evaluation

If the Selective Constraint Eval box is checked, LINGO’s nonlinear solver will only evaluate
constraints on an as needed basis. Thus, not every constraint will be evaluated during each iteration.
This generally leads to faster solution times, but can also lead to problems in models that have
functions that are undefined in certain regions.

LINGO may not evaluate a constraint for many iterations only to find that it has moved into a region
where the constraint is no longer defined. In this case, there may not be a valid point for the solver to
retreat to, and the solution process terminates with an error. Turning off selective constraint evaluation
eliminates these errors.

LINGO defaults to not using Selective Constraint Eval.

SLP Directions

If the SLP Directions box is checked, LINGO's nonlinear solver will use successive linear
programming (SLP) to compute new search directions. This technique uses a linear approximation in
search computations in order to speed iteration times. In general, however, the number of total
iterations will tend to rise when SLP Directions are used.

LINGO defaults to using SLP Directions.

SLP Solver

If the SLP Solver box is checked, LINGO uses a successive linear programming (SLP) algorithm for
its nonlinear solver. This technique uses a linear approximation of the true nonlinear model within
successive, small regions. This then allows the use of the fast linear solver for optimizing each linear
subregion. In general, the SLP solver will not be well suited for highly nonlinear models. However, it
may offer better performance than the standard nonlinear solver when a model has few nonlinear
variables, such that the model is "mostly linear".

MENU COMMANDS 267

LINGO defaults to not enabling the SLP Solver option.

Steepest Edge

If the Steepest Edge box is checked, LINGO's nonlinear solver will use the steepest-edge strategy
when selecting variables to iterate on.

When LINGO is not in steepest-edge mode, the nonlinear solver will tend to select variables that offer
the highest absolute rate of improvement to the objective, regardless of how far other variables may
have to move per unit of movement in the newly introduced variable. The problem with this strategy is
that other variables may quickly hit a bound, resulting in little gain to the objective.

With the steepest-edge option, the nonlinear solver spends a little more time in selecting variables by
looking at the rate that the objective will improve relative to movements in the other nonzero
variables. Thus, on average, each iteration will lead to larger gains in the objective. In general, the
steepest-edge option will result in fewer iterations. However, each iteration will take longer.

LINGO defaults to not using the Steepest Edge option.

268 CHAPTERS5

Integer Pre-Solver Tab

The Integer Pre-Solver tab on the Options dialog box, pictured here:

r .|

Interface General Sobver Lingar Solver
Global Solver Madel Generator 5P Sabver
Norlirear Soheer Integar Pre-Salver Integer Schrer

Heurstics
Liswel Cutoff Criterion Min Seconds:
1 = Solver Decides 0 =
Constrant Cuts
Application Felative Limit:
Solver Decides 0.75
Max Passes
Root: 100 Tres: 2 15
Types:
B Basis Bsus
B Coefiicient Reduction B Knapsack Cover
B Disaggregation B Lattice
8 Fow Cover B Léing
BGoo B Objective
B Gomory B Plant Location
Probing Level
Sohver Decides
Help Canced : " oK

[d

is used to control several options for tailoring the operation of LINGO’s integer programming pre-
solver. The integer pre-solver does a great deal of model reformulation, so that the final formulation
passed to the branch-and-bound solver may be solved as fast as possible.

The reformulated model is always mathematically equivalent to the original formulation, but it is
structured in such a way that it is best suited for solution by the branch-and-bound integer
programming algorithm. The pre-solver also performs a number of heuristic techniques to find valid
integer solutions before entering the branch-and-bound solver.

Note: The integer pre-solver pertains only with integer models (i.e., models that make use of the
@BIN and @GIN functions to restrict one or more variables to integer values.)

MENU COMMANDS 269

Heuristics Box

The Heuristics box on the Integer Pre-Solver tab:

Heunistics
Level: Cutoff Criterion: Min Seconds:
3 = Solver Decides 0 o

controls the level of integer programming heuristics used by the integer solver. These heuristics use the
continuous solution at each node in the branch-and-bound tree to attempt to quickly find a good integer
solution.

The Level field controls the level and number of heuristics that are applied, and may run from 0 (none)
to 100 (highest level.)

The Cutoff Criterion is used to control the criterion for terminating heuristics. Choices here are Solver
Decides, Time, and Iterations. Under the Time setting, LINGO terminates heuristics after a certain
amount of elapsed time. The [terations option terminates heuristics after a certain number of iterations.

In general, the Time setting results in the fastest performance. However, due to shifting computational
loads on a machine, solution paths may change under the Time setting from one solve to the next,
potentially resulting in non-reproducible solutions. If reproducibility of a runs is a concern, then the
Iterations option should be selected. Under the Solver Decides setting, LINGO chooses the most
appropriate strategy.

The Min Seconds field specifies the minimum amount of time to spend on heuristics at each node.
The default settings are 3 for Level, Solver Decides for Cutoff Criterion, and 0 for Min Seconds.

270 CHAPTERS5

Constraint Cuts Box

The tolerances contained in the Constraint Cuts box on the Integer Pre-Solver tab:

Constraint Cuts
Application: Felative Limi
Solver Decides 0.75
Max Passes
Root: 100 -5 Trea: 2 =

Types
B Basis Bcus
B Coefiicient Reduction B Knapsack Cover
B Disaggregation B Lattice
B Fow Cowver B Liting
[[ee] B Objective
B Gomery B Plant Location

can be used to control the solver's cut generation phase on linear models.

LINGO's integer programming solver performs extensive evaluation of your model in order to add
constraint cuts. Constraint cuts are used to "cut" away sections of the feasible region of the continuous
model (i.e., the model with integer restrictions dropped) that are not contained in the feasible region to
the integer model.

On most integer models, this will accomplish two things. First, solutions to the continuous problem
will tend to be more naturally integer. Thus, the branch-and-bound solver will have to branch on fewer
variables. Secondly, the bounds derived from intermediate solutions will tend to be tighter, allowing
the solver to "fathom" (i.e., drop from consideration) branches higher in the branch-and-bound tree.
These improvements should dramatically speed solution times on most integer models. However, on
some poorly formulated models, disabling one or more of the cut types may help in finding feasible
solutions.

All constraint cut types are enabled by default.

Application

In the Application drop-down box of the Constraint Cuts box:

Application:
Solver Decides

you can control the nodes in the solution tree where the branch-and-bound solver adds cuts.

If you pull down the selection list, you will find the three options:

MENU COMMANDS 271

e Root Only,
e All Nodes, and
o Solver Decides.

Under the Root Only option, the solver appends cuts only at the first node, or root node, in the solution
tree. With the A/l Nodes option, cuts are appended at each node of the tree. The Solver Decides option
causes the solver to dynamically decide when it is best to append cuts at a node.

The default is to let the solver decide when to append cuts. In general, this will offer superior
performance. There may be instances, however, where one of the other two options prevails.

Relative Limit

In the Relative Limit field of the Constraints Cuts box:

Relative Limit:
0.75

you can control the number of constraint cuts that are generated by the integer pre-solver. Most integer
programming models benefit from the addition of some constraint cuts. However, at some point
additional cuts take more time to generate than they save in solution time. For this reason, LINGO
imposes a relative limit on the number of constraint cuts that are generated.

The default limit is set to .75 times the number of true constraints in the original formulation.

Max Passes

In the Max Passes box of the Constraint Cuts box:

Max Passes:
Root: 100 5 Tree: 2 =

you can control the number of iterative passes the integer pre-solver makes through a model to
determine appropriate constraint cuts to append to the formulation. In general, the benefits of each
successive pass decline. At some point, additional passes will only add to the total solution time. Thus,
LINGO imposes a limit on the maximum number of passes.

The default limit is 100 passes at the root node of the branch-and-bound tree, and 2 passes at all
subsequent nodes.

272 CHAPTER5

Types

The Types box of the Constraint Cuts box:

Types:
@ Basis BGus
@ Coefficient Reduction @ Knapsack Cover
@ Disaggregation @ Lattice
@ Fow Cover @ Lfting
@Gco @ Objective
8 Gomory @ Plant Location

is used to enable or disable the different strategies LINGO uses for generating constraint cuts. LINGO
uses twelve different strategies for generating constraint cuts. The default is for all cut generation
strategies to be enabled.

It is beyond the scope of this manual to go into the details of the various strategies. Interested readers
may refer to any good text on integer programming techniques. In particular, see Nemhauser and
Wolsey (1988.)

Probing Level

The Probing Level option on the Integer Pre-Solver tab can be used on mixed integer linear programs
to perform an operation known as probing. Probing involves taking a close look at the integer
variables in a model and deducing tighter variable bounds and righthand side values. In many cases,
probing can tighten an integer model sufficiently to speed overall solution times. In other cases,
however, probing may not be able to do much tightening, and the overall solution time will increase
due to the extra time spent probing.

Pulling down the selection list for the Probing Level field:

Probing Level:
Solver Decides -~

Solver Decides
1 - None
2 - Lowest

wj O LN b L

7 - Highest

you will see that you can choose one of eight different probing levels. A probing level of 1 means
probing is disabled, while levels 2 through 7 indicate successively higher degrees of probing. The

MENU COMMANDS 273

default setting for this option, Solver Decides, leaves the decision up to LINGO to select the probing
level.

Integer Solver Tab

The Integer Solver tab on the Options dialog box:

r]

Lingo Options =
Intesface General Solver Linear Solver
Global Solver Model Generator 5P Sobver
Monlinear Sohver integer Pre-Solver Infeger Sohver
Branching:
Direction: Prarty
Both v LINGO Decides -
Integralty:
Absolute integralty: Relative integraity: Bighl Threshold
Te-06 Be-D6 1e+08
LP Solver
Warm Start: Cold Start:
LINGOD Decides - LINGD Decides -~
Optimalty:
Absolute: Pleslative: Time to Relative:
0 1e05 100
Tolerances:
Hurdle: HNode Sedection: Strong Branch:
Hone LINGD Decides - 10
K-Best Sohutions: Branch-and-Price Sobver:
Heuristic::
humber: 1 = Bocks: OFf =GP
Hep | | Cancel | Defout v [ok |
[a

can be used to control several tolerances for tailoring the operation of LINGO's branch-and-bound
solver used on integer models (i.e., models that make use of the @BIN and @GIN functions to restrict
one or more variables to integer values.)

Branching Box

The Branching box on the Integer Solver tab:

274 CHAPTER5

Branching:
Direction: Priority:
Both LINGO Decides

contains the following two options for controlling the branching strategy used by LINGO’s branch-
and-bound solver:

e Direction, and
e Priority.

Direction

LINGO uses a branch-and-bound solution procedure when solving integer programming models. One
of the fundamental operations involved in the branch-and-bound algorithm is branching on variables.
Branching involves forcing an integer variable that is currently fractional to either the next greatest or
the next lowest integer value. As an example, suppose there is a general integer variable that currently
has a value of 5.6. If LINGO were to branch on this variable, it would have to choose whether to set
the variable first to 6 or 5. The Direction option controls how LINGO makes this branching decision.

If you pull down the drop-down box for the Direction option, you’ll find the following:

Direction:
Both w

Up
Down

The default setting, Both, involves LINGO making an intelligent guess as to whether it should branch
up or down first on each individual variable. If Up is selected, LINGO will always branch up first. If
Down is selected, LINGO will always branch down first. In most cases, the Both option will result in
the best performance.

Priority

When branching on variables, the branch-and-bound procedure can give priority to branching on the
binary variables first, or it can make an intelligent guess as to the next best variable to branch on,
regardless of whether it is binary or general. The Priority field controls how LINGO makes this
branching decision.

If you pull down the drop-down box for Priority, you willl find the following:

Priority:
LINGO Decides -

LINGO Decides
Binary

MENU COMMANDS 275

Select Binary to have LINGO give branching priority to the binary variables. Select LINGO Decides to
have LINGO select the next integer variable for branching based on an intelligent guess, regardless of
whether it is binary or general.

The default is LINGO Decides, which should generally give the best results.

Integrality Box

Due to the potential for round-off error on digital computers, it is not always possible for LINGO to
find exact integer values for the integer variables. The Integrality box on the Integer Solver tab:

Integrality:
Absolute Integralty: Relative Integralty: BigM Threshold
1e-006 Be-006 1e+008

contains the following three options for controlling the amount of deviation from integrality that will
be tolerated:

o Absolute Integrality,
e Relative integrality, and
e BigM Threshold.

Absolute Integrality

The Absolute Integrality tolerance is used by LINGO as a test for integrality in integer programming
models. Due to round-off errors, the "integer" variables in a solution may not have values that are
precisely integer. The absolute integrality tolerance specifies the absolute amount of violation from
integrality that is acceptable. Specifically, if X is an "integer" variable and / is the closest integer to X,
then X would be accepted as being integer valued if:

|X - 1| £ Absolute Integrality Tolerance.

The default value for the absolute integrality tolerance is .000001. Although one might be tempted to
set this tolerance to 0, this may result in feasible models being reported as infeasible.

Relative Integrality

The Relative Integrality tolerance is used by LINGO as a test for integrality in integer programming
models. Due to round-off errors, the "integer" variables in a solution may not have values that are
precisely integer. The relative integrality tolerance specifies the relative amount of violation from
integrality that is acceptable. Specifically, if / is the closest integer value to X, X will be considered an
integer if:

X - I| < Relative Integrality Tolerance.

276 CHAPTERS5

|X]

The default value for the relative integrality tolerance is .000008. Although one might be tempted to
set this tolerance to 0, this may result in feasible models being reported as infeasible.

BigM Threshold

Many integer programming models have constraints of the form:
Jx) <M *z

where f{x) is some function of the decision variables, M is a large constant term, and z is a binary
variable. These types of constraints are called forcing constraints and are used to force the binary
variable, z, to 1 when f(x) is nonzero. In many instances, the binary variable is multiplied by a fixed
cost term in the objective; a fixed cost that is incurred when a particular activity, represented by f{x),
occurs. The large constant term, M, Is frequently referred to as being a BigM coefficient.

Setting BigM too small can lead to infeasible or suboptimal models. Therefore, the BigM value will
typically have to be rather large in order to exceed the largest activity level of f{x). When BigM is
large, the solver may discover that by setting z slightly positive (within normal integrality tolerances),
it can increase f{x) to a significant level and thereby improve the objective. Although such solutions
are technically feasible to tolerances, they are invalid in that the activity is occurring without incurring
its associated fixed cost.

The BigM threshold is designed to avoid this problem by allowing LINGO to identify the binary
variables that are being set by forcing constraints. Any binary variable with a coefficient larger than
the BigM threshold will be subject to a much tighter integrality tolerance.

The default value for the BigM Threshold is 1.e8.

LP Solver Box

In a mixed linear integer programming model, LINGO’s branch-and-bound solver solves a linear
programming model at each node of the solution tree. LINGO has a choice of using the primal
simplex, dual simplex, or barrier solver (assuming the barrier option was purchased with your license)

for handling these linear programs. The LP Solver box on the Integer Solver tab:

LP Solver
Warmm Start: Cold Start
LINGO Decides - LINGO Decides

contains the following two options for controlling this choice of linear program solver:

o Warm Start, and
o Cold Start.

MENU COMMANDS 277

Warm Start

The Warm Start option controls the linear solver that is used by the branch-and-bound solver at each
node of the solution tree when a previous solution is present to use as a "warm start." The Cold Start
option, discussed below, determines the solver to use when a previous solution does not exist.

If you pull down the drop-down box for Warm Start, you’ll find the following:

Warmn Start:
LINGO Decides -

Primal
Dual
Bamier

The available options are:

e LINGO Decides — LINGO chooses the most appropriate solver.

e Barrier — LINGO uses the barrier method, assuming you have purchased a license for the
barrier solver. Otherwise, the dual solver will be used.

e Primal — LINGO uses the primal solver exclusively.

e Dual — LINGO uses the dual solver exclusively.

In general, LINGO Decides will yield the best results. The barrier solver can’t make use of a pre-
existing solution, so Barrier usually won’t give good results. In general, Dual will be faster than
Primal for reoptimization in branch-and-bound.

Cold Start

The Cold Start option controls the linear solver that is used by the branch-and-bound solver at each
node of the solution tree when a previous solution is not present to use as a "warm start”. The Warm
Start option, duscussed above, determines the solver to use when a previous solution does exist.

If you pull down the drop-down box for Cold Start, you’ll find the following:

Cold Start:

The available options are:

e LINGO Decides — LINGO chooses the most appropriate solver at each node.

278 CHAPTER5

e Barrier — LINGO uses the barrier method, assuming you have purchased a license for the
barrier solver. Otherwise the dual solver will be used.

e Primal — LINGO uses the primal solver exclusively.

e Dual — LINGO uses the dual solver exclusively.

In general, LINGO Decides will yield the best results. However, experimentation with the other
options may be fruitful.

Optimality Box

The Optimality box on the Integer Solver tab:

Optimality:
Absolute: Relative: Time to Relative:
0 1e-005 100

is used to control three tolerances: Absolute, Relative, and Time to Relative. These tolerances control
how close you want the solver to come to the optimal solution. Ideally, we’d always want the solver to
find the best solution to a model. Unfortunately, integer programming problems are very complex, and
the extra computation required to seek out the absolute best solution can be prohibitive. On larger
integer models, the alternative of getting a solution within a few percentage points of the true optimum
after several minutes of runtime, as opposed to the true optimum after several days, makes the use of
these tolerances quite attractive.

Absolute Optimality

The Absolute Optimality Tolerance is a positive value r, indicating to the branch-and-bound solver that
it should only search for integer solutions with objective values at least » units better than the best
integer solution found so far. In many integer programming models, there are huge numbers of
branches with roughly equivalent potential. This tolerance can help to keep the branch-and-bound
solver from being distracted by branches that can’t offer a solution significantly better than the
incumbent solution.

In general, you shouldn’t have to set this tolerance. Occasionally, particularly on poorly formulated
models, you might need to increase this tolerance slightly to improve performance. In most cases, you
should experiment with the relative optimality tolerance rather than the absolute optimality tolerance
in order to improve performance.

The default value for the absolute optimality tolerance is 0.

Relative Optimality

The Relative Optimality Tolerance is a value r, ranging from 0 to 1, indicating to the branch-and-
bound solver that it should only search for integer solutions with objective values at least 100*7%
better than the best integer solution found so far.

MENU COMMANDS 279

The end results of modifying the search procedure in this way are twofold. First, on the positive side,
solution times can be improved tremendously. Second, on the negative side, the final solution obtained
by LINGO may not be the true optimal solution. You will, however, be guaranteed the solution is
within 100*7% of the true optimum.

Typical values for the relative optimality tolerance would be in the range .01 to .05. In other words,
you would be happy to get a solution within 1% to 5% of the true optimal value. On large integer
models, the alternative of getting a solution within a few percentage points of the true optimum after
several minutes of runtime, as opposed to the true optimum after several days, makes the use of an
optimality tolerance quite attractive.

Note: Generally speaking, the relative optimality tolerance is the tolerance that will most likely
improve runtimes on integer models. You should be sure to set this tolerance whenever near
optimal solutions are acceptable. Do keep in mind that when you set this option, LINGO may
not return the true global optimum. However, you will be guaranteed the solution is within
100*1% of the true optimum.

The default for the relative optimality tolerance is Se-8.

Time To Relative

If an integer programming model is relatively easy to solve, then we would like to have the solver
press on to the true optimal solution without immediately resorting to a relative optimality tolerance.
On the other hand, if, after running for a while, it becomes apparent that the optimal solution won’t be
immediately forthcoming, then you might want the solver to switch to using a relative optimality
tolerance.

The Time to Relative tolerance can be used in this manner. This tolerance is the number of seconds
before the branch-and-bound solver begins using the relative optimality tolerance. For the first n
seconds, where 7 is the value of the time to relative tolerance, the branch-and-bound solver will not
use the relative optimality tolerance and will attempt to find the true optimal solution to the model.
Thereafter, the solver will use the relative optimality tolerance in its search.

The default value for the time to relative tolerance is 100 seconds.

Tolerances Box
The Tolerances box on the Integer Solver tab:
Tolerances:
Hurdle: Mode Selection: Strong Branch:
None LINGO Decides 10

contains three miscellaneous tolerances for controlling the branching strategy used by the branch-and-
bound solver on integer programming models. The three tolerances are Hurdle, Node Selection, and
Strong Branch.

mk:@MSITStore:C:/Users/Stephane/Desktop/Lingo_15_Users_Manual.chm::/relative_optimality.htm

280 CHAPTERS5

Hurdle

If you know the objective value of a solution to a model, you can enter it as the Hurdle tolerance. This
value is used in the branch-and-bound solver to narrow the search for the optimum. More specifically,
LINGO will only search for integer solutions in which the objective is better than the hurdle value.

This comes into play when LINGO is searching for an initial integer solution. LINGO can ignore
branches in the search tree with objective values worse than the hurdle value, because a better solution
exists (i.e., the solution whose objective value equals the hurdle tolerance) on some alternate branch.

Depending on the problem, a good hurdle value can greatly reduce solution time. Once LINGO finds
an initial integer solution, however, the hurdle tolerance no longer has an effect. At this point, the
Relative Optimality tolerance comes into play.

Note: Be sure when entering a hurdle value that a solution exists that is at least as good or better
than your hurdle. If such a solution does not exist, LINGO will not be able to find a feasible
solution to the model.

The default hurdle value is None. In other words, a hurdle value is not used by the solver.

Node Selection

The branch-and-bound solver has a great deal of freedom in deciding how to span the branch-and-
bound solution tree. The Node Selection option allows you to control the order in which the solver
selects branch nodes in the tree.

If you examine the pull down list for Node Selection, you will see the following:

MNode Selection:
LINGO Decides -

Depth First
Worst Bound
Best Bound

The four choices function as follows:

e LINGO Decides — This is the default option. LINGO makes an educated guess as to the best
node to branch on next.

o Depth First — LINGO spans the branch-and-bound tree using a depth first strategy.

e Worst Bound — LINGO picks the node with the worst bound.

e Best Bound — LINGO picks the node with the best bound.

In general, LINGO Decides will offer the best results. Experimentation with the other options may be
beneficial with some classes of models.

MENU COMMANDS 281

Strong Branch

The Strong Branch option uses a more intensive branching strategy during the first n levels of the
branch-and-bound tree, where 7 is the value in Strong Branch. During these initial levels, LINGO
picks a subset of the fractional variables as branching candidates. LINGO then performs a tentative
branch on each of the variables in the subset, selecting as the final candidate the variable that offers the
greatest improvement in the bound on the objective. Although strong branching is useful in tightening
the bound quickly, it does take additional computation time. Therefore, you may want to try different
settings to determine what works best for your model.

The default strong branch setting is 10 levels.

K-Best Solutions Box

The K-Best Solutions box on the Integer Solver tab:

K-Best Solutions:

Number: 1 =

is used to set the number of solutions desired as part of the K-Best solutions feature of LINGO's mixed
integer solver. Whenever this value is greater than 1, say K, LINGO will will return up to K unique
solutions to the model. These solutions will have the property that they are the next best solutions
available in terms of their objective values. Less than K solutions may be returned if a sufficient
number of feasible solutions do not exist. An example of the K-Best feature follows.

K-Best Solutions Example

In order to illustrate the K-Best feature, we will be using a variant of the knapsack model discussed
above in the Binary Integer Variables section. You may want to refer back to the earlier discussion if
you are not familiar with the knapsack model.

Here's our model:

MODEL:

SETS:
ITEMS: INCLUDE, WEIGHT, RATING;
MYFAVORITES (ITEMS) ;

ENDSETS

DATA:
KNAPSACK CAPACITY = 15;

ITEMS WEIGHT RATING =
BRATS 3 1

282 CHAPTERS5

BROWNIES 3
BEER 3
ANT REPEL 7
BLANKET 4
1
5
7

FRISBEE
SALAD
WATERMELON

-
o e N =

’

MYFAVORITES = BRATS BROWNIES BEER;
ENDDATA

MAX = @SUM(ITEMS: RATING * INCLUDE) ;

@SUM(ITEMS: WEIGHT * INCLUDE) <=
KNAPSACK CAPACITY;

@FOR(ITEMS: @BIN(INCLUDE)) ;
NUMFAVE = @SUM(MYFAVORITES: INCLUDE) ;

END
Model: KBEST

In this example, we are packing a picnic basket for a picnic we will be taking with a friend. Our
friend's ratings of the candidate picnic items is given in the data section above. It turns out that our
friend is health conscious and does not care much for bratwurst, brownies nor beer. This is
unfortunate, because these happen to be our favorite items, which we indicate with a new subset of
ITEMS called MYFAVORITES.

If we solve the model as is, thus solely maximizing our friend's preferences, we get the following
solution:

Global optimal solution found.

Objective value: 25.00000

Variable Value
NUMFAVE 0.000000
INCLUDE (BRATS) 0.000000
INCLUDE (BROWNIES) 0.000000
INCLUDE (BEER) 0.000000
INCLUDE (ANT_REPEL) 0.000000
INCLUDE (BLANKET) 0.000000
INCLUDE (FRISBEE) 1.000000
INCLUDE (SALAD) 1.000000
INCLUDE (WATERMELON) 1.000000

As indicated by the NUMFAVE variable, none of our favorite items are included in the optimal basket.
Now, we like our friend a lot, and we want him to be happy. However, we are wondering if there isn't
another combination of items that our friend might like almost as much that includes at least one of our

MENU COMMANDS 283

favorite items. To investigate this question, we set the Desired Number parameter of the K-Best
Solutions box on the Solver|Options Integer Solver tab to 4:

K-Best Solutions:

Number: 4 =

This means that we would like LINGO to generate the 4 best solutions to the model. We then click OK
and then run the Solver|Solve command. At which point, the integer solver sees that the K-Best feature
is being requested, and it automatically generates the 4 best solutions to the model. At which point, we
are presented with the following dialog box:

K-Best Solution Selection >

Tradeoff Variable:
| HUMFAVE |

Candidate Solutions:

Solution Objective Tradeoff
2 23 1
3 23 1
4 23 1
Help ‘ Cancel ‘ View | Select

In the Candidate Solutions window we see that the solver was able to find 4 feasible next-best
solutions to the model. The solutions are ranked in order by their objective values.

There is also a column labeled Tradeoff, which lists the value in each solution of a designated tradeoff
variable. Any scalar variable in a model can be selected as the tradeoff variable. In this example, there
is only one scalar variable, NUMFAVE, so it is automatically selected as the tradeoff variable. The idea
behind the tradeoff variable is that it allows you to weigh the tradeoffs in a model's objective value
with a secondary goal. In this case, our secondary goal is the number of our favorite items in the picnic

284 CHAPTERS5

basket. In particular, we see that there are three solutions with slightly worse objective values (23 vs.
25) that include one of our favorite items. For example, if we selected solution 2 and pressed the View
button, we'd see the following solution containing one of our favorite items, bratwurst:

Objective value: 23.00000
Variable Value
KNAPSACK CAPACITY 15.00000
NUMFAVE 0.000000
INCLUDE (BRATS) 0.000000
INCLUDE (BROWNIES) 0.000000
INCLUDE (BEER) 0.000000
INCLUDE (ANT_REPEL) 0.000000
INCLUDE (BLANKET) 0.000000
INCLUDE (FRISBEE) 1.000000
INCLUDE (SALAD) 1.000000
INCLUDE (WATERMELON) 1.000000

The following buttons are available along the bottom edge of the K-Best dialog box:

¢ Help — Displays online help regarding the K-Best feature.

¢ Cancel — Cancels out of K-Best mode, closing the dialog box.

¢ View — Displays any solutions selected in the Candidate Solutions box.

¢ Select — Allow you to select one of the candidate solutions as the final solution to the model.

These buttons allow you to examine selected solutions returned by the K-Best solver. Once you find a
solution you believe to be the best, you can select it as the final solution. Once a final solution is
selected, all subsequent solution reports will be based on that particular solution.

Branch-and-Price Solver

The Branch-and-Price Solver box on the Integer Solver tab:

Branch-and-Price Solver:
Heuristic:
Blocks: Off v GP1

contains two parameters - Blocks and Heuristic - for controlling the branch-and-price (BNP) solver.
The BNP solver is a mixed integer programming solver for solving models with block structures like
the following:
Minimize: 2 c(k) *x(k)
Subject To:
by A(k) * x(k) = d (linking constraints)
x(k) in X(k), for all k (decomposition structure)

MENU COMMANDS 285

where d, c(k) and x(k) are vectors and A(k) is a matrix with appropriate dimensions. x(k) contains
decision variables and X(k) denotes a linear feasible domain for x(k).

The BNP solver is a hybrid of branch-and-bound, column generation, and Lagrangean relaxation
methods. It can help to find either the optimal solution or a better lower bound (the Lagrangean bound)
for a minimization problem. Based on the decomposition structure, the solver divides the original
problem into several subproblems, or blocks, and solves them (almost) independently, exploiting
parallel processing if multiple cores are available.

BNP may perform better than the default MIP solver if: a) the number of linking constraints is small,
b) the number of blocks is large and they are of approximately the same size, and c) the number of
available processors (or cores) is large, e.g., 4 or more. Also, there may be some models for which
BNP finds a good solution and good bound more quickly than the default MIP algorithm, although it
may take longer to prove optimality.

The Blocks option for the BNP solver controls the number of subproblems, or blocks, that the model
will be partitioned into. Possible setting for the Blocks parameter are:

¢ Row Names — Row names are constructed in such a way as to specify each row's block (an
example is given below).

¢ Off— This will disable the BNP solver, in which case, the standard MIP solver will be used to
solve all mixed integer linear programs.

¢ Specified — The user explicitly specifies each row's block using the @BLOCKROW function.

¢ N - A positive integer, greater-than-or-equal-to 2, indicating the number of independent
blocks to try and partition the model into via one of the graph partitioning algorithms
provided by LINGO. The actual heuristic used is chosen with the Heuristic parameter.

The default setting for Blocks is Off, i.e., the BNP solver will not be used on integer programming
models.

The Block Heuristic parameter controls the heuristic used to partition the model into blocks. You may
currently select from two graph partitioning algorithms named simply GPI and GP2, with the default
setting being GPI.

As an example, consider the following model:

MIN = x1 + x2 + x3 + x4 + x5 + x6;

[cl] x1l + x2 + x3 + x4 + x5 + x6 >=3; !linking constraint;
[c2] x1l + x2 <=1; !block 1;

[c3] x2 + x3 <=1; l!block 1;

[c4d] x4 + x5 + x6 <=2; lblock 2;

[c5] x4 + x6 <=1; !block 2;

@bin(x1); Qbin(x2); Qbin(x3);:

@bin(x4); QRbin(x5); Qbin(x6);

286 CHAPTERS5

The above model has six variables and five constraints. Constraint 1 will be the only linking constraint,
with linking constraints referred to as being in block 0. Constraints 2 and 3 constitute the first
independent subproblem, or block 1. Constraints 4 and 5 form block 2. Thus, for this particular model,
you would want to set the Blocks parameter to be 2, corresponding to the two independent subproblem
blocks. For the partitioning heuristic, you may choose either GP/ or GP2. When we solve this model,
note that the beginning of the solution report returned by LINGO contains the following information:

Global optimal solution found.

Objective value: 3.000000
Objective bound: 3.000000
Infeasibilities: 0.000000
Extended solver steps: 0
Total solver iterations: 14
Number of branch-and-price blocks: 2

The interesting feature to note is the line:
Number of branch-and-price blocks: 2

indicating that LINGO partitioned the model in to two independent blocks and invoked the BNP
solver.

Note: Note that in some cases the number of blocks listed in the solution report may be less than
the number of blocks requested. This occurs when the partitioning heuristic is unable to find
a partition with the full number of desired blocks.

Note: The BNP solver can run the independent subproblems on separate threads to improve
performance. So, if your machine has multiple cores, be sure to set the thread limit to at least
the number of blocks. Refer to the Threads parameter on the General Solver Tab, discussed
above. For this particular small example with its two independent blocks, you'd want to set
the thread limit to at least 2.

The graph partitioning algorithms provided by LINGO can generally determine good partitioning
schemes, however, for larger models, they may not be able to determine an optimal partitioning. In this
case, you may prefer to explicitly specify a model's block structure. LINGO provides two ways to do
this by either a) specifying the block structure as part of a model's row names, or b) specifying the
block structure using the @BLOCKROW function. Examples of both follow.

To specify a row's block using its row name, you should begin the row name with the string "BNP_N",
where N is the row's block number. The block number should be some non-negative integer, with a
value of 0 indicating that the row belongs to the set of linking constraints. For example, using the
model above, we could have specified the block structure in the row names as follows:

MENU COMMANDS 287

MIN =
bnp 0 cl]
bnp 1 c2]
bnp 1 c3]
bnp 2 c4]
[bnp 2 c5]
Q@bin (

Qbin (

[
[
[
[

x4) ;

x1 + x2
X2 + x3

x1l + x2 + x3 + x4 + x5 + x6;
xl + x2 + x3 + x4 + x5 + x6

x4 + x5 + x6

x4 + X6

@bin(x5); Qbin(

x1); @bin(x2); @bin(x3);

x6) ;

!1linking constraint;
'block 1;
!'block 1;
'block 2;
!'block 2;

You will also need to select the Row Names option for the Blocks parameter. When specifying block
structure in row names, the Heuristic parameter is not relevant and will be grayed out.

Alternatively, you could use the @BLOCKROW(BLOCK _NUMBER, ROW_NAME) function to
specify block structure. Again, using our same sample model, we would enter:

MIN = x1 + x2 4+ x3 + x4 + x5 + x6;
[cl] x1l + x2 + x3 + x4 + x5 + x6
[c2] x1l + x2

[c3] X2 + x3

[c4] x4 + x5 + x6
[c5] x4 + x6

@bin(x1); Qbin(x2); Qbin(x3);
@bin(x4); Qbin(x5); Qbin(x6);
@blockrow(0, cl);

@blockrow(1, c2);

@blockrow(1, c3);

@blockrow (2, c4);

@blockrow(2, c5);

I
~.

A A ﬁ AV
e R %)
N

~e

!'1linking constraint;
'block 1;
'block 1;
'block 2;
'block 2;

In this case, you will need to select the Specified option for the Blocks parameter. When specifying
block structure via @BLOCKROW, the Heuristic parameter is not relevant and will be grayed out.

288 CHAPTERS5

Global Solver Tab

The Global Solver tab on the Options dialog box:

r .l

Lingo Cptions x
Interface General Solver Linear Sahver
Monbnear Solver Integer Pre-Solver Integer Sohver
Global Solver Model Generator SP Sohver

Global Solwer Options:
| Lse Global Solver
Variable Upper Bound:
Value: 1e+010 Application: Selected

Tolerances
Optimality: Te-005 Deka: 1e-007
Strateghes
Braniching: Box Selection Raformulation
Rl Violation Worst Bound ~ High
Multistart Solver

Atempts: Solver Decides -5

Multistart Hurdle: Mone

Help Cancel Defaut Save : [ok |
is used to control the operation of LINGO's global solver capabilities. Please keep in mind that the
global solver toolkit is an add-on option to LINGO. You must specifically purchase the global solver
option as part of your LINGO license in order to make use of its capabilities.

LINGO exploits the convex nature of linear models to find globally optimal solutions. However, we
aren’t as fortunate with nonlinear models. LINGO’s default NLP solver uses a local search procedure.
This can lead to LINGO stopping at locally optimal points when a model is non-convex, perhaps
missing a global point lying elsewhere. You may refer to On Mathematical Modeling for more
information on how and why this can happen. The global solver toolkit contains features designed to
sift through the local points in search of the globally optimal point.

MENU COMMANDS 289

The two primary features in LINGO’s global toolkit are a global solver and a multistart solver. The
global solver uses range bounding and reduction techniques within a branch-and-bound framework to
convert a non-convex model into a series of smaller, convex models. This divide-and-conquer strategy
ultimately results in convergence to the guaranteed globally optimal point. The multistart solver, on the
other hand, uses a heuristic approach of restarting the NLP solver several times from different initial
points. It is not uncommon for a different starting point to lead to a different local solution point. Thus,
if we restart from enough unique points, saving the best local solution as we go, then we stand a much
better chance of finding the true global solution.

Use Global Solver

If the Use Global Solver box is checked, LINGO will invoke the global solver when you solve a
nonlinear model. Many nonlinear models are non-convex and/or non-smooth (for more information
see Chapter 15, On Mathematical Modeling.) Nonlinear solvers that rely on local search procedures (as
does LINGO’s default nonlinear solver) will tend to do poorly on these types of models. Typically,
they will converge to a local, sub-optimal point that may be quite distant from the true, global optimal
point. Global solvers overcome this weakness through methods of range bounding (e.g., interval
analysis and convex analysis) and range reduction techniques (e.g., linear programming and constraint
propagation) within a branch-and-bound framework to find global solutions to non-convex models.

The following example illustrates the usefulness of the global solver. Consider the simple, yet highly
nonlinear, model:

MODEL:
MIN = X * QCOS(3.1416 * X);
@BND(O, X, 6);

END

290 CHAPTERS5

The graph of the objective function is as follows:

6
4

2 /\
- /\

v 2 3 4 5 6

-2

-4

-6

The objective function has three local minimal points over the feasible range. These points are
summarized in the following table:

Point X ‘ Objective
1 1.09 -1.05
2 3.03 -3.02

3 5.02 -5.01

MENU COMMANDS 291

Clearly, the third local point is also the globally best point, and we would like the NLP solver to
converge to this point. Below is the solution LINGO produces if the default nonlinear solver is
invoked:

Local optimal solution found at step: 11
Objective value: -1.046719
Variable Value Reduced Cost
X 1.090405 0.1181082E-07
Row Slack or Surplus Dual Price
1 -1.046719 -1.000000

Unfortunately, as you can see, we converged to the least preferable of the local minimums. However,

after enabling the global solver by checking the Use Global Solver box, we do obtain the global
solution:

Local optimal solution found at step: 35
Objective value: -5.010083
Variable Value Reduced Cost
X 5.020143 -0.7076917E-08
Row Slack or Surplus Dual Price
1 -5.010083 -1.000000

Note: There is one drawback to using the global solver; it runs considerably slower than the default
nonlinear solver. Therefore, the preferred option is to always try and write smooth, convex
nonlinear models. By doing this, the faster, default local solver can be successfully invoked.

Keep in mind that the global solver supports most, but not all, of the functions available in the LINGO
language. The following is a list of the nonlinear functions not currently supported by the global
solver:

o All probability distributions — cumulative, inverse and pdf, with the exception of the normal
distribution, which is fully supported

e (@PFS() — Poisson finite source
e (@PPL() — Poisson linear loss
e @USER() — User supplied function

Note: The global solver will not operate on models containing one or more unsupported nonlinear

operations that reference optimizable quantities; the default NLP solver will be called in this
case.

292 CHAPTERS5

Note: The global solver can run on multiple cores to improve performance. So, if your machine has
multiple cores, be sure to set the thread limit to something higher than 1, with the ideal setting
being N, where N is the number of available cores on your machine. Refer to the Threads
parameter on the General Solver Tab, discussed above, for more information on setting the
thread limit.

The global solver is disabled by default.

Variable Upper Bound Box

The Variable Upper Bound box:

Varable Upper Bound:
Value: 1e+010 Application: Selected

sets the default variable bounds while the global solver is running. If this parameter is set to d, then
variables will not be permitted to assume values outside the range of [-d, d]. Setting this parameter as
tightly as possible in the Value Field restricts the global solver from straying into uninteresting regions
and will reduce run times. The default value for the Value Field is 1.e10.

The Application list box has three options available: None, All and Selected. Selecting None removes
the variable bounds entirely, and is not recommended. The A/l setting applies the bound to all
variables. Finally, the Selected setting causes the global solver to apply the bound after an initial solver
pass to find the first local solution. The bound will only be applied to a variable if it does not cutoff the
initial local solution. LINGO defaults to the Selected setting.

Tolerances Box

The Tolerances box:

Tolerances:

Optimality: 1e-005 Dekta: 1e-007

contains two tolerances used by the global solver: Optimality and Delta.

The Optimality tolerance specifies by how much a new solution must beat the objective value of the
incumbent solution in order to become the new incumbent. The default value for Optimality 1.e-5.

The Delta tolerance specifies how closely the additional constraints, added as part of the global
solver’s convexification process, must be satisfied. The default value for Delta is 1.e-7.

MENU COMMANDS 293

Strategies Box
The Strategies box:
Strategies:
Branching: Box Selection: Reformulation:
Rel Violation -~ Worst Bound High .

allows you to control three strategies used by the global solver: Branching, Box Selection and
Reformulation.

The Branching strategy consists of six options to use when branching on a variable for the first time:

Absolute Width,

Local Width,

Global Width,

Global Distance,
Absolute Violation, and
Relative Violation.

* & & 6 O o

The default setting for Branching is Relative Violation.

The Box Selection option specifies the strategy to use for choosing between all active nodes in the
global solver’s branch-and-bound tree. The choices are: Depth First and Worst Bound, with the default
being Worst Bound.

The Reformulation option sets the degree of algebraic reformulation performed by the global solver.
Algebraic reformulation is critical for construction of tight, convex sub-regions to enclose the
nonlinear and nonconvex functions. The available settings are None, Low, Medium and High, with
High being the default.

Multistart Solver

LINGO exploits the convex nature of linear models to find globally optimal solutions. However, we
aren’t as fortunate with nonlinear models. With NLP models, LINGO’s default NLP solver uses a local
search procedure. This can lead to LINGO stopping at locally optimal points, perhaps missing a global
point lying elsewhere. You may refer to On Mathematical Modeling for more information on how and
why this can happen.

A strategy that has proven successful in overcoming this problem is to restart the NLP solver several
times from different initial points. It is not uncommon for a different starting point to lead to a
different local solution point. Thus, if we restart from enough unique points, saving the best local
solution as we go, then we stand a much better chance of finding the true global solution. We refer to
this solution strategy as multistart.

294 CHAPTERS5

The Multistart Solver box on the Global Solver tab:

Muttistart Solver:

Attempts: Solver Decides

-

Multistart Hurdle: MNone

is contains two options, Attempts and Multistart Hurdle.

The Attempts option is used to set the number of times the multistart solver restarts the standard NLP
solver in its attempt to find successively better local solutions. Each new starting point is intelligently
generated to maximize the chances of finding a new local point. The default option, Solver Decides,
entails restarting 5 times on small NLPs and disabling multistart on larger models. Setting multistart to
1 causes the NLP solver to be invoked only once, effectively disabling multistart. Setting multistart to
any value greater than 1 will cause the NLP solver to restart that number of times on all NLPs. In
general, we have found that setting the number of multistarts to around 5 tends to be adequate for most
models. Highly nonlinear models may require a larger setting.

The Multistart Hurdle option sets a goal for the multistart solver. If the multistart solver finds a
solution as good, or better, than the hurdle value, the solver will interrupt and return that solution. This
is useful on long-running models, where you may be happy with any solution better than, say, 100.

Note: If the Attempts limit for the multistart solver is hit before the HRDLMS value, then the solver
will also interrupt.

Note: Keep in mind that multistart will dramatically increase runtimes, particularly if a large
number of restarts is selected. Thus, one should avoid using multistart unnecessarily on
convex models that will converge to a global point in a single pass without any additional
prodding.

The following example illustrates the usefulness of multistart. Consider the simple, yet highly
nonlinear, model:

MODEL:
MIN = X * @COS(3.1416 * X);
@BND(0, X, 6);

END

MENU COMMANDS 295

The graph of the objective function is as follows:

6
4

2 /\
- /\

v 2 3 4 5 6

-2

-4

-6

The objective function has three local minimal points over the feasible range. These points are
summarized in the following table:

Point X ‘ Objective

1 1.09 -1.05
2 3.03 -3.02

3 5.02 -5.01

296 CHAPTERS5

Clearly, the third local point is also the globally best point, and we would like the NLP solver to
converge to this point. Below is the solution you will get from LINGO if the multistart option is
disabled:

Local optimal solution found at step: 11
Objective value: -1.046719
Variable Value Reduced Cost
X 1.090405 0.1181082E-07
Row Slack or Surplus Dual Price
1 -1.046719 -1.000000

Unfortunately, as you can see, we converged to the least preferable of the local minimums. However,
after setting the number of multistarts to five and re-solving, we do obtain the global solution:

Local optimal solution found at step: 39
Objective value: -5.010083
Variable Value Reduced Cost
X 5.020143 -0.7076917E-08
Row Slack or Surplus Dual Price
1 -5.010083 -1.000000

Note: Unlike the global solver, the multistart solver can only claim its solution to be locally optimal.
This is because there may always be a better solution out there that the multistart solver may,
or may not, be able to find with additional runs. The global solver, on the other hand, can
claim global optimality by having partitioned the original model into a series of smaller,
convex models.

Note: The multistart solver can run on multiple cores to improve performance. So, if your machine
has multiple cores, be sure to set the thread limit to something higher than 1, with the ideal
setting being N, where N is the number of available cores on your machine. Refer to the
Threads parameter on the General Solver tab, discussed above, for more information on
setting the thread limit.

MENU COMMANDS 297

SP Solver Tab

The SP Solver tab on the Options dialog box:

r |

Lingo Options 4
Nonlnear Sohver Integer Pre-Solver Integer Sohver
Intedace General Solver Linear Sobver
Global Solver Model Generator SP Solver

Sampiing

LI

Defaul Sample Size/Stage: 2

L

Random Generator Seed 1031

B Sample Continuous Only
SP Solver Method: Solver Decides v
Max Scenarios Limé- 40000 =

Big M Coefficient- 1e+007

B Calculate all expected value statistics
B Show scenaro solution reports

Help Cancel Defaul Save [OK]

[4

is used to control the operation of LINGO's SP (Stochastic Programming) solver. For more
information on SP, refer to Chapter 14, Stochastic Programming. Please keep in mind that the SP
solver is an add-on option to LINGO. You must specifically purchase the SP solver option as part of
your LINGO license in order to make use of its capabilities.

298 CHAPTERS5

Default Sample Size/Stage

The Default Sample Size/Stage parameter on the SP Solver tab:

¥

Defauk Sample Size/Stage: 2

I

is used to control the default sample size for random variables in stochastic programming (SP) whose
outcomes are determined via sampling.

In many SP models, LINGO will generate a set of sample values for the some or all of the random
variables. This is particularly true when you have one or more continuous random variables, which
have an infinite number of possible outcomes. In such a case, sampling is the only viable alternative.

One way to specify the desired sample size for each stage is via the @SPSAMPSIZE function used
directly in the model's text. If, on the other hand, all or most stages should have the same sample size,
then you can use the Default Sample Size/Stage parameter to control the default sample size. Any
stage which has not had its sample size specified with @SPSAMPSIZE will default to a sample size
equal to the Default Sample Size/Stage parameter.

Note: In general, we prefer larger sample sizes to smaller ones in order to reduce sampling error.
However, SP models can become quite large if sample sizes aren't kept reasonably small.
This is particularly true for multiperiod models. For example, suppose we have a model with
just one random variable and ten periods/stages. If the default sample size is set to 3, then
there will be 3210=59,049 possible scenarios. With this many scenarios, it would only take a
handful of decision variables to end up with an underlying deterministic equivalent model
approaching one million variables.

The Default Sample Size/Stage parameter defaults to a value of 2.

Random Generator Seed

The Random Generator Seed parameter on the SP Solver tab:

Random Generatar Seed: 1031 =

is used to establish the seed for the random number generator used in generating samples for random
variables in stochastic programming (SP) models.

In many SP models, LINGO will generate a set of sample values for the random variables. This is
particularly true when you have one or more continuous random variables, which leads to an infinite
number of possible outcomes. In such a case, sampling is the only viable alternative.

MENU COMMANDS 299

The Random Generator Seed parameter defaults to a value of 1031.

Note: The seed parameter has no effect when running demo versions of LINGO. Demo versions
always use the default seed value, regardless of this parameter's setting.

Sample Continuous Only

The Sample Continuous Only option on the SP Solver tab:

B Sample Continuous Only

is used to control whether LINGO samples continuous distributions only for the random variables in
stochastic programs, or if it samples both continuous and discrete random variables. Obviously,
continuous random variables must be subject to sampling, given the infinite number of possible
outcomes. On the other hand, we have a choice when it comes to discretely distributed random
variables. If this option is enabled, then LINGO will generate one outcome for each density point in
the discrete distribution of the random variable. These outcomes will be weighted by their
corresponding probabilities.

Note: If there are many density points in the distributions for the discrete random variables, the
deterministic equivalent generated to solve the SP may become exceedingly large, in which
case, disabling this option may be required. Once this option is disabled, discrete random
variables will be sampled in the same way as the continuous random variables.

The Sample Continuous Only option defaults to being on.

SP Solver Method

The SP Solver Method option:

SP Solver Method: Solver Decides

on the SP Solver Tab is used to select the solution method for a stochastic programming (SP) model.
Presently, the available choices are:

e Solver Decides - LINGO decides the most appropriate method for solving the SP model.

o Deterministic Equivalent - LINGO generates and directly solves the deterministic equivalent
(DE) of the SP model.

e Nested Benders - The DE for realistic SP models can get to be quite large, in that the core
model is replicated once for every scenario. Fortunately, the DE displays strong block-angular
structure, which makes it adaptable to decomposition techniques, such as nested Bender
decomposition (NBD). Note that the model must be entirely linear to use NBD.

The default setting for the SP Solver Method option is Solver Decides.

300 CHAPTERS5

Max Scenarios Limit

The Max Scenarios Limit parameter on the SP Solver tab:

Max Secenados Limit: 40000 =

is used to establish a limit on the maximum number of scenarios in a stochastic programming (SP)
model before forcing automatic sampling of the random variables.

The Max Scenarios Limit defaults to a value of 40,000.

SP Big M Coefficient

The Big M Coefficient parameter on the SP Solver tab:

Big M Coefficient: 1e+007

is used by the SP solver in constructing forcing constraints that may be required in the deterministic
models generated by the solver. Forcing constraints are generally added to force binary variables to 1
when some activity occurs. For example, suppose x is a continuous variable and z is a binary variable.
A forcing constraint that would drive z to 1 whenever x is positive would be:

x< M*z
where M is some large number. M in this case is the Big M coefficient.

There are two things to note about M. First, if M is too small, a forcing constraint can become
infeasible, making the entire model infeasible. In general, M should be at least as large as the largest
possible value for x so as not to introduce an infeasibility. However, from an algorithmic point of view,
M should not be too large. If M is unrealistically large, it will be tougher for the integer solver to
converge, plus it also introduces the potential round off error.

The default setting for M should be sufficient for most models. However, if your SP model is
infeasible for no known reason, you may want to try increasing M. On the other hand, if your SP is

running slow, you may want to try reducing M.

The Big M Coefficient defaults to a value of 100,000,000.

Calculate All Expected Value Statistics

The Calculate All Expected Value Statistics option on the SP Solver tab:

B Calculate all expected value statistics

controls whether LINGO displays information regarding the expected values for a number of statistics
when solving stochastic programming (SP) models. To illustrate, when solving the SPGAS.LG4

MENU COMMANDS 301

model when this option is enabled, you will see the following expected values at the top of the solution
report:

Expected value of:

Objective (EV): 1400.000
Wait-and-see model's objective (WS): 1326.667
Perfect information (EVPI = |EV - WS]|): 73.33333
Policy based on mean outcome (EM): 1479.444
Modeling uncertainty (EVMU = |EM - EV]|): 79.44444

These values are a guide as to how the stochastic nature of the model is impacting the objective value.
The following is a brief description of these expected values:

Expected Value of Objective (EV) - is the expected value for the model's
objective over all the scenarios, and is the same as the reported objective value
for the model.

Expected Value of Wait-and-See Model's Objective (WS) - reports the
expected value of the objective if we could wait and see the outcomes of all
the random variables before making our decisions. Such a policy would allow
us to always make the best decision regardless of the outcomes for the random
variables, and, of course, is not possible in practice. For a minimization, it's
true that WS <= EV, with the converse holding for a maximization.
Technically speaking, WS is a relaxation of the true SP model, obtained by
dropping the nonanticipativity constraints.

Expected Value of Perfect Information (EVPI) - is the absolute value of the
difference between EV and WS. This corresponds to the expected
improvement to the objective were we to obtain perfect information about the
random outcomes. As such, this is a expected measure of how much we
should be willing to pay to obtain perfect information regarding the outcomes
of the random variables.

Expected Value of Policy Based On Mean Outcome (EM) - 1is the expected
true objective value if we (mistakenly) assume that all random variables will
always take on exactly their mean values. EM is computed using a two-step
process. First, the values of all random variables are fixed at their means, and
the resulting deterministic model 1is solved to yield the optimal values for the
stage 0 decision variables. Next, a) the stage 0 variables are fixed at their
optimal values from the previous step, b) the random variables are freed up, c)
the nonanticipativity constraints are dropped, and d) this wait-and-see is
solved. EM is the objective value from this WS model.

Expected Value of Modeling Uncertainty (EVMU) - is the absolute value of
the difference EV - EM. It is a measure of what we can expect to gain by
taking into account uncertainty in our modeling analysis, as opposed to
mistakenly assuming that random variables always take on their mean
outcomes.

302 CHAPTERS5

Note: The above approach for computing EM and EVMU makes unambiguous sense only for
models with a stage 0 and a stage 1. If there are later random variables in stages 2, 3, etc.,
then there are complications. For example, for decisions in later stages, we have seen the
outcomes from the random variables in earlier stages, so considering these random variables
to take on their mean value does not make sense. For models with a stage 0 and stage 1,
EVMU will be an accurate measure of the expected value of modeling uncertainty. For
models with additional stages beyond 0 and 1, EVMU will merely be an approximation of the
true expected value of modeling uncertainty.

Note: Computing these expected value statistics can be very time consuming for large models. If
speed is an issue, you may wish to disable this feature on the Solver|Options|SP Solver tab.

The next component of the solution lists various statistics regarding the class and size of the model.

Solver|Generate

Once you remove all the syntax errors from your LINGO model, there is still one very important step
required: model verification. LINGO’s set-based modeling capabilities are very powerful, and they
allow you to generate large, complex models quickly and easily. However, when you first develop a
model you will need to verify that the model being generated matches up to the model you actually
intended to generate. Many set-based models can be quite complex, and it is highly likely that logic
errors may creep into one or more expressions, thereby causing your generated model to be flawed.

The Solver|Generate command is very useful for debugging such errors. It expands all of the model's
compact set-based expressions and then writes out the full scalarbased equivalent of the LINGO
model. The expanded model report explicitly lists all the generated constraints and variables in your
model. You will find that the Generate report can be an invaluable tool in tracking down errors.
When selecting the Generate command, you will be presented with a pop-up menu prompting you for
one of the following options:

Display model,

Don’t display model,
Display nonlinear rows,
Dual model,

Explicit Deteq, and

* & & & o o

Scenario.

Display Model

If you choose the Display model option of the Solver|Generate command, LINGO will place a copy of
the generated model in a new window, which you may scroll through to examine, print, or save to disk.

MENU COMMANDS 303

As an example of the output from the Generate command, consider the transportation model
developed in Chapter 1:

MODEL:
! A 6 Warehouse 8 Vendor Transportation Problem;
SETS:
WAREHOUSES: CAPACITY;
VENDORS: DEMAND;
LINKS (WAREHOUSES, VENDORS): COST, VOLUME;
ENDSETS
DATA:
!'set members;
WAREHOUSES = WH1 WH2 WH3 WH4 WHS5 WH6;
VENDORS = V1 V2 V3 V4 V5 V6 V7 V8;
lattribute values;
CAPACITY = 60 55 51 43 41 52;

DEMAND = 35 37 22 32 41 32 43 38;

COST =6 2 6 74 259
4 9538582
52197433
767392171
239572¢65
5522814 3;

ENDDATA

! The objective;

[OBJECTIVE] MIN = @SUM(LINKS(I, J):
CoST(I, J) * VOLUME(I, J));

! The demand constraints;

@FOR(VENDORS(J): [DEMAND ROW]
@SUM(WAREHOUSES(I): VOLUME(I, J)) =
DEMAND(J));
! The capacity constraints;
@FOR (WAREHOUSES(I): [CAPACITY ROW]

@SUM(VENDORS(J): VOLUME(I, J)) <=
CAPACITY (I));
END

Model: WIDGETS

304 CHAPTERS5

The objective will generate one expression, there should be one demand constraint generated for each
of the eight vendors and one supply constraint generated for each of the six warehouses, for a grand
total of 15 rows in the expanded model. Running the generate command to verify this reveals the
following report:

MODEL:
[OBJECTIVE] MIN= 6 * VOLUME WH1 V1 + 2 * VOLUME WH1 V2 + 6

*

VOLUME WH1 V3 + 7 * VOLUME WH1 V4 + 4 * VOLUME WH1 V5 + 2 *
VOLUME WH1 V6 + 5 * VOLUME WH1 V7 + 9 * VOLUME WH1 V8 + 4 *
VOLUME WH2 V1 + 9 * VOLUME WH2 V2 + 5 * VOLUME WH2 V3 + 3 *
VOLUME WH2 V4 + 8 * VOLUME WH2 V5 + 5 * VOLUME WH2 V6 + 8§ *
VOLUME WH2 V7 + 2 * VOLUME WH2 V8 + 5 * VOLUME WH3 V1 + 2 *
VOLUME WH3 V2 + VOLUME WH3 V3 + 9 * VOLUME WH3 V4 + 7 *
VOLUME WH3 V5 + 4 * VOLUME WH3 V6 + 3 * VOLUME WH3 V7 + 3
VOLUME WH3 V8 + 7 * VOLUME WH4 V1 + 6 * VOLUME WH4 V2 + 7
VOLUME WH4 V3 + 3 * VOLUME WH4 V4 + 9 * VOLUME WH4 V5 + 2 *
VOLUME WH4 V6 + 7 * VOLUME WH4 V7 + VOLUME WH4 V8 + 2 *
VOLUME WH5 V1 + 3 * VOLUME WH5 V2 + 9 * VOLUME WH5 V3 + 5 *
VOLUME WH5 V4 + 7 * VOLUME WH5 V5 + 2 * VOLUME WH5 V6 + 6 *
VOLUME WH5 V7 + 5 * VOLUME WH5 V8 + 5 * VOLUME WH6 V1 + 5 *
VOLUME WH6 V2 + 2 * VOLUME WH6 V3 + 2 * VOLUME WH6 V4 + 8 *
VOLUME WH6 V5 + VOLUME WH6 V6 + 4 * VOLUME WH6 V7 + 3 *

VOLUME WH6 V8
[DEMAND ROW V1
VOLUME_WH3 V1
VOLUME WH6 V1
[DEMAND ROW V2
VOLUME WH3 V2
VOLUME_WH6 V2
[DEMAND ROW V3
VOLUME_WH3 V3
VOLUME_WH6 V3
[DEMAND ROW V4
VOLUME_WH3 V4
VOLUME WH6 V4
[DEMAND ROW_V5
VOLUME WH3 V5
VOLUME_WH6 V5
[DEMAND ROW_V6
VOLUME_WH3 V6
VOLUME _WH6 V6 =
[DEMAND ROW_V7]
VOLUME_WH3 V7 +
VOLUME_WH6 V7 =
[DEMAND ROW_V8]
VOLUME_WH3 V8 +
VOLUME WH6 V8 =

R R e T e T [

+ — |

VOLUME WH1 V1
VOLUME WH4 V1
35 ;
VOLUME WH1 V2
VOLUME_WH4 V2
37 ;
VOLUME WH1 V3
VOLUME_WH4_V3
22
VOLUME WH1 V4
VOLUME WH4 V4
32 ;
VOLUME_WHI_V5
VOLUME WH4 V5
41 ;
VOLUME7WH17V6
VOLUME_WH4_V6
32 ;
VOLUME_WH1 V7
VOLUME_WH4 V7
43 ;
VOLUME7WH17V8
VOLUME_WH4_V8
38 ;

[CAPACITY ROW WH1] VOLUME WH1 - B
VOLUME WH1 V3 + VOLUME WH1 V4 + VOLUME WH1 V5 +

VOLUME WH1 V6 + VOLUME WH1 V7 + VOLUME WH1 V8 <= 60 ;

+ VOLUME WH2 V1
+ VOLUME WH5 V1

+ VOLUME WH2 V2
+ VOLUME WH5_ V2

+ VOLUME WH2_V3
+ VOLUME_WH5 V3

+ VOLUME WH2_ V4
+ VOLUME WH5 V4

+ VOLUME_WH2_V5
+ VOLUME WH5_V5

+ VOLUME WH2_V6
+ VOLUME_WH5_ V6

+ VOLUME WH2 V7
+ VOLUME WH5 V7

+ VOLUME WH2 V8
+ VOLUME WH5 V8

V1l + VOLUME WHI1

+
+

+
+

V2

[CAPACITY ROW WH2] VOLUME WH2 V1 + VOLUME WH2 V2

+

+

MENU COMMANDS 305

VOLUME_WH2 V3 + VOLUME WH2 V4 + VOLUME WH2 V5 +
VOLUME WH2 V6 + VOLUME WH2 V7 + VOLUME WH2 V8 <= 55 ;
[CAPACITY ROW WH3] VOLUME WH3 V1 + VOLUME WH3 V2 +
VOLUME WH3 V3 + VOLUME WH3 V4 + VOLUME WH3 V5 +
VOLUME WH3 V6 + VOLUME WH3 V7 + VOLUME WH3 V8 <= 51 ;
[CAPACITY ROW WH4] VOLUME WH4 V1 + VOLUME WH4 V2 +
VOLUME WH4 V3 + VOLUME WH4 V4 + VOLUME WH4 V5 +
VOLUME WH4 V6 + VOLUME WH4 V7 + VOLUME WHA4 V8 <= 43 ;
[CAPACITY ROW WH5] VOLUME WHS5 V1 + VOLUME WH5 V2 +
VOLUME WH5 V3 + VOLUME WH5 V4 + VOLUME WH5 V5 +
VOLUME WH5 V6 + VOLUME WH5 V7 + VOLUME WH5 V8 <= 41 ;
[CAPACITY ROW WH6] VOLUME WH6 V1 + VOLUME WH6 V2 +
VOLUME WH6 V3 + VOLUME WH6 V4 + VOLUME WH6 V5 +
VOLUME WH6 V6 + VOLUME WH6 V7 + VOLUME WH6 V8 <= 52 ;
END

Model: Generated Model Report for WIDGETS

As expected, there are 15 rows in the generated model: [OBJECTIVE], [DEMAND ROW V1] through
[DEMAND ROW V8], and [CAPACITY ROW WHI] through [CAPACITY ROW WHG6].

As a side note, it’s interesting to compare the generated model to the original, set-based model. The
generated model is the expanded version of the model, and has all sets and vector variables removed,
resulting in a fully scalar model. The scalar-based, generated model is mathematically equivalent to the
original vector-based model. However, we think most would agree that the set-based model is much
easier to comprehend, thereby illustrating one of the primary benefits of modern algebraic languages
over more traditional, scalar-based languages.

In addition to verifying that the correct number of rows is being generated, you should also examine
each of the rows to determine that the correct variables are appearing in each row along with their
correct coefficients.

Note: The reports generated by the Solver|Generate command are valid LINGO models. You may
load Generate reports into a model window and solve them as you would any other LINGO
model.

One thing to keep in mind when examining generated model reports is that the LINGO model
generator performs fixed variable reduction. This means that any variables that are fixed in value are
substituted out of the generated model. For example, consider the simple model:

MODEL:
MAX = 200 * WS + 300 * NC;
WS = 60;
NC <= 40;

WS + 2 * NC <= 120;
END

306 CHAPTERS5

If we generate this model we get the following, reduced model:

MODEL:
MAX= 300 * NC + 12000 ;
NC <= 40 ;
2 * NC <= 60 ;

END

At first glance, it seems as if both the first constraint and the variable WS are missing from the
generated model. Note that by the first constraint in the original model (WS = 60), WS'is fixed at a
value of 60. The LINGO model generator exploits this fact to reduce the size of the generated model
by substituting WS out of the formulation. The final solution report will still contain the values for all
the fixed variables, however, the fixed variables will not appear in the generated model report. If you
would like to suppress fixed variable reduction so that all variables appear in your generated model,
you may do so via the Fixed Var Reduction option.

Don't Display Model

If you choose the Don 't display model option, LINGO will generate the model without displaying it,
but will store the generated model for later use by the appropriate solver. This is a useful command for
verifying that your model contains no errors, while not actually having to pass it to the solver to be
optimized.

Display Nonlinear Rows

If you choose the Display Nonlinear Rows option of the Generate command, then LINGO will
generate the model and then display only those rows that contain nonlinearities. Please refer to the
Types of Constraints section for a discussion of linear vs. nonlinear expressions.

In general, one would prefer to always have purely linear models. Linear models solve faster and will
always converge to a global solution. Therefore, when developing a model, you will be interested in
carefully evaluating nonlinearities to see if they can either be eliminated or rewritten in a linear
fashion. The Display Nonlinear Rows is helpful in tracking down a model's nonlinearities.

Dual Model

The third option of the Solver|Generate command, Dual Model, displays the dual formulation of the
current model. Every linear programming model has a corresponding, mirror-image formulation called
the dual. If the original model has M constraints and N variables, then its dual will have N constraints
and M variables.

Some interesting properties of the dual are that any feasible solution to the dual model provides a
bound on the objective to the original, primal model, while the optimal solution to the dual has the
same objective value as the optimal solution to the primal problem. It's also true that the dual of the
dual model is, once again, the original primal model. You may wish to refer to any good linear
programming text for a further discussion of duality theory.

MENU COMMANDS 307

If you run the Solver|Generate|Dual Model command on the Widgets model shown above, you will
receive the following formulation:

MODEL:
MAX =

DEMAND ROW V3 + 32

32 *

DEMAND ROW V6 + 43

60 *

CAPACITY ROW WH1
CAPACITY ROW WH3
CAPACITY ROW WH5

+ 55 * CAPACITY ROW WH2 + 51 *
+ 43 * CAPACITY ROW WH4 + 41 *
+ 52 * CAPACITY ROW WH6;

35 * DEMAND ROW V1 + 37 * DEMAND ROW V2 + 22 *
* DEMAND ROW V4 + 41 * DEMAND ROW V5

* DEMAND ROW V7 + 38 * DEMAND ROW V8

[VOLUME WH1 V1] DEMAND ROW V1 + CAPACITY ROW WH1 <= 6;
[VOLUME WH1 V2] DEMAND ROW V2 + CAPACITY ROW WH1 <= 2;
[VOLUME WH1 V3] DEMAND ROW V3 + CAPACITY ROW WH1 <= 6;
[VOLUME WH1 V4] DEMAND ROW V4 + CAPACITY ROW WH1 <= 7;
[VOLUME WH1 V5] DEMAND ROW V5 + CAPACITY ROW WH1 <= 4;
[VOLUME WH1 V6] DEMAND ROW V6 + CAPACITY ROW WH1 <= 2;
[VOLUME WH1 V7] DEMAND ROW V7 + CAPACITY ROW WH1 <= 5;
[VOLUME WH1 V8] DEMAND ROW V8 + CAPACITY ROW WH1 <= 9;
[VOLUME WH2 V1] DEMAND ROW V1 + CAPACITY ROW WH2 <= 4;
[VOLUME WH2 V2] DEMAND ROW V2 + CAPACITY ROW WH2 <= 9;
[VOLUME WH2 V3] DEMAND ROW V3 + CAPACITY ROW WH2 <= 5;
[VOLUME WH2 V4] DEMAND ROW V4 + CAPACITY ROW WH2 <= 3;
[VOLUME WH2 V5] DEMAND ROW V5 + CAPACITY ROW WH2 <= 8;
[VOLUME WH2 V6] DEMAND ROW V6 + CAPACITY ROW WH2 <= 5;
[VOLUME WH2 V7] DEMAND ROW V7 + CAPACITY ROW WH2 <= 8;
[VOLUME WH2 V8] DEMAND ROW V8 + CAPACITY ROW WH2 <= 2;
[VOLUME WH3 V1] DEMAND ROW V1 + CAPACITY ROW WH3 <= 5;
[VOLUME _WH3 V2] DEMAND ROW V2 + CAPACITY ROW WH3 <= 2;
[VOLUME WH3 V3] DEMAND ROW V3 + CAPACITY ROW WH3 <= 1;
[VOLUME WH3 V4] DEMAND ROW V4 + CAPACITY ROW WH3 <= 9;
[VOLUME WH3 V5] DEMAND ROW V5 + CAPACITY ROW WH3 <= 7;
[VOLUME WH3 V6] DEMAND ROW V6 + CAPACITY ROW WH3 <= 4;
[VOLUME WH3 V7] DEMAND ROW V7 + CAPACITY ROW WH3 <= 3;
[VOLUME WH3 V8] DEMAND ROW V8 + CAPACITY ROW WH3 <= 3;
[VOLUME WH4 V1] DEMAND ROW V1 + CAPACITY ROW WH4 <= 7;
[VOLUME_WH4 V2] DEMAND ROW V2 + CAPACITY ROW WH4 <= 6;
[VOLUME WH4 V3] DEMAND ROW V3 + CAPACITY ROW WH4 <= 7;
[VOLUME WH4 V4] DEMAND ROW V4 + CAPACITY ROW WH4 <= 3;
[VOLUME WH4 V5] DEMAND ROW V5 + CAPACITY ROW WH4 <= 9;
[VOLUME WH4 V6] DEMAND ROW V6 + CAPACITY ROW WH4 <= 2;
[VOLUME_WH4 V7] DEMAND ROW V7 + CAPACITY ROW WH4 <= 7;
[VOLUME WH4 V8] DEMAND ROW V8 + CAPACITY ROW WH4 <= 1;
[VOLUME_WH5 V1] DEMAND ROW V1 + CAPACITY ROW WH5 <= 2;
[VOLUME WH5 V2] DEMAND ROW V2 + CAPACITY ROW WH5 <= 3;
[VOLUME WH5 V3] DEMAND ROW V3 + CAPACITY ROW WH5 <= 9;
[VOLUME WH5 V4] DEMAND ROW V4 + CAPACITY ROW WH5 <= 5;
[VOLUME WH5 V5] DEMAND ROW V5 + CAPACITY ROW WH5 <= 7;
[VOLUME WH5 V6] DEMAND ROW V6 + CAPACITY ROW WH5 <= 2;
[VOLUME WH5 V7] DEMAND ROW V7 + CAPACITY ROW WH5 <= 6;
[VOLUME WH5 V8] DEMAND ROW V8 + CAPACITY ROW WH5 <= 5;

308 CHAPTERS5

[

VOLUME_WH6 V1]
VOLUME WH6 V2]
VOLUME_WH6 V3]
VOLUME WH6 V4]
VOLUME_WH6 V5]
VOLUME WH6 V6]
VOLUME WH6 V7]
VOLUME_WH6 V8]

DEMAND ROW V1
DEMAND ROW V2
DEMAND ROW V3
DEMAND ROW V4
DEMAND ROW V5
DEMAND ROW V6
DEMAND ROW V7
DEMAND ROW V8

+
+
+
+
+
+
+

+

CAPACITY ROW WH6
CAPACITY ROW WH6
CAPACITY ROW WHG6
CAPACITY ROW WH6
CAPACITY ROW WH6
CAPACITY ROW WH6
CAPACITY ROW WH6
CAPACITY ROW WH6

@FREE (DEMAND ROW_V1); @FREE(DEMAND_ROW_V2);

Ne Ne e Ne N

~.

~.

W = oo N OO
~

~.

@FREE (DEMAND ROW V3); QFREE(DEMAND ROW V4);
@FREE (DEMAND ROW _V5); @FREE(DEMAND ROW V6);
@FREE (DEMAND ROW V7); QFREE(DEMAND ROW V8);
@BND(-0.1E+31, CAPACITY ROW WH1, 0);

@BND(-0.1E+31, CAPACITY ROW WH2, O0);

@BND(-0.1E+31, CAPACITY ROW WH3, 0);

@BND(-0.1E+31, CAPACITY ROW WH4, 0);

@BND(-0.1E+31, CAPACITY ROW WH5, 0);

@BND(-0.1E+31, CAPACITY ROW WH6, O0);

END

Dual Formulation: WIDGETS

You will notice that in the dual formulation the variables from the primal model become the rows of
the dual. Similarly, the rows in the primal become the variables in the dual.

Note: The row names from the primal problem will become the variable names in the dual
formulation. For this reason, it is strongly recommended that you name all the rows in the
primal model. If a row is unnamed, then a default name will be generated for the
corresponding dual variable. The default name will consist of an underscore followed by the
row's internal index. These default names will not be very meaningful, and will make the

dual formulation difficult to interpret.

Explicit Deteq

The fourth option of the Solver|Generate command, Explicit Deteq, displays the explicit deterministic
equivalent (DE) for the current model, assuming the current model is a stochastic program (SP).
Viewing the DE can be very helpful in determining if you have properly set up the SP components of
your model. You can refer to Chapter 14, Stochastic Programming, for more information on SP.
When LINGO solves an SP model, it is really solving the deterministic equivalent of the original SP.

The DE contains one instance of the original core model for each scenario, where the random variables
in each instance are replaced by their sampled values for the particular scenario. These core instances
are tied together by a probabilistically weighted objective of all the objectives form the individual
scenarios, plus a set of nonanticipativity constraints. The nonanticipativity constraints enforce the
condition that all scenarios with the same history must implement the same decisions, otherwise, the
DE would have the ability to anticipate future events.

MENU COMMANDS 309

As an example, if you were to load the SP gas buying sample model, SPGASI.LG4, into LINGO and
run the Solver|Generate|Explicit Deteq command, you will receive the following report, containing the
model's DE:

MODEL:

TITLE DETEQ;

[1] MIN = 0.3333333333333333 * PURCHASE COST SCl

+ 0.3333333333333333 * HOLD COST SC1 + 0.3333333333333333 *
PURCHASE COST SC2 + 0.3333333333333333 * HOLD COST SC2

+ 0.3333333333333333 * PURCHASE COST SC3 + 0.3333333333333333
* HOLD COST_SC3;

[2 SC01] PURCHASE COST SCl - 5 * PURCHASE 1 SCl - 5 *
PURCHASE 2 SCl = 0;

[3 .SC01] HOLD COST SC1 - INVENTORY 1 SCl -
INVENTORY 2 SCl = 0;

[4 SC01] INVENTORY 1 SCl - PURCHASE 1 SC1 = - 100;
[5 SC01] - INVENTORY 1 SC1 + INVENTORY 2 SCl -
PURCHASE 2 SC1 = - 100;

[2 SC02] PURCHASE COST SC2 - 5 * PURCHASE 1 SC2 - 6 *
PURCHASE 2 SC2 = 0;

[3 SC02] HOLD COST SC2 - INVENTORY 1 SC2 -
INVENTORY 2 SC2 = 0;

[4 SC02] INVENTORY 1 SC2 - PURCHASE 1 SC2 = - 100;
[5 SC02] - INVENTORY 1 SC2 + INVENTORY 2 SC2 -
PURCHASE 2 SC2 = - 150;

[2 SC03] PURCHASE COST SC3 - 5 * PURCHASE 1 SC3 - 7.5 *
PURCHASE 2 SC3 = 0;

[3 SCO3] HOLD COST SC3 - INVENTORY 1 SC3 -
INVENTORY 2 SC3 = 0;

[4 SC03] INVENTORY 1 SC3 - PURCHASE 1 SC3 = - 100;
[5 SC03] - INVENTORY 1 SC3 + INVENTORY 2 SC3 -
PURCHASE 2 SC3 = - 180;

[_NACO1] INVENTORY 1 SCl - INVENTORY 1 SC2 = 0;

[NAC02] PURCHASE 1 SC1 - PURCHASE 1 SC2 = 0;

[NACO03] INVENTORY 1 SCl - INVENTORY 1 SC3 = 0;

[NAC04] PURCHASE 1 SC1 - PURCHASE 1 SC3 = 0;

END
Deterministic Equivalent: SPGAS1

The first row of the DE is the probabilistically weighted objective over the three scenarios (Normal,
Cold and Very Cold). Note that in the original core model, we had a variable called

PURCHASE COST, which was used to compute the cost of the gas purchases. In the DE we now have
three PURCHASE COST variables, or one for each of the three scenarios. LINGO appends the strings
_SCI, SC2or SC3to PUCHASE COST so as to indicate the appropriate scenario. Each of the
constraints from the core model are also replicated across each of the scenarios with the appropriate
scenario tag appended to each row's name. Finally, at the bottom of the model, there are four
constraints beginning with the string: NAC, which are the nonanticipativity constraints.

It's worthwhile pointing out that this report on the DE for SPGAS! is a valid LINGO model. In fact,
you can copy this report into a new model window and solve it directly, in which case, you will get the
optimal solution to the original SP model.

310 CHAPTERS5

Scenario

As mentioned in the previous section, the ability to generate the deterministic equivalent (DE) of a
stochastic programming (SP) model can be very useful when initially formulating and debugging an
SP model. The only problem is that the DE can become quite unwieldy for all but the simplest SPs.
For example, if the core model has 500 variables and there are 1,000 scenarios, then the DE will have
500,000 variables. Tracking down problems in such a large model can be difficult. Fortunately, in
most cases when an SP is either infeasible or unbounded, LINGO will report the index of the first
scenario that is causing the problem. With such information, we can focus our attention on the isolated
scenario that's causing the problem. This is where the Scenario command comes in - it allows us to
generate the formulation for an individual scenario, as opposed to the entire DE, which should
substantially cut down on the burden of our debugging task.

As an example, we will work again with the SPGAS.LG4 gas buying model. After loading the model
and issuing the Solver|Generate|Scenario command, we are prompted for the index of the scenario we
wish to view:

r L]

Generate Scenario X
Scenario Index; | ok |
1 = Cance
Help
[- |

For our purposes, suppose we are interested in viewing scenario 2, in which case, we enter a 2 in the
edit box and then press the OK button. LINGO the displays the following report:

MODEL:
TITLE Scenario 2;
[1] MIN = PURCHASE COST + HOLD COST;

[2] PURCHASE COST - 5 * PURCHASE 1 - 6 * PURCHASE 2 = 0;
[3] HOLD COST - INVENTORY 1 - INVENTORY 2 = 0;

[4] INVENTORY 1 - PURCHASE 1 = - 100;

[5] - INVENTORY 1 + INVENTORY 2 - PURCHASE 2 = - 150;
END

You will note that this is the core model, with the period 2 random variable DEMAND replaced by its
sampled value of 150 in row 5. Nonanticipativity constraints are not generated as part of individual
scenario models.

Solver|Picture

The Solver|Picture command displays a model in matrix form. Viewing the model in matrix form can
be helpful in a couple of instances. First and perhaps most importantly, is the use of nonzero pictures
in debugging formulations. Most models have strong repetitive structure. Incorrectly entered sections

MENU COMMANDS 311

of the model will stand out in a model’s matrix picture. Secondly, a nonzero picture can be helpful
when you are attempting to identify special structure in your model. As an example, if your model
displays strong block angular structure, then algorithms that decompose the model into smaller
fragments might prove fruitful.

As an example, we loaded the DNRISK.LG4 model from LINGO’s sample model set. Issuing the
Picture command, we see the following:

B¥ Lingo Matrix Picture - DNRIS... | & || = |[s3n]
1
2 e
]
;
5
¢
:
:
;
10
1
12
1
14
15 (7]
BUDEET
FRICER

Positive coefficients are represented with blue tiles, negatives with red, and variables that appear in a
row nonlinearly show up as black tiles.

312 CHAPTERS5

You can zoom in on a selected range in the matrix for closer viewing. To do this, place the cursor on
the upper left corner of the range you wish to view, press and hold down the left mouse button. Next,
drag the mouse to the lower right-hand corner of the desired range. Now, release the left mouse button
and LINGO will zoom in on the selected range. As an example, here is a view of the matrix after
zooming in on a 4x4 range:

BP Linge Matrix Picture - DNRISK (Unpermuted) [l &[]
DRISK(7) INVEST (ATT) INVEST(GMC) INVEST (USX)

13

11).), 072 -0.006

15

BUDGET

Note, we have zoomed in far enough to be able see the actual coefficient values, row names, and
variable names. Scroll bars have also appeared to allow scrolling through the matrix.

MENU COMMANDS 313

The matrix picture window supports a number of additional interactive features. To access these
features, place the cursor over the matrix picture, and press and hold the right mouse button. This will
bring up the following menu:

v Unpermuted
Lower Triangular
Black Triangular - GP1
Block Triangular - GP2
EBlock Triangular - Fow Mames
Block Triangular - User Specified

Zoam In
Zoarn 2k
Wigw Al

v Fow Mames
v War Mames
v Scroll Bars

Prink

Close
Clase all Except This

A brief description of these features follows:

Unpermuted - Displays the matrix in its original form

Lower Triangular - Displays the matrix picture to lower triangular, or almost lower triangular
form

Block Triangular - GP1 - The matrix is displayed in block triangular form using LINGO'S
GP1 graph partitioning heuristic

Block Triangular - GP2 - The matrix is displayed in block triangular form using LINGO'S
GP2 graph partitioning heuristic

Block Triangular - Row Names - The matrix is displayed using a block structure specified by
the user as part of the row names

Block Triangular - User Specified - The matrix is displayed using a block structure specified
by the user via the @BLKROW function

Zoom In - Zooms the view in centered around the current cursor position

Zoom Out - Zooms the view out centered around the current cursor position

View All - Zooms all the way out to give a full view of the matrix

Row Names - Toggles the display of row names on and off

Var Names - Toggles the display of variable names on and off

Scroll Bars - Toggles scroll bars on and off

Print - Prints the matrix picture

Close - Closes the matrix picture window

314 CHAPTER5

The Lower Triangular option is an interesting feature. The rows and columns are automatically
permuted to place the matrix into mostly lower-triangular form. If a matrix is mostly lower triangular,
then, in general, the model should prove relatively easier to solve. This is opposed to a model that
contains a high degree of simultaneity that can't be permuted into lower triangular form.

Refer to the BNP Solver section above for more information on the various Block Triangular options
(GP1, GP2, Row Names and User Specified).

Solver|Debug

In the ideal world, all models would return an optimal solution. Unfortunately, this is not the case.
Sooner or later, you are bound to run across either an infeasible or unbounded model. This is
particularly true in the development phase of a project when the model will tend to suffer from
typographical errors.

Tracking down an error in a large model can prove to be a daunting task. The Debug command is
useful in narrowing the search for problems in both infeasible and unbounded linear programs. A small
portion of the original model is isolated as the source of the problem. This allows you to focus your
attention on a subsection of the model in search of formulation or data entry errors.

The Debug command identifies two types of sets: sufficient and necessary. Removing any sufficient
set object from the model is sufficient to fix the entire model. Not all models will have a sufficient set.
In which case, they will have a necessary set with the property that removing any object from this set
fixes the remaining objects within that set.

As an example, suppose you have an infeasible model. If the complete model would be feasible except
for a bug in a single row, that row will be listed as part of the sufficient set. If the model has a
necessary set, then, as long as all of them are present, the model will remain infeasible.

The following example illustrates. The coefficient .55 in row 4 should have been 5.5:

[

Lingu Model - infeasible | — ” (=)]ﬁ
1 [ROWl] MAX = 3*X + 7*¥;
2 [ROW2] X + 2*X <= 3;
3 [ROW3] 2*X + ¥ <= 2;
4 [ROW4] 0.55*X + ¥ >= 4;

When we attempt to solve this formulation, we get the following error:

MENU COMMANDS 315

F .

LIMGC Error Message x
Error Code: -
m oy gl
Errar Taut:

Ho feasible salution found.

[=]

Next, if we run the Solver|Debug command, we are presented with the following report:

[

B Lingo Debug Report - infeasible |- S

'Constraints and bounds that cause an infeasibility:;

'Sufficient Rows:
(Dropping any sufficient row will make the model feasible.):;
[ROW4]) 0.55 * X + ¥ >= 4;

'Necessary Rows:

(If none of the necessary and sufficient rows are dropped,
then the model remains infeasible.):;

[ROW3] 2 * X + ¥ <= 2;

The Debug command has correctly identified that the erroneous ROW4, when eliminated, is sufficient
to make the entire model feasible.

Debug operates in a similar manner for unbounded models. In the following example, we introduced
an error by placing a minus sign instead of a plus sign in front of variable Z3 in ROW3. A look at
ROWS3 reveals that Z3 can be increased indefinitely, leading to an unbounded objective.

316 CHAPTER5

1 [ROW1l] MAX = 12#X1 + 13%X2 4+ 22*Y1l + 23*Z1 +
2 28%Z2 + X3 + Y3 + 23;

3 [ROW2] X1 + X2 + X3 <= 400;

4 [ROW3] Y1 + Y2 +# Y3 - 23 <= 500;

5 [ROW4] Z1 + Z2 <= 500;

€

The resulting model is unbounded and, when issuing the So/ver|Solve command, we receive the
unbounded error message:

[=

LINGO Error Message X
Emor Code: -
82 Copy Explain | oK
Enor Text:

Unbounded solution.

= -

Issuing the Debug command, we receive the following breakdown:

Variables that cause unboundedness:

Necessary Variables:

(If none of the necessary and sufficient variables are dropped,
then the model remains unbounded.)

Z3

MENU COMMANDS 317

The Debug command has successfully determined that bounding Z3 is sufficient to bound the entire
model.

Typically, the Debug command helps to substantially reduce the search effort. The first version of this
feature was implemented in response to a user who had an infeasible model. The user had spent a day
searching for a bug in a model with 400 constraints. The debug feature quickly found a necessary set
with 55 constraints, as well as one sufficient set constraint. The user immediately noticed that the
right-hand side of the sufficient set constraint was incorrect.

Note: Prior to release 10.0 of LINGO, the debugger was only capable of processing linear models.
Starting with release 10.0, all classes of models (LP, QP, IP and NLP) may now be debugged.

Solver|Model Statistics

The Model Statistics command lists summary statistics for your model. The statistics vary slightly
depending on whether the model you’re working with is linear or nonlinear.

In the following example, we open the linear transportation model, TRAN.LG4, issue the Model
Statistics command, and then discuss some of the details of the report. Here is the output generated by
Model Statistics for TRAN.LG4:

Lingo Model Stats - TRAN E=R(ECR <™
Rows= 8 Vars= 12 (all are linear)
Integer vars= 0 Binary vars= 0
Nonzeros= 43 Const nonz= 24 24 are +- 1) Density= 0.413
Smallest and largest elements in abs value= 1.00000 30.0000
No. < : 3 No. =: 0 No. > : 4 Obj= MIN, GUBs <= 4
Single cols= 0

The statistics report consists of five lines.

In line one, the number of rows (constraints), variables (columns), and integer variables are shown.
The report also specifies when the model is linear by stating that all variables are linear.

Line two of the report gives a count of the number of nonzero coefficients appearing in the model. The
first count is the number of nonzero coefficients in the entire model. The Constraint nonz count is the
number of coefficients on the left-hand sides of all the constraints, excluding the objective and nonzero
right-hand side coefficients. Next, is a count of the number of constraint coefficients that are plus or
minus one. In general, a linear programming model is easier to solve when the percentage of +/-1
coefficients increases. Finally, LINGO reports a density figure, which is defined as: (total nonzeros) /
[(mumber of rows) * (number of columns + 1)]. For large models, densities under .01 are common.
High densities can mean that a problem will take longer to solve.

Line three lists the smallest and largest coefficients in the model in absolute value. For stability
reasons, the ratio of the largest coefficient to the smallest should, ideally, be close to 1. Also, in

318 CHAPTERS5

absolute terms, it is best to keep coefficient values in the range of 0.0001 to 100,000. Values outside
this range can cause numerical difficulties for the solver.

Line four lists the number of constraints by type (<, =, and >), the sense of the objective, and an upper
bound on the number of Generalized Upper Bound (GUB) constraints. A GUB constraint is a
constraint that does not intersect with the remainder of the model. Given this, the GUB statistic is a
measure of model simplicity. If all the constraints were nonintersecting, the problem could be solved
by inspection by considering each constraint as a separate problem.

Line five lists the number of variables that appear in only one row. Such a variable is effectively a
slack. If you did not explicitly add slack variables to your model and the single column count is greater
than zero, then it suggests a misspelled variable name.

The following report was generated by the Model Statistics command for the nonlinear model,
DNRISK.LG4:

Lingo Model Stats - DNRISK [E=RECR =
Rows= 17 Vars= 17
Integer vars= 0 Binary wvars= 0
HNonl rows= 1l Monl vars= 7 Nonl constraints= 0
Nonzeros= 68 Constraint nonz= 52 Density=0.222
Smallest and largest elements in abs value= 0.600000E-02 1.00000
No. < : 0 No. =: 8 HNo. > : g, Obj= MIN Single cols= Q

The statistics report for nonlinear models drops information about the range of coefficient values, the
number of +/-1 coefficients, and the GUB upper bound. A count of the number of nonlinear variables
and rows is added in line two. The nonlinear rows count includes the objective, while the nonlinear
constraint count does not.

MENU COMMANDS 319

Solver|Look a

Use the Look command to generate a report containing your model's formulation. The Look
command's dialog box, pictured below, lets you choose All or Selected Rows for viewing.

F |

View Formulation >
Rows to View | 0K |
Ol Cancel
() Selected
Help
Selected Rows
[|

When you choose Selected Rows, the Beginning and Ending row text boxes are available for entry.
You must enter the indices of the range of rows you wish displayed. LINGO will display the requested
lines with line numbers in a new window.

4. Window Menu

The Window menu contains commands that generally pertain to managing open windows.

Window|Command Window

In addition to the pull down menu commands, LINGO's features can also be accessed through a
command language. For more details on the command language refer to Command-line Commands. A
script file that contains LINGO commands may be run using the File|Take Commands command or by
entering the 7TAKE command in LINGO's command window. Alternatively, you can interactively enter
script commands into LINGO's command window. The Window|Command Window command opens
LINGO's command window. The following window should appear on your screen:

320 CHAPTERS5

MENU COMMANDS 321

You may enter any valid LINGO script commands to the colon prompt in the upper left corner of the
window. In the following example, we enter a small model with the MODEL command, display the
formulation with the LOOK ALL command, then solve it using the GO command (user input is shown
in bold type):

' B¥ command Window E=n ECh <™

: model

? max = 20%x + 30%y;
? x <= 50;

? y <= €0;

T x + 2%y <m 120;

7?7 end

: look all

llmax = 20*x + 30%y;
2]x <= 50;

3]y <= €0;

41x + 2*y <= 120;

: go
LINGO/WINE4 21.0.1 (30 Oct 2023), LINDO API 15.0.€055.08€

Licensee info: lindo2

Global optimal solution found.

Cbjective walue: 2050.000
Infeasibilities: 0.000000
Total sclver iterations: u]
Elapsed runtime seconds: 0.07
Model Class: LP

Total variables:

[%]

In general, you will probably prefer to use the pull down menus and toolbar when using LINGO
interactively. The command window interface is primarily provided for users wishing to interactively
test command scripts.

322 CHAPTERS5

Window|Status Window

When you invoke LINGO's Solve command, a status window is displayed on your screen that
resembles the following:

Sober Shatus Wariables
Mdel Class 1P Total 2
M oeihrs s [1]
Slate: Glaobal Opt Inbegers 1]
Objecive: 14500 T,
Inbeasibility 1] Tedal 4
Mordinear 0
Hezadions: 0
Nonzeroz
Etersded Sobear Slabe: Todak 3
Mok
Sabver Type - =
Best Oby Generabor Mesnony Used (K]
O Bound ok
Steps Elapsed Furdime W)
Aclhve 00: 00:00
Update Iriervat 2 ket J Cloze

This window allows you to monitor the progress of the solver. You can close the status window at any
time. If you close the status window, it may be reopened with the Window|Status Window command.

If you would like to prevent LINGO from opening a status window, see the Solver|Options command.
For more information on the interpretation and use of the status window, see the section Solver Status
Window.

Window|Close All

The Window|Close All command closes all open windows. If you made a change to a model window
without saving it, you will be prompted to save the model before it is closed.

Window|Tile

The Window|Tile command arranges all the open windows in a tiled pattern. Each window is resized,
so all windows appear on the screen and are of roughly the same size.

MENU COMMANDS 323

When you issue the Window|Tile command, you will see the dialog box:

Tile Windows b
Style
d | 0K
© Honzontal
_ Cancel
() Vertical
Help
[a

You have the choice of tiling the windows horizontally or vertically. If you tile horizontally
(vertically), LINGO will maximize the horizontal (vertical) dimension of each window.

If there are more than three open windows, LINGO will tile the windows, but the choice of horizontal
or vertical will no longer make a difference.

Window|Cascade

The Window|Cascade command arranges all open windows in a cascade pattern starting in the upper
left corner of the mainframe window. The currently active window remains on top.

Window|Previous

The Window|Previous command brings the previous window in the window ordering to the top. This
command is useful when switching between a model and a solution window.

LA

Window|Next &

The Window|Next command brings the next window in the window ordering to the top. This command
is useful when switching between a model and a solution window.

Window|Arrange Icons

If you have minimized any open windows, so they appear as icons on the screen, you can issue the
Window|Arrange Icons command to line all the icons up in the lower left-hand corner of the frame
window.

324 CHAPTER5

Window|Split Active Window L=~

The Window|Split Active Window command will open a cross hair on the window that you are
currently editing. This cross hair represents the arrangement of the initial split screen.

HODEL:
SEIS:

DRYS: BEQUIBED, START, ONDUTY;
ENDSETS

DRTA:
DRYS = MON TUE WED THU FRI SAT SUN:
REQUIRED = 23 1& 13 16 1% 14 12;
ENDDRTA

MIN = RSTM{ DAYS{ I): START(I]}:

EFOR(DAYS(J):
ONDUTE([) =
@5mM({ DAYS{ I} | I #LE# 5:
START{ GWRAR(J - T + 1, 7))
QHDUTY(J) »= REQUIRED(J)

LN
EHD

MENU COMMANDS 325

Move your cursor around until the screen is divided to best suite your needs.

DRYS: BEQUIBED, STARI, COHDUTY;
ENDSETS

DATR:
DRYS = MOH TUE WED THU FRI SAT SUM:
REQUIRED = 23 1€ 13 1 1% 14 la:
ENDDATA

MIN = @SUM{ DRYS(I): START{ I}):
REOR{ DAYS{ J):
OHDUTY(J) =
@SUM(DRYS(I) | I #LE# S:
START(BWRAR(4 - I + L, T11):
OHDUTY([J) »= REQUIBED([J)

1i
ENRD

Finally left click to complete the split.

MODEL:
SETS:

DAYS: REQUIRED, STARI, OWDUIY:
ENDSEIS

DRTA:
DAYS = HOH TUE WED THU FRI SAT
BEQUIRED = 23 16 13 1€ 1% 14
ENDDATR
MIN = @SUM(DAYS(I): STRART(I)):

BEOR{ DRYS(J):

il
-
3
4
)
&
7
8
)
10
11
12
alz]
14

&

QHDUTY(J) =

16 BSUM(DRYS(I) | I #LE# 5:

17 START{ BWEAF(& = I # 1, 7)1);
18

15 OHDOTY¥({ J) »= REQUIRED{ J)

21):
22 END
23
24

LT R WO RS

MODEL:
SETS:

DRY5: REQUIRED, STRRI, OHDUTY:
ENDSETS

DATA:
DRYS = MON TUE WED TEU FRI SAT SUM:
REQUIRED = 23 16 13 16 1% 14 12;

EHDDATA

MIN = @SUM{ DRYS(I): START(I}):

BEOR ([DRYS{ J):

CHDUTY(J) =
BSUM(DAYS(I) | I #LEJ S:
START(BWEAR{ 7 - I + L, 711);
ONDUTY(J) >= REQUIRED{ J)

1
END

326 CHAPTERS

The split maybe adjusted by hovering the cursor over the divider then holding down the left mouse
button

and sliding the split to desired position. To disable the split use the Window|Split Active Window
command.

Window|Autocomplete L=~

The Window|Autocomplete command is used to toggle on and off the autocomplete feature which by
default, is enabled.
While the autocomplete feature is enabled a dropdown menu will recommend key words while typing.

[o

Lingo Model - Linga2 =[S

1 @

@FOR (
@WHILE (
EBIN(

To navigate the dropdown menu use the scroll bar, you mouse wheel, the arrow keys, or keep typing.
When the keyword you want is highlighted
hit the tab key, or left click to autocomplete.

[=

Lingo Model - Lingo2 =B

1 @B

@BND (
@BLOCKROW (
@BREREK ()

MENU COMMANDS 327

B¥ Lingo Model - Lingo2 |5 | [
1 BBIN(

. p -
Window|Line Numbers

The Window|Line Numbers command is used to toggle on and off the line numbers feature for all
windows which by default, is enabled.

5. Help Menu

The Help menu contains commands that generally pertain to LINGO's online help system, copyright
notice, and version specific information.

Help|Help Topics

A portion of the dialog box displayed by the Help Topics command is displayed below:

328 CHAPTERS5

& UINGOD 21 Uiers Manual - o

= o i &5 B
2513 Back Fooeed Home Pimt Opions

oo 12 LINGO 21.0 Users Manual

A ROLINGD 210
.|
H Prodace
H M Faabur

BFAG - Fred
Galing Sur
 ®Using et |
o ®\ariskls Do)

= % Daty Ind an
u My Coe
« @ Cornrandd
= $LNGC Op
= W irderiacing ¥

w W irderiacing v
= W irberiacirg v

L The Modeling
13 Language

= D Matham a “d

w Emor Masst OPﬁmiI ar

Select the Contents tab to display a table of contents for the Help system. You can select any of the
topics of interest by double-clicking on them.

Select the /ndex tab to display an index of topics for the Help system. Select an item for viewing by
double-clicking on it.

Go to the Find tab to search the Help system for a particular item.

MENU COMMANDS 329

‘ -
Help|Register
Use the Help|Register command to register your version of LINGO online. You will need a

connection to the Internet open for this command to work. When you issue the Register command,
you will be presented with the following dialog box:

LINDO Systems Product Registration - 64-bit >

Serial Number : jndo2 Commercial
License : Linear -Barrier -Conic-Nonlinear-Global-Integer-Stochastic Extended
Hame *:

Title :

City : State :
Zip Code : Country ™
Phone *; Fax :

What is your company's primary business ?

() Education (O) Consulting (£ Manufacturing
(O Accounting () Government () Petrochemical

() Agricultural () Medical () Transportation
(C) Financial () Marketing () Other

() Tebecommunications () Insurance

What other oplimization package have you used ?

What will be your primary apphcation of this product ?

* Required Feld

Register Mow Mever Register Cancel

[|

Enter your personal information and select the Register Now button. Your information will be sent
directly to LINDO Systems via the Internet.

330 CHAPTERS5

Once your registration is complete, the following dialog box will appear on your screen:

LINDO Systems Product Registration - 64-bit X

o Your registration has been successfully submitted.

Thank you.
| ok |
Select the OK button to be returned to the main LINGO environment.

LINDO Systems is constantly working to make our products faster and easier to use. Registering your
software with LINDO ensures that you will be kept up-to-date on the latest enhancements and other
product news. You can also register through the mail or by fax using the registration card included
with your software package.

Help|AutoUpdate *

Turn the Help|AutoUpdate command on to have LINGO automatically check every time you start the
LINGO software whether there is a more recent version of LINGO available for download on the
LINDO Systems website. You will need a connection to the Internet open for this command to work.

When you issue the AutoUpdate command or start a version of LINGO with AutoUpdate enabled,
LINGO will search the Internet to see if an updated version of the LINGO software is available for
download. If you currently have the most recent version, then you will be returned to the main LINGO
environment. If you have an outdated version of the software, you will be presented with the following
dialog box:

MENU COMMANDS 331

Lingo Message... *

A newer build of LINGO is now available.
Flease visit www,LINDO,com to download update,

You may disable this message with the Help | Autolpdate command.

(84

at which point, you may wish to go to the LINDO Systems Web site, www.lindo.com, to download the
latest build of the software.

If you want to disable the AutoUpdate feature, then select the Disable AutoUpdate button from the
AutoUpdate dialog box.

The AutoUpdate feature is disabled by default.

Help|About LINGO

When you issue the 4bout LINGO command, you will be presented with a dialog box resembling the
following:

332 CHAPTERS

Extended Lingo/Win64
Release 21.0.0 (31 Oct 2023) -

Copyright (c) 2011 - 2023

LINDO Systems Inc

1415 North Dayton Strest
Chicago, IL 60642
J2/988-T422
http:/iwww.lindo.com

Limits for this Installation:

Constraints: Unlimited
Variables: Unlimited
Integer Variables: Unlimited
Nonlinear Variables: Unlimited
Global Variables: Inlimited
Generator Memory (Mb): 2000
License E xpiration: License Usage:
Parpetual Commercial
Licenses: API Version:
1 15.0.6099.086

License Location:
C:LINGOG4_20MndIng20.lic

Config Location:
C:ALINGOG4 200LINGO.CNF
Additional License Information:
lindo2
Enabled Solvers:

- mrvims]l siunlswe

OK

The first box lists release information of your copy of LINGO.
The second box tells you where you can get in touch with LINDO Systems.

The third box, titled Limits for this Installation, lists various capacity limits of your version and the
current number of bytes allocated to LINGO's model generator. The maximum sized problem your
LINGO software can handle depends on the version you have. The current limits for the various
versions are:

MENU COMMANDS 333

Version Total Integer Nonlinear Global Constraints
Variables Variables Variables Variables
Demo/Web 300 30 30 5 150
Solver Suite 500 50 50 5 250
Super 2,000 200 200 10 1,000
Hyper 8,000 800 800 20 4,000
Industrial 32,000 3,200 3,200 50 16,000
Extended Unlimited Unlimited Unlimited Unlimited Unlimited

For more information on the definitions of these limits see section Maximum Problem Dimensions. In
addition to the maximum problem limits, this box also lists the amount of memory allocated to
LINGO’s model generator. You can adjust the size of generator memory allocation on the General
Solver tab of the Solver|Options dialog box.

The fourth box titled License Expiration lists the date at which your license expires. If your license
does not have an expiration date, this field will display Perpetual.

The box labeled License Usage lists whether your license is for commercial or educational use.
Educational licenses are restricted to use by faculty, staff, and students of educational institutions for
instructional or research purposes. Commercial licenses are not restricted to any particular use.

The box titled Licenses lists the number of users licensed to use your copy of LINGO.

The API Version box lists the version number of the LINDO API in use by your copy of LINGO. The
LINDO API is the library of solver tools used by LINGO to optimize your models.

The License Location box displays the location of the license file in effect for the current LINGO
session, while the Config Location box gives the location of LINGO's configuration file. The
configuration file is where LINGO stores non-default option settings, which are controlled by the

Solver|Options command.

The final box, Additional License Information, contains information relevant to your particular license.
In most cases, your LINGO serial number can be found in this field. Scrolling through this field, you
will also find information as to the optional features included with your license (e.g., the barrier, conic,
nonlinear, global and stochastic solvers.)

Help|Pointer o

334 CHAPTERS5

Press this button (o) to switch the cursor into Help mode. Once the cursor is in Help mode, you
can select a menu command or a toolbar button and LINGO will display help information on the
selected item.

Mac LINGO Applications Menu ;

Mac versions of Lingo have an additional menu referred to as the Application Menu. This menu
appears before the File menu and is named Lingo. The Application menu is a common feature of Mac
applications and tends to contain similar commands across different applications. LINGO's application
menu contains the following commands:

Command Description

About LINGO Displays the version and size of your copy of LINGO, along with
information on how to contact LINDO Systems. This is
equivalent to the Help|About Lingo command discussed above.

Preferences Controls LINGO's option settings. This is equivalent to the
Solver|Options command discussed above.

Services Gives you access to various OS X settings to control the
operation of your Mac.

Hide Lingo Hides LINGO's main window, allowing you to view the windows
of other running apps.

Hide Others Hides all application windows except LINGO's window.
Show All Shows the windows of all running apps.
Quit Lingo Exits LINGO.

6 Command-Line
Commands

This chapter discusses all of the command-line commands available to the LINGO user. On platforms
other than Windows based PC’s, the user interfaces with LINGO entirely through text commands
issued to LINGO’s command-line colon prompt.

If you are using a Windows version of LINGO, you will primarily be interested in the previous
chapter, Windows Commands, which details the commands available in the pull down menus of
LINGO’s Windows version. However, in Windows versions, LINGO command-line commands may
be entered using the command window (see the Window|Command Window section in Chapter 5,
Windows Commands) and may also be used to build command scripts. Command scripts may be run
automatically at startup or whenever the user desires. Command scripts are useful to both the Windows
user and users on other platforms. Thus, the Windows user may find this chapter of interest, too.

We will begin by briefly listing all the command-line commands according to their general function.
This will be followed up by an in-depth explanation of the commands.

The Commands In Brief

1. Information

CAT lists categories of available commands

comM lists available commands by category

HELP provides brief help on commands

MEM provides statistics about model generator memory usage
VERSION | displays LINGO’s version information

2. Input

FRMPS retrieves a model in free MPS format
MODEL begins input of a new model

RLPF retrieves a model in LP format

RMPI retrieves a model in MPI format
RMPS retrieves a model in fixed MPS format

TAKE runs a command script from an external file

336 CHAPTER 6

3. Display

DUAL generates and displays the dual formulation for the model

GEN generates the algebraic formulation for the model

HIDE password protects the current model

LISTFIX displays a report on variables that the model generator determined
as being fixed in value

LOOK displays the current model

PICTURE | displays a picture of the model’s nonzero structure

SCENE generates the algebraic formulation for a specified scenario of a
larger stochastic program

SHOWNL generates the entire model, but only displays rows containing
nonlinearities

STATS gives summary statistics about the properties of a generated model

XDETEQ generates the algebraic formulation for a explicit deterministic
equivalent of a stochastic program

4. File Output

DIVERT opens a file for receiving output

RVRT closes a file previously opened with DIVERT

SAVE saves the current model to disk

SMPI exports a model in MPI format

SMPS sends a copy of the current model to a file in MPS format
5. Solution

DEBUG tracks down formulation errors in infeasible and unbounded

models

GO solves the current model

NONZ generates a nonzeros only solution report

RANGE generates a range analysis report

SOLU generates a solution report

6. Problem Editing

ALTER

edits the contents of the model

DELETE

deletes a selected row from the model

EXTEND

adds rows to the end of the current model

Command-Line Commands 337

/. Conversational Parameters

PAGE sets the page/screen length

PAUSE pauses for keyboard input

TERSE output level

VERBOSE | switches to verbose output mode
WIDTH sets terminal display and input width

8. Tolerances

APISET allows access to advanced parameters in the LINDO API, which is
the solver library used by LINGO

DBPWD sets the password for database access via @ODBC

DBUID sets your user id for database access via @ODBC
FREEZE saves current tolerance settings to disk
SET overrides a number of LINGO defaults and tolerances

9. Miscellaneous

! inserts a comment
QuIT exits LINGO
TIME displays current elapsed time since start of session

The Commands In Depth

Each LINGO command-line command is discussed in detail in this section. Commands are grouped by
category based upon their general function.

Note: User input in the examples below is indicated through the use of bold typeface.

1. Information

The Information category contains commands related to on-line information.

CAT

The CAT command displays the nine categories of commands available in LINGO. You will be
prompted to input a number corresponding to one of the categories. If you input a number, LINGO
will display the commands available under the corresponding category. To exit out of the command,
input a blank line.

COM

The COM command lists all the command-line commands available in LINGO by category.

338 CHAPTER 6
HELP

The HELP command combined with another LINGO command gives you information on the
command specified. The information is usually quite brief, but is often all that is needed.

The HELP command without an argument will give you general information about your version of
LINGO, along with the maximum number of constraints and variables that your version of LINGO can
handle.

MEM

The MEM command displays statistics about the model generator's memory usage. The following is
some sample output from the MEM command:

: MEM

Total generator memory 5242880
Peak generator memory usage 12048
Current generator memory usage 1312
Total handles 96
Peak handle usage 9
Current handle usage 5
Total bytes moved 1552
Total blocks moved 6
Total heap compacts 0
Fragmentation ratio 0.002

The Total generator memory figure is the amount of memory LINGO has allocated for a working
memory heap for model generation. You can control the size of the heap using the SET command.
Peak generator memory usage refers to the maximum amount of memory the model generator used
during the current session. Current memory usage lists the amount of working memory currently in use
by the model generator.

Total handles is the maximum number of memory blocks LINGO can allocate. Peak handle usage lists
the maximum number of memory blocks LINGO allocated at any one time during this session. Current
handle usage represents the number of memory blocks currently in use by the model generator.

Total bytes moved lists the number of memory bytes the generator has had to move so far in order to
reallocate memory. Total blocks moved lists the number of memory blocks moved due to reallocation.
Total heap compacts lists the number of times the generator has had to compact the heap to make room
for growing memory needs. If the number of heap compacts is abnormally large, you should allocate
more working memory using the SET command.

The Fragmentation ratio is a statistic measuring how fragmented the memory heap is. A value of 1
would indicate high fragmentation, whereas a value of 0 indicates no fragmentation.

Command-Line Commands 339

VERSION
The VERSION command displays the installed LINGO's version information. The following shows
sample output from the VERSION command:

: VERSION

LINGO/WIN64 21.0.32 (7 May 2024), LINDO API 15.0.6099.160
Licensee info: licensee@anywhere.com

Here we see the main version number and release date for LINGO, the version number of the LINDO
API solver engine being used, as well as licensee specific information (typically an email address).

2. Input

The Input category contains commands that initiate input into LINGO

FRMPS / RMPS

The FRMPS and RMPS commands are used to read MPS formatted models. The MPS file format is an
industry standard format developed by IBM, and is useful for passing models from one solver or
platform to another. FRMPS reads an MPS file in free format, while RMPS reads fixed format MPS
files.

When LINGO reads an MPS file, it converts the formulation to an equivalent LINGO model. As an
example, consider the following, simple model:

ObjRow) Maximize 20X + 30Y
Subject To:

Row1) X < 50

Row2) Y < 60

Row3) X + 2Y <120

An equivalent MPS file for this model is:

NAME SAMPLE
OBJSENSE
MAX
ROWS
N OBJROW
L ROW1
L ROW2
L ROW3
COLUMNS
X ROW3 1.0000000
X OBJROW 20.0000000
X ROW1 1.0000000
Y OBJROW 30.0000000
Y ROW2 1.0000000

340 CHAPTER 6

Y ROW3 2.0000000
RHS

RHS ROW1 50.0000000

RHS ROW2 60.0000000

RHS ROW3 120.0000000
ENDATA

As an aside, one thing to notice about the MPS representation is that it is not a very compact method
for storing a model.

In the following session, we read this MPS file into LINGO and then display the model with the
LOOK command. Note how the model is automatically converted from MPS format to LINGO format:

rmps c:\sample.mps

look all
1] TITLE SAMPLE;
2] [OBJROW] MAX = 20 * X + 30 * Y;
3] [ROW1l] X <= 50;
4] [ROW2] Y <= 60;
5] [ROW3] X + 2 * Y <= 120;

Should you wish to save the file again using MPS format rather than LINGO format, you may use the
SMPS command.

When it comes to acceptable constraint and variable names, MPS format is less restrictive than
LINGO. MPS allows for embedded blanks and other additional characters in names. To compensate
for this fact, LINGO attempts to patch names when reading an MPS file so that all the incoming names
are compatible with its syntax. LINGO does this by substituting an underscore for any character in a
name that is not admissible. In most cases, this will work out OK. However, there is a chance for name
collisions where two or more names get mapped into one. For instance, the variable names X./ and
X%1 would both get mapped into the single LINGO name X /. Of course, situations such as this
entirely alter the structure of the model rendering it incorrect.

You will be warned whenever LINGO has to patch a name with the following error message:

[Error Code: 179]

The model translator had to patch names to make them compatible:
var names patched: 1
row names patched: 0

Name collisions may have occurred.

This message displays the number of variable and row names that were patched to get them to conform
to LINGO syntax.

If name collisions are a problem, then LINGO has an option that will ensure that all names remain
unique. This option involves using RC format for names encountered during MPS 1/0. RC format

Command-Line Commands 341

involves renaming each row (constraint) in a model to be Rn, where # is the row’s index. Similarly,
each column (variable) is renamed to Cn. In addition, LINGO renames the objective row to be ROBJ.
To switch to RC format for MPS names, you will need to use the SET command as follows:

SET RCMPSN 1

This will cause LINGO to use RC naming conventions for all MPS reads and saves. To cancel the use
of RC names, type:

SET RCMPSN 0

As an example, we will once again read the same MPS format model we read above, but this time we
will switch to RC naming conventions.

set rcmpsn 1

Parameter 0ld Value New Value
RCMPSN 0 1

rmps c:\sample.mps

look all
1] TITLE SAMPLE;
2] [ROBJ] MAX = 20 * Cl1 + 30 * C2;
31 [R1] Cl <= 50;
41 [R2] C2 <= 060;
51 [R3] Cl + 2 * C2 <= 120;

Notice how the variable names now use RC format, guaranteeing that name collisions will not occur.
Another potential conflict is that MPS allows variable names to be duplicated as constraint names, and
vice versa. LINGO does not allow for this. When you go to solve the model, you will either receive
error message 28 (Invalid use of a row name), or error message 37 (Name already in use). However,
once again, you can switch to using RC format for names to avoid this conflict.

MODEL

Use the MODEL command to begin inputting a new model into LINGO. LINGO prompts for each
new line of the model with a question mark. When you are through entering the model, enter END on a
single line by itself. LINGO will then return to normal command mode (indicated by the colon

prompt).

342 CHAPTER 6

In the following example, we enter a small model with the MODEL command, display it with the
LOOK command, and then solve it with the GO command:

: MODEL
? 'How many years does it take
? to double an investment growing
? 10% per year?;
? 1.1 ~ YEARS = 2;
? END
: LOOK ALL
1] 'How many years does it take
2]to double an investment growing
3]10% per year?;
411.1 ~ YEARS = 2;
: GO
Feasible solution found at step: 0
Variable Value
YEARS 7.272541
Row Slack or Surplus
1 0.000000

RMPI

The RMPI command is used to read MPI (Math Programmming Interface) formatted models. The
MPI file format was developed by LINDO Systems as a portable format for storing arbitrary math
programming models.

When LINGO reads an MPI file, it converts the formulation to an equivalent LINGO model. As an
example, consider the following, simple model:

ObjRow) Maximize 20X + 30Y
Subject To:

Row1) X < 50

Row2) Y < 60

Row3) X + 2Y <120

Command-Line Commands 343

The equivalent MPI file for this model is:

BEGINMODEL SAMPLE
! Number of Objective Fun
! Number of Constraints
! Number of Variables
VARIABLES
! Name
Upper Bound
X
1e+030
Y
1e+030
OBJECTIVES
OBJROW
EP_USRCOD
EP PUSH NUM
EP PUSH VAR
EP MULTIPLY
EP PUSH NUM
EP PUSH VAR
EP MULTIPLY
EP PLUS
CONSTRAINTS
ROW1 L
EP _USRCOD
EP PUSH VAR
EP PUSH NUM
EP MINUS
ROW2 L
EP_USRCOD
EP PUSH VAR
EP PUSH NUM
EP_MINUS
ROW3 L
EP_USRCOD
EP PUSH VAR
EP PUSH NUM
EP PUSH VAR
EP MULTIPLY
EP_PLUS
EP PUSH NUM
EP_MINUS
ENDMODEL

Type
C
C
MAXIMIZE

20

30

50

60

120

Lower Bound

ctions:

w

Initial Point

1.23457

1.23457

-101

-101

-101

-101

As an aside, one thing to notice about the MPI representation is that it is not a very compact method
for storing a model—MPI is designed for portability, as opposed to efficiency.

344 CHAPTER 6

In the following session, we read this MPI file into LINGO and then display the model with the LOOK
command. Note how the model is automatically converted from MPI format to native LINGO format:

: rmpi c:\sample.mpi

: look all
1] TITLE SAMPLE;
2] [OBJROW] MAX = 20 * X + 30 * Y;
3] [ROW1l] X <= 50;
4] [ROW2] Y <= 60;
5] [ROW3] X + 2 * Y <= 120;

Should you wish to save the file again using MPI format rather than LINGO format, you may use the
SMPI command.

Note: The MPI file format is intended primarily for exporting models to other applications or
platforms. The MPI format is purely scalar in nature—all set-based information is lost upon
converting a LINGO model to MPI format. Thus, when saving copies of a model on your
own machine, you should always use the S4VE command in order to save models in native
LINGO format in order to preserve your model in its entirety.

When it comes to acceptable constraint and variable names, MPI format is less restrictive than
LINGO. MPI allows for embedded blanks and other additional characters in names. To compensate
for this fact, LINGO attempts to patch names when reading an MPI file so that all the incoming names
are compatible with its syntax. LINGO does this by substituting an underscore for any character in a
name that is not admissible. In most cases, this will work out OK. However, there is a chance for
name collisions where two or more names get mapped into one. For instance, the variable names X. /
and X%]1 would both get mapped into the single LINGO name X /. Of course, situations such as this
entirely alter the structure of the model rendering it incorrect.

You will be warned whenever LINGO has to patch a name with the following error message:

[Error Code: 179]

The model translator had to patch names to make them compatible:
var names patched: 1
row names patched: 0

Name collisions may have occurred.

This message displays the number of variable and row names that were patched to get them to conform
to LINGO syntax.

Command-Line Commands 345

If name collisions are a problem, then LINGO has an option that will ensure that all names remain
unique. This option involves using RC format for names when translating non-native file formats. RC
format involves renaming each row (constraint) in a model to be Rn, where 7 is the row’s index.
Similarly, each column (variable) is renamed to Crn. In addition, LINGO renames the objective row to
be ROBJ. To switch to RC format for MPS names mode, you will need to use the SET command as
follows:

: SET RCMPSN 1

This will cause LINGO to use RC naming conventions for all MPI reads and saves. To cancel the use
of RC names, type:

: SET RCMPSN 0

As an example, we will once again read the same MPI format model we read above, but this time we
will switch to RC naming conventions.

: set rcmpsn 1

Parameter 0ld Value New Value
RCMPSN 0 1

: rmpi c:\sample.mpi

: look all
1] TITLE SAMPLE;
2] [ROBJ] MAX = 20 * Cl + 30 * C2;
3] [R1] C1 <= 50;
4] [R2] C2 <= 60;
5] [R3] Cl1 + 2 * C2 <= 120;

Notice how the variable names now use RC format, guaranteeing that name collisions will not occur.
Another potential conflict is that MPI allows variable names to be duplicated as constraint names, and
vice versa. LINGO does not allow for this. When you go to solve the model, you will either receive
error message 28 (Invalid use of a row name), or error message 37 (Name already in use). However,
once again, you can switch to using RC format for names to avoid this conflict.

RLPF Command
The RLPF command is used to read LP formatted models. The LP file format is an industry standard,
and is useful for passing models from one solver or platform to another.

When LINGO reads an LP format file, it converts the formulation to an equivalent LINGO model. As
an example, consider the following, simple model:

ObjRow) Maximize 20X + 30Y
Subject To:

Row1) X < 50

Row2) Y <60

Row3) X+ 2Y <120

346 CHAPTER 6

An equivalent LP format file for this model is:

\ LP format example
Maximize

objrow: 20x + 30y
Subject To

rowl: x <= 50

row2: y <= 60

row3: x + 2y <= 120
End

In the following session, we read this LP file into LINGO and then display the model with the LOOK
command. Note how the model is automatically converted from LP format to LINGO format:

rlpf c:\sample.lp
look all

MODEL:

MAX= 20 * X + 30 * Y;
[ROW1] X <= 50;

[ROW2] Y <= 60;

[ROW3] X + 2 * Y <= 120;
END

Note: Unlike with MPS and MPI formats, LINGO does not currently support exporting/saving files
in LP format.

When it comes to acceptable constraint and variable names, LP format is less restrictive than LINGO.
To compensate for this fact, LINGO attempts to patch names when reading an LP file so that all the
incoming names are compatible with its syntax. LINGO does this by substituting an underscore for any
character in a name that is not admissible. In most cases, this will work out OK. However, there is a
chance for name collisions where two or more names get mapped into one. For instance, the variable
names X./ and X%/ would both get mapped into the single LINGO name X /. Of course, situations
such as this entirely alter the structure of the model rendering it incorrect.

You will be warned whenever LINGO has to patch a name with the following error message:

[Error Code: 179]

The model translator had to patch names to make them compatible:
var names patched: 1
row names patched: 0

Name collisions may have occurred.

This message displays the number of variable and row names that were patched to get them to conform
to LINGO syntax.

Command-Line Commands 347

If name collisions are a problem, then LINGO has an option that will ensure that all names remain
unique. This option involves using RC format for names when translating non-native file formats. RC
format involves renaming each row (constraint) in a model to be Rn, where 7 is the row’s index.
Similarly, each column (variable) is renamed to Crn. In addition, LINGO renames the objective row to
be ROBJ. To switch to the RC format for MPS names mode, you will need to use the SET command as
follows:

: SET RCMPSN 1

This will cause LINGO to use RC naming conventions for all names in an LP format file. To cancel
the use of RC names, type:

: SET RCMPSN 0

As an example, we will once again read the same LP format format model we read above, but this time
we will switch to RC naming conventions.

set rcmpsn 1

Parameter 0ld Value New Value
RCMPSN 0 1

: rmps c:\sample.lp

: look all
1] TITLE SAMPLE;
2] [ROBJ] MAX = 20 * Cl1 + 30 * C2;
3] [R1] C1 <= 50;
4] [R2] C2 <= 60;
5] [R3] Cl1 4+ 2 * C2 <= 120;

Notice how the variable names now use RC format, guaranteeing that name collisions will not occur.
Another potential conflict is that LP format allows variable names to be duplicated as constraint
names, and vice versa. LINGO does not allow for this. When you go to solve the model, you will
either receive error message 28 (Invalid use of a row name), or error message 37 (Name already in
use). However, once again, you can switch to using RC format for names to avoid this conflict.

TAKE

The TAKE command is used to 1) read models saved to disk using the S4VE command, and 2) execute
command scripts contained in external files. The syntax for the TAKE command is:

TAKE [filename]
If you omit a filename, LINGO will prompt you for one.

As an example, suppose you used the S4VE command to save a model to the file
C:\LINGOMOD\MYMODEL.LNG. You can read it back into LINGO by giving the command:

: TAKE C:\LINGOMOD\MYMODEL.LNG

348 CHAPTER 6

As a second example, we will use the T4KE command to execute a LINGO command script. A
command script is simply a text file that contains a series of LINGO commands. Suppose we have
built the following command script in an editor and have saved it in the text file
D:ALNG\MYSCRIPT.LTF:

MODEL:

!For a given probability P, this
model returns the value X such
that the probability that a unit
normal random variable is less
than or equal to X is P;

! Here is the probability;
P = .95;

! Solve for X;
P = @PSN (X) ;

END

!Terse output mode;
TERSE

!Solve the model;
GO

'Report X;
SOLU X

We can use the TAKE command to run the script as follows:

TAKE D:\LNG\MYSCRIPT.LTF

Feasible solution found at step: 0
Variable Value
X 1.644854

3. Display

This category contains commands that display information.

DUAL

The DUAL command displays the dual formulation of the current model. Every linear programming
model has a corresponding, mirror-image formulation called the dual. If the original model has M
constraints and N variables, then its dual will have N constraints and M variables.

Some interesting properties of the dual are that any feasible solution to the dual model provides a
bound on the objective to the original, primal model, while the optimal solution to the dual has the
same objective value as the optimal solution to the primal problem. It's also true that the dual of the
dual model is, once again, the original primal model. You may wish to refer to any good linear
programming text for a further discussion of duality theory.

Command-Line Commands 349

As an example, consider the following small transportation model:

MODEL:
! A 3 Warehouse, 4 Customer
Transportation Problem;

SETS:
WAREHOUSE / WH1, WH2, WH3/ : CAPACITY;
CUSTOMER / Cl, C2, C3, C4/ : DEMAND;
ROUTES (WAREHOUSE, CUSTOMER) : COST, VOLUME;
ENDSETS

! The objective;
[OBJ] MIN = @SUM(ROUTES: COST * VOLUME) ;

! The demand constraints;

@FOR (CUSTOMER(J): [DEM]
@SUM(WAREHOUSE(I): VOLUME(I, J)) >=
DEMAND (J)) ;

! The supply constraints;

@FOR(WAREHOUSE (I): [SUP]
@SUM(CUSTOMER(J): VOLUME(I, J)) <=
CAPACITY (I));

! Here are the parameters;

DATA:
CAPACITY = 30, 25, 21 ;
DEMAND = 15, 17, 22, 12;
COST = 6, 2, 6, 1,
4, 9, 5, 3,
8, 8, 1, 5;
ENDDATA
END

Model: TRAN.LNG

350 CHAPTER 6

If the sample session below, we load the sample model TRAN.LNG and use the DUAL command to
generate its dual formulation:

take \lingo\samples\tran.lng
dual

MODEL:
MAX = 15 * DEM Cl + 17 * DEM C2 + 22 * DEM C3 + 12 * DEM C4

+ 30 * SUP_WH1 + 25 * SUP_WH2 + 21 * SUP_WH3;
[VOLUME WH1 C1] DEM Cl + SUP WHl <= 6;

[VOLUME WH1 C2] DEM C2 + SUP WHl <= 2;

[VOLUME WH1 C3] DEM C3 + SUP WHl <= 6;

[VOLUME WH1 C4] DEM C4 + SUP WHL <= 7;

[VOLUME WH2 C1] DEM Cl + SUP WH2 <= 4;

[VOLUME WH2 C2] DEM C2 + SUP WH2 <= 9;

[VOLUME WH2 C3] DEM C3 + SUP WH2 <= 5;

[VOLUME WH2 C4] DEM C4 + SUP WH2 <= 3;

[VOLUME WH3 Cl] DEM Cl + SUP WH3 <= 8;

[VOLUME WH3 C2] DEM C2 + SUP _WH3 <= 8;

[VOLUME WH3 C3] DEM C3 + SUP WH3 <= 1;

[VOLUME WH3 C4] DEM C4 + SUP WH3 <= 5;
@BND(-0.1E+31, SUP WH1, 0); @BND(-0.1E+31, SUP WH2, 0);
@BND(-0.1E+31, SUP WH3, 0);

END

You will notice that in the dual formulation the variables from the primal model become the rows of
the dual. Similarly, the rows in the primal become the variables in the dual.

Note: The row names from the primal problem will become the variable names in the dual
formulation. For this reason, it is strongly recommended that you name all the rows in the
primal model. If a row is unnamed, then a default name will be generated for the
corresponding dual variable. The default name will consist of an underscore followed by the
row's internal index. These default names will not be very meaningful, and will make the
dual formulation difficult to interpret.

GEN

Once you remove all the syntax errors from your LINGO model, there is still one very important step
required: model verification. LINGO’s set-based modeling capabilities are very powerful, and they
allow you to generate large, complex models quickly and easily. However, when you first develop a
model you will need to verify that the model being generated matches up to the model you actually
intended to generate. Many set-based models can be quite complex, and it is highly likely that logic
errors may creep into one or more expressions, thereby causing your generated model to be flawed.
The GEN (short for generate) command is very useful for debugging such errors. It expands all of the
model's compact set-based expressions and then writes out the full scalar-based equivalent of the
LINGO model. The expanded model report explicitly lists all the generated constraints and variables in
your model. You will find that the Generate report can be an invaluable tool in tracking down errors.

Command-Line Commands 351

As an example of the output from the generate command, consider the transportation model developed
in Chapter 1:

MODEL:
! A 6 Warehouse 8 Vendor Transportation Problem;
SETS:
WAREHOUSES: CAPACITY;
VENDORS: DEMAND;
LINKS (WAREHOUSES, VENDORS): COST, VOLUME;
ENDSETS
DATA:
!'set members;
WAREHOUSES = WH1 WH2 WH3 WH4 WH5 WHG;
VENDORS = V1 V2 V3 V4 V5 Vo6 V7 VS8;

lattribute wvalues;

CAPACITY = 60 55 51 43 41 52;
DEMAND = 35 37 22 32 41 32 43 38;
COST = 2 4 9

N J 0o
0w o N W
N WO Jd R 0o
N Ul WO W
@ ~J O ~J @
NN 0N
Doy J W o O
WU R WwN

ENDDATA

! The objective;
[OBJECTIVE] MIN = @SUM(LINKS(I, J):
CosST(I, J) * VOLUME(I, J));

! The demand constraints;

@FOR(VENDORS(J): [DEMAND ROW]
@SUM(WAREHOUSES(I): VOLUME(I, J)) =
DEMAND (J));
! The capacity constraints;
@FOR (WAREHOUSES (I): [CAPACITY ROW]

@SUM(VENDORS(J): VOLUME(I, J)) <=
CAPACITY (I));
END

Model: WIDGETS

352 CHAPTER 6

The objective will generate one expression; there should be one demand constraint generated for each
of the eight vendors and one supply constraint generated for each of the six warehouses, for a grand
total of 15 rows in the expanded model. Running the generate command to verify this reveals the
following report:

VOLUME_WH6_V8
[DEMAND ROW v1]
VOLUME WH3 V1 +
VOLUME_WH6 V1 =
[DEMAND ROW V2]
VOLUME_WH3 V2 +
VOLUME_WH6 V2 =
[DEMAND ROW V3]
VOLUME_WH3 V3 +
VOLUME_WH6 V3 =
[DEMAND ROW V4]
VOLUME WH3 V4 +
VOLUME_WH6 V4 =
[DEMAND ROW V5]
VOLUME_WH3 V5 +
VOLUME_WH6 V5 =
[DEMAND ROW V6]
VOLUME_WH3 V6 +
VOLUME_WH6 V6 =
[DEMAND ROW V7]
VOLUME_WH3 V7 +
VOLUME_WH6 V7 =
[DEMAND ROW V8]
VOLUME_WH3 V8 +
VOLUME_WH6 V8 =

[CAPACITY ROW_WH1]

VOLUME_WH1 V1
VOLUME_WH4 V1
35 ;
VOLUME_WH1 V2
VOLUME_WH4 V2
37 ;
VOLUME_WH1 V3
VOLUME_WH4_V3
22 ;
VOLUME WH1 V4
VOLUME_WH4 V4
32 ;
VOLUME_WHI_V5
VOLUME_WH4 V5
41 ;
VOLUME7WH17V6
VOLUME_WH4_V6
32 ;
VOLUME_WH1 V7
VOLUME_WH4 V7
43 ;
VOLUME7WH17V8
VOLUME_WH4_V8
38 ;
VOLUME WHl

+
+

+
+

V1 + VOLUME WH1

VOLUME WH2 V1 +
VOLUME WH5 V1 +

VOLUME WH2 V2 +
VOLUME WH5 V2 +

VOLUME WH2 V3 +
VOLUME WH5 V3 +

VOLUME WH2 V4 +
VOLUME WH5 V4 +

VOLUME WH2 V5 +
VOLUME WH5 V5 +

VOLUME WH2 V6 +
VOLUME_WH5 V6 +

VOLUME WH2 V7 +
VOLUME WH5 V7 +

VOLUME WH2 V8 +
VOLUME_WH5 V8 +

V2 +

VOLUME WH1 V3 + VOLUME WH1 V4 + VOLUME WH1 V5 +

VOLUME_WHI_V6 + VOLUME_WHI_V7 + VOLUME_WHI_VS <=
[CAPACITY ROW WH2]

60 ;

VOLUME WH2 V1 + VOLUME WH2 V2 +

VOLUME WH2 V3 + VOLUME WH2 V4 + VOLUME WH2 V5 +

MODEL:

[OBJECTIVE] MIN= 6 * VOLUME WH1 V1 + 2 * VOLUME WH1 V2 + 6 *
VOLUME WH1 V3 + 7 * VOLUME WH1 V4 + 4 * VOLUME WH1 V5 + 2 *
VOLUME WH1 V6 + 5 * VOLUME WH1 V7 + 9 * VOLUME WH1 V8 + 4 *
VOLUME WH2 V1 + 9 * VOLUME WH2 V2 + 5 * VOLUME WH2 V3 + 3 *
VOLUME_WH2_ V4 + 8 * VOLUME WH2 V5 + 5 * VOLUME WH2 V6 + 8 *
VOLUME_WH2 V7 + 2 * VOLUME WH2 V8 + 5 * VOLUME WH3 V1 + 2 *
VOLUME_WH3 V2 + VOLUME WH3 V3 + 9 * VOLUME WH3 V4 + 7 *
VOLUME_WH3 V5 + 4 * VOLUME WH3 V6 + 3 * VOLUME WH3 V7 + 3 *
VOLUME_WH3 V8 + 7 * VOLUME WH4 V1 + 6 * VOLUME WH4 V2 + 7
VOLUME_WH4 V3 + 3 * VOLUME WH4 V4 + 9 * VOLUME WH4 V5 + 2 *
VOLUME_WH4 V6 + 7 * VOLUME WH4 V7 + VOLUME WH4 V8 + 2 *
VOLUME_WH5 V1 + 3 * VOLUME WH5 V2 + 9 * VOLUME WH5 V3 + 5 *
VOLUME_WH5 V4 + 7 * VOLUME WH5 V5 + 2 * VOLUME WH5 V6 + 6 *
VOLUME_WH5 V7 + 5 * VOLUME WH5 V8 + 5 * VOLUME WH6 V1 + 5 *
VOLUME_WH6 V2 + 2 * VOLUME WH6 V3 + 2 * VOLUME WH6 V4 + 8 *
VOLUME_WH6 V5 + VOLUME WH6 V6 + 4 * VOLUME WH6 V7 + 3 *

Command-Line Commands 353

VOLUME WH2 V6 + VOLUME WH2 V7 + VOLUME WH2 V8 <= 55 ;
[CAPACITY ROW WH3] VOLUME WH3 V1 + VOLUME WH3 V2 +
VOLUME WH3 V3 + VOLUME WH3 V4 + VOLUME WH3 V5 +
VOLUME WH3 V6 + VOLUME WH3 V7 + VOLUME WH3 V8 <= 51 ;
[CAPACITY ROW WH4] VOLUME WH4 V1 + VOLUME WH4 V2 +
VOLUME WH4 V3 + VOLUME WH4 V4 + VOLUME WH4 V5 +
VOLUME WH4 V6 + VOLUME WH4 V7 + VOLUME WH4 V8 <= 43 ;
[CAPACITY ROW WH5] VOLUME WH5 V1 + VOLUME WH5 V2 +
VOLUME WH5 V3 + VOLUME WH5 V4 + VOLUME WH5 V5 +
VOLUME WH5 V6 + VOLUME WH5 V7 + VOLUME WH5 V8 <= 41 ;
[CAPACITY ROW WH6] VOLUME WH6 V1 + VOLUME WH6 V2 +
VOLUME WH6 V3 + VOLUME WH6 V4 + VOLUME WH6 V5 +
VOLUME WH6 V6 + VOLUME WH6 V7 + VOLUME WH6 V8 <= 52 ;
END

Model: WIDGETS

As expected, there are 15 rows in the generated model: [OBJECTIVE], [DEMAND ROW V1] through
[DEMAND ROW V8], and [CAPACITY ROW WHI] through [CAPACITY ROW WH6].

As a side note, it’s interesting to compare the generated model to the original, set-based model. We
think most would agree that the set-based model is much easier to comprehend, thereby illustrating one
of the primary benefits of modern algebraic languages over more traditional, scalar-based languages.

In addition to verifying that the correct number of rows is being generated, you should also examine
each of the rows to determine that the correct variables are appearing in each row along with their
correct coefficients.

Note: The reports generated by the GEN command are valid LINGO models. You may load
Generate reports into LINGO and solve them as you would any other model.

One thing to keep in mind when examining generated model reports is that the LINGO model
generator performs fixed variable reduction. This means that any variables that are fixed in value are
substituted out of the generated model. For example, consider the simple model:

MODEL:
MAX = 200 * WS + 300 * NC;
WS = 60;
NC <= 40;
WS + 2 * NC <= 120;
END

If we generate this model we get the following, reduced model:

MODEL:
MAX= 300 * NC + 12000 ;
NC <= 40 ;
2 * NC <= 60 ;
END

At first glance, it seems as if both the first constraint and the variable WS are missing from the
generated model. Note that by the first constraint in the original model (Wws = 60), WS'is fixed at a
value of 60. The LINGO model generator exploits this fact to reduce the size of the generated model

354 CHAPTER 6

by substituting WS out of the formulation. The final solution report will still contain the values for all
the fixed variables; however, the fixed variables will not appear in the generated model report. If you
would like to suppress fixed variable reduction so that all variables appear in your generated model,
you may do so via the Fixed Var Reduction option.

Note: To capture the results of the GEN command in a file, use the D/VERT command to open an
output file before issuing the GEN command.

HIDE

The HIDE command hides the text of a model from viewing by the user. This may be useful if you are
trying to protect proprietary ideas contained in your model.

When you enter the HIDE command, you’ll be prompted for a password. You may enter any password
with up to eight characters. LINGO will prompt you for this password once more for verification.
LINGO is sensitive to the case of the alphabetic characters in the password.

Once a model is hidden, commands allowing the user to view the model text (e.g, GEN, LOOK,
SMPS) are disabled. All other commands, however, will function as normal with the exception of
ALTER. If a model is hidden, ALTER will perform modifications, but they will not be echoed to the
screen.

When a hidden model is saved to disk, its text will be encrypted. This prevents the user from viewing
the model from outside of LINGO as well. You will want to distribute the encrypted version of the
model to those using your application. However, you should always keep an unhidden version of the
model at your site for safekeeping in the event you forget the password.

A hidden model may be returned to the normal unhidden state by once again issuing the HIDE
command with the correct password.

Command-Line Commands 355

A sample session illustrating the use of the H/DE command follows:

TAKE TRAN.LNG !'Read in a model

LOOK 4 6 !'Display some rows
4] SUPPLY / WH1, WH2, WH3/ : CAP;
5] DEST / Cl, C2, C3, C4/ : DEM;
6] LINKS (SUPPLY, DEST) : COST, VOL;
HIDE !Now hide the model
Password?
TIGER
Please reenter password to verify:
TIGER

Model is now hidden.

! Model is hidden so LOOK will fail
LOOK ALL

[Error Code: 111]
Command not available when model is hidden.

! We can still solve it though

TERSE
: GO
Global optimal solution found at step: 6
Objective value: 161.0000
'And get a solution report
NONZ VOL
Variable Value Reduced Cost
VOL (WH1, C1) 2.000000 0.000000
VOL (WH1, C2) 17.00000 0.000000
VOL (WH1, C3) 1.000000 0.000000
VOL (WH2, C1) 13.00000 0.000000
VOL (WH2, C4) 12.00000 0.000000
VOL (WH3, C3) 21.00000 0.000000

'Now, unhide the model
HIDE

Password?

TIGER

Model is no longer hidden.

'Once again, we can view the model

LOOK 4 6

4] SUPPLY / WH1, WH2, WH3/ : CAP;
5] DEST / C1, C2, C3, C4/ : DEM;

6] LINKS (SUPPLY, DEST) : COST, VOL;

LISTFIX
The LISTFIX command displays a report on variables that the model generator determined as being
fixed in value.

356 CHAPTER 6

Consider the following small model:

[ROW OBJ] MAX= 20*%X + 30*Y + 12*Z;
[ROW_1] X = 2*Y;

[ROW 2] X + Y + Z <= 110;

[ROW 3] Y = 30;

Examining the model, we can easily determine that Y is fixed in value at 30, while X is fixed at 60.
Determining the fixed variables in a small model like this is an easy task, however, this would not be
the case for larger models. LINGO's Fixed Variable Reduction feature substitutes fixed variables out
of the generated model that gets passed to the solver. In which case, you might find it useful when
viewing a generated model (Solver|Generate|Display command) to know which variables have been
substituted out of the model. For our particular model here, running the LISTFIX command yields the
following report:

Fixed Variable Report

Variable Key Row Value
Y ROW_3 30.00000
X ROW 1 60.00000

As mentioned, the fixed variables X and Y are listed along with their values. The Key Row column
indicates the row in which the variable was substituted out in.

Running the Solver|Generate|Display Model command on this same model, we get:

MODEL:

[ROW OBJ] MAX= 12 * 7 + 2100;
[ROW 2] 2 <= 20;

END

And we see that both the fixed variables and their key rows have been substituted out of the generated
formulation that get passed to the solver.

Command-Line Commands 357

LOOK
The LOOK command displays all or part of the current model. The syntax of the LOOK command is:

LOOK row_index|beg row_index end row_index|ALL

Thus, you can specify the index of a single row to view, a range of rows, or ALL to view the entire
model.

In this next example, we use several forms of the LOOK command to view the current model:

LOOK ALL
1]!'For a given probability P, this
2] model returns the value X such
3] that the probability that a unit
4] normal random variable is less
5] than or equal to X is P;

6]

71! Here is the probability;
8] P = .95;

9]

101! Solve for X;
11]P = @PSN(X);

12]
LOOK 8

8] P = .95;
LOOK 10 11

101! Solve for X;
11]P = @PSN(X);

358 CHAPTER 6

PICTURE

The PICTURE command displays the model in matrix form. For small to medium sized models, the
PICTURE command is a useful way to obtain a visual impression of the model and to hunt for
formulation errors.

The following letter codes are used to represent the linear coefficients in the PICTURE output:

Letter Code ‘ Coefficient Range

.000000,

.000001)

.000001,

.00001)

.00001,

.0001)

.0001,

.001)

.001,

.01)

.01, .1

)

1, 10)

100

)

100, 10

00)

1000, 1

0000)

10000,

100000)

100000,
> 1000000

(
(
(
(
(
(
(.1, 1)
(
(1
(
(
(
(

1000000)

Qmm|o|o|w|(>|d|c|<|S|Xx|[<|N

Single digit integers are shown explicitly rather than being displayed as a code. This is especially
handy, because many models have a large number of coefficients of positive or negative 1, which can
affect the solution procedure. If a variable appears nonlinearly in a row, then the PICTURE command
will represent its coefficient with a question mark.

Command-Line Commands 359

In this example, we read in a copy of the small transportation model supplied with LINGO and use the
PICTURE command to view the logical structure of the model:

: take \lingo\samples\tran.lng

: pic
VVVVVVVVVVVYV
O0O0OO0OO0OO0OO0OO0OO0OO0O0O0
L LLLLLLLLVLTZLTL
UuUuuuuuuuuuuuuayu
MMMMMMMMMMMM
EEEEEEEEEEEE
O G O G O G G G
WWWWWWWWWWWW
HHHHHHHHUHHHH
111122223333
r r r r r r r r r r r 14
cccccccceccecceccecce
1234123412314
>))y))y))))))

OBJ: 6 2 6 7495381815 MIN
DEM(C1l): 1 v ' 1 > B
DEM(C2): ' 1' ' 1o v > B
DEM(C3) : ' 1! 1 v > B
DEM(C4) : ' 1 "1 1 1 s
SUP(WH1): 1 1'1 1 " ' ' ' ' < B
SUP (WH2) : ! 111 1 ' < B
SUP (WH3) : ' ' 1111 <8

In this model, all the right-hand side values are in the range [12, 30]. Thus, they are all represented
using the letter B. Row names are displayed running down the left-hand side of the matrix, while
variable names are displayed along the top. The sense of the objective row and each of the constraints
are shown. Spaces stand in for zero coefficients, and single quote marks are inserted to give a grid-like
background.

Note: The PICTURE command is best used on small models. The amount of output generated for
large models can be cumbersome. For larger models, the Solver|Picture command in
Windows versions of LINGO can compress the matrix picture of large models into a single
screen for easier viewing.

SCENE

The ability to generate the deterministic equivalent (DE) of a stochastic programming (SP) model via
the XDETEQ command can be very useful when initially formulating and debugging an SP model.
The only problem is that the DE can become quite unwieldy for all but the simplest SPs. For example,
if the core model has 500 variables and there are 1,000 scenarios, then the DE will have 500,000
variables. Tracking down problems in such a large model can be difficult. Fortunately, in most cases
when an SP is either infeasible or unbounded, LINGO will report the index of the first scenario that is
causing the problem. With such information, we can focus our attention on the model for the isolated
scenario that's causing the problem. This is where the Scenario command comes in — it allows us to

360 CHAPTER 6

generate the formulation for an individual scenario, as opposed to the entire DE, which should
substantially cut down on the burden of our debugging task.

As an example, we will work again with the SPGAS gas buying model. In the following example, we
load the SP model and then use the SCENE command to generate the algebraic formulation of the
second scenario:

take \lingo\samples\spgas.lng

scene 2
MODEL:
TITLE Scenario 2;
[1] MIN = PURCHASE COST + HOLD COST;
[2] PURCHASE COST - 5 * PURCHASE 1 - 6 * PURCHASE 2 = 0;
[_3} HOLD COST - INVENTORY 1 - INVENTORY_Z = 0;
[_4] INVENTORY_l - PURCHASE_I = - 100;
[5] - INVENTORY 1 + INVENTORY_2 - PURCHASE_2 = - 150;
END

You will note that this is the core model, with the period 2 random variable DEMAND replaced by its
sampled value of 150 in row 5. Nonanticipativity constraints are not generated as part of individual
scenario models.

SHOWNL

The SHOWNL command will cause LINGO to generate the model and then display only those rows
that contain nonlinearities. Please refer to the Types of Constraints section for a discussion of linear
vs. nonlinear expressions.

In general, one would prefer to always have purely linear models. Linear models solve faster and will
always converge to a global solution. Therefore, when developing a model, you will be interested in
carefully evaluating nonlinearities to see if they can either be eliminated or rewritten in a linear
fashion. The SHOWNL command is helpful in tracking down a model's nonlinearities.

STATS

The STATS command lists summary statistics for your model. The statistics vary slightly depending on
whether the model you’re working with is linear or nonlinear. In this next example, we will read in a
linear transportation model, run the STATS command, and explain some of the details of the report.

take \lingo\samples\tran.lng
stats

Rows= 8 Vars= 12 No. integer vars= 0 (all are linear)
Nonzeros= 43 Constraint nonz= 24(24 are +- 1) Density=0.413
Smallest and largest elements in abs value= 1.00000 30.0000
No. < : 3 No. =: 0 No. > : 4, Obj=MIN, GUBs <= 4
Single cols= 0

The STATS report for linear models consists of five lines.

Command-Line Commands 361

In line one, we see the number of rows (constraints), variables (columns), and integer variables. The
STATS command lets us know the model is linear by stating that all the variables are linear.

Line two of the report gives a count of the number of nonzero coefficients appearing in the model. The
first count is the number of nonzero coefficients in the entire model. The Constraint nonz count is the
number of coefficients on the left-hand sides of all the constraints, excluding the nonzero objective and
right-hand side coefficients. Next, STATS gives a count of the number of constraint coefficients that
are plus or minus one. In general, a linear programming model is easier to solve when the number of
unity coefficients increases. Finally, STATS reports a Density figure, defined as:

(total nonzeros) / [(number of rows) * (number of columns + 1)].

For large models, densities under .01 are common. High densities can mean that a problem will take
longer to solve.

Line three lists the smallest and largest coefficients in the model in absolute value. For stability
reasons, the ratio of the largest coefficient to the smallest should, ideally, be close to 1. Also, in
absolute terms, it is best to keep coefficient values in the range of 0.0001 to 100,000. Values outside
this range can cause numerical difficulties for the linear solver.

Line four lists the number of constraints by type (<, =, and >), the sense of the objective, and an upper
bound on the number of Generalized Upper Bound (GUB) constraints. A GUB constraint is a
constraint that does not intersect with the remainder of the model. Given this, the GUB statistic is a
measure of model simplicity. If all the constraints were nonintersecting, the problem could be solved
by inspection by considering each constraint as a separate problem.

Line five lists the number of variables that appear in only one row. Such a variable is effectively a
slack. If you did not explicitly add slack variables to your model and the single column count is greater
than zero, then it suggests a misspelled variable name.

In the next example, we read a nonlinear model, DNRISK.LG4, into LINGO and review it’s model
statistics.

take c:\lingo\samples\dnrisk.lng

stats
Rows= 17 Vars= 17 No. integer vars= 0
Nonlinear rows= 1 Nonlinear vars= 7 Nonlinear constraints= 0
Nonzeros= 68 Constraint nonz= 52 Density=0.222
No. < : 0 No. =: 8 No. > : 8, Obj=MIN Single cols= 0

The nonlinear STATS report drops information about the range of coefficient values, the number of
+/-1 coefficients, and the GUB upper bound. A count of the number of nonlinear rows and variables is
added in line two. The nonlinear rows count includes the objective, while the nonlinear constraint
count does not.

XDETEQ

The XDETEQ command displays the explicit deterministic equivalent (DE) for the current model,
assuming the current model is a stochastic program (SP). Viewing the DE can be very helpful in
determining if you have properly set up the SP components of your model. You can refer to Chapter
14, Stochastic Programming, for more information on SP.

362 CHAPTER 6

When LINGO solves an SP model, it is really solving the deterministic equivalent of the original SP.
The DE contains one instance of the original core model for each scenario, where the random variables
in each instance are replaced by their sampled values for the particular scenario. These core instances
are tied together by a probabilistically weighted objective of all the objectives form the individual
scenarios, plus a set of nonanticipativity constraints. The nonanticipativity constraints enforce the
condition that all scenarios with the same history must implement the same decisions, otherwise, the
DE would have the ability to anticipate future events.

As an example below, we load the SP gas buying sample model, SPGAS, and run the XDETEQ
command:

take \lingo\samples\spgas.lng
xdeteq

MODEL:

TITLE DETEQ;

[1] MIN = 0.3333333333333333 * PURCHASE COST SC1

+ 0.3333333333333333 * HOLD COST SCl + 0.3333333333333333 *
PURCHASE COST SC2 + 0.3333333333333333 * HOLD COST SC2

+ 0.3333333333333333 * PURCHASE COST SC3 +
0.3333333333333333

* HOLD_COST_SC3;

[2 SCO01] PURCHASE COST SCl - 5 * PURCHASE 1 SCl - 5 *
PURCHASE_2 SC1 = 0;

[3 5C01] HOLD COST SC1 - INVENTORY 1 SC1 -
INVENTORY 2 SC1 = 0;

[4 sC01] INVENTORY 1 SC1 - PURCHASE 1 SC1 = - 100;
[5 SC01] - INVENTORY 1 SC1 + INVENTORY 2 SC1 -
PURCHASE 2 SC1 = - 100;

[2 SC02] PURCHASE COST SC2 - 5 * PURCHASE 1 SC2 - 6 *
PURCHASE 2 SC2 = 0;

[3 .SC02] HOLD COST SC2 - INVENTORY 1 SC2 -
INVENTORY 2 SC2 = 0;

[4 sC02] INVENTORY 1 SC2 - PURCHASE 1 SC2 = - 100;
[5 SC02] - INVENTORY 1 SC2 + INVENTORY 2 SC2 -
PURCHASE 2 SC2 = - 150;

[2 SC03] PURCHASE COST SC3 - 5 * PURCHASE 1 SC3 - 7.5 *
PURCHASE 2 SC3 = 0;

[3 SC03] HOLD COST SC3 - INVENTORY 1 SC3 -
INVENTORY 2 SC3 = 0;

[4 SC03] INVENTORY 1 SC3 - PURCHASE 1 SC3 = - 100;
[5 SC03] - INVENTORY 1 SC3 + INVENTORY 2 SC3 -
PURCHASE 2 SC3 = - 180;

[NACO1] INVENTORY 1 SC1 - INVENTORY 1 SC2 = 0;

[_NACO2] PURCHASE 1 SCl - PURCHASE 1 SC2 = 0;

[NAC03] INVENTORY 1 SC1 - INVENTORY 1 SC3 = 0;

[_NACO4] PURCHASE 1 SCl - PURCHASE 1 SC3 = 0;

END

Command-Line Commands 363

The first row of the DE is the probabilistically weighted objective over the three scenarios (Normal,
Cold and Very Cold). Note that in the original core model, we had a variable called

PURCHASE COST, which was used to compute the cost of the gas purchases. In the DE we now
have three PURCHASE COST variables, or one for each of the three scenarios. LINGO appends the
strings SCI, SC2or SC3to PUCHASE COST so as to indicate the appropriate scenario. Each of
the constraints from the core model are also replicated across each of the scenarios with the
appropriate scenario tag appended to each row's name. Finally, at the bottom of the model, there are
four constraints beginning with the string: NAC, which are the nonanticipativity constraints.

It's worthwhile pointing out that this report on DE for SPGAS is a valid LINGO model, too. In fact,
you can copy this report from into a new model file and solve it directly, in which case, you will get
the optimal solution to the original SP model.

4. File Output

The File Output category contains commands that output model and session information to a file.

DIVERT

The DIVERT command opens a file and causes LINGO to route all subsequent reports (e.g.,
SOLUTION, RANGE, and LOOK commands) from the screen to the file. This command captures the
reports in text format in the file you specify. Since the files created by the DIVERT command are in
text format, they may be read into other programs, such as word processors and spreadsheets, or they
may be queued to your printer.

The syntax for the DIVERT command is:
DIVERT filename
where filename is the name of the file you wish to create.

The RVRT command reverses a DIVERT command by closing the DIVERT file and then rerouting
output back to the screen.

364 CHAPTER 6

In the following example, we create a small model with the MODEL command, solve it with the GO
command, and then use the DIVERT command to create a file containing the formulation and solution:

'Enter a small model

: MODEL
? MAX = 20*X + 30*Y;
? X <= 50;
? Y <= 60;
? X + 2*Y <= 120;
? END
!Solve the model
TERSE
GO
Global optimal solution found at step: 1
Objective wvalue: 2050.000

!Create a DIVERT file with
'the formulation & solution
DIVERT MYFILE.TXT !Opens the file

LOOK ALL !Sends model to file
SOLU !Sends solution to file
RVRT !Closes DIVERT file

Opening
solution:

the DIVERT file created in this example, we find the following file with the formulation and
1IMAX = 20*X + 30*Y;
2]X <= 50;
31Y <= 60;
41X + 2*Y <= 120;
Variable Value Reduced Cost
X 50.00000 0.000000
Y 35.00000 0.000000
Row Slack or Surplus Dual Price
1 2050.000 1.000000
2 0.000000 5.000000
3 25.00000 0.000000
4 0.000000 15.00000

Note:

Keep in mind that, when a DIVERT command is in effect, you will see little or no output on
your screen. This is because the majority of output is being routed to the DIVERT file rather
than to the screen.

Note:

Also, be sure you choose a DIVERT filename different from your model filename. If not, you
will overwrite your model file and will be unable to retrieve it!

Command-Line Commands 365

RVRT
The RVRT command closes an output file opened with the DIVERT command. For an example of its
use, see the DIVERT command immediately above.

SAVE

The SAVE command saves the current model to a file. The syntax is:
SAVE filename

where filename is the name of the file to save your model in. LINGO saves the model in text format.
You can read the model back into LINGO with the TAKE command. We recommend you use an
extension of .LNG on your model files, so you can readily identify them.

You may want to use your own text editor to modify your model. If you do, be sure to save the LINGO
model in text (ASCII) format. Use the TAKE command to reopen the model in LINGO when you are
through editing it.

In the following example, we input a small model and save it in the file titled MYMODEL.LNG:

'Enter a small model

: MODEL

? MAX = 20*X + 30*Y;
? X <= 50;

? Y <= 60;

? X + 2*Y <= 120;

? END

!Save model to a file
: SAVE MYMODEL.LNG

If you open the model file, MYMODEL.LNG, in a text editor, you should see the following:

MODEL:
1]MAX = 20*X + 30*Y;
21X <= 50;
3]Y <= 60;
41X + 2*Y <= 120;

END

SMPI

The SMPI command saves your model in a special format called Mathematical Programming
Interface (MPI). MPI is a special format developed by LINDO Systems for representing all classes of
mathematical programs — linear, integer, and nonlinear. This format is not intended for permanent
storage of your models. LINDO API users may be interested in this format for exporting models to the
LINDO API.

Note: MPI format is a scalar type format, so all sets-based information is lost. Thus, it is important
that you do not use this format for permanent storage. Use the SAVE command, discussed
above, to permanently save your files for later retrieval.

366 CHAPTER 6

Note: When exporting a stochastic program to MPI format, LINGO will write a total of four SMPI
format files, consisting of a header file, the core model, its stochastic declarations and its time
structure.

SMPS

The SMPS command generates the underlying algebraic formulation for the current model and then
writes it to a file in MPS format. MPS format is a common format for representing linear programming
models. MPS files can be ported to any solver that reads MPS files—this includes most commercial
linear programming packages.

The syntax for the SMPS command is:
SMPS filename
where filename is the name of the file you wish to save the MPS representation of the model under.

In the following example, we input a small model and then save it in an MPS file:

'Enter a small model

: MODEL

? MAX = 20*X + 30*Y;
? X <= 50;

? Y <= 60;

? X + 2*Y <= 120;

? END

!Save model to an MPS file
SMPS MYMODEL.MPS

If you open the MPS file created in a text editor, you should find:

NAME LINGO GENERATED MPS FILE (MAX)
ROWS
N 1
L 2
L3
L 4
COLUMNS
Y 1 30.0000000
Y 3 1.0000000
Y 4 2.0000000
X 1 20.0000000
X 2 1.0000000
X 4 1.0000000
RHS
RHS 2 50.0000000
RHS 3 60.0000000
RHS 4 120.0000000

ENDATA

Command-Line Commands 367

Note: Your model must be entirely linear to be able to successfully export it using SMPS. If a model
is nonlinear, the MPS file will contain question marks in place of numbers for coefficients of
nonlinear variables.

Note: SMPS truncates all variable names to 8 characters. For instance, the two distinct LINGO
names SHIP(WHI, C1) and SHIP(WH1, C2) would both be truncated to the single 8 character
name SHIPWH1C under SMPS . Either choose names to avoid collisions of truncated names
or enable the RCMPSN option for converting names to RC format when doing MPS 1/0O.
LINGO will print an error message if potential collisions exist.

Note: The MPS file format is intended primarily for exporting models to other applications or
platforms. The MPS format is purely scalar in nature—all set-based information is lost upon
converting a LINGO model to MPS format. Thus, when saving copies of a model on your
own machine, you should always use the S4VE command instead of the SMPS command.

Note: When exporting a stochastic program to MPS format, LINGO will write a total of four SMPS
format files, consisting of a header file the core model, its stochastic declarations and its time
structure.

5. Solution

The Solution category contains commands for viewing a model’s solution.

DEBUG

In the ideal world, all models would return an optimal solution. Unfortunately, this is not the case.
Sooner or later, you are bound to run across either an infeasible or unbounded model. This is
particularly true in the development phase of a project when the model will tend to suffer from
typographical errors.

Tracking down an error in a large model can prove to be a daunting task. The DEBUG command is
useful in narrowing the search for problems in both infeasible and unbounded linear programs. A small
portion of the original model is isolated as the source of the problem. This allows you to focus your
attention on a subsection of the model in search of formulation or data entry errors.

The DEBUG command identifies two types of sets: sufficient and necessary. Removing any sufficient
set object from the model is sufficient to fix the entire model. Not all models will have a sufficient set.
In which case, they will have a necessary set with the property that removing any object from this set
fixes the remaining objects within that set.

As an example, suppose you have an infeasible model. If the complete model would be feasible except
for a bug in a single row, that row will be listed as part of the sufficient set. If the model has a
necessary set, then, as long as all of them are present, the model will remain infeasible.

368 CHAPTER 6

The following example illustrates. The coefficient .55 in ROW4 should have been 5.5:

look all

MODEL:
1] [ROW1l] Max = 3*X + 7*Y;
2] [ROW2] X + 2*Y <= 3;
31 [ROW3] 2*X + Y <= 2;
4] [ROW4] 0.55*X + Y >=4;
END

When we attempt to solve this formulation, we get the following error:

go
[Error Code: 81]

No feasible solution found.

Variable Value Reduced Cost
X 50.00000 0.000000

Y -23.50000 0.000000

Row Slack or Surplus Dual Price

ROW1 0.000000 -1.000000
ROW2 0.000000 8.500000
ROW3 -74.50000 0.000000
ROW4 0.000000 -10.00000

Next, if we run the DEBUG command, we are presented with the following report:

debug

Sufficient Rows:
ROW4] .55 X+ Y >= 4

Necessary Rows:
ROW2] X + 2 Y <= 3

Necessary Variable Bounds:
Y >= 0

The DEBUG command has correctly identified that the erroneous ROW4, when eliminated, is
sufficient to make the entire model feasible.

The debug feature operates in a similar manner for unbounded models. In the following example, we
introduced an error by placing a minus sign instead of a plus sign in front of variable Z3 in ROW3. A
look at ROW?3 reveals that Z3 can be increased indefinitely, leading to an unbounded objective.

Command-Line Commands 369

look all

MODEL:
1] [ROW1] Max = 12*X1 + 13*X2 + 22*Y1 + 23*7Z1 +
2] 28*72 + X3 + Y3 + Z3;
31 [ROW2] X1 + X2 4+ X3 <= 400;
471 [ROW3] Y1 + Y2 + Y3 - Z3 <= 500;
5] [ROW4] Z1 + z2 <= 500;
END

The resulting model is unbounded and, when issuing the Solver|Solve command, we receive the
unbounded error message:

: go
[Exrror Code: 82]

Unbounded solution.

Issuing the DEBUG command, we receive the following breakdown:

: debug

Sufficient Variables:
Z3

Necessary Variables:
Y1

The DEBUG command has successfully determined that bounding Z3 is sufficient to bound the entire
model.

Typically, the DEBUG command helps to substantially reduce the search effort. The first version of
this feature was implemented in response to a user who had an infeasible model. The user had spent a
day searching for a bug in a model with 400 constraints. The debug feature quickly found a necessary
set with 55 constraints, as well as one sufficient set constraint. The user immediately noticed that the
right-hand side of the sufficient set constraint was incorrect.

GO

The GO command compiles and then solves the current model. When LINGO compiles the model, it
produces an internally executable version of the model and then runs it to produce the solution.

When LINGO finishes solving the model, it displays a full solution report on your screen. To suppress
the full solution report, issue the TERSE command before the GO command.

370 CHAPTER 6

To capture the solution report generated by the GO command in a file, use the DIVERT command
before the GO command.

To set various parameters pertaining to the operation of LINGO’s solver, see the SET command later
in this chapter.

NONZ

The NONZ, or NONZEROS, command displays an abbreviated version of the solution for the current
model. NONZ is identical to the SOLUTION command with the exception that NONZ displays
information only about nonzero variables and binding rows (i.e., the slack or surplus is 0).

The syntax of the NONZ command is:
NONZ ['header _text'] [var_or_row_names]

For a standard NONZ solution report, omit the two optional arguments and enter the NONZ command
by itself. LINGO will print primal and dual values for all nonzero variables and binding rows. LINGO
will label all the columns in the report.

The first optional field, header_text, will be displayed as a title header in the solution report. If the
header_text argument is included, LINGO prints primal values only, omitting all labels in the report.

The second optional field, var_or _row _names, is a variable and/or row name list that, if included, will
limit the report to the given variables or rows. The standard wild card characters (* and %) are
supported in the variable and row names.

Command-Line Commands 371

As an example, in the following session, we load the Chess Snackfoods example from the Using Sets

section and then generate several solution reports using NONZ:

: TAKE CHESS.LNG
TERSE
GO

Global optimal solution found at step:

Objective value:

!Generate a standard NONZ report

NONZ

Variable
SUPPLY (PEANUTS)
SUPPLY (CASHEWS)
PRICE (PAWN)
PRICE (KNIGHT)
PRICE (BISHOP)
PRICE (KING)
PRODUCE (PAWN)
PRODUCE (KING)
FORMULA (PEANUTS, PAWN)
FORMULA (PEANUTS, KNIGHT)
FORMULA (PEANUTS, BISHOP)
FORMULA (PEANUTS, KING)
FORMULA (CASHEWS, PAWN)
FORMULA (CASHEWS, KNIGHT)
FORMULA (CASHEWS, BISHOP)
FORMULA (CASHEWS, KING)

Row

1

2

3

Value
750.0000
250.0000
2.000000
3.000000
4.000000
5.000000
769.2308
230.7692
15.00000
10.00000
6.000000
2.000000
1.000000
6.000000
10.00000
14.00000

Slack or Surplus

2692.308
0.000000
0.000000

!Generate a NONZ report for PRODUCE

NONZ PRODUCE

Variable
PRODUCE (PAWN)
PRODUCE (KING)

Value
769.2308
230.7692

0
2692.308

Reduced Cost

0.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

[cNoleoloNeoNoNololNolNoNololoNeNel

Dual Price
1.000000
1.769231
5.461538

Reduced Cost
0.000000
0.000000

Now add a header and use a wildcard in the name

NONZ

NONZERO PRODUCTION VALUES:
769.2308
230.7692

'NONZERO PRODUCTION VALUES:'

PROD*

If you would like to capture the solution report in a file, use the DIVERT command before the NONZ

command.

372 CHAPTER 6

For more information on the interpretation of the various fields in the NONZEROS report, see Getting
Started with LINGO.

Note: If the solution report is scrolling off the screen, you can use the PAGEcommand to set the
page length to # lines, so LINGO will pause every time # lines are printed and wait until you
are ready to proceed with the next page.

RANGE

Use the RANGE command to generate a range report for the model in the active window. A range
report shows over what ranges you can: 1) change a coefficient in the objective without causing any of
the optimal values of the decision variables to change, or 2) change a row’s constant term (also
referred to as the right-hand side coefficient) without causing any of the optimal values of the dual
prices or reduced costs to change.

Note: The solver computes range values when you solve a model. Range computations must be
enabled in order for the solver to compute range values. Range computations are not enabled
by default, so you will need to switch them on with the command:

SET DUALCO 2

Range computations can take a fair amount of computation time. If speed is a concern, you
don’t want to enable range computations unnecessarily.

The example model below, when solved, yields the range report that follows:

OBJECTIVE] MAX = 20 * A + 30 * C;

[

[ALIM] A <= 60;

[CLIM] C <= 50;

[JOINT] A+ 2 *xC <= 120;

Here is the range report:

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

Current Allowable Allowable

Variable Coefficient Increase Decrease

A 20.00000 INFINITY 5.000000

C 30.00000 10.00000 30.00000
Right-hand side Ranges

Row Current Allowable Allowable

RHS Increase Decrease

ALIM 60.00000 60.00000 40.00000

CLIM 50.00000 INFINITY 20.00000

JOINT 120.0000 40.00000 60.00000

Command-Line Commands 373

The first section of the report is titled Objective Coefficient Ranges. In the first column, Variable, all
the optimizable variables are listed by name. The next column, Current Coefficient, lists the current
coefficient of the variable in the objective row. The third column, Allowable Increase, tells us the
amount that we could increase the objective coefficient without changing the optimal values for the
variables. The final column, A/lowable Decrease, lists the amount that the objective coefficient of the
variable could decrease before the optimal values of the variables would change. Information on the
allowable increases and decreases on objective coefficients can be useful when you need answers to
questions like, “How much more (less) profitable must this activity be before we should be willing to
do more (less) of it?”

Referring to the Objective Coefficient Ranges report for our example, we can say, as long as the
objective coefficient of 4 is greater-than-or-equal-to 15, the optimal values of the variables will not
change. The same may be said for the objective coefficient of variable C, as long as it falls within the
range of [0-40].

Note: Ranges are valid only if you are planning to alter a single objective or right-hand side
coefficient. The range information provided by LINGO cannot be applied in situations where
one is simultaneously varying two or more coefficients. Furthermore, ranges are only lower
bounds on the amount of change required in a coefficient to actually force a change in the
optimal solution. You can change a coefficient by any amount up to the amount that is
indicated in the range report without causing a change in the optimal solution. Whether the
optimal solution will actually change if you exceed the allowable limit is not certain.

The second section of the range report is titled Right-hand side Ranges. The first column, Row, lists
the names of all the optimizable rows, or constraints, in the model. The second column, Current RHS,
gives the constant term, or right-hand side value, for the row. The next two columns, Allowable
Increase and Allowable Decrease, tell us how far we can either increase or decrease the right-hand
side coefficient of the row without causing a change in the optimal values of the dual prices or reduced
costs. If you recall, the dual prices on rows are, effectively, shadow prices, which tell us at what price
we should be willing to buy (or sell) our resources for. The dual prices do not, however, tell us what
quantity we should be willing to buy (or sell) at the dual price. This information is obtained from the
allowable increases and decreases on the right-hand side coefficients for the row. So, for our example,
the dual prices and reduced costs will remain constant as long as the right-hand side of row ALIM falls
within the range [20-120], the right-hand side of CLIM is greater-than-or-equal-to 30, and the
right-hand side of JOINT is in [60-160].

Note: We preceded all the rows in our model with a name enclosed in square brackets. This is an
important practice if you wish to generate range reports. If you do not name your rows,
LINGO assigns them a name that corresponds to the internal index of the row. This internal
index will not always correspond to the order of the row in the text of the original model. To
make the Right-hand side Ranges section of range reports meaningful, be sure to name all
your rows. For details on assigning names to rows, see page 59.

If a variable is nonlinear in the objective, its value in the Current Coefficient column will be displayed
as NONLINEAR. Similarly, if a row is nonlinear, the value in the Current RHS column will be
displayed as NONLINEAR.

Coefficients that can be increased or decreased indefinitely will display a range of INFINITY.

374 CHAPTER 6

Fixed variables are substituted out of a model and will not appear in a range report. Rows that contain
only fixed variables are also substituted out of models and will not appear in range reports. As an
example, suppose we changed the following inequality in our sample model from:

[ALIM] A <= 60;

to the equality:
[ALIM] A = 60;

LINGO can now solve directly for the value of 4. The variable 4 is considered fixed; as is the row
ALIM (since it contains no optimizable variables). Given this, the variable 4 will no longer appear in
the Objective Coefficient Ranges section of the range report, and the row ALIM will not appear in the
Right-hand Side Ranges section. We can verify this by examining the updated range report:

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

Current Allowable Allowable

Variable Coefficient Increase Decrease

C 30.00000 INFINITY 30.00000
Right-hand Side Ranges

Row Current Allowable Allowable

RHS Increase Decrease

CLIM 50.00000 INFINITY 20.00000

JOINT 60.00000 40.00000 60.00000

As a final note, if the range report is scrolling off the screen, you can use the PAGE n command to set
the page length to n lines, so LINGO will pause every time # lines are printed and wait until you are
ready to proceed with the next page. In addition, if you would like to capture the solution report in a
file, use the DIVERT command before the SOLU command.

SOLU

The SOLU, or SOLUTION, command displays a solution report for the current model. The syntax of
the SOLU command is:

SOLU ['header_text'| [var_or_row_names)

For a standard solution report, omit the two optional arguments and enter the SOLU command by
itself. LINGO will print primal and dual values for all the variables and rows in the model. LINGO
will label all the columns in the report.

The first optional field, header text, will be displayed as a title header in the solution report. If the
header_text argument is included, LINGO prints primal values only, omitting all labels in the report.

The second optional field, var_or row names, is a variable and/or row name list that, if included, will
limit the report to the given variable or row name. The standard wild card characters (* and %) are
supported in the variable and row names.

As an example, in the following session, we load the Chess Snackfoods example from the Using Sets
section and then generate several solution reports using SOLU:

Command-Line Commands 375

TAKE CHESS.LNG
TERSE
GO

Global optimal solution found at step: 0
Objective wvalue: 2692.308

!Generate a standard SOLU report

SOLU
Variable Value Reduced Cost
SUPPLY (PEANUTS) 750.0000 0.0000000
SUPPLY (CASHEWS) 250.0000 0.0000000
PRICE (PAWN) 2.000000 0.0000000
PRICE (KNIGHT) 3.000000 0.0000000
PRICE (BISHOP) 4.000000 0.0000000
PRICE (KING) 5.000000 0.0000000
PRODUCE (PAWN) 769.2308 0.0000000
PRODUCE (KNIGHT) 0.000000 0.1538461
PRODUCE (BISHOP) 0.000000 0.7692297E-01
PRODUCE (KING) 230.7692 0.0000000
FORMULA (PEANUTS, PAWN) 15.00000 0.0000000
FORMULA (PEANUTS, KNIGHT) 10.00000 0.0000000
FORMULA (PEANUTS, BISHOP) 6.000000 0.0000000
FORMULA (PEANUTS, KING) 2.000000 0.0000000
FORMULA (CASHEWS, PAWN) 1.000000 0.0000000
FORMULA (CASHEWS, KNIGHT) 6.000000 0.0000000
FORMULA (CASHEWS, BISHOP) 10.00000 0.0000000
FORMULA (CASHEWS, KING) 14.00000 0.0000000
Row Slack or Surplus Dual Price
1 2692.308 1.000000
2 0.000000 1.769231
3 0.000000 5.461538
!Generate a SOLU report for PRODUCE
SOLU PRODUCE
Variable Value Reduced Cost
PRODUCE (PAWN) 769.2308 0.0000000
PRODUCE (KNIGHT) 0.000000 0.1538461
PRODUCE (BISHOP) 0.000000 0.7692297E-01
PRODUCE (KING) 230.7692 0.0000000

!Now add a header and use a wildcard
SOLU 'PRODUCTION QUANTITIES' PROD*

PRODUCTION QUANTITIES
769.2308
0.000000
0.000000
230.7692

376 CHAPTER 6

If you would like to capture the solution report in a file, use the DIVERT command before the SOLU
command.

For more information on the interpretation of the various fields in the solution report, see Getting
Started with LINGO.

If the solution report is scrolling off the screen, you can use the PAGE command to set the page length
to n lines, so LINGO will pause every time # lines are printed and wait until you are ready to proceed
with the next page.

6. Problem Editing

The Problem Editing category contains commands used in editing and modifying models.

ALTER
The ALTER command is used to edit the current model. The syntax of ALTER is:

ALTER [line_number|line_range|ALL] 'old string'new_string'

where,
line_number is the index of a single line to edit,
line_range is a range of lines to edit,
ALL means edit all the lines in the model,
old_string is the old string to search for and replace, and
new_string is the string to replace all occurrences of old_string with in the

specified line range.

Command-Line Commands 377

In the following sample session, we read in a small knapsack model and perform two ALTER
commands to modify the model:

TAKE ALTER.LNG
LOOK ALL
1]SETS:
2] THINGS /1..4/: VALUE, WEIGHT, X;
3]ENDSETS
4]DATA:
5] VALUE = 8 6 4 3;
6] WEIGHT 66 44 35 24;
7]ENDDATA
8] MAX = @SUM(THINGS: VALUE * X);
9] @SUM (THINGS: WEIGHT * X) >= 100;
10] Q@FOR (THINGS: @BIN (X)) ;
: !'Change the direction of the constraint
: ALTER 9 '>='<='
9] @SUM (THINGS: WEIGHT * X) <= 100;
: 'Change 'THINGS' to 'ITEMS' in ALL rows
: ALTER ALL 'THINGS'ITEMS'
2] ITEMS /1..4/: VALUE, WEIGHT, X;

8] MAX = @QSUM(ITEMS: VALUE * X);
9] @SUM (ITEMS: WEIGHT * X) <= 100;
10] @FOR (ITEMS: @BIN(X));

LOOK ALL
1]SETS:
2] ITEMS /1..4/: VALUE, WEIGHT, X;
3]ENDSETS
4]1DATA:
5] VALUE = 8 6 4 3;
6] WEIGHT = 66 44 35 24;
7]ENDDATA
8] MAX = @SUM(ITEMS: VALUE * X);

9] @SUM(ITEMS: WEIGHT * X) <= 100;
10] @FOR (ITEMS: @BIN(X));

Note: In addition to the single quote character ('), LINGO also allows the use of the double quote
character (") for delimiting the text fields of the ALTER command.

DELETE

The DELETE command is used to delete one or more lines of text from the current model. The syntax
of DELETE is:

DELETE [line_number|line_range|ALL]
where,

line_number is the index of a single line to delete,
line_range is a range of lines to delete, and
ALL means delete the entire model.

378 CHAPTER 6

Some examples of the DELETE command follow:

Example 1: DELETE 3
deletes line 3 of the model,
Example 2: DEL 2 10

deletes lines 2 through 10 of the model, and

Example 3: DEL ALL
deletes the entire model.

EXTEND

The EXTEND command allows you to append lines to the current model. It puts LINGO in model
input mode just after the last line of the current model. When you use the EXTEND command, you’ll
see LINGO’s question mark prompt. Start entering your new lines of model text. When you’re done,

enter END at the prompt.

In the following sample session, we use the EXTEND command to append an additional constraint to a
small model:

: LOOK ALL
1]MAX 20*X + 30*Y;
21X <= 50;
3]Y <= 60;
41X 4+ 2*Y <=120;
! Use EXTEND to add another line

: EXTEND

? X >= 30;

? END

: LOOK ALL
1]MAX 20*X + 30*Y;
21X <= 50;
31Y <= 60;
41X 4+ 2*Y <=120;
51X >= 30;

Command-Line Commands 379

/. Conversational Parameters

The Conversational Parameters category contains commands that control how information is
displayed.

PAGE
The PAGE command sets the length of the page or screen size in lines. The syntax for PAGE is:

PAGE n

where 7 is the desired number of lines per page of output. For instance, PAGE 25 will cause the
display to pause after 25 lines and await a carriage return before displaying the next 25 lines. The
PAGE command is convenient when you wish to page through long reports and not have them scroll
off the top of the screen.

When 0 is entered as the argument to PAGE, paging is turned off entirely. LINGO will no longer stop
output to wait for a carriage return. Entering PAGE 0 at the top of any command script is helpful in
that you generally want command scripts to run uninterrupted.

The PAGE command is equivalent to the SET LENPAG command and is maintained for backward
compatibility

PAUSE

The PAUSE command causes screen display to pause until a carriage return is typed. If you enter text
on the same line as the PAUSE command, the text will be displayed. The PAUSE command is useful in
command scripts for conveying information to the user.

TERSE

The TERSE command causes LINGO to suppress the automatic display of a solution report after a
model is solved with the GO command. When TERSE is enabled, you will need to use the NONZ or
SOLU commands to view the solution.

When LINGO is in terse output mode, export summary reports are also suppressed. Export summary
reports are normally generated each time you export solutions to spreadsheets or databases.

Once you enter the TERSE command, LINGO stays in terse output mode until you enter the VERBOSE
command (see below).

The TERSE command is equivalent to the SET TERSEO I command and is maintained for backward
compatibility.

VERBOSE

The VERBOSE command undoes the effects of the TERSE command, and places LINGO in verbose
output mode. Verbose output mode is the default mode. It results in the automatic display of solution
reports after solving a model. Verbose output mode also results in the automatic display of export
summary reports whenever export operations are performed to spreadsheets and databases.

380 CHAPTER 6

The VERBOSE command is equivalent to the SET TERSEO 0 command and is maintained for
backward compatibility.

WIDTH
Use the WIDTH command to set the terminal width for input and output. The syntax of the WIDTH
command is:

WIDTH n
where 7 is the desired terminal width. You may set the width between 64 and 200. The default is 76.

When LINGO generates reports, it limits output lines to the terminal width length. In some reports,
lines will be wrapped, so they fall within the line limit. In other reports, lines may be truncated. Since
LINGO concatenates variable names in performing set operations, a variable name, such as
SHIPMENTS(WAREHOUSE 1, CUSTOMER?), may result, which may be truncated in a solution report
if too narrow a terminal width is used.

The WIDTH command is equivalent to the SET LINLEN command and is maintained for backward
compatibility.

8. Tolerances

The Tolerances category contains commands for setting system parameters in LINGO.

APISET

The APISET command gives you access to all the parameters in the LINDO API, which is the solver
library used by LINGO. LINGO allows access to most of the important solver parameters through the
SET command and the Solver|Options command. However, some of the more advanced parameters
may only be accessed through the APISET command. The syntax for this command is:

APISET param_id {int|double} param_value

where param_id is the parameter’s index and param_value is the value you wish to set the parameter
to. You will also need to indicate if the parameter is an integer or double precision quantity.
Some examples of the APISET command follow:

Example 1: APISET 5341 INT 10000
sets the MIP branch limit (LS IPARAM MIP BRANCH_LIMIT=5341) to 10000,

Example 2: HELP APISET
will cause LINGO to display all current APISET settings, and

Example 3: APISET DEFAULT
removes all custom LINDO API settings, returning to the defaults.

You will need to refer to the LINDO API documentation for a list of available parameters and their
indices. The LINDO API documentation is available at no charge as part of the LINDO API download
on the LINDO Systems Web site. The LINGO installation also comes with a macro definition file,
Lindo.h, which contains all the parameter indices for the LINDO API.

Command-Line Commands 381

Parameter values set with the APISET command are not stored from one LINGO session to the next.
Give the HELP APISET command for a listing of parameters that are currently active. To remove all
APISET parameter settings type the command: APISET DEFAULT.

If there are some LINDO API parameters you wish to permanently set, you may place a series of
APISET commands in an AUTOLG.DAT script file that automatically gets run at the start of each
LINGO session.

DBPWD

The DBPWD command is used to input a password for accessing databases via the @ODBC()
function. Any password input with this command will not be permanently stored. Therefore, at the
start of each session, you will need to reenter your database password. The syntax for the command is:

DBPWD my password

See the DBUID command below for entering any user id required by your database.

DBUID

The DBUID command is used to input a user id for accessing databases via the @ODBC() function.
Any user id input with this command will not be permanently stored. Therefore, at the start of each
session, you will need to reenter your database user id. The syntax for the command is:

DBUID my_user_id

See the DBPWD command above for entering any password required with your user id.

FREEZE

The FREEZE command saves your current configuration to LINGO’s configuration file, so it may be
automatically restored the next time LINGO starts. Any non-default features of the current
configuration are saved to the LINGO.CNF file in LINGO’s main directory. The LINGO.CNF
configuration file is a text file, and the curious user may examine it by simply opening it in a text
editor. All parameters controlled by the SET command, see below, are stored by the FREEZE
command.

Note: Be careful when saving a non-default configuration. The saved configuration will
automatically be restored next time you start LINGO. Settings of certain parameters will
affect the way models are solved, potentially leading to misleading results when used on a
different set of models. To restore the default configuration, use the following command
sequence:

: SET DEFAULT
: FREEZE

382 CHAPTER 6
SET

The SET command allows you to override LINGO's default tolerances and settings. All user
configurable options in LINGO are available through the SET command. The syntax for the SET
command is:

SET parameter _name | parameter_index [parameter_value]

where,
parameter_name is the name of the parameter to set,
parameter_index is the index of the parameter to set, and
is the new value for the parameter that, if omitted, will cause LINGO to display
parameter value the current value for the specified parameter.

Use the FREEZE command to save any tolerances modified with the SET command to the
configuration file, so they will be automatically restored the next time LINGO starts. You may also
enter SET DEFAULT to return all parameters to their default values.

Some examples of the SET command follow:

Example 1: SET MXMEMB 128
FREEZE

sets the generator memory limit to 128MB and saves parameter settings to
the configuration file,

Example 2: SET 5 1.E-7
sets the relative integrality tolerance (RELINT) to 1.e-7,

Example 3: SET DEFAULT
restores all parameters to their default values, and

Example 4: HELP SET
causes LINGO to display all parameter settings.

The parameters accessible through the SET command are:

Parameter
Index Name Default Description
1 ILFTOL 0.3e-5 Initial linear feasibility tolerance
2 FLFTOL 0.1e-6 Final linear feasibility tolerance
3 INFTOL 0.1e-2 Initial nonlinear feasibility tolerance
4 FNFTOL 0.1e-5 Final nonlinear feasibility tolerance

Command-Line Commands 383

5 RELINT 0.8e-5 Relative integrality tolerance
6 NOPTOL 0.1e-6 NLP optimality tolerance
7 ITRSLW 5 Iteration limit for slow progress
Derivatives (0:LINGO chooses, 1:backward
8 DERCMP 0 analytical, 2:forward analytical, 3:central
differences, 4:forward differences)
9 ITRLIM 0 Iteration limit (0:no limit)
10 TIMLIM 0 Solver time limit in seconds (0:no limit)
11 OBJCTS 1 Objective cuts (1:yes, 0:n0)
2| omE 2| peneraor (VA on some machingy
13 CUTAPP 2 Cuts application (0:root, 1:all, 2:solver chooses)
14 ABSINT .000001 Absolute integrality tolerance
15 HEURIS 3 IP heuristics (0:none, 100:advanced)
16 HURDLE 0 IP hurdle value (Use 'NONE!' to disable)
17 IPTOLA 0 IP absolute optimality tolerance
18 IPTOLR de-4 IP relative optimality tolerance
19 TIMIRL 100 ?;::fsjefore switching to IP relative optimality
20 NODESL 0 g;t;ls\i(gguﬂ(eicides, 1:depth first, 2:worst bound,
21 LENPAG 0 Terminal page length limit (0:none)
22 LINLEN 85 Terminal page width (0:none)
23 TERSEO 0 ?1:1?2; 1;:;%1 (0:verbose, 1:terse, 2:errors only,
24 STAWIN 1 Post status window (1:yes, 0:no)
25 SPLASH 1 Display splash screen (1:yes, 0:no)

384 CHAPTER 6

26 OROUTE 0 Route output to command window (1:yes, 0:no)

27 WNLINE 800 Max command window lines

28 WNTRIM 400 Min command window lines

29 STABAR 1 Display status bar (1:yes, 0:no

30 FILFMT 1 File format (0:Ing, 1:1g4, 2:1tx)

31 TOOLBR 1 Display toolbar (1:yes, 0:no)

3 CHKDUP 0 Check for duplicate model names in data (1:yes,
0:n0)

33 ECHOIN 0 Echo command input to terminal (1:yes, 0:no)

34 ERRDLG 1 Route error messages to a dialog box (1:yes, 0:n0)

35 USEPNM 0 Allow for unrestricted use of primitive set names
(1:yes, 0:no)

36 NSTEEP 0 Use steepest edge variable selection in nonlinear
solver (1:yes, 0:no)
Run crash procedure 1 to get an initial starting
point in nonlinear models (1:yes, 0:no). See

NCRASH .

37 0 parameter 91, LCRASH, below for alternative
procedure.

38 NSLPDR 1 Cqmpute sear.ch d.irections in nonllinear solver
using successive linear programming (1:yes, 0:no)

39 SELCON 0 Use selective constraint evaluation in nonlinear
solver (1:yes, 0:no)

40 PREBLVL 0 Specify probing level. on MILPs (0:LINGO
chooses, 1:none, 7:high)

41 SOLVEL 0 Specify linear' solver (0:LINGO chooses, 1:primal,
2:dual, 3:barrier)

4 REDUCE) Perform model reduction (2:LINGO chooses,
1:yes, 0:no)

43 SCALEM 1 Scale the model (1:yes, 0:no)

Command-Line Commands 385

Select primal pricing method (0:LINGO chooses,

PRIMPR

a4 0 1:partial, 2:devex)

45 DUALPR 0 Select dpal pricing method (0:LINGO chooses,
1:Dantzig, 2:steepest edge)
Specify dual computations (0:none, 1:prices only,

46 DUALCO 1 2:prices and ranges, 3:prices only on optimizable
TOWS)

47 RCMPSN 0 Use RC format names for MPS I/O (1:yes, 0:no)
Select model regeneration (0:only on

48 MREGEN 2 modifications to model, 1:same as 0 plus
whenever model has external references, 2:always)

49 BRANDR 0 Select branch direction (0:both, 1:up, 2:down)

50 BRANPR 0 Sel§ct branch priority (0:LINGO decides,
1:binary)

51 CUTOFF le-8 Cutoff solution values smaller than this

52 STRONG 10 Specify strong branch level

53 REOPTB 0 1P warm start LP (0:LINGO, 1:primal, 2:dual,
3:barrier)

54 REOPTX 0 1P colfi start LP (0:LINGO, 1:primal, 2:dual,
3:barrier)

55 MAXCTP 100 Max top cuts passes

56 RCTLIM 5 Relative cuts limit

57 GUBCTS 1 GUB cuts (1:yes, 0:no)

58 FLWCTS 1 Flow cuts (1:yes, 0:no)

59 LFTCTS 1 Lift cuts (1:yes, 0:no)

60 PLOCTS 1 Plant location cuts (1:yes, 0:no)

61 DISCTS 1 Disaggregation cuts (1:yes, 0:no)

62 KNPCTS 1 Knapsack cover cuts (1:yes, 0:no)

386 CHAPTER 6

63 LATCTS 1 Lattice cuts (1:yes, 0:no)

64 GOMCTS 1 Gomory cuts (1:yes, 0:no)

65 COFCTS 1 Coefficient reduction cuts (1:yes, 0:no)

66 GCDCTS 1 Greatest common divisor cuts (1:yes, 0:no)

67 SCLRLM 1,000 Syntax coloring line limit

68 SCLRDL 0 Syntax coloring delay in seconds

69 PRNCLR 1 Matching parenthesis coloring (1:yes, 0:no)

70 MULTIS 0 i&l;nr;gtistart attempts (0:LINGO, n:number of
71 USEQPR 1 Use quadratic recognition (1:yes, 0:no)

72 GLOBAL 0 Use global solver on NLPs (1:yes, 0:no)

73 LNRISE 0 Linearization (0:LINGO, 1:none, 2:low, 3:high)
74 LNBIGM 100,000 Linearization BigM coefficient

75 LNDLTA de-5 Linearization Delta coefficient

76 BASCTS 1 Basis cuts (1:yes, 0:no)

77 MAXCTR 2 Max tree cuts passes

78 HUMNTM 0 Minimum heuristic time limit (seconds)

79 DECOMP 0 Matrix decomposition (1:yes, 0:no)

80 GLBOPT de-4 Global solver optimality tolerance

81 GLBDLT le-6 Global solver delta tolerance

82 GLBVBD de+l11 Global solver variable bound limit

83 GLBUBD 2 Global solver bound use (0:no, 1:all, 2:some)
84 GLBBRN 5 Global solver branch selection (see below)

35 GLBBXS 1 Global solver box selection (0:depth first, 1:worst

bound)

Command-Line Commands 387

86 GLBREF 3 Global solver reformulation level (0:none, 3:high)
Fixed variable reduction (0:none, 1:max, 2:not

87 SUBOUT 2 when using global or multistart solvers, 3:linear
variables only)

88 NLPVER 3 Nonlinear solver version (3:Ver 3.0, 4:Version
4.0)

39 DBGCLD 0 Debugging cqld start solver (0:LINGO, 1:primal,
2:dual, 3:barrier)

90 DBGWRM 0 Debug warm §tart solver (0:LINGO, 1:primal,
2:dual, 3:barrier)
Run crash procedure 2 to get an initial starting
point in nonlinear models (1:yes, 0:no). See

LCRASH .

o1 0 parameter 37, NCRASH, above for alternative
procedure.

9 BCROSS 1 Perform a basis crossover on LPs when using
barrier solver (0:no, 1:yes)

93 LOWMEM 0 Opt for less memory usage (0:no, 1:yes)

94 FILOUT 0 Fill out workbook output ranges (0:no, 1:yes)

95 DBGLVL 5 Debugger output level (1:low, 15:high)

96 UNARYM 1 Unary minus priority (0:low, 1:high)

97 LINEAR 0 Assume model is linear to reduce memory
consumption(0:no, 1:yes)

98 LOPTOL le-6 Linear optimality tolerance

99 SECORD 0 Use second order derivatives for NLPs (0:no,
1:yes)

100 NONNEG 1 Variables default to being non-negative (0:no,
1:yes)

101 BIGMVL 1.e8 BigM coefficient threshold value

102 KILLSC 0 Kill scripts on interrupts (0:no, 1:yes)

103 TATSLV 0 @SOLVE time limit in seconds

388 CHAPTER 6

104 KBESTS 1 Number of K-Best MIP solutions to generate

105 LCORES 1 Number of concurrent LP solvers to run
LP Solver in Core 1

LCORE1

106 ! (1:prm1,2:dual,3:barrier,4:prim?2)

107 LCOREZ 2 LP Solver in Core 2

108 LCORE3 3 LP Solver in Core 3

109 LCORE4 4 LP Solver in Core 4

110 SCALEW l.el2 Scaling warning threshold

11 REFRAQ 0 Basis. refactor frequency (0:LINGO chooses,
iteration count)

112 SPSMSZ 2 Default SP sample size per stage

13 SPSCON 1 Apply SP sampling to continuous random
variables only (0:no, 1:yes)

114 SPSEED 1,031 SP sampling random number seed
SP solution method (0:LINGO chooses,

115 SPMTHD 0 1:deterministic equivalent, 2:nested Benders,
3:augmented Lagrangian)

116 SPXVAL 1 Calculate all SP expected value statistics (0:no,
L:yes)

117 SPMAXS 40,000 Max scenarios allowed in an SP before auto
sampling takes effect

118 PRECIS 7 Precision in digits for standard solution reports

119 LOOPOP 0 Perform loop optimization during model compiles
(0:no, 1:yes)

120 HEUCUT 0 Hepristic; cuto‘ff criterion (0:LINGO chooses,
1:time, 2:iterations)

121 NUMBIN 0 Number of bins in histogr.am charts (0:LINGO
chooses, >0: number of bins)

122 SPBIGM 1.E8 Stochastic solver Big M coefficient

Command-Line Commands 389

123 NSLPSV 0 Use SLP solver for nonlinear models (0:no, 1:yes)

124 FORCER 0 Enforce variable bounds in calc and data sections
(0:no, 1:yes)

125 NTHRDS 1 Max number of executions threads (0:use all cores,

1:single-threaded, N>1:use up to N threads

Multithreading mode (-1:LINGO chooses, 0:0ff in
126 MTMODE 0 solver, 1 :prefer parallel, 2:parallel exclusively,
3:prefer concurrent, 4:concurrent exclusively)

127 | BNPRLK . Vaser speciied 2off <2:max number of locks)
128 BNPHEU 1 BNP block-finding heuristic (1:GP1, 2:GP2)

129 REPROD 0 Favor reproducibility (0:no, 1:yes)

130 STARTP 1.2345678 Default starting point for variables

131 HRDLMS NONE Multistart hurdle value (Use NONE! to disable)
132 SOLVLG NONE Solver log output level (0:None, >0 to enable log)
133 SPSCEN 1 Show scenario reports for SP models (0:no, 1:yes)
134 | SEPCHR ° OLINGO. 1k, Zoommma, 1)

135 ALTOPS 1 Iﬁl;;nber of alternate optimal solutions desired for

1. ILFTOL and 2. FLFTOL

Due to the finite precision available for floating point operations on digital computers, LINGO can’t
always satisfy each constraint exactly. Given this, LINGO uses these two tolerances as limits on the
amount of violation allowed on a constraint while still considering it “satisfied”. These two tolerances
are referred to as the initial linear feasibility tolerance (ILFTOL) and the final linear feasibility
tolerance (FLFTOL). The default values for these tolerances are, respectively, 0.000003 and
0.0000001.

ILFTOL is used when the solver first begins iterating. ILFTOL should be greater than FLFTOL. In the
early stages of the solution process, being less concerned with accuracy can boost the performance of
the solver. When LINGO thinks it has an optimal solution, it switches to the more restrictive FLFTOL.
At this stage in the solution process, one wants a relatively high degree of accuracy. Thus, FLFTOL
should be smaller than ILFTOL.

390 CHAPTER 6

One instance where these tolerances can be of use is when LINGO returns a solution that is almost, but
not quite, feasible. You can verify this by checking the values in the Slack or Surplus column in the
model’s solution report. If there are only a few rows with small, negative values in this column, then
you have a solution that is close to being feasible. Loosening (i.e., increasing the values of) ILFTOL
and FLFTOL may help you get a feasible solution. This is particularly true in a model where scaling is
poor (i.e., very large and very small coefficients are used in the same model), and the units of
measurement on some constraints are such that minor violations are insignificant. For instance,
suppose you have a budget constraint measured in millions of dollars. In this case, a violation of a few
pennies would be of no consequence. Short of the preferred method of rescaling your model, loosening
the feasibility tolerances may be the most expedient way around a problem of this nature.

3. INFTOL and 4. FNFTOL

The initial nonlinear feasibility tolerance (INFTOL) and the final nonlinear feasibility tolerance
(FNFTOL) are both used by the nonlinear solver in the same manner the initial linear and final linear
feasibility tolerances are used by the linear solver. For information on how and why these tolerances
are useful, refer to the section immediately above. Default values for these tolerances are, respectively,
0.001 and 0.000001.

5. RELINT

RELINT, the relative integrality tolerance, is used by LINGO as a test for integrality in integer
programming models. Due to round-off errors, the “integer” variables in a solution may not have
values that are precisely integral. The relative integrality tolerance specifies the relative amount of
violation from integrality that is acceptable. Specifically, if / is the closest integer value to X, X will be
considered an integer if:

X - I| <= Relative Integrality Tolerance.
X1

The default value for the relative integrality tolerance is .000008. Although one might be tempted to
set this tolerance to 0, doing so may result in feasible models being reported as infeasible.

6. NOPTOL

While solving a model, the nonlinear solver is constantly computing a gradient. The gradient gives the
rate of improvement of the objective function for small changes in the variables. If the gradient's rate
of improvement computation for a given variable is less-than-or-equal-to NOPTOL, the nonlinear
optimality tolerance, further adjustments to the variable's value are not considered to be beneficial.
The default value for the nonlinear optimality tolerance is .0000001. Decreasing this tolerance towards
a limit of 0 will tend to make the solver run longer and may lead to better solutions to poorly
formulated or poorly scaled models.

7. ITRSLW

LINGO’s nonlinear solver uses the ITRSLW, slow progress iteration limit, as a means of terminating
the solution process if little or no progress is being made in the objective value. Specifically, if the
objective function’s value has not improved significantly in 7 iterations, where 7 is the value of
ITRSLW, the nonlinear solver will terminate the solution process. Increasing this tolerance’s value will
tend to force the solver to run longer and may be useful in models that have relatively “flat” objective
functions around the optimal solution. The default value for /TRSLW is 5 iterations. Refer to the
description of ITRLIM below for a definition of iterations.

8. DERCMP

Command-Line Commands 391

Use this parameter to set the style of derivative computation. Set DERCMP to 0 (Solver Decides) to
allow LINGO to select the method, 1 for backward analytical derivatives, 2 for forward analytical
derivatives, 3 for numerical derivatives using central differences, and 4 for numerical derivatives using
forward differences.

LINGO defaults to the Solver Decides setting, which presently involves using backward analytical
derivatives. However, we suggest you try the various derivative options to see which works best for
your particular models.

9. ITRLIM

Use this tolerance to place an upper limit on the number of iterations the solver will perform. An
iteration is the fundamental operation performed by the solver. At the risk of oversimplification, it is a
process that involves forcing a variable, currently at a zero value, to become nonzero until some other
variable is driven to zero, improving the objective as we go. In general, larger models will take longer
to perform an iteration, and nonlinear models will take longer than linear models. The default iteration
limit is 0, meaning no limit is imposed on the iteration count.

If the solver hits this limit, it returns to normal command mode. If the model contains integer variables,
LINGO will restore the best integer solution found so far. You may need to be patient, however,
because the solver may have to perform a fair amount of work to reinstall the current best solution
after it hits a runtime limit.

Note: Some caution is required when interrupting the solver. There must be an incumbent solution
available if you hope to interrupt the solver and have it return a valid solution. You can
always tell if an incumbent solution is available by examining the Best Obj field in the
Extended Solver Status box of the solver status window. If this field is blank, then an
incumbent solution does not exist, and the solution returned after an interrupt will be invalid.
If, on the other hand, this field contains a numeric value, then you should be able to interrupt
and return to a valid, if not globally optimal, solution.

10. TIMLIM

Use this tolerance to place a limit on the number of seconds the solver runs. If the solver hits this limit,
it will stop and return with the best solution found so far. The default limit is 0, meaning no time limit
is imposed on the solver.

If the solver hits this limit, it returns to normal command mode. If the model contains integer variables,
LINGO will restore the best integer solution found so far. You may need to be patient, however,
because the solver may have to perform a fair amount of work to reinstall the current best solution
after it hits a runtime limit.

392 CHAPTER 6

Note: Some caution is required when interrupting the solver. There must be an incumbent solution
available if you hope to interrupt the solver and have it return a valid solution. You can
always tell if an incumbent solution is available by examining the Best Obj field in the
Extended Solver Status box of the solver status window. If this field is blank, then an
incumbent solution does not exist, and the solution returned after an interrupt will be invalid.
If, on the other hand, this field contains a numeric value, then you should be able to interrupt
and return to a valid, if not globally optimal, solution.

11. OBJCTS

LINGO generates twelve different types of constraint cuts when solving mixed integer linear
programs. Using the options listed below, these various classes of cuts can be enabled by setting their
parameter value to 1, or disabled by setting their parameter value to 0.

The available cut classes are as follows:

Index Parameter Name Cut Type

11 | OBJCTS Objective cuts

57 | GUBCTS GUB

58 | FLWCTS Flow

59 |LFTCTS Lift

60 |[PLOCTS Plant location

61 | DISCTS Disaggregation

62 |KNPCTS Knapsack cover

63 |LATCTS Lattice

64 | GOMCTS Gomory

65 | COFCTS Coefficient reduction
66 | GCDCTS Greatest common divisor
76 [BASCTS Basis cuts

LINGO's integer programming solver performs extensive evaluation of your model in order to add
constraint cuts. Constraint cuts are used to "cut" away sections of the feasible region of the continuous
model (i.e., the model with integer restrictions dropped) that are not contained in the feasible region to
the integer model.

On most integer models, this will accomplish two things. First, solutions to the continuous problem
will tend to be more naturally integer. Thus, the branch-and-bound solver will have to branch on fewer
variables. Secondly, the bounds derived from intermediate solutions will tend to be tighter, allowing
the solver to "fathom" (i.e., drop from consideration) branches higher in the branch-and-bound tree.
These improvements should dramatically speed solution times on most integer models. However, on
some poorly formulated models, disabling one or more of the cut types may help in finding feasible
solutions.

All constraint cut types are enabled by default.
12. MXMEMB

Command-Line Commands 393

Use this parameter to set an upper limit on the amount of memory, in megabytes, that LINGO allocates
as workspace for its model generator. When LINGO starts up, it sets aside a fixed amount of memory
to use as a generator workspace. The default workspace size is 32Mb. You can determine the size of
the current workspace and the amount of memory allotted in this workspace by issuing the MEM
command.

Large models may run out of generator memory when attempting to solve them. In this case, you will
receive the error message, “The model generator ran out of memory.” To avoid this error, increase the
value of MXMEMB and issue the FREEZE command to preserve the change. You must then restart
LINGO.

Note: Changes in LINGO’s generator memory limit are not established until you restart the
program.

The model generator is distinct from the actual solver engines. Memory allocated to the generator will
not be available to the solver engines. Thus, you shouldn’t allocate any more memory to the generator
than is required.

If you set MXMEMB to 0, LINGO will allocate all available memory when it starts up. This is not a
recommended practice.

Note: Setting LINGO’s generator memory limit abnormally high can result in poor performance of
LINGO and the operating system. By setting aside excessive amounts of memory for the
model generator, both LINGO and the operating system may have to resort to swapping of
virtual memory to and from the hard drive. Accessing the hard drive for memory swaps can
slow down your machine dramatically.

13. CUTAPP
Use this parameter to control the nodes in the solution tree where the branch-and-bound solver adds
constraint cuts in linear integer models. You have the following three options:

CUTAPP Setting \ Cuts Application at ...

0 Root only
1 All nodes
2 Solver decides

Under the Root Only option, the solver appends cuts only at the first node, or root node, in the solution
tree. With the A/l Nodes option, cuts are appended at each node of the tree. Under the Solver Decides
option, the solver dynamically decides when it is best to append cuts at a node.

The default is to let the solver decide when to append cuts. In general, this will offer superior
performance. There may be instances, however, where one of the other two options prevails.

14. ABSINT

394 CHAPTER 6

Use this parameter to specify an absolute integrality tolerance. This tolerance is used by LINGO as a
test for integrality in integer programming models. Due to round-off errors, the "integer" variables in a
solution may not have values that are precisely integer. The absolute integrality tolerance specifies the
absolute amount of violation from integrality that is acceptable. Specifically, if X is an "integer"
variable and / is the closest integer to X, then X would be accepted as being integer valued if:

|X - 1| <= Absolute Integrality Tolerance.

The default value for the absolute integrality tolerance is .000001. Although one might be tempted to
set this tolerance to 0, this may result in feasible models being reported as infeasible.

15. HEURIS

Use this parameter to control the level of integer programming heuristics used by the integer solver.
These heuristics use the continuous solution at each node in the branch-and-bound tree to attempt to
quickly find a good integer solution. If an integer solution better than the incumbent is found, then it is
used to fix or tighten global and local variable bounds. Heuristics are only applied to linear models.
Requesting heuristics on nonlinear models will result in no benefits.

HEURIS may be set anywhere from 0 (none) to 100 (highest level), with 3 being the default.

16. HURDLE

If you know the objective value of a solution to a model, you can enter it as a hurdle tolerance. This
value is used in the branch-and-bound solver to narrow the search for the optimum. More specifically,
LINGO will only search for integer solutions where the objective is better than the hurdle value. This
comes into play when LINGO is searching for an initial integer solution. LINGO can ignore branches
in the search tree with objective values worse than the hurdle value, because a better solution exists
(i.e., the hurdle) on some alternate branch. Depending on the problem, a good hurdle value can greatly
reduce solution time. Once LINGO finds an initial integer solution, however, the Hurdle tolerance no
longer has an effect.

Note: Be sure when entering a hurdle value that a solution exists that is at least as good or better
than your hurdle. If such a solution does not exist, LINGO will not be able to find a feasible
solution to the model.

The default hurdle value is None. In other words, a hurdle value is not used by the solver. To clear an
existing hurdle value, type SET HURDLE NONE.

17.IPTOLA

Use this parameter to specify the absolute optimality tolerance. This tolerance is a positive value r,
indicating to the branch-and-bound solver that it should only search for integer solutions with objective
values at least » units better than the best integer solution found so far. In many integer programming
models, there are huge numbers of branches with roughly equivalent potential. This tolerance can help
to keep the branch-and-bound solver from being distracted by branches that can’t offer a solution
significantly better than the incumbent solution.

In general, you shouldn’t have to set this tolerance. Occasionally, particularly on poorly formulated
models, you might need to increase this tolerance slightly from zero to improve performance. In most
cases, you should experiment with the relative optimality tolerance rather than the absolute optimality
tolerance in order to improve performance.

Command-Line Commands 395

The default value for the absolute optimality tolerance is 0.

18. IPTOLR

Use this parameter to specify the relative optimality tolerance. This tolerance is a value r, ranging
from O to 1, indicating to the branch-and-bound solver that it should only search for integer solutions
with objective values at least 100*7% better than the best integer solution found so far.

The end results of modifying the search procedure in this way are twofold. First, on the positive side,
solution times can be improved tremendously. Second, on the negative side, the final solution obtained
by LINGO may not be the true optimal solution. You will, however, be guaranteed the solution is
within 100*7% of the true optimum.

Typical values for the relative optimality tolerance would be in the range .01 to .05. In other words,
you would be happy to get a solution within 1% to 5% of the true optimal value. On larger integer
models, the alternative of getting a solution within a few percentage points of the true optimum after
several minutes of runtime, as opposed to the true optimum after several days, makes the use of an
optimality tolerance quite attractive.

Note: Generally speaking, the relative integrality tolerance is the tolerance that will most likely
improve runtimes on integer models. You should be sure to set this tolerance whenever
possible.

The default for the relative optimality tolerance is 1e-5.

19. TIM2RL

If an integer programming model is relatively easy to solve, then we would like to have the solver
press on to the true optimal solution without immediately resorting to a relative optimality tolerance
(discussed above). On the other hand, if, after running for a while, it becomes apparent that the optimal
solution won’t be immediately forthcoming, then you might want the solver to switch to using a
relative optimality tolerance. TIM2RL, the time to relative tolerance, can be used in this manner. This
tolerance is the number of seconds before the branch-and-bound solver begins using the relative
optimality tolerance. For the first n seconds, where # is the value of the time to relative tolerance, the
branch-and-bound solver will not use the relative optimality tolerance and will attempt to find the true
optimal solution to the model. Thereafter, the solver will use the relative optimality tolerance in its
search.

The default value for the time to relative tolerance is 100 seconds.

20. NODESL

The branch-and-bound solver has a great deal of freedom in deciding how to span the
branch-and-bound solution tree. NODESL, the node selection option, allows you to control the order in
which the solver selects branch nodes in the tree.

396 CHAPTER 6

The four choices available for NODESL are as follows:

NODESL Setting Branch Selection

0 LINGO Decides —This is the default option. LINGO makes
an educated guess as to the best node to branch on.

1 Depth First — LINGO spans the branch-and-bound tree
using a depth first strategy.

2 Worst Bound — LINGO picks the node with the worst
bound.

3 Best Bound — LINGO picks the node with the best bound.

In general, LINGO Decides will offer the best results. Experimentation with the other options may be
beneficial with some classes of models.

21. LENPAG

The LENPAG parameter sets the length of the page or screen size in lines. For instance, setting
LENPAG to 25 will cause the display to pause after 25 lines and await a carriage return before
displaying the next 25 lines. This is convenient when you wish to page through long reports and not
have them scroll off the top of the screen.

When LENPAG is set to 0, paging is turned off entirely. LINGO will no longer stop output to wait for
a carriage return. Entering SET LENPAGE 0 at the top of any command script is helpful in that you
generally want command scripts to run uninterrupted.

22. LINLEN

When LINGO generates reports, it limits output lines to a certain width. In some reports, lines will be
wrapped so that they fall within the line length limit. In other reports, lines may be truncated. Since
LINGO concatenates variable names in performing set operations, a variable name such as
SHIPMENTS(WAREHOUSE 1, CUSTOMER?2) may result, which may be truncated in a solution report
if too narrow an output width is used. You can control this line width limit through the LINLEN
parameter. You may set it anywhere between 64 and 200, with the default being 85.

23. TERSEO
You can use the TERSEO parameter to control the amount of output LINGO generates. There are four
settings available:

TERSEO Description

0 Verbose—Causes LINGO to display the maximum amount
of output, including full solution reports.
1 Terse—Less output than Verbose, with full solution reports

suppressed. This is a good output level if you tend to solve
large models. LINGO also suppresses Export Summary
Reports generated when exporting data to spreadsheets or
databases.

2 Errors Only—All output is suppressed, with the exception
of error messages

Command-Line Commands 397

3 Nothing—LINGO suppresses all output. This level may be
useful when taking advantage of the programming
capabilities in LINGO, in which case, you will add
statements to your model to generate all required output.

The default setting for TERSEO is 0, or verbose mode.

24. STAWIN
If the STAWIN parameter is set to 1, LINGO displays a solver status window whenever you issue the
GO command. This window resembles the following:

Sobver Slatus Werishley
Medel Class LP b E
Horlrmar 1]
§later Glebal Ope Irhgess: 0
Oibgescitive 14500 Constraints
Ineasiodiy 0 o .
Horlrmar 1]
v atiors: 0
Horzenss
Estended S obeer Statues Total &
Noclinear
Siohve Ty : ’
Biast OB . Germsator Memon Used [K)
Obg Bound s
$leps g Elapsed Runtime [hhme 25]
Actve = 00:00:00
Updale Indanval 2 T Cloge

The solver status window is useful for monitoring the progress of the solver and the dimensions of
your model. It is updated every n seconds, where # is the value in the Update interval field in the lower
right corner of the window. LINGO defaults to displaying the solver status window.

For a detailed description of the various fields in the solver status window, see Chapter 1, Getting
Started with LINGO.

398 CHAPTER 6

25. SPLASH

If the SPLASH parameter is set to 1, LINGO will display its splash screen each time it starts up. The
splash screen lists the release number of LINGO and the software’s copyright notice. Setting SPLASH
to 0 disables the splash screen. The default is for the splash screen to be displayed.

26. OROUTE

Set this parameter to 1 to send reports generated by LINGO to the command window, or 0 to send
them to individual report windows. Since you can log all output to the command window in a log file,
routing reports to the command window can be a useful way of logging all reports to disk. This may
also be a desirable option when you are using LINGO as part of an automated system where you need
LINGO to run without user input. The default is for LINGO to display reports in individual windows.

27. WNLINE and 28. WNTRIM

When LINGO sends output to the command window, it places new lines at the bottom of the window.
All previous output is scrolled up to make way for the new output. The total number of output lines
that can be stored in the command window is limited. When LINGO hits this limit, it begins deleting
lines from the top of the command window. You can control this feature by setting the WNLINE and
WNTRIM parameters.

The WNLINE parameter sets the maximum number of lines allowed in the command window. When
LINGO removes lines from the top of the command window, it stops once there are n lines left in the
command window, where # is the value of the WNTRIM parameter. In general, output to the command
window will become slower as you increase the maximum and minimum line counts.

The default values for WNLINE and WNTRIM are, respectively, 800 and 400. Minimum values are 200
and 100, while there are no upper limits.

29. STABAR

If the STABAR parameter is set to 1, LINGO for Windows displays a status bar along the bottom of the
main frame window. Among other things, the status bar displays the time of day, location of the
cursor, menu tips, and the current status of the program.

To remove the status bar from the screen, set STABAR to 0.
The default is for LINGO to display the status bar.
30. FILFMT

Use FILFMT to set the default file format LINGO uses when opening a new document. The options
are:

FILFMT File Type | Description
0 LNG LINGO text
1 LG4 LINGO binary
2 LTX LINDO text

The LG4 format is the default file format for Windows versions of LINGO. This is a binary format
that is readable only by LINGO. This format enables you to have custom formatting and fonts in your
models, and allows you to use LINGO as an OLE server and container. Files written in LG4 format are
useful only on Windows hardware.

Command-Line Commands 399

The LNG and LTX formats are text based. Given this, LNG and LTX files may be read into other
applications. However, these formats don’t support custom formatting and embedded objects. In
general, LNG files use LINGO syntax, while LTX files use LINDO syntax.

31. TOOLBR

In Windows versions, LINGO can display a row of buttons that act as shortcuts to various commands
contained in the LINGO menu. This row of buttons is known as the toolbar. Set TOOLBR to 1 to
display the toolbar or 0 to remove it. The default is for LINGO to display the toolbar.

32. CHKDUP

Prior to release 4.0, LINGO allowed you to use primitive set names in the equations of a model.
Primitive set names in a model’s equations returned the index of the set member. Starting with release
4.0, LINGO required you to use the @/NDEX function (see Chapter 7, LINGO's Operators and
Functions) to get the index of a primitive set member. If you would like to test your LINGO models
from releases prior to 4.0 for instances where primitive set members appear in the model’s equations,
set CHKDUP to 1. Whenever you run a model, LINGO will issue an error message if duplicate names
appear as set members and as variables in the model.

33. ECHOIN

When you run a LINGO command script with the 74KE command, the commands LINGO processes
are normally not displayed. If you would like the commands echoed to your screen, set the ECHOIN
parameter to 1. This can be a useful feature when you are trying to develop and debug a LINGO
command script.

34. ERRDLG

Set the ERRDLG parameter to 1 and LINGO will display error messages issued by the solver in a
modal dialog box. This dialog box must be cleared before LINGO proceeds with any other operation.
In some instances, you may have LINGO embedded in other applications, where it may not be
desirable, or possible, to have users clearing the error dialog boxes. By setting ERRDLG to 0, LINGO
will route the solver’s error messages to the report window, where they will be displayed and no user
intervention will be required to clear the messages. Note that this option allows you to route only those
error messages generated by LINGO’s solver to the report window. Error messages displayed by
LINGO?’s interactive front-end (error codes 1000 and above) will always be posted in dialog boxes.
The default is for solver errors to be displayed in dialog boxes.

400 CHAPTER 6

35. USEPNM

In many instances, you will need to get the index of a primitive set member within its set. Prior to
release 4 of LINGO, you could do this by using the primitive set member’s name directly in the
model’s equations. This can create problems when you are importing set members from an external
source. In this case, you will not necessarily know the names of the set members beforehand. When
one of the imported primitive set members happens to have the same name as a variable in your model,
unintended results can occur. More specifically, LINGO would not treat the variable as optimizable. In
fact, LINGO would treat it as if it were a constant equal to the value of the index of the primitive set
member! In short, different primitive set names could potentially lead to different results. Therefore,
starting with release 4.0 of LINGO, models such as the following are no longer permitted:

MODEL:
SETS:

DAYS /MO TU WE TH FR SA SU/;
ENDSETS

INDEX OF FRIDAY = FR;
END

If you want the index of FR in the DAYS set, you should use the @/NDEX function (see Chapter 7,
LINGO's Operators and Functions):

INDEX OF FRIDAY = QINDEX (DAYS, FR);

If you are unable to update your models for some reason and you would like to allow for the direct use
of primitive set names, you can enable the USEPNM parameter by setting it to 1. The default is for
LINGO to disable USEPNM.

36. NSTEEP

Setting the NSTEEP parameter to 1 causes LINGO’s nonlinear solver to use steepest-edge variable
selection. When LINGO is not in steepest-edge mode, the nonlinear solver will tend to select variables
that offer the highest absolute rate of improvement to the objective, regardless of how far other
variables may have to move per unit of movement in the newly introduced variable. The problem with
this strategy is that other variables may quickly hit a bound, resulting in little gain to the objective.
With the steepest-edge option, the nonlinear solver spends a little more time in selecting variables by
looking at what rate the objective will improve relative to movements in the other nonzero variables.
Thus, on average, each iteration will lead to larger gains in the objective. In general, the steepest-edge
option will result in fewer iterations. However, each iteration will take longer. LINGO defaults to not
using the steepest-edge option.

Command-Line Commands 401

37. NCRASH

LINGO has two solution "crashing" methods that use different heuristics for generating starting points
for nonlinear models: NCRASH and LCRASH. If at least one of the two crash parameters is set to 1,
LINGO?’s nonlinear solver will invoke a heuristic for generating a "good" starting point when you
solve a model. If this initial point is relatively good, subsequent solver iterations should be reduced
along with overall runtimes. It's possible, however, that runtimes may slow if the selected point turns
out to be poor. It is difficult to know beforehand if a particular crashing technique, if any, will help
performance. You will need to experiment with your model to determine the best settings for the two
crash procedures.

LINGO defaults to not crashing an initial solution.

38. NSLPDR

If you set NSLPDR to 1, LINGO’s nonlinear solver will use successive linear programming (SLP) to
compute new search directions. This technique uses a linear approximation in search computations in
order to speed iteration times. In general, the number of total iterations will tend to rise when SLP
directions are used, but on some models overall runtimes may improve. LINGO defaults to using SLP
directions.

39. SELCON

If you set SELCON to 1, LINGO’s nonlinear solver will only evaluate constraints on an as needed
basis. Thus, not every constraint will be evaluated at each iteration. This generally leads to faster
solution times, but can also lead to problems in models with undefined functions in certain regions.
LINGO may not evaluate a constraint for many iterations only to find that it has moved into a region
where the constraint is no longer defined. In this case, there may not be a valid point for the solver to
retreat to and the solution process terminates with an error. Turning off selective constraint evaluation
eliminates these errors. LINGO defaults to not using selective constraint evaluation.

40. PRBLVL

On a mixed-integer linear program, LINGO can perform an operation known as probing. Probing
involves taking a close look at the integer variables in a model and deducing tighter variable bounds
and right-hand side values. In many cases, probing can tighten an integer model sufficiently, thereby
speed overall solution times. In other cases, however, probing may not be able to do much tightening
and the overall solution time will increase due to the extra time spent probing. You can choose from
seven successive levels of probing ranging from 1 to 7. Level 1 disables probing completely, while
level 7 involves the highest degree of probing. Setting this option to 0 lets LINGO select the level of
probing. LINGO defaults to 0.

41. SOLVEL
This option allows you to choose the type of algorithm invoked by LINGO’s linear solver. At present,
LINGO offers the following four options:

SOLVEL Linear Solver
Value Algorithm
0 LINGO chooses
1 Primal simplex
2 Dual simplex
3 Barrier (only available as an option)

402 CHAPTER 6

In general, it is difficult to say what algorithm will be fastest for a particular model. A rough guideline
is that primal simplex tends to do better on sparse models with fewer rows than columns; the dual does
well on sparse models with fewer columns than rows; and the barrier works best on densely structured
models or very large models.

The barrier solver is available only as an additional option to the LINGO package.
LINGO defaults to 0, LINGO chooses.

42. REDUCE

When this parameter is set to 1, LINGO’s linear solver tries to identify and remove extraneous
variables and constraints from the formulation before solving. In certain cases, this can greatly reduce
the size of the final model to be solved. Setting REDUCE to 1 enables reduction, while 0 disables it.
Setting REDUCE to 2 allows LINGO to choose whether or not to enable reduction. LINGO defaults to
this last option.

43. SCALEM

Setting SCALEM to 1 enables the scaling option in LINGO’s linear solver. This option rescales the
coefficients in the model’s matrix, causing the ratio of the largest to smallest coefficients to be
reduced. By doing this, LINGO reduces the chances of round-off error, which leads to greater
numerical stability and accuracy in the linear solver.

LINGO defaults to using scaling.

44. PRIMPR

Setting this parameter to 2 causes LINGO’s primal simplex linear solver to use devex pricing
techniques. If this parameter is set to 1, the primal simplex solver will use partial pricing. If this
parameter is set to 0, LINGO chooses the primal simplex pricing method.

LINGO defaults to choosing the primal pricing method.

45. DUALPR

If DUALPR is set to 2, LINGO’s dual simplex solver will use steepest edge pricing. If DUALPR is 1,
the dual solver will use Dantzig pricing methods. If DUALPR is 0, LINGO chooses the most
appropriate pricing method.

In Dantzig pricing mode, the dual simplex solver will tend to select variables that offer the highest
absolute rate of improvement to the objective, regardless of how far other variables may have to move
per unit of movement in the newly introduced variable. The problem with this strategy is that other
variables may quickly hit a bound, resulting in little gain to the objective. With the steepest-edge
option, the solver spends a little more time selecting variables by looking at the total improvement in
the objective by adjusting a particular variable. Thus, on average, each iteration will lead to larger
gains in the objective. In general, the steepest-edge option will result in fewer iterations. However,
each iteration will take longer.

LINGO defaults to choosing the pricing method for the dual solver.

46. DUALCO

The DUALCO parameter is used to set the level of dual computations performed by the solver. Setting
DUALCO to 0 will cause LINGO to not compute dual values and ranges. This is the fastest option, but
is suitable only if you don’t need this information. In fact, the RANGE command will not execute
when DUALCO is 0. When DUALCO is 1, LINGO will compute dual values, but not ranges. When

Command-Line Commands 403

DUALCO is 2, LINGO computes both dual prices and ranges. Setting DUALCO to 3 causes LINGO to
compute the dual values on optimizable rows only (i.e., fixed rows are excluded) and forgo range
computations, LINGO defaults to a DUALCO value of 1.

Note: Range computations can take some time, so, if speed is a concern, you don’t want to enable
range computations unnecessarily.

Note: The barrier crossover option must be enabled if you plan to do range analysis. Range
computations cannot be performed if the final solution is not a basic solution.

47. RCMPSN

Setting RCMPSN to 1 causes LINGO to convert all variable and row names to RC notation when
performing MPS file format I/O. Refer to the RMPS command on page 339 for a discussion of why
this option is useful. By default, LINGO disables the use of RC format names.

48. MREGEN

The MREGEN parameter controls the frequency with which LINGO regenerates a model. With
MREGEN set to 0, LINGO regenerates a model only when a change has been made to the model’s text
since the last generation took place. When MREGEN is 1, LINGO regenerates whenever a change is
made to the model text or if it contains references to external data sources (e.g., text files, databases, or
spreadsheets). [f MREGEN is 2, then LINGO al/ways regenerates the model each time information
regarding the generated model is needed. Commands that will trigger a model generation are GO,
GEN, GENL, STATS, RMPS, FRMPS, SMPS, and PICTURE. LINGO defaults to a MREGEN value

of 2.

49. BRANDR

LINGO uses a branch-and-bound solution procedure when solving integer programming models. One
of the fundamental operations involved in the branch-and-bound algorithm is branching on variables.
Branching involves forcing an integer variable that is currently fractional to either the next greatest
integer value or to the next lowest integer value. As an example, suppose there is a general integer
variable that currently has a value of 5.6. If LINGO were to branch on this variable, it would have to
choose whether to set the variable first to 6 or 5. The BRANDR parameter controls how LINGO makes
this branching decision.

There are three possible settings for BRANDR:

BRANDR Preferred Branching
Value Direction
0 Both up and down
1 Up
2 Down

The default option, Both up and down, involves LINGO making an intelligent guess as to whether it
should branch up or down first on each individual variable. If the Up option is selected, LINGO will
always branch up to the next highest integer first. If Down is selected, LINGO will always branch
down first. In most cases, the Both up and down option will result in the best performance.
Occasionally, models will benefit from use of one of the other two options.

404 CHAPTER 6

50. BRANPR

When branching on variables, the branch-and-bound procedure can give priority to branching on the
binary variables first, or it can make an intelligent guess as to the next best variable to branch on,
regardless of whether it is binary or general.

There are two possible settings for BRANPR:

BRANPR Branching
Value Priority
0 LINGO decides
1 Binary variables first

Select the Binary variables first option to have LINGO give branching priority to the binary variables.
Select LINGO Decides to have LINGO select the next integer variable for branching based on an
intelligent guess regardless of whether it is binary or general. The default for this option is LINGO
Decides, which should generally give the best results. However, on occasion, the Binary option may
prevail.

51. CUTOFF

On occasion, due to round-off error, some of the values returned by LINGO’s solver will be very small
(less than le-10). In reality, the true values of these variables are either zero or so small as to be of no
consequence. These tiny values can be distracting when interpreting a solution report. The CUTOFF
parameter can be used to suppress small solution values. Any solution value less-than-or-equal-to
CUTOFF will be reported as being zero. The default value for CUTOFF is 1e-9.

52. STRONG

The strong branch option uses a more intensive branching strategy during the first n levels of the
branch-and-bound tree, where # is the value of the STRONG parameter. During these initial levels,
LINGO picks a subset of the fractional variables as branching candidates. LINGO then performs a
tentative branch on each variable in the subset, selecting as the final candidate the variable that offers
the greatest improvement in the bound on the objective. Although strong branching is useful in
tightening the bound quickly, it does take additional computation time. So, you may want to try
different settings to determine what works best for your model.

The default setting is 10 levels.

Command-Line Commands 405

53. REOPTB

The warm start option controls the linear solver that is used by the branch-and-bound solver at each
node of the solution tree when a previous solution is present to use as a “warm start”. The cold start
option, discussed below, determines the solver to use when a previous solution does not exist.

There are four possible settings for REOPTB:

REOPTB Warm Start
Value Solver

0 LINGO Decides — LINGO chooses the most
appropriate solver.

1 Primal — The primal solver will be used
exclusively.

2 Dual — The dual solver will be used exclusively.

3 Barrier — LINGO uses the barrier method,
assuming you have purchased a license for the
barrier solver. Otherwise, the dual solver will be
used.

In general, LINGO Decides will yield the best results. The barrier solver can’t make use of a
pre-existing solution, so Barrier usually won’t give good results. In general, Dual will be faster than
Primal for reoptimization in branch-and-bound.

54. REOPTX

The cold start option controls the linear solver that is used by the branch-and-bound solver at each
node of the solution tree when a previous solution is not present to use as a “warm start”. The warm
start option, discussed above, determines the solver to use when a previous solution does exist.

There are four possible settings for REOPTX:

REOPTX Warm Start
Value Solver

0 LINGO Decides — LINGO chooses the most
appropriate solver.

1 Primal — The primal solver will be used
exclusively.

2 Dual — The dual solver will be used exclusively.

3 Barrier — LINGO uses the barrier method,
assuming you have purchased a license for the
barrier solver. Otherwise, the dual solver will be
used.

In general, LINGO Decides will yield the best results. However, experimentation with the other
options may be fruitful.

55. MAXCTP

The integer pre-solver makes iterative passes through a model determining appropriate constraint cuts
to append to the formulation. In general, the marginal benefits of each additional pass declines. At
some point, additional passes will only add to total solution times. Thus, LINGO imposes a limit on
the maximum number of passes.

406 CHAPTER 6

LINGO applies constraint cuts at both the top, or root, node of the branch-and-bound tree, and at all
subsequent nodes within the tree. The MAXCTP parameter limits the maximum number of cuts at the
top node, while the MAXCTR parameter sets the cut limit on all subsequent nodes in the tree. The
default limit is 100 passes.

56. RCTLIM

Most integer programming models benefit from the addition of some constraint cuts. However, at
some point, additional cuts take more time to generate than they save in solution time. For this reason,
LINGO imposes a relative limit on the number of constraint cuts that are generated. The default limit
is set to .75 times the number of true constraints in the original formulation. You may override this
relative limit by changing the setting of RCTLIM.

Constraint Cut Types

LINGO generates twelve different types of constraint cuts when solving mixed integer linear
programs. Using options listed below, these various classes of cuts can be enabled by setting their
parameter value to 1, or disabled by setting their parameter value to 0.

The available cut classes are as follows:

Index Parameter Name Cut Type

11 OBJCTS Objective cuts

57 GUBCTS GUB

58 FLWCTS Flow

59 LFTCTS Lift

60 PLOCTS Plant location

61 DISCTS Disaggregation

62 KNPCTS Knapsack cover

63 LATCTS Lattice

64 GOMCTS Gomory

65 COFCTS Coefficient reduction
66 GCDCTS Greatest common divisor
76 BASCTS Basis cuts

LINGO's integer programming solver performs extensive evaluation of your model in order to add
constraint cuts. Constraint cuts are used to "cut" away sections of the feasible region of the continuous
model (i.e., the model with integer restrictions dropped) that are not contained in the feasible region to
the integer model.

On most integer models, this will accomplish two things. First, solutions to the continuous problem
will tend to be more naturally integer. Thus, the branch-and-bound solver will have to branch on fewer
variables. Secondly, the bounds derived from intermediate solutions will tend to be tighter, allowing
the solver to "fathom" (i.e., drop from consideration) branches higher in the branch-and-bound tree.
These improvements should dramatically speed solution times on most integer models. However, on
some poorly formulated models, disabling one or more of the cut types may help in finding feasible
solutions.

All constraint cut types are enabled by default.

Command-Line Commands 407

67. SCLRLM

The LINGO editor in Windows is “syntax aware.” In other words, when it encounters LINGO
keywords, it displays them in blue. Comments are displayed in green, and all remaining text is
displayed in black. Syntax coloring can take a long time if you have very large files. The SCLRLM
parameter sets the maximum acceptable file size for syntax coloring. Files with line counts exceeding
this parameter will not be syntax colored. Setting this parameter to 0 will disable the syntax coloring
feature. The default limit is 1000 lines.

68. SCLRDL

The LINGO editor in Windows is “syntax aware”. In other words, when it encounters LINGO
keywords it displays them in blue. Comments are displayed in green, and all remaining text is
displayed in black. The SCLRDL parameter sets the number of seconds LINGO waits after the last
keystroke was typed before recoloring modified text. Users on slower machines may want to set this
higher to avoid having syntax coloring interfere with typing. Users on faster machines may want to
decrease this value, so text is recolored more quickly. The default is 0 seconds (i.e., LINGO recolors
modified text immediately).

69. PRNCLR

The LINGO editor in Windows displays matching parentheses in red when you place the cursor
immediately following a parenthesis. The PRNCLR parameter allows you to disable this feature.
Setting PRNCLR to 0 will disable parenthesis matching, while setting it to 1 will enable it.

70. MULTIS

LINGO exploits the convex nature of linear models to find globally optimal solutions. However, we
aren’t as fortunate with nonlinear models. With nonlinear programming (NLP) models, LINGO’s
default NLP solver uses a local search procedure. This can lead to LINGO stopping at locally optimal
points, perhaps missing a global point lying elsewhere. Refer to Chapter 15, On Mathematical
Modeling, for more information on how and why this can happen.

A strategy that has proven successful in overcoming this problem is to restart the NLP solver several
times from different initial points. It is not uncommon for a different starting point to lead to a
different local solution point. The idea is that, if we restart from enough unique points, saving the best
local solution as we go, then we have a much better chance of finding the true global solution.

The MULTIS parameter allows you to set the number of times you would like the NLP solver to re-
solve your model, starting each time from an intelligently generated, new starting point. We refer to
this feature as multistart. The default value for MULTIS, 0, entails restarting 5 times on small NLPs
and disabling multistart on larger models. Setting MULTIS to 1 disables multistart on all NLPs. Setting
MULTIS to any value greater than 1 will cause the NLP solver to restart that number of times on all
NLPs. We have found that setting MULTIS around 5 tends to be adequate for most models. Highly
nonlinear models may require a larger setting.

Keep in mind, however, that multistart will dramatically increase runtimes. Thus, one should avoid
using it unnecessarily on convex models that will converge to a global point in a single pass without
any additional prodding.

408 CHAPTER 6

The following example illustrates the usefulness of multistart. Consider the simple, yet highly
nonlinear, model:

MODEL:
MIN = X * @COS(3.1416 * X);
@BND(0, X, 6);

END

The graph of the objective function is as follows:

"VAE/\/‘

L%

—

=3
-4
-6

The objective function has three local, minimal points over the feasible range. These points are
summarized in the following table:

Point X Objective |
1 1.09 -1.05
2 3.03 -3.02
3 5.02 -5.01

Command-Line Commands 409

Clearly, the third local point is also the globally best point, and we would like the NLP solver to

converge to this point. Below, we attempt this by loading the model, turning off the multistart option,
and then solving:

take wavy.lng

look all

MODEL:
1] MIN = X * @COS(3.1416 * X);
2] @BND(O, X, 6);

END

set multis 1 !set solver attempts to 1 only (i.e., disable ms)

Parameter 0ld Value New Value
MULTIS 0 1
go
Local optimal solution found at step: 11
Objective value: -1.046719
Variable Value Reduced Cost
X 1.090405 0.1181082E-07
Row Slack or Surplus Dual Price
1 -1.046719 -1.000000

Unfortunately, as you can see, we converged to the least preferable of the local minimums. Below, we

will do the same as in the previous run. However, this time, we will set the number of multistarts to
five:

take wavy.lng

look all

MODEL:
1] MIN = X * @COS(3.1416 * X);
2] @BND(O, X, 6);

END

set multis 5

Parameter 0ld Value New Value
MULTIS 0 5
go
Local optimal solution found at step: 39
Objective wvalue: -5.010083
Variable Value Reduced Cost
X 5.020143 -0.7076917E-08
Row Slack or Surplus Dual Price
1 -5.010083 -1.000000

The extra four restarts allowed LINGO to find the global optimal point.

410 CHAPTER 6

71. USEQPR

The USEQPR parameter controls the Quadratic Recognition option. This option consists of an
algebraic preprocessor that automatically determines if an arbitrary nonlinear model is actually a
quadratic programming (QP) model. If a model is found to be a convex QP, then it can be passed to the
faster quadratic solver. Note that the QP solver is not included with the base version of LINGO, but
comes as part of the Barrier option.

LINGO defaults to using quadratic recognition

72. GLOBAL

Many nonlinear models are non-convex and/or non-smooth (for more information see Chapter 15, On
Mathematical Modeling). Nonlinear solvers that rely on local search procedures, as does LINGO’s
default nonlinear solver, will tend to do poorly on these types of models. Typically, they will converge
to a local, sub-optimal point that may be quite distant from the true, global optimal point. Global
solvers overcome this weakness through methods of range bounding (e.g., interval analysis and convex
analysis) and range reduction techniques (e.g., linear programming and constraint propagation) within
a branch-and-bound framework to find the global solutions to non-convex models. LINGO has a
global solver capability that is enabled through the GLOBAL parameter. Setting GLOBAL to 1 will
enable the global solver on nonlinear models, while setting it to 0 (the default) will not.

The following example illustrates the power of the global solver on a non-smooth model. Consider the
following model:

model:
sets:

projects: baths, sqgft, beds, cost, est;
endsets
data:
projects, beds, baths, sqgft, cost =
pl 5 4 6200 559608
P2 2 1 820 151826
r3 1 1 710 125943
p4 4 3 4300 420801
PS5 4 2 3800 374751
po 3 1 2200 251674
r7 3 2 3400 332426
enddata

min = @max(projects: Q@abs(cost - est));

@for (projects:

est = a0 + al * beds + a2 * baths + a3 * sqgft
);
end

Model: COSTING

Command-Line Commands 411

This model estimates the cost of home construction jobs based on historical data on the number of
bedrooms, bathrooms, and square footage. The objective minimizes the maximum error over the
sample project set. Both the @MAX() and @ABS() functions in the objective are non-smooth, and, as a
result, can present problems for LINGO’s default, local search NLP solver. Running the model under
the default settings with the global solver disabled, we get the following result:

Local optimal solution found at step: 91
Objective value: 3997.347
Variable Value Reduced Cost
A0 37441.55 0.000000
Al 27234.51 0.000000
A2 23416.53 0.000000
A3 47.77956 0.000000

Enabling the global solver with the SET GLOBAL 1 command and re-optimizing yields the substantially
better solution:

Global optimal solution found at step: 186
Objective value: 1426.660
Variable Value Reduced Cost
A0 46814.64 0.000000
Al 22824.18 0.000000
A2 16717.33 0.000000
A3 53.74674 0.000000

Note that the maximum error has been reduced from 3,997 to 1,426!

This example illustrates the power of the global solver. Unfortunately, there is a drawback. You will
find the global solver runs considerably slower than the default local solver, and may be swamped
when trying to solve larger models. Therefore, the preferred option is to always try to create smooth,
convex models, so that the faster, default local solver can successfully solve them.

Keep in mind that the global solver supports most, but not all, of the functions available in the LINGO
language. The following is a list of the nonlinear functions nret currently supported by the global
solver:

& All probability distributions — cumulative, inverse and pdf, with the exception of
the normal distribution, which is fully supported

¢ (@PFS() — Poisson finite source

¢ @PPL() — Poisson linear loss

¢ (@USER()— User supplied function

Note: The global solver will not operate on models containing one or more unsupported nonlinear
operations that reference optimizable quantities; the default NLP solver will be called in this
case.

The global solver is disabled by default.

412 CHAPTER 6

73-75. LNRISE, LNBIGM, LNDLTA

The LNRISE, LNBIGM, and LNDLTA parameters control the linearization option in LINGO. Many
nonlinear operations can be replaced by linear operations that are mathematically equivalent. The
ultimate goal is to replace all the nonlinear operations in a model with equivalent linear ones, thereby
allowing use of the faster and more robust linear solvers. We refer to this process as linearization.
The LNRISE parameter determines the extent to which LINGO will attempt to linearize models. The
available options are:

LNRISE Setting ‘ Linearization Level

0 Solver Decides
1 None
2 Math
3 Math and Logic

Under the None option, no linearization occurs. With the Math option, LINGO linearizes the
mathematical functions: @ABS(), @MAX(), @MIN(), @SMAX(), and @SMIN() along with any
products of binary and continuous variables. The Math and Logicoption is equivalent to the Math
option, plus LINGO will linearize all logical operators (#LT# #LE# #EQ# #GT# #GE#, and #NE#).
Under the Solver Decides option, LINGO will do maximum linearization if the number of variables
doesn’t exceed 12. Otherwise, LINGO will not perform any linearization. LINGO defaults to the
Solver Decides setting.

The LNDLTA parameter controls the Delta Coefficient, which is a tolerance indicating how closely you
want the additional constraints added as part of linearization to be satisfied. Most models won’t require
any changes to this parameter. However, some numerically challenging formulations may benefit from
increasing Delta slightly. LINGO defaults to a Delta of 1.e-6.

When LINGO linearizes a model, it adds forcing constraints to the mathematical program generated to
optimize your model. These forcing constraints are of the form:

fAx)s Moy
where M is the BigM Coefficient and y is a 0/1 variable. The idea is that, if some activity in the
variables is occurring, then the forcing constraint will drive y to take on the value of 1. Given this, if
we set the BigM value to be too small, we may end up with an infeasible model. Therefore, the astute
reader might conclude that it would be smart to make BigM quite large, thereby minimizing the chance
of an infeasible model. Unfortunately, setting BigM to a large number can lead to numerical stability
problems in the solver resulting in infeasible or sub-optimal solutions. So, getting a good value for the
BigM Coefficient may take some experimentation. The default value for BigM is 100,000.

Command-Line Commands 413

As an example of linearization, consider the following model:

model:
sets:

projects: baths, sqgft, beds, cost, est;
endsets
data:
projects, beds, baths, sqgft, cost =
pl 5 4 6200 559608
P2 2 1 820 151826
r3 1 1 710 125943
p4 4 3 4300 420801
P5 4 2 3800 374751
p6 3 1 2200 251674
e7 3 2 3400 332426
enddata
min = @max(projects: @abs(cost - est));

@for (projects:

est = a0 + al * beds + a2 * baths + a3 * sgft
)
end

Model: COSTING

This model estimates the cost of home construction jobs based on historical data on the number of
bedrooms, bathrooms, and square footage. The objective minimizes the maximum error over the
sample project set. Both the @MAX() and @ABS() functions in the objective are non-smooth nonlinear
functions, and, as a result, can present problems for LINGO’s default, local search NLP solver.
Running the model under the default settings with linearization disabled, we get the following result:

Local optimal solution found at step: 91
Objective value: 3997.347
Variable Value Reduced Cost
A0 37441.55 0.000000
Al 27234.51 0.000000
A2 23416.53 0.000000
A3 47.77956 0.000000

Enabling linearization and re-optimizing yields the substantially better solution:

Global optimal solution found at step: 186
Objective value: 1426.660
Variable Value Reduced Cost
AQ 46814.64 0.000000
Al 22824.18 0.000000
A2 16717.33 0.000000
A3 53.74674 0.000000

414 CHAPTER 6

Note that the maximum error has been reduced from 3,997 to 1,426!

Linearization will substantially increase the size of your model. The sample model above, in un-
linearized form, has a mere 8 rows and 11 continuous variables. On the other hand, the linearized
version has 51 rows, 33 continuous variables, and 14 binary variables! Although linearization will
cause your model to grow in size, you will tend to get much better solution results if the model can be
converted entirely to an equivalent linear form.

Note: Linearization will be of most use when a nonlinear model can be 100% linearized. If LINGO
can only linearize a portion of your model, then you may actually end up with a more difficult
nonlinear model.

The linearization option is set to Solver Decides by default.

76. BASCTS
Please refer to the Constraint Cut Types section above for information on this parameter.

77. MAXCTR

This parameter controls the number of passes the branch-and-bound solver makes at each node of the
tree for cut generation. There is one exception in that MAXCTR does not control the number of passes
at the root node of the tree. You must use MAXCTP, see above, to control the number of passes at the
root node. The default value for MAXCTR is 2 passes.

78. HUMNTM
This parameter sets the minimum amount of time spent in heuristics at each node of the branch-and-
bound tree. The default value for HUMNTM is 0 seconds.

79. DECOMP

Many large scale linear and mixed integer problems have constraint matrices that are totally
decomposable into a series of block structures. If total decomposition is possible, LINGO can solve the
independent problems sequentially and report a solution for the original model, resulting in dramatic
speed improvements. Setting DECOMP to 1 enables the decomposition feature.

LINGO defaults to not using matrix decomposition.

80. GLBOPT
The GLBOPT tolerance specifies by how much a new solution must beat the objective value of the

incumbent solution in order to become the new incumbent in the global solver. The default value for
GLBOPT is 1. e-5.

81. GLBDLT
The GLBDLT tolerance specifies how closely the additional constraints, added as part of the global
solver’s convexification process, must be satisfied. The default value for GLBDLT is 1. e-7.

82. GLBVBD

The GLBVBD tolerance sets the default variable bounds while the global solver is running. If this
parameter is set to d, then variables will not be permitted to assume values outside the range of [-d, d].
Setting this parameter as tightly as possible in the Value Field restricts the global solver from straying
into uninteresting regions and will reduce run times. You may also need to set the GLBUBD tolerance
(see below) to control how the global solver uses the bound. The default value for GLBVBD is 1. e
+10.

Command-Line Commands 415

83. GLBUBD

The GLBUBD tolerance controls how the global solver’s variable bound tolerance, GLBVBD (see
above), is applied. There are three choices available: 0: None, 1:41l, and 2:Selected. Selecting None
removes the variable bound entirely and is not recommended. The A4// setting applies the bound to all
variables. Finally, the Selected setting causes the global solver to apply the bound after an initial solver
pass to find the first local solution. The bound will only be applied to a variable if it does not cut off
the initial local solution. LINGO defaults to the Selected setting.

84. GLBBRN
The GLBBRN tolerance specifies the branching direction for variables when the global solver initially
branches on them. Six options are available:

GLBBRN Setting Branching Direction

Absolute Width
Local Width
Global Width
Global Distance
Absolute Violation

Relative Violation

[, B I SN LOST N R e K

The default setting for branching is 5, or Relative Violation.

85. GLBBXS

The GLBBXS parameter specifies the strategy to use for choosing between all active nodes in the
global solver’s branch-and-bound tree. The choices are: 0:Depth First and 1:Worst Bound. The default
is 1, or Worst Bound.

86. GLBREF

The GLBREF option sets the degree of algebraic reformulation performed by the global solver.
Algebraic reformulation is critical for construction of tight, convex sub-regions to enclose the
nonlinear and nonconvex functions. The available settings are: 0: None, 1:Low, 2:Medium, and 3:High.
The default is 3, or High.

87. SUBOUT
The SUBOUT option is used to control the degree to which fixed variables are substituted out of the
ultimate math program passed to the solver engines.

For example, consider the model:

MAX= 20*X + 30*Y + 12*Z;

X = 2*Y;
X +Y + 72 <= 110;
Y = 30;

If we run the GEN command, we see that LINGO is able to reduce this model down to the equivalent,
but smaller model:

MAX= 12 * 7Z 4+ 2100;
7 <= 20;

416 CHAPTER 6

From the third constraint of the original model it is obvious that Y is fixed at the value 30. Plugging
this value for Y into the first constraint, we can conclude that X has a value of 60. Substituting these
two fixed variables out of the original formulation yields the reduced formulation above.

In most cases, substituting out fixed variables yields a smaller, more manageable model. In some
cases, however, you may wish to avoid this substitution. An instance in which you might want to
avoid substitution would be when equations have more than one root. When m multiple roots are
present, reduction may select a suboptimal root for a particular equation. On the other hand, the global
and multistart solvers are adept at handling equations containing multiple roots. Thus, when using
these solvers one may wish to forgo fixed variable reduction.

The available options are:

SUBOUT Setting Reduction Degree

0 None

1 Always

2 Not with global and
multistart

3 Linear only

Selecting None disables all fixed variable reduction. Selecting A/ways enables reduction. When Not
with global and multistart is selected, LINGO disables reduction whenever either the global or
multistart solvers are selected, otherwise reduction is performed. With the Linear Only option, LINGO
will not substitute a variable out unless it is a linear variable.

Note: You should be careful when turning off fixed variable reduction. If the model generator is
unable to substitute out fixed variables, you may end up turning a linear model into a more
difficult nonlinear model.

LINGO defaults to the Linear Only setting for fixed variable reduction.

88. NLPVER

The Nonlinear Solver Version option on the Nonlinear Solver may be used to select the version
number of the nonlinear solver. Presently, there are two options: Version 3.0 and Version 4.0. LINGO
defaults to using Version 3.0, but you may find that on some models Version 4.0 can perform better.

Command-Line Commands 417

89. DBGCLD and 90. DBGWRM
These two parameters give you control over the linear solver that is used by the DEBUG command for
model debugging. The available choices are:

DBGCLD/DBGWRM Debug Linear Solver

0 Solver Decides — LINGO selects the solver
it believes is the most appropriate,

1 Primal — the primal simplex solver will be
used,

2 Dual — the dual simplex solver will be
used, and

3 Barrier — the barrier solver will be used

(requires a barrier solver license).

DBGCLD selects the solver for cold starts (starting without an existing basis in memory) and
DBGWRM selects the solver for warm starts (restarting from an existing basis).

LINGO defaults to Solver Decides for both the cold and warm debug solver.

91. LCRASH

LINGO has two solution "crashing" methods that use different heuristics for generating starting points
for nonlinear models: NCRASH and LCRASH. If at least one of the two crash parameters is set to 1,
LINGO’s nonlinear solver will invoke a heuristic for generating a "good" starting point when you
solve a model. If this initial point is relatively good, subsequent solver iterations should be reduced
along with overall runtimes. It's possible, however, that runtimes may slow if the selected point turns
out to be poor. It is difficult to know beforehand if a particular crashing technique, if any, will help
performance. You will need to experiment with your model to determine the best settings for the two
crash procedures.

LINGO defaults to not crashing an initial solution.

92. BCROSS

The BCROSS parameter controls whether or not the barrier solver performs a basis crossover on linear
programs. Barrier solvers do not normally return basic solutions. For example, if alternate optima
exist, the barrier method will return a solution that is, loosely speaking, the “average” of all alternate
optima. The basis crossover process converts a non-basic barrier solver solution to a basic (i.e., corner
point) solution. The available choices are: 0 for no crossover and 1 (the default) to perform a
Crossover.

93. LOWMEM

The LOWMEM option may be used to guide LINGO’s memory usage. Enabling this option (SET
LOWMEM 1) causes LINGO to opt for less memory usage when solving a model. The downside is
that opting for less memory may result in longer runtimes.

LINGO defaults to disabling the LOWMEM option.

418 CHAPTER 6

94. FILOUT

LINGO can export a model’s solution to databases using the ODBC (Open DataBase Connectivity)
standard. Solutions exported to a database are sent to tables within the database. The tables may
contain more space for values than you are actually exporting. In other words, there may be records at
the end of a table that will not be receiving exported values from LINGO. The Fill Out ODBC Tables
option determines how these extra cells and records are treated.

When the Fill Out Ranges and Tables option is enabled (SET FILOUT 1), LINGO overwrites the
extra values with null entries. Conversely, when the option is not enabled, LINGO leaves any extra
values untouched.

The Fill Out ODBC Tables option is disabled by default.

95. DBGLVL

The DBGLVL option gives you control over the output level of the model debugging command,
DEBUG. The debugger is very useful in tracking down problems in models that are either infeasible
or unbounded. Possible output levels range from 1 (minimum output) to 15 (maximum output).
Higher levels of output will generate more details regarding aspects of the model causing
infeasibilities. However, higher output levels will generally result in longer runtimes for the debugger.

The default setting for the debugger output level is 5, which will search for a subset of constraints that
lead to an infeasibility.

96. UNARYM
The UNARYM option is used to set the priority of the unary minus operator. The two available
options are High (SET UNARYM 1) are Low (SET UNARYM 0).

There are two theories as to the priority that should be assigned to the unary minus (i.e., negation)
operator in mathematical expressions. On the one hand, there is the Excel practice that the unary
minus operator should have the highest priority, in which case, the expression 3”2 would evaluate to
+9. On the other hand, there is the mathematicians’ preference for assigning a lower priority to unary
minus than is assigned to exponentiation, in which case, 32 evaluates to 9. Note that regardless
which relative priority is used, one can force the desired result through the use of parenthesis.

LINGO defaults to the Excel approach of setting a higher priority (High) on negation than on
exponentiation.

97. LINEAR

The LINEAR option can be enabled (SET LINEAR 1) to minimize memory usage on models that are
entirely linear. When this option is in effect, the model generator can take steps to dramatically reduce
overall memory consumption without sacrificing performance. In fact, if all your models are linear,
we recommend that you enable this option permanently as the default for your installation. The one
restriction is that models must prove to be entirely linear. If a single nonlinearity is detected, you will
receive an error message stating that the model is nonlinear and model generation will cease. At which
point, you should clear this option and attempt to solve the model again.

By default, the LINEAR option is disabled.

Command-Line Commands 419

98. LOPTOL

The LOPTOL parameter allows you to control the setting for the linear optimality tolerance. This
tolerance is used to determine whether a reduced cost on a variable is significantly different from zero.
You may wish to loosen this tolerance (make it larger) on poorly scaled and/or large models to
improve performance.

The default setting for the LOPTOL parameter is 1.e-7.

99. SECORD

The SECORD option determines if the nonlinear solver will use second order derivates. If used (SET
SECORD 1), second order derivatives will always be computed analytically, as opposed to using
numerical differences. Computing second order derivatives will take more time, but the additional
information they provide may lead to faster runtimes and/or more accurate solutions.

LINGO defaults to not using second order derivatives.

100. NONNEG

When enabled (SET NONNEG 1), the NONNEG option tells LINGO to place a default lower bound of
0 on all variables. In other words, unless otherwise specified, variables will not be allowed to go
negative. Should you want a variable to take on a negative value, you may always override the default
lower bound of 0 using the @BND() function. If this option is disabled, then LINGO’s default
assumption is that variables are unconstrained and may take on any value, positive or negative.
Unconstrained variables are also referred to as be being free.

By default, LINGO enables the non-negative option, thereby setting a default lower bound of 0 on all
variables.

101. BIGMVL
Many integer programming models have constraints of the form:

f6) <M ¥z

where f{x) is some function of the decision variables, M is a large constant term, and z is a binary
variable. These types of constraints are called forcing constraints and are used to force the binary
variable, z, to 1 when f{x) is nonzero. In many instances, the binary variable is multiplied by a fixed
cost term in the objective; a fixed cost that is incurred when a particular activity, represented by f{x),
occurs. The large constant tem, M, Is frequently referred to as being a BigM coefficient.

Setting BigM too small can lead to infeasible or suboptimal models. Therefore, the BigM value will
typically have to be rather large in order to exceed the largest activity level of f(x). When BigM is
large, the solver may discover that by setting z slightly positive (within normal integrality tolerances),
it can increase f{x) to a significant level and thereby improve the objective. Although such solutions
are technically feasible to tolerances, they are invalid in that the activity is occurring without incurring
its associated fixed cost.

The BIGMVL parameter, or BigM threshold, is designed to avoid this problem by allowing LINGO to
identify the binary variables that are being set by forcing constraints. Any binary variable with a
coefficient larger than the BigM threshold will be subject to a much tighter integrality tolerance.

The default value for the BigM Threshold is 1.e8.

420 CHAPTER 6

102. KILLSC

LINGO allows the input of scripts in the calc section. These scripts are useful for running multiple
models, where the outputs of one model feed into subsequent models as input. Models are solved in
calc sections with the @SOLVE command. Time limits can be placed on @SOLVE's via the TATSLV
parameter (see below). If a time limit is hit while @SOLVE is running, LINGO will interrupt the solve
and either continue executing the script with the next command, or terminate all processing. When the
KILLSC option is set to 0 (default), processing continues with the next statement. Setting KILLSC to 1
causes LINGO to terminate all processing whenever the @SOLVE time limit is hit, and LINGO will
subsequently return to command-prompt level.

103. TATSLV

LINGO allows the input of scripts in the calc section. These scripts are useful for running multiple
models, where the outputs of one model feed into subsequent models as input. Models are solved in
calc sections with the @SOLVE command. Time limits can be placed on @SOLVE's via the TATSLV
parameter. If a time limit is hit while @SOLVE is running, LINGO will interrupt the solver and either
continue executing the script with the next command, or terminate all processing based on the setting
for the KILLSC parameter (see above). LINGO defaults to placing no time limit on @SOLVE
commands.

104. KBESTS

The KBESTS parameter is used to set the number of solutions desired as part of the K-Best solutions
feature of LINGO's mixed integer solver. Whenever this value is greater than 1, say K, LINGO will
return up to K unique solutions to the model. These solutions will have the property that they are the
next best solutions available in terms of their objective values. Less than K solutions may be returned
if a sufficient number of feasible solutions do not exist. Please refer to section K-Best Solutions
Example for an example of the use of the K-Best feature. The default value for this parameter is 1,
meaning that LINGO will find only one solution to integer models, i.e, the K-Best feature is disabled
by default.

105. LCORES

The LCORES parameter may be used to perform parallel solves of linear programs on multiple-cored
machines. One of four different linear solvers is chosen for each core. Assignment of solvers to cores
is controlled by the LCORE1 - LCORE4 parameters (see below). LINGO will take the solution from
the solver that finishes first and then interrupt the remaining solver threads.

The idea behind this approach is that different linear solvers will have relatively better or worse
performance on different classes of models. However, it may be difficult to predict beforehand the
solver that is most likely to outperform. So, by enabling multi-core solves, you guarantee that you will
always get top performance, even without knowledge beforehand of which solver is likely to run the
fastest.

Note: The multi-core feature requires that your machine have at least one core free for each solver
you wish to run. Using this feature with an inadequate number of cores will tend to decrease
overall performance.

For the LCORES parameter, you have the following choices: 1, 2, 3, or 4. When the default 1 option is
selected, the multi-core feature is disabled, and LINGO will run only one solver on linear programs,
namely the one specified as part of the SOLVEL option detailed above. When either option 2, 3, or 4 is

Command-Line Commands 421

selected, LINGO will run linear solvers in the requested number of cores. The choice of the actual
solvers used is controlled by the LCORE - LCORE4 parameters (see below).

106-109. LCORE1 - LCORE4

The LCORE1, LCORE2, LCORE3 and LCORE4 parameters are used in conjunction with the LCORES
parameter to perform parallel solves of linear programs on multiple-cored machines. One of four
different linear solvers is chosen for each core, with assignments controlled by the LCORE! - LCORE4
parameters. LINGO will take the solution from the solver that finishes first and then interrupt the
remaining solver threads.

The LCORES parameter gives the number of parallel solves that are to be performed on linear
programs, while LCORE - LCORE4 control the selection of the actual LP solver to use in each core.
Parameters LCOREI - LCORE4 are meaningful only when LCORES is greater than 1. In addition, if
LCORES=<n>, then only the parameters LCORE - LCORE<n> are meaningful. When the default 1
option is selected for LCORES, the multi-core feature is disabled, and LINGO will run only one solver
on linear programs, namely the one specified as part of the SOLVEL option detailed above. When
either option 2, 3, or 4 is selected for LCORES, LINGO will run linear solvers in the requested number
of cores. The choice of the actual solvers used is controlled by the LCORE - LCORE4 parameters.

The idea behind this approach is that different linear solvers will have relatively better or worse
performance on different classes of models. However, it may be difficult to predict beforehand the
solver that is most likely to outperform. So, by enabling multi-core solves, you guarantee that you will
always get top performance, even without knowledge beforehand of which solver is likely to run the
fastest.

Note: The multi-core feature requires that your machine have at least one core free for each solver
you wish to run. Using this feature with an inadequate number of cores will tend to decrease
overall performance.

422 CHAPTER 6

For each of the LCORE -4 parameters, you have the following choices:

LCORE(i) Setting LP Solver Used in Core i

1 Primall — Primal simplex algorithm 1
2 Dual — Dual simplex algorithm
3 Barrier — Barrier/Interior point solver

(available as a option)

4 Primal2 — Primal simplex algorithm 2,
installed as part of the Barrier option

As an example, the following session runs an LP model in two cores (LCORES=2), with the barrier
solver in core 1 (LCORE[=3) and the dual simplex solver in core2 (LCORE2=2):

set lcores 2 'run in 2 cores
Parameter 0ld Value New Value
LCORES 1 2

set lcorel 3 'barrier in core 1
Parameter 0ld Value New Value
LCORE1 1 3

set lcore2 2 'dual simplex in core 2
Parameter 0ld Value New Value
LCORE2 2 2

take lp.lng 'load the model

set terseo 1 'minimal output
Parameter 0ld Value New Value
TERSEO 0 1

go !solve the model

First returning solver: BARRIER
Global optimal solution found.

Objective value: 1272282.
Infeasibilities: 0.000000
Total solver iterations: 27

Once optimization is complete, LINGO will display a line indicating the solver that finished first. In
the solution report excerpt above, we see that the barrier solver was the first to completion.

110. SCALEW
After LINGO generates a model, it checks all the nonzero coefficients in the model and computes the
ratio of the largest to smallest coefficients. This ratio is an indicator of how well the model is scaled.

Command-Line Commands 423

When the ratio gets to be too high, scaling is considered to be poor, and numerical difficulties may
result during the solution phase. If the scaling ratio exceeds the value of the SCALEW parameter,
LINGO will display error message 205. The default value for SCALEW is 1el12. Instead of simply
increasing the SCALEW setting to eliminate error 205, we strongly suggest that you attempt to rescale
the units of your model so as to reduce the largest-to-smallest coefficient ratio.

111. REFRAQ

The REFRAQ parameter allows you to control how frequently the linear solver refactors the basis
matrix. The options are either to set REFRAQ to 0, thereby letting LINGO determine the frequency,
or to set REFRAQ to some positive integer quantity. If an integer value, N, is selected, then the
linear solver will refactor every N iterations. Numerically tough and/or poorly scaled models may
benefit from more frequent refactoring. However, refactoring too frequently will cause the solver to
slow down.

The default setting for the REFRAQ is 0, which will typically result in refactoring about once every
100 iterations.

112. SPSMSZ
The SPSMSZ parameter is used to control the default sample size for random variables in stochastic
programming (SP) whose outcomes are determined via sampling.

In many SP models, LINGO will generate a set of sample values for the some or all of the random
variables. This is particularly true when you have one or more continuous random variables, which
have an infinite number of possible outcomes. In such a case, sampling is the only viable alternative.

One way to specify the desired sample size for each stage is via the @SPSAMPSIZE function used
directly in the model's text. If, on the other hand, all or most stages should have the same sample size,
then you can use the SPSMSZ parameter to control the default sample size. Any stage which has not
had its sample size specified with @SPSAMPSIZE will default to a sample size equal to the SPSMSZ
parameter.

Note: In general, we prefer larger sample sizes to smaller ones in order to reduce sampling error.
However, SP models can become quite large if sample sizes aren't kept reasonably small.
This is particularly true for multiperiod models. For example, suppose we have a model with
just one random variable and ten periods/stages. If the default sample size is set to 3, then
there will be 3710=59,049 possible scenarios. With this many scenarios, it would only take a
handful of decision variables to end up with an underlying deterministic equivalent model
approaching one million variables.

The SPSMSZ parameter defaults to a value of 2.

113. SPSCON

The SPSCON parameter is used to control whether LINGO samples continuous distributions only for
the random variables in stochastic programs, or if it samples both continuous and discrete random
variables. Obviously, continuous random variables must be subject to sampling, given the infinite
number of possible outcomes. On the other hand, we have a choice when it comes to discretely
distributed random variables. If this option is enabled, then LINGO will generate one outcome for
each density point in the discrete distribution of the random variable. These outcomes will be
weighted by their corresponding probabilities.

424 CHAPTER 6

Note: If there are many density points in the distributions for the discrete random variables, the
deterministic equivalent generated to solve the SP may become exceedingly large, in which
case, disabling this option may be required. Once this option is disabled, discrete random
variables will be sampled in the same way as the continuous random variables.

The SPSCON option defaults to being on.

114. SPSEED
The SPSEED parameter is used to establish the seed for the random number generator used in
generating samples for random variables in stochastic programming (SP) models.

In many SP models, LINGO will generate a set of sample values for the random variables. This is
particularly true when you have one or more continuous random variables, which leads to an infinite

number of possible outcomes. In such a case, sampling is the only viable alternative.

The SPSEED parameter defaults to a value of 1031.

Note: The seed parameter has no effect when running demo versions of LINGO. Demo versions
always use the default seed value, regardless of this parameter's setting.

115. SPMTHD
The SPMTHD, or SP Solver Method, option is used to select the solution method for a stochastic
programming (SP) model. Presently, the available choices are:

SPMTHD Setting SP Solver Method

0 Solver Decides — LINGO decides the most
appropriate method for solving the SP model

1 Deterministic Equivalent — LINGO
generates and directly solves the
deterministic equivalent (DE) of the SP
model

2 Nested Benders Decomposition — The DE
for realistic SP models can get to be quite
large, in that the core model is replicated
once for every scenario. Fortunately, the DE
displays strong block-angular structure,
which makes it adaptable to decomposition
techniques, such as nested Bender
decomposition (NBD). Note that the model
must be entirely linear to successfully use
the NBD option.

The default setting for the SP Solver Method option is 0, or Solver Decides.

Command-Line Commands 425

116. SPXVAL

The SPXVAL, or Calculate All Expected Value Statistics, option controls whether LINGO displays
information regarding the expected values for a number of statistics when solving stochastic
programming (SP) models. To illustrate, when solving the SPGAS.LG4 model when this option is
enabled, you will see the following expected values at the top of the solution report:

Expected value of:

Objective (EV): 1400.000

Wait-and-see model's objective (WS): 1326.667
Perfect information (EVPI = |EV - WS|): 73.33333
Policy based on mean outcome (EM): 1479.444
Modeling uncertainty (EVMU = |EM - EV]|): 79.44444

These values are a guide as to how the stochastic nature of the model is impacting the objective
value. The following is a brief description of these expected values:

Expected Value of Objective (EV) - is the expected value for the model's
objective over all the scenarios, and is the same as the reported objective
value for the model.

Expected Value of Wait-and-See Model's Objective (WS) - reports the
expected value of the objective if we could wait and see the outcomes of
all the random variables before making our decisions. Such a policy
would allow us to always make the best decision regardless of the
outcomes for the random variables, and, of course, is not possible in
practice. For a minimization, it's true that WS <= EV, with the converse
holding for a maximization. Technically speaking, WS is a relaxation of
the true SP model, obtained by dropping the nonanticipativity
constraints.

Expected Value of Perfect Information (EVPI) - is the absolute value of
the difference between EV and WS. This corresponds to the expected
improvement to the objective were we to obtain perfect information
about the random outcomes. As such, this is a expected measure of how
much we should be willing to pay to obtain perfect information
regarding the outcomes of the random variables.

Expected Value of Policy Based On Mean Outcome (EM) - is the
expected true objective value if we (mistakenly) assume that all random
variables will always take on exactly their mean values. EM is
computed using a two-step process. First, the values of all random
variables are fixed at their means, and the resulting deterministic model
is solved to yield the optimal values for the stage 0 decision variables.
Next, a) the stage 0 variables are fixed at their optimal values from the
previous step, b) the random variables are freed up, c) the
nonanticipativity constraints are dropped, and d) this wait-and-see model
is solved. EM is the objective value from this WS model.

426 CHAPTER 6

Expected Value of Modeling Uncertainty (EVMU) - is the absolute value
of the difference EV - EM. It is a measure of what we can expect to
gain by taking into account uncertainty in our modeling analysis, as
opposed to mistakenly assuming that random variables always take on
their mean outcomes.

Note: The above approach for computing EM and EVMU makes unambiguous sense only for
models with a stage 0 and a stage 1. If there are later random variables in stages 2, 3, etc.,
then there are complications. For example, for decisions in later stages, we have seen the
outcomes from the random variables in earlier stages, so considering these random variables
to take on their mean value does not make sense. For models with additional stages beyond 0
and 1, EVMU will merely be an approximation of the true expected value of modeling
uncertainty.

Note: Computing these expected value statistics can be very time consuming for large models. If
speed is an issue, you may wish to disable this feature on the Solver|Options|SP Solver tab.

The SPXVAL option is enabled by default.

117. SPMAXS

The SPMAXS, or Max Scenarios Limit, parameter is used to establish a limit on the maximum number
of scenarios in a stochastic programming (SP) model before forcing automatic sampling of the random
variables.

The SPMAXS parameter defaults to a value of 40,000 scenarios.

118. PRECIS

LINGO defaults to displaying seven significant digits for values in standard solution reports. In some
cases, you may desire more or less than seven digits of precision, in which case, you will need to
adjust the PRECIS parameter.

For example, suppose we have a very simple model consisting of the single expression:
X =1/3;

The default solution report for this model using seven digits of precision would contain:

Variable Value
X 0.3333333

Row Slack or Surplus
1 0.000000

Increasing the Precision parameter to 16 and resolving yields the following solution report with 16
significant digits:

Variable Value
X 0.3333333333333333
Row Slack or Surplus

1 0.000000000000000

Command-Line Commands 427

The default value for the PRECIS parameter is seven significant digits.

119. LOOPOP

The LOOPOP, or Loop optimization, parameter is used to either enable or disable LINGO's loop
optimization step. Loop optimization reformulates expressions containing set looping functions in
order to make them more efficient, while maintaining mathematical equivalency. The end goal of loop
optimization is to minimize the number of passes through the inner loop of any nested loops in an
expression.

As an example, consider the following transportation model fragment, that just contains constraints for
satisfying customer demand:

MODEL:
! A transportation problem fragment;
SETS:
WAREHOUSE /1..50/ : CAPACITY;
CUSTOMER /1..5000/ : DEMAND;
ROUTES (WAREHOUSE, CUSTOMER) : COST, VOLUME;
ENDSETS

! The demand constraints;
QFOR(CUSTOMER(J):

@SUM(ROUTES(I, J): VOLUME(I, J)) >= DEMAND(J)
)

END
Transportation Model Fragment with Inefficient Constraints

In the demand constraints expression there are two loops — an outer @FOR() over the CUSTOMER
set and an inner @SUM() over the ROUTES set. As written, the inner loop must be executed
50*50*5000=1.25 million times. Note that a valid reformulation of these demand constraints would
be:
! The demand constraints;
@FOR(CUSTOMER(J) :
@SUM(WAREHOUSE(I): VOLUME(I, J)) >= DEMAND(J)
)i

With the expression rewritten in this manner, the inner loop will now only be executed 50*5000 times,
for a 98% reduction in total passes. LINGO's loop optimizer seeks out such inefficient loops and,
invisible to the user, rewrites them before the model gets passed to the generator. Of course, the end
result of such reformulations are faster generation times. In fact, the speedup from reformulation can
be quite dramatic in many cases. In this particular example, the reformulated version ran over 400
times faster in the model generator.

LINGO defaults to disabling the LOOPOP feature.

428 CHAPTER 6

120. HEUCUT
The HEUCUT, or heuristics cutoff criterion, option controls the criterion for terminating integer
programming heuristics. The possible settings for HEUCUT are:

HEUCUT Value Cutoff Criterion
0 LINGO decides
1 Time
2 Iterations

Under the Time setting, LINGO terminates heuristics after a certain amount of elapsed time. The
Iterations option terminates heuristics after a certain number of iterations. In general, the Time setting
results in the fastest performance. However, due to shifting computational loads on a machine,
solution paths may change under the 7ime setting from one solve to the next, potentially resulting in
non-reproducible solutions. If reproducibility of a runs is a concern, then the Iferations option should
be selected. Under the Solver Decides setting, LINGO chooses the most appropriate strategy.

The default setting for HEUCUT is 1, Solver Decides.

121. NUMBIN - Number of Histogram Bins
The NUMBIN parameter determines the number of bins used in histogram charts. Set this parameter to
0 to have LINGO automatically determine a sensible bin count.

The default setting for NUMBIN is 0.

122. SPBIGM - SP Big M Coefficient

The SPBIGM parameter is used by the Stochastic Programming (SP) solver in constructing forcing
constraints that may be required in the deterministic models generated by the solver. Forcing
constraints are generally added to force binary variables to 1 when some activity occurs. For example,
suppose x is a continuous variable and z is a binary variable. A forcing constraint that would drive z to
1 whenever x is positive would be:

X<M*z
where M is some large number. M in this case is the SPBIGM parameter.

There are two things to note about M. First, if M is too small, a forcing constraint can become
infeasible, making the entire model infeasible. In general, M should be at least as large as the largest
possible value for x so as not to introduce an infeasibility. However, from an algorithmic point of
view, M should not be too large. If M is unrealistically large, it will be tougher for the integer solver to
converge, plus it also introduces the potential round off error.

The default setting for M should be sufficient for most models. However, if your SP model is
infeasible for no known reason, you may want to try increasing M. On the other hand, if your SP is
running slow, you may want to try reducing M.

The SPBIGM parameter defaults to a value of 1.e8.

Command-Line Commands 429

123. NSLPSYV - SLP Solver

If the NSLPSV parameter is enabled, LINGO uses a successive linear programming (SLP) algorithm
for its nonlinear solver. This technique uses a linear approximation of the true nonlinear model within
successive, small regions. This then allows the use of the fast linear solver for optimizing each linear
subregion. In general, the SLP solver will not be well suited for highly nonlinear models. However, it
may offer better performance than the standard nonlinear solver when a model has few nonlinear
variables, such that the model is "mostly linear".

LINGO defaults to not enabling the SLP Solver option.

124. FORCEB - Enforce Bounds in CALC and DATA

If the Enforce Bounds In CALC and DATA option is enabled, it causes LINGO to check the values of
any variables input in calc and data sections against their bounds. Normally, variable bounds apply
only to optimizable variables that appear in the model's constraints and not to variables fixed to
constant values in calc and data sections. If you would also like LINGO to check variables fixed in
calc and data sections against their bounds, then you will need to enable this option.

By default, this option is disabled.

125. NTHRDS - Number of Execution Threads
The NTHRDS option controls the maximum number of threads, or processors, to utilize at any given
time. Interesting settings for the thread count are:

¢ (0 — LINGO determines the number of processors on the system and sets the thread limit to
this number.

¢ [— Only one processor will be used, causing LINGO to run in single-threaded mode.

¢ N — Here, N is some positive integer greater than 1 and less-than-or-equal-to 32, in which
case, LINGO will set the maximum number of threads to N.

LINGO defaults to running in single-threaded mode with a thread limit of 1.

By default, this option is disabled.

Note: Setting the maximum thread count parameter, NTHRDS, to N does not guarantee than N
cores will be fully utilized throughout the entire solve. There may be serial sections inside
parallel code that get executed from time to time, causing only one core to be utilized.
Concurrent algorithms may also have fewer than N different serial algorithms to launch,
meaning fewer than N cores will be occupied.

430 CHAPTER 6

126. MTMODE - Multithread Mode

The MTMODE parameter controls the multithreading mode that LINGO operates in. LINGO offers
multicore extensions to its model generator and solvers. The multicore extensions are of two types:
concurrent and parallel. Concurrent algorithms run two or more different serial algorithms on multiple
copies of the same model, using a separate thread for each algorithm, terminating as soon as the
winner thread finishes. These “different algorithms” may in fact be the same algorithm type, but using
different strategies and/or parameters. Parallel algorithms, on the other hand, parallelize
computationally intensive portions of the serial algorithm to distribute the workload across multiple

threads.

The following multicore extensions are currently available in LINGO:

LINGO Component ‘ Model Class Parallel Option Concurrent Option
Barrier Solver Linear Programs Yes No
BNP Solver Mixed Integer Programs Yes No
Global Solver Nonlinear Programs Yes No
Integer Solver Mixed Integer Programs Yes Yes
Linear Solver Linear Programs No Yes
Model Generator All Yes No
Multistart Solver Nonlinear Programs Yes No
Stochastic Solver Stochastic Programs Yes No

The available settings for the Mode, or multithreading mode, parameter are as follows:

¢ -1 — Solver Decides — The best available multithreading strategy, either parallel or
concurrent, will be selected for each step of the solution process.
¢ 0 — Off'in Solver — Multithreading will be disabled in the solvers, but allowed in the model
generator if the number of threads is greater than 1.
¢ | — Prefer Parallel — 1f a parallel option is available for a particular solution step, then it
will be selected, otherwise, a concurrent option will be selected when available.
¢ 2 — Parallel Only - If a parallel option is available for a particular solution step, then it will
be selected, otherwise, the step will be executed in single-thread mode.
¢ 3 — Prefer Concurrent - If a concurrent option is available for a particular solution step, then
it will be selected, otherwise, a parallel option will be selected when available.
& 4 — Concurrent Only - If a concurrent option is available for a particular solution step, then it
will be selected, otherwise, the step will be executed in single-thread mode.
Note: If the maximum thread count parameter, NTHRDS, is set to 1, then the multithreading mode
setting will be ignored, and LINGO will execute in single-threaded mode.
Note: Setting the maximum thread count parameter, NTHRDS, to N does not guarantee than N cores

will be fully utilized throughout the entire solve. There may be serial sections inside parallel
code that get executed from time to time, causing only one core to be utilized. Concurrent
algorithms may also have fewer than N different serial algorithms to launch, meaning fewer
than N cores will be occupied.

Command-Line Commands 431

127. BNPBLK - BNP Block Determination

The BNPBLK parameter controls how the the branch-and-price (BNP) solver determines the block
structure of the model. The BNP solver is a mixed integer programming solver for solving models with
block structures like the following:

Minimize: 2 c(k) * x(k)
Subject To:

2 Ak) *x(k) = d (linking constraints)
x(k) in X(k), for all k (decomposition structure)

where d, c(k) and x(k) are vectors and A(k) is a matrix with appropriate dimensions. x(k) contains
decision variables and X(k) denotes a linear feasible domain for x(k).

The BNP solver is a hybrid of branch-and-bound, column generation, and Lagrangean relaxation
methods. It can help to find either the optimal solution or a better lower bound (the Lagrangean bound)
for a minimization problem. Based on the decomposition structure, the solver divides the original
problem into several subproblems, or blocks, and solves them (almost) independently, exploiting
parallel processing if multiple cores are available.

BNP may perform better than the default MIP solver if: a) the number of linking constraints is small,
b) the number of blocks is large and they are of approximately the same size, and c¢) the number of
available processors (or cores) is large, e.g., 4 or more. Also, there may be some models for which
BNP finds a good solution and good bound more quickly than the default MIP algorithm, although it
may take longer to prove optimality.

The Blocks option for the BNP solver controls the number of subproblems, or blocks, that the model
will be partitioned into. Possible setting for the Blocks parameter are:

¢ -1 - Row Names - Row names are constructed in such a way as to specify each row's block (an
example is given below).

¢ 0 - Off - This will disable the BNP solver, in which case, the standard MIP solver will be used
to solve all mixed integer linear programs.

¢ [- Specified - The user explicitly specifies each row's block using the @BLOCKROW
function.

¢ N - A positive integer, greater-than-or-equal-to 2, indicating the number of independent
blocks to try and partition the model into via one of the graph partitioning algorithms
provided by LINGO. The actual heuristic used is chosen with the Heuristic parameter.

The default setting for Blocks is 0, or Off, i.e., the BNP solver will not be used on integer programming
models.

Note: The BNP solver can run the independent subproblems on separate threads to improve
performance. So, if your machine has multiple cores, be sure to set the thread limit to allow
for multithreading. Refer to the NTHRDS parameter above.

432 CHAPTER 6

For more information on block determination, the BNP solver and the BNPBLK parameter, refer to the
section BNP Solver in Chapter 5.

128. BNPHEU - BNP Block Finding Heuristic
The Block Heuristic parameter controls the heuristic used to partition the model into blocks. You may

currently select from two graph partitioning algorithms named simply GP/ and GP2; simple set
BNPHEU to 1 for GP1 and 2 for GP2.

For more information on block finding heuristics, the BNP solver and the BNPHEU parameter, refer
to the section BNP Solver in Chapter 5.

The default setting for BNPHEU is 1, i.e., the GP1 graph partitioning algorithm.

129. REPROD - Favor Reproducibility

The REPROD parameter allows you to indicate if your preference is for reproducible solutions across
multiple runs. In general, being able to reproduce results is a desirable outcome. However, some
models may run faster if we opt to not favor reproducible runs.

A number of solver steps have been found to perform better when using elapsed time as a measure of
work performed. The problem with this approach is that the actual amount of work that gets
performed over a fixed time interval will vary slightly across runs depending on a machine's load
factor. Many models have alternate optimal solutions, with equal objectives but different variable
values. LINGO is indifferent as to which solution is selected; it just wants to find a feasible solution
with the best objective value, regardless of the variables values. The end result of this variability in
work performed is that a different solution path may be selected from one run to the next, in which
case, you may end up with a different alternate optimum from a previous run.

On the other hand, enabling the REPROD option causes LINGO to use fixed measures of work (such
as iteration counts), allowing solutions to be reproducible across runs when using the same machine.

By default, LINGO enables the REPROD option.

130. STARTP - Default Starting Point

The STARTP parameter is used to set the default starting value for variables. Choosing a different
starting point may be useful for some nonlinear programs, where you want the solver to start in a
particular neighborhood close to good solutions to improve runtimes.

131. HRDLMS - Multistart Hurdle

The multistart solver solves nonlinear programs by successively restarting the NLP solver from
different starting points. This can be very useful in finding good solutions to non-convex models.
Sometimes, however, the multistart solver may take longer to solve than you'd desire. If, in this case,
you would be happy with any solution with an objective value better than, say, 100, then you can input
this as the HRDLMS value. The multistart solver will interrupt and return when it finds any solution
better than your multistart hurdle value.

Note: If the iteration limit for the multistart solver, MULTIS, is hit before the HRDLMS value, then
the solver will also interrupt.

Command-Line Commands 433

The default hurdle value is None. In other words, a hurdle value is not used by the multistart solver. To
clear an existing hurdle value, type SET HRDLMS NONE.

132. SOLVLG - Solver Log Level

The SOLVLG parameter can be used to control the amount of output the solver engines display while
running. By default, LINGO does not display much solver log output. However, some technical users
may be curious to see this information. Below is a selection of some log output from a small integer
program:

Number of constraints: 2 le: 1, ge: 0, eqg:
1, rn: 0 (ne:0)

Number of variables : 9 1b: 1, ub: 0, fr:
0, bx: 8 (fx:0)

Number of nonzeroces : 12 density: 0.0067 (%) , sb:
0

Abs. Ranges : Min. Max. Condition.

Matrix Coef. (A): 1.00000 7.00000 7.00000

Obj. Vector (c): 1.00000 10.00000 10.00000

RHS Vector (b) : 15.00000 15.00000 1.00000

Lower Bounds (1) 1.0000e-100 1.0000e-100 1.00000

Upper Bounds (u) 1.00000 1.00000 1.00000

BadScale Measure: 0

Binary variables
Integer variables

(in 2 constraints)
(in 0 constraints)

Startpoint info (not feasible):

Objvalue : 3.500000e+01 (startpoint)
Infeasibility of solution : 1.8e+01

Integer infeasibility o