Optimization Modeling Software for:
Linear
Nonlinear
and
Integer Programming

Solving Problems with LINGO

2019, Carlos Moya Mulero
CHAPTER
Of all, there were three things:
The certainty that we are always starting ...
The certainty that we need to continue ...
Rest assured that we will be interrupted before continuing ...

Therefore, we must:
Make of interruption, a path ...
Of the fall, a dance step ...
From fear, a ladder ...
From the dream, a bridge ...
Of the search, a meet. .

Fernando Pessoa
Operations management is at the heart of the great changes that are taking place in today's business environment.

Competitive pressures for higher quality, faster response time, superior service and full customization can only be met through more intelligently executed business operations.

The objective of this work is not to teach linear programming, but to present a collection of problems modeled in LINGO, in an auxiliary way in the development of new models or similar.

This type of modeling is designed for the use of large volumes of data, which can be made available in Database, Text Spreadsheets or Text Files, through OLE, ODBC and OLE functions.

The cases included in this work do not use external files, however, adjustments can be made to this by consulting the Lingo manual, available on Lindo Inc's website.

Thus, I hope that this content can be useful to the esteemed reader in the use of technology in their projects.

Author
LINGO

- Approach
- Key benefits of LINGO
- Overview
- Model Class
- Toolbar
- Menu Commands
- File type
LINGO - Optimization Modeling Software for Linear, Nonlinear, and Integer Programming

LINGO combines a full featured modeling environment with a set of solvers for linear, integer, and nonlinear models. Beginning modelers will appreciate the easy, natural style of model expression and the comfortable Windows interface.

Power modelers will love the option to use the advanced modeling language, library of mathematical functions, and the ability to read data from spreadsheets, databases, an LINGO is a comprehensive tool designed to make building and solving Linear, Nonlinear (convex & nonconvex/Global), Quadratic, Quadratically Constrained, Second Order Cone, Semi-Definite, Stochastic, and Integer optimization models faster, easier and more efficient.

LINGO provides a completely integrated package that includes a powerful language for expressing optimization models, a full featured environment for building and editing problems, and a set of fast built-in solvers.

The recently released LINGO includes a number of significant enhancements and new features. Click here for more information on these new features.
EASY MODEL EXPRESSION
LINGO will help you cut your development time. It lets you formulate your linear, nonlinear and integer problems quickly in a highly readable form. LINGO’s modeling language allows you to express models in a straightforward intuitive manner using summations and subscripted variables -- much like you would with pencil and paper. Models are easier to build, easier to understand, and, therefore, easier to maintain. LINGO can exploit multiple CPU cores for faster model generation.

CONVENIENT DATA OPTIONS
LINGO takes the time and hassle out of managing your data. It allows you to build models that pull information directly from databases and spreadsheets. Similarly, LINGO can output solution information right into a database or spreadsheet making it easier for you to generate reports in the application of your choice.

POWERFUL SOLVERS
LINGO is available with a comprehensive set of fast, built-in solvers for Linear, Nonlinear (convex & nonconvex/Global), Quadratic, Quadratically Constrained, Second Order Cone, Stochastic, and Integer optimization. You never have to specify or load a separate solver, because LINGO reads your formulation and automatically selects the appropriate one.

MODEL INTERACTIVELY OR CREATE TURN-KEY APPLICATIONS
You can build and solve models within LINGO, or you can call LINGO directly from an application you have written. For developing models interactively, LINGO provides a complete modeling environment to build, solve, and analyze your models. For building turn-key solutions, LINGO comes with callable DLL and OLE interfaces that can be called from user written applications. LINGO can also be called directly from an Excel macro or database application.

EXTENSIVE DOCUMENTATION AND HELP
LINGO provides all of the tools you will need to get up and running quickly. You get the LINGO User Manual (in printed form and available via the online help), which fully describes the commands and features of the program. Also included with super versions and larger is a copy of Optimization Modeling with LINGO, a comprehensive modeling text discussing all major BLOCKS of linear, integer and nonlinear optimization problems. LINGO also comes with dozens of real-world based examples for you to modify and expand.

<table>
<thead>
<tr>
<th>DISTRIBUTORS U.S.</th>
<th>DISTRIBUTORS BRAZIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. and all countries not listed below:</td>
<td>PRODUTTARE Consultores Associados</td>
</tr>
<tr>
<td>LINDO Systems, Inc.</td>
<td>Rua Honorio Silveira Dias, 1550</td>
</tr>
<tr>
<td>1415 N. Dayton</td>
<td>Bairro Higienopolis</td>
</tr>
<tr>
<td>Chicago, IL 60642</td>
<td>90540-070 Porto Alegre RS Brasil</td>
</tr>
<tr>
<td>Contact: Mark Wiley</td>
<td>Contact: Flavio Pizzato</td>
</tr>
<tr>
<td>Tel: (312) 988-7422</td>
<td>Phone (fax): +(55) 51 3024 5536</td>
</tr>
<tr>
<td>Fax: (312) 988-9065</td>
<td>+(55) 51 3022 8515</td>
</tr>
</tbody>
</table>
LINGO is a comprehensive tool designed to make building and solving mathematical optimization models easier and more efficient. LINGO provides a completely integrated package that includes a powerful language for expressing optimization models, a full-featured environment for building and editing problems, and a set of fast built-in solvers capable of efficiently solving most classes of optimization models. LINGO’s primary features include:

Algebraic Modeling Language
LINGO supports a powerful, set-based modeling language that allows users to express math programming models efficiently and compactly. Multiple models may be solved iteratively using LINGO’s internal scripting capabilities.

Convenient Data Options
LINGO takes the time and hassle out of managing your data. It allows you to build models that pull information directly from databases and spreadsheets. Similarly, LINGO can output solution information right into a database or spreadsheet making it easier for you to generate reports in the application of your choice. Complete separation of model and data enhance model maintenance and scalability.

Model Interactively or Create Turnkey Applications
You can build and solve models within LINGO, or you can call LINGO directly from an application you have written. For developing models interactively, LINGO provides a complete modeling environment to build, solve, and analyze your models. For building turn-key solutions, LINGO comes with callable DLL and OLE interfaces that can be called from user written applications. LINGO can also be called directly from an Excel macro or database application. LINGO currently includes programming examples for C/C++, FORTRAN, Java, C#.NET, VB.NET, ASP.NET, Visual Basic, Delphi, and Excel.

Extensive Documentation and Help
LINGO provides all of the tools you will need to get up and running quickly. You get the LINGO Users Manual (in printed form and available via the online Help), which fully describes the commands and features of the program. Also included with Super versions and larger is a copy of Optimization Modeling with LINGO, a comprehensive modeling text discussing all major classes of linear, integer and nonlinear optimization problems. LINGO also comes with dozens of real-world based examples for you to modify and expand.

Powerful Solvers and Tools
LINGO is available with a comprehensive set of fast, built-in solvers for linear, nonlinear (convex & nonconvex), quadratic, quadratically constrained, and integer optimization. You never have to specify or load a separate solver, because LINGO reads your formulation and automatically selects the appropriate one. A general description of the solvers and tools available in LINGO follows:

General Nonlinear Solver
LINGO provides both general nonlinear and nonlinear/integer capabilities. The nonlinear license option is required in order to use the nonlinear capabilities with LINDO API.

Global Solver
The global solver combines a series of range bounding (e.g., interval analysis and convex analysis) and range reduction techniques (e.g., linear programming and constraint propagation) within a branch-and-bound framework to find proven global solutions to non-convex nonlinear programs. Traditional nonlinear solvers can get stuck at suboptimal, local solutions. This is no longer the case when using the global solver.
Multistart Solver
The multistart solver intelligently generates a sequence of candidate starting points in the solution space of NLP and mixed integer NLPs. A traditional NLP solver is called with each starting point to find a local optimum. For non-convex NLP models, the quality of the best solution found by the multistart solver tends to be superior to that of a single solution from a traditional nonlinear solver. A user adjustable parameter controls the maximum number of multistarts to be performed.

Barrier Solver
The barrier solver is an alternative way for solving linear, quadratic and conic problems. LINGO’s state-of-the-art implementation of the barrier method offers great speed advantages for large-scale, sparse models.

Simplex Solvers
LINGO offers two advanced implementations of the primal and dual simplex methods as the primary means for solving linear programming problems. Its flexible design allows the users to fine tune each method by altering several of the algorithmic parameters.

Mixed Integer Solver
The mixed integer solver's capabilities of LINGO extend to linear, quadratic, and general nonlinear integer models. It contains several advanced solution techniques such as cut generation, tree reordering to reduce tree growth dynamically, and advanced heuristic and resolve strategies.

Stochastic Solver
The stochastic programming solver supports decision making under uncertainty through multistage stochastic models with recourse. The user describes the uncertainty by identifying the distribution functions, either built-in or user-defined, describing each random variable. The stochastic solver will optimize the model to minimize the cost of the initial stage plus the expected cost of future recourse actions over the planning horizon. Advanced sampling modes are also available for approximating continuous distributions. LINGO’s stochastic solver also supports chance-constrained models, where one or more sets of constraints are allowed to be violated according to a specified probability.

Model and Solution Analysis Tools
LINGO includes a comprehensive set of analysis tools for debugging infeasible linear, integer and nonlinear programs, using advanced techniques to isolate the source of infeasibilities to the smallest subset of the original constraints. It also has tools to perform sensitivity analysis to determine the sensitivity of the optimal basis to changes in certain data components (e.g. objective vector and right-hand-size values).

Quadratic Recognition Tools
The QP recognition tool is a useful algebraic pre-processor that automatically determines if an arbitrary NLP is actually a convex, quadratic model. QP models may then be passed to the faster quadratic solver, which is available as part of the barrier solver option. When the barrier solver option is combined with the global option, LINGO will automatically recognize conic models, in addition to convex quadratic models.

Linearization Tools
Linearization is a comprehensive reformulation tool that automatically converts many non-smooth functions and operators (e.g., max and absolute value) to a series of linear, mathematically equivalent expressions. Many non-smooth models may be entirely linearized. This allows the linear solver to quickly find a global solution to what would have otherwise been an intractable nonlinear problem.
Maximum Problem Dimensions

Some versions of LINGO limit one or more of the following model properties: total variables, integer variables, nonlinear variables, global variables, and constraints. The total variable limit is on the total number of optimizable variables in your model (i.e., variables LINGO was unable to determine as being fixed at a particular value). The integer variable limit applies to the total number of optimizable variables restricted to being integers with either the @BIN or @GIN functions. The nonlinear variable limit applies to the number of optimizable variables that appear nonlinearly in the model’s constraints. As an example, in the expression: \(X + Y \), both \(X \) and \(Y \) appear linearly. However, in the expression:

\[X^2 + Y \], \(X \) appears nonlinearly while \(Y \) appears linearly. Thus, \(X \) would count against the nonlinear variable limit. In some cases, nonlinear variables are allowed only if you have purchased the nonlinear option for your LINGO software. The global variable limit applies to the total number of nonlinear variables when using the global solver. The constraint limit refers to the number of formulas in the model that contain one or more optimizable variables. Keep in mind that a single @FOR function may generate many constraints.

The maximum sized problem your LINGO can handle depends on the version you have. The current limits for the various versions are:

<table>
<thead>
<tr>
<th>Version</th>
<th>Total Variables</th>
<th>Integer Variables</th>
<th>Nonlinear Variables</th>
<th>Global Variables</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demo/Web</td>
<td>300</td>
<td>30</td>
<td>30</td>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>Solver Suite</td>
<td>500</td>
<td>50</td>
<td>50</td>
<td>5</td>
<td>250</td>
</tr>
<tr>
<td>Super</td>
<td>2,000</td>
<td>200</td>
<td>200</td>
<td>10</td>
<td>1,000</td>
</tr>
<tr>
<td>Hyper</td>
<td>8,000</td>
<td>800</td>
<td>800</td>
<td>20</td>
<td>4,000</td>
</tr>
<tr>
<td>Industrial</td>
<td>32,000</td>
<td>3,200</td>
<td>3,200</td>
<td>50</td>
<td>16,000</td>
</tr>
<tr>
<td>Extended</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>

You can also determine the limits of your version by selecting the About LINGO command from the Help menu in Windows, or by typing HELP at the command-line prompt on other platforms. If you determine you need a larger version of LINGO, upgrades are available from LINDO Systems. Please feel free to contact us for pricing and availability.
<table>
<thead>
<tr>
<th>ABBREV</th>
<th>MODEL CLASS</th>
<th>DESCRIPTION MODEL CLASS FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>LINEAR PROGRAM</td>
<td>All expressions are linear and the model contains no integer restrictions on the variables.</td>
</tr>
<tr>
<td>QP</td>
<td>QUADRATIC PROGRAM</td>
<td>All expressions are linear or quadratic and there are no integer restrictions.</td>
</tr>
<tr>
<td>CONE</td>
<td>CONIC PROGRAM</td>
<td>The model is a conic (second-order cone) program and all variables are continuous.</td>
</tr>
<tr>
<td>NLP</td>
<td>NONLINEAR PROGRAM</td>
<td>At least one of the relationships in the model is nonlinear with respect to the variables.</td>
</tr>
<tr>
<td>MILP</td>
<td>MIXED INTEGER LINEAR PROGRAM</td>
<td>All expressions are linear, and a subset of the variables is restricted to integer values.</td>
</tr>
<tr>
<td>MIQP</td>
<td>MIXED INTEGER QUADRATIC PROGRAM</td>
<td>All expressions are either linear or quadratic and a subset of the variables has integer restrictions.</td>
</tr>
<tr>
<td>MICONE</td>
<td>MIXED INTEGER CONIC PROGRAM</td>
<td>The model is a conic (second-order cone) program, and a subset of the variables is restricted to integer values.</td>
</tr>
<tr>
<td>MINLP</td>
<td>INTEGER NONLINEAR PROGRAM</td>
<td>At least one of the expressions in the model is nonlinear, and a subset of the variables has integer restrictions. In general, this class of model will be very difficult to solve for all but the smallest cases.</td>
</tr>
<tr>
<td>PILP</td>
<td>PURE INTEGER LINEAR PROGRAM</td>
<td>All expressions are linear, and all variables are restricted to integer values.</td>
</tr>
<tr>
<td>PIQP</td>
<td>PURE INTEGER QUADRATIC PROGRAM</td>
<td>All expressions are linear or quadratic and all variables are restricted to integer values.</td>
</tr>
<tr>
<td>PICONE</td>
<td>PURE INTEGER CONIC PROGRAM</td>
<td>The model is a conic (second-order cone) program, and all the variables are restricted to integer values.</td>
</tr>
<tr>
<td></td>
<td>(Second-Order Cone)</td>
<td></td>
</tr>
<tr>
<td>PINLP</td>
<td>PURE INTEGER NONLINEAR PROGRAM</td>
<td>At least one of the expressions in the model is nonlinear, and all variables have integer restrictions. In general, this class of model will be very difficult to solve for all but the smallest cases.</td>
</tr>
</tbody>
</table>
The Windows Toolbar

LINGO’s toolbar for its Windows version is illustrated in the following graphic:

![Image of LINGO toolbar]

Here is a list of the buttons and their equivalent commands:

File Menu:
- File|New
- File|Save
- File|Open
- File|Print

Edit Menu:
- Edit|Undo
- Edit|Cut
- Edit|Paste
- Edit|Go To Line
- Edit|Redo
- Edit|Copy
- Edit|Find
- Edit|Match Parenthesis

Solver Menu:
- Solver|Solve
- Solver|Options
- Solver|Solution
- Solver|Picture

Window Menu:
- Window|Send To Back
- Window|Close All
- Window|Tile

Help Menu:
- Help|Topics
- Help|Pointer
The Mac and Linux Toolbar
LINGO’s toolbar for its Mac and Linux versions is illustrated in the following graphic:

Here is a list of the buttons and their equivalent commands:

File Menu:
- File|New
- File|Open
- File|Save
- File|Print

Edit Menu:
- Edit|Undo
- Edit|Redo
- Edit|Cut
- Edit|Copy
- Edit|Paste
- Edit|Find
- Edit|Match Parenthesis

Solver Menu:
- Solver|Solve
- Solver|Solution
- Solver|Options
- Solver|Picture

Window Menu:
- Window|Close All
- Window|Tile

Help Menu:
- Window|Previous
- Help|Topics
File Menu Commands

<table>
<thead>
<tr>
<th>Command</th>
<th></th>
<th></th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Opens a new model window.</td>
</tr>
<tr>
<td>Open</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Opens an existing model previously saved to disk.</td>
</tr>
<tr>
<td>Save</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Saves the contents of the current window to disk.</td>
</tr>
<tr>
<td>Save As</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Saves the contents of the current window to a new name.</td>
</tr>
<tr>
<td>Close</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Closes the current window.</td>
</tr>
<tr>
<td>Print</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Prints the contents of the current window.</td>
</tr>
<tr>
<td>Print Setup</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Configures your printer.</td>
</tr>
<tr>
<td>Print Preview</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Displays the contents of the current window as it would appear if printed.</td>
</tr>
<tr>
<td>Log Output</td>
<td>✓</td>
<td></td>
<td></td>
<td>Opens a log file for logging output to the command window.</td>
</tr>
<tr>
<td>Take Commands</td>
<td>✓</td>
<td></td>
<td></td>
<td>Runs a command script contained in a file.</td>
</tr>
<tr>
<td>Export File</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Exports a model in MPS or MPI file format.</td>
</tr>
<tr>
<td>License</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Prompts you for a new license password to upgrade your system.</td>
</tr>
<tr>
<td>Database User Info</td>
<td>✓</td>
<td></td>
<td></td>
<td>Prompts you for a user id and password for database access via the @ODBC() function.</td>
</tr>
<tr>
<td>Exit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Exits LINGO.</td>
</tr>
</tbody>
</table>
Edit Menu Commands

<table>
<thead>
<tr>
<th>Command</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Undo</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Redo</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cut</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Copy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Paste</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Paste Special</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select All</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Find</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Find Next</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Replace</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Go To Line</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Match Parenthesis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Paste Function</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Select Font</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Insert New Object</td>
<td>✓</td>
<td></td>
<td>Embeds an OLE object into the document.</td>
</tr>
<tr>
<td>Links</td>
<td>✓</td>
<td></td>
<td>Controls the links to external objects in your document.</td>
</tr>
<tr>
<td>Object Properties</td>
<td>✓</td>
<td></td>
<td>Specifies the properties of a selected, embedded object.</td>
</tr>
</tbody>
</table>
Solver Menu Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Windows</th>
<th>Mac</th>
<th>Linux</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Solves the model in the current window.</td>
</tr>
<tr>
<td>Solution</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Generates a solution report window for the current model.</td>
</tr>
<tr>
<td>Range</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Generates a range analysis report for the current window.</td>
</tr>
<tr>
<td>Options</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Sets system options.</td>
</tr>
<tr>
<td>Generate</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Generates the algebraic representation for the current model.</td>
</tr>
<tr>
<td>Picture</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Displays a graphical picture of the models matrix.</td>
</tr>
<tr>
<td>Debug</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Tracks down formulation errors in infeasible and unbounded linear programs.</td>
</tr>
<tr>
<td>Model Statistics</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Displays a brief report regarding the technical details of a model.</td>
</tr>
<tr>
<td>Look</td>
<td>✔</td>
<td></td>
<td></td>
<td>Generates a formulation report for the current window.</td>
</tr>
</tbody>
</table>

Window Menu Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Windows</th>
<th>Mac</th>
<th>Linux</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Window</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Opens a command window for command-line operation of LINGO.</td>
</tr>
<tr>
<td>Status Window</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Opens the solver's status window.</td>
</tr>
<tr>
<td>Close All</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Closes all open windows.</td>
</tr>
<tr>
<td>Tile</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Arranges all open windows into a tiled pattern.</td>
</tr>
<tr>
<td>Cascade</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Arranges all open windows into a cascading pattern.</td>
</tr>
<tr>
<td>Next</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>Brings the next window to the front.</td>
</tr>
<tr>
<td>Previous</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Brings the previous window to the front.</td>
</tr>
<tr>
<td>Arrange Icons</td>
<td>✔</td>
<td></td>
<td></td>
<td>Aligns all iconized windows at the bottom of the main window.</td>
</tr>
</tbody>
</table>
Help Menu Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help Topics</td>
<td>Accesses LINGO's online help facility.</td>
</tr>
<tr>
<td>Register</td>
<td>Registers your version of LINGO online.</td>
</tr>
<tr>
<td>AutoUpdate</td>
<td>Checks to see if an updated copy of LINGO is available for download on the LINDO Systems Web site</td>
</tr>
<tr>
<td>About LINGO</td>
<td>Displays the version and size of your copy of LINGO, along Systems.with information on how to contact LINDO</td>
</tr>
</tbody>
</table>

File|New

The New command opens a new, blank window. When you select the New command, you will be presented with the following dialog box:

You may then select the type of file you want to create. The file must be one of the four types:
1. LINGO Model (*.lg4)

The LG4 format was established with release 4.0 of LINGO. LG4 is the primary file format used by LINGO to store models under Windows and is not used on other platforms. This format supports multiple fonts, custom formatting, and Object Linking and Embedding (OLE). LG4 files are saved to disk using a custom binary format. Therefore, these files can’t be read directly into other applications or transported to platforms other than Windows. Use the LNG format (discussed next) to port a file to other applications or platforms.

2. LINGO Model (Text Only) (*.lng)

The LNG format is a portable format for storing your models. It is the standard file format used by LINGO on non-Windows platforms. LNG files are saved to disk as ASCII text and may be read into any application or word processor that supports text files. The LNG file format is supported by LINGO on all platforms, and LNG files can be ported from one platform to another. LNG files do not support multiple fonts, custom formatting, or OLE embedding of objects.

3. LINGO Data (*.ldt)

LDT files are data files that are typically imported into LINGO models using the @FILE function. @FILE can only read text files. Given this, all LDT files are stored as ASCII text. LDT files do not support multiple fonts, custom formatting, or OLE embedding.

4. LINGO Command Script (*.ltf)

LTF files are LINGO command scripts. These are ASCII text files containing a series of LINGO commands that can be executed with the File|Take Commands command. For more information on commands that can be used in a LINGO script, refer to Command-line Commands. LTF files do not support multiple fonts, custom formatting, or OLE.

5. LINDO Model (*.ltx)

LTX files are model files that use the LINDO syntax. Longtime LINDO users may prefer LINDO syntax over LINGO syntax. LINDO syntax is convenient for quickly entering small to medium-sized linear programs. As long as a file has an extension of .ltx, LINGO will assume that the model is written using LINDO syntax. Readers interested in the details of LINDO syntax may contact LINDO Systems to obtain a LINDO user's manual.

When you simply press either the New toolbar button or the F2 key, LINGO assumes you want a model file. Thus, LINGO does not display the file type dialog box and immediately opens a model file of type LG4. If you have used the Solver|Options command to change the default model file format from LG4 to LNG, LINGO will automatically open a model of type LNG when you press either the New button or the F2 key.

You may begin entering text directly into a new model window or paste in text from other applications using the Windows clipboard and the Edit|Paste command in LINGO.
BLOCK 3

Manual & Models

• Optimization Modeling
• User’s Manual
• Models
Optimization Modeling with LINGO by Linus Schrage

Table of Contents

Chapter 1 - What is Optimization?
Chapter 2 - Solving Math Programs with LINGO
Chapter 3 - Analyzing Solutions
Chapter 4 - The Model Formulation Process
Chapter 5 - The Sets View of the World
Chapter 6 - Product Mix Problems
Chapter 7 - Covering, Staffing & Cutting Stock Models
Chapter 8 - Networks, Distribution and PERT/CPM
Chapter 9 - Multi-period Planning Problems
Chapter 10 - Blending of Input Materials
Chapter 11 - Formulating and Solving Integer Programs
Chapter 12 - Decision Making Under Uncertainty and Stochastic Programs
Chapter 13 - Portfolio Optimization
Chapter 14 - Multiple Criteria and Goal Programming
Chapter 15 - Economic Equilibria and Pricing
Chapter 16 - Game Theory and Cost Allocation
Chapter 17 - Inventory, Production, and Supply Chain Management
Chapter 18 - Design & Implementation of Service and Queuing Systems
Chapter 19 - Design & Implementation of Optimization-Based Decision Support Systems

References

Index
Download LINGO User’s Manual (PDF)
LINGO is a comprehensive tool designed to help you build and solve linear, nonlinear, and integer optimization models quickly, easily, and efficiently. LINGO includes a powerful modeling language, a full-featured environment for building and editing problems, the ability to read and write to Excel and databases, and a set of fast built-in solvers.
Application Models Library

Now you can see what our products can do for you with examples from a wide variety of applications. Sample models for LINDO, LINGO, and What'sBest! are available here to view or to download. You may search by:

- Alphabetical index
- Keywords index
- Or, download the entire library

Many of these models are included as sample models when you download a free version of our software, but are provided here to view before downloading the software.

Keywords Index:

Enter the first several characters of the search string:

Search... Go

ABC Analysis
ABCs of Optimization
Academia
Acceleration
Acceptance Sampling
Accounting
Activity-Resource
Advanced Math
Advertising
BLOCK 4 CONTENT
NUMBER OF CASES

<table>
<thead>
<tr>
<th>Block</th>
<th>Name</th>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Product Mix</td>
<td>27</td>
<td>20.61</td>
</tr>
<tr>
<td>B6</td>
<td>Transport</td>
<td>15</td>
<td>11.45</td>
</tr>
<tr>
<td>B5</td>
<td>Aviation</td>
<td>9</td>
<td>6.87</td>
</tr>
<tr>
<td>B2</td>
<td>Blend</td>
<td>9</td>
<td>6.87</td>
</tr>
<tr>
<td>B10</td>
<td>Schedule</td>
<td>8</td>
<td>6.11</td>
</tr>
<tr>
<td>B7</td>
<td>Agriculture</td>
<td>8</td>
<td>6.11</td>
</tr>
<tr>
<td>B12</td>
<td>Metallurgy</td>
<td>7</td>
<td>5.34</td>
</tr>
<tr>
<td>B14</td>
<td>Investment</td>
<td>6</td>
<td>4.58</td>
</tr>
<tr>
<td>B11</td>
<td>Cutting</td>
<td>6</td>
<td>4.58</td>
</tr>
<tr>
<td>B4</td>
<td>Diet</td>
<td>6</td>
<td>4.58</td>
</tr>
<tr>
<td>B9</td>
<td>Refinery</td>
<td>5</td>
<td>3.82</td>
</tr>
<tr>
<td>B3</td>
<td>Finance</td>
<td>4</td>
<td>3.05</td>
</tr>
<tr>
<td>B13</td>
<td>Fertilizer</td>
<td>4</td>
<td>3.05</td>
</tr>
<tr>
<td>B16</td>
<td>Classics</td>
<td>3</td>
<td>2.29</td>
</tr>
<tr>
<td>B15</td>
<td>Clinic</td>
<td>3</td>
<td>2.29</td>
</tr>
<tr>
<td>B18</td>
<td>Logistics</td>
<td>3</td>
<td>2.29</td>
</tr>
<tr>
<td>B8</td>
<td>Construction</td>
<td>3</td>
<td>2.29</td>
</tr>
<tr>
<td>B20</td>
<td>Assembly Line Balancing</td>
<td>2</td>
<td>1.53</td>
</tr>
<tr>
<td>B17</td>
<td>Dynamic</td>
<td>2</td>
<td>1.53</td>
</tr>
<tr>
<td>B19</td>
<td>Energy</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>131</td>
<td>100.00</td>
</tr>
</tbody>
</table>
CHAPTER
What should be the composition of products to be manufactured by a company in order to achieve maximum profit, with the limitations or requirements of the buyer market and the production capacity of the factory being respected?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

An engine factory produces three models in its three factories: model 1100 cc, 1400 cc and 1800 cc. A union conflict foresees, in the short term, a prolonged strike at the factory 1.

To address this situation, the board decided to prepare a special production and sales plan for the next period, assuming there will be no production at factory 1 during the strike.

During this same period, the capacity of the Plant 2 is:

- 3000 engines of 1100 cc, if only this model were manufactured;
- 8000 engines of 1400 cc, if only this model were manufactured;
- 2000 engines of 1800 cc, if only this model were manufactured;
- Or any appropriate combination of these models.

During this same period, the capacity of Plant 3 is:

- 4000 engines of 1100 cc, if only this model were manufactured;
- 8000 engines of 1400 cc, if only this model were manufactured;
- Or any appropriate combination of these two models.
- The 1800 cc model is not produced in this factory

The company has entered into commitments that require it to supply at least 1000 engines of 1800 cc for export.

On the other hand, due to the decline in the domestic demand for 1100 cc engines and 1800 cc, the marketing department estimates 1000 and 1500 units of sales of these two models respectively.

Since the 1400 cc model is currently highly commercially successful, no limitations on its commercialization are envisaged. Determine the production plan that maximizes profit.

<table>
<thead>
<tr>
<th>Motor Production</th>
<th>Models</th>
<th>Plant 2</th>
<th>Plant 3</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>un</td>
<td>M1100</td>
<td>3000</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>un</td>
<td>M1400</td>
<td>3000</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>un</td>
<td>M1800</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>Models</td>
<td>Cost</td>
<td>Price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost/Price</td>
<td>$</td>
<td>M1100</td>
<td>875.00</td>
<td>900.00</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>M1400</td>
<td>1,260.00</td>
<td>1,100.00</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>M1800</td>
<td>1,450.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
MOTORS, DEMAND, PRICE;
FACTORY;
ROUTES(MOTORS, FACTORY): COST, VOLUME, CAPACITY;
ENDSETS
DATA:
! Products attributes;
MOTORS, DEMAND, PRICE =
M1100 1000 1150
M1400 8000 1450
M1800 1500 1800;
! Resources attributes;
FACTORY =
PLANT2
PLANT3;
! Engine cost
PLANT2
PLANT3;
COST =
875 900
1260 1100
1450 0;
! Manufacturing capacity
PLANT2
PLANT3;
CAPACITY =
3000 4000
3000 8000
2000 0;
ENDDATA
SUBMODEL MAX1:
[OBJ] MAX = @SUM(ROUTES(I, J):PRICE(I) * VOLUME(I, J) - COST(I, J) * VOLUME(I, J));
! The demand constraints;
@FOR(MOTORS(I)):
[DEM] @SUM(FACTORY(J): VOLUME(I, J)) = DEMAND(I);
! The capacity constraints;
@FOR(ROUTES(I, J): VOLUME(I, J) <= CAPACITY(I, J));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN', 0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " UNIT COST:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " CAPACITY (un):", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(" ", @NEWLINE(1), " DEMAND (un):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " PRICE (un):", @NEWLINE(1));
@TABLE(PRICE);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX1);
! Solution report;
@WRITE(" Total: ", @NEWLINE(1), " Optimal Production Program: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) VOLUME(I, J) #GT# 0: ' ', @FACTORY(J) ' produce:',
@FORMAT(VOLUME(I, J), '%4g'), ' un ', Motors(I), ' x Price:$',
@FORMAT(PRICE(I), '%7.2f'), ' = Revenue:$',
@FORMAT(PRICE(I) * VOLUME(I, J), '%11.2f'),
@NEWLINE(1),
@SOLVE(PRICE(I) * VOLUME(I, J) - (COST(I, J) * VOLUME(I, J)), '%11.2f'),
@NEWLINE(2));
@WRITE(" Total: ", @NEWLINE(1), " Optimal Production Program: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) VOLUME(I, J) #GT# 0: ' ', @FACTORY(J) ' produce:',
@FORMAT(VOLUME(I, J), '%4g'), ' un ', Motors(I), ' x Price:$',
@FORMAT(PRICE(I) * VOLUME(I, J), '%7.2f'), ' = Revenue:$',
@FORMAT(PRICE(I) * VOLUME(I, J), '%11.2f'),
@NEWLINE(1),
@SOLVE(PRICE(I) * VOLUME(I, J) - (COST(I, J) * VOLUME(I, J)), '%11.2f'),
@NEWLINE(2));
! Execute the graph;
@CHARTSVBAR('Production capacity per plant', 'Plant', 'Unit', CAPACITY);
To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 3600000.
Infeasibilities: 0.00000

OPTIMAL PRODUCTION PROGRAM:
PLANT2 produce:1000un M1100 x Price:$1150.00 = Revenue:$ 1150000.00
- Cost:$ 875000.00 = Profit:$ 275000.00

PLANT3 produce:8000un M1400 x Price:$1450.00 = Revenue:$11600000.00
- Cost:$ 8800000.00 = Profit:$ 2800000.00

PLANT2 produce:1500un M1800 x Price:$1800.00 = Revenue:$ 2700000.00
- Cost:$ 2175000.00 = Profit:$ 525000.00

TOTAL:
= Revenue:$15450000.00
- Cost:$11850000.00
= Profit:$ 3600000.00
GOAL
A shoemaker makes 6 shoes per hour, if he only makes shoes, and 5 belts per hour, if he only makes belts.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Shoe</th>
<th>Belt</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leather</td>
<td>un</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Time Spent</td>
<td>min</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Unit Profit</td>
<td>$</td>
<td>5.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Formulate the model of the system of production of the cobbler, in order to obtain the maximum revenue per hour.
MODEL:
SETS:
 PRODUCT : PRICE, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
 ! Resource attributes;
 RESOURCE, AVAILABLE = LEATHER 6, TIMESPENT 60;
 ! Product attributes;
 PRODUCT, PRICE = SHOES 5, BELTS 4;
 ! Required SHOES BELTS;
 USAGE = 2 1 ! Leather (un);
 10 12; ! TimeSpent (min);
ENDDATA
SUBMODEL MAX2:
 MAX = @SUM(PRODUCT(p): PRICE(p) * PRODUCE(p));
 ! The Available constraints;
 @FOR(RESOURCE(r):
 [CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r);
);
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO','1');
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " REQUIRED (un, min):", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" AVAILABLE (un, min):", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" PRICE:", @NEWLINE(1));
 @TABLE(PRICE);
 @WRITE(" SOLUTION ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MAX2);
 ! Solution report;
 @WRITE(" OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(PRODUCT(J): ' ', Product(J),', Produce:',
 @FORMAT(produce(J),'%2.0f'),' x ', 'Unit Profit: $',
 @FORMAT(Price(J),'%4.2f'),' = ', 'Total: $',
 @FORMAT(produce(J) * Price(J),'%5.2f'),
 @NEWLINE(1));
 @WRITE(" ", @NEWLINE(1));
 ! To see the corresponding model scalar, remove (!) From the line below;
 !@GEN(MAX2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
REQURED (un, min):
 SHOES BELTS
 LEATHER 2.000000 1.000000
 TIMESPENT 10.00000 12.00000

AVAILABLE (un, min):
 LEATHER 6.000000
 TIMESPENT 60.00000

PRICE:
 SHOES 5.000000
 BELTS 4.000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 21.42857
Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:
SHOES, Produce: 1un x Unit Profit: $5.00 = Total: $ 4.29
BELTS, Produce: 4un x Unit Profit: $4.00 = Total: $17.14
GOAL

One company manufactures 2 models of leather belts. The MOD1 model, of better quality, requires twice the manufacturing time compared to the MOD2 model (scale). If all the belts are of the model MOD2, at most 1000 units per day can be produced.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Mod1</th>
<th>Mod2</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material (Buckle)</td>
<td>un</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>Production Scale</td>
<td>un</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Unit Profit</td>
<td>$</td>
<td>4.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>

What is the optimal production program that maximizes the company’s total daily revenue?
MODEL:
SETS:
 PRODUCT : PROFIT, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
 ! Resources attributes;
 RESOURCE, AVAILABLE =
 BUCKLE_A 400
 BUCKLE_B 700
 SCALE 1000;
 ! Products attributes;
 PRODUCT, PROFIT =
 MOD1 4
 MOD2 3;
 ! Required MOD1 MOD2;
 USAGE =
 1 0 ! BUCKLE_A;
 0 1 ! BUCKLE_B;
 2 1 ! SCALE;
ENDDATA
SUBMODEL MAX3:
 MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
 [CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r));
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " RESOURCES/USAGE:", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" ", @NEWLINE(1), " AVAILABLE:", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" ", @NEWLINE(1), " PROFIT:", @NEWLINE(1));
 @TABLE(PROFIT);
 @WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MAX3);
 ! Solution report;
 @WRITE(" ", @NEWLINE(1), " OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(RXP(I, J) | I #LE# 1:' ', Product(J),', Produce:',
 @FORMAT(produce(J),'%4.0f'),'un using ',
 @FORMAT(RESOURCE(I),'-8s'),' x ','Unit PROFIT:$',
 @FORMAT(PROFIT(J),'%4.2f'), ', ','Total:$ ',
 @FORMAT(produce(J) * PROFIT(J),'%7.2f'),
 @NEWLINE(1));
 ! Execute the graph;
 @CHARTPIE('Product Mixer Model', 'Produce', PRODUCE);
 @WRITE(" ", @NEWLINE(1));
 !To see the corresponding model scalar, remove (!) From the line below;
 !@GEN(MAX3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

RESOURCES/USAGE:

<table>
<thead>
<tr>
<th></th>
<th>MOD1</th>
<th>MOD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUCKLE_A</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>BUCKLE_B</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>SCALE</td>
<td>2.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

AVAILABLE:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BUCKLE_A</td>
<td>400.0</td>
</tr>
<tr>
<td>BUCKLE_B</td>
<td>700.0</td>
</tr>
<tr>
<td>SCALE</td>
<td>1000.0</td>
</tr>
</tbody>
</table>

PRICE:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD1</td>
<td>4.000</td>
</tr>
<tr>
<td>MOD2</td>
<td>3.000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION

Global optimal solution found.

Objective value: 2700.000

Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

MOD1, Produce: 150un using BUCKLE_A x Unit PROFIT:$4.00 = Total:$ 600.00

MOD2, Produce: 700un using BUCKLE_A x Unit PROFIT:$3.00 = Total:$ 2100.00
GOAL

A company, after a process of rationalization of production, has available with 3 productive resources, R1, R2 and R3, that can be used to produce two products P1 and P2.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>P1</th>
<th>P2</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembler Line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>un</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>R2</td>
<td>un</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>R3</td>
<td>un</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Unit Profit</td>
<td>$</td>
<td>120.00</td>
<td>150.00</td>
</tr>
</tbody>
</table>

So, what is the monthly output of P1 and P2 that brings the highest revenue to the company?
MODEL:
SETS:
 PRODUCT : PRICE, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
 ! Resources attributes :
 RESOURCE, AVAILABLE =
 R1 100
 R2 90
 R3 120;
 ! Products attributes:
 PRODUCT, PRICE =
 P1 120
 P2 150;
 ! Required
 USAGE =
 2 4 ! R1;
 3 2 ! R2;
 5 3; ! R3;
ENDDATA
SUBMODEL MAX4:
 [OBJ] MAX = @SUM(PRODUCT(p): PRICE(p) * PRODUCE(p));
 ! The Available constraints:
 @FOR(RESOURCE(r):
 [AVA] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r);
 @GIN(PRODUCE););
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " PRODUCTIVE RESOURCES BY UNIT):", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" AVAILABLE (un):", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" PRICE:", @NEWLINE(1));
 @TABLE(PRICE);
 @WRITE(" SOLUTION ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MAX4);
 ! Solution report;
 @WRITE(" OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(product(J):' ',
 @FORMAT(Product(J), '-2s'), ': ',
 @FORMAT(produce(J), '%2.0f'), 'un x ', 'Unit Profit: $',
 @FORMAT(Price(J), '%4.2f'), ' = ', 'Total: $',
 @FORMAT(produce(J) * Price(J), '%4.2f'),
 @NEWLINE(1));
 ! Execute the Graph;
 @CHARTPIE('Product Mixer Model', 'Produce', PRODUCE);
 @WRITE(" ", @NEWLINE(1));
 ! To see the corresponding model scalar, remove (!) From the line below;
 !@GEN(MAX4);
ENDCALC
DATA:

PRODUCTIVE RESOURCES BY UNIT:

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>2.000000</td>
<td>4.000000</td>
</tr>
<tr>
<td>R2</td>
<td>3.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>R3</td>
<td>5.000000</td>
<td>3.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (un):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>100.0000</td>
</tr>
<tr>
<td>R2</td>
<td>90.00000</td>
</tr>
<tr>
<td>R3</td>
<td>120.0000</td>
</tr>
</tbody>
</table>

PRICE:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>120.0000</td>
</tr>
<tr>
<td>P2</td>
<td>150.0000</td>
</tr>
</tbody>
</table>

SOLUTION

Global optimal solution found.

Objective value: 4290.000

Objective bound: 4290.000

Infeasibilities: 0.00000

OPTIMAL PRODUCTION PROGRAM:

P1: 12un x Unit Profit: $120.00 = Total: $1440.00
P2: 19un x Unit Profit: $150.00 = Total: $2850.00
GOAL
Two factories (A, B) produce 3 different types of paper. The company that controls both has a contract to produce:

<table>
<thead>
<tr>
<th>Products / Resource</th>
<th>A</th>
<th>B</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Paper</td>
<td>8</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Medium Paper</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Thick Paper</td>
<td>2</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>Unit Cost</td>
<td>$1000.00</td>
<td>2000.00</td>
<td>-</td>
</tr>
</tbody>
</table>

How many days will each plant have to operate to supply the orders more economically?
MODEL:
SETS:
PRODUCT: DEMAND;
RESOURCE: COST;
RXP(PRODUCT, RESOURCE) : CAPACITY, VOLUME;
ENDSETS
DATA:
! Products attributes;
PRODUCT, DEMAND =
THIN 16
MEDIUM 6
THICK 28;
! Resources attributes;
RESOURCE, COST =
PLANT_A 1800
PLANT_B 2000;
! Daily production
CAPACITY =
8 2 !Thin;
1 1 !Medium;
2 7; !Thick;
ENDDATA
SUBMODEL MIN5:
[OBJ] MIN = @SUM(RXP(r, p): COST(p) * VOLUME(r, p));
! The Demand constraints;
@FOR(PRODUCT(L):
[DEM] @SUM(RESOURCE(C): VOLUME(L, C)) = DEMAND (L));
! The Capacity constraints;
@FOR(RXP(r, p):
[CAP] @SUM(RXP(r,p): VOLUME(r,p)) >= CAPACITY(r, p));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1) ;
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " DAILY PRODUCTION (TON) :", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(" ", @NEWLINE(1), " DEMAND:", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " COST:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN5);
! Solution report;
@WRITE(" ", @NEWLINE(1), " OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RXP(I, J) :
' Product:',
@FORMAT(PRODUCT(I),'-7s'), ' Produce: ',
@FORMAT(VOLUME(I,J),'%5.1f'), 'ton ', '(in ',
@FORMAT(VOLUME(I,J)/CAPACITY(I,J),'%4.1f'), ' Days '),
@FORMAT(RESOURCE(J),'-6s'), ' x ', 'Unit cost: $',
@FORMAT(COST(J),'%6.2f'), ' = ', 'Total: $',
@FORMAT(VOLUME(I, J) * COST(J),'%8.2f'),
@NEWLINE(1));
! Demand reached;
@WRITE(' Demand reached in:', 20*' ');
@FORMAT(@MAX(RXP(I, J):VOLUME/CAPACITY),'%4.1f'), ' Days', @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MIN5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
DAILY PRODUCTION (TON):

<table>
<thead>
<tr>
<th></th>
<th>PLANT_A</th>
<th>PLANT_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>THIN</td>
<td>8.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>THICK</td>
<td>2.000000</td>
<td>7.000000</td>
</tr>
</tbody>
</table>

DEMAND:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>THIN</td>
<td>16.00000</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>6.000000</td>
</tr>
<tr>
<td>THICK</td>
<td>28.00000</td>
</tr>
</tbody>
</table>

COST:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANT_A</td>
<td>1000.000</td>
</tr>
<tr>
<td>PLANT_B</td>
<td>2000.000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

Global optimal solution found.
Objective value: 92000.00
Infraesibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

<table>
<thead>
<tr>
<th>Product:</th>
<th>Produce:</th>
<th>(in)</th>
<th>Unit cost:</th>
<th>Total:</th>
</tr>
</thead>
<tbody>
<tr>
<td>THIN</td>
<td>14.0ton</td>
<td>1.8 Days</td>
<td>$1800.00</td>
<td>$25200.00</td>
</tr>
<tr>
<td>THIN</td>
<td>2.0ton</td>
<td>1.0 Days</td>
<td>$2000.00</td>
<td>$4000.00</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>5.0ton</td>
<td>5.0 Days</td>
<td>$1800.00</td>
<td>$9000.00</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>1.0ton</td>
<td>1.0 Days</td>
<td>$2000.00</td>
<td>$2000.00</td>
</tr>
<tr>
<td>THICK</td>
<td>21.0ton</td>
<td>10.5 Days</td>
<td>$1800.00</td>
<td>$37800.00</td>
</tr>
<tr>
<td>THICK</td>
<td>7.0ton</td>
<td>1.0 Days</td>
<td>$2000.00</td>
<td>$14000.00</td>
</tr>
</tbody>
</table>

Demand reached in: 10.5 Days
GOAL
One company produces parachutes and hang gliders on two assembly lines.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Parachutes</th>
<th>Hang Gliders</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line A</td>
<td>hr</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Line B</td>
<td>hr</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>60.00</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Formulate the production schedule that maximize the profit of the Company?
MODEL:
SETS:
PRODUCT: PROFIT, PRODUCE;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS
DATA:
! Resources attributes;
RESOURCE, AVAILABLE =
LINE_A 100
LINE_B 42;
! Products attributes;
PRODUCT, PROFIT =
PARACHUTES 60
HANG_GLIDERS 40;
! Required (hr)
Parachutes | HangGliders;
USAGE = 10 10
3 7;
ENDDATA
SUBMODEL MAX6:
MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
 [CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r);
);}
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " REQUIRED:", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE:", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " PROFIT:", @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX6);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RXP(I, J) | USAGE(I,J) #GT# 0 #AND# USAGE(I, J) #LT# 4: ' ',
 @FORMAT(RESOURCE(I),'-6s'), ', Produce:',
 @FORMAT(PRODUCE(J),'%2.0f'), ', ',
 @FORMAT(PRODUCT(J),'-12s'), ' x Unit profit: $',
 @FORMAT(PROFIT(J),'%4.2f'), ' = ', 'Total: $',
 @FORMAT(PRODUCE(J) * PROFIT(J),'%6.2f'),
);}
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MAX6);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/USAGE (hr):

<table>
<thead>
<tr>
<th></th>
<th>PARACHUTES</th>
<th>HANG_GLIDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE_A</td>
<td>10.00000</td>
<td>10.00000</td>
</tr>
<tr>
<td>LINE_B</td>
<td>3.000000</td>
<td>7.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (hr/week):

<table>
<thead>
<tr>
<th></th>
<th>LINE_A</th>
<th>LINE_B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100.0000</td>
<td>42.0000</td>
</tr>
</tbody>
</table>

PROFIT (p/un):

<table>
<thead>
<tr>
<th></th>
<th>PARACHUTES</th>
<th>HANG_GLIDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60.00000</td>
<td>40.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Global optimal solution found.
Objective value: 600.0000
Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:
LINE_B, Produce: 10 PARACHUTES x Unit profit: $60.00 = Total: $600.00
GOAL

One factory intends to manufacture two models of suits and has the following stock:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Mod1</th>
<th>Mod2</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeans</td>
<td>m</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Silk</td>
<td>m</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Satin</td>
<td>m</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Price</td>
<td>$</td>
<td>6.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

How many pieces of each type the manufacturer must make to get the maximum revenue.
MODEL:
SETS:
PRODUCT : PRICE, PRODUCE, IND;
RESOURCE: AVAILABLE;
RXP(RESOURCE,PRODUCT) : USAGE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE , AVAILABLE =
JEANS 32
SILK 22
SATIN 30;

! Product attributes;
PRODUCT, PRICE, IND =
MOD1 6 0
MOD2 10 1;

! Required (m)
MOD1 MOD2;
USAGE =
4 2 ! JEANS;
2 4 ! SILK;
2 6; ! SATIN;
ENDDATA
SUBMODEL MAX7:
[OBJ] MAX = @SUM(PRODUCT(p): PRICE(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
[AVA] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r););
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data block;
@WRITE("" " DATA:", @NEWLINE(1), " RESOURCES/USAGE (m):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE("" " AVAILABLE (m):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE("" " PRICE:", @NEWLINE(1));
@TABLE(PRICE);
@WRITE("" " SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX7);
! Solution report;
@WRITE("" " OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) : ' ',
 @FORMAT(PRODUCT(J), '-5s'), 'Produce:',
 @FORMAT(PRODUCE(J), '%2g'), 'un x ', 'Unit price:$',
 @FORMAT(PRICE(J), '%5.2f'), ' = ', 'Revenue:$',
 @FORMAT(PRODUCE(J) * PRICE(J), '%5.2f'),
 @NEWLINE(1));
! Execute the Graph;
@CHARTPIE('Product Mixer Model', 'Produce', PRODUCE);
@WRITE("" ");
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MAX7);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/USAGE (m):

<table>
<thead>
<tr>
<th></th>
<th>MOD1</th>
<th>MOD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>JEANS</td>
<td>4.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>SILK</td>
<td>2.000000</td>
<td>4.000000</td>
</tr>
<tr>
<td>SATIN</td>
<td>2.000000</td>
<td>6.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (m):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JEANS</td>
<td>32.00000</td>
</tr>
<tr>
<td>SILK</td>
<td>22.00000</td>
</tr>
<tr>
<td>SATIN</td>
<td>30.00000</td>
</tr>
</tbody>
</table>

PRICE:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD1</td>
<td>6.000000</td>
</tr>
<tr>
<td>MOD2</td>
<td>10.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION

Global optimal solution found.

Objective value: 62.00000

Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

MOD1 Produce: 7un x Unit price:$6.00 = Revenue:$42.00
MOD2 Produce: 2un x Unit price:$10.00 = Revenue:$20.00
Goal

A leather goods company manufactures two types of products: bags and backpacks.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Bags</th>
<th>Backpack</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutting</td>
<td>hr</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Seam</td>
<td>hr</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Packing</td>
<td>hr</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Dyeing</td>
<td>hr</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Production Day</td>
<td>un</td>
<td>120</td>
<td>30</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>50.00</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Determines how many of each product the company must manufacture to maximize its profit.
MODEL:
SETS:
 PRODUCT : PROFIT, DEMAND, IND, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
 ! Resource attributes;
 RESOURCE, AVAILABLE =
 CUTTING 300
 SEAM 440
 PACKING 300
 DEYING 540;
 ! Products attributes;
 PRODUCT, DEMAND, PROFIT, IND =
 BAGS 120 50 0
 BACKPACKS 30 40 1;
 ! Required;
 USAGE =
 2 0 1 ! CUTTING;
 2 2 1.2 ! SEAM;
 1.2 1.5 1.2 ! PACKING;
 0 3 3 ! DEYING;
ENDDATA
SUBMODEL MAX8:
 MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
 ! The Demand constraints;
 @FOR(PRODUCT(J): [DEM] @SUM(PRODUCT(J): PRODUCE(J)) = DEMAND(J));
 ! The Available constraints;
 @FOR(RESOURCE(r):
 [CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r););
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " RESOURCES/USAGE (hr/un):", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" AVAILABLE (hr):", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" DEMAND (un):", @NEWLINE(1));
 @TABLE(DEMAND);
 @WRITE(" PROFIT (p/un):", @NEWLINE(1));
 @TABLE(PROFIT);
 @WRITE(" SOLUTION ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MAX8);
 ! Solution report;
 @WRITE(" OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(PRODUCT(J): ' ',
 @FORMAT(PRODUCT(J),'^10s'), ' Produce:',
 @FORMAT(PRODUCE(J),'^%3.0f'), 'un x ', 'Profit:$',
 @FORMAT(PROFIT(J),'^%5.2f'), ' = ', 'Total:$',
 @FORMAT(PRODUCT(J) * PROFIT(J),'^%6.2f'),
);
 @NEWLINE(1));
 ! Execute the Graph;
 @CHARTPIE('Product Mixer Model', 'Produce', PRODUCE);
 @WRITE(" ", @NEWLINE(1));
 !To see the corresponding model scalar, remove (!) From the line below;
 !@GEN(MAX8);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

RESOURCES/USAGE (hr/un):

<table>
<thead>
<tr>
<th></th>
<th>BAGS</th>
<th>BACKPACKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUTTING</td>
<td>2.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>SEAM</td>
<td>2.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>PACKING</td>
<td>1.200000</td>
<td>1.500000</td>
</tr>
<tr>
<td>DEYING</td>
<td>0.000000</td>
<td>3.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (hr):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CUTTING</td>
<td>300.0000</td>
</tr>
<tr>
<td>SEAM</td>
<td>440.0000</td>
</tr>
<tr>
<td>PACKING</td>
<td>300.0000</td>
</tr>
<tr>
<td>DEYING</td>
<td>540.0000</td>
</tr>
</tbody>
</table>

DEMAND (un):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BAGS</td>
<td>120.0000</td>
</tr>
<tr>
<td>BACKPACKS</td>
<td>30.00000</td>
</tr>
</tbody>
</table>

PROFIT (p/un):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BAGS</td>
<td>50.00000</td>
</tr>
<tr>
<td>BACKPACKS</td>
<td>40.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION

Global optimal solution found.

Objective value: 7200.000

Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

<table>
<thead>
<tr>
<th></th>
<th>Produce:</th>
<th>Profit:</th>
<th>Total:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAGS</td>
<td>120un</td>
<td>$50.00</td>
<td>$6000.00</td>
</tr>
<tr>
<td>BACKPACKS</td>
<td>30un</td>
<td>$40.00</td>
<td>$1200.00</td>
</tr>
</tbody>
</table>
GOAL

A manufacturing company produces metal structures for two categories of bicycles. All the necessary information for the development of the model follows below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Mountain</th>
<th>Racing</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame</td>
<td>min</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Paint</td>
<td>min</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Quality</td>
<td>min</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Fixed Cost</td>
<td>$</td>
<td>162,559.00</td>
<td>92,441.00</td>
</tr>
<tr>
<td>Price</td>
<td>$</td>
<td>800.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>Minimum Production</td>
<td>un</td>
<td>250</td>
<td>1</td>
</tr>
</tbody>
</table>

Due to the responsibilities of the contractors there is a goal of producing over 250 Mountain Bike per month. What is the Best Monthly Production Plan?
MODEL:
SETS:
PRODUCT : PRICE, COST, FCOST, MIN_PROD, IND, PRODUCE;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resources attributes;
RESOURCE, AVAILABLE = FRAME 19000
PAINT 18000
QUALITY 15000;
! Products attributes;
PRODUCT, PRICE, COST, MIN_PROD, FCOST
IND = MOUNTAIN 800 300 250 162559 0
RACING 1000 400 1 92441 1;
! Required
MOUNTAIN
RACING;
USAGE = 10 25
! Frame;
18 15
! Paint;
10 25;
! Quality;
ENDDATA
SUBMODEL MAX9:
[OBJ] MAX = @SUM(PRODUCT(p): PRICE(p) * PRODUCE(p) - COST(P) * PRODUCE(P) - FCOST(p));
! The Available constraints;
@FOR(RESOURCE(r):
[AVA] @SUM(PRODUCT(P): usage(R,P) * PRODUCE(P)) <= AVAILABLE(R); @GIN(PRODUCE));
! Minimum production constraints;
@FOR(PRODUCT(P): PRODUCE(P) >= MIN_PROD(P));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " RESOURCES/USAGE (Minutes):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" AVAILABLE (Minutes):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" MINIMUM PRODUCTION (unity):", @NEWLINE(1));
@TABLE(MIN_PROD);
@WRITE(" FIXED COST:", @NEWLINE(1));
@TABLE(FCOST);
@WRITE(" UNIT PRICE:", @NEWLINE(1));
@TABLE(PRICE);
@WRITE(" SOLUTION ", @NEWLINE(1));
@SOLVE(MAX9);
! Solution report;
@WRITE(" OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J):' Produce:',
@FORMAT(PRODUCT(J),'-8s'),' Produce:',
@FORMAT(PRODUCE(J),'%3.0f'), ' x cost: $',
@FORMAT(COST(J),'%7.2f'), ' = total:$',
@FORMAT(COST(J) * PRODUCE(J),'%8.2f'), ' - ', @NEWLINE(1),', ',37'', 'Fixed cost:$',
@FORMAT(FCOST(J),'%9.2f'), ',', @NEWLINE(1), ',
@FORMAT(PRODUCT(J),'-8s'),' Produce:',
@FORMAT(PRODUCE(J),'%3.0f'), ' x price:$',
@FORMAT(PRICE(J),'%7.2f'), ' = ', 'Total:$',
@FORMAT(PRODUCE(J) * PRICE(J) - COST(J) * PRODUCE(J) - FCOST(J),'%9.2f'), ' = ',
@NEWLINE(2));
@WRITE(" TOTAL PROFIT: ", @NEWLINE(1),
@FORMAT(OBJ,'%9.2f'), @NEWLINE(2));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX9);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

RESOURCES/USAGE (Minutes):
- MOUNTAIN: FRAME 10.0000, PAINT 18.0000, QUALITY 10.0000
- RACING: FRAME 25.0000, PAINT 15.0000, QUALITY 25.0000

AVAILABLE (Minutes):
- FRAME: 19000.00
- PAINT: 18000.00
- QUALITY: 15000.00

MINIMUM PRODUCTION (unity):
- MOUNTAIN: 250.0000
- RACING: 1.0000

FIXED COST:
- MOUNTAIN: $162559.00
- RACING: $92441.00

UNIT PRICE:
- MOUNTAIN: $800.00
- RACING: $1000.00

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION

Global optimal solution found.

Objective value: 300000.0
Objective bound: 300000.0
Infeasibilities: 0.00000

OPTIMAL PRODUCTION PROGRAM:

MOUNTAIN Produce:
- 750 x cost: $300.00 = total: $225000.00 - Fixed cost: $162559.00
- Profit: $212441.00

RACING Produce:
- 300 x cost: $400.00 = total: $120000.00 - Fixed cost: $92441.00
- Profit: $87559.00

TOTAL PROFIT: $300000.00
GOAL

One manufacturer is starting the last week of production of four different models of wooden consoles for television sets designated M1, M2, M3 and M4. Each of them should be assembled and then decorated.

The manufacturer has:

- 30,000 hours to assemble these products (750 assemblers working 40 hours per week)
- 20,000 hours to decorate these products (500 decorators working 40 hours per week).

All the necessary information for the development of the model follows below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>Available</th>
<th>Workers</th>
<th>HR/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembler hr</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>30,000</td>
<td>750</td>
<td>40</td>
</tr>
<tr>
<td>Decor hr</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>20,000</td>
<td>500</td>
<td>40</td>
</tr>
<tr>
<td>Profit</td>
<td>$7.00</td>
<td>$7.00</td>
<td>$6.00</td>
<td>$9.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

How much of each model should be produced during this last week to maximize profit?
MODEL:
SETS:
PRODUCT : PROFIT, PRODUCE;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resources attributes;
RESOURCE, AVAILABLE = ASSEMBLER 30000
DECOR 20000;
! Product attributes;
PRODUCT , PROFIT =
M1 7
M2 7
M3 6
M4 9;
! Hours required per unit
USAGE =
4 5 3 5 ! Assembler;
2 1 5 3; ! Decor;
ENDDATA
SUBMODEL MAX10:
[OBJ] MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
[CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r);
@GIN(PRODUCE););
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", " RESOURCES/USAGE (hour):", ".newInstance(1));
@TABLE(USAGE);
@WRITE(" ", ".newInstance(1), " AVAILABLE (hour):", ".newInstance(1));
@TABLE(AVAILABLE);
@WRITE(" ", "newInstance(1), " PROFIT (p/un):", ".newInstance(1));
@TABLE(PROFIT);
@WRITE(" ", "newInstance(1), " SOLUTION ", ".newInstance(1));
! Execute sub-model;
@solve(MAX10);
! Solution Report;
@WRITE(" ", " newInstance(1), " OPTIMAL PRODUCTION PROGRAM: ", " newInstance(1));
@writefor(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ', PRODUCT(J), ' Produce:',
@format(PRODUCE(J), '%5.0f'), 'un x ', 'Unit price: $',
@format(PROFIT(J), '%4.2f'), '=' ', 'Total: $',
@format(PRODUCE(J) * PROFIT(J), '%8.2f'),
.newInstance(1));
! Execute the Graph;
@chartpie('Product Mixer Model', 'Produce', PRODUCE);
@write(" ", " newInstance(1));
! To see the corresponding model scalar, remove () From the line below;
! @gen(MAX10);
ENDCALC
END
DATA
All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/USAGE (hour):

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEMBLER</td>
<td>4.000000</td>
<td>5.000000</td>
<td>3.000000</td>
<td>5.000000</td>
</tr>
<tr>
<td>DECOR</td>
<td>2.000000</td>
<td>1.000000</td>
<td>5.000000</td>
<td>3.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (hour):

<table>
<thead>
<tr>
<th></th>
<th>ASSEMBLER</th>
<th>DECOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEMBLER</td>
<td>30000.00</td>
<td></td>
</tr>
<tr>
<td>DECOR</td>
<td>20000.00</td>
<td></td>
</tr>
</tbody>
</table>

PROFIT (p/un):

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>7.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>7.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>6.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>9.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION
Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 54375.00
Objective bound: 54375.00
Infraesibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:
M3, Produce: 625 un x Unit price: $6.00 = Total: $3750.00
M4, Produce: 5625 un x Unit price: $9.00 = Total: $50625.00
GOAL

One company manufactures motors for toys and small appliances. The Marketing department is forecasting sales of 6100 RONCAM engine units in the next six months.

This is a good demand and the company will have to test its productive capacity. All the necessary information for the development of the model follows below:

<table>
<thead>
<tr>
<th>Resources / Components</th>
<th>Made</th>
<th></th>
<th></th>
<th>Purchase</th>
<th></th>
<th></th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Body</td>
<td>Base</td>
<td>Blind</td>
<td>Body</td>
<td>Base</td>
<td>Blind</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Preparation</td>
<td>UT</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>49,200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mold</td>
<td>UT</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>49,200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assembler</td>
<td>UT</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>49,200</td>
<td></td>
</tr>
<tr>
<td>Unit Cost</td>
<td>$</td>
<td>8.00</td>
<td>20.00</td>
<td>10.00</td>
<td>10.00</td>
<td>20.00</td>
<td>16.00</td>
</tr>
</tbody>
</table>

Some of these components may be purchased from other suppliers if there are company limitations. Based on this information minimize the cost of the company.
MODEL:
SETS:
PRODUCT : COST, PRODUCE;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resources attributes UT (Unit of time):
RESOURCE , AVAILABLE =
PREPARATION 49200
MOLD 49200
ASSEMBLER 49200;

! Products attributes:
PRODUCT , COST =
BODY 8
BASE 20
BLIND 10
BODY_P 10
BASE_P 20
BLIND_P 16;

! Hours required p/unit
Body Base Blind Body_P Base_P Blind_P;
USAGE = 2 5 4 0 0 0
4 2 5 0 0 0
2 4 5 0 0 0;

ENDDATA
SUBMODEL MIN11:
MIN = @SUM(PRODUCT(p): COST(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
 [CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r););

! forecasting sales;
PRODUCE(1) + PRODUCE(4) >= 6100;
PRODUCE(2) + PRODUCE(5) >= 6100;
PRODUCE(3) + PRODUCE(6) >= 6100;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data block;
@WRITE(" * DATA*:", @NEWLINE(1), " RESOURCES/USAGE (UT):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" *", @NEWLINE(1), " AVAILABLE (UT):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" *", @NEWLINE(1), " COST:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" *", @NEWLINE(1), " SOLUTION *", @NEWLINE(1));

! Execute sub-model;
@SOLVE(MIN11);

! Solution report;
@WRITE(" *", @NEWLINE(1), " OPTIMAL PRODUCTION/PURCHASE PROGRAM: *", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
 @FORMAT(PRODUCT(J),'-7s'), @IF(@STRLN(PRODUCT(J)) #GT# 5, ' Purchase: ', ' Produce: '),
 @FORMAT(PRODUCE(J),'%5.0f'), ' un x ', 'Unit cost: $',
 @FORMAT(COST(J),'%5.2f'), ' = ', 'Total: $',
 @FORMAT(produce(J) * COST(J),'%9.2f'),
 @NEWLINE(1));

!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN11);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

```
DATA:
RESOURCES/USAGE (UT - Unit of Time):

<table>
<thead>
<tr>
<th></th>
<th>BODY</th>
<th>BASE</th>
<th>BLIND</th>
<th>BODY_P</th>
<th>BASE_P</th>
<th>BLIND_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREP</td>
<td>2.00000</td>
<td>5.00000</td>
<td>4.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>MOLD</td>
<td>4.00000</td>
<td>2.00000</td>
<td>5.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>ASM</td>
<td>2.00000</td>
<td>4.00000</td>
<td>5.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

AVAILABLE (UT):

<table>
<thead>
<tr>
<th></th>
<th>PREP</th>
<th>MOLD</th>
<th>ASM</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMIT</td>
<td>9350.00</td>
<td>18700.00</td>
<td>9350.00</td>
</tr>
<tr>
<td>VALUE</td>
<td>49200.00</td>
<td>49200.00</td>
<td>49200.00</td>
</tr>
</tbody>
</table>

COST:

<table>
<thead>
<tr>
<th></th>
<th>BODY</th>
<th>BASE</th>
<th>BLIND</th>
<th>BODY_P</th>
<th>BASE_P</th>
<th>BLIND_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>8.00000</td>
<td>20.0000</td>
<td>10.0000</td>
<td>10.0000</td>
<td>20.0000</td>
<td>16.0000</td>
</tr>
</tbody>
</table>
```

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

```
SOLUTION
Global optimal solution found.
Objective value: 234650.0
Infeasibilities: 0.000000

OPTIMAL PRODUCTION/PURCHASE PROGRAM:

<table>
<thead>
<tr>
<th></th>
<th>Produce</th>
<th>x Unit cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BODY</td>
<td>4675 un</td>
<td>$8.00</td>
<td>$37400.00</td>
</tr>
<tr>
<td>BLIND</td>
<td>6100 un</td>
<td>$10.00</td>
<td>$61000.00</td>
</tr>
<tr>
<td>BODY_P</td>
<td>1425 un</td>
<td>$10.00</td>
<td>$14250.00</td>
</tr>
<tr>
<td>BASE_P</td>
<td>6100 un</td>
<td>$20.00</td>
<td>$122000.00</td>
</tr>
</tbody>
</table>
```

GOAL

An electronics company manufactures five different models of communication cards for microcomputers.

Here are the materials and component quantities that make up each card model:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>H1</th>
<th>F1</th>
<th>V1</th>
<th>M1</th>
<th>M2</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed Circuit</td>
<td>m2</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Resistors</td>
<td>un</td>
<td>28</td>
<td>24</td>
<td>18</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Memory</td>
<td>un</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Assembler</td>
<td>hr</td>
<td>0.75</td>
<td>0.6</td>
<td>0.5</td>
<td>0.65</td>
<td>1</td>
</tr>
</tbody>
</table>

Minimum Production	un	500	1,000	500	500	500	-
Cost	$	136.00	101.00	96.00	137.00	101.00	-
Price	$	189.00	149.00	129.00	169.00	139.00	-

The company can sell every quantity produced, however, the marketing department wants to produce at least 500 units of each card model.

This department also determines that the quantity produced from the F1 card is at least twice the quantity sold from the H1 carton.

Based on this information maximize the profit of the company.
MODEL:
SETS:
PRODUCT :PRICE, COST, PRODUCE, MIN_PROD;
HEADER / H1, F1, V1, M1, M2, AVAIL, VALUE /;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT) : USAGE;
PXR(RESOURCE, HEADER): SLASUR;
ENDSETS
DATA:
! Resources attributes;
RESOURCE, AVAILABLE = PRT_CIRCUIT_M2 80000
RESISTORS_UN 100000
MEMORY_UN 30000
ASSEMBLER_HR 5000;
! Products attributes;
PRODUCT, PRICE, COST, MIN_PROD = H1 189 136 500
F1 149 101 1000
V1 129 96 500
M1 169 137 500
M2 139 101 500;
! Required per unit
H1 F1 V1 M1 M2;
USAGE = 20 15 10 8 5
28 24 18 12 16
8 8 4 4 6
0.75 0.6 0.5 0.65 1
! PRT_CIRCUIT_M2;
ENDDATA
SUBMODEL MAX12:
MAX = @SUM(PRODUCT(p): PRICE(p) * PRODUCE(p) - COST(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
[CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r));
! Minimum production required;
@FOR(PRODUCT(p): PRODUCE(p) >= MIN_PROD(p));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Sets the length of the line;
@SET('LINLEN',120);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " RESOURCES/USAGE (m2, un, un, hr): ", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" AVAILABLE (m2, un, un, hr):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" MINIMUM PRODUCTION (un):", @NEWLINE(1));
@TABLE(MIN_PROD);
@WRITE(" COST p/un:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" PRICE p/un:", @NEWLINE(1));
@TABLE(PRICE);
@WRITE(" SOLUTION ", @NEWLINE(1));
@SOLVE(MAX12);
! Solution report;
@WRITE(" OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
@FORMAT(PRODUCT(J),'-3s'),'Produce:',
@FORMAT(PRODUCE(J),'%4.0f'),'un x ','Price:$',
@FORMAT(PRICE(J),'%4.2f'),' = ', 'Revenue:$',
@FORMAT(PRODUCED(J),'* prices(J),''%9.2f'),' - Cost:$',
@FORMAT(PRODUCED(J),'* costs(J),''%9.2f'),' = Profit:$',
@FORMAT(PRODUCED(J),'* prices(j),''%7.2f''),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! Slack / Surplus report;
@WRITE(" SLACK/SURPLUS LIMIT = AVAILABLE: ", @NEWLINE(1));
@FOR(RXP(I,J) I LT 6: SLASUR(I,J) = AVAILABLE(I));
@FOR(PXR(I,J) J #LT# 6: SLASUR(J,I) = USAGE(I,J) * PRODUCE(J));
@FOR(RXP(I,J) J #LT# 6: SLASUR(I,J) = SLASUR(I,1) + SLASUR(2,J) + SLASUR(3,J) + SLASUR(4,J) + SLASUR(5,J) - SLASUR(6,J);
@TABLE(SLASUR);
@WRITE(" ", @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/USAGE (m2, un, un, hr):

<table>
<thead>
<tr>
<th>Product</th>
<th>H1</th>
<th>F1</th>
<th>V1</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRT_CIRCUIT_M2</td>
<td>20.0000</td>
<td>15.0000</td>
<td>10.0000</td>
<td>8.000000</td>
<td>5.000000</td>
</tr>
<tr>
<td>RESISTORS_UN</td>
<td>28.0000</td>
<td>24.0000</td>
<td>18.0000</td>
<td>12.000000</td>
<td>16.000000</td>
</tr>
<tr>
<td>MEMORY_UN</td>
<td>8.000000</td>
<td>8.000000</td>
<td>4.000000</td>
<td>4.00000000</td>
<td>6.00000000</td>
</tr>
<tr>
<td>ASSEMBLER_HR</td>
<td>0.750000</td>
<td>0.600000</td>
<td>0.500000</td>
<td>0.65000000</td>
<td>1.00000000</td>
</tr>
</tbody>
</table>

AVAILABLE (m2, un, un, hr):

<table>
<thead>
<tr>
<th>Product</th>
<th>H1</th>
<th>F1</th>
<th>V1</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEMBLER_HR</td>
<td>0.750000</td>
<td>0.600000</td>
<td>0.500000</td>
<td>0.65000000</td>
<td>1.00000000</td>
</tr>
<tr>
<td>MEMORY_UN</td>
<td>8.000000</td>
<td>8.000000</td>
<td>4.000000</td>
<td>4.00000000</td>
<td>6.00000000</td>
</tr>
<tr>
<td>RESISTORS_UN</td>
<td>28.000000</td>
<td>24.000000</td>
<td>18.000000</td>
<td>12.00000000</td>
<td>16.00000000</td>
</tr>
<tr>
<td>PRT_CIRCUIT_M2</td>
<td>20.000000</td>
<td>15.000000</td>
<td>10.000000</td>
<td>8.00000000</td>
<td>5.00000000</td>
</tr>
</tbody>
</table>

MINIMUM PRODUCTION (un):

<table>
<thead>
<tr>
<th>Product</th>
<th>H1</th>
<th>F1</th>
<th>V1</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>500.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>1000.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>500.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>500.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>500.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COST p/un:

<table>
<thead>
<tr>
<th>Product</th>
<th>H1</th>
<th>F1</th>
<th>V1</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>136.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>101.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>96.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>137.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>101.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRICE p/un:

<table>
<thead>
<tr>
<th>Product</th>
<th>H1</th>
<th>F1</th>
<th>V1</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>189.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>149.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>129.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>169.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>139.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION

Global optimal solution found.
Objective value: 215000.0
Objective bound: 215000.0
Infeasibilities: 0.000000
Model Class: LP

OPTIMAL PRODUCTION PROGRAM:

H1 Produce: 500un x Price:$189.00 = Revenue:$ 94500.00 - Cost:$ 68000.00 = Profit:$26500.00
F1 Produce:1000un x Price:$149.00 = Revenue:$149000.00 - Cost:$101000.00 = Profit:$48000.00
V1 Produce:1500un x Price:$129.00 = Revenue:$193500.00 - Cost:$144000.00 = Profit:$49500.00
M1 Produce:2250un x Price:$169.00 = Revenue:$380250.00 - Cost:$308250.00 = Profit:$72000.00
M2 Produce: 500un x Price:$139.00 = Revenue:$ 69500.00 - Cost:$ 50500.00 = Profit:$19000.00

SLACK/SURPLUS LIMIT = AVAILABLE:

<table>
<thead>
<tr>
<th>Product</th>
<th>H1</th>
<th>F1</th>
<th>V1</th>
<th>M1</th>
<th>M2</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRT_CIRCUIT_M2</td>
<td>10000.00</td>
<td>15000.00</td>
<td>15000.00</td>
<td>18000.00</td>
<td>2500.00</td>
<td>80000.00</td>
<td>-19500.00</td>
</tr>
<tr>
<td>RESISTORS_UN</td>
<td>14000.00</td>
<td>24000.00</td>
<td>27000.00</td>
<td>27000.00</td>
<td>80000.00</td>
<td>100000.0</td>
<td>0.000000</td>
</tr>
<tr>
<td>MEMORY_UN</td>
<td>40000.00</td>
<td>80000.00</td>
<td>60000.00</td>
<td>90000.00</td>
<td>30000.00</td>
<td>30000.00</td>
<td>0.000000</td>
</tr>
<tr>
<td>ASSEMBLER_HR</td>
<td>375000.00</td>
<td>600000.00</td>
<td>750000.00</td>
<td>1462500.00</td>
<td>500000.00</td>
<td>500000.00</td>
<td>-1312500.00</td>
</tr>
</tbody>
</table>
In a product mix model, the decision is how many different products should be produced to maximize total profit. All the information needed to develop the model follows:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Rocket</th>
<th>Meteor</th>
<th>Streak</th>
<th>Comet</th>
<th>Jet</th>
<th>Biplane</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>un</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Cooper</td>
<td>un</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Plastic</td>
<td>un</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rubber</td>
<td>un</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Glass</td>
<td>un</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Paint</td>
<td>un</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Minimum Production</td>
<td>un</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>-</td>
</tr>
<tr>
<td>Setup</td>
<td>$</td>
<td>35.00</td>
<td>20.00</td>
<td>60.00</td>
<td>70.00</td>
<td>75.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>30.00</td>
<td>45.00</td>
<td>24.00</td>
<td>26.00</td>
<td>24.00</td>
<td>30.00</td>
</tr>
</tbody>
</table>

Each of the products compete with several scarce resources. In this example, we produce six different flying machines from six different raw materials.

This model also has the characteristic that, if we want to produce a specific product, we assume a fixed installation cost.
MODEL:
SETS:
PRODUCT: PROFIT, SETUP, PRODUCE, MIN_PROD;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS
DATA:
! Product Attributes;
PRODUCT, PROFIT, SETUP MIN_PROD =
ROCKET 30 35 400
METEOR 45 20 400
STREAK 24 60 400
COMET 26 70 400
JET 24 75 400
BIPLANE 30 30 400;
! Resources attributes;
RESOURCE, AVAILABLE =
STEEL 800
COPPER 1160
PLASTIC 1780
RUBBER 1050
GLASS 1360
PAINT 1240;
! Required p/unit (hr)
Rocket Meteor Streak Comet Jet Biplane;
USAGE =
1 4 0 4 2 0
4 4 3 0 1 0
0 3 8 0 1 0
1 2 1 0 5
2 4 2 2 2 4
1 4 1 4 3 4;
ENDDATA
SUBMODEL MAX13:
[OBJ] MAX = @SUM (PRODUCT: PROFIT * PRODUCE - SETUP);
! The Available constraints;
@FOR (RESOURCE(I):
[AVA] @SUM (PRODUCT(J): USAGE(I, J) * PRODUCE(J)) <= AVAILABLE(I));
@FOR (PRODUCT: @GIN (PRODUCE));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Sets the length of the line;
@SET('LINLEN',120);
! Data block;
@WRITE (" DATA: ", @NEWLINE(1), " RESOURCES/USAGE (un):", @NEWLINE(1));
@TABLE (USAGE);
@WRITE (" AVAILABLE (un):", @NEWLINE(1));
@TABLE (AVAILABLE);
@WRITE (" MINIMUM PRODUCTION (un):", @NEWLINE(1));
@TABLE (MIN_PROD);
@WRITE (" SETUP:", @NEWLINE(1));
@TABLE (SETUP);
@WRITE (" SOLUTION ", @NEWLINE(1));
@WRITE (" OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
@WRITEFOR (PRODUCT(J): PRODUCE(J) #GT# 0: ' ", @FORMAT (PRODUCT(J),"-8s"), ' Produce:',
@FORMAT (PRODUCE(J),"%3.0f"), ' un x ', 'Price: $',
@FORMAT (PROFIT(J),"%4.2f"), ' = ', 'Revenue: $',
@FORMAT (PROFIT(J) - SETUP(J),"%8.2f"), ' - Setup: $',
@FORMAT (PROFIT(J) - SETUP(J),"%8.2f"), ' = Profit: $',
@NEWLINE(1));
@WRITE (" ", @NEWLINE(1));
! Execute sub-model;
@SOLVE (MAX13);
! Solution report;
@WRITE (" ", @NEWLINE(1));
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/USAGE (un):

<table>
<thead>
<tr>
<th></th>
<th>ROCKET</th>
<th>METEOR</th>
<th>STREAK</th>
<th>COMET</th>
<th>JET</th>
<th>BIPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEEL</td>
<td>1.00</td>
<td>4.00</td>
<td>0.00</td>
<td>4.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>COPPER</td>
<td>4.00</td>
<td>5.00</td>
<td>3.00</td>
<td>4.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PLASTIC</td>
<td>0.00</td>
<td>3.00</td>
<td>8.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>RUBBER</td>
<td>2.00</td>
<td>1.00</td>
<td>2.00</td>
<td>1.00</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>GLASS</td>
<td>2.00</td>
<td>4.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>4.00</td>
</tr>
<tr>
<td>PAINT</td>
<td>1.00</td>
<td>4.00</td>
<td>1.00</td>
<td>4.00</td>
<td>3.00</td>
<td>4.00</td>
</tr>
</tbody>
</table>

AVAILABLE (un):

<table>
<thead>
<tr>
<th></th>
<th>STEEL</th>
<th>COPPER</th>
<th>PLASTIC</th>
<th>RUBBER</th>
<th>GLASS</th>
<th>PAINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEEL</td>
<td>800.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPPER</td>
<td>1160.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLASTIC</td>
<td>1780.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUBBER</td>
<td>1050.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLASS</td>
<td>1360.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAINT</td>
<td>1240.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MINIMUM PRODUCTION (un):

<table>
<thead>
<tr>
<th></th>
<th>ROCKET</th>
<th>METEOR</th>
<th>STREAK</th>
<th>COMET</th>
<th>JET</th>
<th>BIPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCKET</td>
<td>400.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METEOR</td>
<td>400.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STREAK</td>
<td>400.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMET</td>
<td>400.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JET</td>
<td>400.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIPLANE</td>
<td>400.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SETUP (p/product):

<table>
<thead>
<tr>
<th></th>
<th>ROCKET</th>
<th>METEOR</th>
<th>STREAK</th>
<th>COMET</th>
<th>JET</th>
<th>BIPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCKET</td>
<td>35.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METEOR</td>
<td>20.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STREAK</td>
<td>60.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMET</td>
<td>70.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JET</td>
<td>75.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIPLANE</td>
<td>30.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROFIT p/un:

<table>
<thead>
<tr>
<th></th>
<th>ROCKET</th>
<th>METEOR</th>
<th>STREAK</th>
<th>COMET</th>
<th>JET</th>
<th>BIPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCKET</td>
<td>30.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METEOR</td>
<td>45.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STREAK</td>
<td>24.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMET</td>
<td>26.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JET</td>
<td>24.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIPLANE</td>
<td>30.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 14730.00
Objective bound: 14730.00
Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

<table>
<thead>
<tr>
<th></th>
<th>ROCKET</th>
<th>STREAK</th>
<th>COMET</th>
<th>JET</th>
<th>BIPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCKET</td>
<td>120.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STREAK</td>
<td>220.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMET</td>
<td>160.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JET</td>
<td>20.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIPLANE</td>
<td>50.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GOAL

In the manufacture of certain products, the following raw materials are used in the quantities indicated below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>PA</th>
<th>PB</th>
<th>PC</th>
<th>PD</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1,000</td>
</tr>
<tr>
<td>Plastic</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>2,000</td>
</tr>
<tr>
<td>Steel</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>800</td>
</tr>
<tr>
<td>Glass</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1,000</td>
</tr>
<tr>
<td>Ink</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1,500</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>20.00</td>
<td>30.00</td>
<td>25.00</td>
<td>15.00</td>
</tr>
</tbody>
</table>

Raw material stocks in tons are in the table above as availability and profits in the last line. We ask for the maximum profit scheme.
MODEL:
SETS:
 PRODUCT : PROFIT, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resources attributes;
 RESOURCE , AVAILABLE =
 WOOD 1000
 PLASTIC 2000
 STEEL 800
 GLASS 1000
 INK 1500;
! Products attributes;
 PRODUCT , PROFIT =
 PA 20
 PB 30
 PC 25
 PD 15;
! Required PA PB PC PD;
 USAGE =
 2 1 3 0 ! WOOD;
 0 4 1 0 ! PLASTIC;
 1 0 3 2 ! STEEL;
 0 0 2 2 ! GLASS;
 0 1 2 1 ! INK;
ENDDATA
SUBMODEL MIN14:
 MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
 [CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r);
);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data block;
@WRITE(" DATA:"
 @NEWLINE(1), " RESOURCES/USAGE (Ton):"
 @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" AVAILABLE (Ton):"
 @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" PROFIT (p/Ton):"
 @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" SOLUTION ",
 @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN14);
! Solution report;
@WRITE(" OPTIMAL PRODUCTION/PURCHASE PROGRAM: ",
 @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0:
 @FORMAT(PRODUCT(J),'-2s'), ' Produced: ',
 @FORMAT(PRODUCE(J),'%4.0f'), 'ton x ', 'Profit: $',
 @FORMAT(PROFIT(J),'%4.2f'), ' = ', 'Total: $',
 @FORMAT(PRODUCE(J) * PROFIT(J),'%8.2f'),
 @NEWLINE(1));
@WRITE(" ",
 @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN14);
ENDCALC
END
¢ DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/USAGE (Ton):

<table>
<thead>
<tr>
<th></th>
<th>PA</th>
<th>PB</th>
<th>PC</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOOD</td>
<td>2.000000</td>
<td>1.000000</td>
<td>3.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>PLASTIC</td>
<td>0.000000</td>
<td>4.000000</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>STEEL</td>
<td>1.000000</td>
<td>0.000000</td>
<td>3.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>GLASS</td>
<td>0.000000</td>
<td>0.000000</td>
<td>2.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>INK</td>
<td>0.000000</td>
<td>1.000000</td>
<td>2.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (Ton):

WOOD	1000.000			
PLASTIC	2000.000			
STEEL	800.0000			
GLASS	1000.000			
INK	1500.000			

PROFIT (p/Ton):

PA	20.000000			
PB	30.000000			
PC	25.000000			
PD	15.000000			

¢ SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 24125.00
Infeasibilities: 0.000000

OPTIMAL PRODUCTION/PURCHASE PROGRAM:
PA Produced: 250ton x Profit: $20.00 = Total: $ 5000.00
PB Produced: 500ton x Profit: $30.00 = Total: $15000.00
PD Produced: 275ton x Profit: $15.00 = Total: $ 4125.00
GOAL

One company is planning its next production cycle, to produce three products. For this they must go through three productive processes and consume different amount of hours as follows:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machining hr</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>600</td>
</tr>
<tr>
<td>Polymer hr</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>300</td>
</tr>
<tr>
<td>Assembler hr</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>400</td>
</tr>
<tr>
<td>Minimum Production un</td>
<td>50</td>
<td>67</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>Setup $</td>
<td>1000</td>
<td>800</td>
<td>900</td>
<td>-</td>
</tr>
<tr>
<td>Profit $</td>
<td>48.00</td>
<td>55.00</td>
<td>50.00</td>
<td>-</td>
</tr>
</tbody>
</table>

The production manager wants to determine the most profitable production mix.
MODEL:
SETS:
PRODUCT: PROFIT, SETUP, PRODUCE, MIN_PROD;
RESOURCE : AVAILABLE;
RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS
DATA:
! Product Attributes;
PRODUCT, PROFIT, SETUP, MIN_PROD =
PROD1 48 1000 50
PROD2 55 800 67
PROD3 50 900 75;
! Available resources;
RESOURCE, AVAILABLE =
MACHINING 600
POLYMER 300
ASSEMBLER 400;
! Required Machining Polymer Assembler;
USAGE = 2 3 6 ! PROD1;
 6 3 4 ! PROD2;
 5 6 2 ! PROD3;
ENDDATA
SUBMODEL MAX15:
[OBJ] MAX = @SUM(PRODUCT(I): PROFIT(I) * PRODUCE(I) - @IF(PRODUCE #GT# 0, SETUP(I),0));
! The Available constraints;
@FOR(RESOURCE(I):
 [AVA] @SUM(PRODUCT(J): USAGE(I, J) * PRODUCE(J)) <= AVAILABLE(I));
! Minimum production required;
@FOR(PRODUCT:[PROD] PRODUCE <= MIN_PROD);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET(‘TERSEO’,1);
! Post status windows, 1 Yes, 0 No;
@SET(‘STAWIN’,0);
! Sets the length of the line;
@SET(‘LINLEN’,120);
! Data block;
@WRITE(“_ _ DATA:”, @NEWLINE(1), “ RESOURCES/USAGE (hr):”, @NEWLINE(1));
@TABLE(USAGE);
@WRITE(“_ _ AVAILABLE (hr):”, @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(“_ _ MINIMUM PRODUCTION (un):”, @NEWLINE(1));
@TABLE(MIN_PROD);
@WRITE(“_ _ SETUP (p/product):”, @NEWLINE(1));
@TABLE(SETUP);
@WRITE(“_ _ PROFIT (p/un):”, @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(“_ _ SOLUTION “, @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX15);
! Solution report;
@WRITE(“_ _ OPTIMAL PRODUCTION PROGRAM: “, @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ‘ ‘, PRODUCT(J),’ Produce:’,
 @FORMAT(PRODUCE(J),'%3.0f'),’ un x ’, ‘Unity profit: $’,
 @FORMAT(PROFIT(J),'%4.2f'),' = ', ‘Total: $’,
 @FORMAT(PRODUCE(J) * PROFIT(J),'%6.2f'),’ - Setup: $’,
 @FORMAT(SETUP(J),'%4.2f'),’ = Profit: $’,
 @FORMAT(PRODUCE(J) * PROFIT(J) - SETUP(J),'%7.2f'),
@NEWLINE(1));
@WRITE(“_ _ “, @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX15);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/USAGE (hour):
<table>
<thead>
<tr>
<th></th>
<th>PROD1</th>
<th>PROD2</th>
<th>PROD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACHINING</td>
<td>2.000000</td>
<td>3.000000</td>
<td>6.000000</td>
</tr>
<tr>
<td>POLYMER</td>
<td>6.000000</td>
<td>3.000000</td>
<td>4.000000</td>
</tr>
<tr>
<td>ASSEMBLER</td>
<td>5.000000</td>
<td>6.000000</td>
<td>2.000000</td>
</tr>
</tbody>
</table>

AVAILABLE:
<table>
<thead>
<tr>
<th></th>
<th>MACHINING</th>
<th>POLYMER</th>
<th>ASSEMBLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACHINING</td>
<td>600.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYMER</td>
<td>300.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSEMBLER</td>
<td>400.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MINIMUM PRODUCTION:
<table>
<thead>
<tr>
<th></th>
<th>PROD1</th>
<th>PROD2</th>
<th>PROD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD1</td>
<td>50.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROD2</td>
<td>67.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROD3</td>
<td>75.00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SETUP:
<table>
<thead>
<tr>
<th></th>
<th>PROD1</th>
<th>PROD2</th>
<th>PROD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD1</td>
<td>1000.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROD2</td>
<td>800.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROD3</td>
<td>900.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROFIT:
<table>
<thead>
<tr>
<th></th>
<th>PROD1</th>
<th>PROD2</th>
<th>PROD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD1</td>
<td>48.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROD2</td>
<td>55.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROD3</td>
<td>50.00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 3022.22
Objective bound: 3022.22
Infeasibilities: 0.00000

OPTIMAL PRODUCTION PROGRAM:
PROD2 Produce: 56 un x Unity profit: $55.00 = Total: $3055.56 – Setup: $800.00 = Profit: $2255.56
PROD3 Produce: 33 un x Unity profit: $50.00 = Total: $1666.67 – Setup: $900.00 = Profit: $766.67
A company has three manufacturing facilities that can each produce three different products. All the necessary information for the development of the model follows below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Prod1</th>
<th>Prod2</th>
<th>Prod3</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INST_1</td>
<td>un</td>
<td>8</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>INST_2</td>
<td>un</td>
<td>9</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>INST_3</td>
<td>un</td>
<td>12</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>1,000</td>
<td>900</td>
<td>800</td>
</tr>
<tr>
<td>Price</td>
<td>$</td>
<td>20.00</td>
<td>25.00</td>
<td>30.00</td>
</tr>
</tbody>
</table>

What is the best production plan to maximize profit?
MODEL:

SETS:
 PRODUCT : PRICE, DEMAND, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS

DATA:
 ! Resources attributes;
 RESOURCE, AVAILABLE =
 INST1 800
 INST2 1000
 INST3 1200;

 ! Product attributes;
 PRODUCT, PRICE, DEMAND =
 PROD1 20 1000
 PROD2 25 900
 PROD3 30 800;

 ! Required PROD1 PROD2 PROD3;
 USAGE =
 8 4 10 ! INST1;
 9 6 10 ! INST2;
 12 10 11 ; ! INST3;
ENDDATA

SUBMODEL MAX16:

[OBJ] MAX = XPRICE - XCOST ;
 XPRICE = @SUM(RXP(r, p): PRODUCE(p) * price(p));
 XCOST = @SUM(RXP(r, p): PRODUCE(p) * usage(r, p));

 ! The Available constraints;
 @FOR(PRODUCT(J):
 [AVA] @SUM(PRODUCT(c): PRODUCE(C)) <= AVAILABLE(j));

 ! The Demand constraints;
 @FOR(RESOURCE(k):
 [DEM] @SUM(RESOURCE(p): PRODUCE(p)) <= DEMAND(k);
 END;

ENDSUBMODEL

CALC:

! Output level: 0=Verbose, 1-Terse;
 @SET(TERSEO,1);

! Post status windows, 1 Yes, 0 No;
 @SET(STAWIN,0);

! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " RESOURCES/PRODUCT (un):", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" AVAILABLE (un):", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" DEMAND (un):", @NEWLINE(1));
 @TABLE(DEMAND);
 @WRITE(" PRICE (p/un):", @NEWLINE(1));
 @TABLE(PRICE);

! Execute sub-model;
 @SOLVE(MAX16);

! Solution report;
 @WRITE(" SOLUTION ", @NEWLINE(1));
 @STARTFOR(RXP(I, J) | USAGE(I,J) * PRODUCE(J) #GT# 0: ' ',
 @FORMAT(RESOURCE(I),'-6s'), ' ', PRODUCT(J),' Produce: ',
 @FORMAT(PRODUCE(J),'%3.0f'),' un x ', 'Price: $',
 @FORMAT(PRICE(J),'%5.2f'), ' = ', 'Total: $',
 @FORMAT(PRODUCE(J) * PRICE(j),'%6.2f'), ' - Cost: $',
 @FORMAT(PRODUCE(J) * usage(i, j),'%6.2f'), ' = Profit: $',
 @FORMAT(PRODUCE(J) * PRICE(j) - PRODUCE(J) * USAGE(I,J),'%8.2f'),
 @NEWLINE(1));

! To see the corresponding model scalar, remove (!) From the line below;
 @GEN(MAX16);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/PRODUCT (un):

<table>
<thead>
<tr>
<th>INST</th>
<th>PROD1</th>
<th>PROD2</th>
<th>PROD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST1</td>
<td>8.000000</td>
<td>4.000000</td>
<td>10.00000</td>
</tr>
<tr>
<td>INST2</td>
<td>9.000000</td>
<td>6.000000</td>
<td>10.00000</td>
</tr>
<tr>
<td>INST3</td>
<td>12.00000</td>
<td>10.00000</td>
<td>11.00000</td>
</tr>
</tbody>
</table>

AVAILABLE (un):

<table>
<thead>
<tr>
<th>INST</th>
<th>800.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST1</td>
<td>800.0000</td>
</tr>
<tr>
<td>INST2</td>
<td>1000.000</td>
</tr>
<tr>
<td>INST3</td>
<td>1200.000</td>
</tr>
</tbody>
</table>

DEMAND (un):

<table>
<thead>
<tr>
<th>PROD1</th>
<th>1000.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD2</td>
<td>900.0000</td>
</tr>
<tr>
<td>PROD3</td>
<td>800.0000</td>
</tr>
</tbody>
</table>

PRICE (p/un):

<table>
<thead>
<tr>
<th>PROD1</th>
<th>20.00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD2</td>
<td>25.00000</td>
</tr>
<tr>
<td>PROD3</td>
<td>30.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION

Global optimal solution found.
Objective value: 47200.00
Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

<table>
<thead>
<tr>
<th>INST</th>
<th>PROD3 Produce: 800 un x Price: $30.00 = Total: $24000.00 - Cost: $8000.00 = Profit: $16000.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST2</td>
<td>PROD3 Produce: 800 un x Price: $30.00 = Total: $24000.00 - Cost: $8000.00 = Profit: $16000.00</td>
</tr>
<tr>
<td>INST3</td>
<td>PROD3 Produce: 800 un x Price: $30.00 = Total: $24000.00 - Cost: $8800.00 = Profit: $15200.00</td>
</tr>
</tbody>
</table>
GOAL

One company manufactures two types of heater: one electric and one gas model and has just signed a contract to provide 30,000 electric heaters and 15,000 gas.

However, its productive capacity is limited to three processes, in the number of hours available.

Alternatively, the company can buy similar heaters on the market, paying for the $67 electric model and the $95 gas model.

All the necessary information for the development of the model follows below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Electric</th>
<th>Gas</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Production hr</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Assembler</td>
<td>hr</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Package</td>
<td>hr</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>30,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Production Cost</td>
<td>$</td>
<td>55.00</td>
<td>85.00</td>
</tr>
<tr>
<td>Purchase Cost</td>
<td>$</td>
<td>67.00</td>
<td>95.00</td>
</tr>
</tbody>
</table>

Determine how many heaters of each model are to be manufactured and how many must be purchased in order to meet the request at the lowest possible cost.
MODEL:
SETS:
PRODUCT : COST, PRODUCE, DEMAND;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Available resources;
RESOURCE, AVAILABLE = PRODUCTION 10000
ASSEMBLER 15000
PACKAGE 5000;
! Product Attributes;
PRODUCT, COST, DEMAND =
ELE_PRODU 55 30000
GAS_PRODU 85 15000
ELE_PURCH 67 0
GAS_PURCH 95 0;
! Required p/unit (hr)
USAGE =
0.2 0.4 0 0 ! PRODUCTION;
0.3 0.1 0 0 ! ASSEMBLER;
0.1 0.1 0 0 ; ! PACKAGE;
ENDDATA
SUBMODEL MIN17:
MIN = @SUM(PRODUCT(p): COST(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
[CAP] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r));
! The Demand constraints;
PRODUCE(1) + PRODUCE(3) = 30000;
PRODUCE(2) + PRODUCE(4) = 15000;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " RESOURCES/PRODUCT (hour):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (hour):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " DEMAND (un):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " PRODUCTION/PURCHASE COST:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN17);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " OPTIMAL PRODUCTION/PURCHASE PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
@FORMAT(PRODUCT(J),'-10s'), @IF(@STRLEN(PRODUCT(J)) #GT# 11, 'Purchase: ','Produce: '),
@FORMAT(PRODUCE(J),'%5.0f'), ' Heater x ', 'Unit cost: $',
@FORMAT(COST(J),'%5.2f'), ' = ', 'Total: $',
@FORMAT(COST(J) * PRODUCE(J),'%10.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN17);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/PRODUCT (hour):

<table>
<thead>
<tr>
<th></th>
<th>ELE_PRODU</th>
<th>GAS_PRODU</th>
<th>ELEPURCH</th>
<th>GAPURCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION</td>
<td>0.2000000</td>
<td>0.4000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>ASSEMBLER</td>
<td>0.3000000</td>
<td>0.1000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>PACKAGE</td>
<td>0.1000000</td>
<td>0.1000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (hour):

<table>
<thead>
<tr>
<th></th>
<th>PRODUCTION</th>
<th>ASSEMBLER</th>
<th>PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION</td>
<td>10000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSEMBLER</td>
<td>15000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACKAGE</td>
<td>5000.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEMAND (un):

<table>
<thead>
<tr>
<th></th>
<th>ELE_PRODU</th>
<th>GAS_PRODU</th>
<th>ELE_PURCH</th>
<th>GAS_PURCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELE_PRODU</td>
<td>30000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAS_PRODU</td>
<td>15000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE_PURCH</td>
<td>0.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAS_PURCH</td>
<td>0.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRODUCTION/PURCHASE COST:

<table>
<thead>
<tr>
<th></th>
<th>ELE_PRODU</th>
<th>GAS_PRODU</th>
<th>ELE_PURCH</th>
<th>GAS_PURCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELE_PRODU</td>
<td>55.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAS_PRODU</td>
<td>85.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE_PURCH</td>
<td>67.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAS_PURCH</td>
<td>95.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION

Global optimal solution found.

Objective value: 2975000.

Infeasibilities: 0.000000

OPTIMAL PRODUCTION/PURCHASE PROGRAM:

<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity</th>
<th>Unit cost</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELE_PRODU</td>
<td>30000</td>
<td>$55.00</td>
<td>$1650000.00</td>
</tr>
<tr>
<td>GAS_PRODU</td>
<td>10000</td>
<td>$85.00</td>
<td>$850000.00</td>
</tr>
<tr>
<td>GAS_PURCH</td>
<td>5000</td>
<td>$95.00</td>
<td>$475000.00</td>
</tr>
</tbody>
</table>
GOAL

An agro-industrial company produces 3 types of canning. Each type requires a similar industrial treatment that differs in duration.

- 1000 boxes of tomato soup requires 200 hours of labor + 6 hours of equipment
- 1000 boxes of tomato juice requires 80 hours of labor + 24 hours of equipment
- 1000 boxes of tomato sauce requires 300 hours of labor + 7 hours of equipment.

All the necessary information for the development of the model follows below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Soup</th>
<th>Juice</th>
<th>Sauce</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>hr</td>
<td>200</td>
<td>80</td>
<td>300</td>
</tr>
<tr>
<td>Equipment</td>
<td>hr</td>
<td>6</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>Minimum Production</td>
<td>pac</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>3.00</td>
<td>2.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Assuming that the company wants to maximize its profit, determine the production of each of the products,
MODEL:
SETS:
PRODUCT : PROFIT, MINPROD, PRODUCE;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Available resources;
RESOURCE , AVAILABLE =
LABOR 5000
EQUIPMENT 168;
! Product Attributes;
PRODUCT, PROFIT, MINPROD =
SOUP 3 500
JUICE 2.5 500
SAUCE 1 500;
! Required p/unit (hr)
USAGE =
SOUP JUICE SAUCE;
6 24 7;
! Labor;
6 24 7;
! Equipment;
ENDDATA
SUBMODEL MAX18:
MAX = @SUM(PRODUCT (p): PRODUCE(p) * PROFIT(p));
! The capacity constraints;
@FOR (RESOURCE(I):
[CAP] @SUM (PRODUCT(J): USAGE(I, J)/1000 * PRODUCE(J)) <= AVAILABLE(I));
! The demand constraints;
@FOR (PRODUCT(K):
[DEM] @SUM (PRODUCT(K): PRODUCE(K)) >= MINPROD(K));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " RESOURCES/PRODUCT (hr):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (hr):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " MINIMUM PRODUCTION (Pac):", @NEWLINE(1));
@TABLE(MINPROD);
@WRITE(" ", @NEWLINE(1), " PROFIT (p/pac):", @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX18);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
@FORMAT(PRODUCE(J),'-5s'),' Produce:',
@FORMAT(PRODUCE(J),'%5.0f'), ' Pac x ', 'Unit profit: $',
@FORMAT(PROFIT(J),'%4.2f'), ' Total: $',
@FORMAT(PROD(J) * Profit(J),'%8.2f'))
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (l) From the line below;
!@GEN(MAX18);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/PRODUCT (hr):

<table>
<thead>
<tr>
<th></th>
<th>SOUP</th>
<th>JUICE</th>
<th>SAUCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR</td>
<td>200.000</td>
<td>80.000</td>
<td>300.000</td>
</tr>
<tr>
<td>EQUIPMENT</td>
<td>6.000000</td>
<td>24.00000</td>
<td>7.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (hr):

<table>
<thead>
<tr>
<th></th>
<th>LABOR</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR</td>
<td>5000.000</td>
<td></td>
</tr>
<tr>
<td>EQUIPMENT</td>
<td>168.0000</td>
<td></td>
</tr>
</tbody>
</table>

MINIMUM PRODUCTION (Pac):

<table>
<thead>
<tr>
<th></th>
<th>SOUP</th>
<th>JUICE</th>
<th>SAUCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUP</td>
<td>500.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUICE</td>
<td>500.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAUCE</td>
<td>500.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROFIT (p/pac):

<table>
<thead>
<tr>
<th></th>
<th>SOUP</th>
<th>JUICE</th>
<th>SAUCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUP</td>
<td>3.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUICE</td>
<td>2.50000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAUCE</td>
<td>1.00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 74393.52
Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

SOUP Produce: 23898 Pac x Unit profit: $3.00 = Total: $71694.44
JUICE Produce: 880 Pac x Unit profit: $2.50 = Total: $2199.07
SAUCE Produce: 500 Pac x Unit profit: $1.00 = Total: $500.00
GOAL

As a manufacturer of electronic equipment, you must design a cabinet for your new product, which meets the area, volume, marketing and aesthetic requirements.

In this example, we create a nonlinear optimization model to design the case for a computer.
MODEL:
! Design a box at minimum cost that meets area, volume, marketing and aesthetic requirements;
SUBMODEL MIN19:
[COST] MIN = 2*(.05*(d*w + d*h) +.1*w*h);
[SURFACE] 2*(h*d + h*w + d*w) >= 888;
[VOLUME] h*d*w >= 1512;
! These two enforce aesthetics;
[NOTNARRO] h/w <= .718;
[NOTHIGH] h/w >= .518;
! Marketing requires a small footprint;
[FOOTPRNT] d*w <= 252;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
@WRITE(" VOLUME: 1512", @NEWLINE(1));
@WRITE(" SURFACE: 888", @NEWLINE(1));
@WRITE(" NOTNARRO: 0.718", @NEWLINE(1));
@WRITE(" NOTHIGH: 0.518", @NEWLINE(1));
@WRITE(" FOOTPRNT: 252", @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
@WRITE(" SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN19);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " DIMENSIONS OF THE BOX: ", @NEWLINE(1));
@WRITE(" Depth: ", @FORMAT(D,'%8.5f'), @NEWLINE(1), " Width: ",
@FORMAT(W,'%8.5f'), @NEWLINE(1), " Height: ",
@FORMAT(H,'%8.5f'), @NEWLINE(1), " MINIMUM COST: ", @FORMAT(COST,'%8.5f'), @NEWLINE(1));
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

VOLUME: 1512
SURFACE: 888
NOTNARRO: 0.718
NOTHIGH: 0.518
FOOTPRNT: 252

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Local optimal solution found.
Objective value: 50.96508
Infeasibilities: 0.000000
Extended solver steps: 5
Best multistart solution found at step: 1
Total solver iterations: 51
Elapsed runtime seconds: 0.54

DIMENSIONS OF THE BOX:
Depth: 23.03096
Width: 9.56220
Height: 6.86566

MINIMUM COST: $50.96508
GOAL

One company manufactures some models of garden equipment. The company intends to determine how many units to produce during the next few months, in order to meet demand at the lowest possible cost.

The company estimates a cost of $1.50 per month for each unit held in stock.

It considers that the number of units in stock per month is the average of the quantity existing at the beginning of the month. Currently it has 120 units in stock.

To maintain the workforce, it needs to produce at least 400 units per month and also wants to keep a minimum safety stock of 50 units per month.

The company intends to determine how many units it will produce during the next 4 months, in order to meet the demand for the lowest possible cost.

All the necessary information for the development of the model follows below:

<table>
<thead>
<tr>
<th>Items / Month</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Cost</td>
<td>$49.00</td>
<td>45.00</td>
<td>46.00</td>
<td>47.00</td>
</tr>
<tr>
<td>Cost of Stock</td>
<td>$1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Initial and Safety Stock</td>
<td>120</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>420</td>
<td>580</td>
<td>310</td>
</tr>
<tr>
<td>Minimum Production</td>
<td>un</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Production Capacity</td>
<td>un</td>
<td>500</td>
<td>520</td>
<td>450</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
PRODUCT: COST, COST_STOCK, USED_STOCK, STK_BAL, MINPROD, DEMAND, CAPACITY, PRODUCE;
HEADER / PROD, LIMIT, VALUE /;
ENDSETS
DATA:
! Product Attributes;
PRODUCT, COST, COST_STOCK, MINPROD, DEMAND, CAPACITY =
M1 49.00 1.50 400 420 500
M2 45.00 1.50 400 580 520
M3 46.00 1.50 400 310 450
M4 47.00 1.50 400 540 550;
ENDDATA
SUBMODEL MIN20:
[OBJ] MIN = @SUM(PRODUCT(p): COST(p) * PRODUCE(p)) +
@SUM(PRODUCT(p): STK_BAL(p) * COST_STOCK(p));
! Initial stock - Security stock;
USED_STOCK(1) = 120 - 110;
USED_STOCK(2) = 110 - 50;
USED_STOCK(3) = 140 - 50;
USED_STOCK(4) = 140 - 50;
! Stock balance;
STK_BAL(1) = 120 - 10;
STK_BAL(2) = 110 - 60;
STK_BAL(3) = 50 + 90;
STK_BAL(4) = 140 - 50;
! Equalization of production to meet demand;
PRODUCE(1) = DEMAND(1) - USED_STOCK(1);
PRODUCE(2) = DEMAND(2) - USED_STOCK(2);
! MinProd 400 un - Demand: 310 = Stock 90 + Security stock 50 un = 140un;
PRODUCE(3) = DEMAND(3) + USED_STOCK(3);
PRODUCE(4) = DEMAND(4) - USED_STOCK(4);
! minimum and maximum production range;
@FOR(PRODUCT(K):
[MPR] @SUM(PRODUCT(K): PRODUCE(K)) >= MINPROD(K);
[CAP] @SUM(PRODUCT(K): PRODUCE(K)) <= CAPACITY(K));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1));
@WRITE(" ", @NEWLINE(1), " PRODUCTION COST p/un:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " COST OF STOCK (un):", @NEWLINE(1));
@TABLE(COST_STOCK);
@WRITE(" ", @NEWLINE(1), " DEMAND (un):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " MAXIMUM PRODUCTION (un):", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(" ", @NEWLINE(1), " MINIMUM PRODUCTION (un):", @NEWLINE(1));
@TABLE(MINPROD);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN20);
! Solution report;
@WRITE(" ", @NEWLINE(1));
@WRITE(" OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(2));
@WRITE(" PRODUCTION COST:" , @NEWLINE(1));
@WRITEFOR(PRODUCT(J)| PRODUCE(J) GT 0: '
 Produce:
 ', PRODUCT(J),'-6s'),' x ', 'Unit cost: $',
 COST(J),'%5.2f'), ' = Total: $',
 @SUM(PRODUCT(p): COST(p) * PRODUCE(p)),'%8.2f'), @NEWLINE(2));
! Cost of stock;
@WRITEFOR(PRODUCT(J)| PRODUCE(J) GT 0: '
 Stock: ',
 STK_BAL(J),'%5.0f'),' x Cost: ',
 COST_STOCK(J),'%5.2f'), ' = Total: $',
 @SUM(STK_BAL(J) * COST_STOCK(J)),'%8.2f'), @NEWLINE(1));
@WRITE(' COST OF STOCK:', 32*' ', '$',
 @SUM(PRODUCT(J): STK_BAL(J) * COST_STOCK(J)),'%8.2f'), @NEWLINE(2));
! Minimum Total Cost;
@WRITE(" MINIMUM TOTAL COST:: ", @NEWLINE(1));
@WRITE(" OBJ,'%8.2f'), @NEWLINE(2));
!To see the corresponding model scalar, remove () From the line below;
@GEN(MIN20);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

PRODUCTION COST p/un:
M1 49.00000
M2 45.00000
M3 46.00000
M4 47.00000

MAXIMUM PRODUCTION (un):
M1 500.0000
M2 520.0000
M3 450.0000
M4 550.0000

COST OF STOCK (un):
M1 1.500000
M2 1.500000
M3 1.500000
M4 1.500000

MINIMUM PRODUCTION (un):
M1 400.0000
M2 400.0000
M3 400.0000
M4 400.0000

DEMAND (un):
M1 420.0000
M2 580.0000
M3 310.0000
M4 540.0000

OPTIMAL PRODUCTION PROGRAM:

PRODUCTION COST:
M1 Produce: 410 un x Unit cost: $49.00 = Total: $20090.00
M2 Produce: 520 un x Unit cost: $45.00 = Total: $23400.00
M3 Produce: 400 un x Unit cost: $46.00 = Total: $18400.00
M4 Produce: 450 un x Unit cost: $47.00 = Total: $21150.00

TOTAL PRODUCTION COST: $83040.00

M1 Stock: 110 un x Cost: $ 1.50 = Total: $ 165.00
M2 Stock: 50 un x Cost: $ 1.50 = Total: $ 75.00
M3 Stock: 140 un x Cost: $ 1.50 = Total: $ 210.00
M4 Stock: 90 un x Cost: $ 1.50 = Total: $ 135.00

COST OF STOCK: $ 585.00

MINIMUM TOTAL COST: $83625.00

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION

Global optimal solution found.
Objective value: 83625.00
Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

PRODUCTION COST:
M1 Produce: 410 un x Unit cost: $49.00 = Total: $20090.00
M2 Produce: 520 un x Unit cost: $45.00 = Total: $23400.00
M3 Produce: 400 un x Unit cost: $46.00 = Total: $18400.00
M4 Produce: 450 un x Unit cost: $47.00 = Total: $21150.00

TOTAL PRODUCTION COST: $83040.00

M1 Stock: 110 un x Cost: $ 1.50 = Total: $ 165.00
M2 Stock: 50 un x Cost: $ 1.50 = Total: $ 75.00
M3 Stock: 140 un x Cost: $ 1.50 = Total: $ 210.00
M4 Stock: 90 un x Cost: $ 1.50 = Total: $ 135.00

COST OF STOCK: $ 585.00

MINIMUM TOTAL COST: $83625.00
GOAL

A wine producer has 2 vineyards whose production capacity and cost per bottle are detailed below.

Four Italian restaurants located near the wineries are interested in buying this wine.

The demand required for each restaurant, as well as price, shipping costs, are also detailed below:

<table>
<thead>
<tr>
<th>Winery / Restaurants</th>
<th>ST1</th>
<th>ST2</th>
<th>ST3</th>
<th>ST4</th>
<th>Capacity</th>
<th>Cost p/un</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>un</td>
<td>1800</td>
<td>2300</td>
<td>1250</td>
<td>1750</td>
<td>-</td>
</tr>
<tr>
<td>Shipping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W1</td>
<td>$</td>
<td>7.00</td>
<td>8.00</td>
<td>13.00</td>
<td>9.00</td>
<td>3500 un</td>
</tr>
<tr>
<td>W2</td>
<td>$</td>
<td>12.00</td>
<td>6.00</td>
<td>8.00</td>
<td>7.00</td>
<td>3100 un</td>
</tr>
<tr>
<td>Price</td>
<td>$</td>
<td>69.00</td>
<td>67.00</td>
<td>70.00</td>
<td>66.00</td>
<td>-</td>
</tr>
</tbody>
</table>

The producer wants to determine the production and the shipping plan in order to maximize the profits.
MODEL:
SETS:
WINERY: CAPACITY, COST;
VENDORS: DEMAND, PRICE;
LINKS(WINERY, VENDORS): SHIPPING, VOLUME;
ENDSETS
DATA:
! Winery attributes;
WINERY, CAPACITY, COST =
WINERY1 3500 23.00
WINERY2 3100 25.00;
! Vendor attributes;
VENDORS, DEMAND, PRICE =
ST1 1800 69.00
ST2 2300 67.00
ST3 1250 70.00
ST4 1750 66.00;
! Shipping p/bottle
ST1 ST2 ST3 ST4;
SHIPPING = 7 8 13 9
! WINERY1;
12 6 8 7;
! WINERY2;
ENDDATA
SUBMODEL MAX21:
[OBJ] MAX = @SUM(LINKS(I, J): PRICE(J) * VOLUME(I, J) - SHIPPING(I, J) * VOLUME(I, J) - COST(I) * VOLUME(I, J));
! The demand constraints;
@FOR(VENDORS(J):)
[DEM] @SUM(WINERY(I): VOLUME(I, J)) <= DEMAND(J);
! The capacity constraints;
@FOR(WINERY(I):)
[CAP] @SUM(VENDORS(J): VOLUME(I, J)) = CAPACITY(I));
ENDSUBMODEL
CALC:
@SET('TERSEO',1); ! Output level: 0=Verbose, 1=Terse;
@SET('STAWIN',0); ! Post status windows, 1 Yes, 0 No;
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " SHIPING COST:", @NEWLINE(1));
@TABLE(SHIPPING);
@WRITE(" ", @NEWLINE(1), " CAPACITY (bottle):", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(" ", @NEWLINE(1), " DEMAND (bottle):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " PRICE:", @NEWLINE(1));
@TABLE(PRICE);
@WRITE(" ", @NEWLINE(1), " BOTTLE COST:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
@SOLVE(MAX21);
! Solution report;
@WRITE(" ", @NEWLINE(1), " OPTIMAL PROGRAM: ", @NEWLINE(1));
@WRITEFOR(LINKS(I, J) | VOLUME(I, J) #GT# 0: ' ', WINERY(I),' To:', VENDORS(J), @NEWLINE(1), ' ',
@FORMAT(VOLUME(I, J),'%4.0f'), ' bottle x ',
'price: $',
@FORMAT(PRICE(J),'%8.2f'), ' = Revenue: $',
@FORMAT(PRICE(J) * VOLUME(I, J),'%9.2f'), ' Cost: $',
@FORMAT(COST(I) * VOLUME(I, J),'%9.2f'), ' Ship: $',
@FORMAT(SHIPPING(I, J) * VOLUME(I, J),'%9.2f'), ' Profit: $',
@FORMAT(PRICE(J) * VOLUME(I, J) - COST(I) * VOLUME(I, J) - SHIPPING(I, J) * VOLUME(I, J),'%9.2f'), @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
@WRITEFOR(LINKS(I, J) | VOLUME(I, J) #GT# 0: ' ', WINERY(I),' To:', VENDORS(J), 20*' ',
'price: $',
@FORMAT(PRICE(J) * VOLUME(I, J) - COST(I) * VOLUME(I, J) - SHIPPING(I, J) * VOLUME(I, J),'%9.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
@WRITEFOR(LINKS(I, J) | VOLUME(I, J) #GT# 0: ' ', WINERY(I),' To:', VENDORS(J), .20*' ',
'price: $',
@FORMAT(PRICE(J) * VOLUME(I, J) - COST(I) * VOLUME(I, J) - SHIPPING(I, J) * VOLUME(I, J),'%9.2f'), @NEWLINE(1));
@WRITE(" TOTAL PROFIT: ", @NEWLINE(1));
@FORMAT(@SUM(LINKS(I,J):PRICE(J) * VOLUME(I, J) - COST(I) * VOLUME(I, J) - SHIPPING(I, J) * VOLUME(I, J),'%9.2f'), @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX21);
ENDCALC
END
DATA
All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
SHIPPING COST:

<table>
<thead>
<tr>
<th></th>
<th>ST1</th>
<th>ST2</th>
<th>ST3</th>
<th>ST4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WINERY1</td>
<td>7.000000</td>
<td>8.000000</td>
<td>13.00000</td>
<td>9.000000</td>
</tr>
<tr>
<td>WINERY2</td>
<td>12.00000</td>
<td>6.000000</td>
<td>8.000000</td>
<td>7.000000</td>
</tr>
</tbody>
</table>

CAPACITY (bottle):

<table>
<thead>
<tr>
<th></th>
<th>WINERY1</th>
<th>WINERY2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3500.000</td>
<td>3100.000</td>
</tr>
</tbody>
</table>

BOTTLE COST:

<table>
<thead>
<tr>
<th></th>
<th>WINERY1</th>
<th>WINERY2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23.00000</td>
<td>25.00000</td>
</tr>
</tbody>
</table>

DEMAND (bottle):

<table>
<thead>
<tr>
<th></th>
<th>ST1</th>
<th>ST2</th>
<th>ST3</th>
<th>ST4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1</td>
<td>1800.000</td>
<td>ST1</td>
<td>69.00000</td>
<td></td>
</tr>
<tr>
<td>ST2</td>
<td>2300.000</td>
<td>ST2</td>
<td>67.00000</td>
<td></td>
</tr>
<tr>
<td>ST3</td>
<td>1250.000</td>
<td>ST3</td>
<td>70.00000</td>
<td></td>
</tr>
<tr>
<td>ST4</td>
<td>1750.000</td>
<td>ST4</td>
<td>66.00000</td>
<td></td>
</tr>
</tbody>
</table>

PRICE:

<table>
<thead>
<tr>
<th></th>
<th>ST1</th>
<th>ST2</th>
<th>ST3</th>
<th>ST4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1</td>
<td>69.00000</td>
<td>ST1</td>
<td>69.00000</td>
<td></td>
</tr>
<tr>
<td>ST2</td>
<td>2300.000</td>
<td>ST2</td>
<td>67.00000</td>
<td></td>
</tr>
<tr>
<td>ST3</td>
<td>1250.000</td>
<td>ST3</td>
<td>70.00000</td>
<td></td>
</tr>
<tr>
<td>ST4</td>
<td>1750.000</td>
<td>ST4</td>
<td>66.00000</td>
<td></td>
</tr>
</tbody>
</table>

CAPACITY (bottle):

<table>
<thead>
<tr>
<th></th>
<th>WINERY1</th>
<th>WINERY2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.000000</td>
<td>8.000000</td>
</tr>
<tr>
<td></td>
<td>13.00000</td>
<td>9.000000</td>
</tr>
<tr>
<td></td>
<td>12.00000</td>
<td>6.000000</td>
</tr>
<tr>
<td></td>
<td>8.000000</td>
<td>7.000000</td>
</tr>
</tbody>
</table>

DEMAND (bottle):

<table>
<thead>
<tr>
<th></th>
<th>WINERY1</th>
<th>WINERY2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3500.000</td>
<td>3100.000</td>
</tr>
</tbody>
</table>

PRICE:

<table>
<thead>
<tr>
<th></th>
<th>WINERY1</th>
<th>WINERY2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23.00000</td>
<td>25.00000</td>
</tr>
</tbody>
</table>

BOTTLE COST:

<table>
<thead>
<tr>
<th></th>
<th>WINERY1</th>
<th>WINERY2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23.00000</td>
<td>25.00000</td>
</tr>
</tbody>
</table>

SOLUTION
Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 241750.0
Infeasibilities: 0.000000

OPTIMAL PROGRAM:
WINERY1 To:ST1
1800 bottle x price: $ 69.00 = Revenue: $124200.00
- Cost: $ 41400.00
- Ship: $ 12600.00
= Profit: $ 70200.00

WINERY1 To:ST2
450 bottle x price: $ 67.00 = Revenue: $ 30150.00
- Cost: $ 10350.00
- Ship: $ 3600.00
= Profit: $ 16200.00

WINERY1 To:ST4
1250 bottle x price: $ 66.00 = Revenue: $ 82500.00
- Cost: $ 28750.00
- Ship: $ 11250.00
= Profit: $ 42500.00

WINERY2 To:ST2
1850 bottle x price: $ 67.00 = Revenue: $123950.00
- Cost: $ 46250.00
- Ship: $ 11000.00
= Profit: $ 66600.00

WINERY2 To:ST3
1250 bottle x price: $ 70.00 = Revenue: $ 87500.00
- Cost: $ 31250.00
- Ship: $ 10000.00
= Profit: $ 46250.00

WINERY1 To:ST1
= Profit: $ 70200.00

WINERY1 To:ST2
= Profit: $ 16200.00

WINERY1 To:ST4
= Profit: $ 42500.00

WINERY2 To:ST2
= Profit: $ 66600.00

WINERY2 To:ST3
= Profit: $ 46250.00

TOTAL PROFIT: $241750.00
GOAL

A juice bottler prepares Blueberry honey in two options: Dark and Light. Each type is constituted by a different proportion among the basic components.

Since water is abundant and does not have significant weight in the final price of the product, it is not considered in the production planning of each barrel:

Following is all the information necessary to develop the model, considering Formula, Availability and Profit per barrel:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Dark</th>
<th>Light</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus kg/barrel</td>
<td>5</td>
<td>15</td>
<td>480</td>
</tr>
<tr>
<td>Glucose kg/barrel</td>
<td>4</td>
<td>4</td>
<td>160</td>
</tr>
<tr>
<td>Blueberry kg/barrel</td>
<td>35</td>
<td>20</td>
<td>1190</td>
</tr>
<tr>
<td>Price p/barrel</td>
<td>$10.00</td>
<td>25.00</td>
<td>-</td>
</tr>
</tbody>
</table>

Therefore, elaborate a program of production of these types of juice in order to maximize profit per barrel.
MODEL:
SETS:
 PRODUCT : PROFIT, PRODUCE;
 HEADER / DARK, LIGHT, LIMIT, VALUE /;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
 PXR(RESOURCE, HEADER) : SLASUR;
ENDSETS
DATA:
 ! Available resources;
 RESOURCE, AVAILABLE =
 CITRUS_PECTIN 480
 GLUCOSE 160
 BLUEBERRY 1190;
 ! Product attributes;
 PRODUCT, PROFIT =
 DARK 10
 LIGHT 25;
 ! Required p/barrel (kg)
 USAGE =
 CITRUS_PECTIN 5
 GLUCOSE 4
 BLUEBERRY 35
ENDDATA
SUBMODEL MAX5:
[OBJ] MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
! The available constraints;
@FOR(RESOURCE(r): [AVA] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r));
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET("TERSEO",1);
 ! Post status windows, 1 Yes, 0 No;
 @SET("STAWIN",0);
 ! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " FORMULA (kg):", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" AVAILABLE (kg):", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" PROFIT per barrel:", @NEWLINE(1));
 @TABLE(PROFIT);
 @WRITE(" SOLUTION: ", @NEWLINE(1));
 @SOLVE(MAX5);
 @WRITE(" IDEAL PRODUCTION PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(PRODUCT(J)| PRODUCE(J) #GT# 0: ' ',
 @FORMAT(PRODUCT(J),'-6s'),
 @FORMAT(PRODUCE(J),'%2.0f'),' Barrel x Unit profit: $',
 @FORMAT(PROFIT(J),'%4.2f'), ' = Total: $',
 @FORMAT(PROFIT(J) * PRODUCE(J),'%6.2f'),
 @NEWLINE(1));
 ! Slack/Surplus Resources report;
 @WRITE(" SLACK/SURPLUS LIMIT = AVAILABLE: ", @NEWLINE(1));
 @FOR(PXR(I,J): SLASUR(I,3) = AVAILABLE(I));
 @FOR(RXP(I,J)| J #LT# 3: SLASUR(I,J) = PRODUCE(J) * USAGE(I,J));
 @FOR(PXR(I,J): SLASUR(I,4) = SLASUR(I,1) + SLASUR(I,2) - SLASUR(I,3));
 @TABLE(SLASUR);
 ! Execute the Graph;
 @CHARTPIE('Product Mix Model', 'Produce', PRODUCE);
 @WRITE(" ", @NEWLINE(1));
 !To see the corresponding model scalar, remove (!) From the line below;
 @GEN(MAX5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>FORMULA (kg/barrel)</th>
<th>DARK</th>
<th>LIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITRUS_PECTIN</td>
<td>5.000000</td>
<td>15.00000</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>4.000000</td>
<td>4.000000</td>
</tr>
<tr>
<td>BLUEBERRY</td>
<td>35.00000</td>
<td>20.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVAILABLE (kg):</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CITRUS_PECTIN</td>
<td>480.0000</td>
<td></td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>160.0000</td>
<td></td>
</tr>
<tr>
<td>BLUEBERRY</td>
<td>1190.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROFIT p/barrel:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DARK</td>
<td>10.00000</td>
</tr>
<tr>
<td>LIGHT</td>
<td>25.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION:

Global optimal solution found.
Objective value: 820.0000
Infeasibilities: 0.000000

IDEAL PRODUCTION PROGRAM:

DARK 12 Barrel x Unit profit: $10.00 = Total: $120.00
LIGHT 28 Barrel x Unit profit: $25.00 = Total: $700.00

<table>
<thead>
<tr>
<th>SLACK/SURPLUS LIMIT = AVAILABLE:</th>
<th>DARK</th>
<th>LIGHT</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITRUS_PECTIN</td>
<td>60.0000</td>
<td>420.000</td>
<td>480.000</td>
<td>0.00000</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>48.0000</td>
<td>112.000</td>
<td>160.000</td>
<td>0.00000</td>
</tr>
<tr>
<td>BLUEBERRY</td>
<td>420.000</td>
<td>560.000</td>
<td>1190.000</td>
<td>-210.000</td>
</tr>
</tbody>
</table>
GOAL
A confection operates with two products: trousers and shirts. Because they are similar products, they have comparable productivity and share the same features.

Production scheduling is performed by product batches. The production department says it will take 15 men an hour for a batch of pants and 20 men an hour for a batch of shirts. It is known that no specialized manpower is required for the production of fighters, but it takes 10 men an hour of this type of labor to produce a batch of shirts.

Skilled workers can produce shirts or trousers, and 30 men per hour are available from skilled workers and 50 non-skilled men per hour.

From the production plant it is known that there are only two machines capable of producing two types of product, and machine 1 can produce a batch of shirts every 10 hours, and can not be used for more than 80 hours in the period considered.

Machine 2 can produce a batch of pants every 30 hours and a batch of shirts every 35 hours, and can not be used for more than 130 hours in the period considered.

Two types of raw material are required to produce trousers and shirts. In the production of a batch of pants, 12 kilos of raw material A, 10 kilos of B.

In the production of a batch of shirts, 8 kilos of raw material A and 15 kilos of B.

The warehouse informs that, by imposing space, it can only to provide 120 kg of A and 100 kg of B in the period considered.

Knowing that price by sale is $800 in lots of shirts and $500 in lots of pants. All the necessary information for the development of the model follows below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Shirts</th>
<th>Pants</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1N</td>
<td>head</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>T1E</td>
<td>head</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Machine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>hr</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>hr</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Raw</td>
<td>k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>12</td>
<td>120</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Price (p/lot)</td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800.00</td>
<td>500.00</td>
<td>-</td>
</tr>
</tbody>
</table>

Formulate the problem in LINGO to maximize revenue.
MODEL:
SETS:
PRODUCT : PRICE, PRODUCE;
RESOURCE: AVAILABLE;
RXP(RESOURCE,PRODUCT) : USAGE;
ENDSETS
DATA:
! Available resources;
RESOURCE, AVAILABLE =
T1N_WORKER 80
T1E_WORKER 30
MACHINE1 80
MACHINE2 130
RM_A 120
RM_B 100;
! Product attributes;
PRODUCT, PRICE =
SHIRTS 800.00
PANTS 500.00;
! Required SHIRTS PANTS;
USAGE =
20 15 ! T1_WORKER (head);
10 0 ! T2_WORKER (head);
10 20 ! MACH1NE1 (hr);
35 30 ! MACH1NE2 (hr);
8 12 ! RM_A (k);
15 10; ! RM_B (k);
ENDDATA
SUBMODEL MAX23:
[OBJ] MAX = @SUM(PRODUCT(p): PRICE(p) * PRODUCE(p));
! The available constraints;
@FOR (RESOURCE(r):
[AVAL] @SUM (PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r);)
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET(‘TERSEO’,1);
! Post status windows, 1 Yes, 0 No;
@SET(‘STAWIN’,0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " RESOURCES/USAGE (head, head, hr, hr, k, k):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" AVAILABLE (head, head, hr, hr, k, k):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" PRICE:", @NEWLINE(1));
@TABLE(PRICE);
@WRITE(" SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX23);
! Solution report;
@WRITE(" OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
@WRITEFOR (PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
@FORMAT(PRODUCT(J),'-7s'), ' produce:',
@FORMAT(PRODUCE(J),'%2.1f') ,' lots x price: $',
@FORMAT(PRICE(J),'%6.2f') ,'= $',
@FORMAT(PRICE(J) * PRODUCE(J),'%7.2f'),
@NEWLINE(1));
@CHARTPIE(’Product Mixer Model’, ’Produce’, PRODUCE);
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove () From the line below;
!@GEN(MAX23);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/USAGE (head, head, hr, hr, k, k):

<table>
<thead>
<tr>
<th>Shirts</th>
<th>PANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1N_WORKER</td>
<td>20.00000</td>
</tr>
<tr>
<td>T1E_WORKER</td>
<td>10.00000</td>
</tr>
<tr>
<td>MACHINE1</td>
<td>10.00000</td>
</tr>
<tr>
<td>MACHINE2</td>
<td>35.00000</td>
</tr>
<tr>
<td>RM_A</td>
<td>8.000000</td>
</tr>
<tr>
<td>RM_B</td>
<td>15.00000</td>
</tr>
</tbody>
</table>

AVAILABLE (head, head, hr, hr, k, k):

<table>
<thead>
<tr>
<th>Shirts</th>
<th>PANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1N_WORKER</td>
<td>80.00000</td>
</tr>
<tr>
<td>T1E_WORKER</td>
<td>30.00000</td>
</tr>
<tr>
<td>MACHINE1</td>
<td>80.00000</td>
</tr>
<tr>
<td>MACHINE2</td>
<td>130.0000</td>
</tr>
<tr>
<td>RM_A</td>
<td>120.0000</td>
</tr>
<tr>
<td>RM_B</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

PRICE:

| Shirts | 800.0000 |
| PANTS | 500.0000 |

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 2816.667
Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

| Shirts | 3.0 lots x price: $800.00 = $2400.00 |
| PANTS | 0.8 lots x price: $500.00 = $416.67 |
GOAL

A company produces only three items: Rollerball pen, mechanical pencils and fountain pen.

The unitary income for each of the items is $3.00 for rollerball pen $3.00 to $5.00 and mechanical pencil with fountain pen.

The company is planning its production mix for next week. It is believed that the company can sell any amount of pens and mechanical pencils to produce, but the production is limited to available resources.

All the necessary information for the development of the model follows below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Rollerball Pen</th>
<th>Automatic Pencil</th>
<th>Fountain Pen</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic</td>
<td>g 1.2</td>
<td>1.7</td>
<td>1.2</td>
<td>1,000</td>
</tr>
<tr>
<td>Chrome</td>
<td>g 0.8</td>
<td>0</td>
<td>2.3</td>
<td>1,200</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>g 2.0</td>
<td>3.0</td>
<td>4.5</td>
<td>2,000</td>
</tr>
<tr>
<td>Price</td>
<td>$ 3.00</td>
<td>3.00</td>
<td>5.00</td>
<td>-</td>
</tr>
</tbody>
</table>

Based on this information, build a linear programming model that allows the company to plan next week’s production for maximum revenue.
MODEL:
SETS:
 PRODUCT : PRICE, PRODUCE;
 HEADER / ROLPEN, AUTPEN, FOUPEN, LIMIT, VALUE /;
 RESOURCE: AVAILABLE;
 RXR(RESOURCE, PRODUCT) : USAGE;
 PXR(RESOURCE, HEADER) : SLASUR;
ENDSETS
DATA:
 ! Resources attributes:
 RESOURCE, AVAILABLE =
 PLASTIC 1000
 CHROME 1200
 ST_STEEL 2000;
 ! Product attributes:
 PRODUCT, PRICE =
 ROLPEN 3.00
 AUTPEN 3.00
 FOUPEN 5.00;
 ! Required (g)
 USAGE =
 ROLPEN 1.2
 AUTPEN 1.7
 FOUPEN 1.2
 ! PLASTIC ;
 0.8
 0
 2.3
 ! CHROME ;
 2.0
 3.0
 4.5;
 ! ST_STEEL;
ENDDATA
SUBMODEL MAX24:
 [OBJ]
 MAX = @SUM (PRODUCT(p): PRICE(p) * PRODUCE(p));
 ! The available constraints;
 @FOR(RESOURCE(r):
 [AVA] @SUM (PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r));
ENDSUBMODEL
CALC:
 @SET('TERSEO',1); ! Output level: 0=Verbose, 1-Terse;
 @SET('STAWIN',0); ! Post status windows, 1 Yes, 0 No;
 @WRITE(" DATA:", @NEWLINE(1));
 @WRITE(" RESOURCES/USAGE (g):", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" AVAILABLE (g):", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" PRICE :", @NEWLINE(1));
 @TABLE(PRICE);
 @WRITE(" SOLUTION ", @NEWLINE(1));
 @SOLVE(MAX24);
 @WRITE(" OPTIMAL PRODUCTION PROGRAM: *, @NEWLINE(1));
 @WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
 @FORMAT(PRODUCT(J),'-6s'), ': Produce:',
 @FORMAT(PRODUCT(J),'%3.0f'), ' un x price: $',
 @FORMAT(PRICE(J),'%4.2f'), ' = ', 'Total: $',
 @FORMAT(PRICE(J) * PRODUCE(J),'%7.2f'),
 @NEWLINE(1));
 @WRITE(" SLACK/SURPLUS LIMIT = AVAILABLE: *, @NEWLINE(1));
 @FOR(PXR(I,J): SLASUR(I,4) = AVAILABLE(I));
 @FOR(PXR(I,J) | J #LT# 4: SLASUR(I,J) = PRODUCE(J) * USAGE(I,J));
 @FOR(PXR(I,J): SLASUR(I,5) = SLASUR(I,1) + SLASUR(I,2) + SLASUR(I,3) - SLASUR(I,4));
 @TABLE(SLASUR);
 @WRITE(" *, @NEWLINE(1));
 @WRITE(" To see the corresponding model scalar, remove (!) From the line below;
 @GEN(MAX24);
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCES/USAGE (g):

<table>
<thead>
<tr>
<th></th>
<th>ROLPEN</th>
<th>AUTPEN</th>
<th>FOUPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLASTIC</td>
<td>1.200000</td>
<td>1.700000</td>
<td>1.200000</td>
</tr>
<tr>
<td>CHROME</td>
<td>0.8000000</td>
<td>0.000000</td>
<td>2.300000</td>
</tr>
<tr>
<td>ST_STEEL</td>
<td>2.000000</td>
<td>3.000000</td>
<td>4.500000</td>
</tr>
</tbody>
</table>

AVAILABLE (g):

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PLASTIC</td>
<td>1000.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHROME</td>
<td>1200.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_STEEL</td>
<td>2000.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRICE :

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLPEN</td>
<td>3.000000</td>
<td></td>
</tr>
<tr>
<td>AUTPEN</td>
<td>3.000000</td>
<td></td>
</tr>
<tr>
<td>FOUPEN</td>
<td>5.000000</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 2766.667
Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

ROLPEN: Produce:700 un x price: $3.00 = Total: $2100.00
FOUPEN: Produce:133 un x price: $5.00 = Total: $ 666.67

SLACK/SURPLUS LIMIT = AVAILABLE:

<table>
<thead>
<tr>
<th></th>
<th>ROLPEN</th>
<th>AUTPEN</th>
<th>FOUPEN</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLASTIC</td>
<td>840.000</td>
<td>0.000000</td>
<td>160.0000</td>
<td>1000.000</td>
<td>0.000000</td>
</tr>
<tr>
<td>CHROME</td>
<td>560.000</td>
<td>0.000000</td>
<td>306.6667</td>
<td>1200.000</td>
<td>-333.3333</td>
</tr>
<tr>
<td>ST_STEEL</td>
<td>1400.000</td>
<td>0.000000</td>
<td>600.0000</td>
<td>2000.000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
GOAL
A paper recycling company transforms paper, sulfite paper, carbon and several other types of paper into a pulp or dough from which paper, paperboard and butter paper can be produced.

The following table summarizes the percentage of recovered paper obtained from the papers that are recycled.

<table>
<thead>
<tr>
<th>Formulas</th>
<th>Newspaper</th>
<th>Cardboard</th>
<th>Parchment</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newspaper</td>
<td>%</td>
<td>85</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Various pulp</td>
<td>%</td>
<td>90</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>Sulfite Paper</td>
<td>%</td>
<td>90</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>Carbon Paper</td>
<td>%</td>
<td>80</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>Target Production</td>
<td>Ton</td>
<td>500</td>
<td>600</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processing Cost</th>
<th>Newspaper</th>
<th>Cardboard</th>
<th>Parchment</th>
<th>Purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newspaper</td>
<td>$</td>
<td>6.50</td>
<td>11.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Various pulp</td>
<td>$</td>
<td>9.75</td>
<td>12.25</td>
<td>9.50</td>
</tr>
<tr>
<td>Sulfite Paper</td>
<td>$</td>
<td>4.75</td>
<td>7.75</td>
<td>8.50</td>
</tr>
<tr>
<td>Carbon Paper</td>
<td>$</td>
<td>7.50</td>
<td>8.50</td>
<td>0.00</td>
</tr>
</tbody>
</table>

To better understand the previous table, if we have 1 ton of newspaper we can recover 0.85 ton of newsprint or 0.80 ton of cardboard. If we have 1 ton of carbon paper to be recycled we can get 0.80 ton of newsprint or 0.70 ton of cardboard.

The costs for processing each ton of material (papers) in the various types of pulp and respective procurement costs are also indicated in the table above.

The company wants to determine the highest production of pulp at the lowest cost, to produce 500 tons of paper pulp, 600 tons of pulp and 300 tons of paper.
MODEL:
SETS:
PRODUCT : TARGET, PRODUCE;
RESOURCE: AVAILABLE, PURCHASE, CP, PC;
RXP (RESOURCE, PRODUCT): FORMULA, COST_PROC, BUILD;
ENDSETS
DATA:
! Resources attributes;
RESOURCES, AVAILABLE, PURCHASE =
NEWSPAPER 600 15.00
VARIOUS 500 16.00
SULFIT 300 19.00
CARBON 400 17.00;
! Product attributes;
PRODUCT, TARGET =
NEWSPAPER 500
CARDBOARD 600
PARCHMENT 300;
! Required Newspaper Cardboard Parchment;
FORMULA = 85 80 0 ! Paper to be recycled: Newspaper;
90 80 70 ! Paper to be recycled: Various paper;
90 85 80 ! Paper to be recycled: Sulfite paper;
80 70 0; ! Paper to be recycled: Carbon paper;
COST_PROC = 6.50 11.00 0.00 ! Processing cost: Newspaper;
9.75 12.25 9.50 ! Processing cost: Various paper;
4.75 7.75 8.50 ! Processing cost: Sulfite paper;
7.50 8.50 0.00; ! Processing cost: Carbon paper;
! Select NEWSPAPER CARDBOARD PARCHMENT;
BUILD = 1 0 0 ! Or;
0 0 1 ! Or;
0 1 0; ! Or;
ENDDATA
SUBMODEL MAX25:
[OBJ] MAX = @SUM (PRODUCT(J): PRODUCE(J));
! Purchase cost;
@FOR (RESOURCE(I):
 CP(I) = @SUM (PRODUCT(J): PRODUCE(J) * (1+(1-FORMULA(I,J)/100)) * PURCHASE(I) * BUILD(I,J));
! Processing cost;
@FOR (RESOURCE(I):
 PC(I) = @SUM (PRODUCT(J): PRODUCE(J) * (1+(1-FORMULA(I,J)/100)) * COST_PROC(I,J) * BUILD(I,J));
! The available constraints;
@FOR (RESOURCE(I):
 @SUM (PRODUCT(J): PRODUCE(J) * (1+(1-FORMULA(I,J)/100)) * BUILD(I,J)) <= AVAILABLE(I));
! The Target constraints;
@FOR (PRODUCT(J):
 @SUM (RESOURCE(I): PRODUCE(J)) >= TARGET(J));
@FOR (RXP(I,J): @BIN(BUILD));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:" ,@NEWLINE(1), " RECYCLING FORMULA (%):", @NEWLINE(1));
@TABLE(formula);
@WRITE(" ", @NEWLINE(1), " PROCESSING COST P/TON:" ,@NEWLINE(1));
@TABLE(cost_proc);
@WRITE(" ", @NEWLINE(1), " PURCHASE PROFIT P/TON:" ,@NEWLINE(1));
@TABLE(purchase);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (Ton):", @NEWLINE(1));
@TABLE(available);
@WRITE(" ", @NEWLINE(1), " TARGET (Ton):", @NEWLINE(1));
@TABLE(target);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX25);
! Solution report;
@WRITE(" Produce:" ,@NEWLINE(1));
@WRITEFOR(product(I): " . ",
@FORMAT(product(I),'-10s'), 31*' ',
@FORMAT(produce(I),'%7.1f'), ' ton',
@NEWLINE(1));
@WRITE(" ");
! Processing cost;
@WRITE(" PROCESSING COST:" ,@NEWLINE(1));
@WRITEFOR(RXP(I,J) | BUILD(I,J) #GT# 0: " . ",
@FORMAT(resource(I),'-10s'),
@FORMAT(produce(J) * (1+(1-formula(I,J)/100) * build(I,J), '%7.1f') , ' ton x cost: $',
@FORMAT(cost_proc(I,J),'%5.2f'), ' = $',
@FORMAT(purchase(I),'%5.2f'), ' = $',
@FORMAT(produce(J) * purchase(I),'%8.2f'),
@NEWLINE(1));
@WRITE(" Total: ", 40*' ','$',
@FORMAT(@SUM(product(J): pc(J) + pc(J)),'%8.2f'),
@NEWLINE(1));
! Purchase cost;
@WRITE(" PURCHASE COST:" ,@NEWLINE(1));
@WRITEFOR(RXP(I,J) | BUILD(I,J) #GT# 0: " . ",
@FORMAT(resource(I),'-10s'),
@FORMAT(produce(J) * (1+(1-formula(I,J)/100) * build(I,J), '%7.1f') , ' ton x cost: $',
@FORMAT(purchase(I),'%5.2f'), ' = $',
@FORMAT(produce(J) * purchase(I),'%8.2f'),
@NEWLINE(1));
@WRITE(" Total: ", 40*' ','$',
@FORMAT(@SUM(product(J): pc(J) + pc(J)),'%8.2f'),
@NEWLINE(2));
! Total cost (Processing + Purchase);
@WRITE(" TOTAL COST (PROCESSING + PURCHASE):' ,11*' ','$',
@FORMAT(@SUM(product(J): cp(J) + pc(J)),'%8.2f'),
@NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MAX25);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

- **RECYCLING FORMULA (%)**:
 - NEWSPIER: 85.00000
 - CARBOARD: 80.00000
 - PARCHMENT: 0.00000
 - SULFIT: 90.00000
 - CARBON: 90.00000
 - VARIOUS: 80.00000

- **PURCHASE COST P/TON**:
 - NEWSPIER: 15.00000
 - SULFIT: 19.00000
 - VARIOUS: 16.00000
 - CARBON: 17.00000

- **PROCESSING COST P/TON**:
 - NEWSPIER: 6.500000
 - CARBOARD: 11.00000
 - PARCHMENT: 0.00000
 - SULFIT: 9.750000
 - CARBON: 7.500000

- **AVAILABLE (Ton)**:
 - CARBON: 19.00000
 - SULFIT: 19.00000
 - VARIOUS: 16.00000

- **PURCHASE PROFIT P/TON**:
 - CARBON: 7.500000
 - SULFIT: 4.750000
 - VARIOUS: 9.750000
 - NEWSPIER: 6.500000

- **NEWSPAPER CARBOARD PARCHMENT PROCESSING COST P/TON**:
 - CARBON: 80.00000
 - SULFIT: 90.00000
 - VARIOUS: 90.00000
 - NEWSPIER: 85.00000

- **RECYCLING FORMULA (%)**:
 - NEWSPIER: 85.00000
 - CARBOARD: 80.00000
 - PARCHMENT: 0.00000
 - SULFIT: 90.00000
 - CARBON: 90.00000
 - VARIOUS: 80.00000

DATA

Objective value: 1167.224
Infeasibilities: 0.000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

Global optimal solution found.

PRODUCE:
- NEWSPIER: 521.7 ton
- CARBOARD: 260.9 ton
- PARCHMENT: 384.6 ton

PROCESSING COST:
- NEWSPIER: 600.0 ton x cost: $6.50 = $3913.00
- VARIOUS: 500.0 ton x cost: $9.50 = $4750.00
- SULFIT: 300.0 ton x cost: $7.75 = $2325.00
- CARBON: 339.1 ton x cost: $8.50 = $2849.95
Total: $10975.00

PURCHASE COST:
- NEWSPIER: 600.0 ton x cost: $15.00 = $7826.09
GOAL

A company produces four different types of containers (C1, C2, C3 and C4). The profit per unit of each container produced and the weekly maximum demand of the containers in the market are described in the table below.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding m/h</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>165</td>
</tr>
<tr>
<td>Installation / Door m/h</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>Finish / Painter m/h</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>210</td>
</tr>
<tr>
<td>Demand un</td>
<td>45</td>
<td>65</td>
<td>90</td>
<td>65</td>
<td>-</td>
</tr>
<tr>
<td>Profit $</td>
<td>10.00</td>
<td>15.00</td>
<td>18.00</td>
<td>21.00</td>
<td>-</td>
</tr>
</tbody>
</table>

Containers are assembled in three sequential processes. The critical aspect of the processes is the labor force.

The consumption of labor in each process and the quantity of men x hours are also described in the table above.

It is possible a scheme of reutilization of labor between the processes.

Consequently, it is possible that up to 15% of the workers who took part in the welding process are lent to the installation/door process.

Similarly, up to 20% of finishing and painting workers can work on installation /door.

Production requirements require that the ratio between containers C1 and C3 be between 0.8 and 1.1.

Formulate the problem to optimize the production of containers.
MODEL:
SETS:
PRODUCTS: DEMAND, PROFIT, VOLUME;
RESOURCE: AVAILABLE;
ROUTES(RESOURCE, PRODUCTS): USAGE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, AVAILABLE =
WELDING 165
INST_DOOR 75
FINISH_PAINTER 210;
! Products attributes;
PRODUCTS, DEMAND, PROFIT =
CONTAINER1 45 10
CONTAINER2 65 15
CONTAINER3 90 18
CONTAINER4 65 21;
! Required Container1 Container2 Container3 Container4:
USAGE = 1 2 4 3 ! WELDING;
3 4 2 3 ! INST_DOOR;
2 5 1 7; ! FINISH_PAINTER;
ENDDATA
SUBMODEL MAX26:
[OBJ] MAX = @SUM(PRODUCTS(J): PROFIT(J) * VOLUME(J));
! The demand constraints;
@FOR(PRODUCTS(J):
[DEM] @SUM(products(J): VOLUME(J)) <= DEMAND(J) * BUILD;
@BIN(BUILD));
! The capacity constraints;
@FOR(RESOURCE(J):
[AVA] @SUM(PRODUCTS(K): USAGE(J, K) * VOLUME(K)) <= AVAILABLE(J));
! Proportion for transport:
VOLUME(1) >= 0.8 * VOLUME(3);
VOLUME(1) <= 1.1 * VOLUME(3);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Sets the length of the line;
@SET('LINLEN',120);
! Scheme of reutilization of labor between the processes;
! Installation / Door;
AVAILABLE(2) = AVAILABLE(2) + AVAILABLE(1) * 0.20 + AVAILABLE(3) * 0.15;
! Welding;
AVAILABLE(1) = AVAILABLE(1) * 0.80;
! Finish / painter;
AVAILABLE(3) = AVAILABLE(3) * 0.85;
! Data block;
@WRITE(" ", @NEWLINE(1), " REQUIRED (m/hr): ", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " PROFIT: ", @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (m/hr): ", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " DEMAND (m/hr): ", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
@SOLVE(MAX26);
! Solution report;
@WRITE(" ", @NEWLINE(1), " OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
@WRITE(' PRODUCE: ', @NEWLINE(1));
@WRITEFOR(PRODUCTS(J) | VOLUME(J) #GT# 0: ', PRODUCTS(J), ' PRODUCE:
@FORMAT(VOLUME(J), '%2.0f'), ' UN x Unit profit: $',
@FORMAT(PROFIT(J), '%4.2f'), ' = Total: $',
@FORMAT(PROFIT(J) * VOLUME(J), '%6.2f'),
@NEWLINE(1));
@WRITE(' Total: $',48*' ','$', @FORMAT(OBJ, '%6.2f'), @NEWLINE(2));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX26);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>REQUIRED (m/hr):</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELDING</td>
<td>1.00</td>
<td>2.00</td>
<td>4.00</td>
<td>3.00</td>
</tr>
<tr>
<td>INST_DOOR</td>
<td>3.00</td>
<td>4.00</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>FINISH_PAINTER</td>
<td>2.00</td>
<td>5.00</td>
<td>1.00</td>
<td>7.00</td>
</tr>
</tbody>
</table>

PROFIT:
- C1 | 10.00
- C2 | 15.00
- C3 | 18.00
- C4 | 21.00

AVAILABLE (m/hr):
- WELDING | 132.00
- INST_DOOR | 139.50
- FINISH_PAINTER | 178.50

DEMAND (m/hr):
- C1 | 45.00
- C2 | 65.00
- C3 | 90.00
- C4 | 65.00

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION

Global optimal solution found.

Objective value: 825.9447
Objective bound: 825.9447
Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

PRODUCE:
- CONTAINER1 produce: 16 un x Unit profit: $10.00 = Total: $164.69
- CONTAINER2 produce: 2 un x Unit profit: $15.00 = Total: $33.79
- CONTAINER3 produce: 15 un x Unit profit: $18.00 = Total: $269.48
- CONTAINER4 produce: 17 un x Unit profit: $21.00 = Total: $357.98

Total: $825.94
GOAL

A company has four assembly teams that have been trained to assemble three different product types.

Each team has a specific performance in assembly time (in minutes) of the products.

The product assembled by the teams is evaluated based on their aggregation of value, reliability, elimination of future rework and other elements.

If each assembly team has 1800 minutes of useful work in the week, it is necessary to produce at least 90 units of product 1, 160 of product 2 and 110 of product 3.

Below is all the information necessary for the development of the model.

<table>
<thead>
<tr>
<th>Performance</th>
<th>Team 1</th>
<th>Team 2</th>
<th>Team 3</th>
<th>Team 4</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod 1</td>
<td>min/un</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Prod 2</td>
<td>min/un</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Prod 3</td>
<td>min/un</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Available</td>
<td>min</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value Added</th>
<th>Team 1</th>
<th>Team 2</th>
<th>Team 3</th>
<th>Team 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod 1</td>
<td>$</td>
<td>6.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Prod 2</td>
<td>$</td>
<td>7.00</td>
<td>10.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Prod 3</td>
<td>$</td>
<td>8.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Formulate the Linear programming model that optimizes the assembly process.
MODEL:
SETS:
PRODUCTS: DEMAND;
RESOURCE: AVAILABLE;
ROUTES(PRODUCTS, RESOURCE): VALUE_ADDED, VOLUME, PERFORMANCE;
TRS(RESOURCE, PRODUCTS): TRA_VOL, TRA_PER, TRA_TOT;
ENDSETS
DATA:
! Products attributes;
PRODUCTS, DEMAND =
PROD1 90
PROD2 160
PROD3 110;

! Resources attributes;
RESOURCE, AVAILABLE =
TEAM1 1800
TEAM2 1800
TEAM3 1800
TEAM4 1800;

! Require
VALUE_ADDED =
6 4 4 7 ! Prod1;
7 10 8 10 ! Prod2;
8 10 10 11; ! Prod3;

PERFORMANCE =
9 5 3 11 ! Prod1;
4 10 7 12 ! Prod2;
9 12 15 16; ! Prod3;
ENDDATA
SUBMODEL MAX27:
[OBJ] MAX = @SUM(ROUTES(I, J): VALUE_ADDED(I, J) * VOLUME(I, J));
! The demand constraints;
@FOR(RESOURCE(J):
 [CAP] @SUM(PRODUCTS(I): PERFORMANCE(I,J) * VOLUME(I, J)) <= AVAILABLE(1));
! The capacity constraints;
@FOR(PRODUCTS(I):
 [DEM] @SUM(RESOURCE(J): VOLUME(I, J)) <= DEMAND(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Default starting point for variables;
@SET('STARTP',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " VALUE ADDED:", @NEWLINE(1));
@TABLE(VALUE_ADDED);
@WRITE(" ", @NEWLINE(1), " PERFORMANCE min/un:", @NEWLINE(1));
@TABLE(PERFORMANCE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE min:", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " DEMAND unit:", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX27);
! Solution report;
@WRITE(" OPTIMAL PRODUCTION PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0:' ', RESOURCE(J), ' produce:',
 @FORMAT(VOLUME(I, J),'%3.0f'), ' un ', PRODUCTS(I),' x Unit value: $',
 @FORMAT(VALUE_ADDED (I, J),'%5.2f'), ' = Total: $',
 @FORMAT(VALUE_ADDED (I, J) * VOLUME(I,J),'%7.2f'),
 @NEWLINE(1));
@WRITE(" TOTAL AGGREGATE VALUE: ', 36"' $', @FORMAT(OBJ,'%7.2f') , @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX27);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
VALUE ADDED:

<table>
<thead>
<tr>
<th></th>
<th>TEAM1</th>
<th>TEAM2</th>
<th>TEAM3</th>
<th>TEAM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD1</td>
<td>6.00</td>
<td>4.00</td>
<td>4.00</td>
<td>7.00</td>
</tr>
<tr>
<td>PROD2</td>
<td>7.00</td>
<td>10.00</td>
<td>8.00</td>
<td>10.00</td>
</tr>
<tr>
<td>PROD3</td>
<td>8.00</td>
<td>10.00</td>
<td>10.00</td>
<td>11.00</td>
</tr>
</tbody>
</table>

PERFORMANCE min/un:

<table>
<thead>
<tr>
<th></th>
<th>TEAM1</th>
<th>TEAM2</th>
<th>TEAM3</th>
<th>TEAM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD1</td>
<td>9.00</td>
<td>5.00</td>
<td>3.00</td>
<td>11.00</td>
</tr>
<tr>
<td>PROD2</td>
<td>4.00</td>
<td>10.00</td>
<td>7.00</td>
<td>12.00</td>
</tr>
<tr>
<td>PROD3</td>
<td>9.00</td>
<td>12.00</td>
<td>15.00</td>
<td>16.00</td>
</tr>
</tbody>
</table>

AVAILABLE min:

<table>
<thead>
<tr>
<th></th>
<th>TEAM1</th>
<th>TEAM2</th>
<th>TEAM3</th>
<th>TEAM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROD2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROD3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEMAND unit:

<table>
<thead>
<tr>
<th></th>
<th>TEAM1</th>
<th>TEAM2</th>
<th>TEAM3</th>
<th>TEAM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD1</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROD2</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROD3</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

Global optimal solution found.
Objective value: 3380.625
Infeasibilities: 0.000000

OPTIMAL PRODUCTION PROGRAM:

TEAM4 produce: 90 un	PROD1 x Unit value: $ 7.00 = Total: $ 630.00
TEAM2 produce: 160 un	PROD2 x Unit value: $10.00 = Total: $1600.00
TEAM2 produce: 17 un	PROD3 x Unit value: $10.00 = Total: $ 166.67
TEAM3 produce: 43 un	PROD3 x Unit value: $10.00 = Total: $ 427.08
TEAM4 produce: 51 un	PROD3 x Unit value: $11.00 = Total: $ 556.88

TOTAL AGGREGATE VALUE: $3380.62
What foods should people (or animals) use, so that the cost is minimal and they have the nutrients in adequate quantities, and also meet other requirements, such as variety between meals, appearance, taste, etc.?

OTHER AVAILABLE BLOCKS
- Product Mix
 - Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

In this type of problem, the analyst wants to determine levels of use of raw materials in the composition of a food ration.

Restrictions usually relate to desired nutritional characteristics for the finished product, quantities of raw materials and inputs available and demand to be met.

Suppose a problem in which a ration must be elaborated from the mixture of 3 types of grains.

Four nutrients are considered in the final product, as considered in the information below:

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Grain 1</th>
<th>Grain 2</th>
<th>Grain 3</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>1,250</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>900</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>0.25</td>
<td>1</td>
<td>233</td>
</tr>
</tbody>
</table>

The information that compose the constraints and objective function of the problem presented, serve for the development of the model to minimize costs.
MODEL:
SETS:
 PRODUCT : COST, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS
DATA:
! Resources attributes;
 RESOURCE, AVAILABLE =
 NUTR_A 1250
 NUTR_B 250
 NUTR_C 900
 NUTR_D 232.5;
! Products attributes;
 PRODUCT, COST =
 GRAIN1 41
 GRAIN2 35
 GRAIN3 96;
! Require p/kg
 Grain1 Grain2 Grain3;
 USAGE =
 2
 1
 5
 1
 3
 3
 0.6
 0.25
 ! NUTR_A;
 1
 1
 0
 ! NUTR_B;
 5
 3
 0
 ! NUTR_C;
 0.6
 0.25
 1
 ! NUTR_D;
ENDDATA
SUBMODEL MIN1:
[OBJ] MIN = @SUM(PRODUCT(p): COST(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
 [AVA] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) >= AVAILABLE(r));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO','1');
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN','0');
! Data Block;
@WRITE(" DATA:\n", @NEWLINE(1), " FORMULA (kg):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE("\n", @NEWLINE(1), " AVAILABLE (KG):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE("\n", @NEWLINE(1), " COST p/kg:", @NEWLINE(1));
@TABLE(COST);
@WRITE("\n", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN1);
! Solution Report;
@WRITE("\n", @NEWLINE(1), " IDEAL MIXING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J):'
 , product(J),': ',
 @FORMAT(PRODUCE(J),'%3g'), Kg x Unit profit: $,
 @FORMAT(COST(J),'%5.2f'), Total: $,'
 @FORMAT(COST(J) * PRODUCE(J),'%7.2f'),
@NEWLINE(1));
! Execute the Graph;
@CHARTPIE(Blend Model, 'Mix', PRODUCE);
@WRITE("\n", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (kg):

<table>
<thead>
<tr>
<th></th>
<th>GRAIN1</th>
<th>GRAIN2</th>
<th>GRAIN3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTR_A</td>
<td>2.000000</td>
<td>3.000000</td>
<td>7.000000</td>
</tr>
<tr>
<td>NUTR_B</td>
<td>1.000000</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>NUTR_C</td>
<td>5.000000</td>
<td>3.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>NUTR_D</td>
<td>0.600000</td>
<td>0.250000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (KG):

<table>
<thead>
<tr>
<th></th>
<th>NUTR_A</th>
<th>NUTR_B</th>
<th>NUTR_C</th>
<th>NUTR_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTR_A</td>
<td>1250.00</td>
<td>250.00</td>
<td>900.00</td>
<td>232.50</td>
</tr>
</tbody>
</table>

COST p/kg:

<table>
<thead>
<tr>
<th></th>
<th>GRAIN1</th>
<th>GRAIN2</th>
<th>GRAIN3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAIN1</td>
<td>41.0000</td>
<td>35.0000</td>
<td>96.0000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 19550.00
Infeasibilities: 0.000000

IDEAL MIXING PROGRAM:

GRAIN1: 200 Kg x Unit profit: $41.00 = Total: $8200.00
GRAIN2: 50 Kg x Unit profit: $35.00 = Total: $1750.00
GRAIN3: 100 Kg x Unit profit: $96.00 = Total: $9600.00
GOAL
Suppose we want to produce a minimum cost ration by mixing two products A and B, and they have different costs: Product A: $0.30 per kg and Product B: $0.40 per kg.

As for birds, it is known that each requires minimum quantities per week. Described in the formula and will be obtained from these products.

Below are the information necessary for the development of the model.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Prod A</th>
<th>Prod B</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin 1</td>
<td>% 5</td>
<td>25</td>
<td>50kg</td>
</tr>
<tr>
<td>Vitamin 2</td>
<td>% 25</td>
<td>10</td>
<td>100kg</td>
</tr>
<tr>
<td>Vitamin 3</td>
<td>% 10</td>
<td>10</td>
<td>60kg</td>
</tr>
<tr>
<td>Vitamin 4</td>
<td>% 35</td>
<td>20</td>
<td>180kg</td>
</tr>
<tr>
<td>Cost p/kg</td>
<td>$ 0.30</td>
<td>0.40</td>
<td>-</td>
</tr>
</tbody>
</table>

Therefore, to develop a model to obtain the lowest cost in this blend.
MODEL:
SETS:
 PRODUCT : COST, PRODUCE;
 RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
 ! Resource attributes;
 RESOURCE, AVAILABLE =
 VIT_1 50
 VIT_2 100
 VIT_3 60
 VIT_4 180;
 ! Product attributes;
 PRODUCT, COST =
 PROD_A 0.30
 PROD_B 0.40 ;
 ! Require (formula) %
 PROD_A PROD_B;
 USAGE =
 0.05 0.25 ! VIT_1;
 0.25 0.10 ! VIT_2;
 0.10 0.10 ! VIT_3;
 0.35 0.20; ! VIT_4;
ENDDATA
SUBMODEL MIN2:

[OBJ] MIN = @SUM(PRODUCT(p): COST(p) * PRODUCE(p));

! The Available constraints;
@FOR(RESOURCE(r):

 [AVA] @SUM(PRODUCT(p): USAGE(r,p) * PRODUCE(p)) >= AVAILABLE(r));
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " FORMULA (%):", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" AVAILABLE (kg):", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" COST p/kg:", @NEWLINE(1));
 @TABLE(COST);
 @WRITE(" SOLUTION:", @NEWLINE(1));
 @SOLVE(MIN2);

 ! Solution Report;
 @WRITE(" IDEAL MIXING PROGRAM:", @NEWLINE(1));
 @WRITEFOR(PRODUCT(J): "',product(J),'",' ,
 @FORMAT(PRODUCE(J),'%4.1f'),' Kg x Unit cost: $',
 @FORMAT(COST(J),'%4.2f'),' = Total: $',
 @FORMAT(COST(J) * produce(J),'%6.2f'),
 @NEWLINE(1));
 ! Execute the Graph;
 @CHARTPIE('Blend Model', 'Mix', PRODUCE);
 @WRITE(" ", @NEWLINE(1));
 !To see the corresponding model scalar, remove (!) From the line below;
 !@GEN(MIN2);
ENDCALC
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (%):

<table>
<thead>
<tr>
<th></th>
<th>PROD_A</th>
<th>PROD_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIT_1</td>
<td>0.0500000</td>
<td>0.2500000</td>
</tr>
<tr>
<td>VIT_2</td>
<td>0.2500000</td>
<td>0.1000000</td>
</tr>
<tr>
<td>VIT_3</td>
<td>0.1000000</td>
<td>0.1000000</td>
</tr>
<tr>
<td>VIT_4</td>
<td>0.3500000</td>
<td>0.2000000</td>
</tr>
</tbody>
</table>

AVAILABLE (kg):

<table>
<thead>
<tr>
<th></th>
<th>PROD_A</th>
<th>PROD_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIT_1</td>
<td>50.00000</td>
<td></td>
</tr>
<tr>
<td>VIT_2</td>
<td>100.0000</td>
<td></td>
</tr>
<tr>
<td>VIT_3</td>
<td>60.00000</td>
<td></td>
</tr>
<tr>
<td>VIT_4</td>
<td>180.0000</td>
<td></td>
</tr>
</tbody>
</table>

COST p/kg:

<table>
<thead>
<tr>
<th></th>
<th>PROD_A</th>
<th>PROD_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIT_1</td>
<td>0.300000</td>
<td></td>
</tr>
<tr>
<td>VIT_2</td>
<td>0.400000</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 190.0000
Infeasibilities: 0.000000

IDEAL MIXING PROGRAM:
PROD_A: 500.0 Kg x Unit cost: $0.30 = Total: $150.00
PROD_B: 100.0 Kg x Unit cost: $0.40 = Total: $ 40.00
GOAL

A company that sells agricultural products received an order of 8000 kg of feed. The customer wants it to have at least 20% corn, 15% grain and 15% mineral salts.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>Available (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn</td>
<td>%</td>
<td>30</td>
<td>5</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Grains</td>
<td>%</td>
<td>10</td>
<td>30</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Minerals</td>
<td>%</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Cost p/kg</td>
<td></td>
<td>250.00</td>
<td>300.00</td>
<td>320.00</td>
<td>150.00</td>
</tr>
</tbody>
</table>

What is the ideal blend in order to minimize the cost?
MODEL:
SETS:
PRODUCT : COST, PRODUCE;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, AVAILABLE =
CORN 1600
GRAINS 1200
MINERALS 1200;
! Products attributes;
PRODUCT, COST =
R1 250
R2 300
R3 320
R4 150;
! Require (Formula) %
USAGE =
0.30 0.05 0.20 0.10 ! CORN;
0.10 0.30 0.15 0.10 ! GRAINS;
0.20 0.20 0.20 0.30; ! MINERALS;
ENDDATA
SUBMODEL MIN3:
[OBJ] MIN = @SUM(PRODUCT(p):COST(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
[AVA] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) >= AVAILABLE(r));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (%):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" AVAILABLE (kg):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" COST p/kg:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN3);
! Solution Report;
@WRITE(" IDEAL MIXING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) PRODUCE(J) #GT# 0:
@WRITE(" product(J),: ",
@FORMAT(PRODUCE(J),"%4.1f"),' Kg x Unit cost: $',
@FORMAT(COST(J),"%4.2f"), ' = Total: $',
@FORMAT(COST(J) * produce(J),"%10.2f"),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
! @GEN(MIN3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (%):

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN</td>
<td>0.300000</td>
<td>0.050000</td>
<td>0.200000</td>
<td>0.100000</td>
</tr>
<tr>
<td>GRAINS</td>
<td>0.100000</td>
<td>0.300000</td>
<td>0.150000</td>
<td>0.100000</td>
</tr>
<tr>
<td>MINERALS</td>
<td>0.200000</td>
<td>0.200000</td>
<td>0.200000</td>
<td>0.300000</td>
</tr>
</tbody>
</table>

AVAILABLE (kg):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN</td>
<td>1600.00</td>
</tr>
<tr>
<td>GRAINS</td>
<td>1200.00</td>
</tr>
<tr>
<td>MINERALS</td>
<td>1200.00</td>
</tr>
</tbody>
</table>

COST p/kg:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>250.0000</td>
</tr>
<tr>
<td>R2</td>
<td>300.0000</td>
</tr>
<tr>
<td>R3</td>
<td>320.0000</td>
</tr>
<tr>
<td>R4</td>
<td>150.0000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal SOLUTION:

Global optimal solution found.
Objective value: 1941176.
Infeasibilities: 0.000000

IDEAL MIXING PROGRAM:
R1: 4941.2Kg x Unit cost: $250.00 = Total: $1235294.12
R2: 2352.9Kg x Unit cost: $300.00 = Total: $ 705882.35
GOAL

The weekly dietary needs of a particular animal correspond to the formula described below, as well as the availability of proteins and carbohydrates and costs of each type of feed:

<table>
<thead>
<tr>
<th>RESOURCES / PRODUCTS</th>
<th>FORMULA</th>
<th>RA</th>
<th>RB</th>
<th>RC</th>
<th>RD</th>
<th>RE</th>
<th>AVAILABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTEINS</td>
<td>%</td>
<td>25</td>
<td>25</td>
<td>45</td>
<td>35</td>
<td>25</td>
<td>200 kg</td>
</tr>
<tr>
<td>CARBOHYDRATES</td>
<td>%</td>
<td>55</td>
<td>20</td>
<td>10</td>
<td>35</td>
<td>20</td>
<td>250 kg</td>
</tr>
<tr>
<td>COST p/kg</td>
<td>$</td>
<td>3.00</td>
<td>2.00</td>
<td>4.00</td>
<td>3.00</td>
<td>3.00</td>
<td>-</td>
</tr>
</tbody>
</table>

What mixture of these rations satisfies dietary requirements at the lowest cost to the owner?
MODEL:
SETS:
PRODUCT : COST, PRODUCE;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, AVAILABLE = PROTEINS
200
CARBOHYDRATES
250;
! Products attributes;
PRODUCT, COST
= RA
3.00
RB
2.00
RC
4.00
RD
3.00
RE
3.00;
! Require (formula) %
USAGE
= 0.25 0.25 0.45 0.35 0.25
! PROTEINS;
0.55 0.20 0.10 0.35 0.20;
! CARBOHYDRATES;
ENDDATA
SUBMODEL MIN4:
[OBJ] MIN = @SUM(PRODUCT(p): COST(p) * PRODUCE(p));
! The Available constraints;
@FOR(RESOURCE(r):
[AVA] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) >= AVAILABLE(r));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (%):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE("", @NEWLINE(1), " AVAILABLE (kg):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE("", @NEWLINE(1), " COST per kg:", @NEWLINE(1));
@TABLE(COST);
@WRITE("", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN4);
! Solution Report;
@WRITE(" IDEAL MIXING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J)| PRODUCE(J) #GT# 0:
 Product: ',product(J),' ',
 @FORMAT(PRODUCE(J),'%6.1f'),' kg x cost p/kg: $',
 @FORMAT(COST(J),'%4.2f'), ' = total: $',
 @FORMAT(COST(J) * produce(J),'%7.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN4);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

FORMULA (%):

<table>
<thead>
<tr>
<th></th>
<th>RA</th>
<th>RB</th>
<th>RC</th>
<th>RD</th>
<th>RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTEINS</td>
<td>0.250000</td>
<td>0.250000</td>
<td>0.450000</td>
<td>0.350000</td>
<td>0.250000</td>
</tr>
<tr>
<td>CARBOHYDRATES</td>
<td>0.550000</td>
<td>0.200000</td>
<td>0.100000</td>
<td>0.350000</td>
<td>0.200000</td>
</tr>
</tbody>
</table>

AVAILABLE (kg):

<table>
<thead>
<tr>
<th></th>
<th>PROTEINS</th>
<th>CARBOHYDRATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.000</td>
<td>250.000</td>
<td></td>
</tr>
</tbody>
</table>

COST per kg:

<table>
<thead>
<tr>
<th></th>
<th>RA</th>
<th>RB</th>
<th>RC</th>
<th>RD</th>
<th>RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTEINS</td>
<td>3.00000</td>
<td>2.00000</td>
<td>4.00000</td>
<td>3.00000</td>
<td>3.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

Global optimal solution found.

Objective value: 1857.14
Infeasibilities: 0.00000

IDEAL MIXING PROGRAM:

Product: RA 166.7 kg x cost p/kg: $3.00 = total: $500.00
Product: RD 452.4 kg x cost p/kg: $3.00 = total: $1357.14
GOAL

A farmer is raising pigs for market and wishes to determine the quantity of the available types of feed that should be given to each pig to meet certain nutritional requirements at minimum cost.

The units of each type of basic nutritional ingredient contained in a pound of each feed type is given in the following table along with the daily nutritional requirement and feed costs.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Corn</th>
<th>Tankage</th>
<th>Alfalfa</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>pound</td>
<td>9</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Proteins</td>
<td>pound</td>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Vitamins</td>
<td>pound</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Cost (cents)/pound</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
PRODUCT : COST;
RESOURCE: REQUIRED;
RXP(RESOURCE, PRODUCT) : FORMULA, PRODUCE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, REQUIRED =
CARBOHYDRATES 20
PROTEINS 18
VITAMINS 15;

! Products attributes;
PRODUCT, COST =
CORN 7.00
TANKAGE 6.00
ALFALFA 5.00;

! Require
FORMULA =
9 2 4
3 8 6
1 2 6;

ENDDATA
SUBMODEL MIN5:
[OBJ] MIN = @SUM (RXP(I,J): (COST(J) * FORMULA(I,J)) * PRODUCE(I,J));
! The Available constraints;
@FOR (RESOURCE(I):
[AVA] @SUM (PRODUCT(J): PRODUCE(I, J)) >= REQUIRED(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (pound):", @NEWLINE(1));
@TABLE (FORMULA);
@WRITE(" ", @NEWLINE(1), " REQUIRED (pound):", @NEWLINE(1));
@TABLE (REQUIRED);
@WRITE(" ", @NEWLINE(1), " COST (cents)/lb.", @NEWLINE(1));
@TABLE (COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN5);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL MIXING PROGRAM: ", @NEWLINE(1));
@WRITEFOR (RXP(I,J) PRODUCE(I, J) #GT# 0: ' ',
@FORMAT(RESOURCE(I),'-14s'),' ',
@FORMAT(PRODUCT(J),'-7s'),' ',
@FORMAT(PRODUCE (I,J)','%2.0f'),' pound x cost: $',
@FORMAT(COST(J) * FORMULA(I,J),'%5.2f'), ' = total: $',
@FORMAT(COST(J) * FORMULA(I,J) * PRODUCE(I,J),'%6.2f'),
@NEWLINE (1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove () From the line below;
@GEN(MIN5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (pound):

<table>
<thead>
<tr>
<th></th>
<th>CORN</th>
<th>TANKAGE</th>
<th>ALFALFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBOHYDRATES</td>
<td>9.000000</td>
<td>2.000000</td>
<td>4.000000</td>
</tr>
<tr>
<td>PROTEINS</td>
<td>3.000000</td>
<td>8.000000</td>
<td>6.000000</td>
</tr>
<tr>
<td>VITAMINS</td>
<td>1.000000</td>
<td>2.000000</td>
<td>6.000000</td>
</tr>
</tbody>
</table>

REQUIRED (pound):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBOHYDRATES</td>
<td>20.00000</td>
</tr>
<tr>
<td>PROTEINS</td>
<td>18.00000</td>
</tr>
<tr>
<td>VITAMINS</td>
<td>15.00000</td>
</tr>
</tbody>
</table>

COST (cents)/lb.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN</td>
<td>7.000000</td>
</tr>
<tr>
<td>TANKAGE</td>
<td>6.000000</td>
</tr>
<tr>
<td>ALFALFA</td>
<td>5.000000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 723.0000
Infeasibilities: 0.000000

IDEAL MIXING PROGRAM:

<table>
<thead>
<tr>
<th></th>
<th>CORN</th>
<th>TANKAGE</th>
<th>ALFALFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBOHYDRATES</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PROTEINS</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VITAMINS</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COST (cents)/lb.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN</td>
<td>240.00</td>
</tr>
<tr>
<td>TANKAGE</td>
<td>378.00</td>
</tr>
<tr>
<td>ALFALFA</td>
<td>105.00</td>
</tr>
</tbody>
</table>
GOAL

An ice-cream maker wants to produce 100 kg of ice cream at a minimum cost, whose composition in the details, in addition to the raw materials available.

<table>
<thead>
<tr>
<th>Components / Formula</th>
<th>Cost</th>
<th>FAT</th>
<th>SLNG</th>
<th>TSL</th>
<th>SUGAR</th>
<th>TS</th>
<th>WATER</th>
<th>STAB</th>
<th>EMUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREAM 40%</td>
<td>27.00</td>
<td>40</td>
<td>5.4</td>
<td>45.4</td>
<td>-</td>
<td>45.4</td>
<td>54.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CREAM 38%</td>
<td>26.00</td>
<td>38</td>
<td>5.6</td>
<td>43.6</td>
<td>-</td>
<td>43.6</td>
<td>56.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MILK 3.2%</td>
<td>3.00</td>
<td>3.2</td>
<td>8.7</td>
<td>11.9</td>
<td>-</td>
<td>11.9</td>
<td>88.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MILK 4.0%</td>
<td>3.00</td>
<td>4.0</td>
<td>8.6</td>
<td>12.6</td>
<td>-</td>
<td>12.6</td>
<td>87.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FATTY CONDENSED MILK</td>
<td>7.00</td>
<td>8</td>
<td>20</td>
<td>28</td>
<td>-</td>
<td>28</td>
<td>72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LEAN CONDENSED SKIN</td>
<td>3.00</td>
<td>-</td>
<td>28</td>
<td>28</td>
<td>-</td>
<td>28</td>
<td>72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BUTTER</td>
<td>15.00</td>
<td>5</td>
<td>92</td>
<td>97</td>
<td>-</td>
<td>97</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WHEY DRIED SOLIDS</td>
<td>10.00</td>
<td>-</td>
<td>95</td>
<td>95</td>
<td>-</td>
<td>95</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SACCHAROSE</td>
<td>10.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CANE BROTH</td>
<td>9.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>67</td>
<td>67</td>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>STABILIZER</td>
<td>55.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EMULSIFIER</td>
<td>78.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WATER</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>REQUIREMENTS MIN</td>
<td>MIN</td>
<td>10</td>
<td>10.5</td>
<td>20.5</td>
<td>11</td>
<td>32.5</td>
<td>58.5</td>
<td>0.37</td>
<td>0.1</td>
</tr>
<tr>
<td>REQUIREMENTS MAX</td>
<td>MAX</td>
<td>16</td>
<td>13</td>
<td>25</td>
<td>17</td>
<td>41.5</td>
<td>62.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
PRODUCTS: COST, PRODUCE;
RESOURCE: REQ_MIN, REQ_MAX;
XYZ(PRODUCTS, RESOURCE): U1;
RXP(RESOURCE, PRODUCTS) : USAGE;
ENDSETS
DATA:
! Resources attributes;
RESOURCE, REQ_MIN, REQ_MAX =
FAT 10 16
SLNG 10.5 13
TSL 20.5 25
SUGAR 11 17
TS 32.5 41.5
WATER 58.5 62.5;
! Products attributes;
PRODUCTS, COST =
CREAM40 27 ! Cream 40% ;
CREAM38 26 ! Cream 38%;
MILK32 3 ! Milk 3.2%;
MILK40 3 ! Milk 4.0%;
FATCONDMILK 7 ! Fatty condensed milk;
LEACONDMILK 3 ! Lean condensed milk;
BUTTER 15 ! Butter;
WHEY 10 ! Whey proteins;
SACCHAROSE 10
CANEBROTH 9
STABILIZER 55
EMULSIFIER 78
WATER 0;
! Require (formula) %;
USAGE =
0.4 0.38 0.032 0.04 0.08 0 0.5 0 0 0 0 0 0 0 IFAT;
0.054 0.056 0.087 0.086 0.20 0.28 0.92 0.95 0 0 0 0 0 ISLNG;
0.454 0.436 0.119 0.126 0.28 0.28 0.97 0.95 0 0 0 0 0 ITSL;
0 0 0 0 0 0 1.0 0.67 0 0 0 0 0 ISUGAR;
0.454 0.436 0.119 0.126 0.28 0.28 0.97 0.95 1.0 0.67 0.8 0 0 ITS;
0.546 0.564 0.881 0.874 0.72 0.72 0.03 0.05 0 0.33 0.20 0 1.0!WATER;
ENDDATA
SUBMODEL MIN6:
[OBJ] MIN = @SUM(PRODUCTS(p): COST(p) * PRODUCE(p));
! 100kg of ice cream;
@SUM(PRODUCTS(p): PRODUCE(p)) = 100;
! The minimum required constraints;
@FOR(RESOURCE(r):
[MIN] @SUM(PRODUCTS(c): USAGE(r, c) * PRODUCE(c)) >= REQ_MIN(r));
! The maximum required constraints;
@FOR(RESOURCE(row):
[RMAX] @SUM(PRODUCTS(col): USAGE(row, col) * PRODUCE(col)) <= REQ_MAX(row));
! Min/Max Sugar;
USAGE(4,9) * PRODUCE(9) * USAGE(4,10) * PRODUCE(9) >= 11;
USAGE(4,9) * PRODUCE(10) * USAGE(4,10) * PRODUCE(10) <= 17;
! min and max Stabilizer and Emulsifier;
PRODUCE(11) = 0.37;
PRODUCE(12) = 0.1;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Precision in digits for standard solution reports;
@SET('PRECIS',5);
! Set page width;
@SET('LINLEN',120);
! Data block;
U1 = @TRANSPOSE(USAGE);
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (%):", @NEWLINE(1));
@TABLE(U1);
@WRITE(" ", @NEWLINE(1), " REQUIREMENTS_MIN (%):", @NEWLINE(1));
@TABLE(REQ_MIN);
@WRITE(" ", @NEWLINE(1), " REQUIREMENTS_MAX (%):", @NEWLINE(1));
@TABLE(REQ_MAX);
@WRITE(" ", @NEWLINE(1), " COST:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN6);
! Solution report;
@WRITEFOR(PRODUCTS(J) | produce(j) #GT# 0: ' Required: ',
 @FORMAT(PRODUCTS(J),'-11s'),
 @FORMAT(PRODUCE(J),'%8.4f'),'% x Cost: $',
 @FORMAT(COST(J),'%5.2f'), ' = TOTAL: $',
 @FORMAT(COST(J) * PRODUCE(J),'%6.2f'),
 @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
! @GEN(MIN6);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (%):

CREAM40 0.40000 0.05400 0.45400 0.0000 0.45400 0.54600 CREAM40 27.000
CREAM38 0.38000 0.05600 0.43600 0.0000 0.43600 0.56400 CREAM38 26.000
MILK32 0.03200 0.08700 0.11900 0.0000 0.11900 0.88100 MILK32 3.000
MILK40 0.04000 0.08600 0.12600 0.0000 0.12600 0.87400 MILK40 3.000
FATCONDMILK 0.08000 0.28000 0.28000 0.0000 0.28000 0.72000 FATCONDMILK 7.000
LEACONDMILK 0.0000 0.28000 0.28000 0.0000 0.28000 0.72000 LEACONDMILK 3.000
BUTTER 0.50000 0.92000 0.97000 0.0000 0.97000 0.03000 BUTTER 15.000
WHEY 0.95000 0.05000 0.05000 0.0000 0.05000 0.95000 WHEY 10.000
SACCHAROSE 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 SACCHAROSE 10.000
CANEBROTH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CANEBROTH 9.0000
STABILIZER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STABILIZER 55.000
EMULSIFIER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EMULSIFIER 78.000
WATER 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 WATER 0.0000

REQUIREMENTS_MIN (%): REQUIREMENTS_MAX (%):
FAT 10.000 FAT 16.000
SLNG 10.500 SLNG 13.000
TSL 20.500 TSL 25.000
SUGAR 11.000 SUGAR 17.000
TS 32.500 TS 41.500
WATER 58.500 WATER 62.500

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION:
Local optimal solution found.
Objective value: 802.79
Infeasibilities: 0.0000

IDEAL MIXING PROGRAM:
Required: CREAM40 11.6719% x Cost: $27.00 = TOTAL: $315.14
Required: MILK40 63.8368% x Cost: $3.00 = TOTAL: $191.51
Required: BUTTER 5.5556% x Cost: $15.00 = TOTAL: $83.33
Required: WHEY 1.8617% x Cost: $10.00 = TOTAL: $18.62
Required: SACCHAROSE 16.6040% x Cost: $10.00 = TOTAL: $166.04
Required: STABILIZER 0.3700% x Cost: $55.00 = TOTAL: $20.35
Required: EMULSIFIER 0.1000% x Cost: $78.00 = TOTAL: $7.80

SLACK/SURPLUS LIMIT = MINIMUM REQUIREMENTS:

<table>
<thead>
<tr>
<th>PROD</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAT</td>
<td>10.000</td>
<td>10.000</td>
</tr>
<tr>
<td>SLNG</td>
<td>8.0000</td>
<td>10.500</td>
</tr>
<tr>
<td>TSL</td>
<td>20.500</td>
<td>20.500</td>
</tr>
<tr>
<td>SUGAR</td>
<td>5.3960</td>
<td>11.000</td>
</tr>
<tr>
<td>TS</td>
<td>27.600</td>
<td>32.500</td>
</tr>
<tr>
<td>WATER</td>
<td>54.500</td>
<td>58.500</td>
</tr>
</tbody>
</table>
GOAL

In a farm you want to make **10000 kilos of feed** at the lowest possible cost.

According to the recommendations of the veterinarian of the farm animals the same should contain: 15% protein, minimum 8% fiber, minimum 1100 calories per kilo and maximum 2250 calories per kilo.

To make the ration, 4 ingredients are available whose technical-economic characteristics are shown in the details (data in%, except calories and costs).

The ration must be made containing at least 20% of maize and at most 12% of soya.

<table>
<thead>
<tr>
<th>Nutritional Requirement</th>
<th>Barley</th>
<th>Oats</th>
<th>Soya</th>
<th>Corn</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteins %</td>
<td>6.9</td>
<td>8.5</td>
<td>9.0</td>
<td>27.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibers %</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calories /kg cal</td>
<td>1,760</td>
<td>1,700</td>
<td>1,056</td>
<td>1,400</td>
<td>1,100,000</td>
<td>2,250,000</td>
</tr>
<tr>
<td>Limit kg</td>
<td>1,200</td>
<td>2,000</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cost p/kg</td>
<td>$ 43.00</td>
<td>48.00</td>
<td>44.00</td>
<td>56.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Therefore, formulate a PL model for the problem.
MODEL:
SETS:
PRODUCT : COST, PRODUCE;
RESOURCE: AVAILABLE_MIN, AVAILABLE_MAX;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Product attributes;
PRODUCT , COST =
BARLEY 30
OATS 48
SOYA 44
CORN 56;
! Resources attributes;
RESOURCE, AVAILABLE_MIN, AVAILABLE_MAX =
PROTEINS 1500 1500
FIBERS 800 1500
CALORIES 11000000 22500000;
! Required (formula)
Barley Oats Soya Corn ;
USAGE =
0.069 0.085 0.090 0.271
! PROTEINS (%);
0.060 0.110 0.110 0.140
! FIBERS (%);
1760 1700 1056 1400;
! CALORIES (CAL);
ENDDATA
SUBMODEL MIN7:
[OBJ] MIN @SUM(PRODUCT(p): COST(p) * PRODUCE(p));
! Amount of feed;
@SUM(PRODUCT(p): PRODUCE(p)) = 10000;
PRODUCE(3) <= 1200; ! Soya (12%);
PRODUCE(4) >= 2000; ! Corn (20%);
! The minimum available constraints;
@FOR(RESOURCE(r):
[AVA_MIN] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) >= AVAILABLE_MIN(r));
! The maximum available constraints;
@FOR(RESOURCE(r):
[AVA_MAX] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE_MAX(r));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET(‘TERSEO’,1);
! Post status windows, 1 Yes, 0 No;
@SET(‘STAWIN’,0);
! Data block;
@WRITE(" " DATA:", @NEWLINE(1), " FORMULA (%,CAL):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE_MIN (kg):", @NEWLINE(1));
@TABLE(AVAILABLE_MIN);
@WRITE(" ", @NEWLINE(1), " AVAILABLE_MAX (kg):", @NEWLINE(1));
@TABLE(AVAILABLE_MAX);
@WRITE(" ", @NEWLINE(1), " COST p/kg:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MIN7);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL MIXING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
@FORMAT(PRODUCT(J),‘-7s’),’ ',
@FORMAT(PRODUCE(J),‘%6.1f’),’ Kg x Unit cost: $’,
@FORMAT(COST(J),‘%5.2f’),’ = Total: $’,
@FORMAT(COST(J) * PRODUCE(J),‘%9.2f’),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN7);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (%CAL):

<table>
<thead>
<tr>
<th></th>
<th>BARLEY</th>
<th>OATS</th>
<th>SOYA</th>
<th>CORN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTEINS</td>
<td>0.069</td>
<td>0.085</td>
<td>0.09</td>
<td>0.271</td>
</tr>
<tr>
<td>FIBERS</td>
<td>0.06</td>
<td>0.11</td>
<td>0.11</td>
<td>0.14</td>
</tr>
<tr>
<td>CALORIES</td>
<td>1760</td>
<td>1700</td>
<td>1056</td>
<td>1400</td>
</tr>
</tbody>
</table>

AVAILABLE_MIN (kg):
- PROTEINS: 1500
- FIBERS: 800
- CALORIES: 11000000

AVAILABLE_MAX (kg):
- PROTEINS: 1500
- FIBERS: 1500
- CALORIES: 22500000

COST p/kg:
- BARLEY: 30
- OATS: 48
- SOYA: 44
- CORN: 56

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 404257.43
Infeasibilities: 0.0000000

IDEAL MIXING PROGRAM:
BARLEY 5990.1 Kg x Unit cost: $30.00 = Total: $179702.97
CORN 4009.9 Kg x Unit cost: $56.00 = Total: $224554.46
GOAL

A dog food company produces two types of feed: A and B. Cereals and meat are used for the manufacture of feed, according to the table below:

<table>
<thead>
<tr>
<th>Resources/Products</th>
<th>A</th>
<th>B</th>
<th>Available</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals (lb.)</td>
<td>5</td>
<td>2</td>
<td>30,000</td>
<td>1.00</td>
</tr>
<tr>
<td>Meat (lb.)</td>
<td>1</td>
<td>4</td>
<td>10,000</td>
<td>4.00</td>
</tr>
<tr>
<td>Price (Pac, 6 lb.)</td>
<td>20.00</td>
<td>30.00</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

How much of each feed is needed to maximize profit?
MODEL:
SETS:
RESOURCES: AVAILABLE, COST;
PRODUCTS: PRICE, PRODUCE;
RXP(RESOURCES, PRODUCTS): FORMULA;
ENDSETS
DATA:
! Products attributes;
PRODUCTS
PRICE =
A 20
B 30;
! Brands attributes;
RESOURCES, AVAILABLE, COST =
CEREALS 30000 1
MEAT 10000 4;
! Required
FORMULA = 5 2 ! CEREALS;
1 4; ! MEAT;
ENDDATA
SUBMODEL MAX8:
[OBJ] MAX = ((PRICE(1) - COST_C) * PRODUCE(1)) + ((PRICE(2) - COST_M) * PRODUCE(2));
!Cost of cereals;
COST_C = FORMULA(1,1) * COST(1) + FORMULA(2,1) * COST(2);
!Cost of Meat;
COST_M = FORMULA(1,2) * COST(1) + FORMULA(2,2) * COST(2);
! The Available Constraints;
@FOR (RESOURCES(I):
@SUM (PRODUCTS(J): FORMULA(I,J) * PRODUCE(J)) <= AVAILABLE(I);)
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA - Resources vs Products (lb.):", @NEWLINE(1));
@TABLE(FORMULA);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (lb.):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " PRICE (p/lb.):", @NEWLINE(1));
@TABLE(PRICE);
@WRITE(" ", @NEWLINE(1), " COST (p/lb):", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MAX8);
! Solution Report;
@WRITE(" IDEAL MIXING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCTS(K): ' Product:',
@FORMAT(PRODUCTS(K),'4s'),', ',
@FORMAT(PRODUCE(K),'%8.3f'),' lb. x Cost: $',
@IF(K #EQ# 1, COST_C, COST_M),'%5.2f'),' Total: $',
@IF(K #EQ# 1, 1, COST_C * PRODUCE(K), COST_M * PRODUCE(K)),'%9.2f'), @NEWLINE(1),44*' ',' - Revenue: $',
@IF(K #EQ# 1, PRICE(1) * PRODUCE(K), PRICE(2) * PRODUCE(K)),'%9.2f'), @NEWLINE(1),44*' ',' = Profit: $',
@IF(K #EQ# 1, PRICE(1) * PRODUCE(K) - COST_C * PRODUCE(K), PRICE(2) * PRODUCE(K) - COST_M * PRODUCE(K)),'%9.2f'),

@NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MAX8);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA - resources vs Products (lb.):

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEREALS</td>
<td>5.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>MEAT</td>
<td>1.000000</td>
<td>4.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (lb.):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CEREALS</td>
<td>30000.00</td>
</tr>
<tr>
<td>MEAT</td>
<td>10000.00</td>
</tr>
</tbody>
</table>

PRICE (p/lb.):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20.000000</td>
</tr>
<tr>
<td>B</td>
<td>30.000000</td>
</tr>
</tbody>
</table>

COST (p/lb.):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CEREALS</td>
<td>1.000000</td>
</tr>
<tr>
<td>MEAT</td>
<td>4.000000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 74444.44
Infeasibilities: 0.000000

IDEAL MIXING PROGRAM:

Product: A, 5555.556 lb. x Cost: $ 9.00 = Total: $ 50000.00
- Revenue: $111111.11
 = Profit: $ 61111.11

Product: B, 1111.111 lb. x Cost: $18.00 = Total: $ 20000.00
- Revenue: $ 33333.33
 = Profit: $ 13333.33
GOAL

In blending problems, two or more raw materials are to be blended into one or more finished goods, satisfying one or more quality requirements on the finished goods. In this example, we blend mixed nuts into four different brands with a goal of maximizing revenue.

The Chess Snackfoods Co. markets four brands of mixed nuts. The four brands of nuts are called Pawn, Knight, Bishop, and King. Each brand contains a specified ratio of peanuts and cashews.

The table below lists the number of ounces of the two nuts contained in each pound of each brand and the profit the company receives per pound of each brand.

<table>
<thead>
<tr>
<th>Resources/Products</th>
<th>Pawn</th>
<th>Knight</th>
<th>Bishop</th>
<th>King</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula Peanut oz</td>
<td>15</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>750 pounds</td>
</tr>
<tr>
<td>Cashew Nut oz</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>250 pounds</td>
</tr>
<tr>
<td>Price $</td>
<td>2.00</td>
<td>3.00</td>
<td>4.00</td>
<td>5.00</td>
<td>-</td>
</tr>
</tbody>
</table>

Chess has contracts with suppliers to receive 750 pounds of peanuts/day and 250 pounds of cashews/day.

Our problem is to determine the number of pounds of each brand to produce each day to maximize total revenue without exceeding the available supply of nuts.
MODEL:
SETS:
 NUTS: SUPPLY;
 BRANDS: PROFIT, PRODUCE;
RXP(NUTS, BRANDS): FORMULA;
ENDSETS
DATA:
! Nuts attributes;
 NUTS, SUPPLY =
 PEANUTS 750
 CASHEWS 250;

! Brands attributes;
 BRANDS, PROFIT =
 PAWN 2
 KNIGHT 3
 BISHOP 4
 KING 5;

! Required
 FORMULA = 15 10 6 2 1 6 10 14;
ENDDATA
SUBMODEL MAX9:
[OBJ]
 MAX = @SUM(BRANDS(I):PROFIT(I) * PRODUCE(I));
! The Supply Constraints;
@FOR(NUTS(I):
 [SUP] @SUM(BRANDS(J):FORMULA(I, J) * PRODUCE(J) / 16) <= SUPPLY(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (oz):", @NEWLINE(1));
@TABLE(FORMULA);
@WRITE(" AVAILABLE (pounds):", @NEWLINE(1));
@TABLE(SUPPLY);
@WRITE(" PROFIT (p/oz):", @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX9);
! Solution Report;
@WRITE(" IDEAL MIXING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(BRANDS(J): PRODUCE(J) > 0: ' Brand:',
 @FORMAT(BRANDS(J),'4s'),', ',
 @FORMAT(PRODUCE(J),'%6.2f'),' oz x Unit profit: $',
 @FORMAT(PROFIT(J),'%4.2f'),' = Total: $',
 @FORMAT(PROFIT(J) * PRODUCE(J),'%7.2f'),
@NEWLINE(1));
@WRITE(" ");
!To see the corresponding model scalar, remove () From the line below;
!@GEN(MIN9);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (oz):

<table>
<thead>
<tr>
<th></th>
<th>PAWN</th>
<th>KNIGHT</th>
<th>BISHOP</th>
<th>KING</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEANUTS</td>
<td>15.000000</td>
<td>10.000000</td>
<td>6.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>CASHEWS</td>
<td>1.000000</td>
<td>6.000000</td>
<td>10.00000</td>
<td>14.00000</td>
</tr>
</tbody>
</table>

AVAILABLE (pounds):

| | PEANUTS 750.0000 | CASHEWS 250.0000 |

PROFIT (p/oz):

| | PAWN 2.000000 | KNIGHT 3.000000 | BISHOP 4.000000 | KING 5.000000 |

SOLUTION:

Global optimal solution found.
Objective value: 2692.308
Infeasibilities: 0.000000

IDEAL MIXING PROGRAM:
Brand: PAWN, 769.23 oz x Unit profit: $2.00 = Total: $1538.46
Brand: KING, 230.77 oz x Unit profit: $5.00 = Total: $1153.85
What actions should be included in a portfolio of investments so that the profit is maximum and the forecasts of profitability and government restrictions are respected?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

A company buys and resells a product that can be purchased at the following cost:

<table>
<thead>
<tr>
<th>Resources / Periods</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier A</td>
<td>$1.20</td>
<td>1.30</td>
<td>1.40</td>
<td>1.50</td>
<td>1.60</td>
<td>1.70</td>
<td>150 un</td>
</tr>
<tr>
<td>Supplier B</td>
<td>$1.30</td>
<td>1.40</td>
<td>1.50</td>
<td>1.60</td>
<td>1.70</td>
<td>1.80</td>
<td>90 un</td>
</tr>
<tr>
<td>Stockholm</td>
<td>$0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>50 un</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>120</td>
<td>150</td>
<td>120</td>
<td>200</td>
<td>150</td>
<td>180</td>
</tr>
</tbody>
</table>

The company wants to minimize the total cost of operations for 6 months, which is the sum of the cost of purchase and the cost of storage.

The sales forecast for the next 6 months is: 120, 150, 120, 200, 150 and 180 unity.

The storage cost from one period to another is $0.05 and the stock at the beginning of month 1 is zero.

What is the monthly scheme of purchases that implies total cost.

Consider the cost of any given month as the sum of the costs of purchasing the product from the two suppliers plus the cost of the existing inventory at the end of the period.
MODEL:
SETS:
 PERIOD : DEMAND, COST_TT;
 RESOURCE: CAPACITY ;
 RXP(PERIOD, RESOURCE) : COST, PRODUCE;
ENDSETS
DATA:
 ! Resources attributes;
 RESOURCE , CAPACITY =
 SUPPLIER_A 150
 SUPPLIER_B 90
 STOCK 50;
 ! Period attributes;
 PERIOD, DEMAND =
 MONTH1 120
 MONTH2 150
 MONTH3 120
 MONTH4 200
 MONTH5 150
 MONTH6 180;
 ! Costs
 Supplier_A Supplier_B Stock;
 COST = 1.20 1.30 0.05 ! MONTH1;
 1.30 1.40 0.05 ! MONTH2;
 1.40 1.50 0.05 ! MONTH3;
 1.50 1.60 0.05 ! MONTH4;
 1.60 1.70 0.05 ! MONTH5;
 1.70 1.80 0.05; ! MONTH6;
ENDDATA
SUBMODEL MIN1:
[OBJ] MIN = @SUM(PERIOD(J): COST_TT(J));
! Cost calculation;
@FOR(PERIOD(I):COST_TT(I) = @SUM(RESOURCE(J): COST(I,J) * PRODUCE(I,J)););
! The demand constraint;
@FOR(RXP(I,J) | J #EQ# 1: PRODUCE(I,1) + PRODUCE(I,2) - PRODUCE(I,3) >= DEMAND(I));
! The capacity constraint;
@FOR(PERIOD(I): @FOR(RESOURCE(J): PRODUCE(I,J) <= CAPACITY(J)););
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:"," @NEWLINE(1), " COST:"," @NEWLINE(1));
@TABLE(COST, 1);
@WRITE(",", @NEWLINE(1), " CAPACITY (un):", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(",", @NEWLINE(1), " DEMAND (un):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN1);
! Solution Report;
@WRITE(" IDEAL OPERATION PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RXP(I, J) | PRODUCE(I,J) #GT# 0: ' . ','
 @FORMAT(PERIOD(I),'-6s'),', ',
 @FORMAT(RESOURCE(J),'-10s'), ' Provide:','
 @FORMAT(PRODUCE(I,J),'%4.0f'),' un x cost: $','
 @FORMAT(COST(I,J),'%5.2f'),' = Total: $','
 @FORMAT(COST(I,J) * PRODUCE(I,J),'%7.2f'),
 @NEWLINE(1));
@WRITE(" TOTAL COST: ", @NEWLINE(1), $', @FORMAT(OBJ,'%7.2f'), @NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN1);
ENDCALC
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th></th>
<th>SUPPLIER_A</th>
<th>SUPPLIER_B</th>
<th>STOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONTH1</td>
<td>1.2000</td>
<td>1.3000</td>
<td>0.05000</td>
</tr>
<tr>
<td>MONTH2</td>
<td>1.3000</td>
<td>1.4000</td>
<td>0.05000</td>
</tr>
<tr>
<td>MONTH3</td>
<td>1.4000</td>
<td>1.5000</td>
<td>0.05000</td>
</tr>
<tr>
<td>MONTH4</td>
<td>1.5000</td>
<td>1.6000</td>
<td>0.05000</td>
</tr>
<tr>
<td>MONTH5</td>
<td>1.6000</td>
<td>1.7000</td>
<td>0.05000</td>
</tr>
<tr>
<td>MONTH6</td>
<td>1.7000</td>
<td>1.8000</td>
<td>0.05000</td>
</tr>
</tbody>
</table>

CAPACITY (un):
- SUPPLIER_A: 150.00
- SUPPLIER_B: 90.000
- STOCK: 50.000

DEMAND (un):
- MONTH1: 120.00
- MONTH2: 150.00
- MONTH3: 120.00
- MONTH4: 200.00
- MONTH5: 150.00
- MONTH6: 180.00

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
- Global optimal solution found.
- Objective value: 1361.0
- Infeasibilities: 0.0000

IDEAL OPERATION PROGRAM:
- MONTH1, SUPPLIER_A: Provide: 120 un x cost: $ 1.20 = Total: $ 144.00
- MONTH2, SUPPLIER_A: Provide: 150 un x cost: $ 1.30 = Total: $ 195.00
- MONTH3, SUPPLIER_A: Provide: 120 un x cost: $ 1.40 = Total: $ 168.00
- MONTH4, SUPPLIER_A: Provide: 150 un x cost: $ 1.50 = Total: $ 225.00
- MONTH4, SUPPLIER_B: Provide: 50 un x cost: $ 1.60 = Total: $ 80.00
- MONTH5, SUPPLIER_A: Provide: 150 un x cost: $ 1.60 = Total: $ 240.00
- MONTH6, SUPPLIER_A: Provide: 150 un x cost: $ 1.70 = Total: $ 255.00
- MONTH6, SUPPLIER_B: Provide: 30 un x cost: $ 1.80 = Total: $ 54.00

TOTAL COST: $1361.00
GOAL

The technical head of a research institute has received 18 new project proposals from its engineers and analysts.

Five of them were selected as being of interest because they agreed with the institute's research lines. However, the institute does not have enough cash to carry out these projects simultaneously.

Therefore, it is necessary to indicate the projects that must be executed in order to maximize the NPV. The cash flows for each of the selected projects are shown below:

<table>
<thead>
<tr>
<th>Projects</th>
<th>VPL</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>$141</td>
<td>75</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>P2</td>
<td>$187</td>
<td>90</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>P3</td>
<td>$121</td>
<td>60</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>P4</td>
<td>$ 83</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>P5</td>
<td>$265</td>
<td>100</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>P6</td>
<td>$127</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Available</td>
<td>$ -</td>
<td>250</td>
<td>75</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
PERIOD : AVAILABLE;
PROJECT: PRODUCE, NPV;
RXP(PROJECT, PERIOD) : USAGE;
ENDSETS
DATA:
! Periods attributes;
PERIOD, AVAILABLE =
Y1 250
Y2 75
Y3 50
Y4 50
Y5 50;

! Projects attributes;
PROJECT, NPV =
P1 141
P2 187
P3 121
P4 83
P5 265
P6 127;

! Required
USAGE =
Y1 75
Y2 25
Y3 20
Y4 15
Y5 10

! P1
90 35
0 0
30

! P2
60 15
15 15
15

! P3
30 20
10 5
5

! P4
100 25
20 20
20

! P5
50 20
10 30
40

! P6
ENDDATA
SUBMODEL MAX2:
[OBJ]
MAX = @SUM(PROJECT(p): NPV(p) * PRODUCE(p));
! The available constraint;
@FOR(PERIOD(L):
[AVA]
@SUM(PROJECT(C): USAGE(C,L) * PRODUCE(C)) <= AVAILABLE(L);)
@FOR(PROJECT(P): @BIN(PRODUCE(P)));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " CAPITAL NECESSARY:", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" CAPITAL AVAILABLE:", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" NPV:", @NEWLINE(1));
@TABLE(NPV);
@WRITE(" SOLUTION:", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX2);
! Solution report;
@WRITE(" IDEAL OPERATION PROGRAM:", @NEWLINE(1));
@WRITE(" SELECTED PROJECTS:", @NEWLINE(1));
@WRITEFOR(PROJECT(J)|PRODUCE(J) #EQ# 1: ' . ',
@FORMAT(PROJECT(J),'-3s'), ' Year: ', PERIOD(J), ' = Net Present Value:',' $',
@FORMAT(NPV(J) * PRODUCE(J),'%6.2f'),
@NEWLINE(1));
@WRITE(" TOTAL:","$", @FORMAT(OBJ,'%6.2f'), @NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

CAPITAL NECESSARY:

<table>
<thead>
<tr>
<th></th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>75.0000</td>
<td>25.0000</td>
<td>20.0000</td>
<td>15.0000</td>
<td>10.0000</td>
</tr>
<tr>
<td>P2</td>
<td>90.0000</td>
<td>35.0000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>30.0000</td>
</tr>
<tr>
<td>P3</td>
<td>60.0000</td>
<td>15.0000</td>
<td>15.0000</td>
<td>15.0000</td>
<td>15.0000</td>
</tr>
<tr>
<td>P4</td>
<td>30.0000</td>
<td>20.0000</td>
<td>10.0000</td>
<td>5.00000</td>
<td>5.00000</td>
</tr>
<tr>
<td>P5</td>
<td>100.000</td>
<td>25.0000</td>
<td>20.0000</td>
<td>20.0000</td>
<td>20.0000</td>
</tr>
<tr>
<td>P6</td>
<td>50.0000</td>
<td>20.0000</td>
<td>10.0000</td>
<td>30.0000</td>
<td>40.0000</td>
</tr>
</tbody>
</table>

CAPITAL AVAILABLE:

<table>
<thead>
<tr>
<th></th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>250.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2</td>
<td>75.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y3</td>
<td>50.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y4</td>
<td>50.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y5</td>
<td>50.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NPV:

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>141.000</td>
<td>187.000</td>
<td>121.000</td>
<td>83.0000</td>
<td>265.000</td>
<td>127.000</td>
</tr>
</tbody>
</table>

SOLUTION

Global optimal solution found.
Objective value: 489.000
Objective bound: 489.000
Infeasibilities: 0.00000
Total solver iterations: 70

IDEAL OPERATION PROGRAM:

SELECTED PROJECTS:
- P1 Year: Y1 = Net Present Value: $141.00
- P4 Year: Y4 = Net Present Value: $83.00
- P5 Year: Y5 = Net Present Value: $265.00

TOTAL: $489.00
GOAL

In this example the expectation is to obtain the lowest cost project, considering the different attributes of each one, such as: number of beds, bath, footage and cost.

The information used in the model is described below:

<table>
<thead>
<tr>
<th>Projects</th>
<th>Beds</th>
<th>Baths</th>
<th>SQFT</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>5</td>
<td>4</td>
<td>6,200</td>
<td>559,608</td>
</tr>
<tr>
<td>P2</td>
<td>2</td>
<td>1</td>
<td>820</td>
<td>151,826</td>
</tr>
<tr>
<td>P3</td>
<td>1</td>
<td>1</td>
<td>710</td>
<td>125,943</td>
</tr>
<tr>
<td>P4</td>
<td>4</td>
<td>3</td>
<td>4,300</td>
<td>420,801</td>
</tr>
<tr>
<td>P5</td>
<td>4</td>
<td>2</td>
<td>3,800</td>
<td>374,751</td>
</tr>
<tr>
<td>P6</td>
<td>3</td>
<td>1</td>
<td>2,200</td>
<td>251,674</td>
</tr>
<tr>
<td>P7</td>
<td>3</td>
<td>2</td>
<td>3,400</td>
<td>332,426</td>
</tr>
</tbody>
</table>

The model needs to estimate a value for each project that will be used in the objective (est) function.
MODEL:
SETS:
 PROJECTS: BEDS , BATHS, SQFT, COST, EST;
ENDSETS
DATA:
PROJECTS, BEDS, BATHS, SQFT, COST =
P1 5 4 6200 559608
P2 2 1 820 151826
P3 1 1 710 125943
P4 4 3 4300 420801
P5 4 2 3800 374751
P6 3 1 2200 251674
77 3 2 3400 332426;
ENDDATA
SUBMODEL MIN3:
[OBJ] MIN = @MAX(PROJECTS: @ABS(COST - EST));
@FOR(PROJECTS: EST = A0 + A1 * BEDS + A2 * BATHS + A3 * SQFT);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:\n", @NEWLINE(1), " BATHS:\n", @NEWLINE(1));
@TABLE(BATHS);
@WRITE(" \n", @NEWLINE(1), " BEDS:\n", @NEWLINE(1));
@TABLE(BEDS);
@WRITE(" \n", @NEWLINE(1), " SQUARE FEET:\n", @NEWLINE(1));
@TABLE(SQFT);
@WRITE(" \n", @NEWLINE(1), " PROJECT COST:\n", @NEWLINE(1));
@TABLE(COST);
@WRITE(" \n", @NEWLINE(1), " SOLUTION \n", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN3);
! Solution Report;
@WRITE(" \n", @NEWLINE(1));
@WRITEFOR(PROJECTS(J) ; ' \n',
 @FORMAT(PROJECTS(J),'-3s'), ' Baths:\n',
 @FORMAT(BATHS(J), '%1.0f'), ' Beds:\n',
 @FORMAT(BEDS(J), '%1.0f'), ' Square feet:\n',
 @FORMAT(SQFT(J), '%4.0f'), ' Cost: $',
 @FORMAT(COST(J), '%6.0f'), ' - Est: $',
 @FORMAT(EST(J), '%6.0f'), ' = Objective: $',
 @FORMAT(COST(J) - EST(J), '%9.3f'),
 @IF(@MIN(PROJECTS(J): SQFT(J)) #EQ# SQFT(J), ' Selected', ' No ')�
@NEWLINE(1));
@WRITE(" \n", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
BATHS:
P1 4.000000
P2 1.000000
P3 1.000000
P4 3.000000
P5 2.000000
P6 1.000000
P7 2.000000

BEDS:
P1 5.000000
P2 2.000000
P3 1.000000
P4 4.000000
P5 4.000000
P6 3.000000
P7 3.000000

SQUARE FEET:
P1 6200.000
P2 820.0000
P3 710.0000
P4 4300.000
P5 3800.000
P6 2200.000
P7 3400.000

PROJECT COST:
P1 559608.0
P2 151826.0
P3 125943.0
P4 420801.0
P5 374751.0
P6 251674.0
P7 332426.0

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 1426.660
Objective bound: 1426.660
Infeasibilities: 0.000000
Total solver iterations: 34

OPTIMAL PLANNING PROGRAM:
P1 Baths:4 Beds:5 Square feet:6200 Cost: $559608 - Est: $561035 = Objective: $-1426.660 No
P2 Baths:1 Beds:2 Square feet: 820 Cost: $151826 - Est: $153253 = Objective: $-1426.660 No
P3 Baths:1 Beds:1 Square feet: 710 Cost: $125943 - Est: $124516 = Objective: $ 1426.660 Selected
P4 Baths:3 Beds:4 Square feet:4300 Cost: $420801 - Est: $419374 = Objective: $ 1426.660 No
P5 Baths:2 Beds:4 Square feet:3800 Cost: $374751 - Est: $375784 = Objective: $-1032.637 No
P6 Baths:1 Beds:3 Square feet:2200 Cost: $251674 - Est: $250247 = Objective: $ 1426.660 No
P7 Baths:2 Beds:3 Square feet:3400 Cost: $332426 - Est: $331461 = Objective: $ 965.237 No
GOAL

A broker has eleven loans of size ranging from $55,000 to $910,000. The broker would like to group the loans into packages so that each package has at least $1M in it, and the number of packages is maximized;

<table>
<thead>
<tr>
<th>Object</th>
<th>Value ($1M)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>870</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>810</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>640</td>
<td>$55,000</td>
</tr>
<tr>
<td>E</td>
<td>550</td>
<td>$910,000</td>
</tr>
<tr>
<td>F</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>543</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>449</td>
<td></td>
</tr>
</tbody>
</table>
MODEL:
SETS:
 OBJECT: VALUE, OVER, IND;
 OXO(OBJECT, OBJECT): &1 #LE# &2: X;
ENDSETS
DATA:
 OBJECT = A B C D E F G H I J K;
 VALUE = 910 870 810 640 550 250 120 95 55 543 449;
! The value in each bundle must be >= PKSIZE;
 PKSIZE = 1000;
ENDDATA
SUBMODEL MAX99:
! This method may be time consuming for more than 15 objects;
! Definition of variables;
! X(I, I) = 1 if object I is lowest numbered object in its package;
! X(I, J) = 1 if object J is assigned to package I;
! Maximize number of packages assembled;
[OBJ] MAX = @SUM (OBJECT(I): X(I, I));
@FOR (OBJECT(K):
 ! Each object can be assigned to at most one package;
 @SUM (OXO(I, K): X(I, K)) <= 1;
 ! A package must be at least PKSIZE in size;
 @SUM (OXO(K, J): VALUE(J) * X(K, J)) - OVER(K) = PKSIZE * X(K, K);)
! The X(I, J) must = 0 or 1;
@FOR (OXO(I, J): @BIN(X(I, J)));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET ('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET ('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), ' Object Value', @NEWLINE(1));
@FOR (OBJECT(I):
 @WRITE(' ', @FORMAT(OBJECT(I), '6s'), ' ',
 @FORMAT(VALUE(I), '%7.0f'), @NEWLINE(1)));
@WRITE(' ', @NEWLINE(1), ' SOLUTION ', @NEWLINE(1));
@SOLVE(MAX99);
! Solution Report;
@WRITE(" " , @NEWLINE(1), " PACKAGE: " , @NEWLINE(1));
@WRITEFOR (OXO(I,J)|X(J,J) #EQ# 0 #AND# X(I,J) #GT# 0: ' Package: ',@NAME(X(I,J)), ' ',
 @FORMAT(VALUE(I), '%4.0f'), '+ ',
 @FORMAT(VALUE(J), '%3.0f'), '=' ' ,
 @FORMAT(VALUE(I)+VALUE(J), '%4.0f'), '- 1000 = Over: ',
 @FORMAT(VALUE(I)+VALUE(J)-1000, '%3.0f'), ' ',
 @NEWLINE(1));
@WRITE(' ', @NEWLINE(1));
@WRITE(' Note: ', @NEWLINE(1));
@WRITE(" As for the value of object B, the values of B+G+I were', @NEWLINE(1));
@WRITE(" added to meet the established premise of a minimum', @NEWLINE(1));
@WRITE(" value of 1000 for each package.', @NEWLINE(3));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX99);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

<table>
<thead>
<tr>
<th>Object</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>910</td>
</tr>
<tr>
<td>B</td>
<td>870</td>
</tr>
<tr>
<td>C</td>
<td>810</td>
</tr>
<tr>
<td>D</td>
<td>640</td>
</tr>
<tr>
<td>E</td>
<td>550</td>
</tr>
<tr>
<td>F</td>
<td>250</td>
</tr>
<tr>
<td>G</td>
<td>120</td>
</tr>
<tr>
<td>H</td>
<td>95</td>
</tr>
<tr>
<td>I</td>
<td>55</td>
</tr>
<tr>
<td>J</td>
<td>543</td>
</tr>
<tr>
<td>K</td>
<td>449</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION

Global optimal solution found.

Objective value: 5.000000
Objective bound: 5.000000
Infeasibilities: 0.000000
Total solver iterations: 59

PACKAGE:

Package: X(A, H) 910 + 95 = 1005 - 1000 = Over: 5
Package: X(B, G) 870 + 120 = 990 - 1000 = Over: -10
Package: X(B, I) 870 + 55 = 925 - 1000 = Over: -75
Package: X(C, F) 810 + 250 = 1060 - 1000 = Over: 60
Package: X(D, K) 640 + 449 = 1089 - 1000 = Over: 89
Package: X(E, J) 550 + 543 = 1093 - 1000 = Over: 93

Note:
As for the value of object B, the values of B+G+I were added to meet the established premise of a minimum value of 1000 for each package.
What types of food should be selected for school meal composition, obeying minimum nutrition criteria at the lowest cost?

OTHER AVAILABLE BLOCKS
- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

Four types of food are available in the preparation of a group of children: chocolate biscuit, ice cream, soda and cheese pie.

The composition of these foods and their cost per serving are available below:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Biscuit</th>
<th>Ice Cream</th>
<th>Soda</th>
<th>Cheese Pie</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories</td>
<td>cal</td>
<td>400</td>
<td>200</td>
<td>150</td>
<td>500</td>
</tr>
<tr>
<td>Chocolate</td>
<td>g</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sugar</td>
<td>g</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>FAT</td>
<td>g</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cost</td>
<td>$</td>
<td>0.50</td>
<td>0.20</td>
<td>0.30</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Children should eat at least 500 Calories, 6 g of Chocolate, 10 g of Sugar, and 8 g of FAT. Formulate the problem so that the cost is minimized.
MODEL:
SETS:
 COMPOSITION ::
 RESOURCE: AVAILABLE, COST, PRODUCE;
RXP(COMPOSITION, RESOURCE) : FORMULA;
ENDSETS
DATA:
 ! Resources attributes;
 RESOURCE, COST, AVAILABLE =
 BISCUIT 0.50 500
 ICE_CREAM 0.20 6
 SODA 0.30 10
 CHEESE_PIE 0.8 8;
 ! Composition attributes;
 COMPOSITION =
 CALORIES
 CHOCOLATE
 SUGAR
 FAT ;
 ! Required
 FORMULA =
 Biscuit Ice_cream Soda Cheese pie;
 400 200 150 500 ! Calorries;
 3 2 0 0 ! Chocolate;
 2 2 2 4 ! Sugar;
 2 4 1 5 ! fat;
ENDDATA
SUBMODEL MIN1:
 [OBJ] MIN = @SUM(RESOURCE(p): COST(p) * PRODUCE(p));
 ! The available constraint;
 @FOR(RESOURCE(r):
 [AVA] @SUM(COMPOSITION(p): FORMULA(r, p) * PRODUCE(p)) >= AVAILABLE(r);)
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET("TERSEO",1);
 ! Post status windows, 1 Yes, 0 No;
 @SET("STAWIN",0);
 ! Data Block;
 @WRITE(" DATA: ", @NEWLINE(1), " FORMULA (cal,g,g,g)): ", @NEWLINE(1));
 @TABLE(FORMULA);
 @WRITE(" ", @NEWLINE(1), " AVAILABLE (cal,g,g,g)): ", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" ", @NEWLINE(1), " COST p/un: ", @NEWLINE(1));
 @TABLE(COST);
 @WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MIN1);
 ! Solution Report;
 @WRITE(" ", @NEWLINE(1), " IDEAL DIET PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(RESOURCE(J) PRODUCE(J) #GT# 0: ' ',
 @FORMAT(RESOURCE(J),'-10s'),
 @FORMAT(PRODUCE(J),'%6.0f'), ' un x unit cost: $',
 @FORMAT(COST(J), '%4.2f'), ' = Total: $',
 @FORMAT(COST(J) * PRODUCE(J),'%4.2f'),
 @NEWLINE(1));
 @WRITE(" ", @NEWLINE(1));
 !To see the corresponding model scalar, remove (I) From the line below;
 @GEN(MIN1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (cal,g,g,g)):

<table>
<thead>
<tr>
<th></th>
<th>BISCUIT</th>
<th>ICE_CREAM</th>
<th>SODA</th>
<th>CHEESE_PIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALORIES</td>
<td>400.0000</td>
<td>200.0000</td>
<td>150.0000</td>
<td>500.0000</td>
</tr>
<tr>
<td>CHOCOLATE</td>
<td>3.000000</td>
<td>2.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>SUGAR</td>
<td>2.000000</td>
<td>2.000000</td>
<td>2.000000</td>
<td>4.000000</td>
</tr>
<tr>
<td>FAT</td>
<td>2.000000</td>
<td>4.000000</td>
<td>1.000000</td>
<td>5.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (cal,g,g,g)):

<table>
<thead>
<tr>
<th></th>
<th>BISCUIT</th>
<th>ICE_CREAM</th>
<th>SODA</th>
<th>CHEESE_PIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BISCUIT</td>
<td>500.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICE_CREAM</td>
<td>6.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SODA</td>
<td>10.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEESE_PIE</td>
<td>8.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COST p/un:

<table>
<thead>
<tr>
<th></th>
<th>BISCUIT</th>
<th>ICE_CREAM</th>
<th>SODA</th>
<th>CHEESE_PIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BISCUIT</td>
<td>0.500000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICE_CREAM</td>
<td>0.200000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SODA</td>
<td>0.300000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEESE_PIE</td>
<td>0.800000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION:
Global optimal solution found.
Objective value: 1.000000
Infeasibilities: 0.000000

IDEAL DIET PROGRAM:
ICE_CREAM 5 un x unit cost: $0.20 = Total: $1.00
GOAL

It is known that milk, meat and eggs provide the amounts of vitamins reported in the table below:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Vitamin A (mg)</th>
<th>Vitamin B (mg)</th>
<th>Vitamin C (mg)</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>L 0.25</td>
<td>2.0</td>
<td>10.0</td>
<td>2.20</td>
</tr>
<tr>
<td>Meat</td>
<td>kg 25.0</td>
<td>20.0</td>
<td>10.0</td>
<td>17.00</td>
</tr>
<tr>
<td>Eggs</td>
<td>12un 2.5</td>
<td>200.0</td>
<td>10.0</td>
<td>4.20</td>
</tr>
<tr>
<td>Required</td>
<td>mg 1.0</td>
<td>50.0</td>
<td>19.0</td>
<td></td>
</tr>
</tbody>
</table>

Calculate the amount of milk, meat and eggs that meets the basic daily needs of nutrients at a minimal cost.
MODEL:
SETS:
 COMPOSITION : COST;
 RESOURCE: REQUIRED, PRODUCE;
 RXP(COMPOSITION, RESOURCE) : FORMULA;
ENDSETS
DATA:
! Resources attributes;
 RESOURCE, REQUIRED =
 VIT_A 1
 VIT_B 50
 VIT_C 19;
! Composition attributes;
 COMPOSITION, COST =
 MILK 2.20
 CARNE 17.00
 OVOS 4.20;
! Formula in mg
 FORMULA =
 MILK (L) CARNE (kg) OVOS (12);
 0.25 2 10 ! VIT_A;
 25 20 10 ! VIT_B;
 2.50 200 10 ! VIT_C;
ENDDATA
SUBMODEL MIN2:
[OBJ] MIN = @SUM(RESOURCE(p): COST(p) * PRODUCE(p));
! The available constraints;
@FOR(RESOURCE(r):
 [AVA] @SUM(COMPOSITION(p): FORMULA(r, p) * PRODUCE(p)) >= REQUIRED(r));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (mg):", @NEWLINE(1));
@TABLE(FORMULA);
@WRITE(" ", @NEWLINE(1), " REQUIRED (mg):", @NEWLINE(1));
@TABLE(REQUIRED);
@WRITE(" ", @NEWLINE(1), " COST ($):", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN2);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL DIET PROGRAM: ", @NEWLINE(1));
@WRITEFOR(COMPOSITION(J)| PRODUCE(J) #GT# 0: ' ',
 @FORMAT(COMPOSITION(J),'-8s'),
 @FORMAT(PRODUCE(J),'%6.3f'),@IF(J #EQ# 1, ' L ', @IF(J #EQ# 3, ' un',' kg'))),' x Unit cost: $',
 @FORMAT(COST(J), '%6.2f'),' = Total: $',
 @FORMAT(COST(J) * PRODUCE(J),'%4.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MIN2);
ENDCALC
END
DATA
All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (mg)):

<table>
<thead>
<tr>
<th></th>
<th>VIT_A</th>
<th>VIT_B</th>
<th>VIT_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILK</td>
<td>0.250000</td>
<td>2.000000</td>
<td>10.00000</td>
</tr>
<tr>
<td>BEEF</td>
<td>25.00000</td>
<td>20.00000</td>
<td>10.00000</td>
</tr>
<tr>
<td>EGGS</td>
<td>2.500000</td>
<td>200.0000</td>
<td>10.00000</td>
</tr>
</tbody>
</table>

REQUIRED (mg)):

<table>
<thead>
<tr>
<th></th>
<th>VIT_A</th>
<th>VIT_B</th>
<th>VIT_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIT_A</td>
<td>1.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIT_B</td>
<td>50.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIT_C</td>
<td>19.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COST ($):

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MILK</td>
<td>2.20000</td>
<td></td>
</tr>
<tr>
<td>BEEF</td>
<td>17.0000</td>
<td></td>
</tr>
<tr>
<td>EGGS</td>
<td>4.20000</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION:
Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 5.577315
Infeasibilities: 0.000000

IDEAL DIET PROGRAM:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MILK</td>
<td>1.930 L x Unit cost: $ 2.20 = Total: $4.25</td>
<td></td>
</tr>
<tr>
<td>BEEF</td>
<td>0.069 kg x Unit cost: $17.00 = Total: $1.17</td>
<td></td>
</tr>
<tr>
<td>EGGS</td>
<td>0.038 un x Unit cost: $ 4.20 = Total: $0.16</td>
<td></td>
</tr>
</tbody>
</table>
GOAL

Suppose that, for justifiable reasons, a diet is restricted to skimmed milk, lean beef, fish meat and a salad of well-known composition.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Milk (L)</th>
<th>Meat (kg)</th>
<th>Fish (kg)</th>
<th>Salad (100 g)</th>
<th>Daily Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>mg</td>
<td>2.0</td>
<td>2.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Vitamin B</td>
<td>mg</td>
<td>50.0</td>
<td>20.0</td>
<td>10.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>mg</td>
<td>80.0</td>
<td>70.0</td>
<td>10.0</td>
<td>80.0</td>
</tr>
<tr>
<td>Cost</td>
<td>$</td>
<td>2.00</td>
<td>4.00</td>
<td>1.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

It is also known that nutritional requirements are expressed in terms of vitamins A, C and D and controlled by their minimum amounts (in milligrams), since they are indispensable to the health of the person who are undergoing the diet.

In the details it boils down to the amount of each vitamin in food availability and its daily requirement for a person’s good health.

Formulate the program to optimize the resources involved
MODEL:
SETS:
PRODUCT :COST, PRODUCE;
RESOURCE:NEED;
RXP(RESOURCE, PRODUCT) : FORMULA;
ENDSETS
DATA:
! Products attributes;
PRODUCT, COST =
MILK 2
MEAT 4
FISH 1.5
SALAD 1;
! Resources attributes;
RESOURCE, NEED =
VIT_A 11
VIT_B 70
VIT_C 250;
! Required (mg)
FORMULA =
Milk 2 2 10 20 ! VIT_A;
meat 50 20 10 30 ! VIT_B;
fish 80 70 10 80; ! VIT_C;
ENDDATA
SUBMODEL MIN3:
[OBJ] MIN = @SUM(PRODUCT(p): COST(p) * PRODUCE(p));
! The Minimum Required Constraints;
@FOR(RESOURCE(r):
 @SUM(PRODUCT(p): FORMULA(r, p) * PRODUCE(p)) >= NEED(r));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (mg) ", @NEWLINE(1));
@TABLE(FORMULA);
@WRITE(" ", @NEWLINE(1), " DAILY NEED (mg) ", @NEWLINE(1));
@TABLE(NEED);
@WRITE(" ", @NEWLINE(1), " COST per (L,kg,kg,100g) ", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN3);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL DIET PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) PRODUCE(J) #GT# 0: ' ',
 @FORMAT(PRODUCT(J), '-8s'),
 @FORMAT(PRODUCE(J), ' %-8.3f'), ' Grams x Unit cost: $',
 @FORMAT(COST(J), ' %-8.2f'), ' = Total: $',
 @FORMAT(COST(J) * PRODUCE(J), ' %-8.3f'),
 @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MIN1);
ENDCALC
END
DATA
All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (mg)):

<table>
<thead>
<tr>
<th></th>
<th>MILK</th>
<th>MEAT</th>
<th>FISH</th>
<th>SALAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIT_A</td>
<td>2.00000</td>
<td>2.00000</td>
<td>10.0000</td>
<td>20.0000</td>
</tr>
<tr>
<td>VIT_B</td>
<td>50.0000</td>
<td>20.0000</td>
<td>10.0000</td>
<td>30.0000</td>
</tr>
<tr>
<td>VIT_C</td>
<td>80.0000</td>
<td>70.0000</td>
<td>10.0000</td>
<td>80.0000</td>
</tr>
</tbody>
</table>

DAILY NEED (mg)):

<table>
<thead>
<tr>
<th></th>
<th>VIT_A</th>
<th>VIT_B</th>
<th>VIT_C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.0000</td>
<td>70.0000</td>
<td>250.0000</td>
</tr>
</tbody>
</table>

COST per (L, kg, kg, 100g):

<table>
<thead>
<tr>
<th></th>
<th>MILK</th>
<th>MEAT</th>
<th>FISH</th>
<th>SALAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.00000</td>
<td>4.00000</td>
<td>1.50000</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

SOLUTION
Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 3.125000
Infeasibilities: 0.000000

IDEAL DIET PROGRAM:
SALAD 3.125 Grams x Unit cost: $1.00 = Total: $3.125
GOAL

The unit requirements of a pig fattening ration are those indicated in the MINREQ table, per kg of feed.

To achieve these specific values, up to 50% of the requirements of Methionine for Cystine can be substituted. In addition, a ratio of 1.5 to 2 : 1, and 1.5 to 2.0 parts of Calcium to 1 part of Phosphorus, must be obeyed for the amount of Calcium and Phosphorus.

The food used to make the feed, as well as its nutrient content and price are shown below:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Corn</th>
<th>Sorghum</th>
<th>Soy-Flour</th>
<th>Blood-Flour</th>
<th>Bone-Flour</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>Methionine</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Cis-Tina</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Calcium</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
</tr>
<tr>
<td>Phosphor</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Cost p/kg</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.83</td>
</tr>
</tbody>
</table>

The objective is to determine the composition of ration that offers the minimum possible cost per kilo, taking into account the requirements placed in the formula.

Elaborate a model of Linear Programming to achieve this goal.
MODEL:
SETS:
 COMPOSITION: MINREQ;
 RESOURCE: COST, PRODUCE;
 RXP(COMPOSITION, RESOURCE): FORMULA;
ENDSETS
DATA:
 ! Resources attributes:
 RESOURCE, COST =
 CORN 1.20
 SORGHUM 0.96
 SOYFLOUR 2.30
 BLOODFLOUR 4.30
 BONEFLOUR 1.83;

 ! Composition attributes:
 COMPOSITION, MINREQ =
 PROTEIN 0.14
 METHIONINE 2.2
 CISTINA 2.2
 CALCIUM 8.0 ! Ratio 2 : 1 or 2 parts Calcium from 1 part Phosphor;
 PHOSPHOR 4.0;

 ! Required
 FORMULA =
 100.0 0.90 260.0 930.0 0.00
 10.0 13.0 20.0 10.6 0.00
 1.50 1.60 6.50 11.5 0.00
 1.00 0.30 2.90 0.70 308.5
 2.50 3.00 10.5 11.2 141.3;

ENDDATA

SUBMODEL MIN4:
 [OBJ] MIN = @SUM(RESOURCE(p): COST(p) * PRODUCE(p));
 ! The Minimum Required Constraints;
 @FOR(RESOURCE(r): @SUM(COMPOSITION(p): RXP(r, p) * PRODUCE(p)) >= MINREQ(r));
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET("TERSEO",1);
 ! Post status windows, 1 Yes, 0 No;
 @SET("STAWIN",0);
 ! Data Block;
 @WRITE(" DATA:", @NEWLINE(1), " FORMULA (g):");
 @TABLE(FORMULA);
 @WRITE(" MINIMUM REQUIRED (g):");
 @TABLE(MINREQ);
 @WRITE(" COST:");
 @TABLE(COST);
 @WRITE(" SOLUTION: ");
 @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MIN4);

! Solution Report;
 @WRITE(" IDEAL DIET PROGRAM: ");
 @WRITEFOR(RESOURCE(J), PRODUCE(J) #GT# 0: ' ','
 @FORMAT(RESOURCE(J), "-10s"), ' ',
 @FORMAT(PRODUCE(J), "%.2f"), ' kg x Unit cost: $',
 @FORMAT(COST(J), "%.4f"), ' = Total: $',
 @FORMAT(COST(J) * PRODUCE(J), "%.4f"),
 @NEWLINE(1));
 @WRITE(" ");
 @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MIN4);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (g):

<table>
<thead>
<tr>
<th></th>
<th>CORN</th>
<th>SORGHUM</th>
<th>SOYFLOUR</th>
<th>BLOODFLOUR</th>
<th>BONEFLOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTEIN</td>
<td>100.0000</td>
<td>0.9000000</td>
<td>260.0000</td>
<td>930.0000</td>
<td>0.000000</td>
</tr>
<tr>
<td>METHIONINE</td>
<td>10.00000</td>
<td>13.00000</td>
<td>20.00000</td>
<td>10.60000</td>
<td>0.000000</td>
</tr>
<tr>
<td>CISTINA</td>
<td>1.500000</td>
<td>1.600000</td>
<td>6.500000</td>
<td>11.50000</td>
<td>0.000000</td>
</tr>
<tr>
<td>CALCIUM</td>
<td>1.000000</td>
<td>0.3000000</td>
<td>2.900000</td>
<td>0.7000000</td>
<td>308.5000</td>
</tr>
<tr>
<td>PHOSPHOR</td>
<td>2.500000</td>
<td>3.000000</td>
<td>10.50000</td>
<td>11.20000</td>
<td>141.3000</td>
</tr>
</tbody>
</table>

MINIMUM REQUIRED (g):

<table>
<thead>
<tr>
<th></th>
<th>PROTEIN</th>
<th>METHIONINE</th>
<th>CISTINA</th>
<th>CALCIUM</th>
<th>PHOSPHOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1400000</td>
<td>2.200000</td>
<td>2.200000</td>
<td>8.000000</td>
<td>4.000000</td>
</tr>
</tbody>
</table>

COST:

<table>
<thead>
<tr>
<th></th>
<th>CORN</th>
<th>SORGHUM</th>
<th>SOYFLOUR</th>
<th>BLOODFLOUR</th>
<th>BONEFLOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.200000</td>
<td>0.960000</td>
<td>2.300000</td>
<td>4.300000</td>
<td>1.830000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 0.820095
Infeasibilities: 0.000000

IDEAL DIET PROGRAM:
SOYFLOUR 0.34 kg x Unit cost: $2.30 = Total: $0.78
BONEFLOUR 0.02 kg x Unit cost: $1.83 = Total: $0.04
GOAL

Suppose, for nutritional reasons, that a person has entered the Academy to lose weight and acquire a more defined bodybuilding, when consulting the nutritionalist, he received a diet for weight reduction and gain of lean mass. It intends to ingest the nutrients needed to maintain health by minimizing the number of calories. Consider the formula below, as it should be her diet.

<table>
<thead>
<tr>
<th>Portion (100 g)</th>
<th>Protein (g)</th>
<th>Carbo (g)</th>
<th>Lipids (g)</th>
<th>Calories (kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>2.6</td>
<td>25.8</td>
<td>1.0</td>
<td>123.5</td>
</tr>
<tr>
<td>Eggs</td>
<td>13.3</td>
<td>0.6</td>
<td>9.5</td>
<td>145.7</td>
</tr>
<tr>
<td>Chicken</td>
<td>32.0</td>
<td>0</td>
<td>2.5</td>
<td>159.2</td>
</tr>
<tr>
<td>Meat</td>
<td>35.9</td>
<td>0</td>
<td>7.3</td>
<td>219.3</td>
</tr>
<tr>
<td>Manioc</td>
<td>0.6</td>
<td>30.1</td>
<td>0.2</td>
<td>119.0</td>
</tr>
<tr>
<td>Bean</td>
<td>4.8</td>
<td>13.6</td>
<td>0.5</td>
<td>76.4</td>
</tr>
<tr>
<td>Required (g)</td>
<td>100.0</td>
<td>100.0</td>
<td>11.0</td>
<td>-</td>
</tr>
</tbody>
</table>
MODEL:
 SETS:
 COMPOSITION : MINREQ;
 RESOURCE: CALORIES, PRODUCE;
 RXP(RESOURCE, COMPOSITION) : FORMULA;
ENDSETS
DATA:
 ! Resources attributes (CALORIES FOR EACH PORTION OF 100 g);
 RESOURCE, CALORIES =
 RICE 123.5
 EGGS 145.7
 CHICKEN 159.2
 BEEF 219.3
 MANIOC 119.0
 BEAN 76.4;
 ! Composition attributes (g);
 COMPOSITION, MINREQ =
 PROTEIN 100
 CARBO 320
 LIPIDS 11;
 ! Required PROTEIN CARBO LIPIDS;
 FORMULA =
 2.6 25.8 1 ! RICE;
 13.3 0.6 9.5 ! EGGS;
 32.0 0 2.5 ! CHICKEN;
 35.9 0 7.3 ! BEEF;
 0.6 30.1 0.20 ! MANIOC;
 4.8 13.6 0.5; ! BEAN;
ENDDATA
SUBMODEL MIN5:
 [OBJ]
 MIN = @SUM(RESOURCE(p): CALORIES(p) * PRODUCE(p));
 ! The Minimum Required Constraints;
 @FOR(COMPOSITION(COL):
 @SUM(RESOURCE(LIN): FORMULA(LIN, COL) * PRODUCE(LIN)) >= MINREQ(COL));
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Data Block;
 @WRITE(" DATA:", @NEWLINE(1), " FORMULA (g)):", @NEWLINE(1));
 @TABLE(FORMULA);
 @WRITE(" MINIMUM REQUIRED (g):", @NEWLINE(1));
 @TABLE(MINREQ);
 @WRITE(" CALORIES (kcal):", @NEWLINE(1));
 @TABLE(CALORIES);
 @WRITE(" SOLUTION: ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MIN5);
 ! Solution report;
 @WRITE(" IDEAL DIET PROGRAM: ", @NEWLINE(1));
 @WRITE(" REQUIRED:", @NEWLINE(1));
 @WRITEFOR(RESOURCE(J)| PRODUCE(J) #GT# 0: ' ',
 @FORMAT(RESOURCE(J),'-8s'), ' ',
 @FORMAT(PRODUCE(J), '%7.2f'), ' Portions x',
 @FORMAT(CALORIES(J), '%6.1f'), ' Kcal = ',
 @FORMAT(CALORIES(J) * PRODUCE(J), '%8.3f'), ' Kcal',
 @NEWLINE(1));
 @WRITE(" .Total ", 34*'.',' ',
 @FORMAT(OBJ, '%8.3f'), ' Kcal',
 @NEWLINE(2));
 !To see the corresponding model scalar, remove (!) From the line below;
 !@GEN(MIN5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (gr)):

<table>
<thead>
<tr>
<th></th>
<th>PROTEIN</th>
<th>CARBO</th>
<th>LIPIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICE</td>
<td>2.600000</td>
<td>25.80000</td>
<td>1.00000</td>
</tr>
<tr>
<td>EGGS</td>
<td>13.30000</td>
<td>0.600000</td>
<td>9.50000</td>
</tr>
<tr>
<td>CHICKEN</td>
<td>32.00000</td>
<td>0.000000</td>
<td>2.50000</td>
</tr>
<tr>
<td>BEEF</td>
<td>35.90000</td>
<td>0.000000</td>
<td>7.30000</td>
</tr>
<tr>
<td>MANIOC</td>
<td>0.600000</td>
<td>30.10000</td>
<td>0.20000</td>
</tr>
<tr>
<td>BEAN</td>
<td>4.800000</td>
<td>13.60000</td>
<td>0.50000</td>
</tr>
</tbody>
</table>

MINIMUM REQUIRED (gr):

<table>
<thead>
<tr>
<th></th>
<th>PROTEIN</th>
<th>CARBO</th>
<th>LIPIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100.0000</td>
<td>320.0000</td>
<td>11.00000</td>
</tr>
</tbody>
</table>

CALORIES (kcal):

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RICE</td>
<td>123.5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGGS</td>
<td>145.7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHICKEN</td>
<td>159.2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEEF</td>
<td>219.3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANIOC</td>
<td>119.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAN</td>
<td>76.40000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION:
Global optimal solution found.
Objective value: 1736.739
Infeasibilities: 0.000000

IDEAL DIET PROGRAM:
REQUIRED:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EGGS</td>
<td>0.05</td>
<td>Portions x 145.7 Kcal</td>
<td>7.129 Kcal</td>
</tr>
<tr>
<td>MANIOC</td>
<td>1.35</td>
<td>Portions x 119.0 Kcal</td>
<td>161.241 Kcal</td>
</tr>
<tr>
<td>BEAN</td>
<td>20.53</td>
<td>Portions x 76.4 Kcal</td>
<td>1568.369 Kcal</td>
</tr>
<tr>
<td>Total</td>
<td>.................................</td>
<td>1736.739 Kcal</td>
<td></td>
</tr>
</tbody>
</table>
GOAL

To elaborate a model of Linear Programming, that satisfies the feeding needs of a determined animal. In the table below the specifications follow:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Protein (un/k)</th>
<th>Carbo (un/k)</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>25</td>
<td>55</td>
<td>3.00</td>
</tr>
<tr>
<td>RB</td>
<td>25</td>
<td>20</td>
<td>2.00</td>
</tr>
<tr>
<td>RC</td>
<td>45</td>
<td>10</td>
<td>4.00</td>
</tr>
<tr>
<td>RD</td>
<td>35</td>
<td>35</td>
<td>3.00</td>
</tr>
<tr>
<td>RE</td>
<td>25</td>
<td>20</td>
<td>3.00</td>
</tr>
<tr>
<td>Required (un/k)</td>
<td>200</td>
<td>250</td>
<td>-</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
COMPOSITION : MINREQ;
RESOURCE: COST, PRODUCE;
RXP(RESOURCE, COMPOSITION) : FORMULA;
ENDSETS
DATA:
! Resources attributes (COST /k);
RESOURCE, COST =
RA 3.00
RB 2.00
RC 4.00
RD 3.00
RE 3.00;
!
Composition attributes (k);
COMPOSITION, MINREQ =
PROTEIN 200
CARBO 250;
!
Required (k)
FORMULA =
 PROTEIN CARBO;
 25 55 ! RA;
 25 20 ! RB;
 45 10 ! RC;
 35 35 ! RD;
 25 20; ! RE;
ENDDATA
SUBMODEL MIN6:
[OBJ] MIN = @SUM(RESOURCE(p): COST(p) * PRODUCE(p));
! The Minimum Required Constraints;
@FOR(COMPOSITION(COL) :
 [REQ] @SUM(RESOURCE(LIN): FORMULA(LIN, COL) * PRODUCE(LIN)) >= MINREQ(COL));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (un/k):", @NEWLINE(1));
@TABLE(FORMULA);
@WRITE(" ", @NEWLINE(1), " MINIMUM REQUIRED (un/k):", @NEWLINE(1));
@TABLE(MINREQ);
@WRITE(" ", @NEWLINE(1), " COST per/k:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN6);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL DIET PROGRAM: ", @NEWLINE(1));
@WRITE(" ", @NEWLINE(1), " REQUIRED: ", @NEWLINE(1));
@WRITEFOR(RESOURCE(J) PRODUCE(J) #GT# 0: ' .',
@FORMAT(RESOURCE(J), '-5s'),
@FORMAT(PRODUCE(J), '%4.2f'),' k x Unit Cost: $',
@FORMAT(COST(J), '%4.2f'),' = Total: $',
@FORMAT(COST(J) * PRODUCE(J), '%5.2f'), @NEWLINE(1));
@WRITE(" Minimum cost: .",@FORMAT(OBJ, '%5.2f'), @NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MIN6);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (un/k):
 PROTEIN CARBO
 RA 25.00000 55.00000
 RB 25.00000 20.00000
 RC 45.00000 10.00000
 RD 35.00000 35.00000
 RE 25.00000 20.00000

MINIMUM REQUIRED (un/k):
 PROTEIN 200.0000
 CARBO 250.0000

COST per/k:
 RA 3.000000
 RB 2.000000
 RC 4.000000
 RD 3.000000
 RE 3.000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 18.57143
Infeasibilities: 0.000000

IDEAL DIET PROGRAM:
REQUIRED:
. RA 2.57 k x Unit Cost: $3.00 = Total: $ 7.71
. RB 5.43 k x Unit Cost: $2.00 = Total: $10.86
Minimum cost: $18.57
What is the best distribution of cargo or the best alternative fuel supply per airport or better distribution of seats by class and by aircraft, so as to minimize costs and maximize profit?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
GOAL

A cargo plane has four cargo compartments: Front, Center, Tail and Basement. The first three can only receive cargo in containers, while the hold receives bulk material.

In order to balance the flight, it is essential that the load distribution be proportional between the compartments.

There are 3 types of containers and two types of bulk cargoes to load the aircraft. The 2 types of bulk cargo can be transported together.

The cargo distribution must meet the capacity constraints of the airplane. The information is detailed below:

<table>
<thead>
<tr>
<th>Compartments</th>
<th>Front</th>
<th>Center</th>
<th>Tail</th>
<th>Bulk Dump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargo Volume</td>
<td>m³</td>
<td>0.50</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>Cargo Weight</td>
<td>ton</td>
<td>1.10</td>
<td>1.80</td>
<td>0.25</td>
</tr>
<tr>
<td>Container ton</td>
<td>0.35</td>
<td>0.90</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Aircraft Capacity</td>
<td>ton</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Aircraft Volume</td>
<td>m³</td>
<td>35</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>200.00</td>
<td>220.00</td>
<td>175.00</td>
</tr>
</tbody>
</table>

To elaborate the problem of the linear programming that optimizes the distribution of the load in order to maximize the profit of the flight of the freighter.
MODEL:
SETS:
HEADER1 / PROD, LIMIT, VALUE /;
RESOURCE: CAR_VOL, CAR_WEI, PROFIT, AIR_CAP, AIR_VOL, PRODUCE;
PXR (RESOURCE,HEADER1) : SLASUR1;
ENDSETS
DATA:
! Resources attributes;
RESOURCE , CAR_VOL , CAR_WEI , PROFIT , AIR_CAP , AIR_VOL =
FRONT 0.5 1.1 200 7 35
CENTER 1 1.8 220 7 55
TAIL 0.25 0.25 175 6 30
BULK1 1 1.2 235 3.5 15
BULK2 1 1.7 180 3.5 15;
ENDDATA
SUBMODEL MAX1:
[OBJ] MAX = @SUM(RESOURCE(J): PROFIT(J) * PRODUCE(J));
! Load weight restrictions;
@FOR(RESOURCE(K): [CARWEI] PRODUCE(K) <= CAR_WEI(K));
! Weight restrictions by compartment;
@FOR(RESOURCE(C): [AIRCAP] PRODUCE(C) <= AIR_CAP(C));
! Restriction of space by compartment;
@FOR(RESOURCE(J): [AIRVOL] CAR_VOL(J) * PRODUCE(J) <= AIR_VOL(J));
!The equilibrium was not calculated, because for each type of aircraft, its weight distribution is predetermined by the manufacturer;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " PROFIT BY TON ($):", @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" ", @NEWLINE(1), " AIRCRAFT LOAD CAPACITY (Ton):", @NEWLINE(1));
@TABLE(AIR_CAP);
@WRITE(" ", @NEWLINE(1), " AIRCRAFT LOAD CAPACITY (Ton):", @NEWLINE(1));
@TABLE(AIR_VOL);
@WRITE(" ", @NEWLINE(1), " VOLUME OF LOAD (m3):", @NEWLINE(1));
@TABLE(CAR_VOL);
@WRITE(" ", @NEWLINE(1), " LOAD WEIGHT (Ton):", @NEWLINE(1));
@TABLE(CAR_WEI);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX1);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL SUPPLY PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RESOURCE(J) : ' Load in: ',
 @FORMAT(RESOURCE(J),'-6s'), ' ',
 @FORMAT(PRODUCE(J),'%4.2f'), ' ton x unit profit: $',
 @FORMAT(PROFIT(J),'%4.2f'), ' = Total: $',
 @FORMAT(PRODUCE(J) * PROFIT(J),'%6.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MAX1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>DATA</th>
<th>PROFIT BY TON ($)</th>
<th>VOLUME OF LOAD (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td>200.0000</td>
<td>FRONT 0.500000</td>
</tr>
<tr>
<td>CENTER</td>
<td>220.0000</td>
<td>CENTER 1.000000</td>
</tr>
<tr>
<td>TAIL</td>
<td>175.0000</td>
<td>TAIL 0.250000</td>
</tr>
<tr>
<td>BULK1</td>
<td>235.0000</td>
<td>BULK1 1.000000</td>
</tr>
<tr>
<td>BULK2</td>
<td>180.0000</td>
<td>BULK2 1.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRCRAFT LOAD CAPACITY (Ton):</th>
<th>LOAD WEIGHT (Ton):</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT 7.000000</td>
<td>FRONT 1.100000</td>
</tr>
<tr>
<td>CENTER 7.000000</td>
<td>CENTER 1.800000</td>
</tr>
<tr>
<td>TAIL 6.000000</td>
<td>TAIL 0.250000</td>
</tr>
<tr>
<td>BULK1 3.500000</td>
<td>BULK1 1.200000</td>
</tr>
<tr>
<td>BULK2 3.500000</td>
<td>BULK2 1.700000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRCRAFT LOAD CAPACITY (Ton):</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT 35.000000</td>
</tr>
<tr>
<td>CENTER 55.000000</td>
</tr>
<tr>
<td>TAIL 30.000000</td>
</tr>
<tr>
<td>BULK1 15.000000</td>
</tr>
<tr>
<td>BULK2 15.000000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 1247.750
Infeasibilities: 0.000000

IDEAL SUPPLY PROGRAM:
Load in: FRONT 1.10 ton x unit profit: $200.00 = Total: $220.00
Load in: CENTER 1.80 ton x unit profit: $220.00 = Total: $396.00
Load in: TAIL 0.25 ton x unit profit: $175.00 = Total: $43.75
Load in: BULK1 1.20 ton x unit profit: $235.00 = Total: $282.00
Load in: BULK2 1.70 ton x unit profit: $180.00 = Total: $306.00
GOAL

An aviation company wants to buy fuel for its planes, which can be supplied at 5 Airports served by it and in which the needs are 100, 200, 500, 800 and 100 thousand gallons.

The maximum fuel availability available in the four supplying companies in gallons is 1000, 1300, 400 and 1000 thousand.

<table>
<thead>
<tr>
<th>Airport / Supplier</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>Demand (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$1.10</td>
<td>1.20</td>
<td>1.15</td>
<td>1.20</td>
<td>100,000</td>
</tr>
<tr>
<td>B</td>
<td>$1.25</td>
<td>1.20</td>
<td>1.22</td>
<td>1.30</td>
<td>200,000</td>
</tr>
<tr>
<td>C</td>
<td>$1.30</td>
<td>1.25</td>
<td>1.27</td>
<td>1.25</td>
<td>500,000</td>
</tr>
<tr>
<td>D</td>
<td>$1.20</td>
<td>1.21</td>
<td>1.21</td>
<td>1.20</td>
<td>800,000</td>
</tr>
<tr>
<td>E</td>
<td>$1.30</td>
<td>1.20</td>
<td>1.25</td>
<td>1.30</td>
<td>100,000</td>
</tr>
<tr>
<td>Capacity</td>
<td>gal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,000,000</td>
<td>1,300,000</td>
<td>400,000</td>
<td>1,000,000</td>
<td>-</td>
</tr>
</tbody>
</table>

Are the fuel delivery cost detailed below, thereby determining the most economical purchasing scheme?
MODEL:
SETS:
SUPPLIER: CAPACITY;
CONSUMER: DEMAND;
ROUTES(CONSUMER, SUPPLIER): COST, VOLUME;
ENDSETS
DATA:
! Capacity attributes (gal):
SUPPLIER, CAPACITY =
SUPPLIER_1 1000000
SUPPLIER_2 1300000
SUPPLIER_3 4000000
SUPPLIER_4 1000000;
! Consumer attributes (gal):
CONSUMER, DEMAND =
AIRPORT_A 100000
AIRPORT_B 200000
AIRPORT_C 500000
AIRPORT_D 800000
AIRPORT_E 100000;
! Cost required
SUP1 SUP2 SUP3 SUP4;
COST =
1.10 1.20 1.15 1.20 ! Airport A;
1.25 1.20 1.22 1.30 ! Airport B;
1.30 1.25 1.27 1.25 ! Airport C;
1.20 1.21 1.21 1.20 ! Airport D;
1.30 1.20 1.25 1.30; ! Airport E;
ENDDATA
SUBMODEL MIN2:
[OBJ] MIN = @SUM(ROUTES(I, J): COST(I, J) * VOLUME(I, J));
! Restrictions to ensure that the demand for each airport will be carried out;
@FOR(CONSUMER(I)):
[DEM] @SUM(SUPPLIER(J): VOLUME(I,J)) = DEMAND(I));
! Restrictions to ensure the capacity of each supplier;
@FOR(SUPPLIER(J)):
[CAP] @SUM(CONSUMER(I): VOLUME(I, J) + VOLUME(I, J) <= CAPACITY(J));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " COST FOR GAL ($):", @NEWLINE(1));
@TABLE(COST);
@WRITE("", @NEWLINE(1), " SUPPLY CAPABILITY (gal):", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE("", @NEWLINE(1), " DEMAND (gal):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE("", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MIN2);
! Solution report;
@WRITE("", @NEWLINE(1), " IDEAL SUPPLY PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0: ' ',
@FORMAT(CONSUMER(I),'-9s'), ',',
@FORMAT(SUPPLIER(J),'-8s'), ', Provides:',
@FORMAT(VOLUME(I, J),'%6.0f'), ' Gal', ' x Unit profit:',@FORMAT(COST(I,J),'%4.2f'), ' = Total:$',
@FORMAT(COST(I, J) * VOLUME(I,J),'%9.2f'),
@NEWLINE(1));
@WRITE("", @NEWLINE(1));
! To see the corresponding model scalar, remove (!!) From the line below;
@GEN(MIN2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

<table>
<thead>
<tr>
<th>COST FOR GAL ($)</th>
<th>SUPPLIER_1</th>
<th>SUPPLIER_2</th>
<th>SUPPLIER_3</th>
<th>SUPPLIER_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRPORT_A</td>
<td>1.100000</td>
<td>1.200000</td>
<td>1.150000</td>
<td>1.200000</td>
</tr>
<tr>
<td>AIRPORT_B</td>
<td>1.250000</td>
<td>1.200000</td>
<td>1.220000</td>
<td>1.300000</td>
</tr>
<tr>
<td>AIRPORT_C</td>
<td>1.300000</td>
<td>1.250000</td>
<td>1.270000</td>
<td>1.250000</td>
</tr>
<tr>
<td>AIRPORT_D</td>
<td>1.200000</td>
<td>1.210000</td>
<td>1.210000</td>
<td>1.200000</td>
</tr>
<tr>
<td>AIRPORT_E</td>
<td>1.300000</td>
<td>1.200000</td>
<td>1.250000</td>
<td>1.300000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPLY CAPABILITY (gal):</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLIER_1 1000000.0</td>
</tr>
<tr>
<td>SUPPLIER_2 1300000.0</td>
</tr>
<tr>
<td>SUPPLIER_3 400000.0</td>
</tr>
<tr>
<td>SUPPLIER_4 1000000.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEMAND (gal):</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRPORT_A 100000.0</td>
</tr>
<tr>
<td>AIRPORT_B 200000.0</td>
</tr>
<tr>
<td>AIRPORT_C 500000.0</td>
</tr>
<tr>
<td>AIRPORT_D 800000.0</td>
</tr>
<tr>
<td>AIRPORT_E 100000.0</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION:

Global optimal solution found.

Objective value: 2055500.

Infeasibilities: 0.00000

IDEAL SUPPLY PROGRAM:

| AIRPORT_A, SUPPLIER_1, Provides:100000 Gal x Unit profit:$1.10 = Total:$110000.00 |
| AIRPORT_B, SUPPLIER_2, Provides:200000 Gal x Unit profit:$1.20 = Total:$240000.00 |
| AIRPORT_C, SUPPLIER_2, Provides:350000 Gal x Unit profit:$1.25 = Total:$437500.00 |
| AIRPORT_C, SUPPLIER_4, Provides:150000 Gal x Unit profit:$1.25 = Total:$187500.00 |
| AIRPORT_D, SUPPLIER_1, Provides:400000 Gal x Unit profit:$1.20 = Total:$480000.00 |
| AIRPORT_D, SUPPLIER_3, Provides:50000 Gal x Unit profit:$1.21 = Total:$60500.00 |
| AIRPORT_D, SUPPLIER_4, Provides:350000 Gal x Unit profit:$1.20 = Total:$420000.00 |
| AIRPORT_E, SUPPLIER_2, Provides:100000 Gal x Unit profit:$1.20 = Total:$120000.00 |
GOAL

A freight agent wants to set the next day’s minimum cost schedule for cities A, B through aircraft A1, A2 and A3.

The information below shows the maximum load of each aircraft, as well as the respective cost, demands and limits.

<table>
<thead>
<tr>
<th>resources / Aircraft</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qty</td>
<td></td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available</td>
<td></td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>$</td>
<td>20.00</td>
<td>25.00</td>
<td>35.00</td>
</tr>
<tr>
<td>B</td>
<td>$</td>
<td>25.00</td>
<td>30.00</td>
<td>33.00</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
PRODUCTS: AVAILABLE, NMAX_CONT;
RESOURCES: DEMAND;
ROUTES(RESOURCES, PRODUCTS): COST, VOLUME;
ENDSETS
DATA:
! Resource attributes;
RESOURCES,
DEMAND =
CITY_A 100
CITY_B 500;
! Products attributes;
PRODUCTS,
AVAILABLE, NMAX_CONT =
AIRCRA_1 10 5
AIRCRA_2 15 7
AIRCRA_3 20 10;
! Required
AIRCRA_1 AIRCRA_2 AIRCRA_3;
COST = 20 25 35 ! cost per container per aircraft for city A;
25 30 33; ! cost per container per aircraft for city B;
ENDDATA
SUBMODEL MIN3:
[OBJ] MIN = @SUM(ROUTES(I, J): COST(I, J) * VOLUME(I, J));
! Restrictions of containers demand for city A and B;
@FOR(RESOURCES(I):
[DEM] @SUM(PRODUCTS(J): VOLUME(I, J)) <= DEMAND(I));
! Maximum container for aircraft;
@FOR(PRODUCTS(J):
[NMC] @SUM(RESOURCES(I): VOLUME(I, J)) >= NMAX_CONT(J));
! Available container for aircraft;
@FOR(PRODUCTS(J):
[AVA] @SUM(RESOURCES(I): VOLUME(I, J)) <= AVAILABLE(J));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " COST OF FREIGHT FOR CONTAINER:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " MAXIMUM CONTAINERS LOAD PER AIRCRAFT (un):", @NEWLINE(1));
@TABLE(NMAX_CONT);
@WRITE(" ", @NEWLINE(1), " CONTAINERS AVAILABLE (un):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " DEMAND (un):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL TRANSPORTATION PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0: ' ',
@FORMAT(RESOURCES(I),'-6s'), ', ',
@FORMAT(PRODUCTS(J),'-8s'), ' Carries:',
@FORMAT(VOLUME(I, J),'%3.0f'), ' Containers', ' x Unit cost: $',
@FORMAT(COST(I, J),'%4.2f'), ' = Total: $',
@FORMAT(COST(I, J) * VOLUME(I, J),'%5.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN3);
ENDCALLC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
COST OF FREIGHT FOR CONTAINER:

<table>
<thead>
<tr>
<th>CITY</th>
<th>AIRCRA_1</th>
<th>AIRCRA_2</th>
<th>AIRCRA_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITY_A</td>
<td>20.00000</td>
<td>25.00000</td>
<td>35.00000</td>
</tr>
<tr>
<td>CITY_B</td>
<td>25.00000</td>
<td>30.00000</td>
<td>33.00000</td>
</tr>
</tbody>
</table>

MAXIMUM CONTAINERS LOAD PER AIRCRAFT (un):

AIRCRA_1	5.000000
AIRCRA_2	7.000000
AIRCRA_3	10.00000

CONTAINERS AVAILABLE (un):

AIRCRA_1	10.00000
AIRCRA_2	15.00000
AIRCRA_3	20.00000

DEMAND (un):

<table>
<thead>
<tr>
<th>CITY</th>
<th>100.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITY_B</td>
<td>500.0000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION:

Global optimal solution found.
Objective value: 605.0000
Infeasibilities: 0.000000

IDEAL TRANSPORTATION PROGRAM:

CITY_A, AIRCRA_1 Carries: 5 Containers x Unit cost: $20.00 = Total: $100.00
CITY_A, AIRCRA_2 Carries: 7 Containers x Unit cost: $25.00 = Total: $175.00
CITY_B, AIRCRA_3 Carries: 10 Containers x Unit cost: $33.00 = Total: $330.00

SLACK/SURPLUS LIMIT = DEMAND (un):

<table>
<thead>
<tr>
<th>CARRIES</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITY_A</td>
<td>12.00000</td>
<td>100.0000</td>
</tr>
<tr>
<td>CITY_B</td>
<td>10.00000</td>
<td>500.0000</td>
</tr>
</tbody>
</table>

SLACK/SURPLUS LIMIT = AVAILABLE (un):

<table>
<thead>
<tr>
<th>CARRIES</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRCRA_1</td>
<td>5.000000</td>
<td>10.00000</td>
</tr>
<tr>
<td>AIRCRA_2</td>
<td>7.000000</td>
<td>15.00000</td>
</tr>
<tr>
<td>AIRCRA_3</td>
<td>10.00000</td>
<td>20.00000</td>
</tr>
</tbody>
</table>

SLACK/SURPLUS LIMIT = NUMBER MAXIMUM CONTAINER:

<table>
<thead>
<tr>
<th>CARRIES</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRCRA_1</td>
<td>5.000000</td>
<td>5.000000</td>
</tr>
<tr>
<td>AIRCRA_2</td>
<td>7.000000</td>
<td>7.000000</td>
</tr>
<tr>
<td>AIRCRA_3</td>
<td>10.00000</td>
<td>10.00000</td>
</tr>
</tbody>
</table>
GOAL
Determine when each of a set of flights should take off. Each flight is described by a desired/scheduled take off time, and the time intervals at which it will use various resources (take off runway, flight control sectors, landing runway).

Each resource (runway or flight control sector) is described by how many aircraft can simultaneously use it.

The objective is to minimize the total ground delay suffered by all flights, subject to no resource being over-utilized at any point in time.

The flights to be scheduled:

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDDAL1</td>
<td>O'Hare to Dallas</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>WashingtonDC to Denver</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>Boston to Albuquerque</td>
</tr>
</tbody>
</table>

Their scheduled start times:

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDDAL1</td>
<td>10</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>0</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>25</td>
</tr>
</tbody>
</table>

Description of flight, resource, start, end of usage of flight from Chicago to Dallas:

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>SECTOR</th>
<th>TMENT</th>
<th>TMOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDDAL1</td>
<td>ORDNRWY</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>ORDDAL1</td>
<td>SECTORN</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>ORDDAL1</td>
<td>SECTORC</td>
<td>20</td>
<td>110</td>
</tr>
<tr>
<td>ORDDAL1</td>
<td>SECTORS</td>
<td>110</td>
<td>135</td>
</tr>
<tr>
<td>ORDDAL1</td>
<td>DFWRNWWY</td>
<td>135</td>
<td>140</td>
</tr>
</tbody>
</table>

Description of flight, resource, start, end of usage of flight from Washington National to Denver:

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>SECTOR</th>
<th>TMENT</th>
<th>TMOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCADEN1</td>
<td>DCARNWY</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>SECTORE</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>SECTORC</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>SECTORW</td>
<td>140</td>
<td>245</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>DENRNWY</td>
<td>245</td>
<td>250</td>
</tr>
</tbody>
</table>

Description of flight, resource, start, end of usage of flight from Boston to Albuquerque:

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>SECTOR</th>
<th>TMENT</th>
<th>TMOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSABQ1</td>
<td>BOSRNWY</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>SECTORNE</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>SECTORC</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>SECTORSW</td>
<td>140</td>
<td>355</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>ABQRNWY</td>
<td>355</td>
<td>360</td>
</tr>
</tbody>
</table>

For this data set, if:

- ORDDAL1 departs on time it is in SECTORC from 30 to 120,
- DCADEN1 departs on time it is in SECTORC from 60 to 140,
- BOSABQ1 departs on time it is in SECTORC from 85 to 165,

So there would be 3 planes in SECTORC from 85 to 120, exceeding the capacity of 2, so one must be delayed.
MODEL:
! Air Traffic Flow Model with Ground Delays;

SETS:
! Declare the various sets and the attributes associate with each member of the set;
sector: scap;
flight: tmbgn;
time;
sxt(sector, time): overload;
fxt(flight, time): z;
fxs(flight, sector): TMENT, TMOUT;
ENDSETS

DATA:
! Assume all times are in minutes;
! Minutes in a discrete time period/time bucket, the larger the bucket, the smaller the model and
! faster it solves. A smaller bucket provides a more accurate model;
tmbkt = 5;
! Number discrete time periods in plan horizon;
time = 1..80;
! Maximum delay tolerated for any flight;
delaymx = 45;
! Weight in objective on total delay;
delaywgt = 1;
! Wgt in objective on total overcongestion;
congestwgt = 100;
! The possible bottlenecks in the system, the runways, and the various air control sectors;
sector = ORDRNWY DCARNWY DFWRNWY DENRNWY BOSRNWY ABQRNWY SECTORN SECTORNE SECTORC SECTORS SECTORSW SECTORW;
! Number planes/tasks that each resource can simultaneously handle.
scap = 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2;
! The flights to be scheduled, O'Hare to Dallas, Washington DC to Denver, Boston to Albuquerque;
flight = ORDDAL1 DCADEN1 BOSABQ1;
! Their scheduled start times;
tmbgn = 10 0 25;
! Description of flight, resource, start, end of usage...;
fxs, tment, tmout =
! of flight from Chicago to Dallas;
ORDDAL1 ORDRNWY 0 5
ORDDAL1 SECTORN 5 20
ORDDAL1 SECTORC 20 110
ORDDAL1 SECTORS 110 135
ORDDAL1 DFWRNWY 135 140
! of flight from Washington National to Denver;
DCADEN1 DCARNWY 0 5
DCADEN1 SECTORE 5 60
DCADEN1 SECTORC 60 140
DCADEN1 SECTORW 140 245
DCADEN1 DENRNWY 245 250
! of flight from Boston to Albuquerque;
BOSABQ1 BOSRNWY 0 5
BOSABQ1 SECTORNE 5 60
BOSABQ1 SECTORC 60 140
BOSABQ1 SECTORSW 140 355
BOSABQ1 ABQRNWY 355 360;
! For this data set, if:
ORDDAL1 departs on time it is in SECTORC from 30 to 120,
DCADEN1 departs on time it is in SECTORC from 60 to 140,
BOSABQ1 departs on time it is in SECTOR from 85 to 165,
so there would be 3 planes in SECTORC from 85 to 120, exceeding the capacity of 2, so one must be delayed;
ENDDATA
SUBMODEL groundlay:
! Parameters:
 scap(s) = number planes allowed in sector s simultaneously,
 tmbgn(f) = scheduled begin time of flight f,
 tment(f, s) = time flight f enters sector s minus depart time,
 tmout(f, s) = time flight f exits sector s minus depart time;
! Variables:
 z(f,b) = 1 if flight f takes off at time bucket b;
! Bucket b begins at tmbkt*(b-1) and ends at tmbkt*b;
! An activity starting at p and ending at q overlaps bucket b if p < b*tmbkt, and q > tmbkt*(b-1),
We say a flight f is delayed if it does not start in its earliest possible bucket, i.e.,
bucket b so (b-1)*tmbkt >= tmbgn(f);

! Objective: Minimize the cost of ground delay + congestion;
Min = delaywgt * delaytot + congestwgt * overloadtot;
 delaytot = @sum(fxt(f,b): tmbkt*(b-1 - @floor(tmbgn(f)/tmbkt))*z(f,b));
 overloadtot = @sum(sxt(s,b): overload(s,b));

! Each flight f must depart in some time bucket b;
@for(flight(f):
 [MUSTDO] @sum(time(b): z(f,b)) = 1);;

! Number aircraft in sector s in time period t <= capacity + tolerated_congestion;
@for(sector(s):
 @for(time(b):
 ! Sum over departure times t1 that would put plane in this sector at time bucket b;
 [SCTCAP] @sum(fxs(f,s):
 @sum(time(b1) | (b1 + tment(f,s)/tmbkt #le# b) #and# (b1 + tmout(f,s)/tmbkt #gt# b):
 z(f,b1))) <= scap(s) + overload(s,b));
);
! The z(f,b) must be binary/(0 or 1);
@for(fxt(f,b): @bin(z(f,b)));

! Set to zero infeasible departure times;
@for(fxt(f,b) | (b-1)*tmbkt #lt# tmbgn(f) #or# (b-1)*tmbkt #gt# tmbgn(f) + delaymx:
 z(f,b) = 0;);

! Possible extensions:
 Flight connections: Flight f2 cannot depart any earlier than x minutes after arrival of flight f1,
 Alternate flight paths: There are two or more alternate paths for a flight, exactly one must be taken.;
ENDSUBMODEL
CALC:
! Output level (0:verb, 1:terse, 2:only errors, 3:none);
@SET('TERSEO',1);;
! Set ending relative optimality tolerance;
@SET('IPTOLR', .02);;
! Time in seconds to apply optimality tolerance;
@SET('TIM2RL', 5);;
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN', 0);;
! Solve the model;
@SOLVE(groundlay);

! Solution report;
@WRITE(" Scheduling of Ground Delays for a Set of Flights",@NEWLINE);;
@WRITE(' Flight Sched_depart Actual Total Delay',@NEWLINE);;
@FOR(flight(f):
 dtime = @sum(fxt(f,b): tmbkt*(b-1)*z(f,b));
 @WRITE(flight(f), tmbgn(f), dtime - tmbgn(f), ' min', @NEWLINE));
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

The flights to be scheduled:

FLIGHT:

- **ORDDAL1** O’Hare to Dallas
- **DCADEN1** WashingtonDC to Denver
- **BOSABQ1** Boston to Albuquerque

Their scheduled start times:

FLIGHT:

- **ORDDAL1** 10
- **DCADEN1** 0
- **BOSABQ1** 25

Description of flight, resource, start, end of usage of flight from Chicago to Dallas

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>SECTOR</th>
<th>TMENT</th>
<th>TMOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDDAL1</td>
<td>ORDRNWY</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>ORDDAL1</td>
<td>SECTORN</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>ORDDAL1</td>
<td>SECTORC</td>
<td>20</td>
<td>110</td>
</tr>
<tr>
<td>ORDDAL1</td>
<td>SECTORS</td>
<td>110</td>
<td>135</td>
</tr>
<tr>
<td>ORDDAL1</td>
<td>DFWRNWY</td>
<td>135</td>
<td>140</td>
</tr>
</tbody>
</table>

Description of flight from Washington National to Denver

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>SECTOR</th>
<th>TMENT</th>
<th>TMOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCADEN1</td>
<td>DCARNWY</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>SECTORE</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>SECTORC</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>SECTORW</td>
<td>140</td>
<td>245</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>DENRNWY</td>
<td>245</td>
<td>250</td>
</tr>
</tbody>
</table>

Description of flight from Boston to Albuquerque;

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>SECTOR</th>
<th>TMENT</th>
<th>TMOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSABQ1</td>
<td>BOSRNWY</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>SECTORNE</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>SECTORC</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>SECTORSW</td>
<td>140</td>
<td>355</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>ABQRNWY</td>
<td>355</td>
<td>360</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

Global optimal solution found.

- **Objective value:** 35.00000
- **Objective bound:** 35.00000
- **Infeasibilities:** 0.00000
- **Extended solver steps:** 0
- **Total solver iterations:** 0
- **Elapsed runtime seconds:** 0.68

Scheduling of Ground Delays for a Set of Flights

<table>
<thead>
<tr>
<th>Flight</th>
<th>Sched_depart</th>
<th>Actual</th>
<th>Total Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDDAL1</td>
<td>10</td>
<td>10</td>
<td>0 min</td>
</tr>
<tr>
<td>DCADEN1</td>
<td>0</td>
<td>0</td>
<td>0 min</td>
</tr>
<tr>
<td>BOSABQ1</td>
<td>25</td>
<td>60</td>
<td>35 min</td>
</tr>
</tbody>
</table>
GOAL

A regional air transport company serves the following cities: A, B, C and D, which generate six possible routes shown in the data below.

Except A-B and C-D are operated with 160-seat aircraft (type 1) divided into two classes (executive and economy), while B-C is covered by a 140-seat aircraft (type 2), which also has two similar class options.

Considering that the call demand estimates were obtained through the application of a directional traffic model, and the type of aircraft fleet planning, and that the company does not practice overbooking, a strategy that involves the sale of a larger number of seats than available, the effects of cancellations, formulate a model of allocation of fleet to maximize the revenue of this network.
MODEL:
SETS:
PRODUCT: PROFIT_EXEC, PROFIT_ECON, DEM_EXEC, DEM_ECON, AIRCRAFT_T1, AIRCRAFT_T2, PROD_EXEC, PROD_ECON;
ENDSETS
DATA:
! Products attributes;
PRODUCT, PROFIT_EXEC, PROFIT_ECON, DEM_EXEC, DEM_ECON, AIRCRAFT_T1, AIRCRAFT_T2 =
A_TO_B 300 400 90 30 160 0
B_TO_C 200 250 40 50 0 140
A_TO_C 400 480 70 30 160 140
A_TO_D 700 840 80 40 160 140
B_TO_D 400 450 60 30 160 140;
ENDDATA
SUBMODEL MAX5:
[OBJ]
MAX = @SUM(PRODUCT(J): PROFIT_EXEC(J) * PROD_EXEC(J)) + @SUM(PRODUCT(J): PROFIT_ECON(J) * PROD_ECON(J)) ;
! Demand restriction for business class;
@FOR(PRODUCT(J): [DEM_ECO] PROD_EXEC(J) <= DEM_EXEC(J));
@FOR(PRODUCT(J): [DEM_EXE] PROD_ECON(J) <= DEM_ECON(J));
! 160 PAX AIRCRAFT ROUTES (A-B, A-C, A-D);
[A160A] PROD_EXEC(1) + PROD_ECON(1) + PROD_EXEC(4) + PROD_ECON(4) + PROD_EXEC(5) + PROD_ECON(5) <= 160;
! 140 PAX AIRCRAFT ROUTES (B-C, A-C, A-D, B-D);
[A140] PROD_EXEC(2) + PROD_ECON(2) + PROD_EXEC(4) + PROD_ECON(4) + PROD_EXEC(5) + PROD_ECON(5) + PROD_EXEC(6) + PROD_ECON(6) <= 140;
! 160 PAX AIRCRAFT ROUTES (C-D, A-D, B-D);
[A160B] PROD_EXEC(3) + PROD_ECON(3) + PROD_EXEC(5) + PROD_ECON(5) + PROD_EXEC(6) + PROD_ECON(6) <= 160;
ENDSUBMODEL;
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " PROFIT EXECUTIVE CLASS P/PAX:", @NEWLINE(1));
@TABLE(PROFIT_EXEC);
@WRITE(" ", @NEWLINE(1), " PROFIT ECONOMIC CLASS P/PAX:", @NEWLINE(1));
@TABLE(PROFIT_ECON);
@WRITE(" ", @NEWLINE(1), " DEMAND EXECUTIVE CLASS P/PAX:", @NEWLINE(1));
@TABLE(DEM_EXEC);
@WRITE(" ", @NEWLINE(1), " DEMAND ECONOMIC CLASS P/PAX:", @NEWLINE(1));
@TABLE(DEM_ECON);
@WRITE(" ", @NEWLINE(1), " ROUTES OPERATED WITH AIRCRAFT T1 (160PAX):", @NEWLINE(1));
@TABLE(AIRCRAFT_T1);
@WRITE(" ", @NEWLINE(1), " ROUTES OPERATED WITH AIRCRAFT T2 (140PAX):", @NEWLINE(1));
@TABLE(AIRCRAFT_T2);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MAX5);
! Solution Report;
@WRITE(" EXECUTIVE CLASS:", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PROD_EXEC(J) #GT# 0: ' Route: ', @FORMAT(PRODUCT(J),'-8s'), ' #pax:', @FORMAT(PROD_EXEC(J),'%3.0F'), ' x Profit p/pax: ' , @FORMAT(PROFIT_EXEC(J),'%3.0f'), ' = Total:$ ', @FORMAT(PROFIT_EXEC(J) * PROD_EXEC(J),'%6.0f'),@NEWLINE(1));
@WRITE(" ECONOMIC CLASS:", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PROD_ECON(J) #GT# 0: ' Route: ', @FORMAT(PRODUCT(J),'-8s'), ' #pax:', @FORMAT(PROD_ECON(J),'%3.0F'), ' x Profit p/pax: ' , @FORMAT(PROFIT_ECON(J),'%3.0f'), ' = Total:$ ', @FORMAT(PROFIT_ECON(J) * PROD_ECON(J),'%6.0f'),@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFIT EXECUTIVE CLASS P/PAX:</td>
</tr>
<tr>
<td>A_TO_B 300.0000</td>
</tr>
<tr>
<td>B_TO_C 200.0000</td>
</tr>
<tr>
<td>C_TO_D 300.0000</td>
</tr>
<tr>
<td>A_TO_C 400.0000</td>
</tr>
<tr>
<td>A_TO_D 700.0000</td>
</tr>
<tr>
<td>B_TO_D 400.0000</td>
</tr>
<tr>
<td>PROFIT ECONOMIC CLASS P/PAX:</td>
</tr>
<tr>
<td>A_TO_B 140.0000</td>
</tr>
<tr>
<td>A_TO_C 160.0000</td>
</tr>
<tr>
<td>A_TO_D 160.0000</td>
</tr>
<tr>
<td>B_TO_C 0.000000</td>
</tr>
<tr>
<td>DEMAND EXECUTIVE CLASS P/PAX:</td>
</tr>
<tr>
<td>A_TO_B 0.000000</td>
</tr>
<tr>
<td>B_TO_C 40.000000</td>
</tr>
<tr>
<td>C_TO_D 50.000000</td>
</tr>
<tr>
<td>A_TO_C 70.000000</td>
</tr>
<tr>
<td>A_TO_D 80.000000</td>
</tr>
<tr>
<td>B_TO_D 60.000000</td>
</tr>
<tr>
<td>DEMAND ECONOMIC CLASS P/PAX:</td>
</tr>
<tr>
<td>A_TO_B 160.0000</td>
</tr>
<tr>
<td>A_TO_C 160.0000</td>
</tr>
<tr>
<td>A_TO_D 160.0000</td>
</tr>
<tr>
<td>B_TO_C 0.000000</td>
</tr>
<tr>
<td>ROUTES OPERATED WITH AIRCRAFT T1 (160PAX):</td>
</tr>
<tr>
<td>A_TO_D 40.00000</td>
</tr>
<tr>
<td>C_TO_D 25.00000</td>
</tr>
<tr>
<td>A_TO_B 30.00000</td>
</tr>
<tr>
<td>B_TO_C 50.00000</td>
</tr>
<tr>
<td>A_TO_B 160.0000</td>
</tr>
<tr>
<td>B_TO_D 140.0000</td>
</tr>
<tr>
<td>A_TO_D 140.0000</td>
</tr>
<tr>
<td>C_TO_D 140.0000</td>
</tr>
<tr>
<td>EXECUTIVE CLASS:</td>
</tr>
<tr>
<td>Route: A_TO_B #pax: 30 x Profit p/pax: 400 = Total:$ 12000</td>
</tr>
<tr>
<td>Route: B_TO_C #pax: 50 x Profit p/pax: 250 = Total:$ 12500</td>
</tr>
<tr>
<td>Route: C_TO_D #pax: 25 x Profit p/pax: 360 = Total:$ 9000</td>
</tr>
<tr>
<td>Route: A_TO_D #pax: 40 x Profit p/pax: 840 = Total:$ 33600</td>
</tr>
<tr>
<td>Route: B_TO_D #pax: 30 x Profit p/pax: 450 = Total:$ 13500</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION:

Global optimal solution found.
Objective value: 129600.0
Infeasibilities: 0.000000

EXECUTIVE CLASS:

Route: A_TO_B #pax: 75 x Profit p/pax: 300 = Total:$ 22500
Route: B_TO_C #pax: 5 x Profit p/pax: 200 = Total:$ 1000
Route: C_TO_D #pax: 50 x Profit p/pax: 300 = Total:$ 15000
Route: A_TO_D #pax: 15 x Profit p/pax: 700 = Total:$ 10500

EXECUTIVE CLASS:

Route: A_TO_B #pax: 30 x Profit p/pax: 400 = Total:$ 12000
Route: B_TO_C #pax: 50 x Profit p/pax: 250 = Total:$ 12500
Route: C_TO_D #pax: 25 x Profit p/pax: 360 = Total:$ 9000
Route: A_TO_D #pax: 40 x Profit p/pax: 840 = Total:$ 33600
Route: B_TO_D #pax: 30 x Profit p/pax: 450 = Total:$ 13500
GOAL

An airline wants to re-equip its fleet of aircraft by purchasing three different types:

<table>
<thead>
<tr>
<th>AIRCRAFT</th>
<th>Cost (millions)</th>
<th>Revenue (millions)</th>
<th>Pilots enabled</th>
<th>For Flights in:</th>
<th>Effort in maintenance Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embraer 190</td>
<td>33.0</td>
<td>120.0</td>
<td>25</td>
<td>Domestic</td>
<td>1/15</td>
</tr>
<tr>
<td>Airbus A350</td>
<td>230.0</td>
<td>300.0</td>
<td>10</td>
<td>Americas and Europe</td>
<td>4/15</td>
</tr>
<tr>
<td>Boing 787-8</td>
<td>170.0</td>
<td>260.0</td>
<td>9</td>
<td>Asia</td>
<td>3/15</td>
</tr>
<tr>
<td>Available</td>
<td>730.0</td>
<td></td>
<td></td>
<td></td>
<td>≤ 4</td>
</tr>
</tbody>
</table>

- The Boing pilot can pilot all three types of aircraft.
- The Airbus pilot also pilots Embraer.
- The Embraer pilot does not pilot the others.
- In a Boing is required three pilots, the Airbus and Embraer only two.

<table>
<thead>
<tr>
<th>Required/ Aircraft</th>
<th>Embraer</th>
<th>Airbus</th>
<th>Boing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embraer</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Airbus</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boing</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Available</td>
<td>25</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

The workshops can meet the simultaneous maintenance of 3 Boing 787-8. A Boing requires a maintenance effort equivalent to 3 Embraer and 0.75 Arbus.

It is estimated that 15% of the aircraft are always under preventive maintenance. Formulate the problem of optimization of the purchase of these aircraft by the company.
MODEL:
SETS:
PRODUCT:
REVENUE,
PURCHASE,
PILOTS_190,
PILOTS_350,
PILOTS_787,
PILOTS_AVAILABLE,
PRODUCE;
ENDSETS
DATA:
! Products attributes;
PRODUCT =
EMBRAER_190
AIRBUS_A350
BOING_787;
! Products attributes
190
350
787;
REVENUE =
120
300
260;
! Expected Revenue in millions;
PURCHASE =
33
230
170;
! Unit purchase cost of aircraft in million;
PILOTS_190 =
2
2
3;
! Number of pilots qualified for the Embraer 190;
PILOTS_350 =
0
2
3;
! Number of pilots qualified for the Airbus A350;
PILOTS_787 =
0
0
3;
! Number of pilots qualified for the Boing 787-8;
PILOTS_AVAILABLE =
25
10
9;
! Number of pilots available for these aircraft;
ENDDATA
SUBMODEL MAX6:
[OBJ]
MAX = @SUM(PRODUCT(J): Purchase(J) * PRODUCE(J));
! Capital Available for Acquisition:
@SUM(PRODUCT(J): PURCHASE(J) * PRODUCE(J)) <= 730;
! Number of Pilots enable To Pilot or Embraer:
@SUM(PRODUCT(J): PILOTS_190(J) * PRODUCE(J)) <= 25;
! Number of Pilots enable To Pilot or AirBus:
@SUM(PRODUCT(K): PILOTS_350(K) * PRODUCE(K)) <= 10;
! Number of Pilots enable To Pilot or Boing:
@SUM(PRODUCT(L): PILOTS_787(L) * PRODUCE(L)) <= 9;
@FOR(PRODUCT(J): @GIN(PRODUCE(J)));
! Effort in Maintenance Workshops:
1/15*PRODUCE(1) + 4/15*PRODUCE(2) + 3/15*PRODUCE(3) <= 4;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block:
@WRITE(" DATA:", @NEWLINE(1), " Expected Revenue in millions:", @NEWLINE(1));
@TABLE(REVENUE);
@WRITE(" Unit purchase PROFIT of aircraft in million:", @NEWLINE(1));
@TABLE(PURCHASE);
@WRITE(" Number of pilots qualified for the Embraer 190:", @NEWLINE(1));
@TABLE(PILOTS_190);
@WRITE(" Number of pilots qualified for the Airbus A350:", @NEWLINE(1));
@TABLE(PILOTS_350);
@WRITE(" Number of pilots qualified for the Boing 787-8:", @NEWLINE(1));
@TABLE(PILOTS_787);
@WRITE(" Number of pilots available for these aircraft:", @NEWLINE(1));
@TABLE(PILOTS_AVAILABLE);
@WRITE(" SOLUTION: ", @NEWLINE(1));
@SOLVE(MAX6)
! Solution report:
@WRITE(" PROPOSAL OF PURCHASE (values in millions): ", @NEWLINE(2));
@WRITEFOR(PRODUCT(J): [' ', @FORMAT(PRODUCT(J),"%-11s"), ' '],
@FORMAT(PRODUCT(J),"%-11s"), ' ')
@FORMAT(PRODUCE(J),"%-3.0f")
" un x Purchase: $'
@FORMAT(PURCHASE(J),"%-4.0f")
' = Total: $'
@FORMAT(PURCHASE(J) * PRODUCE(J),"%-3.0f")
@NEWLINE(1), 26''
'Revenue: $'
@FORMAT(REVENUE(J) * PRODUCE(J),"%-4.0f")
@NEWLINE(2));
@WRITE(" Investment value", 34*' ', '$', @FORMAT(OBJ,"%-3.0f"), @NEWLINE(1));
@WRITE(" Gross Revenue", 21*' ', '$', @FORMAT(@SUM(PRODUCT(J):REVENUE(J)*PRODUCE(J)),"%-4.0f"), @NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX6);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
Expected Revenue in millions:
- EMBRAER_190 120.0000
- AIRBUS_A350 300.0000
- BOING_787_8 260.0000

Unit purchase PROFIT of aircraft in million:
- EMBRAER_190 33.00000
- AIRBUS_A350 230.0000
- BOING_787_8 170.0000

Number of pilots qualified for the Embraer 190:
- EMBRAER_190 2.000000
- AIRBUS_A350 2.000000
- BOING_787_8 3.000000

Number of pilots qualified for the Airbus A350:
- EMBRAER_190 0.000000
- AIRBUS_A350 2.000000
- BOING_787_8 3.000000

Number of pilots qualified for the Boing 787-8:
- EMBRAER_190 0.000000
- AIRBUS_A350 0.000000
- BOING_787_8 3.000000

Number of pilots available for these aircraft:
- EMBRAER_190 25.00000
- AIRBUS_A350 10.00000
- BOING_787_8 9.000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION:
Global optimal solution found.
Objective value: 730.0000
Objective bound: 730.0000
Infeasibilities: 0.000000

PROPOSAL OF PURCHASE (values in millions):

[EMBRAER_190] 10 un x Purchase: $ 33 = Total: $330
 Revenue: $1200

[AIRBUS_A350] 1 un x Purchase: $ 230 = Total: $230
 Revenue: $ 300

[BOING_787_8] 1 un x Purchase: $ 170 = Total: $170
 Revenue: $ 260

Investment value $730
Gross Revenue $1760
GOAL

Closely related to the newsboy problem (in a mathematical sense) is the airline overbooking problem.

Given that a certain percentage of fliers with reservations will not show up for a flight, airlines that don't overbook will be sending most planes up with empty seats.

Assuming the penalty cost for overbooking is not too high, an airline that hopes to maximize revenue should overbook its flights.

The following model determines the optimal number of reservations to allow on a flight, and assumes the number of no-shows on a flight has a binomial distribution.

This model uses a brut force method to compute the expected profits from overbooking 1 to 6 seats.

<table>
<thead>
<tr>
<th>Items</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total seats available</td>
</tr>
<tr>
<td>2</td>
<td>Revenue from sold seat</td>
</tr>
<tr>
<td>3</td>
<td>Penalty for turned down customer</td>
</tr>
<tr>
<td>4</td>
<td>Probability a customer is no-show</td>
</tr>
</tbody>
</table>
MODEL:
! A strategy for airlines to minimize the loss from no-shows is to overbook flights.
Too little overbooking results in lost revenue.
Too much overbooking results in excessive penalties.
This model computes expected profits for various levels of overbooking.

SETS:
 SEAT/1..16/; ! seats available;
 EXTRA/1..6/: EPROFIT; ! expected profits from overbooking 1-6 seats;
ENDSETS

DATA:
! Available data;
 V = 225; ! Revenue from a sold seat;
 P = 100; ! Penalty for a turned down customer;
 Q = .04; ! Probability customer is a no-show;
! No. of seats available;
ENDDATA

SUBMODEL S10:
 N = @SIZE(SEAT);
! Expected profit with no overbooking;
 EPROFIT0 = V * @SUM(SEAT(I): (1 - @PBN(1- Q, N, I - 1)));
! Expected profit if we overbook by 1 is:
 EPROFIT(1) = EPROFIT0 + (1 - Q) * (V - (V + P) * @PBN(Q, N, 0));
! In general;
 @FOR(EXTRA(I)| I #GT# 1: EPROFIT(I) = EPROFIT(I - 1) + (1 - Q) * (V - (V + P) * @PBN(Q, N + I - 1, I - 1)));
ENDSUBMODEL

CALC:
! Output level (0:verb, 1:terse, 2:only errors, 3:none);
 @SET('TERSEO',2);
! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
! Execute sub-model;
 @SOLVE(S10);
! Data Block;
 @WRITE(" DATA:", NEWLINE(1));
 @WRITE(" ", NEWLINE(1));
 @WRITE(" . Total seats available: ",38*'.', FORMAT(N,'%5.0f'), NEWLINE(1));
 @WRITE(" ", NEWLINE(1));
 @WRITE(" . Revenue from a sold seat: ",35*'.', FORMAT(V,'%9.2f'), NEWLINE(1));
 @WRITE(" ", NEWLINE(1));
 @WRITE(" . Penalty for a turned down customer: ",25*'.', FORMAT(P,'%6.0f'), NEWLINE(1));
 @WRITE(" ", NEWLINE(1));
 @WRITE(" . Probability a customer is a no-show: ",24*'.', FORMAT(Q,'%7.2f'), NEWLINE(1));
 @WRITE(" ", NEWLINE(2), " SOLUTION: ", SOLUTION, NEWLINE(1));
! Solution report;
 @WRITE(" ", NEWLINE(1), " . This model computes expected profits for various levels of overbooking: ", NEWLINE(2));
 @WRITE(" Profit with ", 0, ' Overbooking: ", FORMAT(EPROFIT0,'%7.3f'), NEWLINE(1));
 @FOR(EXTRA(I)):
 @WRITE(" Profit with ", I, ' Overbooking: ", FORMAT(EPROFIT(I),'%7.3f'),
 ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

- Total seats available: 16
- Revenue from a sold seat: 225.00
- Penalty for a turned down customer: 100
- Probability a customer is a no-show: 0.04

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

- This model computes expected profits for various levels of overbooking:

 Profit with 0 Overbooking: $3456.000
 Profit with 1 Overbooking: $3509.634
 Profit with 2 Overbooking: $3459.355
 Profit with 3 Overbooking: $3373.744
 Profit with 4 Overbooking: $3279.654
 Profit with 5 Overbooking: $3183.953
 Profit with 6 Overbooking: $3087.994
GOAL

Large airlines tend to base their route structure around the hub concept.

An airline will try to have a large number of flights arrive at the hub airport during a certain short interval time (e.g., 9 a.m. to 10 a.m.) and then have a large number of flights depart the hub shortly thereafter (e.g., 10 a.m. to 11 a.m.).

This allows customers of that airline to travel between a large combination of origin/destination cities with one stop and at most one change of planes.

For example, United Airlines uses one stop and at most one change of planes.

For example, United Airlines uses Chicago as a hub, Delta Airlines uses Atlanta, TWA uses St. Louis, and American uses Dallas/Fort Worth.

A desirable goal in using a hub structure is minimize the amount of changing of planes (and the resulting moving of baggage) at the hub.

This model illustrates how to apply the assignment model:

- A certain airline has six flights arriving at O'Hare airport between 9 and 9:30 a.m.
- The same six airplanes depart on different flights between 9:40 and 10:20 a.m.
- You know the average number of people transferring between incoming and leaving flights.

All the planes are identical. A decision problem is which incoming flight should be assigned to which outgoing flight.

This model helps determine how incoming flights should be assigned to leaving flights so that a minimum number of people need to change planes at the O'Hare stop.
MODEL:
SETS:
 FLIGHT;
ASSIGN(FLIGHT, FLIGHT): X, CHANGE;
ENDSETS
DATA:
 FLIGHT = 1..6;
 ! The value of assigning i to j;
 CHANGE =
 20 15 16 5 4 7
 17 15 33 12 8 6
 9 12 18 16 30 13
 12 8 11 27 19 14
 -999 7 10 21 10 32
 -999 -999 -999 6 11 13;
ENDDATA
SUBMODEL MAX8:
 ! Maximize value of assignments;
[OBJ] MAX = @SUM(ASSIGN: X * CHANGE);
@FOR(FLIGHT(I):
 ! Each I must be assigned to some J;
 @SUM(FLIGHT(J): X(I, J)) = 1;
 ! Each I must receive an assignment;
 @SUM(FLIGHT(J): X(J, I)) = 1;);
ENDSUBMODEL
CALC:
 ! Output level (0:verb, 1:terse, 2:only errors, 3:none);
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " Arrival of passengers on six aircraft between 9 and 9:30 am:"; @NEWLINE(1));
 @TABLE(CHANGE);
 @WRITE(" SOLUTION: ", @NEWLINE(1));
 ! Solve the model;
 @SOLVE(MAX8);
 ! Solution report;
 @WRITE(" LOGICAL SELECTION: ", @NEWLINE(1));
 @TABLE(X);
 @WRITE(" ", @NEWLINE(2));
 @WRITE(" Move pax between aircraft (large combination of origin/destination). ", @NEWLINE(1));
 @WRITE(" Passenger departure on six aircraft between 9 and 9:40 am: ", @NEWLINE(2));
 @WRITEFOR(ASSIGN(K,L) | X(K,L) #GT# 0: ' PAX: ', CHANGE(K,L),@NEWLINE(1));
 @WRITE(" ", @NEWLINE(1));
 ! To see the corresponding model scalar, remove (!) From the line below;
 !@GEN(MAX8);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
Arrival of passengers on six aircraft between 9 and 9:30 am:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.0000</td>
<td>15.0000</td>
<td>16.0000</td>
<td>5.000000</td>
<td>4.000000</td>
<td>7.000000</td>
</tr>
<tr>
<td>2</td>
<td>17.00000</td>
<td>15.00000</td>
<td>33.00000</td>
<td>12.00000</td>
<td>8.000000</td>
<td>6.000000</td>
</tr>
<tr>
<td>5</td>
<td>-999.0000</td>
<td>7.000000</td>
<td>10.00000</td>
<td>21.00000</td>
<td>10.00000</td>
<td>32.00000</td>
</tr>
<tr>
<td>6</td>
<td>-999.0000</td>
<td>-999.0000</td>
<td>-999.0000</td>
<td>6.000000</td>
<td>11.00000</td>
<td>13.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 135.0000
Infeasibilities: 0.000000

LOGICAL SELECTION:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>4</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>5</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>6</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Move pax between aircraft (large combination of origin/destination).
Passenger departure on six aircraft between 9 and 9:40 am:

PAX: 20.00000
PAX: 33.00000
PAX: 12.00000
PAX: 27.00000
PAX: 32.00000
PAX: 11.00000
GOAL

Closely related to the newsboy problem (in a mathematical sense) is the airline overbooking problem.

Given that a certain percentage of fliers with reservations will not show up for a flight, airlines that don't overbook will be sending most planes up with empty seats.

Assuming the penalty cost for overbooking is not too high, an airline that hopes to maximize revenue should overbook its flights.

The following model determines the optimal number of reservations to allow on a flight, and assumes the number of no-shows on a flight has a binomial distribution.

This overbooking model determines the number of reservations, M, to allow on a flight if the no-show distribution is binomial.

<table>
<thead>
<tr>
<th>Items</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Total seats available seat</td>
<td>16</td>
</tr>
<tr>
<td>2 Revenue from sold seat $</td>
<td>225.00</td>
</tr>
<tr>
<td>3 Penalty for turned down customer $</td>
<td>100.00</td>
</tr>
<tr>
<td>4 Probability a customer is no-show %</td>
<td>0.04</td>
</tr>
</tbody>
</table>
MODEL:

! This overbooking model determines the number of reservations, M, to allow on a flight if the
no-show distribution is binomial;

DATA:

! Some available data ;
N = 16; ! Total seats available;
V = 225; ! Revenue from a sold seat;
P = 100; ! Penalty for a turned down customer;
Q = .04; ! Probability a customer is a no-show;

ENDDATA

SUBMODEL SM9:

! The probability to turn down customers is @PBN(Q, M, M - N), therefore the corresponding
expected loss due to imperfect information is: (V + P) * @PBN(Q, M, M - N), and we want the
loss to equal the revenue V on the margin. So,

the break-even equation is:;

(V + P) * @PBN(Q, M, M - N) = V;

! Note, you should round up if M is fractional;

ENDSUBMODEL

CALC:

! Output level (0:verb, 1:terse, 2:only errors, 3:none);
@SET('TERSEO',2);

! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);

! Execute sub-model;
@SOLVE(SM9);

! Data Block;
@WRITE(" DATA:\n", @NEWLINE(1));
@WRITE(" Total seats available: ", @NEWLINE(1));
@WRITE(",38",',', @FORMAT(N,'%5.0f'), @NEWLINE(1));
@WRITE(" Revenue from a sold seat: ", @NEWLINE(1));
@WRITE(",35",',', @FORMAT(V,'%9.2f'), @NEWLINE(1));
@WRITE(" Penalty for a turned down customer: ",@NEWLINE(1));
@WRITE(",25",',', @FORMAT(P,'%6.0f'), @NEWLINE(1));
@WRITE(" Probability a customer is a no-show: ",@NEWLINE(1));
@WRITE(",24",',', @FORMAT(Q,'%7.2f'), @NEWLINE(1));
@WRITE(", SOLUTION:\n", @NEWLINE(1));

! Solution Report;
@WRITE(" This overbooking model determines the number of reservations: ",
@FORMAT(M,'%7.2f'), @NEWLINE(2));

ENDCALC

END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

. Total seats available: 16
. Revenue from a sold seat: 225.00
. Penalty for a turned down customer: 100
. Probability a customer is a no-show: 0.04

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

. This overbooking model determines the number of reservations: 16.52
What should be the route for transporting cargo vehicles so that they deliver the entire cargo in the shortest time and at the lowest total cost?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

Three warehouse, four Customer Transportation Problem.

<table>
<thead>
<tr>
<th>Warehouse / Customer</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>$</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>W2</td>
<td>$</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>W3</td>
<td>$</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>15</td>
<td>17</td>
<td>22</td>
<td>12</td>
</tr>
</tbody>
</table>

This model contains report writing statements that *mimic* the standard Lingo solution report;
MODEL:
CALC:
 ! We need to enable range analysis for this model;
 @SET('DUALCO', 2);
ENDCALC
SETS:
 HEADER1 / PROD, LIMIT, VALUE /;
 WAREHOUSE: CAPACITY;
 CUSTOMER : DEMAND;
 ROUTES(WAREHOUSE, CUSTOMER): COST, VOLUME;
 PXR (WAREHOUSE,HEADER1): SLASUR;
 RXP (CUSTOMER, HEADER1): SLASUR1;
ENDSETS
SUBMODEL TS:
 ! The objective;
 [OBJ] MIN = @SUM(ROUTES: COST * VOLUME);
 ! The demand constraints;
 @FOR(CUSTOMER(J): [R_DEM]
 @SUM(WAREHOUSE(I): VOLUME(I, J)) >= DEMAND(J));
 ! The supply constraints;
 @FOR(WAREHOUSE(I): [R_SUP]
 @SUM(CUSTOMER(J): VOLUME(I, J)) <= CAPACITY(I));
ENDSUBMODEL
DATA:
 ! Warehouse attributes;
 WAREHOUSE, CAPACITY =
 W1 30
 W2 25
 W3 21;

 ! Customer attributes;
 CUSTOMER, DEMAND =
 C1 15
 C2 17
 C3 22
 C4 12;

 ! Cost
 COST =
 C1 C2 C3 C4;
 ! W1;
 6, 2, 6, 7;
 4, 9, 5, 3;
 8, 8, 1, 5;

 INFINITY = 1.E30;
 LENF1S = 18;
 LENF1R = 18;
ENDDATA
CALC:
! STANDARD REPORT SOLUTION;
@WRITE(@NEWLINE(1), 'STANDARD REPORT SOLUTION', @NEWLINE(1));
! Execute sub-model TS;
@SOLVE(TS);
! MIMIC THE STANDARD LINGO SOLUTION REPORT;
@WRITE(@NEWLINE(1), 'SIMILAR SOLUTION REPORT', @NEWLINE(1));
! OBJECTIVE VALUE;
@WRITE(3*' ', @IF(@STATUS() #EQ# 0, 'Global optimal', '**** Non-global ****'), ' solution found at iteration:',
@FORMAT(@ITERS(), '8.14G'),
@NEWLINE(1));
@WRITE(3*' ', 'Objective value:', @FORMAT(OBJ, '#35.7G'),
@NEWLINE(2));
! HEADER - VARIABLE, VALUE AND REDUCED COST;
@WRITE(10*' ', 'Variable Value Reduced Cost',
@NEWLINE(1));
! Variable and Reduced Cost: CAPACITY;
@WRITEFOR(WAREHOUSE(I): (LENF1S - @STRLEN(@NAME(CAPACITY(I))))*' ', @NAME(CAPACITY(I)),
@FORMAT(CAPACITY(I), '#16.7G'),
@FORMAT(@DUAL(CAPACITY(I)), '#20.6G'),
@NEWLINE(1));
! Variable and Reduced Cost: DEMAND;
@WRITEFOR(CUSTOMER(I): (LENF1S - @STRLEN(@NAME(DEMAND(I))))*' ', @NAME(DEMAND(I)),
@FORMAT(DEMAND(I), '#16.7G'),
@FORMAT(@DUAL(DEMAND(I)), '#20.6G'),
@NEWLINE(1));
! Variable and Reduced Cost: COST;
@WRITEFOR(ROUTES(I, J): (LENF1S - @STRLEN(@NAME(COST(I, J))))*' ', @NAME(COST(I, J)),
@FORMAT(COST(I, J), '#16.7G'),
@FORMAT(@DUAL(COST(I, J)), '#20.6G'),
@NEWLINE(1));
! Variable and Reduced Cost: VOLUME;
@WRITEFOR(ROUTES(I, J): (LENF1S - @STRLEN(@NAME(VOLUME(I, J))))*' ', @NAME(VOLUME(I, J)),
@FORMAT(VOLUME(I, J), '#16.7G'),
@FORMAT(@DUAL(VOLUME(I, J)), '#20.7G'),
@NEWLINE(1));
! HEADER - SLACK OR SURPLUS AND DUAL PRICE;
@WRITE(@NEWLINE(1), 15*' ', 'Row Slack or Surplus Dual Price', @NEWLINE(1));
@WRITE(15*' ', 'OBJ',
@FORMAT(OBJ, '#16.7G'),
@FORMAT(@DUAL(OBJ), '#20.7G'),
@NEWLINE(1));
! Slack or Surplus and Dual Price: DEMAND;
@WRITEFOR(CUSTOMER(I): (LENF1S - @STRLEN(@NAME(R_DEM(I))))*' ', @NAME(R_DEM(I)),
@FORMAT(R_DEM(I), '#16.7G'),
@FORMAT(@DUAL(R_DEM(I)), '#20.7G'),
@NEWLINE(1));
! Slack or Surplus and Dual Price: CAPACITY;
@WRITEFOR(WAREHOUSE(I): (LENF1S - @STRLEN(@NAME(R_SUP(I))))*' ', @NAME(R_SUP(I)),
@FORMAT(R_SUP(I), '#16.7G'),
@FORMAT(@DUAL(R_SUP(I)), '#20.7G'),
@NEWLINE(1));
MIMIC THE STANDARD LINGO RANGE REPORT;

Header:
@WRITE(@NEWLINE(1), ' Ranges in which the basis is unchanged:', @NEWLINE(2));

Objective Coefficient Ranges;
@WRITE(' ', 'Objective Coefficient Ranges', @NEWLINE(1));
@WRITE(28*' ', 'Current Allowable Allowable', @NEWLINE(1));
@WRITE(10*' ', 'Variable Coefficient Increase Decrease', @NEWLINE(1));

COST/VOLUME:
@TEXT() = ;
@WRITEFOR(ROUTES(I, J): (LENF1R - @STRLEN(@NAME(VOLUME(I, J))))'' ',
@NAME(VOLUME(I, J)), @FORMAT(COST(I, J), '#17.7G'),
@if(@RANGEU(VOLUME(I, J)) #LT# INFINITY ,
@FORMAT(@RANGEU(VOLUME(I, J)), '#17.7G'), ' INFINITY'),
@if(@RANGED(VOLUME(I, J)) #LT# INFINITY ,
@FORMAT(@RANGED(VOLUME(I, J)), '#17.7G'), ' INFINITY'),
@NEWLINE(1));

Righthand Side Ranges:
@WRITE(@NEWLINE(1), ' ', 'Righthand Side Ranges', @NEWLINE(1));
@WRITE(15*' ', 'Row Current Allowable Allowable', @NEWLINE(1));
@WRITE(32*' ', 'RHS Increase Decrease', @NEWLINE(1));

DEMAND;
@WRITEFOR(CUSTOMER(I): (LENF1R - @STRLEN(@NAME(R_DEM(I))))'' ',
@NAME(R_DEM(I)), @FORMAT(DEMAND(I), '#17.7G'),
@if(@RANGEU(R_DEM(I)) #LT# INFINITY ,
@FORMAT(@RANGEU(R_DEM(I)), '#17.7G'), ' INFINITY'),
@if(@RANGED(R_DEM(I)) #LT# INFINITY ,
@FORMAT(@RANGED(R_DEM(I)), '#17.7G'), ' INFINITY'),
@NEWLINE(1));

CAPACITY;
@WRITEFOR(WAREHOUSE(I): (LENF1R - @STRLEN(@NAME(R_SUP(I))))'' ',
@NAME(R_SUP(I)), @FORMAT(CAPACITY(I), '#17.7G'),
@if(@RANGEU(R_SUP(I)) #LT# INFINITY ,
@FORMAT(@RANGEU(R_SUP(I)), '#17.7G'), ' INFINITY'),
@if(@RANGED(R_SUP(I)) #LT# INFINITY ,
@FORMAT(@RANGED(R_SUP(I)), '#17.7G'), ' INFINITY'),
@NEWLINE(1));
! COMPACT REPORT SOLUTION;
@WRITE(@NEWLINE(1), 'COMPACT REPORT SOLUTION', @NEWLINE(1));
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);

! Data block;
@WRITE(" DATA:\n", @NEWLINE(1), " SHIPPING COST:\n", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " AVAILABLE:\n", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(" ", @NEWLINE(1), " DEMAND:\n", @NEWLINE(1));
@TABLE(DEMAND);

! Solution report;
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
@WRITE(" ", @NEWLINE(1), " IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0: ' From: ',
 @FORMAT(WAREHOUSE(I),'-3s'), ' Ship to: ' ,
 @FORMAT(CUSTOMER(J),'-3s'), ' ',
 @FORMAT(VOLUME(I, J),'%2.0f'),'Un x Unit cost: $',
 @FORMAT(COST(I, J),'%3.2f'),' = Total: $',
 @FORMAT(COST(I, J) * VOLUME(I,J),'%6.2f'),
 @NEWLINE(1));

! Slack/Surplus Product report;
@WRITE(" ", @NEWLINE(1), " SLACK/SURPLUS LIMIT = CONSUMER DEMAND (un): ", @NEWLINE(1));
@FOR(RXP(L,C):
 SLASUR1(L,2) = DEMAND(L);
 SLASUR1(L,1) = SLASUR1(L,2) - R_DEM(L);
 SLASUR1(L,3) = SLASUR(L,1) - SLASUR1(L,2));
@TABLE(SLASUR1);

! Slack/Surplus Product report;
@WRITE(" ", @NEWLINE(1), " SLACK/SURPLUS LIMIT = WAREHOUSES CAPACITY (un): ", @NEWLINE(1));
@FOR(PXR(L,C):
 SLASUR(L,2) = CAPACITY(L);
 SLASUR(L,1) = SLASUR(L,2) - R_SUP(L);
 SLASUR(L,3) = SLASUR(L,1) - SLASUR(L,2));
@TABLE(SLASUR);
@WRITE(@NEWLINE(1), ' ALTERNATIVE TO GENERATE THE SCALAR MODEL', @NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(TS);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Reduced Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFINITY</td>
<td>0.1000000E+31</td>
<td>0.000000</td>
</tr>
<tr>
<td>LENF1S</td>
<td>18.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>LENF1R</td>
<td>18.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>CAPACITY(W1)</td>
<td>30.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>CAPACITY(W2)</td>
<td>25.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>CAPACITY(W3)</td>
<td>21.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>DEMAND(C1)</td>
<td>15.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>DEMAND(C2)</td>
<td>17.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>DEMAND(C3)</td>
<td>22.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W1, C1)</td>
<td>4.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W1, C2)</td>
<td>9.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W1, C3)</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W1, C4)</td>
<td>2.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W2, C1)</td>
<td>13.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W2, C2)</td>
<td>9.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W2, C3)</td>
<td>5.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W2, C4)</td>
<td>3.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W3, C1)</td>
<td>8.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W3, C2)</td>
<td>8.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W3, C3)</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W3, C4)</td>
<td>5.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C1)</td>
<td>2.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C2)</td>
<td>17.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C3)</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C4)</td>
<td>0.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C1)</td>
<td>13.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C2)</td>
<td>9.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C3)</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C4)</td>
<td>12.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C1)</td>
<td>0.000000</td>
<td>7.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C2)</td>
<td>11.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C3)</td>
<td>21.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C4)</td>
<td>5.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

SOLUTION - STANDARD REPORT SOLUTION

STANDARD REPORT SOLUTION
Global optimal solution found.
Objectives value: 161.0000
Infeasibilities: 0.000000
Total solver iterations: 6
Elapsed runtime seconds: 0.05

Model Class: LP

Total variables: 12
Nonlinear variables: 0
Integer variables: 0
Total constraints: 8
Nonlinear constraints: 0
Total nonzeros: 36
Nonlinear nonzeros: 0

<table>
<thead>
<tr>
<th>Row</th>
<th>Slack or Surplus</th>
<th>Dual Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJ</td>
<td>161.0000</td>
<td>-1.000000</td>
</tr>
<tr>
<td>R_DEM(C1)</td>
<td>0.000000</td>
<td>-6.000000</td>
</tr>
</tbody>
</table>
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Reduced Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITY(W1)</td>
<td>30.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>CAPACITY(W2)</td>
<td>25.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>CAPACITY(W3)</td>
<td>21.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>DEMAND(C1)</td>
<td>15.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>DEMAND(C2)</td>
<td>17.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>DEMAND(C3)</td>
<td>22.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>DEMAND(C4)</td>
<td>12.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W1, C1)</td>
<td>6.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W1, C2)</td>
<td>2.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W1, C3)</td>
<td>6.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W1, C4)</td>
<td>7.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W2, C1)</td>
<td>4.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W2, C2)</td>
<td>9.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W2, C3)</td>
<td>5.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W2, C4)</td>
<td>3.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W3, C1)</td>
<td>8.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W3, C2)</td>
<td>8.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W3, C3)</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>COST(W3, C4)</td>
<td>5.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C1)</td>
<td>2.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C2)</td>
<td>17.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C3)</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C4)</td>
<td>0.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C1)</td>
<td>13.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C2)</td>
<td>6.000000</td>
<td>9.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C3)</td>
<td>0.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C4)</td>
<td>12.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C1)</td>
<td>0.000000</td>
<td>7.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C2)</td>
<td>0.000000</td>
<td>11.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C3)</td>
<td>21.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C4)</td>
<td>0.000000</td>
<td>5.000000</td>
</tr>
</tbody>
</table>

SOLUTION - SIMILAR SOLUTION REPORT

SIMILAR SOLUTION REPORT

Global optimal solution found at iteration: 6
Objective value: 161.0000

<table>
<thead>
<tr>
<th>Row</th>
<th>Slack or Surplus</th>
<th>Dual Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJ</td>
<td>161.0000</td>
<td>-1.000000</td>
</tr>
<tr>
<td>R_DEM(C1)</td>
<td>-0.000000</td>
<td>-6.000000</td>
</tr>
<tr>
<td>R_DEM(C2)</td>
<td>-0.000000</td>
<td>-2.000000</td>
</tr>
<tr>
<td>R_DEM(C3)</td>
<td>-0.000000</td>
<td>-6.000000</td>
</tr>
<tr>
<td>R_DEM(C4)</td>
<td>-0.000000</td>
<td>-5.000000</td>
</tr>
<tr>
<td>R_SUP(W1)</td>
<td>10.00000</td>
<td>-0.000000</td>
</tr>
<tr>
<td>R_SUP(W2)</td>
<td>0.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>R_SUP(W3)</td>
<td>0.000000</td>
<td>5.000000</td>
</tr>
</tbody>
</table>
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Reduced Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITY(W1)</td>
<td>30.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>CAPACITY(W2)</td>
<td>25.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>CAPACITY(W3)</td>
<td>21.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>DEMAND(C1)</td>
<td>15.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>DEMAND(C2)</td>
<td>17.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>DEMAND(C3)</td>
<td>22.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>DEMAND(C4)</td>
<td>12.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W1, C1)</td>
<td>6.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W1, C2)</td>
<td>2.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W1, C3)</td>
<td>6.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W1, C4)</td>
<td>7.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W2, C1)</td>
<td>4.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W2, C2)</td>
<td>9.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W2, C3)</td>
<td>5.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W2, C4)</td>
<td>3.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W3, C1)</td>
<td>8.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W3, C2)</td>
<td>8.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W3, C3)</td>
<td>1.000000</td>
<td>0.00000</td>
</tr>
<tr>
<td>COST(W3, C4)</td>
<td>5.000000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

SOLUTION - SIMILAR RANGE REPORT

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

<table>
<thead>
<tr>
<th>Variable</th>
<th>Current Coefficient</th>
<th>Allowable Increase</th>
<th>Allowable Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME(W1, C1)</td>
<td>6.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C2)</td>
<td>2.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C3)</td>
<td>6.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W1, C4)</td>
<td>7.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C1)</td>
<td>4.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C2)</td>
<td>9.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C3)</td>
<td>5.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W2, C4)</td>
<td>3.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C1)</td>
<td>8.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C2)</td>
<td>8.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C3)</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>VOLUME(W3, C4)</td>
<td>5.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Righthand Side Ranges

<table>
<thead>
<tr>
<th>Row</th>
<th>Current RHS</th>
<th>Allowable Increase</th>
<th>Allowable Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_DEM(C1)</td>
<td>15.00000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>R_DEM(C2)</td>
<td>17.00000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>R_DEM(C3)</td>
<td>22.00000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>R_DEM(C4)</td>
<td>12.00000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>R_SUP(W1)</td>
<td>30.00000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>R_SUP(W2)</td>
<td>25.00000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>R_SUP(W3)</td>
<td>21.00000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Global optimal solution found at iteration: 6
Objective value: 161.0000

Variable Value Reduced Cost
CAPACITY(W1) 30.00000 0.00000
CAPACITY(W2) 25.00000 0.00000
CAPACITY(W3) 21.00000 0.00000
DEMAND(C1) 15.00000 0.00000
DEMAND(C2) 17.00000 0.00000
DEMAND(C3) 22.00000 0.00000
DEMAND(C4) 12.00000 0.00000
COST(W1, C1) 6.000000 0.00000
COST(W1, C2) 2.000000 0.00000
COST(W1, C3) 6.000000 0.00000
COST(W1, C4) 7.000000 0.00000
COST(W2, C1) 4.000000 0.00000
COST(W2, C2) 9.000000 0.00000
COST(W2, C3) 5.000000 0.00000
COST(W2, C4) 3.000000 0.00000
COST(W3, C1) 8.000000 0.00000
COST(W3, C2) 8.000000 0.00000
COST(W3, C3) 1.000000 0.00000
COST(W3, C4) 5.000000 0.00000
VOLUME(W1, C1) 2.000000 0.000000
VOLUME(W1, C2) 17.00000 0.000000
VOLUME(W1, C3) 1.000000 0.000000
VOLUME(W1, C4) 0.000000 2.000000
VOLUME(W2, C1) 13.00000 0.000000
VOLUME(W2, C2) 0.000000 9.000000
VOLUME(W2, C3) 0.000000 1.000000
VOLUME(W2, C4) 12.00000 0.000000
VOLUME(W3, C1) 0.000000 7.000000
VOLUME(W3, C2) 0.000000 11.000000
VOLUME(W3, C3) 21.00000 0.000000
VOLUME(W3, C4) 0.000000 5.000000

Row Slack or Surplus | Dual Price
OBJ 161.0000 -1.000000
R_DEM(C1) -0.000000 -6.000000
R_DEM(C2) -0.000000 -2.000000
R_DEM(C3) -0.000000 -6.000000
R_DEM(C4) -0.000000 -5.000000
R_SUP(W1) 10.00000 0.000000
R_SUP(W2) 0.000000 2.000000
R_SUP(W3) 0.000000 5.000000
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

COMPACT REPORT SOLUTION

DATA:

SHIPPING COST:

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>6.000000</td>
<td>2.000000</td>
<td>6.000000</td>
<td>7.000000</td>
</tr>
<tr>
<td>W2</td>
<td>4.000000</td>
<td>9.000000</td>
<td>5.000000</td>
<td>3.000000</td>
</tr>
<tr>
<td>W3</td>
<td>8.000000</td>
<td>8.000000</td>
<td>1.000000</td>
<td>5.000000</td>
</tr>
</tbody>
</table>

AVAILABLE:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>30.00000</td>
</tr>
<tr>
<td>W2</td>
<td>25.00000</td>
</tr>
<tr>
<td>W3</td>
<td>21.00000</td>
</tr>
</tbody>
</table>

DEMAND:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>15.00000</td>
</tr>
<tr>
<td>C2</td>
<td>17.00000</td>
</tr>
<tr>
<td>C3</td>
<td>22.00000</td>
</tr>
<tr>
<td>C4</td>
<td>12.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

IDEAL TRANSPORT PROGRAM:

From: W1 Ship to: C1 2Un x Unit cost: $6.00 = Total: $12.00
From: W1 Ship to: C2 17Un x Unit cost: $2.00 = Total: $34.00
From: W1 Ship to: C3 1Un x Unit cost: $6.00 = Total: $6.00
From: W2 Ship to: C1 13Un x Unit cost: $4.00 = Total: $52.00
From: W2 Ship to: C4 12Un x Unit cost: $3.00 = Total: $36.00
From: W3 Ship to: C3 21Un x Unit cost: $1.00 = Total: $21.00

SLACK/SURPLUS LIMIT = CONSUMER DEMAND (un):

<table>
<thead>
<tr>
<th></th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>15.00000</td>
<td>15.00000</td>
</tr>
<tr>
<td>C2</td>
<td>17.00000</td>
<td>17.00000</td>
</tr>
<tr>
<td>C3</td>
<td>22.00000</td>
<td>22.00000</td>
</tr>
<tr>
<td>C4</td>
<td>12.00000</td>
<td>12.00000</td>
</tr>
</tbody>
</table>

SLACK/SURPLUS LIMIT = WAREHOUSES CAPACITY (un):

<table>
<thead>
<tr>
<th></th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>20.00000</td>
<td>30.00000</td>
</tr>
<tr>
<td>W2</td>
<td>25.00000</td>
<td>25.00000</td>
</tr>
<tr>
<td>W3</td>
<td>21.00000</td>
<td>21.00000</td>
</tr>
</tbody>
</table>
GOAL

A mining company wants to minimize the use of trucks carrying ore (from where it is removed) and deposits (where it is stored).

The table below gives the distances involved in feet:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Deposits</th>
<th>Available</th>
<th>Minimum (ton)</th>
<th>Maximum (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>D1</td>
<td>D2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>feet</td>
<td>300</td>
<td>400</td>
<td>20,000</td>
</tr>
<tr>
<td>B</td>
<td>feet</td>
<td>600</td>
<td>700</td>
<td>40,000</td>
</tr>
<tr>
<td>C</td>
<td>feet</td>
<td>800</td>
<td>300</td>
<td>45,000</td>
</tr>
<tr>
<td>Capacity</td>
<td>Ton</td>
<td>50,000</td>
<td>60,000</td>
<td>-</td>
</tr>
</tbody>
</table>

The maximum capacity of receiving deposits 1 and 2 are respectively 50,000 and 60,000 tons. Knowing that each truck journey carries 100 tons, we ask for the transportation scheme that minimizes the total distance covered.
MODEL:
SETS:
ORIGIN: AVAILABLE_MIN, AVAILABLE_MAX;
DESTINATION: CAPACITY ;
ROUTES(ORIGIN, DESTINATION): DISTANCE, VOLUME;
ENDSETS
DATA:
! Supplier attributes;
ORIGIN, AVAILABLE_MIN, AVAILABLE_MAX =
A 20000 40000
B 40000 60000
C 45000 60000;
! Consumer attributes;
DESTINATION, CAPACITY =
D1 50000
D2 60000;
! Distance
D1 D2;
DISTANCE =
A 600 700 ! B;
B 800 300; ! C;
ENDDATA
SUBMODEL MIN2:
[OBJ] MIN = \@SUM(ROUTES(I, J): DISTANCE(I, J) * VOLUME(I, J));
! Origin A constraints;
@SUM(DESTINATION(J):VOLUME(1,J)) >= AVAILABLE_MIN(1)/100;
@SUM(DESTINATION(J):VOLUME(1,1)) <= AVAILABLE_MAX(1)/100;
! Origin B constraints;
@SUM(DESTINATION(J): VOLUME(2,J)) >= AVAILABLE_MIN(2)/100;
@SUM(DESTINATION(J): VOLUME(2,2)) <= AVAILABLE_MIN(2)/100;
! Origin C constraints;
@SUM(DESTINATION(J): VOLUME(3,J)) >= AVAILABLE_MIN(3)/100;
@SUM(DESTINATION(J): VOLUME(3,3)) <= AVAILABLE_MIN(3)/100;
! The Capacity constraints;
@SUM(ORIGIN(I): VOLUME(I,1)) <= CAPACITY(1)/100;
@SUM(ORIGIN(I): VOLUME(I,2)) <= CAPACITY(2)/100;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA: ", @NEWLINE(1), " DISTANCE (feet): ", @NEWLINE(1));
@TABLE(DISTANCE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE MINIMUM (Ton): ", @NEWLINE(1));
@TABLE(AVAILABLE_MIN);
@WRITE(" ", @NEWLINE(1), " AVAILABLE MAXIMUM (Ton): ", @NEWLINE(1));
@TABLE(AVAILABLE_MAX);
@WRITE(" ", @NEWLINE(1), " CAPACITY (Ton): ", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MIN2);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(K, L) | VOLUME(K,L) #GT# 0: ' ', NAME(VOLUME(K,L)),
@FORMAT(VOLUME(K, L),'%4.0f'), ' Travel x Distance:',
@FORMAT(DISTANCE(K, L),'%4.0f'),'Feet = ','
@FORMAT(DISTANCE(K, L) * VOLUME(K,L),'%6.0f'),
@NEWLINE(1));
@WRITE(' Total:', 8*' ','
@SUM(ROUTES(K,L): VOLUME(K,L)) * Travel', 23*' ',
@SUM(ROUTES(K,L): DISTANCE (K, L) * VOLUME(K,L)), @NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
DISTANCE (feet):
 D1 D2
A 300.0000 400.0000
B 600.0000 700.0000
C 800.0000 300.0000

AVAILABLE MINIMUM (Ton):
A 20000.00
B 40000.00
C 45000.00

AVAILABLE MAXIMUM (Ton):
A 40000.00
B 60000.00
C 60000.00

CAPACITY (Ton):
D1 50000.00
D2 60000.00

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 445000.0
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:
VOLUME(A, D1) 100 Travel x Distance: 300Feet = 30000
VOLUME(A, D2) 100 Travel x Distance: 400Feet = 40000
VOLUME(B, D1) 400 Travel x Distance: 600Feet = 240000
VOLUME(C, D2) 450 Travel x Distance: 300Feet = 135000
Total: 1050 Travel 445000
GOAL

A company has two branches and provides the delivery service to six different stores.

Answer which customers to attend, from each affiliate, in order to minimize their cost of delivery.

All the data for the development of the model are described below:

<table>
<thead>
<tr>
<th>Shipping</th>
<th>Store 1</th>
<th>Store 2</th>
<th>Store 3</th>
<th>Store 4</th>
<th>Store 5</th>
<th>Store 6</th>
<th>Available (un)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch 1</td>
<td>$7.00</td>
<td>$9.00</td>
<td>$1.00</td>
<td>$12.00</td>
<td>$7.00</td>
<td>$4.00</td>
<td>2,500</td>
</tr>
<tr>
<td>Branch 2</td>
<td>$4.00</td>
<td>$5.00</td>
<td>$12.00</td>
<td>$1.00</td>
<td>$3.00</td>
<td>$8.00</td>
<td>2,000</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>1400</td>
<td>1560</td>
<td>300</td>
<td>150</td>
<td>570</td>
<td>520</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
SUPPLIER: AVAILABLE;
CONSUMER: DEMAND;
ROUTES(SUPPLIER, CONSUMER): COST, VOLUME;
ENDSETS
DATA:
! Supplier attributes;
SUPPLIER, AVAILABLE =
BRANCH1 2500
BRANCH2 2000;
! Consumer attributes;
CONSUMER, DEMAND =
STORE1 1400
STORE2 1560
STORE3 300
STORE4 150
STORE5 570
STORE6 520;
! Cost
STO1 STO2 STO3 STO4 STO5 STO6;
COST = 7 9 1 12 7 4 ! Branch1;
4 5 12 1 3 8; ! Branch2;
ENDDATA
SUBMODEL MIN3:
[OBJ] MIN = @SUM(ROUTES(I, J): COST(I, J) * VOLUME(I, J));
! The demand constraints;
@FOR(CONSUMER(J):
[DEM] @SUM(SUPPLIER(I): VOLUME(I, J)) = DEMAND(J));
! The available constraints;
@FOR(SUPPLIER(I):
[AVA] @SUM(CONSUMER(J): VOLUME(I, J)) <= AVAILABLE(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET(‘TERSEO’,1);
! Post status windows, 1 Yes, 0 No;
@SET(‘STAWIN’,0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " SHIPPING COST ($):", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (Unity):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " DEMAND (Unity):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN3);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) GT 0: ' ', SUPPLIER(I), ' Ship ',
@FORMAT(VOLUME(I, J),'%4.0f'), ' Un To ',
@FORMAT(CONSUMER(J),'-6s'), ' Shipping cost: $',
@FORMAT(COST(I, J),'%4.2f'), ' Total: $',
@FORMAT(COST(I, J) * VOLUME(I,J),'%7.2f'),
NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>STORE</th>
<th>BRANCH1</th>
<th>BRANCH2</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORE1</td>
<td>7.00000</td>
<td>4.00000</td>
</tr>
<tr>
<td>STORE2</td>
<td>9.00000</td>
<td>5.00000</td>
</tr>
<tr>
<td>STORE3</td>
<td>1.00000</td>
<td>12.00000</td>
</tr>
<tr>
<td>STORE4</td>
<td>12.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>STORE5</td>
<td>7.00000</td>
<td>3.00000</td>
</tr>
<tr>
<td>STORE6</td>
<td>4.00000</td>
<td>8.00000</td>
</tr>
</tbody>
</table>

AVAILABLE (Unity):

| BRANCH1 | 2500.000 |
| BRANCH2 | 2000.000 |

DEMAND (Unity):

STORE1	1400.000
STORE2	1560.000
STORE3	300.000
STORE4	150.000
STORE5	570.000
STORE6	520.000

SOLUTION

Global optimal solution found.
Objective value: 22960.00
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:

BRANCH1	Ship 1400Un To STORE1 Shipping cost: $7.00 Total: $9800.00
BRANCH1	Ship 300Un To STORE3 Shipping cost: $1.00 Total: $300.00
BRANCH1	Ship 280Un To STORE5 Shipping cost: $7.00 Total: $1960.00
BRANCH1	Ship 520Un To STORE6 Shipping cost: $4.00 Total: $2080.00
BRANCH2	Ship 1560Un To STORE2 Shipping cost: $5.00 Total: $7800.00
BRANCH2	Ship 150Un To STORE4 Shipping cost: $1.00 Total: $150.00
BRANCH2	Ship 290Un To STORE5 Shipping cost: $3.00 Total: $870.00
GOAL
Three warehouses supply five stores, each warehouse is limited to the total number of units to be shipped and the demand of the Stores too.

All the data for the development of the model are described below:

<table>
<thead>
<tr>
<th>Shipping</th>
<th>Store 1</th>
<th>Store 2</th>
<th>Store 3</th>
<th>Store 4</th>
<th>Store 5</th>
<th>Available (un)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warehouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 $</td>
<td>16.00</td>
<td>14.00</td>
<td>12.00</td>
<td>12.00</td>
<td>16.00</td>
<td>170</td>
</tr>
<tr>
<td>2 $</td>
<td>12.00</td>
<td>4.00</td>
<td>14.00</td>
<td>8.00</td>
<td>8.00</td>
<td>60</td>
</tr>
<tr>
<td>3 $</td>
<td>8.00</td>
<td>6.00</td>
<td>4.00</td>
<td>14.00</td>
<td>10.00</td>
<td>90</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>23</td>
<td>69</td>
<td>76</td>
<td>70</td>
<td>82</td>
</tr>
</tbody>
</table>

Determine the amount that should be sent from each deposit to each Store in order to minimize the cost of shipping.
MODEL:
SETS:
SUPPLIER: AVAILABLE;
CONSUMER: DEMAND;
ROUTES(SUPPLIER, CONSUMER): COST, VOLUME;
ENDSETS
DATA:
! Supplier attributes;
SUPPLIER, AVAILABLE =
WAREHOUSE1 170
WAREHOUSE2 60
WAREHOUSE3 90;
! Consumer attributes;
CONSUMER, DEMAND =
STORE1 23
STORE2 69
STORE3 76
STORE4 70
STORE5 82;
! Cost values
STO1 STO2 STO3 STO4 STO5;
COST = 16 14 12 12 16
WAREHOUSE1;
12 4 14 8 8
WAREHOUSE2;
8 6 4 14 10
WAREHOUSE3;
ENDDATA
SUBMODEL MIN4:
[OBJ] MIN = @SUM ROUTES(I, J): COST(I, J) * VOLUME(I, J));
! The demand constraints;
@FOR CONSUMER(J):
[DEM] @SUM(SUPPLIER(I): VOLUME(I, J)) = DEMAND(J));
! The capacity constraints;
@FOR SUPPLIER(I):
[AVA] @SUM CONSUMER(J): VOLUME(I, J) <= AVAILABLE(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
@WRITE(' DATA:', @NEWLINE(1), " SHIPPING COST ($):", @NEWLINE(1));
@TABLE(COST);
@WRITE("", @NEWLINE(1), " AVAILABLE (un):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE("", @NEWLINE(1), " DEMAND (un):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE("", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MIN4);
! Solution report;
@WRITE(" IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR ROUTES(I, J) | VOLUME(I, J) #GT# 0: ' ",
@FORMAT(SUPPLIER(I), '-10s'),' Ship ',
@FORMAT(VOLUME(I, J),'%3.0f'),' Un To ',
@FORMAT(CONSUMER(J), '-7s'),' x Shipping cost: $',
@FORMAT(COST(I, J),'%5.2f'),' = Total: $',
@FORMAT(VOLUME(I,J) * COST(I,J), '%8.2f'),
@NEWLINE(1));
@WRITE("", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN4;
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
SHIPPING COST ($):

<table>
<thead>
<tr>
<th></th>
<th>STORE1</th>
<th>STORE2</th>
<th>STORE3</th>
<th>STORE4</th>
<th>STORE5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAREHOUSE1</td>
<td>16.0000</td>
<td>14.0000</td>
<td>12.0000</td>
<td>12.0000</td>
<td>16.0000</td>
</tr>
<tr>
<td>WAREHOUSE2</td>
<td>12.0000</td>
<td>4.00000</td>
<td>14.0000</td>
<td>8.00000</td>
<td>8.00000</td>
</tr>
<tr>
<td>WAREHOUSE3</td>
<td>8.00000</td>
<td>6.00000</td>
<td>4.00000</td>
<td>14.0000</td>
<td>10.0000</td>
</tr>
</tbody>
</table>

AVAILABLE (Unity):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WAREHOUSE1</td>
<td>170.0000</td>
</tr>
<tr>
<td>WAREHOUSE2</td>
<td>60.00000</td>
</tr>
<tr>
<td>WAREHOUSE3</td>
<td>90.00000</td>
</tr>
</tbody>
</table>

DEMAND (Un):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STORE1</td>
<td>23.00000</td>
</tr>
<tr>
<td>STORE2</td>
<td>69.00000</td>
</tr>
<tr>
<td>STORE3</td>
<td>76.00000</td>
</tr>
<tr>
<td>STORE4</td>
<td>70.00000</td>
</tr>
<tr>
<td>STORE5</td>
<td>82.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 3078.000
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:

WAREHOUSE1 Ship 18 Un To STORE3 x Shipping cost: $12.00 = Total: $ 216.00
WAREHOUSE1 Ship 70 Un To STORE4 x Shipping cost: $12.00 = Total: $ 840.00
WAREHOUSE1 Ship 82 Un To STORE5 x Shipping cost: $16.00 = Total: $1312.00
WAREHOUSE2 Ship 60 Un To STORE2 x Shipping cost: $ 4.00 = Total: $ 240.00
WAREHOUSE3 Ship 23 Un To STORE1 x Shipping cost: $ 8.00 = Total: $ 184.00
WAREHOUSE3 Ship 90 Un To STORE2 x Shipping cost: $ 6.00 = Total: $ 54.00
WAREHOUSE3 Ship 50 Un To STORE3 x Shipping cost: $ 4.00 = Total: $ 232.00
GOAL

A company must schedule shipment schedules for its products, which are shipped from three factories to four warehouses located at strategic points on the market.

Taking into account the type of transport that can be used in each case, as well as the distances between the factories and the warehouses, the costs are differentiated for each factory / warehouse combination.

All the data for the development of the model are described below:

<table>
<thead>
<tr>
<th>Destination</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>Available (un)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant 1</td>
<td>$ 8.00</td>
<td>14.00</td>
<td>14.00</td>
<td>2.00</td>
<td>200</td>
</tr>
<tr>
<td>Plant 2</td>
<td>$ 24.00</td>
<td>16.00</td>
<td>16.00</td>
<td>16.00</td>
<td>400</td>
</tr>
<tr>
<td>Plant 3</td>
<td>$ 16.00</td>
<td>32.00</td>
<td>32.00</td>
<td>10.00</td>
<td>300</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>160</td>
<td>180</td>
<td>240</td>
<td>320</td>
</tr>
</tbody>
</table>

Determine the amount that should be shipped from each factory to each warehouse in order to minimize the cost of shipping.
MODEL:
SETS:
SUPPLIER: AVAILABLE;
CONSUMER: DEMAND;
ROUTES(SUPPLIER, CONSUMER): COST, VOLUME;
ENDSETS
DATA:
! Supplier attributes;
SUPPLIER, AVAILABLE =
PLANT1 200
PLANT2 400
PLANT3 300;
! Consumer attributes;
CONSUMER, DEMAND =
WAREHOUSE1 160
WAREHOUSE2 180
WAREHOUSE3 240
WAREHOUSE4 320;
! Cost attributes
WAREHOUSE1 WAREHOUSE2 WAREHOUSE3 WAREHOUSE4;
COST = 8 14 14 2
24 16 16 16
16 32 32 10;
ENDDATA
SUBMODEL MIN5:
[OBJ] MIN = @SUM(ROUTES(I, J): COST(I, J) * VOLUME(I, J));
! The demand constraints;
@FOR(CONSUMER(J):
[DEM] @SUM(SUPPLIER(I): VOLUME(I, J)) = DEMAND(J));
! The capacity constraints;
@FOR(SUPPLIER(I):
[AVA] @SUM(CONSUMER(J): VOLUME(I, J)) <= AVAILABLE(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
@WRITE(" DATA:", @NEWLINE(1), " SHIPPING COST ($):", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (ton):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " DEMAND (ton):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN5);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0: ' ',
@FORMAT(SUPPLIER(I),'-6s'), ' Ship ',
@FORMAT(VOLUME(I, J),'%3.0f'), ' ton To ',
@FORMAT(CONSUMER(J),'-10s'), ' Shipping cost: $',
@FORMAT(COST(I, J) * VOLUME(I,J),'%7.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MIN5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
SHIPPING COST ($):

<table>
<thead>
<tr>
<th>PLANT</th>
<th>WAREHOUSE1</th>
<th>WAREHOUSE2</th>
<th>WAREHOUSE3</th>
<th>WAREHOUSE4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANT1</td>
<td>8.000000</td>
<td>14.000000</td>
<td>14.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>PLANT3</td>
<td>16.000000</td>
<td>32.000000</td>
<td>32.000000</td>
<td>10.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (ton):

<table>
<thead>
<tr>
<th>PLANT</th>
<th>AVAILABLE (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANT1</td>
<td>200.0000</td>
</tr>
<tr>
<td>PLANT2</td>
<td>400.0000</td>
</tr>
<tr>
<td>PLANT3</td>
<td>300.0000</td>
</tr>
</tbody>
</table>

DEMAND (ton):

<table>
<thead>
<tr>
<th>WAREHOUSE</th>
<th>DEMAND (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAREHOUSE1</td>
<td>160.0000</td>
</tr>
<tr>
<td>WAREHOUSE2</td>
<td>180.0000</td>
</tr>
<tr>
<td>WAREHOUSE3</td>
<td>240.0000</td>
</tr>
<tr>
<td>WAREHOUSE4</td>
<td>320.0000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 11000.00
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:

<table>
<thead>
<tr>
<th>PLANT</th>
<th>SHIPMENT</th>
<th>TO WAREHOUSE</th>
<th>SHIPPING COST ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANT1</td>
<td>20ton</td>
<td>WAREHOUSE2</td>
<td>$280.00</td>
</tr>
<tr>
<td>PLANT1</td>
<td>180ton</td>
<td>WAREHOUSE4</td>
<td>$360.00</td>
</tr>
<tr>
<td>PLANT2</td>
<td>160ton</td>
<td>WAREHOUSE2</td>
<td>$2560.00</td>
</tr>
<tr>
<td>PLANT2</td>
<td>240ton</td>
<td>WAREHOUSE3</td>
<td>$3840.00</td>
</tr>
<tr>
<td>PLANT3</td>
<td>160ton</td>
<td>WAREHOUSE1</td>
<td>$2560.00</td>
</tr>
<tr>
<td>PLANT3</td>
<td>140ton</td>
<td>WAREHOUSE4</td>
<td>$1400.00</td>
</tr>
</tbody>
</table>
GOAL

A construction company has signed a contract to build 4 lots in different cities of the state. Each building requires a large amount of cement to be sent to each building.

The developer can buy from more than one company for the same project. All the data for the development of the model are described below:

<table>
<thead>
<tr>
<th>Building</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>Available (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider 1</td>
<td>$120.00</td>
<td>115.00</td>
<td>130.00</td>
<td>125.00</td>
<td>525</td>
</tr>
<tr>
<td>Provider 2</td>
<td>$100.00</td>
<td>150.00</td>
<td>110.00</td>
<td>105.00</td>
<td>450</td>
</tr>
<tr>
<td>Provider 3</td>
<td>$40.00</td>
<td>95.00</td>
<td>145.00</td>
<td>165.00</td>
<td>550</td>
</tr>
</tbody>
</table>

Demand

| ton | 450 | 275 | 300 | 350 | - |

The problem is to determine how much to buy from each supplier in order to meet the demands at the lowest cost possible.
MODEL:
SETS:
SUPPLIER: AVAILABLE;
CONSUMER: DEMAND;
ROUTES(SUPPLIER, CONSUMER): COST, VOLUME;
ENDSETS
DATA:
! Supplier attributes;
SUPPLIER, AVAILABLE =
PROVIDER1 525
PROVIDER2 450
PROVIDER3 550;
! Consumer attributes;
CONSUMER, DEMAND =
BUILDING1 450
BUILDING2 275
BUILDING3 300
BUILDING4 350;
! Cost value
B1 B2 B3 B3;
COST = 120 115 130 125 ! PROVIDER1;
100 150 110 105 ! PROVIDER2;
40 95 145 165; ! PROVIDER3;
ENDDATA
SUBMODEL MIN6:
[OBJ] MIN = @SUM(ROUTES(I, J): COST(I, J) * VOLUME(I, J));
! The demand constraints;
@FOR (CONSUMER(J):
DEM @SUM(SUPPLIER(I): VOLUME(I, J)) = DEMAND(J));
! The Available constraints;
@FOR (SUPPLIER(I):
AVA @SUM(CONSUMER(J): VOLUME(I, J)) <= AVAILABLE(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " SHIPPING COST ($):", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (ton):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " DEMAND (ton):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN6);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR (ROUTES(I, J) | VOLUME(I, J) #GT# 0: ' ';
@FORMAT(SUPPLIER(I), '-10s'), ' Ship ';
@FORMAT(VOLUME(I, J), '%2.0f'), ' ton To ';
@FORMAT(CONSUMER(J), '-10s'), ' x Shipping cost $',
@FORMAT(COST(I, J), '%6.2f'), ' = Total: $',
@FORMAT(COST(I, J) * VOLUME(I,J), '%8.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN6);
ENDCALLC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
SHIPPING COST ($):

<table>
<thead>
<tr>
<th>PROVIDER1</th>
<th>BUILDING1</th>
<th>BUILDING2</th>
<th>BUILDING3</th>
<th>BUILDING4</th>
</tr>
</thead>
<tbody>
<tr>
<td>120.0000</td>
<td>115.0000</td>
<td>130.0000</td>
<td>125.0000</td>
<td></td>
</tr>
<tr>
<td>100.0000</td>
<td>150.0000</td>
<td>110.0000</td>
<td>105.0000</td>
<td></td>
</tr>
<tr>
<td>40.00000</td>
<td>95.00000</td>
<td>145.0000</td>
<td>165.0000</td>
<td></td>
</tr>
</tbody>
</table>

AVAILABLE (ton):

PROVIDER1	525.0000
PROVIDER2	450.0000
PROVIDER3	550.0000

DEMAND (ton):

BUILDING1	450.0000
BUILDING2	275.0000
BUILDING3	300.0000
BUILDING4	350.0000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 121375.0
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:

| PROVIDER1 Ship 175ton To BUILDING2 x Shipping cost $115.00 = Total: $20125.00 |
| PROVIDER1 Ship 200ton To BUILDING3 x Shipping cost $130.00 = Total: $26000.00 |
| PROVIDER2 Ship 100ton To BUILDING3 x Shipping cost $110.00 = Total: $11000.00 |
| PROVIDER2 Ship 350ton To BUILDING4 x Shipping cost $105.00 = Total: $36750.00 |
| PROVIDER3 Ship 450ton To BUILDING1 x Shipping cost $ 40.00 = Total: $18000.00 |
| PROVIDER3 Ship 100ton To BUILDING2 x Shipping cost $ 95.00 = Total: $ 9500.00 |
GOAL

A producer and distributor of citrus products that has three orange producing farms in Farm 1, Farm 2 and Farm 3, 200,000, 600,000 and 225,000 boxes of oranges are available in these locations respectively.

The processing plants for oranges are in City A, City B and City C, where the demand of each plant is 275,000, 400,000 and 300,000 respectively of boxes. All the data for the development of the model are described below:

<table>
<thead>
<tr>
<th>Farmer / City</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Available (box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>km</td>
<td>120</td>
<td>115</td>
<td>130</td>
</tr>
<tr>
<td>F2</td>
<td>km</td>
<td>100</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>F3</td>
<td>km</td>
<td>40</td>
<td>95</td>
<td>145</td>
</tr>
</tbody>
</table>

The company hires a local carrier that takes the orange boxes from the farms to the processing units.
MODEL:
SETS:
SUPPLIER: AVAILABLE;
CONSUMER: DEMAND;
ROUTES(SUPPLIER, CONSUMER): ROUTE, VOLUME;
ENDSETS
DATA:
!Supplier attributes;
SUPPLIER, AVAILABLE =
FARM_1 200000
FARM_2 600000
FARM_3 225000;
! Consumer attributes;
CONSUMER, DEMAND =
CITY_A 275000
CITY_B 400000
CITY_C 300000;
! Route
CITY_A CITY_B CITY_C;
ROUTE =
FARM_1; 21 50 40
FARM_2; 35 30 22
FARM_3; 55 20 25;
ENDDATA
SUBMODEL MIN7:
MIN = @SUM(ROUTES(I, J): ROUTE(I, J) * VOLUME(I, J));
! The demand constraints;
@FOR(SUPPLIER(J):
[DEM] @SUM(SUPPLIER(I): VOLUME(I, J)) = DEMAND(J));
! The capacity constraints;
@FOR(CONSUMER(I):
[AVA] @SUM(CONSUMER(J): VOLUME(I, J)) <= AVAILABLE(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " SHIPPING BOXES:", @NEWLINE(1));
@TABLE(ROUTE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (Boxes): ", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " DEMAND (Boxes):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MIN7);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0: ' ",
@FORMAT(SUPPLIER(I),'-6s'), ' Shipping to ',
@FORMAT(CONSUMER(J),'6s'), ' |
@FORMAT(VOLUME(I, J),'%8.0f'), ' Box x Distance: ',
@FORMAT(ROUTE(I,J),'%2.0f'), ' Km = ',
@FORMAT(VOLUME(I,J) * ROUTE(I, J),'%8.0f'), ' Km',
@NEWLINE(1));
@WRITE(" TOTAL DISTANCE: ', 13*' ',
@FORMAT(@SUM(ROUTES(I,J):VOLUME(I,J),'%8.0f'), ' Box', 22*' ',
@FORMAT(@SUM(ROUTES(I,J):VOLUME(I,J) * ROUTE(I, J),'%8.0f'), ' Km', @NEWLINE(2));
!To see the corresponding model scalar, remove (l) From the line below;
@GEN(MIN7);
ENDCALC
END

Solving Problems with LINGO

Farm to Processing Center | Case 7 | Transport
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
DISTANCE (Km):
CITY_A CITY_B CITY_C
FARM_1 21.00000 50.00000 40.00000
FARM_2 35.00000 30.00000 22.00000
FARM_3 55.00000 20.00000 25.00000

AVAILABLE (Boxes):
FARM_1 200000.0
FARM_2 600000.0
FARM_3 225000.0

DEMAND (Boxes):
CITY_A 275000.0
CITY_B 400000.0
CITY_C 300000.0

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 23175000
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:
FARM_1 Shipping to CITY_A 200000 Box x Distance: 21 Km = 4200000 Km
FARM_2 Shipping to CITY_A 750000 Box x Distance: 35 Km = 2625000 Km
FARM_2 Shipping to CITY_B 175000 Box x Distance: 30 Km = 5250000 Km
FARM_2 Shipping to CITY_C 300000 Box x Distance: 22 Km = 6600000 Km
FARM_3 Shipping to CITY_B 225000 Box x Distance: 20 Km = 4500000 Km
TOTAL DISTANCE: 975000 Box 23175000 Km
GOAL

Three factories 1, 2 and 3 wish to transport their products to four different A, B, C, and D Warehouses. Information on costs, manufacturing capacity and demand can be found below:

<table>
<thead>
<tr>
<th>Cost</th>
<th>From</th>
<th>To</th>
<th>WA</th>
<th>WB</th>
<th>WC</th>
<th>WD</th>
<th>Capacity (un)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>$</td>
<td>2.00</td>
<td>5.00</td>
<td>4.00</td>
<td>8.00</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>$</td>
<td>3.00</td>
<td>2.00</td>
<td>5.00</td>
<td>4.00</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>$</td>
<td>5.00</td>
<td>3.00</td>
<td>9.00</td>
<td>5.00</td>
<td>700</td>
</tr>
<tr>
<td>Demand</td>
<td>MIN</td>
<td>un</td>
<td>400</td>
<td>300</td>
<td>250</td>
<td>200</td>
<td>1,150</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>un</td>
<td>800</td>
<td>800</td>
<td>400</td>
<td>400</td>
<td>2,400</td>
</tr>
</tbody>
</table>

Design the model so as to minimize transport costs.
MODEL:
SETS:
WAREHOUSES: DEM_MAX, DEM_MIN;
PLANT: CAPACITY;
ROUTES(PLANT, WAREHOUSES): COST, VOLUME;
ENDSETS
DATA:
! Warehouses attributes;
WAREHOUSES, DEM_MIN, DEM_MAX =
WA 400 800
WB 300 800
WC 250 800
WD 200 400;
! Plant attributes;
PLANT, CAPACITY =
P1 400
P2 500
P3 700;
! Cost values
WAREHOUSES, WB, WC, WD;
COST = 2 5 4 8
 3 2 5 4
 5 3 9 5;
ENDDATA
SUBMODEL MIN8:
[OBJ] MIN = @SUM(Routes(I,J): COST(I,J) * VOLUME(I,J));
! The demand constraints;
@FOR(WAREHOUSES(J):)
[DEMO] @SUM(PLANT(I): VOLUME(I,J)) >= DEM_MIN(J);
[DEM1] @SUM(PLANT(I): VOLUME(I,J)) <= DEM_MAX(J);)
! The capacity constraints;
@FOR(PLANT(I):)
[CAP] @SUM(WAREHOUSES(J): VOLUME(I,J)) <= CAPACITY(I);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA", @NEWLINE(1), " SHIPPING COST: ", @NEWLINE(1));
@TABLE(COST);
@WRITE(" AVAILABLE: ", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(" MINIMUM DEMAND: ", @NEWLINE(1));
@TABLE(DEM_MIN);
@WRITE(" MAXIMUM DEMAND: ", @NEWLINE(1));
@TABLE(DEM_MAX);
@WRITE(" SOLUTION ", @NEWLINE(1));
@SOLVE(MIN8);
! Solution Report;
@WRITE(" IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I,J) | VOLUME(I,J) #GT# 0: ' From: ',
 @FORMAT(PLANT(I),'-3s'), ' Ship to: ',
 @FORMAT(WAREHOUSES(J),'-3s'), ' Un x Cost: $',
 @FORMAT(COST(I,J), '%3.2f'), ' = Total: $',
 @FORMAT(COST(I,J) * VOLUME(I,J), '%7.2f'),
 @NEWLINE(1));
@GEN(MIN8); ! To see the corresponding model scalar, remove (!);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA
SHIPPING COST:

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>WB</th>
<th>WC</th>
<th>WD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>2.0000</td>
<td>5.0000</td>
<td>4.0000</td>
<td>8.0000</td>
</tr>
<tr>
<td>P2</td>
<td>3.0000</td>
<td>2.0000</td>
<td>5.0000</td>
<td>4.0000</td>
</tr>
<tr>
<td>P3</td>
<td>5.0000</td>
<td>3.0000</td>
<td>9.0000</td>
<td>5.0000</td>
</tr>
</tbody>
</table>

AVAILABLE:

P1	400.00
P2	500.00
P3	700.00

MINIMUM DEMAND:

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>WB</th>
<th>WC</th>
<th>WD</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>400.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB</td>
<td>300.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC</td>
<td>250.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WD</td>
<td>200.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM DEMAND:

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>WB</th>
<th>WC</th>
<th>WD</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>800.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB</td>
<td>800.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC</td>
<td>800.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WD</td>
<td>400.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 3700.000
Infeasibilities: 0.00000

IDEAL TRANSPORT PROGRAM:
From: P1 Ship to: WA 400Un x Cost: $2.00 = Total: $ 800.00
From: P2 Ship to: WB 250Un x Cost: $2.00 = Total: $ 500.00
From: P2 Ship to: WC 250Un x Cost: $5.00 = Total: $1250.00
From: P3 Ship to: WB 50Un x Cost: $3.00 = Total: $ 150.00
From: P3 Ship to: WD 200Un x Cost: $5.00 = Total: $1000.00
GOAL

A four-plant zipper company, whose production capacity, unit price of each product, demand of each distributor and the unit cost of transportation, are shown below:

<table>
<thead>
<tr>
<th>Plant To Distributors</th>
<th>Unit Cost of Transport</th>
<th>Unit Cost</th>
<th>Capacity (Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
</tr>
<tr>
<td>P1</td>
<td>$</td>
<td>2.50</td>
<td>2.75</td>
</tr>
<tr>
<td>P2</td>
<td>$</td>
<td>1.85</td>
<td>1.90</td>
</tr>
<tr>
<td>P3</td>
<td>$</td>
<td>2.30</td>
<td>2.25</td>
</tr>
<tr>
<td>P4</td>
<td>$</td>
<td>1.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>8,500</td>
<td>14,500</td>
</tr>
</tbody>
</table>

The Company wants to determine the cheapest way to send its distributors from the various factories, in order to minimize cost.

As total demand exceeds the production capacity of all plants, it has been determined that at least 80% of each demand should be met.
MODEL:
SETS:
DISTRIBUTORS: DEMAND;
PLANT: COST, CAPACITY;
ROUTES(PLANT, DISTRIBUTORS): SHIPPING_COST, VOLUME;
ENDSETS
DATA:
! Distributors attributes;
DISTRIBUTORS, DEMAND =
D1 8500
D2 14500
D3 13500
D4 12600
D5 18000
D6 15000
D7 9000;

! Plant attributes;
PLANT, COST, CAPACITY =
P1 35.50 18000
P2 37.50 15000
P3 39.00 25000
P4 36.25 20000;

! Shipping Cost
D1 D2 D3 D4 D5 D6 D7;
SHIPPING_COST = 2.50 2.75 1.75 2.00 2.10 1.80 1.65 ! P1;
1.85 1.90 1.50 1.60 1.00 1.90 1.85 ! P2;
2.30 2.25 1.85 1.25 1.50 2.25 2.00 ! P3;
1.90 0.90 1.60 1.75 2.00 2.50 2.65; ! P4;
ENDDATA
SUBMODEL MAX9:
[OBJ] MIN = @SUM(ROUTES(I, J): (COST(I) + SHIPPING_COST(I,J)) * VOLUME(I, J));
! The demand constraints;
@FOR(DISTRIBUTORS(J):
 [DEM0] @SUM(PLANT(I): VOLUME(I, J)) >= DEMAND(J) * 0.80);
! The capacity constraints;
@FOR(PLANT(I):
 [CAP] @SUM(DISTRIBUTORS(J): VOLUME(I, J)) <= CAPACITY(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block:
@WRITE(" DATA", @NEWLINE(1), " SHIPING COST:", @NEWLINE(1));
@TABLE(SHIPING_COST);
@WRITE(" ", @NEWLINE(1), " COST (un):", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " CAPACITY:", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(" ", @NEWLINE(1), " DEMAND:", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX9);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL TRANSPORT PROGRAM: ", @NEWLINE(2));
@WRITE(" ", "PRODUCTION COST: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0:' From: ',
 @FORMAT(PLANT(I),'-3s'), ' Ship to: ',
 @FORMAT(DISTRIBUTORS(J),'-3s'), ' ',
 @FORMAT(VOLUME(I, J),'%5.0f'), 'un x Cost: $',
 @FORMAT(COST(I), '%3.2f'), ' = Total: $',
 @FORMAT(COST(I) * VOLUME(I,J),'%10.2f'),
@NEWLINE(1));
! Total;
@WRITE(" ", "Total: ", 49*' ','$',
 @FORMAT(@SUM(ROUTES(I, J): COST(I) * VOLUME(I, J)),'%9.2f'),
@NEWLINE(2));
@WRITE(" ", "SHIPING COST: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0:' From: ',
 @FORMAT(PLANT(I),'-3s'), ' Ship to: ',
 @FORMAT(DISTRIBUTORS(J),'-3s'), ' ',
 @FORMAT(VOLUME(I, J),'%5.0f'), 'un x Cost: $',
 @FORMAT(SHIPING_COST(I,J),'%5.2f'), ' = Total: $',
 @FORMAT(SHIPING_COST(I,J) * VOLUME(I,J),'%10.2f'),
@NEWLINE(1));
! Total;
@WRITE(" ", "Total: ", 49*' ','$',
 @FORMAT(@SUM(ROUTES(I, J): SHIPING_COST(I,J) * VOLUME(I, J)),'%10.2f'),
@NEWLINE(2));
! To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MAX9);
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA

SHIPPING COST:

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>2.500000</td>
<td>2.750000</td>
<td>1.750000</td>
<td>2.000000</td>
<td>2.100000</td>
<td>1.800000</td>
<td>1.650000</td>
</tr>
<tr>
<td>P2</td>
<td>1.850000</td>
<td>1.900000</td>
<td>1.500000</td>
<td>1.600000</td>
<td>1.000000</td>
<td>1.900000</td>
<td>1.850000</td>
</tr>
<tr>
<td>P3</td>
<td>2.300000</td>
<td>2.250000</td>
<td>1.850000</td>
<td>1.250000</td>
<td>1.500000</td>
<td>2.250000</td>
<td>2.000000</td>
</tr>
<tr>
<td>P4</td>
<td>1.900000</td>
<td>0.900000</td>
<td>1.600000</td>
<td>1.750000</td>
<td>2.000000</td>
<td>2.500000</td>
<td>2.650000</td>
</tr>
</tbody>
</table>

COST (un):

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>35.50000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>37.50000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>39.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>36.25000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAPACITY:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>18000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>15000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>25000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>20000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEMAND:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>8500.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>14500.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>13500.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>12600.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>18000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>15000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>9000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION

Global optimal solution found.

Objective value: 2805450.00

Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:

PRODUCTION COST:

<table>
<thead>
<tr>
<th>From:</th>
<th>P1</th>
<th>Ship to:</th>
<th>D6</th>
<th>12000un x Cost: $35.50 = Total: $426000.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>From:</td>
<td>P1</td>
<td>Ship to:</td>
<td>D7</td>
<td>6000un x Cost: $35.50 = Total: $213000.00</td>
</tr>
<tr>
<td>From:</td>
<td>P2</td>
<td>Ship to:</td>
<td>D3</td>
<td>600un x Cost: $37.50 = Total: $22500.00</td>
</tr>
<tr>
<td>From:</td>
<td>P2</td>
<td>Ship to:</td>
<td>D5</td>
<td>14400un x Cost: $37.50 = Total: $540000.00</td>
</tr>
<tr>
<td>From:</td>
<td>P3</td>
<td>Ship to:</td>
<td>D3</td>
<td>8600un x Cost: $39.00 = Total: $335400.00</td>
</tr>
<tr>
<td>From:</td>
<td>P3</td>
<td>Ship to:</td>
<td>D4</td>
<td>10080un x Cost: $39.00 = Total: $393120.00</td>
</tr>
<tr>
<td>From:</td>
<td>P3</td>
<td>Ship to:</td>
<td>D7</td>
<td>1200un x Cost: $39.00 = Total: $46800.00</td>
</tr>
<tr>
<td>From:</td>
<td>P4</td>
<td>Ship to:</td>
<td>D1</td>
<td>6800un x Cost: $36.25 = Total: $246500.00</td>
</tr>
<tr>
<td>From:</td>
<td>P4</td>
<td>Ship to:</td>
<td>D2</td>
<td>11600un x Cost: $36.25 = Total: $420500.00</td>
</tr>
<tr>
<td>From:</td>
<td>P4</td>
<td>Ship to:</td>
<td>D3</td>
<td>1600un x Cost: $36.25 = Total: $580000.00</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2701820.00</td>
</tr>
</tbody>
</table>

SHIPPING COST:

<table>
<thead>
<tr>
<th>From:</th>
<th>P1</th>
<th>Ship to:</th>
<th>D6</th>
<th>12000un x Cost: $ 1.80 = Total: $21600.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>From:</td>
<td>P1</td>
<td>Ship to:</td>
<td>D7</td>
<td>6000un x Cost: $ 1.65 = Total: $ 900.00</td>
</tr>
<tr>
<td>From:</td>
<td>P2</td>
<td>Ship to:</td>
<td>D3</td>
<td>600un x Cost: $ 1.50 = Total: $ 900.00</td>
</tr>
<tr>
<td>From:</td>
<td>P2</td>
<td>Ship to:</td>
<td>D5</td>
<td>14400un x Cost: $ 1.00 = Total: $ 14400.00</td>
</tr>
<tr>
<td>From:</td>
<td>P3</td>
<td>Ship to:</td>
<td>D3</td>
<td>8600un x Cost: $ 1.85 = Total: $ 15910.00</td>
</tr>
<tr>
<td>From:</td>
<td>P3</td>
<td>Ship to:</td>
<td>D4</td>
<td>10080un x Cost: $ 1.25 = Total: $ 12600.00</td>
</tr>
<tr>
<td>From:</td>
<td>P3</td>
<td>Ship to:</td>
<td>D7</td>
<td>1200un x Cost: $ 2.00 = Total: $ 2400.00</td>
</tr>
<tr>
<td>From:</td>
<td>P4</td>
<td>Ship to:</td>
<td>D1</td>
<td>6800un x Cost: $ 1.90 = Total: $ 12920.00</td>
</tr>
<tr>
<td>From:</td>
<td>P4</td>
<td>Ship to:</td>
<td>D2</td>
<td>11600un x Cost: $ 0.90 = Total: $ 10440.00</td>
</tr>
<tr>
<td>From:</td>
<td>P4</td>
<td>Ship to:</td>
<td>D3</td>
<td>1600un x Cost: $ 1.60 = Total: $ 2560.00</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$183630.00</td>
</tr>
</tbody>
</table>

Total Cost: 2805450.00
GOAL
Suppose the Wireless Widget (WW) company has six warehouses that provide eight vendors with their widgets. All the data for the development of the model are described below:

<table>
<thead>
<tr>
<th>Warehouses / Vendor</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>Available (un)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH1</td>
<td>$ 6</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>60</td>
</tr>
<tr>
<td>WH2</td>
<td>$ 4</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>WH3</td>
<td>$ 5</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td>WH4</td>
<td>$ 7</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>WH5</td>
<td>$ 2</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>WH6</td>
<td>$ 5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>52</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>35</td>
<td>37</td>
<td>22</td>
<td>32</td>
<td>41</td>
<td>32</td>
<td>43</td>
<td>38</td>
</tr>
</tbody>
</table>

Each warehouse has a set of widgets that can't be exceeded and each vendor has demand for widgets that must be satisfied.

WW wants to determine how many widgets to send from each warehouse to each vendor in order to minimize the total cost of shipping.
MODEL:
SETS:
WAREHOUSES: CAPACITY;
VENDORS: DEMAND;
ROUTES(WAREHOUSES, VENDORS): COST, VOLUME;
ENDSETS
DATA:
! Warehouses attributes;
WAREHOUSES, CAPACITY =
WH1 60
WH2 55
WH3 51
WH4 43
WH5 41
WH6 52;
! Vendors attributes;
VENDORS, DEMAND =
V1 35
V2 37
V3 22
V4 32
V5 41
V6 32
V7 43
V8 38;
! Cost values
COST =
V1 6 2 6 7 4 2 5 9
V2 4 9 5 3 8 5 8 2
V3 5 2 1 9 7 4 3 3
V4 7 6 7 3 9 2 7 1
V5 2 3 9 5 7 2 6 5
V6 5 5 2 2 8 1 4 3;
ENDDATA
SUBMODEL MIN10:
[OBJ] MIN = @SUM(ROUTES(I, J): COST(I, J) * VOLUME(I, J));
@FOR(VENDORS(J))
[DEM] @SUM(WAREHOUSES(I): VOLUME(I, J)) = DEMAND(J));
@FOR(WAREHOUSES(I))
[CAP] @SUM(VENDORS(J): VOLUME(I, J)) <= CAPACITY(I));
ENDSUBMODEL
CALC:
@SET('TERSEO',1);
@SET('STAWIN',0);
@WRITE("DATA", @NEWLINE(1), "SHIPPING COST: ", @NEWLINE(1));
@TABLE(COST);
@WRITE("AVAILABLE: ", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE("DEMAND: ", @NEWLINE(1));
@WRITE("SOLUTION ", @NEWLINE(1));
@SOLVE(MIN10);
@WRITE("IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0:' From: ',
WAREHOUSES(I), ' Ship to: ',
VENDORS(J), ' Un x Unit cost: $',
COST(I, J), ' Total: $',
COST(I, J) * VOLUME(I, J), @NEWLINE(1));
@GEN(MIN10);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

SHIPPING COST:

<table>
<thead>
<tr>
<th>WH1</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.000000</td>
<td>2.000000</td>
<td>6.000000</td>
<td>7.000000</td>
<td>4.000000</td>
<td>2.000000</td>
<td>5.000000</td>
<td>9.000000</td>
<td></td>
</tr>
<tr>
<td>WH2</td>
<td>4.000000</td>
<td>9.000000</td>
<td>5.000000</td>
<td>3.000000</td>
<td>8.000000</td>
<td>5.000000</td>
<td>6.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>WH3</td>
<td>5.000000</td>
<td>2.000000</td>
<td>1.000000</td>
<td>9.000000</td>
<td>7.000000</td>
<td>4.000000</td>
<td>3.000000</td>
<td>3.000000</td>
</tr>
<tr>
<td>WH4</td>
<td>7.000000</td>
<td>6.000000</td>
<td>7.000000</td>
<td>3.000000</td>
<td>9.000000</td>
<td>2.000000</td>
<td>7.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>WH5</td>
<td>2.000000</td>
<td>3.000000</td>
<td>9.000000</td>
<td>5.000000</td>
<td>7.000000</td>
<td>2.000000</td>
<td>6.000000</td>
<td>5.000000</td>
</tr>
<tr>
<td>WH6</td>
<td>5.000000</td>
<td>5.000000</td>
<td>2.000000</td>
<td>2.000000</td>
<td>8.000000</td>
<td>1.000000</td>
<td>4.000000</td>
<td>3.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (un):

WH1	60.000000
WH2	55.000000
WH3	51.000000
WH4	43.000000
WH5	41.000000
WH6	52.000000

DEMAND (un):

V1	35.000000
V2	37.000000
V3	22.000000
V4	32.000000
V5	41.000000
V6	32.000000
V7	43.000000
V8	38.000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION

Global optimal solution found.

Objective value: 664.0000

Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:

From: WH1 Ship to: V2 19Un x Unit cost: $2.00 = Total: $ 38.00
From: WH1 Ship to: V5 41Un x Unit cost: $4.00 = Total: $164.00
From: WH2 Ship to: V1 1Un x Unit cost: $4.00 = Total: $ 4.00
From: WH2 Ship to: V4 32Un x Unit cost: $3.00 = Total: $96.00
From: WH3 Ship to: V2 11Un x Unit cost: $2.00 = Total: $22.00
From: WH3 Ship to: V7 40Un x Unit cost: $3.00 = Total: $120.00
From: WH4 Ship to: V6 5Un x Unit cost: $2.00 = Total: $ 10.00
From: WH4 Ship to: V8 38Un x Unit cost: $1.00 = Total: $38.00
From: WH5 Ship to: V1 34Un x Unit cost: $2.00 = Total: $68.00
From: WH5 Ship to: V2 7Un x Unit cost: $3.00 = Total: $21.00
From: WH6 Ship to: V3 22Un x Unit cost: $2.00 = Total: $44.00
From: WH6 Ship to: V6 27Un x Unit cost: $1.00 = Total: $27.00
From: WH6 Ship to: V7 3Un x Unit cost: $4.00 = Total: $12.00
GOAL

Minimize shipping costs in a three-tiered distribution system involves plants, distribution centers and customers.

The plants produce multiple products, which are sent to distribution centers. If a distribution center is used, it incurs a fixed cost.

<table>
<thead>
<tr>
<th>Plant / Distribution Center</th>
<th>Shipping Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant</td>
</tr>
<tr>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
</tr>
<tr>
<td>DC Fixed Cost</td>
<td></td>
</tr>
</tbody>
</table>

Customers are provided by a single distribution center. Four DC1, DC2, DC3 and DC4 distribution centers Intermediate receipt of production and deliver to customers and cost of shipping to consumers in tons. Fixed cost for each DC that delivers deliveries.

Each consumer has a specific demand and will be served by a single DC.

<table>
<thead>
<tr>
<th>Distribution Center</th>
<th>DC To C (PA)</th>
<th>DC To C (PB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>DC1</td>
<td>$</td>
<td>5.00</td>
</tr>
<tr>
<td>DC2</td>
<td>$</td>
<td>5.10</td>
</tr>
<tr>
<td>DC3</td>
<td>$</td>
<td>3.50</td>
</tr>
<tr>
<td>DC4</td>
<td>$</td>
<td>1.00</td>
</tr>
<tr>
<td>Demand</td>
<td>ton</td>
<td>25</td>
</tr>
</tbody>
</table>

This model applies to any multi-level solution as long as the data structure meets;
MODEL:
SETS:
PRODUCT/ A, B/; ! Two products;
PLANT/ P1, P2, P3/; ! Three plants;
DISTCTR/ DC1, DC2, DC3, DC4/: F, Z; ! Each DC has an associated fixed cost, F, and an "open" indicator, Z.;
CUSTOMER/ C1, C2, C3, C4, C5/; ! Five customers;
DEMLINK(PRODUCT, CUSTOMER): D; ! D = Demand for a product by a customer;
SUPLINK(PRODUCT, PLANT): S; ! S = Capacity for a product at a plant.;
YLINK(DISTCTR, CUSTOMER): Y; ! Each customer is served by one DC, indicated by Y.;
CLINK(PRODUCT, PLANT, DISTCTR): C, X; ! C = cost/ton of a product from a plant to a DC, X=tons shipped.;
GLINK(PRODUCT, DISTCTR, CUSTOMER): G; ! G = cost/ton of a product from a DC to a customer.;
ENDSETS
DATA:
! Plant Capacities
S =
P1 P2 P3;
80, 40, 75; ! Product: A;
20, 60, 75; ! Product: B;
! Shipping cost - Plant to DC
C =
DC1 DC2 DC3 DC4;
1, 3, 3, 5; ! Product A;
4, 4.5, 1.5, 3.8; ! Product A;
2, 3.3, 2.2, 3.2; ! Product B;
1, 2, 2, 5; ! Product B;
4, 4.6, 1.3, 3.5; ! Product B;
1.8, 3, 2, 3.5;
! DC Fixed cost
F =
DC1 DC2 DC3 DC4;
100, 150, 160, 139;
! Shipping cost - DC to customer
G =
C1 C2 C3 C4 C5;
5, 5, 3, 2, 4; ! Product A;
5.1, 4.9, 3.3, 2.5, 2.7; ! Product A;
3.5, 2, 1.9, 4, 4.3; ! Product B;
1, 1.8, 4.9, 4.8, 2; ! Product B;
5, 4.9, 3.3, 2.5, 4.1; ! Product B;
5, 4.8, 3, 2.2, 2.5; ! Product B;
3.2, 2, 1.7, 3.5, 4; ! Product B;
1.5, 2, 5, 5, 2.3;
! Customer Demands
D =
C1 C2 C3 C4 C5;
25, 30, 50, 15, 35; ! Product A;
25, 8, 0, 30, 30; ! Product B;
ENDDATA
SUBMODEL MIN11:
[OBJ] MIN = SHIPDC + SHIPCOST + FXCOST;
[SHPDC] SHIPDC = @SUM(CLINK(C, X));
[SHCUS] SHIPCOST = @SUM(GLINK(I, K, L) * D(I, L) * Y(K, L));
[FCOS] FXCOST = @SUM(DISTCTR(F) * Z);
! Supply Constraints;
@FOR(PRODUCT(I): @FOR(PLANT(J): [SUP] @SUM(DISTCTR(K): X(I, J, K)) <= S(I, J)));
! DC balance constraints;
@FOR(PRODUCT(I): @FOR(DISTCTR(K): [BAL] @SUM(PLANT(J): X(I, J, K)) = @SUM(CUSTOMER(L): D(I, L) * Y(K, L))));
! Demand constraints;
@FOR(CUSTOMER(L): [DEM] @SUM(DISTCTR(K): D(I, L) * Y(K, L)) = D(I, L)));
! Force DC K open if it serves customer L;
@FOR(CUSTOMER(L): @FOR(DISTCTR(K): [DCK] Y(K, L) <= Z(K)));
! Y Binary;
@FOR(DISTCTR(K): [BIN] @BIN(Y(K, L)));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Fixed line length
@SET('LINLEN',120);
! Data Block;
@WRITE(" DATA:" , @NEWLINE(1), " Shipping cost, Plant to Distribution Center ($/ton):", @NEWLINE(1));
@TABLE(C);
@WRITE(" ", @NEWLINE(1), " Plant capacity (ton):", @NEWLINE(1));
@TABLE(S);
@WRITE(" ", @NEWLINE(1), " Consumer demand (ton):", @NEWLINE(1));
@TABLE(D);
@WRITE(" ", @NEWLINE(1), " Fixed cost distribution Center:" , @NEWLINE(1));
@TABLE(F);
@WRITE(" ", @NEWLINE(1));
@WRITE(" Shipping cost, Distribution Center to Consumer ($/ton): ", @NEWLINE(1));
@TABLE(G);
@WRITE(" ", @NEWLINE(1), " SOLUTION ", @NEWLINE(1), " ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN11);
! Solution report;
@WRITE(" ", @NEWLINE(1));
@WRITE(" IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITE(" PRODUCT/PLANT TO DISTRIBUTION CENTER ", @NEWLINE(1));
@WRITEFOR(CLINK(I, K, L)| C(I, K, L) * X(I, K, L) #GT# 0:
 ' Product: ', PRODUCT(I), ' Plant: ', PLANT(I), ' TO Distctr: ', DISTCTR(L), ' ', ' Shipping cost: $',
 @FORMAT(C(I, K, L) * X(I, K, L),'%6.2f'),
@NEWLINE(1));
@WRITE(' Total:',51*' ','$',@FORMAT(SHIPDC,'%3.2f'),@NEWLINE(2));
@WRITE(" DISTRIBUTION CENTER FIXED COST ", @NEWLINE(1));
@WRITEFOR(CLINK(I, K, L)| C(I, K, L) * X(I, K, L) #GT# 0:
 ' Product: ', Product(I), ' Plant: ', Plant(I), ' TO Distctr: ', DISTCTR(L),
@NEWLINE(1));
@WRITE(' Total:',50*' ','$',@FORMAT(FXCOST,'%3.2f'),@NEWLINE(2));
@WRITE(" DISTRIBUTION CENTER TO CONSUMER ", @NEWLINE(1));
@WRITEFOR(GLINK(I, K, L)| G(I, K, L) * D(I, L) * Y(K, L) #GT# 0:
 ' Product: ', PRODUCT(I), ' Distctr: ', DISTCTR(K), ' TO ', ' Customer: ',CUSTOMER(L), ' ', ' Shipping cost: $',
 @FORMAT(G(I, K, L) * D(I, L) * Y(K, L),'%6.2f'),
@NEWLINE(1));
@WRITE(' Total:',50*' ','$',@FORMAT(SHCOST,'%3.2f'),@NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN11);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
Shipping cost, Plant to Distribution Center ($/ton):

<table>
<thead>
<tr>
<th>Plant</th>
<th>DC1</th>
<th>DC2</th>
<th>DC3</th>
<th>DC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A P1</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>A P2</td>
<td>6.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>B P1</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>B P2</td>
<td>6.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
</tr>
</tbody>
</table>

Plant capacity (ton):

<table>
<thead>
<tr>
<th>Plant</th>
<th>DC1</th>
<th>DC2</th>
<th>DC3</th>
<th>DC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80.00</td>
<td>40.00</td>
<td>75.00</td>
<td>75.00</td>
</tr>
<tr>
<td>B</td>
<td>20.00</td>
<td>60.00</td>
<td>75.00</td>
<td>75.00</td>
</tr>
</tbody>
</table>

Consumer demand (ton):

<table>
<thead>
<tr>
<th>Product</th>
<th>DC1</th>
<th>DC2</th>
<th>DC3</th>
<th>DC4</th>
<th>DC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25.00</td>
<td>30.00</td>
<td>50.00</td>
<td>15.00</td>
<td>35.00</td>
</tr>
<tr>
<td>B</td>
<td>25.00</td>
<td>8.00</td>
<td>0.00</td>
<td>30.00</td>
<td>35.00</td>
</tr>
</tbody>
</table>

Fixed cost distribution Center:

<table>
<thead>
<tr>
<th>DC</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC1</td>
<td>100.00</td>
</tr>
<tr>
<td>DC2</td>
<td>150.00</td>
</tr>
<tr>
<td>DC3</td>
<td>160.00</td>
</tr>
<tr>
<td>DC4</td>
<td>139.00</td>
</tr>
</tbody>
</table>

Shipping cost, Distribution Center to Consumer ($/ton):

<table>
<thead>
<tr>
<th>Product</th>
<th>DC1</th>
<th>DC2</th>
<th>DC3</th>
<th>DC4</th>
<th>DC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A DC1</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>A DC2</td>
<td>6.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>A DC3</td>
<td>6.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>A DC4</td>
<td>6.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

Global optimal solution found.
Objective value: 1354.40
Objective bound: 1354.40
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:

PRODUCT/PLANT TO DISTRIBUTION CENTER

Product: A Plant: P1 TO Distctr: DC1 Shipping cost: $ 50.00
Product: A Plant: P1 TO Distctr: DC3 Shipping cost: $ 60.00
Product: A Plant: P2 TO Distctr: DC1 Shipping cost: $ 20.00
Product: A Plant: P2 TO Distctr: DC3 Shipping cost: $ 42.90
Product: B Plant: P2 TO Distctr: DC1 Shipping cost: $ 72.00
Total: $387.90

DISTRIBUTION CENTER FIXED COST

Product: A Plant: P1 TO Distctr: DC1
Product: A Plant: P1 TO Distctr: DC3
Product: A Plant: P1 TO Distctr: DC4
Product: B Plant: P2 TO Distctr: DC1
Product: B Plant: P2 TO Distctr: DC3
Total: $260.00

DISTRIBUTION CENTER TO CONSUMER

Product: A Distctr: DC1 TO Customer: C4 Shipping cost: $ 30.00
Product: A Distctr: DC1 TO Customer: C5 Shipping cost: $ 87.50
Product: A Distctr: DC3 TO Customer: C1 Shipping cost: $ 60.00
Product: B Distctr: DC1 TO Customer: C3 Shipping cost: $ 95.00
Product: B Distctr: DC1 TO Customer: C4 Shipping cost: $ 75.00
Product: B Distctr: DC1 TO Customer: C5 Shipping cost: $123.00
Product: B Distctr: DC3 TO Customer: C1 Shipping cost: $ 80.00
Product: B Distctr: DC3 TO Customer: C2 Shipping cost: $ 16.00
Total: $706.50
GOAL

The simplified problem of transport always has that a trajectory starts at an origin and there is a single path to a destination. In the advanced problem we can have any composition of trajectories.

The mass balance at any intermediate station should be zero. Build a model to get the lowest cost of transportation that meets all requirements.

<table>
<thead>
<tr>
<th>Routes / Cost</th>
<th>To</th>
<th>WS</th>
<th>WR</th>
<th>WQ</th>
<th>WP</th>
<th>W1</th>
<th>W2</th>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>$</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>$</td>
<td>4.00</td>
<td>2.00</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W1</td>
<td>$</td>
<td></td>
<td>3.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>$</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>WR</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WQ</td>
<td>$</td>
<td></td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP</td>
<td>$</td>
<td></td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Demand: un

Maximum Production: 40, 15
MODEL:
SETS:
ROUTE:COST, VOL;
PLANT: MAX_PROD;
WAREHOUSE:DEMAND;
ENDSETS
DATA:
! Routes attributes;
ROUTE, COST =
P1_WS 2 VOL(1) Plant 1 to Warehouse S;
WS_WR 4 VOL(2) Warehouse S to Warehouse R;
WS_P2 3 VOL(3) Warehouse S to Plant 2;
WR_W1 4 VOL(4) Warehouse R to Warehouse 1;
W1_WP 2 VOL(5) Warehouse 1 to Warehouse P;
W1_WQ 3 VOL(6) Warehouse 1 to Warehouse Q;
WP_WQ 2 VOL(7) Warehouse P to Warehouse Q;
WQ_W1 1 VOL(8) Warehouse Q to Warehouse 1;
WQ_W2 2 VOL(9) Warehouse Q to Warehouse 2;
WQ_P2 3 VOL(10) Warehouse Q to Plant 2;
P2_WQ 2 VOL(11) Plant 2 to Warehouse Q;
P2_W2 5 VOL(12) Plant 2 to Warehouse 2;
P2_WS 4 VOL(13) Plant 2 to Warehouse S;
! Plants attributes;
PLANT, MAX_PROD =
P1 40
P2 15;
! Warehouse attributes;
WAREHOUSE, DEMAND =
W1 15
W2 25;
ENDDATA
SUBMODEL MIN12:
[OBJ] MIN = @SUM (ROUTE(I)*COST(I)*VOL(I));
! Factory Production Restriction
VOL(1) <= MAX_PROD(1);
VOL(13) + VOL(11) + VOL(12) - VOL(3) - VOL(10) <= MAX_PROD(2);
! Demand Restriction
VOL(4) + VOL(8) - VOL(6) - VOL(5) = DEMAND(1);
VOL(9) + VOL(12) = DEMAND(2);
! Balance ;
VOL(1) + VOL(13) - VOL(2) - VOL(3) = 0;
VOL(2) - VOL(4) = 0;
VOL(5) - VOL(7) = 0;
VOL(6) + VOL(11) + VOL(7) - VOL(8) - VOL(10) - VOL(9) = 0;
ENDSUBMODEL
CALC:
@SET('TERSEO',1); ! Output level: 0=Verbose, 1-Terse;
@SET('STAWIN',0); ! Post status windows, 1 Yes, 0 No;
@WRITE(" DATA"," @NEWLINE(1)," SHIPING COST:" ," @NEWLINE(1));
@TABLE(COST);
@WRITE(" "," @NEWLINE(1)," PRODUCTION (un):", " @NEWLINE(1));
@TABLE(MAX_PROD);
@WRITE(" "," @NEWLINE(1)," DEMAND (un):", " @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" "," @NEWLINE(1)," SOLUTION", " @NEWLINE(1));
@SOLVE(MIN12); ! Execute sub-model:
@WRITE(" "," @NEWLINE(1)," IDEAL TRANSPORT PROGRAM: ", " @NEWLINE(1)); ! Solution Report;
@WRITEFOR(ROUTE(I) VOL(I) GT# 0: Route: ',
@FORMAT(ROUTE(I),'-3s'), ' Ship: ',
@FORMAT(VOL(I),'%2.0f'), 'un x Cost: $',
@FORMAT(COST(I),'%3.2f'), ' Total: $',
@FORMAT(COST(I) * VOL(I),'%6.2f'),
@NEWLINE(1));
@GEN(MIN12); !To see the corresponding model scalar, remove (!);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA
SHIPING COST:
P1_WS 2.000000
WS_WR 4.000000
WS_P2 3.000000
WR_W1 4.000000
W1_WP 2.000000
W1_WQ 3.000000
WP_WQ 2.000000
WQ_W1 1.000000
WQ_W2 2.000000
WQ_P2 3.000000
P2_WQ 2.000000
P2_W2 5.000000
P2_WS 4.000000

PRODUCTION (un):
P1 40.00000
P2 15.00000

DEMAND (un):
W1 15.00000
W2 25.00000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 270.0000
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:
Route: P1_WS Ship: 25un x Cost: $2.00 = Total: $ 50.00
Route: WS_P2 Ship: 25un x Cost: $3.00 = Total: $ 75.00
Route: WQ_W1 Ship: 15un x Cost: $1.00 = Total: $ 15.00
Route: WQ_W2 Ship: 25un x Cost: $2.00 = Total: $ 50.00
Route: P2_WQ Ship: 40un x Cost: $2.00 = Total: $ 80.00
GOAL

A network of building material stores has four stores that must be supplied with: This sand can be loaded into three ports PORT1, PORT2 and PORT3, whose distances (in km) can be seen below.

<table>
<thead>
<tr>
<th>Port / Shop</th>
<th>To</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>Available (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-1</td>
<td>km</td>
<td>30</td>
<td>20</td>
<td>24</td>
<td>18</td>
<td>1,000</td>
</tr>
<tr>
<td>Port-2</td>
<td>km</td>
<td>12</td>
<td>36</td>
<td>30</td>
<td>24</td>
<td>1,000</td>
</tr>
<tr>
<td>Port-3</td>
<td>km</td>
<td>8</td>
<td>15</td>
<td>25</td>
<td>20</td>
<td>1,000</td>
</tr>
<tr>
<td>Demand</td>
<td>m3</td>
<td>50</td>
<td>80</td>
<td>40</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
MODEL:
SETS:
SUPPLIER: AVAILABLE;
CONSUMER: DEMAND;
ROUTES(SUPPLIER, CONSUMER): DISTANCE, VOLUME;
ENDSETS
DATA:
! Available attributes;
SUPPLIER,
 AVAILABLE =
PORT1 1000
PORT2 1000
PORT3 1000;
! Consumer attributes;
CONSUMER,
DEMAND =
SHOP1 50
SHOP2 80
SHOP3 40
SHOP4 100;
! Distance
SHOP1 SHOP2 SHOP3 SHOP4;
DISTANCE =
30 20 24 18
 12 36 30 24
 8 15 25 20;
ENDDATA
SUBMODEL MIN13:
[OBJ] MIN = @SUM(ROUTES(I, J): DISTANCE(I, J) * VOLUME(I, J));
! The demand constraints; @FOR(CONSUMER(J):
 [DEM] @SUM(SUPPLIER(I): VOLUME(I, J)) = DEMAND(J));
! The available constraints; @FOR(SUPPLIER(I):
 [AVA] @SUM(CONSUMER(J): VOLUME(I, J)) <= AVAILABLE(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1=Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " SHIPPING DISTANCE (km)", @NEWLINE(1));
@TABLE(DISTANCE);
@WRITE(" AVAILABLE (m3)", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" DEMAND (m3)", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" NOTE: A Truck can carry 10m3 per trip.",
@NEWLINE(2), " SOLUTION ", @NEWLINE(1));
@SOLVE(MIN13);
! Solution report;
@WRITE(" IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0:' Ship: ',
 @FORMAT(VOLUME(I, J),'%3.0f'), 'm3 From: ',
 @FORMAT(SUPPLIER(I),'-6s'),' To: ',
 @FORMAT(CONSUMER(J),'-6s'),' Traveled: ',
 @FORMAT(DISTANCE(I,J) * VOLUME(I,J),'%4g'),'km', @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN11);
ENDCALC
END

C2-B6 Solving Problems with LINGO

Minimum Distance | Case 13 | Transport
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

SHIPPING DISTANCE (km)
SHOP1 SHOP2 SHOP3 SHOP4
PORT1 30.00000 20.00000 24.00000 18.00000
PORT2 12.00000 36.00000 30.00000 24.00000
PORT3 8.000000 15.00000 25.00000 20.00000

AVAILABLE (m3)
PORT1 1000.000
PORT2 1000.000
PORT3 1000.000

DEMAND (m3):
SHOP1 50.00000
SHOP2 80.00000
SHOP3 40.00000
SHOP4 100.0000

NOTE: A Truck can carry 10m3 per trip.

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION
Global optimal solution found.
Objective value: 4360.000
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:
Ship: 40m3 From: PORT1 To: SHOP3 Traveled: 960km
Ship: 100m3 From: PORT1 To: SHOP4 Traveled: 1800km
Ship: 50m3 From: PORT3 To: SHOP1 Traveled: 400km
Ship: 80m3 From: PORT3 To: SHOP2 Traveled: 1200km
GOAL

Four gas stations SA, SB, SC and SD require 50, 40, 60 and 40 thousand gallons of gas, respectively.

It is possible to meet these demands through distributors D1, D2 and D3 which have 80, 100 and 50 thousand liters, respectively.

The costs of shipping 1 thousand gallons of gasoline are shown in the table below:

<table>
<thead>
<tr>
<th>Distributor To</th>
<th>Station A</th>
<th>Station B</th>
<th>Station C</th>
<th>Station D</th>
<th>Available (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>$70.00</td>
<td>60.00</td>
<td>60.00</td>
<td>60.00</td>
<td>80,000</td>
</tr>
<tr>
<td>D2</td>
<td>$50.00</td>
<td>80.00</td>
<td>60.00</td>
<td>70.00</td>
<td>100,000</td>
</tr>
<tr>
<td>D3</td>
<td>$80.00</td>
<td>50.00</td>
<td>80.00</td>
<td>60.00</td>
<td>50,000</td>
</tr>
</tbody>
</table>

It is possible to meet these demands through distributors D1, D2 and D3 which have availability of 80, 100 and 50 thousand liters, respectively.
MODEL:
SETS:
SUPPLIER: AVAILABLE;
CONSUMER: DEMAND;
ROUTES(SUPPLIER, CONSUMER): COST, VOLUME;
ENDSETS
DATA:
! Supplier attributes;
SUPPLIER, AVAILABLE =
D1 80000
D2 100000
D3 50000;
! Consumer attributes;
CONSUMER, DEMAND =
S1 50000
S2 40000
S3 60000
S4 40000;
! Cost
SA SB SC SD;
COST =
50 80 60 70 ! Distributor 1;
80 50 80 60; ! Distributor 2;
ENDDATA
SUBMODEL MIN14:
[OBJ] MIN = @SUM (ROUTES(I, J): COST(I, J)/1000 * VOLUME(I, J));
! The demand constraints;
@FOR (CONSUMER(J):
[DEM] @SUM (SUPPLIER(I): VOLUME(I, J)) = DEMAND(J));
! The available constraints;
@FOR (SUPPLIER(I):
[AVA] @SUM (CONSUMER(J): VOLUME(I, J)) <= AVAILABLE(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET ('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET ('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " COST (for every 1000 gal):", @NEWLINE(1));
@TABLE(COST);
@WRITE(" AVAILABLE (gal)", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" DEMAND (gal):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(@NEWLINE(2), " SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN14);
! Solution report;
@WRITE(" " , @NEWLINE(1), " IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0: ' From:' ,
@FORMAT(SUPPLIER(I),'-2s'), ' To:',
@FORMAT(CONSUMER(J),'-2s'), ' * ",
@FORMAT(VOLUME(I, J),'%3.0f'), 'gal x Cost: $',
@FORMAT(COST(I,J)/1000, '%4.2f'), ' = Total: $',
@FORMAT(COST(I,J)/1000 * VOLUME(I,J),'%7.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove () From the line below;
@GEN(MIN14);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
COST (for every 1000 gal):

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>70.0000</td>
<td>60.0000</td>
<td>60.0000</td>
<td>60.0000</td>
</tr>
<tr>
<td>D2</td>
<td>50.0000</td>
<td>80.0000</td>
<td>60.0000</td>
<td>70.0000</td>
</tr>
<tr>
<td>D3</td>
<td>80.0000</td>
<td>50.0000</td>
<td>80.0000</td>
<td>60.0000</td>
</tr>
</tbody>
</table>

AVAILABLE (gal)

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80000.00</td>
<td>100000.00</td>
<td>50000.00</td>
</tr>
</tbody>
</table>

DEMAND (gal):

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50000.00</td>
<td>40000.00</td>
<td>60000.00</td>
<td>40000.00</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION
Global optimal solution found.
Objective value: 10500.00
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:
From:D1 To:S3 40000gal x Cost: $0.06 = Total: $2400.00
From:D1 To:S4 40000gal x Cost: $0.06 = Total: $2400.00
From:D2 To:S1 50000gal x Cost: $0.05 = Total: $2500.00
From:D2 To:S3 20000gal x Cost: $0.06 = Total: $1200.00
From:D3 To:S2 40000gal x Cost: $0.05 = Total: $2000.00
GOAL

The removal of garbage from a large Brazilian City is an important and cost activity. Garbage needs to be collected from streets, sidewalks, industries, residences, etc., and arranged in appropriate places.

To enable rapid and efficient collection, the city has been divided into several sectors.

The garbage is collected and sent to dumps or to companies that do the waste treatment in order to take advantage of materials such as plastic and aluminum for recycling and produce fertilizer.

The capacity of each of the dumps, as well as the distance that the trucks accurately travel from the collection sectors to the delivery, besides the annual collection estimates, whose distances (in km) can be seen in the data block.

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>Sectors / Destiny</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Km</td>
<td>3.4</td>
<td>1.4</td>
<td>4.9</td>
<td>7.4</td>
<td>9.3</td>
</tr>
<tr>
<td>S2</td>
<td>Km</td>
<td>2.4</td>
<td>2.1</td>
<td>8.3</td>
<td>9.1</td>
<td>8.8</td>
</tr>
<tr>
<td>S3</td>
<td>Km</td>
<td>1.4</td>
<td>2.9</td>
<td>3.7</td>
<td>9.4</td>
<td>8.6</td>
</tr>
<tr>
<td>S4</td>
<td>Km</td>
<td>2.6</td>
<td>3.6</td>
<td>4.5</td>
<td>8.2</td>
<td>8.9</td>
</tr>
<tr>
<td>S5</td>
<td>Km</td>
<td>1.5</td>
<td>3.1</td>
<td>2.1</td>
<td>7.9</td>
<td>8.8</td>
</tr>
<tr>
<td>S6</td>
<td>Km</td>
<td>4.2</td>
<td>4.9</td>
<td>6.5</td>
<td>7.7</td>
<td>6.1</td>
</tr>
<tr>
<td>S7</td>
<td>Km</td>
<td>4.8</td>
<td>6.2</td>
<td>9.9</td>
<td>6.2</td>
<td>5.7</td>
</tr>
<tr>
<td>S8</td>
<td>Km</td>
<td>5.4</td>
<td>6.0</td>
<td>5.2</td>
<td>7.6</td>
<td>4.9</td>
</tr>
<tr>
<td>S9</td>
<td>Km</td>
<td>3.1</td>
<td>4.1</td>
<td>6.6</td>
<td>7.5</td>
<td>7.2</td>
</tr>
<tr>
<td>S10</td>
<td>Km</td>
<td>3.2</td>
<td>6.5</td>
<td>7.1</td>
<td>6.0</td>
<td>8.3</td>
</tr>
<tr>
<td>Demand</td>
<td>1000/m3</td>
<td>350</td>
<td>250</td>
<td>500</td>
<td>400</td>
<td>200</td>
</tr>
</tbody>
</table>

Construct a model that minimizes the total distance to be covered by the trucks.
MODEL:
SETS:
SUPPLIER: AVAILABLE; CONSUMER: DEMAND;
ROUTES(SUPPLIER, CONSUMER): DISTANCE, VOLUME;
ENDSETS
DATA:
! Supplier attributes;
SUPPLIER, AVAILABLE =
S1 153
S2 152
S3 154
S4 138
S5 127
S6 129
S7 111
S8 110
S9 130
S10 135;
! Consumer attributes;
CONSUMER, DEMAND =
D1 350
D2 250
D3 500
D4 400
D5 200;
! Distance:
DISTANCE =
D1 D2 D3 D4 D5;
 3.4 1.4 4.9 7.4 9.3 ! S1;
 2.4 2.1 8.3 9.1 8.8 ! S2;
 1.4 2.9 3.7 9.4 8.6 ! S3;
 2.6 3.6 4.5 8.2 8.9 ! S4;
 1.5 3.1 2.1 7.9 8.8 ! S5;
 4.2 4.9 6.5 7.7 6.1 ! S6;
 4.8 6.2 9.9 6.2 5.7 ! S7;
 5.4 6.0 5.2 7.6 4.9 ! S8;
 3.1 4.1 6.6 7.5 7.2 ! S9;
 3.2 6.5 7.1 6.0 8.3 ! S10;
ENDDATA
SUBMODEL MIN15:
[OBJ] MIN = @SUM ROUTES(I, J): DISTANCE(I, J) * VOLUME(I, J);
! The demand constraints;
@FOR(CONSUMER(J):
 [DEM] @SUM(SUPPLIER(I): VOLUME(I, J)) <= DEMAND(J));
! The capacity constraints;
@FOR(SUPPLIER(I):
 [AVA] @SUM(CONSUMER(J): VOLUME(I, J)) = AVAILABLE(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block:
@WRITE(" DATA:", @NEWLINE(1), " SHIPPING DISTANCE (km)", @NEWLINE(1));
@TABLE(DISTANCE);
@WRITE(" AVAILABLE (1000/m3)", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" DEMAND (1000/m3);", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" SOLUTION ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN15);
! Solution report;
@WRITE(" IDEAL TRANSPORT PROGRAM: ", @NEWLINE(1));
@WRITEFOR(ROUTES(I, J) | VOLUME(I, J) #GT# 0: ' Ship ',
 @FORMAT(VOLUME(I, J),'%5.1f'), 'm3 From:',
 @FORMAT(SUPPLIER(I),'3s'), ' To:',
 @FORMAT(CONSUMER(J),'3s'), ' Traveled:',
 @FORMAT(DISTANCE (I, J) * VOLUME(I,J),'6.1f'),'km',
 @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
! @GEN(MIN11);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

SHIPPING DISTANCE (km)

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>3.400000</td>
<td>1.400000</td>
<td>4.000000</td>
<td>7.400000</td>
<td>9.300000</td>
</tr>
<tr>
<td>S2</td>
<td>2.400000</td>
<td>2.100000</td>
<td>8.300000</td>
<td>9.100000</td>
<td>8.000000</td>
</tr>
<tr>
<td>S3</td>
<td>1.400000</td>
<td>2.900000</td>
<td>3.700000</td>
<td>9.400000</td>
<td>8.600000</td>
</tr>
<tr>
<td>S4</td>
<td>2.600000</td>
<td>3.600000</td>
<td>4.500000</td>
<td>8.200000</td>
<td>8.900000</td>
</tr>
<tr>
<td>S5</td>
<td>1.500000</td>
<td>3.100000</td>
<td>2.100000</td>
<td>7.900000</td>
<td>8.800000</td>
</tr>
<tr>
<td>S6</td>
<td>4.200000</td>
<td>4.900000</td>
<td>6.500000</td>
<td>7.700000</td>
<td>6.100000</td>
</tr>
<tr>
<td>S7</td>
<td>4.000000</td>
<td>6.200000</td>
<td>9.000000</td>
<td>6.200000</td>
<td>5.700000</td>
</tr>
<tr>
<td>S8</td>
<td>5.400000</td>
<td>6.000000</td>
<td>5.200000</td>
<td>7.600000</td>
<td>4.900000</td>
</tr>
<tr>
<td>S9</td>
<td>3.100000</td>
<td>4.100000</td>
<td>6.500000</td>
<td>7.500000</td>
<td>7.200000</td>
</tr>
<tr>
<td>S10</td>
<td>3.280000</td>
<td>6.500000</td>
<td>7.100000</td>
<td>6.000000</td>
<td>8.300000</td>
</tr>
</tbody>
</table>

AVAILABLE (1000/m3)

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>153.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>152.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>154.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>136.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>127.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>129.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>111.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>110.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>130.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>135.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEMAND (1000/m3):

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>350.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>250.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>500.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>400.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>200.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION

Global optimal solution found.
Objective value: 4784.900
Infeasibilities: 0.000000

IDEAL TRANSPORT PROGRAM:

Ship 153.0m3 From: S1 To: D2 Traveled: 214.2km
Ship 55.0m3 From: S2 To: D1 Traveled: 132.0km
Ship 97.0m3 From: S2 To: D2 Traveled: 203.7km
Ship 32.0m3 From: S3 To: D1 Traveled: 42.0km
Ship 124.0m3 From: S3 To: D3 Traveled: 458.8km
Ship 138.0m3 From: S4 To: D3 Traveled: 621.0km
Ship 127.0m3 From: S5 To: D3 Traveled: 266.7km
Ship 1.0m3 From: S6 To: D3 Traveled: 6.5km
Ship 126.0m3 From: S6 To: D5 Traveled: 708.8km
Ship 39.0m3 From: S7 To: D4 Traveled: 241.8km
Ship 72.0m3 From: S7 To: D5 Traveled: 410.4km
Ship 110.0m3 From: S8 To: D3 Traveled: 572.0km
Ship 130.0m3 From: S9 To: D1 Traveled: 403.0km
Ship 135.0m3 From:S10 To: D1 Traveled: 432.0km
What food should be planted so that profit is maximized and the characteristics of the soil, the buyer market and the available resources are respected?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

A farmer is studying the division of his property in the following productive activities:

A (Let)

To allocate a certain amount of bushel for the sugarcane plantation, to a local power plant, which is in charge of the activity and pays for the rent of the land $300.00 per bushel per year.

P (Livestock)

Use another part for raising cattle. The recovery of pastures requires fertilization (100 kg / bushel) and irrigation (100,000 liters of water per bushel) per year. The estimated profit for this activity is $400.00 per bushel per year.

S (Planting of soybeans)

Use a third part to plant soybeans. This crop requires 200 kg per bushel of fertilizers and 200,000 l of water / acre for irrigation per year. The estimated profit in these activities is $500.00 / bushel in the year.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Sugar Cane</th>
<th>Cattle</th>
<th>Soy</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>L</td>
<td>0</td>
<td>100,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>kg</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Area</td>
<td>%</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>300.00</td>
<td>400.00</td>
<td>500.00</td>
</tr>
</tbody>
</table>

Availability of resources per year: 12,750,000 liters of water, 14,000 kg of fertilizer and 100 bushels of land. How many fields should you allocate to each activity to provide the best return
MODEL:
SETS:
 PRODUCT : PROFIT, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS
DATA:
 ! Resources attributes;
 RESOURCE, AVAILABLE =
 WATER 12750000
 FERTILIZER 14000
 AREA 100;
 ! Products attributes;
 PRODUCT, PROFIT =
 CANE 300
 CATTLE 400
 SOY 500;
 ! Required attributes
 USAGE = 0 100000 200000
 100 100 1;
 ! Water;
 0 100 100 ! Fertilizer;
 1 1 1 ! Area;
ENDDATA
SUBMODEL MAX1:
 [OBJ] MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
 ! The available constraints;
 @FOR(RESOURCE(r):
 [AVA] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r));
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Precision in digits for standard solution reports;
 @SET('PRECIS',8);
 ! Data block;
 @WRITE(' Data:', @NEWLINE(1), ' USAGE(L, Kg, %):', @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(' ', @NEWLINE(1), ' AVAILABLE (L, KG, %):', @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(' ', @NEWLINE(1), ' PROFIT:', @NEWLINE(1));
 @TABLE(PROFIT);
 @WRITE(' ', @NEWLINE(1), ' SOLUTION: ', @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MAX1);
 ! Solution report;
 @WRITE(' ', @NEWLINE(1), ' IDEAL PLANNING PROGRAM: ', @NEWLINE(1));
 @WRITEFOR(PRODUCT(J):PRODUCE(J) #GT# 0: ' ',
 @FORMAT(PRODUCT(J),'-6s'),' Unit profit: $',
 @FORMAT(PROFIT(J),'%6.2f'),' x Area: ',
 @FORMAT(PRODUCE(J),'%5.2f'),' m2 = Total: $',
 @FORMAT(PROFIT(J) * PRODUCE(J),'%8.2f'),
 @NEWLINE(1));
 @CHARTPIE('Agriculture model', 'Area', PRODUCE);
 @WRITE(' ', @NEWLINE(1));
 ! To see the corresponding model scalar, remove (!) From the line below;
 !@GEN(MAX1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
USAGE (L, Kg, %):

<table>
<thead>
<tr>
<th></th>
<th>CANE</th>
<th>CATTLE</th>
<th>SOY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER</td>
<td>0.000000</td>
<td>100000.00</td>
<td>200000.00</td>
</tr>
<tr>
<td>FERTILIZER</td>
<td>0.000000</td>
<td>100.00000</td>
<td>100.00000</td>
</tr>
<tr>
<td>AREA</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (L, KG, %):

<table>
<thead>
<tr>
<th>PROD</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER</td>
<td>12750000.</td>
<td>12750000.</td>
</tr>
<tr>
<td>FERTILIZER</td>
<td>14000.000</td>
<td>14000.000</td>
</tr>
<tr>
<td>AREA</td>
<td>100.00000</td>
<td>100.00000</td>
</tr>
</tbody>
</table>

PROFIT:

<table>
<thead>
<tr>
<th></th>
<th>300.00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANE</td>
<td>300.00000</td>
</tr>
<tr>
<td>CATTLE</td>
<td>400.00000</td>
</tr>
<tr>
<td>SOY</td>
<td>500.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 42750.000
Infeasibilities: 0.0000000

IDEAL PLANNING PROGRAM:

<table>
<thead>
<tr>
<th>PROD</th>
<th>Unit profit: $</th>
<th>Area: m²</th>
<th>Total: $</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANE</td>
<td>$300.00 x</td>
<td>36.25</td>
<td>$10875.00</td>
</tr>
<tr>
<td>SOY</td>
<td>$500.00 x</td>
<td>63.75</td>
<td>$31875.00</td>
</tr>
</tbody>
</table>
A farmer is planning his planting strategy for next year. From information obtained from government agencies, he knows that wheat, rice and corn crops will be the most profitable in the next harvest.

In the absence of a separate storage site, maximum production is limited to 60 tonnes.

The cultivable area of the site is 200,000 m², but to meet the demands of its own site it is imperative to plant 400 m² of wheat, 800 m² of rice and 10,000 m² of corn.

It is asked to formulate the problem of optimizing the choice of areas to be cultivated in each different type of crop.
MODEL:
SETS:
 PRODUCT : COST, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
 ! Resource attributes;
 RESOURCE, AVAILABLE = AREA 1200000
 PRODUCTIVITY 60000;
 ! Products attributes;
 PRODUCT, COST = WHEAT 2.16
 RICE 1.26
 CORN 0.812;
 ! Required WHEAT RICE CORN;
 USAGE = 400 800 10000
 ! Area;
 0.2 0.3 0.4;
 ! Productivity;
ENDDATA
SUBMODEL MIN2:
 [OBJ] MIN = @SUM(PRODUCT(p): COST(p) * PRODUCE(p));
 ! Restrictions associated with the site’s demand (in unit area m2);
 @FOR(PRODUCT(I): PRODUCE(I) >= USAGE(1,I));
 ! Restriction associated with total available area;
 [AVA_AREA] @SUM(PRODUCT(p): PRODUCE(p)) <= 200000;
 ! Restriction associated with storage (in kilograms;
 ! Productivity ratios shall be used per unit area to obtain a final value in kilos;
 [AVA_PROD] @SUM(PRODUCT(p): USAGE(2, p) * PRODUCE(p)) <= 60000;
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET("TERSEO",1);
 ! Post status windows, 1 Yes, 0 No;
 @SET("STAWIN",0);
 ! Data block;
 @WRITE("* DATA*", @NEWLINE(1), " RESOURCE(m2, kg/m2":, @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE("*", @NEWLINE(1), " AVAILABLE (m2, kg/m2):", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE("*", @NEWLINE(1), " COST P/KG":, @NEWLINE(1));
 @TABLE(COST);
 @WRITE("*", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MIN2);
 ! Solution Report;
 @WRITE("*", @NEWLINE(1), " IDEAL PLANNING PROGRAM: *");
 @WRITEFOR(PRODUCT(J): ' ',
 @FORMAT(PRODUCT(J),'%-6s'),' Unit cost: $',
 @FORMAT(COST(J),'%4.2f'),' x Area:','
 @FORMAT(PRODUCE(J),'%5.0f'), 'm2 = Total: $',
 @FORMAT(COST(J) * PRODUCE(J),'%7.2f'),
 @NEWLINE(1));
 @CHARTPIE('Agriculture model', 'Area', PRODUCE);
 @WRITE("*", @NEWLINE(1));
 !To see the corresponding model scalar, remove (l) From the line below;
 @GEN(MIN2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCE(m2, kg/m2):

<table>
<thead>
<tr>
<th></th>
<th>WHEAT</th>
<th>RICE</th>
<th>CORN</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>400.00000</td>
<td>800.00000</td>
<td>10000.000</td>
</tr>
<tr>
<td>PRODUCTIVITY</td>
<td>0.2000000</td>
<td>0.3000000</td>
<td>0.4000000</td>
</tr>
</tbody>
</table>

AVAILABLE (m2, kg/m2):

<table>
<thead>
<tr>
<th></th>
<th>AREA</th>
<th>PRODUCTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>1200000.0</td>
<td>60000.000</td>
</tr>
<tr>
<td>PRODUCTIVITY</td>
<td>4320.0000</td>
<td>60000.000</td>
</tr>
</tbody>
</table>

COST P/KG:

<table>
<thead>
<tr>
<th></th>
<th>WHEAT</th>
<th>RICE</th>
<th>CORN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.1600000</td>
<td>1.2600000</td>
<td>0.8120000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 9992.0000
Infeasibilities: 0.0000000

IDEAL PLANNING PROGRAM:

<table>
<thead>
<tr>
<th></th>
<th>WHEAT</th>
<th>Unit cost:</th>
<th>AREA:</th>
<th>Total:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.16</td>
<td>$ 864.00</td>
<td>400m2</td>
<td>$ 864.00</td>
</tr>
<tr>
<td></td>
<td>1.26</td>
<td>$ 1008.00</td>
<td>800m2</td>
<td>$ 1008.00</td>
</tr>
<tr>
<td></td>
<td>0.81</td>
<td>$ 8120.00</td>
<td>10000m2</td>
<td>$ 8120.00</td>
</tr>
</tbody>
</table>
GOAL

The government has put 14 hectares of deforested land at the disposal of local farmers.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Soy</th>
<th>Cotton</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Available</td>
<td>ha</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Men Time by/ha</td>
<td>hr</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>Credit Line by/ha</td>
<td>$</td>
<td>1,200</td>
<td>400</td>
</tr>
<tr>
<td>Profit by/ha</td>
<td>$</td>
<td>100.00</td>
<td>50.00</td>
</tr>
</tbody>
</table>

Ensure that such area is used for planting soybeans and cotton. It is estimated that there are 1200 man-hours available during the sowing period; and that it takes 20 man-hours per hectare of soy and 120 per hectare of cotton.

It also offers a maximum credit line of $12,000, divided as follows: $1,200 per hectare of soy and $400 per hectare of cotton. It is desired to organize this area of plantation in order to obtain maximum profit, knowing that the expected profit margins are $100 per hectare of soy and $50 per hectare of cotton.
MODEL:
SETS:
 PRODUCT : PROFIT, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resource attribute;
 RESOURCE, AVAILABLE = AREA 14
 MEN_TIME 1200
 CREDIT 12000;

! Product attributes;
 PRODUCT, PROFIT =
 SOY 100
 COTTON 50;

! Required SOY COTTON;
 USAGE = 1 1
 20 120
 1200 400;
ENDDATA
SUBMODEL MAX3:
[OBJ] MAX = @SUM (PRODUCT (p): PROFIT (p) * PRODUCE (p));

! Restriction of maximum hectare limit for plants;
[AVA_AREA] @SUM (PRODUCT (p): PRODUCE (p)) <= AVAILABLE (1);

! Restriction of man-hours by soybean hectares;
[AVA_HRS] @SUM (PRODUCT (I): USAGE (2, I) * PRODUCE (I)) <= AVAILABLE (2);

! Restriction of maximum credit limit $12 thousand;
! $1200 per hectare of soya / $400 per hectare of cotton;
[AVA_CRE] @SUM (PRODUCT (p): USAGE (3, p) * PRODUCE (p)) <= AVAILABLE (3);
ENDSUBMODEL
CALC:
! Output level: 0 = Verbose, 1 = Terse;
@SET('TERSEO', 1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN', 0);
! Data Block;
@WRITE(' DATA:',)
@NEWLINE(1), " RESOURCE(m2, kg/m2):", @NEWLINE(1);
@TABLE (USAGE);
@WRITE(' ', @NEWLINE(1), " AVAILABLE (ha, hr, $):", @NEWLINE(1));
@TABLE (AVAILABLE);
@WRITE(' ', @NEWLINE (1), " PROFIT BY HECTARE: ", @NEWLINE (1));
@TABLE (PROFIT);
@WRITE(' ', @NEWLINE (1), " SOLUTION: ", @NEWLINE (1));
! Execute sub-model;
@SOLVE (MAX3);
! Solution Report;
@WRITE(' ', @NEWLINE (1), " IDEAL PLANNING PROGRAM: ", @NEWLINE (1));
@WRITEFOR (PRODUCT (J): ' ',
 @FORMAT (PRODUCT (J), '-6s'), ' Unit profit: $',
 @FORMAT (PROFIT (J), '%6.2f'), ' x Area:',
 @FORMAT (PRODUCE (J), '%6.2f'),
 @FORMAT (PRODUCE (J) * PROFIT (J), '
 @NEWLINE (1));
@CHARTPIE('Agriculture model', 'Area', PRODUCE);
@WRITE(' ', @NEWLINE (1));
! To see the corresponding model scalar, remove (!) From the line below;
! @GEN (MAX3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCE(m2, kg/m2:
 SOY COTTON
 AREA 1.0000000 1.0000000
 MEN_TIME 20.000000 120.00000
 CREDIT 1200.0000 400.00000

AVAILABLE (ha, hr, $):
 AREA 14.000000
 MEN_TIME 1200.0000
 CREDIT 12000.000

PROFIT BY HECTARE:
 SOY 100.00000
 COTTON 50.000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 1100.0000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
SOY Unit profit: $100.00 x Area: 8ha = Total: $800.00
COTTON Unit profit: $ 50.00 x Area: 6ha = Total: $300.00
GOAL

A farmer is planning his planting strategy for next year. From information obtained from government agencies, he knows that wheat, rice and corn crops will be the most profitable in the next harvest.

From experience, you know that the productivity of your land for the crops you want is on the assumptions.

The total availability of area on the farm is 400 hectares to be used, $ 500 thousand in cash and 10 thousand men / day, in addition each hectare of corn generates a profit of $ 600.00 ... as can be observed below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Corn</th>
<th>Wheat</th>
<th>Soy</th>
<th>Sugar Cane</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man Day</td>
<td>head</td>
<td>20</td>
<td>30</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>Preparing Earth</td>
<td>$</td>
<td>1,000.00</td>
<td>1,200.00</td>
<td>1,500.00</td>
<td>1,200.00</td>
</tr>
<tr>
<td>Area</td>
<td>ha</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Profit by/ha</td>
<td>$</td>
<td>600.00</td>
<td>800.00</td>
<td>900.00</td>
<td>500.00</td>
</tr>
</tbody>
</table>

It is asked to formulate the problem of optimizing the choice of areas to be cultivated in each different type of crop.
MODEL:
SETS:
PRODUCT : PROFIT, PRODUCE;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE , AVAILABLE =
MAN_DAY 10000
PREP_EARTH 500000
AREA 400;
! Product attributes;
PRODUCT, PROFIT =
CORN 600
WHEAT 800
SOY 900
CAN 500;
! Required
USAGE =
CORN 20
WHEAT 30
SOY 25
CAN 28
1000 1200 1500 1200
1 1 1 1;
! Work man men/day;
! Preparing earth;
! Area available;
ENDDATA
SUBMODEL MAX4:
[OBJ] MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
! Manpower 10,000 (Men/day);
[AVA_MANP] @SUM(PRODUCT(p): USAGE(1, p) * PRODUCE(p)) <= AVAILABLE(1);
! Cost of preparing the land $ 500 thousand;
[AVA_PREP] @SUM(PRODUCT(I): USAGE(2,I)* PRODUCE(I)) <= AVAILABLE(2);
! Area of 400 hectares available;
[AVA_AREA] @SUM(PRODUCT(p): PRODUCE(p)) <= AVAILABLE(3);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " RESOURCE(head, $, ha):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (head, $, ha):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " PROFIT BY HECTARE:", @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX4);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
@FORMAT(PRODUCT(J),'-6s'),'Unit profit:$','
@FORMAT(PROFIT(J),'%6.2f'),' x Area:',
@FORMAT(PRODUCE(J),'%3.0f'), 'ha = Total:$','
@FORMAT(PROFIT(J) * PRODUCE(J),'%7.2f'),
@NEWLINE(1));
@CHARTPIE('Agriculture model', 'Area', PRODUCE);
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX4);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCE(head, $, ha):
 CORN WHEAT SOY CANE
MAN_DAY 20.000000 30.000000 25.000000 28.000000
PREP_EARTH 1000.0000 1200.0000 1500.0000 1200.0000
AREA 1.0000000 1.0000000 1.0000000 1.0000000

AVAILABLE (head, $, ha):
MAN_DAY 10000.000
PREP_EARTH 500000.00
AREA 400.00000

PROFIT BY HECTARE:
 CORN 600.00000
 WHEAT 800.00000
 SOY 900.00000
 CANE 500.00000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 313333.33
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
WHEAT Unit profit:$800.00 x Area:167ha = Total:$133333.33
SOY Unit profit:$900.00 x Area:200ha = Total:$180000.00
GOAL

A farm has 100 acres of land where it grows watermelon and melon. Each acre of watermelon requires 150 liters of water per day and 20 kg of fertilizer.

It is estimated that it will take two hours of labor for each acre of watermelon and two and a half hours of labor for each acre of melon.

There is a forecast to sell each watermelon for $3 and each melon for $1. Each acre of watermelon produces 90 units and each acre of melon produces 300 units.

The farmer can pump 18,000 liters of water per day, can buy fertilizers for $10 a bag of 50 kg and can hire temporary labor for $5 an hour.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Watermelon</th>
<th>Melon</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizer</td>
<td>Required for acre</td>
<td>kg</td>
<td>20</td>
</tr>
<tr>
<td>Bag w/50 kg</td>
<td>$</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>Cost p/acre</td>
<td>$</td>
<td>3.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Manpower</td>
<td>Required for acre</td>
<td>hr</td>
<td>2.0</td>
</tr>
<tr>
<td>Cost/hr</td>
<td>$</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Demand for acre</td>
<td>un</td>
<td>90</td>
<td>300</td>
</tr>
<tr>
<td>Unity Price</td>
<td>$</td>
<td>3.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Sale Estimate</td>
<td>un</td>
<td>270</td>
<td>300</td>
</tr>
</tbody>
</table>

Assuming that the farmer can the whole harvest of watermelon and melon, determine how many acres of each crop the farmer must plant in order to maximize the profit. Water cost were not considered.
MODEL:
SETS:
 PRODUCT: PRICE, CFERT, CMANP, SALE, DEMAND, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE,PRODUCT): USAGE;
ENDSETS
DATA:
 ! Resources attributes;
 RESOURCE, AVAILABLE =
 FERT_ACRE 3500
 FERT_COST 700
 MANP_HR 450
 MANP_COST 2250;
 ! Product attributes;
 PRODUCT, PRICE, CFERT, CMANP, SALE, DEMAND =
 WATERMELON 3 3 2 270 90
 MELON 1 2 2.5 300 300;
 ! Required WATERMELON MELON;
 USAGE =
 20 15 ! (kg) Fertilizer by acre;
 10 10 ! ($) Fertilizer bag with 50kg ;
 2 2.5 ! (hr) Manpower by acre;
 5 5; ! ($) Manpower PROFIT hour;
ENDDATA
SUBMODEL MAX5:
 [OBJ] MAX = SALE(1) * PRODUCE(1) + SALE(2) * PRODUCE(2) - (USAGE(1,1)*CFERT(1)) * PRODUCE(1) - (USAGE(1,2)*CFERT(2)) * PRODUCE(2) - (CMANP(1)*5) * PRODUCE(1) - (CMANP(2)*5) * PRODUCE(2);
 ! Area of 100 hectares available;
 [AREA] @SUM(PRODUCT(p): PRODUCE(p)) <= 100;
 ! Demand;
 [DEM] DEMAND(1)* PRODUCE(1) + DEMAND(2) * PRODUCE(2) <= (DEMAND(1) + DEMAND(2)) * 100;
 ! Manpower consumption;
 [MAN] USAGE(3,1) * PRODUCE(1) + USAGE(3,2) * PRODUCE(2) <= AVAILABLE(3);
 ! Consumption of fertilizers for 100 acres;
 [FER] USAGE(1,1) * PRODUCE(1) + USAGE(1,2) * PRODUCE(2) <= AVAILABLE(1);
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET ('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET ('STAWIN',0);
 ! Precision in digits for standard solution reports;
 @SET ('PRECIS',8);
 ! Data block;
 @WRITE("DATA:", @NEWLINE(1), " RESOURCE(Kg, $, hr, $):", @NEWLINE(1));
 @TABLE (USAGE);
 @WRITE(" AVAILABLE (kg, $, hr, $):", @NEWLINE(1));
 @TABLE (AVAILABLE);
 @WRITE(" DEMAND per Acre:", @NEWLINE(1));
 @TABLE (DEMAND);
 @WRITE(" UNIT PRICE:", @NEWLINE(1));
 @TABLE (PRICE);
 @WRITE(" SALE ESTIMATED:", @NEWLINE(1));
 @TABLE (SALE);
 @WRITE(" COST OF FERTILIZER p/acre:", @NEWLINE(1));
 @TABLE (CFERT);
 @WRITE(" COST OF LABOR p/acre:", @NEWLINE(1));
 @TABLE (CMANP);
 @WRITE(" SOLUTION: ", @NEWLINE(1));
 ! Execute Sub-model;
 @SOLVE (MAX5);
 ! Solution report;
 @WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
 @WRITE FOR (PRODUCT(J) | PRODUCE(J) #GT# 0: ' ', @FORMAT (PRODUCT(J),'-9s'), '@NEWLINE(1), ' Price:$', @FORMAT (SALE(J),'%6.2f'), ' x Planted:', @FORMAT (PRICE(J),'%6.2f'), ' Acres = Revenue:$', @FORMAT (PRODUCE(J) * PRICE(J) * DEMAND(J),'%7.2f'), '@NEWLINE(1),42*' ','Cost:$', @FORMAT (CFERT(J)*USAGE(1,J)*PRODUCE(J) + CMANP(J)*USAGE(4,J)*PRODUCE(J),'%8.2f'), '@NEWLINE(1),40*' ','Profit:$', @FORMAT (PRODUCE(J) * PRICE(J) * DEMAND(J) - (CFERT(J)*USAGE(1,J)*PRODUCE(J) + CMANP(J)*USAGE(4,J)*PRODUCE(J)),'%8.2f'), @NEWLINE(1));
 @WRITE(" ", @NEWLINE (1));
 !To see the corresponding model scalar, remove (!) From the line below;
 @GEN(MAX5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCE(Kg,§,hr,§):
 WATERMELON MELON
 FERT_ACRE 20.000000 15.000000
 FERT_COST 10.000000 10.000000
 MANP_HR 2.0000000 2.5000000
 MANP_COST 5.0000000 5.0000000

AVAILABLE (kg,§,hr,§):
 FERT_ACRE 3500.0000
 FERT_COST 700.00000
 MANP_HR 450.00000
 MANP_COST 2250.0000

DEMAND p/acre:
 WATERMELON 90.000000
 MELON 300.00000

UNIT PRICE:
 WATERMELON 3.0000000
 MELON 1.0000000

SALE ESTIMATED:
 WATERMELON 270.00000
 MELON 300.00000

COST OF FERTILIZER p/acre:
 WATERMELON 3.0000000
 MELON 2.0000000

COST OF LABOR p/acre:
 WATERMELON 2.0000000
 MELON 2.5000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 25750.000
Infeasibilities: 0.0000000

IDEAL PLANNING PROGRAM:
MELON
 Price:$300.00 x Planted:100 Acres = Revenue:$30000.00
 Cost:$ 4250.00
 Profit:$25750.00
GOAL

A reforestation company has plantation areas in 4 municipalities. The company considers the use of 4 tree species: Pines, Oak, Walnut and Araucaria. The data for elaboration of the model are below:

<table>
<thead>
<tr>
<th>Expected Annual Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources / Products</td>
</tr>
<tr>
<td>City A</td>
</tr>
<tr>
<td>City B</td>
</tr>
<tr>
<td>City C</td>
</tr>
<tr>
<td>City D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expected Annual Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources / Products</td>
</tr>
<tr>
<td>City A</td>
</tr>
<tr>
<td>City B</td>
</tr>
<tr>
<td>City C</td>
</tr>
<tr>
<td>City D</td>
</tr>
<tr>
<td>Minimum Production</td>
</tr>
</tbody>
</table>

Formulate the problem to designate the areas of planting by municipality in order to maximize the income.
MODEL:
SETS:
PRODUCT : PROD_MIN;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT): INCOME, PRODUCTION, PRODUCE;
ENDSETS
DATA:
! Resources (Available Area (m3/Hectare) ;
RESOURCE, AVAILABLE =
CITY_A 1500
CITY_B 1700
CITY_C 900
CITY_D 600;
! Products attributes;
PRODUCT, PROD_MIN =
PINUS 22500
OAK 9000
WALNUT 28800
ARAUCARIA 3500;
! Required
INCOME =
16 12 20 18 ! Expected annual income City A;
14 13 24 20 ! Expected annual income City B;
17 10 28 20 ! Expected annual income City C;
12 11 18 17; ! Expected annual income City D;
PRODUCTION =
17 14 10 9 ! Expected annual production City A;
15 16 12 11; ! Expected annual production City B;
13 12 14 8; ! Expected annual production City C;
10 11 8 6; ! Expected annual production City D;

dataend
SUBMODEL MAX6:
MAX = @SUM(PRODUCT(J): INCOME(1,J) * PRODUCE(1,J)) + @SUM(PRODUCT(J): INCOME(2,J) * PRODUCE(2,J)) + @SUM(PRODUCT(J): INCOME(3,J) * PRODUCE(3,J)) + @SUM(PRODUCT(J): INCOME(4,J) * PRODUCE(4,J));
! Available Area (m3/Hectare);
[AVA1] @SUM(PRODUCT(J): PRODUCE(1,J)) = AVAILABLE(1);
[AVA2] @SUM(PRODUCT(J): PRODUCE(2,J)) = AVAILABLE(2);
[AVA3] @SUM(PRODUCT(J): PRODUCE(3,J)) = AVAILABLE(3);
[AVA4] @SUM(PRODUCT(J): PRODUCE(4,J)) = AVAILABLE(4);
! Minimal Production;
[MP1] @SUM(RESOURCE(I): PRODUCTION(I,1) * PRODUCE(I,1)) >= PROD_MIN(1);
[MP2] @SUM(RESOURCE(I): PRODUCTION(I,2) * PRODUCE(I,2)) >= PROD_MIN(2);
[MP3] @SUM(RESOURCE(I): PRODUCTION(I,3) * PRODUCE(I,3)) >= PROD_MIN(3);
[MP4] @SUM(RESOURCE(I): PRODUCTION(I,4) * PRODUCE(I,4)) >= PROD_MIN(4);
ENDSUBMODEL
CALC:
@SET('TERSEO',1); ! Output level: 0=Verbose, 1-Terse;
@SET('STAWIN',0); ! Post status windows, 1 Yes, 0 No;
@SET('PRECIS',8); ! Precision in digits for standard solution reports;
@WRITE(" DATA:" ; , @NEWLINE(1), " EXPECTED ANNUAL INCOME ($/he):" ; , @NEWLINE(1));
@TABLE(INCOME);
@WRITE(" " , , @NEWLINE(1), " EXPECTED ANNUAL PRODUCTION (m3/he):" ; , @NEWLINE(1));
@TABLE(PRODUCTION);
@WRITE(" " , , @NEWLINE(1), " AVAILABLE (m3/he):" ; , @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" " , , @NEWLINE(1), " MINIMUM PRODUCTION (m3/he):" ; , @NEWLINE(1));
@TABLE(PROD_MIN);
@WRITE(" " , , @NEWLINE(1), " SOLUTION:" ; , @NEWLINE(1));
@SOLVE(MAX6)
@WRITE(" " , , @NEWLINE(1), " IDEAL PLANNING PROGRAM:" ; , @NEWLINE(1));
@WRITEFOR(RXP(i,j) : ' ',
 @FORMAT(RESOURCE(I),'-6s'), ', Production: ',
 @FORMAT(PRODUCT(J),'%8.3f'), ' ha of ',
 @FORMAT(PRODUCE(I,J),'-9s'), ' x Income: $',
 @FORMAT(INCOME(I,J),'%4.2f'), ' = Revenue: $',
 @FORMAT(PRODUCE(I,J) * INCOME(I,J),'%8.2f'),
 @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
EXPECTED ANNUAL INCOME ($/he):
<table>
<thead>
<tr>
<th></th>
<th>PINUS</th>
<th>OAK</th>
<th>WALNUT</th>
<th>ARAUCARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITY_A</td>
<td>16.00</td>
<td>12.00</td>
<td>20.00</td>
<td>18.00</td>
</tr>
<tr>
<td>CITY_B</td>
<td>14.00</td>
<td>13.00</td>
<td>24.00</td>
<td>20.00</td>
</tr>
<tr>
<td>CITY_C</td>
<td>17.00</td>
<td>10.00</td>
<td>28.00</td>
<td>20.00</td>
</tr>
<tr>
<td>CITY_D</td>
<td>12.00</td>
<td>11.00</td>
<td>18.00</td>
<td>17.00</td>
</tr>
</tbody>
</table>

EXPECTED ANNUAL PRODUCTION (m3/he):
<table>
<thead>
<tr>
<th></th>
<th>PINUS</th>
<th>OAK</th>
<th>WALNUT</th>
<th>ARAUCARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITY_A</td>
<td>17.00</td>
<td>14.00</td>
<td>10.00</td>
<td>9.00</td>
</tr>
<tr>
<td>CITY_B</td>
<td>15.00</td>
<td>16.00</td>
<td>12.00</td>
<td>11.00</td>
</tr>
<tr>
<td>CITY_C</td>
<td>13.00</td>
<td>12.00</td>
<td>14.00</td>
<td>8.00</td>
</tr>
<tr>
<td>CITY_D</td>
<td>10.00</td>
<td>11.00</td>
<td>8.00</td>
<td>6.00</td>
</tr>
</tbody>
</table>

AVAILABLE (m3/he):
| CITY_A | 1500.00
| CITY_B | 1700.00
| CITY_C | 900.00
| CITY_D | 600.00

MINIMUM PRODUCTION (m3/he):
| PINUS | 22500.00
| OAK | 9000.00
| WALNUT| 28800.00
| ARAUCARIA | 3500.00

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 94827.882
Infeasibilities: 0.0000000

IDEAL PLANNING PROGRAM:
CITY_A, Production: 1323.529 m3/he of PINUS x Income: $16.00 = Revenue: $21176.47
CITY_A, Production: 176.471 m3/he of OAK x Income: $12.00 = Revenue: $2117.65
CITY_A, Production: 0.000 m3/he of WALNUT x Income: $20.00 = Revenue: $0.00
CITY_A, Production: 0.000 m3/he of ARAUCARIA x Income: $18.00 = Revenue: $0.00
CITY_B, Production: 170.941 m3/he of OAK x Income: $13.00 = Revenue: $2222.24
CITY_B, Production: 1350.000 m3/he of WALNUT x Income: $24.00 = Revenue: $32400.00
CITY_B, Production: 179.059 m3/he of ARAUCARIA x Income: $20.00 = Revenue: $3581.18
CITY_C, Production: 0.000 m3/he of PINUS x Income: $17.00 = Revenue: $0.00
CITY_C, Production: 900.000 m3/he of WALNUT x Income: $28.00 = Revenue: $25200.00
CITY_C, Production: 0.000 m3/he of ARAUCARIA x Income: $20.00 = Revenue: $0.00
CITY_D, Production: 344.941 m3/he of OAK x Income: $11.00 = Revenue: $3794.35
CITY_D, Production: 0.000 m3/he of WALNUT x Income: $18.00 = Revenue: $0.00
CITY_D, Production: 255.059 m3/he of ARAUCARIA x Income: $17.00 = Revenue: $4336.00
GOAL

A farmer has a land area of 5 km² to be sown with Wheat and Barley. It has a limited amount of Fertilizer and Insecticide allowed to be used. Both Wheat and Barley require different amounts per unit area planted.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Barley</th>
<th>Wheat</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizer</td>
<td>kg</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Insecticide</td>
<td>kg</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Area</td>
<td>km²</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Price p/km²</td>
<td>$</td>
<td>16,000.00</td>
<td>12,000.00</td>
</tr>
</tbody>
</table>

Prices expected to be sold should be $16,000 and $12,000, respectively for Wheat and Barley per Km². Develop a Linear Programming model in order to obtain the best recipe for this combination of planting.
MODEL:
SETS:
 HEADER1 / PROD, LIMIT, VALUE /;
PRODUCT : PRICE, PRODUCE;
RESOURCE: AVAILABLE;
RXP(RESOURCE, PRODUCT) : USAGE;
PXR(RESOURCE, HEADER1) : SLASUR;
ENDSETS
DATA:
 ! Resource attributes;
 RESOURCE , AVAILABLE =
 FERTILIZER 50
 INSECTICIDE 22
 AREA 5;
 ! Product attributes;
 PRODUCT, PRICE =
 WHEAT 16000
 BARLEY 12000;
 ! Required
 USAGE =
 WHEAT 30
 BARLEY 20
 ! Fertilizer Limit;
 15
 ! Insecticide limit;
 10
 ! Area available in km2;
ENDDATA
SUBMODEL MAX7:
 [OBJ] MAX = @SUM(Product(p): Price(p) * PRODUCE(p));
 ! Fertilizer Availability Constraints;
 [FERT] @SUM(Product(p): USAGE(1, p) * PRODUCE(p)) <= AVAILABLE(1);
 ! Insecticide Availability Constraints;
 [INSEC] @SUM(Product(l): USAGE(2, l) * PRODUCE(l)) <= AVAILABLE(2);
 ! Area Availability Constraints (5km2);
 [AVA_AREA] @SUM(Product(p): PRODUCE(p)) <= AVAILABLE(3);
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Precision in digits for standard solution reports;
 @SET('PRECIS',8);
 ! Data Block;
 @WRITE(" DATA: RESOURCE(Kg, Kg, Km2): AVAILABLE (head, $, ha): PRICE BY KM2: ", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" AVAILABLE (head, $, ha): PRICE BY KM2: ", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" PRICE BY KM2: ", @NEWLINE(1));
 @TABLE(PRICE);
 @WRITE(" SOLUTION: ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MAX7);
 ! Solution Report;
 @WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(Product(J) | PRODUCE(J) #GT# 0: ' Price:$ ',
 @FORMAT(Product(J),'-7s'), ' Price:$ ',
 @FORMAT(Price(J),'%6.2f'), ' x ',
 @FORMAT(PRODUCE(J),'%4.2f'), ' Km2 = Revenue:$ ',
 @FORMAT(Price(J) * PRODUCE(J),'%7.2f'),
 @NEWLINE(1));
 @WRITE(" ", @NEWLINE(1));
 !To see the corresponding model scalar, remove (!) From the line below;
 !@GEN(MAX7);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCE(Kg, Kg, Km²):
- WHEAT 30.000000 20.000000
- BARLEY 15.000000 10.000000
- AREA 3.0000000 2.0000000

AVAILABLE (head, $, ha):
- FERTILIZER 50.000000
- INSECTICIDE 22.000000
- AREA 5.0000000

PRICE BY KM²:
- WHEAT 16000.000
- BARLEY 12000.000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 26400.000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
BARLEY Price:$12000.00 x 2.20 Km² = Revenue:$26400.00
GOAL

A farmer has 200 hectares of arable land for corn and or soy. The data are as follows:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Corn</th>
<th>Soy</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>he</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Preparation</td>
<td>$</td>
<td>500.00</td>
<td>700.00</td>
</tr>
<tr>
<td>Labor</td>
<td>men/day</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Profit p/he</td>
<td>$</td>
<td>900.00</td>
<td>1,300.00</td>
</tr>
</tbody>
</table>

What should be the allocation of land to the various types of crop in order to maximize profits?
MODEL:
SETS:
PRODUCT : PROFIT, PRODUCE;
RESOURCE: MINREQ;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resource attribute (hectares, $, Men/Day;
RESOURCE, MINREQ =
AREA 200
PREPARATION 200000
LABOR 20000;
! Product attributes;
PRODUCT, PROFIT =
CORN 900
SOY 1300;
! Required
USAGE = 1 1 ! AREA;
500 700 ! PREPARATION;
15 18 ! LABOR;
ENDDATA
SUBMODEL MAX8:
[OBJ] MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
! The Area constraints;
[AVA_AREA] @SUM(PRODUCT(p): PRODUCE(p)) <= MINREQ(1);
! The Preparation Constraints;
[AVA_PRE] @SUM(PRODUCT(l): USAGE(2,l)* PRODUCE(l)) <= MINREQ(2);
! The Labor constraints;
[AVA_LAB] @SUM(PRODUCT(p): USAGE(3, p) * PRODUCE(p)) <= MINREQ(3);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Precision in digits for standard solution reports;
@SET('PRECIS',8);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " RESOURCE:", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE :", @NEWLINE(1));
@TABLE(MINREQ);
@WRITE(" ", @NEWLINE(1), " PROFIT BY HECTARE:", @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX8);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J): ' ',
@FORMAT(PRODUCT(J),'-5s'), ' Profit: $',
@FORMAT(PROFIT(J),'%7.2f'), ' x ',
@FORMAT(PRODUCE(J),'%3.0f'), ' ha = Total: $',
@FORMAT(PROFIT(J) * PRODUCE(J),'%9.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
! @GEN(MAX8);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCE:

<table>
<thead>
<tr>
<th></th>
<th>CORN</th>
<th>SOY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>PREPARATION</td>
<td>500.0</td>
<td>700.0</td>
</tr>
<tr>
<td>LABOR</td>
<td>15.000</td>
<td>18.000</td>
</tr>
</tbody>
</table>

AVAILABLE:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>200.0</td>
</tr>
<tr>
<td>PREPARATION</td>
<td>200000.0</td>
</tr>
<tr>
<td>LABOR</td>
<td>20000</td>
</tr>
</tbody>
</table>

PROFIT BY HECTARE:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN</td>
<td>900.00</td>
</tr>
<tr>
<td>SOY</td>
<td>1300.00</td>
</tr>
</tbody>
</table>

SOLUTION:

Global optimal solution found.

Objective value: 260000.00

Infeasibilities: 0.0000000

IDEAL PLANNING PROGRAM:

<table>
<thead>
<tr>
<th></th>
<th>Profit:</th>
<th>Total:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN</td>
<td>$900.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SOY</td>
<td>$1300.00</td>
<td>$260000.00</td>
</tr>
</tbody>
</table>
How to know the best number of apartment houses according to the resources available for Manpower?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

What is the ideal amount of popular homes and apartments that the builder must build to get the maximum profit considering the information below.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>House</th>
<th>Apartments</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bricklayer head</td>
<td>3</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Servant head</td>
<td>4</td>
<td>3</td>
<td>70</td>
</tr>
<tr>
<td>Woodwork head</td>
<td>3</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Plumber head</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Electrician head</td>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Painter head</td>
<td>3</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Gardening head</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Profit p/unit</td>
<td>$</td>
<td>6,120.00</td>
<td>4,100.00</td>
</tr>
</tbody>
</table>

For a strategic reason of the constructor, at least three houses must be made.
MODEL:
SETS:
 PRODUCT : PROFIT, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
 ! Resources attributes;
 RESOURCE, AVAILABLE =
 BRICKLAYER 30
 SERVANT 70
 WOODWORK 30
 PLUMBER 20
 ELECTRICIAN 20
 PAINTER 20
 GARDENING 20;
 ! Products attributes;
 PRODUCT, PROFIT =
 HOUSE 6120
 APTO 4100;
 ! Required;
 USAGE =
 HOUSE 3 2 ! BRICKLAYER;
 SERVANT 4 3 ! SERVANT;
 WOODWORK 3 2 ! WOODWORK;
 PLUMBER 2 1 ! PLUMBER;
 ELECTRICIAN 1 1 ! ELECTRICIAN;
 PAINTER 3 2 ! PAINTER;
 GARDENING 1 0;
ENDDATA
SUBMODEL MAX1:
 [OBJ] MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
 ! The available constraints;
 @FOR(RESOURCE(r):
 [AVA] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r));
 ! Minimal Construction of Houses;
 PRODUCE(1) = 3;
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Data Block;
 @WRITE(" DATA:", @NEWLINE(1), " FORMULA (head)):", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" ", @NEWLINE(1), " AVAILABLE (Head)):", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" ", @NEWLINE(1), " PROFIT:", @NEWLINE(1));
 @TABLE(PROFIT);
 @WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
 @SOLVE(MAX1);
 ! Solution Report;
 @WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(PRODUCT(JJ) | PRODUCE(JJ) #GT# 0: ' Build:',
 @FORMAT(PRODUCE(JJ),'%2.0f'),
 @FORMAT(PRODUCT(JJ),'-6s'),'x Unit profit:$',
 @FORMAT(PROFIT(JJ), '%6.2f'), ' = Total:$',
 @FORMAT(PROFIT(JJ) * produce(JJ),'%8.2f'),
 @NEWLINE(1));
 @WRITE(" ", @NEWLINE(1));
 !To see the corresponding model scalar, remove (!) From the line below;
 !@GEN(MAX1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (head):
HOUSE APTO
BRICKLAYER 3.000000 2.000000
SERVANT 4.000000 3.000000
WOODWORK 3.000000 2.000000
PLUMBER 2.000000 1.000000
ELECTRICIAN 1.000000 1.000000
PAINTER 3.000000 2.000000
GARDENING 1.000000 0.000000

AVAILABLE (Head)):
BRICKLAYER 30.00000
SERVANT 70.00000
WOODWORK 30.00000
PLUMBER 20.00000
ELECTRICIAN 20.00000
PAINTER 20.00000
GARDENING 20.00000

PROFIT:
HOUSE 6120.000
APTO 4100.000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 40910.00
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
Build: 3 HOUSE x Unit profit:$6120.00 = Total:$18360.00
Build: 6 APTO x Unit profit:$4100.00 = Total:$22550.00
GOAL

It is intended to optimize profits with constructions of standard buildings of area of 80 m², 100 m², and 120 m² in the same allotment.

You must determine the quantities of standard buildings so that the profit in the enterprise is the maximum.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Apt 80 m²</th>
<th>Apt100 m²</th>
<th>Apt 120 m²</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man Hours</td>
<td>hr</td>
<td>3,000</td>
<td>2,000</td>
<td>4,000</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>6,000.00</td>
<td>4,200.00</td>
<td>7,500.00</td>
</tr>
</tbody>
</table>

The profit per unit of standard building of 80 m², 100 m² and 120 m² is, respectively, $6,000.00, $4,200.00 and $7,500.00.

Being the lot with 120 lots and the standard constructions of 80 m², 100 m² and 120 m² consume 3,000, 2,000 and 4,000 man-hours per building and the number of men available now is 300,000 hours.

And that, for the service of the sales department, there are 15 units of 80 m² already sold at the launch of the allotment.
MODEL:
SETS:
RESOURCE: AVAILABLE, LOTS;
PRODUCT : PROFIT, PRODUCE;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Members attributes;
RESOURCE, AVAILABLE, LOTS = MAN_HOURS 300000 120;
! Products attributes;
PRODUCT, PROFIT =
APTO_80 6000
APTO_100 4200
APTO_120 7500;
! Required
USAGE = APTO_80 APTO_100 APTO_120;
" Man-Hours required;
ENDDATA
SUBMODEL MAX2:
[OBJ] MAX = @SUM (PRODUCT(p): PROFIT(p) * PRODUCE(p));
! The available constraints;
@FOR (RESOURCE(r):
[AVA] @SUM (PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r););
! The lots constraints;
@FOR (RESOURCE(r):
[LOT] @SUM (PRODUCT(p): PRODUCE(p)) = LOTS(r););
! Number of apartments already sold :
[MIN_APTO_80] PRODUCE(1) >= 15;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET ("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET ("STAWIN",0);
! Data Block;
@WRITE(" DATA:*, @NEWLINE(1), " REQUIRED: *", @NEWLINE(1));
@TABLE (USAGE);
@WRITE (" *", @NEWLINE(1), " AVAILABLE:*", @NEWLINE(1));
@TABLE (AVAILABLE);
@WRITE (" *", @NEWLINE(1), " LOTS:*", @NEWLINE(1));
@TABLE (LOTS);
@WRITE (" *", @NEWLINE (1), " PROFIT:*", @NEWLINE (1));
@TABLE (PROFIT);
@WRITE (" *", @NEWLINE(1), " SOLUTION: *", @NEWLINE(1));
! Execute sub-model;
@SOLVE (MAX2);
! Solution Report;
@WRITE (" *", @NEWLINE(1), " IDEAL PLANNING PROGRAM: *", @NEWLINE(1));
@WRITEFOR (PRODUCT(J) PRODUCE(J) #GT# 0: ' Build: ' ,
@FORMAT (PRODUCE(J), '%5.0f'), ' ',
@FORMAT (PRODUCT(J), '%8s'), ' x Unit profit: $',
@FORMAT (PROFIT(J), '%7.2f'), ' = Total: $',
@FORMAT (PROFIT(J) * produce(J), '%8.2f'),
@NEWLINE (1));
@WRITE (" *", @NEWLINE(1));
!To see the corresponding model scalar, remove () From the line below;
!@GEN (MAX2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
REQUIRED:
 MAN_HOURS APTO_80 APTO_100 APTO_120
 3000.000 2000.000 4000.000

AVAILABLE:
 MAN_HOURS 300000.0

LOTS:
 MAN_HOURS 120.0000

PROFIT:
 APTO_80 6000.000
 APTO_100 4200.000
 APTO_120 7500.000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 612000.0
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
Build: 60 APTO_80 x Unit profit: $6000.00 = Total: $360000.00
Build: 60 APTO_100 x Unit profit: $4200.00 = Total: $252000.00
GOAL

What is the ideal amount of popular homes and apartments that the builder must build to get the maximum profit considering the information below.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>House</th>
<th>Apartments</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bricklayer head</td>
<td>4</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>Servant head</td>
<td>2</td>
<td>3</td>
<td>70</td>
</tr>
<tr>
<td>Woodwork head</td>
<td>1</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Profit p/unit $</td>
<td>3,000.00</td>
<td>5,000.00</td>
<td>-</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
 PRODUCT : PROFIT, PRODUCE;
 RESOURCE: AVAILABLE;
 RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
 ! Resources attributes;
 RESOURCE, AVAILABLE =
 BRICKLAYER 30
 SERVANT 70
 WOODWORK 20;
 ! Products attributes;
 PRODUCT, PROFIT =
 HOUSE 3000
 APTO 5000;
 ! Required HOUSE APTO;
 USAGE =
 2 3 ! BRICKLAYER;
 4 8 ! SERVANT;
 1 3; ! WOODWORK;
ENDDATA
SUBMODEL MAX3:
 [OBJ] MAX = @SUM(PRODUCT(p): PROFIT(p) * PRODUCE(p));
 ! The available constraints;
 @FOR(RESOURCE(r):
 [AVA] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE(r);)
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Data Block;
 @WRITE(" DATA:", @NEWLINE(1), " FORMULA (head) ":", @NEWLINE(1));
 @TABLE(USAGE);
 @WRITE(" AVAILABLE (Head):", @NEWLINE(1));
 @TABLE(AVAILABLE);
 @WRITE(" PROFIT:", @NEWLINE(1));
 @TABLE(PROFIT);
 @WRITE(" SOLUTION: ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MAX3);
 ! Solution Report;
 @WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(PRODUCT(J)@GT# 0: ' Build:',
 @FORMAT(PRODUCE(J), '%2.0f'),
 @FORMAT(PRODUCT(J), '%-6s'), 'x Unit profit:$',
 @FORMAT(PROFIT(J), '%8.2f'), ' = Total:$',
 @FORMAT(PROFIT(J)@GT# 0, ' produce(J),%8.2f'),
 @NEWLINE(1));
 @WRITE(" ", @NEWLINE(1));
 !To see the corresponding model scalar, remove () From the line below;
 !@GEN(MAX3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (head)):

<table>
<thead>
<tr>
<th></th>
<th>HOUSE</th>
<th>APTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRICKLAYER</td>
<td>2.00000</td>
<td>3.00000</td>
</tr>
<tr>
<td>SERVANT</td>
<td>4.00000</td>
<td>8.00000</td>
</tr>
<tr>
<td>WOODWORK</td>
<td>1.00000</td>
<td>3.00000</td>
</tr>
</tbody>
</table>

AVAILABLE (Head)):

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BRICKLAYER</td>
<td>30.0000</td>
<td></td>
</tr>
<tr>
<td>SERVANT</td>
<td>70.0000</td>
<td></td>
</tr>
<tr>
<td>WOODWORK</td>
<td>20.0000</td>
<td></td>
</tr>
</tbody>
</table>

PROFIT:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSE</td>
<td>3000.00</td>
<td></td>
</tr>
<tr>
<td>APTO</td>
<td>5000.00</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 46666.67
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:

Build: 10.00 HOUSE x Unit profit: $3000.00 = Total: $30000.00
Build: 3.33 APTO x Unit profit: $5000.00 = Total: $16666.67
What should be the oil mixture being sent to a cracking tower to produce its derivatives (gasoline, oil, etc.) at a minimal cost? Do the oils come from different sources and have different compositions?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

A small refinery produces naphtha and gasoline, according to productivity data, gasoline, naphtha and crude oil, as can be seen below.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Gasoline</th>
<th>Naphtha</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum</td>
<td>m3/gal</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Refine</td>
<td>Ut/gal</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Demand</td>
<td>gal</td>
<td>-</td>
<td>375</td>
</tr>
<tr>
<td>Stock</td>
<td>gal</td>
<td>600</td>
<td>-</td>
</tr>
<tr>
<td>Production Scale</td>
<td>gal</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>3.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

The time needed to refine one gallon for each different type of fuel, and also defines in the planning horizon, a minimum production scale for the operation of the refinery, the maximum capacity of gasoline stock and the maximum demand for the market of naphtha .

Schedule the operation of the refinery in order to maximize profit from the sale of manufactured fuels.
MODEL:
SETS:
PRODUCT:DEMAND, STOCK, SCALE, PRODUCE, PROFIT ;
RESOURCE: CAPACITY;
ROUTES(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Products attributes;
PRODUCT, DEMAND, STOCK, SCALE, PROFIT =
GASOLINE 0 600 150 3
NAPHTHA 375 0 150 5;
! Resource attributes;
RESOURCE, CAPACITY =
PETROLEUM 300
REFINE 900;
! Required GASOLINE NAPHTHA;
USAGE = 0.4 0.5 ! PETROLEUM;
1 2; ! REFINE;
ENDDATA
SUBMODEL MAX1:
[OBJ] MAX = @SUM (PRODUCT(J): PROFIT(J) * PRODUCE(J));
! The capacity constraints;
@FOR(PRODUCT(I))
 [CAP] @SUM (RESOURCE(J): USAGE(I, J) * PRODUCE(J)) <= CAPACITY(I));
! The production scale constraints;
@FOR(PRODUCT(I)) [SCA] PRODUCE(I) >= SCALE(I));
! The demand constraints;
@FOR(PRODUCT(I) | DEMAND(I) #GT# 0) [DEM] PRODUCE(I) <= DEMAND(I));
! The Stock constraints;
@FOR(PRODUCT(I) | STOCK(I) #GT# 0) [STK] PRODUCE(I) <= STOCK(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA: ", @NEWLINE(1), " USAGE (m3/gal, Ut/gal):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" CAPACITY (m3/gal, Ut/gal):", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(" DEMAND (gal):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" PRODUCTION SCALE (gal):", @NEWLINE(1));
@TABLE(SCALE);
@WRITE(" PROFIT: ", @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX1);
! Solution Report;
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J): ', ", @FORMAT(PRODUCT(J),'%-8s',' Production:',
 @FORMAT(PRODUCE(J),'%3.0f','gal x Unit profit: $',
 @FORMAT(PROFIT(J),'%4.2f',' = Revenue: $',
 @FORMAT(PROFIT(J) * PRODUCE(J),'%7.2f'),
@NEWLINE(1));
@WRITE(" SOLUTION: ", @NEWLINE(1));
! To see the corresponding model scalar, remove (I) From the line below;
@GEN(MAX1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
USAGE (m3/gal, Ut/gal):
<table>
<thead>
<tr>
<th></th>
<th>GASOLINE</th>
<th>NAPHTHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETROLEUM</td>
<td>0.400000</td>
<td>0.500000</td>
</tr>
<tr>
<td>REFINE</td>
<td>1.000000</td>
<td>2.000000</td>
</tr>
</tbody>
</table>

CAPACITY (m3/gal, Ut/gal):
<table>
<thead>
<tr>
<th></th>
<th>PETROLEUM</th>
<th>REFINE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300.0000</td>
<td>900.0000</td>
</tr>
</tbody>
</table>

DEMAND (gal):
<table>
<thead>
<tr>
<th></th>
<th>GASOLINE</th>
<th>NAPHTHA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000000</td>
<td>375.0000</td>
</tr>
</tbody>
</table>

STOCK (gal):
<table>
<thead>
<tr>
<th></th>
<th>GASOLINE</th>
<th>NAPHTHA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600.0000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

PRODUCTION SCALE (gal):
<table>
<thead>
<tr>
<th></th>
<th>GASOLINE</th>
<th>NAPHTHA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150.0000</td>
<td>150.0000</td>
</tr>
</tbody>
</table>

PROFIT:
<table>
<thead>
<tr>
<th></th>
<th>GASOLINE</th>
<th>NAPHTHA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.000000</td>
<td>5.000000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION:
Global optimal solution found.
Objective value: 2500.000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
GASOLINE Production: 500gal x Unit profit: $3.00 = Revenue: $1500.00
NAPHTHA Production: 200gal x Unit profit: $5.00 = Revenue: $1000.00
GOAL

One additional aspect of blending problem formulation will be illustrated with an example in which the batch size is a decision variable. In the previous example, the batch size was specified.

In the following example, the amount of product to be blended depends upon how cheaply the product can be blended.

Thus, it appears the blending decision and the batch size decision must be made simultaneously.

This example is suggestive of gasoline blending problems faced in a petroleum refinery. We wish to blend gasoline from three ingredients: butane, heavy naphtha, and catalytic reformats.

Four characteristics of the resultant gasoline and its inputs are important: cost, octane number, vapor pressure, and volatility. These characteristics are summarized in the following table:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Butane (BUT)</th>
<th>Catalytic Reformate (CAT)</th>
<th>Heavy Naphtha (NAP)</th>
<th>Regular Gasoline (REG)</th>
<th>Premium Gasoline (PRM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost/Unit</td>
<td>7.3</td>
<td>18.2</td>
<td>12.5</td>
<td>-18.4</td>
<td>-22</td>
</tr>
<tr>
<td>Octane</td>
<td>120.0</td>
<td>100.0</td>
<td>74.0</td>
<td>89 ≤ oct ≤ 110</td>
<td>94 ≤ oct ≤ 110</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>60.0</td>
<td>2.6</td>
<td>4.1</td>
<td>8 ≤ vp ≤ 11</td>
<td>8 ≤ vp ≤ 11</td>
</tr>
<tr>
<td>Volatility</td>
<td>105.0</td>
<td>3.0</td>
<td>12.0</td>
<td>17 ≤ vo ≤ 25</td>
<td>17 ≤ vo ≤ 25</td>
</tr>
<tr>
<td>Availability</td>
<td>1000.0</td>
<td>4000.0</td>
<td>5000.0</td>
<td>4000 ≤ sell ≤ 8000</td>
<td>2000 ≤ sell ≤ 6000</td>
</tr>
</tbody>
</table>

The cost per unit for REG and PRM are listed as negative, meaning we can sell them. That is, a negative cost is a revenue.

The octane rating is a measure of the gasoline’s resistance to “knocking” or “pinging”. Vapor pressure and volatility are closely related.

Vapor pressure is a measure of susceptibility to stalling, particularly on an unusually warm spring day. Volatility is a measure of how easily the engine starts in cold weather.

From the table, we see in this planning period, for example, there are only 1,000 units of butane available.

The profit contribution of regular gasoline is $18.40 per unit exclusive of the cost of its ingredients.

A slight simplification assumed in this example is that the interaction between ingredients is linear.

For example, if a “fifty/fifty” mixture of BUT and CAT is made, then its octane will be $0.5 \times 120 + 0.5 \times 100 = 110$ and its volatility will be $0.5 \times 105 + 0.5 \times 3 = 54$.

In reality, this linearity is violated slightly, especially with regard to octane rating.
Formulation

The quality constraints require a bit of thought. The fractions of a batch of REG gasoline consisting of Butane, Catalytic Reformat, and Heavy Naphtha are BUT/REG, CAT/REG, and NAP/REG, respectively. Thus, if the god of linearity smiles upon us, the octane constraint of the blend for REG should be the expression:

\[(\text{BUT/REG}) \times 120 + (\text{CAT/REG}) \times 100 + (\text{NAP/REG}) \times 74 \geq 89.\]

Your expression, however, may be a frown because a ratio of variables like BUT/REG is definitely not linear. Multiplying through by REG, however, produces the linear constraint: \(120 \text{ BUT} + 100 \text{ CAT} + 74 \text{ NAP} \geq 89 \text{ REG}\) or in standard form:

\[120 \text{ BUT} + 100 \text{ CAT} + 74 \text{ NAP} - 89 \text{ REG} \geq 0.\]

Representing Two-sided Constraints

All the quality requirements are two sided. That is, they have both an upper limit and a lower limit. The upper limit constraint on octane is clearly:

\[120 \text{ BUT} + 100 \text{ CAT} + 74 \text{ NAP} - 110 \text{ REG} \leq 0.\]

We can write it in equality form by adding an explicit slack:

\[120 \text{ BUT} + 100 \text{ CAT} + 74 \text{ NAP} - 110 \text{ REG} + \text{SOCT} = 0.\]

When SOCT = 0, the upper limit is binding. You can verify that, when SOCT = 110 REG – 89 REG = 21 REG, the lower limit is binding.

Thus, a compact way of writing both the upper and lower limits is with the two constraints:

1) \[120\text{BUT}+100\text{CAT}+74\text{NAP}-110\text{REG}+\text{SOCT}=0,\]
2) \[\text{SOCT} \leq 21 \text{ REG}.\]

Notice, even though there may be many ingredients, the second constraint involves only two variables. This is a compact way of representing two-sided constraints. Similar arguments can be used to develop the vapor and volatility constraints. Finally, a constraint must be appended, which states the whole equals the sum of its raw material parts, specifically:

\[\text{REG} = \text{BUT} + \text{NAP} + \text{CAT}.\]

The solution suggests that Premium is the more profitable product, so we sell the minimum amount of Regular required and then sell as much Premium as scarce resources, BUT and CAT, allow. LP blending models have been a standard operating tool in refineries for years.

Recently, there have been some instances where these LP models have been replaced by more sophisticated nonlinear models, which more accurately approximate the nonlinearities in the blending process. See Rigby, Lasdon, and Waren (1995), for a discussion of how Texaco does it.

For example, volatility may be represented by a logarithmic expression and octane may be represented with a polynomial like \[a_1 \times x + a_2 \times x^2 + a_3 \times x^3 + a_4 \times x^4,\] see Rardin(1998).

There is a variety of complications as gasoline blending models are made more detailed. For example, in high quality gasoline, the vendor may want the octane to be constant across volatility ranges in the ingredients.

The reason is, if you “floor” the accelerator on a non-fuel injected automobile, a shot of raw gas is squirted into the intake. The highly volatile components of the blend will reach the combustion chamber first. If these components have low octane, you will have knocking, even though the “average” octane rating of the gasoline is high.

This may be more important in a station selling gas for city driving than in a station on a cross country highway in Kansas where most driving is at a constant speed.
MODEL:
! General Blending Model (BLEND) in LINGO;
SETS:
! Each raw material has availability & cost/unit;
RM/ BUT, CAT, NAP/: A, C;
! Each finished good has min & max sellable, profit contribution/unit and batch size to be determined;
FG/ REG, PRM/: D, E, P, B;
! There is a set of quality measures;
QM/ OCT, VAP, VOL/;
! Each RM & QM combo has a quality level;
RQ(RM, QM): Q;
! For each combo QM, FG there are upper & lower limits on quality, slack on quality to be determined;
QF(QM, FG): U, L, S;
! Each combination of RM and FG has an amount used, to be determined;
RF(RM, FG): X;
ENDSETS
DATA:
! RM BUT CAT NAP;
A = 1000, 4000, 5000; ! Raw material availabilities;
C = 7.3, 18.2, 12.5; ! R. M. costs;
! QM OCT VAP VOL;
Q = 120, 60, 105; ! Quality parameters...;
100, 2.6, 3; ! R. M. by quality;
74, 4.1, 12;
! FG REG PRM;
D = 4000, 2000; ! Min needed of each F.G.;
E = 8000, 6000; ! Max sellable of each F.G.;
P = 18.4, 22; ! Selling price of each F.G.;
U = 110, 110, ! Upper limits on quality;
11, 11, ! Quality by F.G.;
25, 25,
! Quality by F.G.;
L= 89, 94
8, 8,
17, 17;
ENDDATA
SUBMODEL MAX5:
! For each raw material, the availabilities;
@FOR(RM(I): [RMLIM])
@SUM(FG(K): X(I, K)) < A(I));
@FOR(FG(K):)
! For each finished good, compute batch size;
[BDEF] B(K) = @SUM(RM(I): X(I, K));
! Batch size limits;
[BLO] B(K) > D(K);
[BHI] B(K) < E(K);
! Quality restrictions for each quality;
@FOR(QM(J):)
[QUP] @SUM(RM(I) : Q(I, J) * X(I, K)) + S(J, K) = U(J, K) * B(K);
[QDN] S(J, K) < (U(J, K) - L(J, K)) * B(K);
);
! We want to maximize profit contribution;
[PROFIT] MAX = @SUM(FG: P * B) - @SUM(RM(I): C(I) * @SUM(FG(K): X(I, K)));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Precision in digits for standard solution reports;
@SET('PRECIS',6);
! Set page width;
@SET('LINLEN',120);
! Data block;
@WRITE(" DATA: *, @NEWLINE(1), " RAW MATERIAL: *, @NEWLINE(1));
@TABLE(A);
@WRITE(" COST: *, @NEWLINE(1));
@TABLE(C);
@WRITE(" QUALITY PARAMETERS: *, @NEWLINE(1));
@TABLE(Q);
@WRITE(" MINIMUM NEED OF EACH F.G.: *, @NEWLINE(1));
@TABLE(D);
@WRITE(" MAXIMUM SELLABLE OF EACH F.G.: *, @NEWLINE(1));
@TABLE(E);
@WRITE(" SELLING PRICE OF EACH F.G.: *, @NEWLINE(1));
@TABLE(P);
@WRITE(" UPPER LIMITS ON QUALITY BY F.G.: *, @NEWLINE(1));
@TABLE(U);
@WRITE(" LOWER LIMITS ON QUALITY BY F.G.: *, @NEWLINE(1));
@TABLE(L);
@WRITE(" SOLUTION: *, @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX5);
! Solution Report;
@WRITE(" IDEAL MIXING PROGRAM: *, @NEWLINE(1));
! Cost;
@WRITE(" TOTAL COST: *, @NEWLINE(1));
@WRITEFOR(RF(I,J): ' ',RM(J), ' Used: ',
 @FORMAT(X(I,J),'%6.1f'), ' x Cost: $',
 @FORMAT(C(I),'%6.2f'), ' = Total:$',
 @FORMAT(X(I,J) * C(I),'%10.2f'),
@NEWLINE(1));
@WRITE(" TOTAL (C): ',35*' ','$ ',
 @FORMAT(@SUM(RF(I,J): X(I,J) * C(I)),'%8.2f'),
@NEWLINE(1));
@WRITE(" TOTAL PRICE: *, @NEWLINE(1));
@WRITEFOR(FG(I): ' ',FG(I), ' Produce: ',
 @FORMAT(B(I),'%6.1f'), ' x Price:$',
 @FORMAT(C(I),'%6.2f'), ' = Total:$',
 @FORMAT(B(I) * P(I),'%10.2f'),
@NEWLINE(1));
@WRITE(" TOTAL (P): ',35*' ','$ ',
 @FORMAT(@SUM(FG(I): B(I) * P(I)),'%8.2f'),
@NEWLINE(1));
@WRITE(" PROFIT (P - C): ',30*' ','$ ',
 @FORMAT(@SUM(FG(I): B(I) * P(I)) -
 @SUM(RF(I,J): X(I,J) * C(I)),'%8.2f'),
@NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MAX5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RAW MATERIAL:
 BUT 1000.00
 CAT 4000.00
 NAP 5000.00

COST:
 BUT 7.30000
 CAT 18.2000
 NAP 12.5000

QUALITY PARAMETERS :
 OCT VAP VOL
 BUT 120.000 60.0000 105.000
 CAT 100.000 2.60000 3.00000
 NAP 74.0000 4.10000 12.0000

MINIMUM NEED OF EACH F.G. :
 REG 4000.00
 PRM 2000.00

MAXIMUM SELLABLE OF EACH F.G. :
 REG 8000.00
 PRM 6000.00

SELLING PRICE OF EACH F.G. :
 REG 18.4000
 PRM 22.0000

UPPER LIMITS ON QUALITY BY F.G. :
 REG 110.000 110.000
 PRM 110.000 110.000

LOWER LIMITS ON QUALITY BY F.G. :
 REG 89.0000 94.0000
 PRM 8.00000 8.00000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 48750.0
Infeasibilities: 0.00000
Total solver iterations: 17

IDEAL MIXING PROGRAM:
TOTAL COST:
 BUT Used: 507.4 x Cost: $ 7.30 = Total:$ 3704.13
 CAT Used: 492.6 x Cost: $ 7.30 = Total:$ 3595.87
 BUT Used: 1410.0 x Cost: $ 18.20 = Total:$ 25661.23
 CAT Used: 2590.0 x Cost: $ 18.20 = Total:$ 47138.77
 BUT Used: 2082.6 x Cost: $ 12.50 = Total:$ 26032.84
 CAT Used: 1417.4 x Cost: $ 12.50 = Total:$ 17717.16
TOTAL (C): $ 123850.00

TOTAL PRICE:
 REG Produce: 4000.0 x Price:$ 7.30 = Total:$ 73600.00
 PRM Produce: 4500.0 x Price:$ 18.20 = Total:$ 99000.00
TOTAL (P): $ 172600.00
PROFIT (P - C): $ 48750.00
GOAL

A refinery processes various types of oil. Each type of oil has a different cost sheet, expressing transport conditions and cost at the source.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Super</td>
<td>%</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>35.00</td>
</tr>
<tr>
<td>Blue</td>
<td>%</td>
<td>30</td>
<td>10</td>
<td></td>
<td>28.00</td>
</tr>
<tr>
<td>Yellow</td>
<td>%</td>
<td>70</td>
<td></td>
<td></td>
<td>22.00</td>
</tr>
<tr>
<td>Available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrel</td>
<td></td>
<td>3500</td>
<td>2200</td>
<td>4200</td>
<td>1800</td>
</tr>
<tr>
<td>Cost p/barrel</td>
<td>$</td>
<td>19.00</td>
<td>24.00</td>
<td>20.00</td>
<td>27.00</td>
</tr>
</tbody>
</table>

On the other hand, each type of oil represents a different configuration of by-products for gasoline.

To the extent that a different type of oil is used in the production of gasoline, it is possible to schedule specific octane conditions and other requirements.

These requirements imply classification of the type of gasoline obtained. Assuming the refinery works with a line of four different types of oil and wants to produce three different types of gasoline called Yellow, Blue and Super blue.

It is requested to program the mixtures of types of petroleum, according to percentages for quality limits of the gasoline types and availabilities shown below:

Blue Super:
- Not more than 30% of oil 1;
- Not less than 40% of the oil 2;
- Not more than 50% of the oil 3;

Blue:
- Not more than 30% of oil 1;
- Not less than 10% of oil 2

Yellow:
- Not more than 70% of the oil 1
MODEL:
SETS:
PRODUCT, COST, DEMAND;
RESOURCE, PRICE;
ROUTES(RESOURCE, PRODUCT): USAGE, PRODUCE;
ENDSETS
DATA:
<table>
<thead>
<tr>
<th>Product</th>
<th>Cost</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET1</td>
<td>19</td>
<td>3500</td>
</tr>
<tr>
<td>PET2</td>
<td>24</td>
<td>2200</td>
</tr>
<tr>
<td>PET3</td>
<td>20</td>
<td>4200</td>
</tr>
<tr>
<td>PET4</td>
<td>27</td>
<td>1800</td>
</tr>
<tr>
<td>Resources</td>
<td>Price</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>GAS_SBLUE</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>GAS_BLUE</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>GAS_YELLOW</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Usage PET1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Usage PET2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Usage PET3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Usage PET4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
ENDDATA
SUBMODEL MAX3:
[OBJ] MAX = REV1 + REV2 + REV3 - COST1 - COST2 - COST3 - COST4;
! Revenue:
REV1 + @SUM (PRODUCT(J): -1*PRICE(1) * PRODUCE(1,J)) = 0;
REV2 + @SUM (PRODUCT(J): -1*PRICE(2) * PRODUCE(2,J)) = 0;
REV3 + @SUM (PRODUCT(J): -1*PRICE(3) * PRODUCE(3,J)) = 0;
! Cost:
COST1 + @SUM (RESOURCE(J): -1*COST(1) * PRODUCE(J,1)) = 0;
COST2 + @SUM (RESOURCE(J): -1*COST(2) * PRODUCE(J,2)) = 0;
COST3 + @SUM (RESOURCE(J): -1*COST(3) * PRODUCE(J,3)) = 0;
COST4 + @SUM (RESOURCE(J): -1*COST(4) * PRODUCE(J,4)) = 0;
! Restrictions associated with the amount of oil demand;
@FOR (PRODUCT(J): [DEM] @SUM (RESOURCE(I): PRODUCE(I,J)) <= DEMAND(J);)
! Restrictions associated with blend specifications - Super blue Gas;
USAGE(1,1)/100 *PRODUCE(1,1) + USAGE(1,1)/100*PRODUCE(1,2) - USAGE(1,1)/100*PRODUCE(1,3) - USAGE(1,1)/100*PRODUCE(1,4) >= 0;
USAGE(2,1)/100 *PRODUCE(2,1) + USAGE(2,1)/100*PRODUCE(2,2) - USAGE(2,1)/100*PRODUCE(2,3) - USAGE(2,1)/100*PRODUCE(2,4) <= 0;
USAGE(3,1)/100 *PRODUCE(3,1) + USAGE(3,1)/100*PRODUCE(3,2) - USAGE(3,1)/100*PRODUCE(3,3) - USAGE(3,1)/100*PRODUCE(3,4) <= 0;
! Restrictions associated with blend specifications - Blue Gas;
USAGE(1,2)/100 *PRODUCE(1,1) + USAGE(1,2)/100*PRODUCE(1,2) - USAGE(1,2)/100*PRODUCE(1,3) - USAGE(1,2)/100*PRODUCE(1,4) >= 0;
USAGE(2,2)/100 *PRODUCE(2,1) + USAGE(2,2)/100*PRODUCE(2,2) - USAGE(2,2)/100*PRODUCE(2,3) - USAGE(2,2)/100*PRODUCE(2,4) <= 0;
USAGE(3,2)/100 *PRODUCE(3,1) + USAGE(3,2)/100*PRODUCE(3,2) - USAGE(3,2)/100*PRODUCE(3,3) - USAGE(3,2)/100*PRODUCE(3,4) <= 0;
! Restrictions associated with blend specifications - Yellow Gas;
USAGE(1,3)/100 *PRODUCE(1,1) + USAGE(1,3)/100*PRODUCE(1,2) - USAGE(1,3)/100*PRODUCE(1,3) - USAGE(1,3)/100*PRODUCE(1,4) <= 0;
USAGE(2,3)/100 *PRODUCE(2,1) + USAGE(2,3)/100*PRODUCE(2,2) - USAGE(2,3)/100*PRODUCE(2,3) - USAGE(2,3)/100*PRODUCE(2,4) >= 0;
USAGE(3,3)/100 *PRODUCE(3,1) + USAGE(3,3)/100*PRODUCE(3,2) - USAGE(3,3)/100*PRODUCE(3,3) - USAGE(3,3)/100*PRODUCE(3,4) >= 0;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET ('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET ('STAWIN',0);
! Data Block;
@WRITE (" DATA:", @NEWLINE(1), " COMPOSITION (%):", @NEWLINE(1));
@TABLE (USAGE);
@WRITE (" USAGE: ", @NEWLINE(1), " DEMAND (barrel):", @NEWLINE(1));
@TABLE (DEMAND);
@WRITE (" SALE PRICE (per barrel):", @NEWLINE(1));
@TABLE (PRICE);
@WRITE (" SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE (MAX3);
! Solution Report:
@WRITE (" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITE (" ROUTES(I,J) | PRODUCE(I,J) #GT# 0: ", @NEWLINE(1));
@FORMAT (PRODUCT(J), "-4s") , ",
@FORMAT (RESOURCE(I), "-8s") : ,
@FORMAT (PRODUCE(I,J), "%4.0f") * Barrel x Price: $,
@FORMAT (PRICE(I), "%4.2f") = Revenue: $,
@FORMAT (PRICE(I), "%8.2f") * Cost: $,
@FORMAT (PRICE(I), "%8.2f") = Profit: $,
@NEWLINE (1));
! To see the corresponding model scalar, remove () From the line below;
@GEN (MAX3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
COMPOSITION (%):

<table>
<thead>
<tr>
<th></th>
<th>PET1</th>
<th>PET2</th>
<th>PET3</th>
<th>PET4</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS_SBLUE</td>
<td>30.00000</td>
<td>40.00000</td>
<td>50.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>GAS_BLUE</td>
<td>30.00000</td>
<td>10.00000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>GAS_YELLOW</td>
<td>70.00000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

DEMAND (barrel):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PET1</td>
<td>3500.000</td>
</tr>
<tr>
<td>PET2</td>
<td>2200.000</td>
</tr>
<tr>
<td>PET3</td>
<td>4200.000</td>
</tr>
<tr>
<td>PET4</td>
<td>1800.000</td>
</tr>
</tbody>
</table>

COST OF OIL (per barrel):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PET1</td>
<td>19.00000</td>
</tr>
<tr>
<td>PET2</td>
<td>24.00000</td>
</tr>
<tr>
<td>PET3</td>
<td>20.00000</td>
</tr>
<tr>
<td>PET4</td>
<td>27.00000</td>
</tr>
</tbody>
</table>

SALE PRICE (per barrel):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS_SBLUE</td>
<td>35.00000</td>
</tr>
<tr>
<td>GAS_BLUE</td>
<td>28.00000</td>
</tr>
<tr>
<td>GAS_YELLOW</td>
<td>22.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 155200.0
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:

PET1, GAS_SBLUE: 3500 barrel x Price: $35.00 = Revenue: $122500.00 - Cost: $66500.00 = Profit: $56000.00
PET2, GAS_SBLUE: 2200 barrel x Price: $35.00 = Revenue: $77000.00 - Cost: $52800.00 = Profit: $24200.00
PET3, GAS_SBLUE: 4200 barrel x Price: $35.00 = Revenue: $147000.00 - Cost: $84000.00 = Profit: $63000.00
PET4, GAS_SBLUE: 1500 barrel x Price: $35.00 = Revenue: $52500.00 - Cost: $40500.00 = Profit: $12000.00
A refinery produces three types of gasoline: Green, Blue and Yellow. Each type requires Pure Petrol, Octane and Additives in the available quantities of 9600000, 4800000 and 2200000 liters per week respectively.

- One liter of green gasoline requires 0.22 liters of pure gasoline, 0.50 liters of octane and 0.28 liters of additives.
- One liter of blue gasoline requires 0.52 liters of pure gasoline, 0.34 liters of octane and 0.14 liters of additives.
- One liter of yellow petrol requires 0.74 liters of pure gasoline, 0.20 liters of octane and 0.06 liters of additives.

Refinery planning stipulated that the amount of yellow gasoline should be at least 16 times the amount of green gasoline and the amount of blue gasoline should be equal to 600,000 liters per week.

The company knows that every liter of green, blue and yellow gasoline has a profit margin of $0.30, $0.25 and $0.20 respectively.

The goal is to determine the production schedule that maximizes the total contribution margin for profit. The data necessary to elaborate the model are shown below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Green</th>
<th>Blue</th>
<th>Yellow</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure Gasoline</td>
<td>L</td>
<td>0.22</td>
<td>0.52</td>
<td>0.74</td>
</tr>
<tr>
<td>Octane</td>
<td>L</td>
<td>0.50</td>
<td>0.34</td>
<td>0.20</td>
</tr>
<tr>
<td>Additive</td>
<td>L</td>
<td>0.28</td>
<td>0.14</td>
<td>0.06</td>
</tr>
<tr>
<td>Planned Production</td>
<td>L</td>
<td>G</td>
<td>≤ 600,000</td>
<td>16 x G</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>0.30</td>
<td>0.25</td>
<td>0.20</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
PRODUCT: PROFIT, PRODUCE;
RESOURCE: AVAILABLE;
ROUTES(RESOURCE, PRODUCT): FORMULA;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, AVAILABLE =
PURE_GAS 9600000
OCTANE 4800000
ADDITIVE 2200000;
! Products attributes;
PRODUCT, PROFIT =
GAS_GREEN 0.30
GAS_BLUE 0.25
GAS_YELLOW 0.20;
! Required (L)
GAS_GREEN GAS_BLUE GAS_YELLOW;
FORMULA =
0.22 0.52 0.74 ! Pure gasoline;
0.50 0.34 0.20 ! Octane;
0.28 0.14 0.06; ! Additive;
ENDDATA
SUBMODEL MAX4:
[OBJ] MAX = @SUM(PRODUCT(J): PROFIT(J) * PRODUCE(J));
! The available constraints;
@FOR(RESOURCE(I)):
 @SUM(PRODUCT(J): FORMULA(I,J) * PRODUCE(J)) <= AVAILABLE(I);
! Green gasoline should be 1/16 of the yellow gasoline;
PRODUCE(1) >= PRODUCE(3)/16;
! Blue gasoline must be ≤ 600000 liters;
PRODUCE(2) = 600000;
! Yellow gasoline should be 16 times the amount of green gasoline;
PRODUCE(3) = PRODUCE(1)*16;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (L):", @NEWLINE(1));
@TABLE(FORMULA);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (L):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " PROFIT:", @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" ", @NEWLINE(1), " SOLUTION:", @NEWLINE(1));
! Execute Sub-model;
@SOLVE(MAX4);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITE(" PRODUCED:", @NEWLINE(1));
@WRITEFOR(PRODUCT(J): ' . ',
 @FORMAT(PRODUCT(J),'-10s'), ' ',
 @FORMAT(PRODUCT(J), '%8.0f'), ' L x Profit: $ ',
 @FORMAT(PRODUCT(J), '%4.2f'), ' = Total: $ ',
 @FORMAT(PRODUCT(J) * PRODUCE(J), '%10.2f'),
 @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MAX4);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (L):

<table>
<thead>
<tr>
<th></th>
<th>GAS_GREEN</th>
<th>GAS_BLUE</th>
<th>GAS_YELLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PURE_GAS</td>
<td>0.2200000000</td>
<td>0.5200000000</td>
<td>0.7400000000</td>
</tr>
<tr>
<td>OCTANE</td>
<td>0.5000000000</td>
<td>0.3400000000</td>
<td>0.2000000000</td>
</tr>
<tr>
<td>ADDITIVE</td>
<td>0.2800000000</td>
<td>0.1400000000</td>
<td>0.0600000000</td>
</tr>
</tbody>
</table>

AVAILABLE (L):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PURE_GAS</td>
<td>9600000.000</td>
</tr>
<tr>
<td>OCTANE</td>
<td>4800000.000</td>
</tr>
<tr>
<td>ADDITIVE</td>
<td>2200000.000</td>
</tr>
</tbody>
</table>

PROFIT:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS_GREEN</td>
<td>0.3000000000</td>
</tr>
<tr>
<td>GAS_BLUE</td>
<td>0.2500000000</td>
</tr>
<tr>
<td>GAS_YELLOW</td>
<td>0.2000000000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 2845522.388
Infeasibilities: 0.000000000

IDEAL PLANNING PROGRAM:
PRODUCED:
- GAS_GREEN 770149 L x Profit: $0.30 = Total: $ 231044.78
- GAS_BLUE 600000 L x Profit: $0.25 = Total: $ 150000.00
- GAS_YELLOW 12322388 L x Profit: $0.20 = Total: $2464477.61
GOAL

A distribution company sells ordinary and special gasoline. Each liter of ordinary gasoline is sold at $2.10 and must have at least 90 octane. Each liter of special gasoline is sold for $2.50 and needs to have at least 97 octane.

These types of gasoline are obtained by mixing three different types of gasolines, as shown in the following table:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Cost p/L</th>
<th>Octane</th>
<th>Special</th>
<th>Common</th>
<th>Available (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas 1</td>
<td>$1.725</td>
<td>100</td>
<td>0</td>
<td>1.0</td>
<td>150000</td>
</tr>
<tr>
<td>Gas 2</td>
<td>$1.575</td>
<td>87</td>
<td>0.67</td>
<td>0.33</td>
<td>350000</td>
</tr>
<tr>
<td>Gas 3</td>
<td>$1.775</td>
<td>110</td>
<td>0.83</td>
<td>0</td>
<td>300000</td>
</tr>
<tr>
<td>Minimum Required Octane</td>
<td>97</td>
<td>90</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand p/L</td>
<td></td>
<td></td>
<td>450,000</td>
<td>300,000</td>
<td>-</td>
</tr>
<tr>
<td>Price p/L</td>
<td></td>
<td></td>
<td>$2.50</td>
<td>$2.10</td>
<td>-</td>
</tr>
</tbody>
</table>

The company received an order for 300,000 liters of ordinary gasoline and 450,000 liters of special gasoline. What should be the ideal mix to fulfill the request maximizing profit.
MODEL:
SETS:
PRODUCT: PRICE, DEMAND, MINREQ, PRODUCE;
RESOURCE: AVAILABLE, OCTANE, COST;
ROUTES(RESOURCE, PRODUCT): FORMULA;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, AVAILABLE, OCTANE, COST =
GAS1 150000 100 1.725
GAS2 350000 87 1.575
GAS3 300000 110 1.775;
! Products attributes;
PRODUCT, PRICE, DEMAND, MINREQ =
GAS_SPECIAL 2.50 450000 97
GAS_COMMON 2.10 300000 90;
! Required GAS_SPECIAL GAS_COMMON;
FORMULA =
0.00 1.00 ! GAS1;
0.67 0.33 ! GAS2;
0.833333 0.00 ! GAS3;
ENDDATA
SUBMODE MAX5:
[OBJ] MAX = PRICE_T - COST_T;
! Calculation of total price;
PRICE_T = \@SUM(PRODUCT(J): PRICE(J) * PRODUCE(J));
COST_T = COST(1) * (AVAILABLE(1) * FORMULA(1,1) + AVAILABLE(1) * FORMULA(1,2)) +
COST(2) * (AVAILABLE(2) * FORMULA(2,1) + AVAILABLE(2) * FORMULA(2,2)) +
COST(3) * (AVAILABLE(3) * FORMULA(3,1) + AVAILABLE(3) * FORMULA(3,2));
! The Demand constraints;
PRODUCE(1) = DEMAND(1); PRODUCE(2) = DEMAND(2);
ENDSUBMODEL;
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (L):", @NEWLINE(1));
@TABLE(FORMULA);
@WRITE(" AVAILABLE (L):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" DEMAND: (L)", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" PRICE P/LITER:", @NEWLINE(1));
@TABLE(PRICE);
@WRITE(" OCTANE:", @NEWLINE(1));
@TABLE(OCTANE);
@WRITE(" MINIMUM REQUIRED OCTANE:", @NEWLINE(1));
@TABLE(MINREQ);
@WRITE(" SOLUTION: ", @NEWLINE(1));
@SOLVE(Max5);
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(I): ' + ',
 @FORMAT(PRODUCT(I),'%-11s'),';',
 @FORMAT(PRODUCT(I), '%6.2f'), ' L x Price: $',
 @FORMAT(PRICE(I), '%6.2f'), ' = Total: $',
 @FORMAT(PRICE(I) * PRODUCE(I), '%10.2f'),
@NEWLINE(1));
@WRITE(" - TOTAL COST: ", 35*' ','$',
 @FORMAT(COST_T,('%10.2f'),@NEWLINE(1));
@WRITE(" = PROFIT: ", 39*' ','$',
 @FORMAT(PRICE_T - COST_T,('%10.2f'),@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(Max5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (L):

<table>
<thead>
<tr>
<th></th>
<th>GAS_SPECIAL</th>
<th>GAS_COMMON</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS1</td>
<td>0.0000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>GAS2</td>
<td>0.6700000</td>
<td>0.330000</td>
</tr>
<tr>
<td>GAS3</td>
<td>0.8333330</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

AVAILABLE (L):

GAS1	150000.0
GAS2	350000.0
GAS3	300000.0

DEMAND: (L)

| GAS_SPECIAL | 450000.0 |
| GAS_COMMON | 300000.0 |

COST P/LITER:

GAS1	1.725000
GAS2	1.575000
GAS3	1.775000

PRICE P/LITER:

| GAS_SPECIAL | 2.500000 |
| GAS_COMMON | 2.100000 |

OCTANE:

GAS1	100.0000
GAS2	87.0000
GAS3	110.0000

MINIMUM REQUIRED OCTANE:

| GAS_SPECIAL | 97.0000 |
| GAS_COMMON | 90.0000 |

SOLUTION:

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 501250.2
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
MIXED:
+ GAS_SPECIAL: 450000 L x Price: $2.50 = Total: $1125000.00
+ GAS_COMMON : 300000 L x Price: $2.10 = Total: $ 630000.00
- TOTAL COST: $1253749.82
= PROFIT: $ 501250.18
How to designate sections of a highway to be built or designate work groups so as to obtain the lowest possible cost?

OTHER AVAILABLE BLOCKS
- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
SCHEDULE STAFF

One part of the management of most service facilities is the scheduling or staffing of personnel. That is, deciding how many people to use on what shifts.

This problem exists in staffing the information operators department of a telephone company, a toll plaza, a large hospital, and, in general, any facility that must provide service to the public.

The solution process consists of at least three parts:

1. Develop good forecasts of the number of personnel required during each hour of the day or each day of the week during the scheduling period.

2. Identify the possible shift patterns, which can be worked based on the personnel available and work agreements and regulations. A particular shift pattern might be to work Tuesday through Saturday and then be off two days.

3. Determine how many people should work each shift pattern, so cost are minimized and the total number of people on duty during each time period satisfies the requirements determined in (1).

All three of these steps are difficult. LP can help in solving step 3.

One of the first published accounts of using optimization for staff scheduling was by Edie (1954). He developed a method for staffing tollbooths for the New York Port Authority.

Though old, Edie’s discussion is still very pertinent and thorough. His thoroughness is illustrated by his summary (p. 138):

• A trial was conducted at the Lincoln Tunnel…

• Each toll collector was given a slip showing his booth assignments and relief periods and instructed to follow the schedule strictly…

• At no times did excessive backups occur…

• The movement of collectors and the opening and closing of booths took place without the attention of the toll sergeant.

• At times, the number of booths were slightly excessive, but not to the extent previously…

• Needless to say, there is a good deal of satisfaction…
GOAL

Several companies have submitted a proposal to build four stretches of a road. Assemble the model of highway designation at the lowest cost, considering that each company can only do one stretch. The costs offered by the companies are in the table below.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Straight 1</th>
<th>Straight 2</th>
<th>Straight 3</th>
<th>Straight 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Companies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>$500.00</td>
<td>700.00</td>
<td>300.00</td>
<td>200.00</td>
</tr>
<tr>
<td>B</td>
<td>$450.00</td>
<td>1000.00</td>
<td>450.00</td>
<td>250.00</td>
</tr>
<tr>
<td>C</td>
<td>$650.00</td>
<td>800.00</td>
<td>500.00</td>
<td>320.00</td>
</tr>
<tr>
<td>D</td>
<td>$550.00</td>
<td>950.00</td>
<td>480.00</td>
<td>280.00</td>
</tr>
</tbody>
</table>
MODEL:

SETS:
PRODUCT ::
RESOURCE: ;
RXP(RESOURCE, PRODUCT) : USAGE, PRODUCE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE =
CIA_1
CIA_2
CIA_3
CIA_4;
! Products attributes;
PRODUCT =
STRAIGHT1
STRAIGHT2
STRAIGHT3
STRAIGHT4;
! Required CIA_1 CIA_2 CIA_3 CIA_4;
USAGE =
500 700 300 200 ! STRAIGHT1;
450 1000 450 250 ! STRAIGHT2;
650 800 500 320 ! STRAIGHT3;
550 950 480 280 ! STRAIGHT4;
ENDDATA
SUBMODEL MIN1:
[OBJ] MIN = @SUM(RXP(I,C): USAGE(I, C) * PRODUCE(I, C));
! Selects the company;
@FOR(PRODUCT(I):
 @SUM(RESOURCE(C): PRODUCE(I, C)) = 1);
! Select the stretch of highway;
@FOR(PRODUCT(I):
 @SUM(RESOURCE(C): PRODUCE(C, I)) = 1);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA: ", @NEWLINE(1), " COST: ", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN1);
! Solution Report;
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RXP(I, J) PRODUCE(I,J) #GT# 0: ' ',
 @FORMAT(RESOURCE(I), '-5s'), ' Selected to do ',
 @FORMAT(PRODUCT(J), '-10S'), ' by Cost: $',
 @FORMAT(USAGE(I,J), '%7.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th></th>
<th>STRAIGHT1</th>
<th>STRAIGHT2</th>
<th>STRAIGHT3</th>
<th>STRAIGHT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIA_1</td>
<td>500.0000</td>
<td>700.0000</td>
<td>300.0000</td>
<td>200.0000</td>
</tr>
<tr>
<td>CIA_2</td>
<td>450.0000</td>
<td>1000.0000</td>
<td>450.0000</td>
<td>250.0000</td>
</tr>
<tr>
<td>CIA_3</td>
<td>650.0000</td>
<td>800.0000</td>
<td>500.0000</td>
<td>320.0000</td>
</tr>
<tr>
<td>CIA_4</td>
<td>550.0000</td>
<td>950.0000</td>
<td>480.0000</td>
<td>280.0000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 1830.000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
CIA_1 Selected to do STRAIGHT3 by Cost: $ 300.00
CIA_2 Selected to do STRAIGHT1 by Cost: $ 450.00
CIA_3 Selected to do STRAIGHT2 by Cost: $ 800.00
CIA_4 Selected to do STRAIGHT4 by Cost: $ 280.00
GOAL

A service delivery company needs to allocate watchmen on several clients, but it has been found that there is a variation between the needs of each day of the week as can be observed below:

<table>
<thead>
<tr>
<th>Worker</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THU</th>
<th>FRI</th>
<th>SAT</th>
<th>SUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker</td>
<td>20</td>
<td>30</td>
<td>24</td>
<td>44</td>
<td>12</td>
<td>22</td>
<td>25</td>
</tr>
</tbody>
</table>

It is also known that the work week is five days in a row and two days off. We ask for the best and least personal allocation scheme.
MODEL:
SETS:
DAYS: REQUIRED, START, ONDUTY;
ENDSETS
DATA:
! Days attributes;
DAYS, REQUIRED =
MON 20
TUE 30
WED 24
THU 44
FRI 12
SAT 22
SUN 25;
ENDDATA
SUBMODEL MIN2:
[OBJ] MIN = @SUM(DAYS(I): START(I));
@FOR(DAYS(J):
ONDUTY(J) = @SUM(DAYS(I) | I #LE# 5: START(@WRAP(J - I + 1, 7)));
ONDUTY(J) >= REQUIRED(J);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1=Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" REQUIRED:", @NEWLINE(1));
@TABLE(REQUIRED);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN2);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(DAYS(D):
 @FORMAT(DAYS(D),'-4S'),' ', "Required: ",
 @FORMAT(REQUIRED(D),'%2.0f'), ' Worker ', 'Start:',
 @FORMAT(START(D),'%3.0f'), ' On duty:', ONDUTY(D), ' Surplus: ',
 @FORMAT(ONDUTY(D) - REQUIRED(D),'%2.0f'), @NEWLINE(1));
@WRITE(" Worker total: 19", @FORMAT(OBJ,'%3.0f'), @NEWLINE(1));
! Bar chart of required vs. actual staffing;
@CHARTBAR('Staffing Schedule', !Chart title;
'Day', !X-Axis label;
'Employees', !Y-Axis label;
'Employees Required', !Legend 1;
REQUIRED, !Attribute 1;
'Employees On Duty', !Legend 2;
ONDUTY !Attribute 2);
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
! @GEN(MIN2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

REQUIRED (worker):
MON 20.00000
TUE 30.00000
WED 24.00000
THU 44.00000
FRI 12.00000
SAT 22.00000
SUN 25.00000

SOLUTION:

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 44.00000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
MON Required: 20 Worker Start: 11 On duty:22.00000 Surplus: 2
TUE Required: 30 Worker Start: 8 On duty:30.00000 Surplus: 0
WED Required: 24 Worker Start: 14 On duty:44.00000 Surplus: 20
THU Required: 44 Worker Start: 0 On duty:44.00000 Surplus: 0
FRI Required: 12 Worker Start: 0 On duty:33.00000 Surplus: 21
SAT Required: 22 Worker Start: 0 On duty:22.00000 Surplus: 0
SUN Required: 25 Worker Start: 11 On duty:25.00000 Surplus: 0
Worker total: 44
Staffing Schedule

<table>
<thead>
<tr>
<th>Day</th>
<th>Employees Required</th>
<th>Employees On Duty</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>TUE</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>WED</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>THU</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>FRI</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>SAT</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>SUN</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
GOAL

A post office needs a different number of employees, depending on the day of the week. For union demands, each worker works five consecutive days and rests two.

<table>
<thead>
<tr>
<th>Required / Day</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THU</th>
<th>FRI</th>
<th>SAT</th>
<th>SUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker</td>
<td>20</td>
<td>12</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>

Formulate the problem so that the number of employees hired is the minimum necessary to meet the needs of the agency.
MODEL:
SETS:
DAYS: REQUIRED, START, ONDUTY;
ENDSETS
DATA:
DAYS, REQUIRED =
MON 20
TUE 12
WED 18
THU 16
FRI 14
SAT 14
SUN 12;
ENDDATA
SUBMODEL MIN3:
[OBJ] MIN = @SUM(DAYS(I): START(I));
@FOR(DAYS(J):
 ONDUTY(J) = @SUM(DAYS(I) | I #LE# 5: START(@WRAP(J - I + 1, 7)));
 ONDUTY(J) >= REQUIRED(J));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data block;
@WRITE(" REQUIRED:",@NEWLINE(1));
@TABLE(REQUIRED);
! Execute Sub-model;
@SOLVE(MIN3);
! Solution Report;
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(DAYS(D): ' ',
 @FORMAT(DAYS(D),'-3s'),' ', "Required: ",
 @FORMAT(REQUIRED(D),'%2.0f'), ' Worker, ', 'Start:',
 @FORMAT(START(D),'%2.0f'), ' On duty:',
 @FORMAT(ONDUTY(D),'%3.0f'), ' Surplus:',
 @FORMAT(ONDUTY(D) - REQUIRED(D),'%2.0f'),
 @NEWLINE(1));
@WRITE(" Worker total:',17" ',@FORMAT(OBJ,'%3.0f'),@NEWLINE(1));
! Bar chart of required vs. actual staffing;
@CHARTBAR('Staffing Schedule', !Chart title;
 'Day', !X-Axis label;
 'Employees', !Y-Axis label;
 'Employees Required', !Legend 1;
 REQUIRED, !Attribute 1;
 'Employees On Duty', !Legend 2;
 ONDUTY !Attribute 2);
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove () From the line below;
!@GEN(MIN3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

REQUIRED (worker):
MON 20.00000
TUE 12.00000
WED 18.00000
THU 16.00000
FRI 14.00000
SAT 14.00000
SUN 12.00000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

Global optimal solution found.
Objective value: 22.66667
Infeasibilities: 0.00000

IDEAL PLANNING PROGRAM:
MON Required: 20 Worker, Start: 9 On duty: 20 Surplus: 0
TUE Required: 12 Worker, Start: 2 On duty: 17 Surplus: 5
WED Required: 18 Worker, Start: 1 On duty: 18 Surplus: 0
THU Required: 16 Worker, Start: 5 On duty: 16 Surplus: 0
FRI Required: 14 Worker, Start: 0 On duty: 16 Surplus: 2
SAT Required: 14 Worker, Start: 7 On duty: 14 Surplus: 0
SUN Required: 12 Worker, Start: 0 On duty: 12 Surplus: 0
Worker total: 23
GOAL
Suppose you run the popular Pluto Dogs dog cart which is open seven days a week.

You hire employees for a five-day work week with two consecutive days. Each employee receives the same weekly salary.

Some days of the week are busier than others and, based on past experience, you know how many workers are needed on a particular day of the week. In particular, your forecast calls these personnel requirements:

<table>
<thead>
<tr>
<th>Required / Day</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THU</th>
<th>FRI</th>
<th>SAT</th>
<th>SUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker</td>
<td>20</td>
<td>12</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>

You need to determine how many employees start each day of the week in order to minimize the total number of employees while still meeting or exceeding the staffing requirements every day of the week.
MODEL:
SETS:
DAYS: REQUIRED, START, ONDUTY;
ENDSETS
DATA:
DAYS, REQUIRED =
MON 20
TUE 16
WED 13
THU 16
FRI 19
SAT 14
SUN 12;
ENDDATA
SUBMODEL MIN4:
[OBJ] MIN = @SUM(DAYS(I): START(I));
@FOR(DAYS(J):
ONDUTY(J) = @SUM(DAYS(I) | I #LE# 5: START(@WRAP(J - I + 1, 7)));
ONDUTY(J) >= REQUIRED(J));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! data block;
@WRITE(" REQUIRED (worker):", @NEWLINE(1));
@TABLE(REQUIRED);
@WRITE(" SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN4);
! Solution Report;
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(DAYS(D): '','
@FORMAT(DAYS(D),'-3s'), " Required: ",
@FORMAT(REQUIRED(D), '%3.0f'), ' Worker ', 'Start:',
@FORMAT(START(D), '%3.0f'), ' On duty:',
@FORMAT(ONDUTY(D), '%3.0f'), ' Surplus: ',
@FORMAT(ONDUTY(D) - REQUIRED(D), '%2.0f'),
@NEWLINE(1));
@WRITE(" Worker total: ",19*' ',@FORMAT(OBJ,'%3.0f'),@NEWLINE(1));
! Bar chart of required vs. actual staffing;
@CHARTBAR(
'Staffing Schedule', !Chart title;
'Day', !X-Axis label;
'Employees', !Y-Axis label;
'Employees Required', !Legend 1;
REQUIRED, !Attribute 1;
'Employees On Duty', !Legend 2;
ONDUTY !Attribute 2;);
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN4);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

REQUIRED (worker):
MON 20.00000
TUE 16.00000
WED 13.00000
THU 16.00000
FRI 19.00000
SAT 14.00000
SUN 12.00000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 22.00000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
MON Required: 20 Worker Start: 8 On duty: 20 Surplus: 0
TUE Required: 16 Worker Start: 2 On duty: 16 Surplus: 0
WED Required: 13 Worker Start: 0 On duty: 13 Surplus: 0
THU Required: 16 Worker Start: 6 On duty: 16 Surplus: 0
FRI Required: 19 Worker Start: 3 On duty: 19 Surplus: 0
SAT Required: 14 Worker Start: 3 On duty: 14 Surplus: 0
SUN Required: 12 Worker Start: 0 On duty: 12 Surplus: 0
Worker total: 22
GOAL

In this model, there are six jobs that can be done on one machine. The machine can only run one job at a time. Each of the papers has an expiration date.

<table>
<thead>
<tr>
<th>Resources / Job</th>
<th>J1</th>
<th>J2</th>
<th>J3</th>
<th>J4</th>
<th>J5</th>
<th>J6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due Date</td>
<td>Day</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Machine Time</td>
<td>hr</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Price</td>
<td>$</td>
<td>9.00</td>
<td>2.00</td>
<td>4.00</td>
<td>2.00</td>
<td>4.00</td>
</tr>
</tbody>
</table>

If we can not complete a job by the due date, we will not. Our goal is to maximize the total value of the selected papers.
MODEL:
SETS:
! There are six jobs, each of which has a due date,
Processing time, value, and a flag variable Y indicating whether the job was selected;
JOB/1..6/:
! Each job has a...
DD, ! Due date;
PT, ! Machine time;
VAL, ! Job price;
Y; ! 1 if job is selected;
ENDSETS
DATA:
VAL = 9 2 4 2 4 6;
DD = 9 3 6 5 7 2;
PT = 5 2 4 3 1 2;
ENDDATA
SUBMODEL MAX5:
! Maximize the total value of the works to be performed;
[OBJ] MAX = TVAL;
 TVAL = @SUM(JOB: VAL * Y);
! For the selected works, we do on the due date of the request;
@FOR JOB(J):
 ! Only jobs with previous expiration dates can precede job J, and work must be completed
 according to their maturity dates;
[CON] @SUM(JOB(I)| DD(I) #LT# DD(J) #OR#(DD(I) #EQ# DD(J) #AND# I #LE# J): PT(I) * Y(I)) <= DD(J);
! Define the Y as binary variable;
@BIN(Y);)
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data Block;
@WRITE(" JOB PRICE:", @NEWLINE(1));
@TABLE(VAL);
@WRITE(" ", @NEWLINE(1), " DUE DATE:", @NEWLINE(1));
@TABLE(DD);
@WRITE(" ", @NEWLINE(1), " MACHINE TIME:", @NEWLINE(1));
@TABLE(PT);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX5);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(JOB(D)|Y(D) #GT# 0: ' Due date:',
 @FORMAT(DD(D),'%1.0f'), ' ', ' Machine Time:',
 @FORMAT(PT(D),'%1.0f'), ' ', ' Price: $',
 @FORMAT(VAL(D) * Y(D), '%4.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove () From the line below;
!@GEN(MAX5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

JOB PRICE:
1 9.000000
2 2.000000
3 4.000000
4 2.000000
5 4.000000
6 6.000000

DUE DATE:
1 9.000000
2 3.000000
3 6.000000
4 5.000000
5 7.000000
6 2.000000

MACHINE TIME:
1 5.000000
2 2.000000
3 4.000000
4 3.000000
5 1.000000
6 2.000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 19.00000
Objective bound: 19.00000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM (JOB SELECTED):
Due date:9 Machine Time:5 Price: $9.00
Due date:7 Machine Time:1 Price: $4.00
Due date:2 Machine Time:2 Price: $6.00
GOAL

The Northeast Tollway out of Chicago has a toll plaza with the following staffing demands during each 24-hour period:

<table>
<thead>
<tr>
<th>SEQ</th>
<th>Hours</th>
<th>Collectors Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 A.M.</td>
<td>To 6 A.M.</td>
</tr>
<tr>
<td>2</td>
<td>6 A.M.</td>
<td>To 10 A.M.</td>
</tr>
<tr>
<td>3</td>
<td>10 A.M.</td>
<td>To Noon</td>
</tr>
<tr>
<td>4</td>
<td>Noon</td>
<td>To 4 P.M.</td>
</tr>
<tr>
<td>5</td>
<td>4 P.M.</td>
<td>To 6 P.M.</td>
</tr>
<tr>
<td>6</td>
<td>6 P.M.</td>
<td>To 10 P.M</td>
</tr>
<tr>
<td>7</td>
<td>10 PM</td>
<td>To 12 Midnight</td>
</tr>
</tbody>
</table>

Each collector works four hours, is off one hour, and then works another four hours. A collector can be started at any hour. Assuming the objective is to minimize the number of collectors hired, how many collectors should start work each hour?
MODEL:
! 24 hour shift scheduling;
! Each shift is 4 hours on, 1 hour off, 4 hours on;
SETS:
 HOUR/1..24/: START, REQUIRED, ONDUTY;
ENDSETS
DATA:
REQUIRED = 2 2 2 2 2 2 8 8 8 4 4 3 3 3 3 6 6 5 5 5 5 3 3;
ENDDATA
SUBMODEL MIN6:
[OBJ] MIN = @SUM(HOUR(I): START(I));
! People on duty in hour I are those who started 9 or less hours earlier, but not 5;
@FOR(HOUR(I)):
 ONDUTY = @SUM(HOUR(J)|J#LE#9)#AND#(J#NE#5): START(@WRAP((I-J+1),24));
 ONDUTY >= REQUIRED(I);
@GIN(START(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" REQUIRED (worker):", @NEWLINE(1));
@TABLE(REQUIRED);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN6);
! Solution report;
@WRITE(" ", @NEWLINE(1));
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITE(" HOUR(D) | START(D) #GT# 0: ", @NEWLINE(1));
@FORMAT(HOUR(D),3s), ', ', "Hour:",";
@FORMAT(REQUIRED(D),%2.0f), ', ' Collectors, ', 'Start work at:',';
@FORMAT(START(D),%2.0f), ' On duty:',';
@FORMAT(ONDUTY(D),%2.0f), ' Surplus:',';
@FORMAT(ONDUTY(D) - REQUIRED(D),%2.0f),
@NEWLINE(1));
@TEXT() = @WRITE(" Worker total: ", @NEWLINE(1));
@WRITE(" Worker total: ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN6);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

REQUIRED (hr, worker):
1 2.000000
2 2.000000
3 2.000000
4 2.000000
5 2.000000
6 2.000000
7 8.000000
8 8.000000
9 8.000000
10 8.000000
11 4.000000
12 4.000000
13 3.000000
14 3.000000
15 3.000000
16 3.000000
17 6.000000
18 6.000000
19 5.000000
20 5.000000
21 5.000000
22 5.000000
23 3.000000
24 3.000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 16.000000
Objective bound: 16.000000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
Hour: 2, Required: 2 Collectors, Start work at: 5 On duty: 6 Surplus: 4
Hour: 3, Required: 2 Collectors, Start work at: 1 On duty: 6 Surplus: 4
Hour: 4, Required: 2 Collectors, Start work at: 1 On duty: 7 Surplus: 5
Hour: 5, Required: 2 Collectors, Start work at: 1 On duty: 8 Surplus: 6
Hour: 6, Required: 2 Collectors, Start work at: 1 On duty: 4 Surplus: 2
Hour: 12, Required: 4 Collectors, Start work at: 1 On duty: 4 Surplus: 0
Hour: 14, Required: 3 Collectors, Start work at: 1 On duty: 3 Surplus: 0
Hour: 15, Required: 3 Collectors, Start work at: 1 On duty: 3 Surplus: 0
Hour: 16, Required: 3 Collectors, Start work at: 2 On duty: 4 Surplus: 1
Hour: 17, Required: 6 Collectors, Start work at: 1 On duty: 6 Surplus: 0
Hour: 18, Required: 6 Collectors, Start work at: 1 On duty: 6 Surplus: 0

Worker total: 16
GOAL

A hospital works with a 24/7 customer service. The requirements are distributed according which shift.

TIMETABLE

• SHIFT1 08-12 hr
• SHIFT2 12-16 hr
• SHIFT3 16-20 hr
• SHIFT4 20-00 hr
• SHIFT5 00-04 hr
• SHIFT6 04-08 hr

Minimize the number of nurses at work for 24 Hours
MODEL:
SETS:
DAYS: REQUIRED, START, ONDUTY;
ENDSETS
DATA:
! Days required
! Timetable
DAYS, REQUIRED =
SHIFT1 50 ! 8-12;
SHIFT2 60 ! 12-16;
SHIFT3 50 ! 16-20;
SHIFT4 40 ! 20-0;
SHIFT5 30 ! 0-4;
SHIFT6 20; ! 4-8;
ENDDATA
SUBMODEL MIN7:
[OBJ]
MIN = @SUM(DAYS(I): START(I));
@FOR(DAYS(J):
ONDUTY(J) = @SUM(DAYS(I) | I #LE# 5: START(@WRAP(J - I + 1, 6)));
ONDUTY(J) >= REQUIRED(J));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! data block;
@WRITE(" REQUIRED:", @NEWLINE(1));
@TABLE(REQUIRED);
@WRITE(" SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN7);
! Solution report;
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(DAYS(D):
DAYS(D),%-6s), " Nurses ", START(D), " On duty:", ONDUTY(D), " Surplus: ", ONDUTY(D) - REQUIRED(D),@NEWLINE(1));
@WRITE(" Nurses total:",@FORMAT(OBJ,'%2.0f'),@NEWLINE(1));
! Bar chart of required vs. actual staffing;
@CHARTBAR("Staffing Schedule", !Chart title;
"Day", !X-Axis label;
"Employees", !Y-Axis label;
"Employees Required", !Legend 1;
REQUIRED, !Attribute 1;
"Employees On Duty", !Legend 2;
ONDUTY !Attribute 2);
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MIN7);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

REQUIRED NURSES PER SHIFT:
SHIFT1 50.00000
SHIFT2 60.00000
SHIFT3 50.00000
SHIFT4 40.00000
SHIFT5 30.00000
SHIFT6 20.00000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 60.00000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
SHIFT1 Required: 50 Nurses Start: 40 On duty: 50 Surplus: 0
SHIFT2 Required: 60 Nurses Start: 10 On duty: 60 Surplus: 0
SHIFT3 Required: 50 Nurses Start: 0 On duty: 50 Surplus: 0
SHIFT4 Required: 40 Nurses Start: 10 On duty: 60 Surplus: 20
SHIFT5 Required: 30 Nurses Start: 0 On duty: 60 Surplus: 30
SHIFT6 Required: 20 Nurses Start: 0 On duty: 20 Surplus: 0
Nurses total: 60
GOAL

The maintenance of a theme park operates 24 Hours a day. The work day is 8 hours a day and shifts occur every 4 hours.

TIMETABLE

- **SHIFT1** 24-04 hr
- **SHIFT2** 04-08 hr
- **SHIFT3** 08-12 hr
- **SHIFT4** 12-16 hr
- **SHIFT5** 16-20 hr
- **SHIFT6** 20-24 hr

The maintenance supervisor wants to define the minimum number of employees at each shift in order to meet the minimum needs required, thus determining the minimum number of employees.
MODEL:
SETS:
DAYS: REQUIRED, START, ONDUTY;
ENDSETS
DATA:
! Days required
Timetable;
DAYS, REQUIRED =
SHIFT1 90 ! 24-04;
SHIFT2 215 ! 04-08;
SHIFT3 250 ! 08-12;
SHIFT4 165 ! 12-16;
SHIFT5 300 ! 16-20;
SHIFT6 125; ! 20-24;
ENDDATA
SUBMODEL MIN8:
[OBJ] MIN = @SUM(DAYS(I): START(I));
@FOR(DAYS(J):
 ONDUTY(J) = @SUM(DAYS(I) | I #LE# 5: START(@WRAP(J - I + 1, 6)));
 ONDUTY(J) >= REQUIRED(J));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" REQUIRED WORKER PER SHIFT: ", @NEWLINE(1));
@TABLE(REQUIRED);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN8);
! Solution report;
@WRITE(" ", @NEWLINE(1));
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(DAYS(D): '
 ', DAYS(D),' ', "Required:
 ', @FORMAT(REQUIRED(D),'%4.0f'), ' Worker ', 'Start:
 ', @FORMAT(START(D),'%4.0f'), ' On duty:',
 @FORMAT(ONDUTY(D),'%4.0f'), ' Surplus: ',
 @FORMAT(ONDUTY(D) - REQUIRED(D),'%3.0f'),
 @NEWLINE(1));
@WRITE(" Worker total:',24*'
 ', @FORMAT(OBJ,'%2.0f'),
 @NEWLINE(1));
! Bar chart of required vs. actual staffing;
@CHARTBAR
 'Staffing Schedule', !Chart title;
 'Shift', !X-Axis label;
 'Worker', !Y-Axis label;
 'Worker Required', !Legend 1;
 REQUIRED, !Attribute 1;
 'Worker On Duty', !Legend 2;
 ONDUTY !Attribute 2);
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
! @GEN(MIN7);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

REQUIRED WORKER PER SHIFT:
SHIFT1 90.00000
SHIFT2 215.0000
SHIFT3 250.0000
SHIFT4 165.0000
SHIFT5 300.0000
SHIFT6 125.0000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 300.0000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
SHIFT1 Required: 90 Worker Start: 175 On duty: 175 Surplus: 85
SHIFT2 Required: 215 Worker Start: 125 On duty: 300 Surplus: 85
SHIFT3 Required: 250 Worker Start: 0 On duty: 300 Surplus: 50
SHIFT4 Required: 165 Worker Start: 0 On duty: 300 Surplus: 135
SHIFT5 Required: 300 Worker Start: 0 On duty: 300 Surplus: 0
SHIFT6 Required: 125 Worker Start: 0 On duty: 125 Surplus: 0
Worker total: 300
How to optimize cuts of Paper, Iron or Wood Plates, Tubes, Carpe, etc., in a way to minimize losses?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

One company produces newsprint on rolls 1.5 meters wide and 70 meters long. The customers request for the next month follow below:

<table>
<thead>
<tr>
<th>Order</th>
<th>Rolls</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>70 m</td>
<td>80 cm</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>70 m</td>
<td>60 cm</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>70 m</td>
<td>50 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutting Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Useful Width

<table>
<thead>
<tr>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
</tr>
<tr>
<td>1.3</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.1</td>
</tr>
<tr>
<td>1.5</td>
</tr>
</tbody>
</table>

Scraps

<table>
<thead>
<tr>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Elaborate the model of form to minimize the losses opting.

The following is the block of data for use in the model:
MODEL:
SETS:
PRODUCT : SCRAPS, PRODUCE;
RESOURCE: ORDER;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, ORDER =
R80CM 70
R60CM 100
R50CM 120;
! Products attributes;
PRODUCT, SCRAPS =
CS1 10
CS2 20
CS3 30
CS4 40
CS5 0;
! Required
USAGE =
1 1 0 0 0 ! R80CM;
1 0 2 1 0 ! R60CM;
0 1 0 1 3; ! R50CM;
ENDDATA
SUBMODEL MIN1:
[OBJ] MIN = @SUM(PRODUCT(p): SCRAPS(p) * PRODUCE(p));
! The order constraints;
@FOR(RESOURCE(r):
 [CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) = ORDER(r);
 @GIN(PRODUCE));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" CUTTING SCHEME (Rolls of 70m x 1.50 m):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" SCRAPS (cm):", @NEWLINE(1));
@TABLE(SCRAPS);
@WRITE(" ORDER (Rolls: (70 m x 80, 60, 50 cm):", @NEWLINE(1));
@TABLE(ORDER);
@WRITE(" SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN1);
!Solution report;
@WRITE(" IDEAL CUTTING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(I) | PRODUCE(I) #GT# 0: ' Cutting Scheme:',
 @FORMAT(PRODUCE(I),'%2.0f'), ' was used: ',
 @FORMAT(PRODUCE(I),'%4.1f'), ' rollers x scraps p/roll: ',
 @FORMAT(SCRAPS(I),'%6.1f'),' cm = total scraps:','
 @FORMAT(SCRAPS(I) * PRODUCE(I),'%7.1f'),' cm',
 @NEWLINE(1));
@WRITE(" TOTAL: ", 16*' ',
 @FORMAT(@SUM(PRODUCT(I): PRODUCE(I)),'%9.0f'), ' rollers', 40*' ',
 @FORMAT(@SUM(PRODUCT(I): SCRAPS(I) * PRODUCE(I)),'%7.1f'),' cm',
 @NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

CUTTING SCHEME (Rolls of 70 m x 1.50 m):

<table>
<thead>
<tr>
<th></th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
<th>CS4</th>
<th>CS5</th>
</tr>
</thead>
<tbody>
<tr>
<td>R80CM</td>
<td>1.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>R60CM</td>
<td>1.000000</td>
<td>0.000000</td>
<td>2.000000</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>R50CM</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>3.000000</td>
</tr>
</tbody>
</table>

SCRAPS (cm):

<table>
<thead>
<tr>
<th></th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
<th>CS4</th>
<th>CS5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>10.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2</td>
<td>20.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS3</td>
<td>30.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS4</td>
<td>40.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS5</td>
<td>0.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORDER (Rolls: (70 m x 80,60,50 cm):

<table>
<thead>
<tr>
<th></th>
<th>R80CM</th>
<th>R60CM</th>
<th>R50CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>R80CM</td>
<td>70.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R60CM</td>
<td>100.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R50CM</td>
<td>120.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION:

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION:
Global optimal solution found.
Objective value: 1150.000
Objective bound: 1150.000
Infeasibilities: 0.000000

IDEAL CUTTING PROGRAM:
Cutting Scheme: CS1 was used: 70 rollers x scraps p/roll: 10.0 cm = total scraps: 700.0
Cutting Scheme: CS3 was used: 15 rollers x scraps p/roll: 30.0 cm = total scraps: 450.0
Cutting Scheme: CS5 was used: 40 rollers x scraps p/roll: 0.0 cm = total scraps: 0.0
TOTAL: 125 rollers 1150.0
GOAL

The company orders iron bars according to the order below and has 7 meters bars. To minimize losses, the cut-off scheme was developed. The information used in the model is described below:

<table>
<thead>
<tr>
<th>Order</th>
<th>Cutting Scheme (bars 7 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bars</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Useful</td>
<td>m</td>
</tr>
<tr>
<td>Scraps</td>
<td>m</td>
</tr>
</tbody>
</table>

Develop the model in a way to minimize losses.
MODEL:
SETS:
PRODUCT : SCRAP, PRODUCE;
RESOURCE: ORDER;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
 Resource attributes;
 RESOURCE, ORDER =
 Item1_Bars_2m 50
 Item2_Bars_3m 60
 Item3_Bars_4m 90;
 Products attributes;
 PRODUCT, SCRAP =
 CS1 3
 CS2 4
 CS3 5
 CS4 1
 CS5 2
 CS6 1
 CS7 1
 CS8 3;
 Required USAGE =
 CS1 2
 CS2 0
 CS3 1
 CS4 1
 CS5 0
 CS6 3
 CS7 0
 CS8 0
 ! Item1_Bars_2m;
 0 1 0 0 1 2 0 0
 ! Item2_Bars_3m;
 0 0 0 1 0 0 0 1
 ! Item3_Bars_4m;
ENDDATA
SUBMODEL MIN2:
[OBJ] MIN = @SUM(PRODUCT(p): SCRAP(p) * PRODUCE(p));
! The order constraints;
@FOR(RESOURCE(r):
 [CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) = ORDER(r);
 @GIN(PRODUCE));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" CUTTING STOCK - Bar 6 m:", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " SCRAPs (m):", @NEWLINE(1));
@TABLE(SRAP);
@WRITE(" ", @NEWLINE(1), " ORDER (Bars):", @NEWLINE(1));
@TABLE(ORDER);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MIN2);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL CUTTING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(I) | PRODUCE(I) #GT# 0: ' Cutting: ',
 @FORMAT(PRODUCT(I),'-3s'),', was used:',
 @FORMAT(PRODUCE(I),'%3.0f'), ' bars x scraps p/bar:',
 @FORMAT(SRAP(I),='%2.0f'), ' m = Scrap total:',
 @FORMAT(SRAP(I) * PRODUCE(I),='%5.1f'),' m',
 @NEWLINE(1));
@WRITE(" TOTAL:\n", @NEWLINE(1),
 @FORMAT(@SUM(PRODUCT(I): PRODUCE(I),'%9.0f'), ' bars', 35**',
 @FORMAT(@SUM(PRODUCT(I): SCRAPS(I) * PRODUCE(I),'%8.1f'),' m',
 @NEWLINE(2));
! To see the corresponding model scalar, remove (!) From the line below;
! @GEN(MIN2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>CUTTING STOCK - Bar 6 m:</th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
<th>CS4</th>
<th>CS5</th>
<th>CS6</th>
<th>CS7</th>
<th>CS8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM1_BARS_2M</td>
<td>2.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>3.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>ITEM2_BARS_3M</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>2.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>ITEM3_BARS_4M</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

| SCRAPS (m): |
CS1	3.000000
CS2	4.000000
CS3	5.000000
CS4	1.000000
CS5	2.000000
CS6	1.000000
CS7	1.000000
CS8	3.000000

| ORDER (Bars): |
ITEM1_BARS_2M	50.00000
ITEM2_BARS_3M	60.00000
ITEM3_BARS_4M	90.00000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION:
Global optimal solution found.
Objective value: 200.0000
Objective bound: 200.0000
Infeasibilities: 0.000000

IDEAL CUTTING PROGRAM:
Cutting: CS4, was used: 50 bars x scraps p/bar: 1 m = Scrap total: 50.0 m
Cutting: CS6, was used: 30 bars x scraps p/bar: 1 m = Scrap total: 30.0 m
Cutting: CS8, was used: 40 bars x scraps p/bar: 3 m = Scrap total: 120.0 m
TOTAL: 120 bars 200.0 m
GOAL

A company has ordered to cut boards according to the order below, using plates with 6 meters x 3 meters. To minimize the leftovers, the cutting scheme was elaborated. The information used in the model is described below:

<table>
<thead>
<tr>
<th>Plates</th>
<th>L</th>
<th>W</th>
<th>m^2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>3</td>
<td>3</td>
<td>630</td>
<td>un</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>4</td>
<td>3</td>
<td>720</td>
<td>un</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>2</td>
<td>320</td>
<td>un</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Useful m^2: 18, 13, 16, 12, 4, 9, 12

Scraps m^2: 0, 5, 2, 6, 14, 9, 6

Elaborate the model in a way to minimize the leftovers by opting for the best cutting scheme.
MODEL:
SETS:
PRODUCT : SCRAPS, PRODUCE;
RESOURCE: ORDER;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, ORDER =
Item1_Plates_3m_x_3m 70
Item2_Plates_4m_x_3m 60
Item3_Plates_2m_x_2m 80;
! Products attributes;
PRODUCT, SCRAPS =
CS1 0
CS2 5
CS3 2
CS4 6
CS5 14
CS6 9
CS7 6;
! Required CS1 CS2 CS3 CS4 CS5 CS6 CS7;
USAGE =
2 1 0 0 0 1 0 ! Item1_Plates_3m_x_3m;
0 0 1 0 0 0 1 ! Item2_Plates_4m_x_3m;
0 1 1 3 1 0 0; ! Item3_Plates_2m_x_2m;
ENDDATA
SUBMODEL MIN3:
[OBJ]
MIN = @SUM(PRODUCT(p): SCRAPS(p) * PRODUCE(p));
! The order constraints;
@FOR(RESOURCE(r):
[CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) = ORDER(r));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Data block;
@WRITE(" CUTTING STOCK - Plates 6m x 3m: ", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " SCRAPS (un): ", @NEWLINE(1));
@TABLE(SCRAPS);
@WRITE(" ", @NEWLINE(1), " ORDER (Plates): ", @NEWLINE(1));
@TABLE(ORDER);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN3);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL CUTTING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(I) | PRODUCE(I) #GT# 0: ' Cutting: ',
@FORMAT(PRODUCT(I),'-3s'),', was used:',
@FORMAT(PRODUCE(I),'%3.0f'), ' plates x scraps p/plates:',
@FORMAT(SCRAPS(I),'%2.0f'), ' un = total scraps:',
@FORMAT(SCRAPS(I) * PRODUCE(I),'%4.0f'),' un',
@NEWLINE(1));
@WRITE(" TOTAL:" , 11*' ';
@FORMAT@SUM(PRODUCT(I): PRODUCE(I)),'%9.0f'), ' plates', 40*' ',
@FORMAT@SUM(PRODUCT(I): SCRAPS(I) * PRODUCE(I)),'%8.0f'),' un',
@NEWLINE(2));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MIN3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

CUTTING STOCK - Plates 6 m x 3 m:

<table>
<thead>
<tr>
<th></th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
<th>CS4</th>
<th>CS5</th>
<th>CS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM1_PLATES_3M_X_3M</td>
<td>2.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>ITEM2_PLATES_4M_X_3M</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>ITEM3_PLATES_2M_X_2M</td>
<td>0.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>3.00000</td>
<td>1.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
<th>CS4</th>
<th>CS5</th>
<th>CS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM1_PLATES_3M_X_3M</td>
<td>0.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM2_PLATES_4M_X_3M</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM3_PLATES_2M_X_2M</td>
<td>0.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCRAPS (un):

<table>
<thead>
<tr>
<th></th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
<th>CS4</th>
<th>CS5</th>
<th>CS6</th>
<th>CS7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>0.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2</td>
<td>5.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS3</td>
<td>2.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS4</td>
<td>6.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS5</td>
<td>14.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS6</td>
<td>9.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS7</td>
<td>6.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORDER (plates):

<table>
<thead>
<tr>
<th></th>
<th>ITEM1_PLATES_3M_X_3M</th>
<th>70.00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM2_PLATES_4M_X_3M</td>
<td>60.00000</td>
<td></td>
</tr>
<tr>
<td>ITEM3_PLATES_2M_X_2M</td>
<td>80.00000</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION:

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

Global optimal solution found.

Objective value: 160.0000
Objective bound: 160.0000
Infeasibilities: 0.00000

IDEAL CUTTING PROGRAM:

Cutting: CS1, was used: 35 plates x scraps p/plates: 0 un = total scraps: 0 un
Cutting: CS3, was used: 60 plates x scraps p/plates: 2 un = total scraps: 120 un
Cutting: CS4, was used: 7 plates x scraps p/plates: 6 un = total scraps: 40 un
TOTAL: 102 plates 160 un
GOAL

A distributor of stocked wood veneer stores in the standard length of 25 meters, which can be cut into lengths that vary according to the customer’s need.

This distributor has just received an order of 5000 plates of 7 meters, 1200 plates of 9 meters and 300 plates of 11 meters.

The distributor’s manager identified six ways to cut the 25 meters boards to meet this request. The six cuts are summarized in the cut stock.

One possibility would be to cut the 25 meters plate into three 7 meters pieces and not cut 9 meters and 11 meters. The information used in the model is described below:

<table>
<thead>
<tr>
<th>Plates</th>
<th>Length</th>
<th>Total</th>
<th>Order</th>
<th>Cutting Scheme (plates 25 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>7</td>
<td>35000</td>
<td>un</td>
<td>1 2 2 1 0 0</td>
</tr>
<tr>
<td>1200</td>
<td>9</td>
<td>10800</td>
<td>un</td>
<td>0 1 0 2 1 0</td>
</tr>
<tr>
<td>300</td>
<td>11</td>
<td>3300</td>
<td>un</td>
<td>0 0 1 0 1 2</td>
</tr>
</tbody>
</table>

| Useful Length | m | 21 23 25 25 20 22 |
| Scraps | m | 4 2 0 0 5 3 |

It is important to note that 21 m will be cut, and there will be a loss of 4 m of plywood. The manager wants to fulfill the request by using as few 25 m plates as possible.
MODEL:
SETS:
PRODUCT : SCRAPS, PRODUCE;
RESOURCE: ORDER;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resources attributes;
RESOURCE, ORDER =
Item1_Plate__7m_long 5000
Item2_Plate__9m_long 1200
Item3_Plate__11m_long 300;
! Products attributes;
PRODUCT, SCRAPS =
CS1 4
CS2 2
CS3 0
CS4 0
CS5 5
CS6 3;
! Required
CS1 CS2 CS3 CS4 CS5 CS6;
USAGE =
0 1 0 2 1 0 ! Item1_Plate__7m_long;
0 0 1 0 1 2; ! Item2_Plate__9m_long;
0 0 0 1 1 2; ! Item3_Plate__11m_long:
ENDDATA
SUBMODEL MIN4:
[OBJ]
MIN = @SUM(PRODUCT(p): SCRAPS(p) * PRODUCE(p));
! The order constraints;
@FOR(RESOURCE(r):
[CON] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) = ORDER(r);
@GIN(PRODUCE));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO', 1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN', 0);
! Data block;
@WRITE(" CUTTING STOCK - Plates 25m Long:", @NEWLINE(1));
@TABLE(USAGE);
@WRITE("", @NEWLINE(1), " SCRAPS (m):", @NEWLINE(1));
@TABLE(SCRAPS);
@WRITE("", @NEWLINE(1), " ORDER (Plates):", @NEWLINE(1));
@TABLE(ORDER);
@WRITE("", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN4);
! Solution report;
@WRITE(" IDEAL CUTTING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(I) | PRODUCE(I) #GT# 0: ' Cutting: ',
@FORMAT(PRODUCT(I), '-3s'),', was used:',
@FORMAT(PRODUCT(I), '%6.0f'), ' plates x scraps p/plates:',
@FORMAT(SCRAPS(I), '%2.0f'), 'm = total scraps:',
@FORMAT(SCRAPS(I) * PRODUCE(I), '%5.0f'),' m','
@NEWLINE(1));
@WRITE(" TOTAL: ", '16'';',
@FORMAT(@SUM(PRODUCT(I): PRODUCE(I), '%6.0f'), ' plates', 41'' ',
@FORMAT(@SUM(PRODUCT(I): SCRAPS(I) * PRODUCE(I), '%6.0f'), ' m',
@NEWLINE(2));
!To see the corresponding model scalar, remove (l) From the line below;
!@GEN(MIN4);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

CUTTING STOCK - Plates 25m Long:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
<th>CS4</th>
<th>CS5</th>
<th>CS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM1_PLATES__7M_LONG</td>
<td>3.000000</td>
<td>2.000000</td>
<td>2.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>ITEM2_PLATES__9M_LONG</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>2.000000</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>ITEM3_PLATES_11M_LONG</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>2.000000</td>
</tr>
</tbody>
</table>

SCRAPS (m):

CS1	4.000000
CS2	2.000000
CS3	0.000000
CS4	0.000000
CS5	5.000000
CS6	3.000000

ORDER (Plates):

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Plates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM1_PLATES__7M_LONG</td>
<td>5000.000</td>
</tr>
<tr>
<td>ITEM2_PLATES__9M_LONG</td>
<td>1200.000</td>
</tr>
<tr>
<td>ITEM3_PLATES_11M_LONG</td>
<td>300.0000</td>
</tr>
</tbody>
</table>

SOLUTION:

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

Global optimal solution found.

Objective value: 5075.000

Objective bound: 5075.000

Infeasibilities: 0.000000

IDEAL CUTTING PROGRAM:

Cutting: CS1, was used: 668 plates x scraps p/plates: 4m = total scraps: 2672 m
Cutting: CS2, was used: 1200 plates x scraps p/plates: 2m = total scraps: 2400 m
Cutting: CS3, was used: 298 plates x scraps p/plates: 0m = total scraps: 0 m
Cutting: CS6, was used: 1 plates x scraps p/plates: 3m = total scraps: 3 m

TOTAL: 2167 plates 5075 m
GOAL

Carpe International has received an application to provide carpets for a new office building, as per the quantities below:

<table>
<thead>
<tr>
<th>Item</th>
<th>Rolls</th>
<th>Length</th>
<th>Width</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>4000</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>20000</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>9000</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Useful Width m 12 13 12 17 18 16

| Scraps | m | 2 | 1 | 2 | 1 | 0 | 2 |

The company can purchase two types of carpet rolls, which must be cut to fit the order. One of the types has:

- 14 meters wide by 100 meters long and costs $1000 per roll; and the other
- 18 meters wide by 100 meters long and costs $1400 per roll.

The manager wants to determine how many rolls each type should buy and how they should be cut so as to have the lowest possible cost.
MODEL:
SETS:
PRODUCT : SCRAPS, COST, PRODUCE;
RESOURCE: ORDER;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, ORDER =
Item1_4000m_x__4m 40
Item2_20000m_x__9m 200
Item3_9000m_x_12m 90;
! Products attributes;
PRODUCT, SCRAPS, COST =
CS1 2 1000
CS2 1 1000
CS3 2 1000
CS4 1 1400
CS5 0 1400
CS6 2 1400;
! Required
CS1 CS2 CS3 CS4 CS5 CS6;
USAGE = 3 1 0 0 1 2 0 1 0 1 1 0 0 1 0 1 0;
ENDDATA
SUBMODEL MIN5:
[OBJ] MIN = @SUM(PRODUCT(p); SCRAPS(p) * PRODUCE(p));
@FOR(RESOURCE(r):
[CON] @SUM(PRODUCT(p); USAGE(r, p) * PRODUCE(p)) = ORDER(r););
ENDSUBMODEL
CALC:
@SET('TERSEO',1); ! Output level: 0=Verbose, 1-Terse;
@SET('STAWIN',0); ! Post status windows, 1 Yes, 0 No;
! Data block;
@WRITE(" CUTTING SCHEME: ", @NEWLINE(1));
@WRITE(" CS1 .. CS3 (Rolls: 100 m x 14 m)", " ", " CS4 .. CS6 (Rolls: 100 m x 18 m)", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " COST per rolls:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SCRAPS (m):", @NEWLINE(1));
@TABLE(SCRAPS);
@WRITE(" ", @NEWLINE(1), " ORDER (Rolls):", @NEWLINE(1));
@TABLE(ORDER);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MIN5);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL CUTTING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(I) | PRODUCE(I) #GT# 0: ' Cutting Scheme:',
@FORMAT(PRODUCT(I),'-3s'),', was used:',
@FORMAT(PRODUCE(I),'%3.0f'), ' rollers x ', 'scraps p/roll:',
@FORMAT(SCRAPS(I),'%3.0f'), ' m = Total ',
@FORMAT(SCRAPS(I) * PRODUCE(I),'%3.0f'), ' m',
@NEWLINE(1));
@WRITE(" TOTAL SCRAPS: ', 53*' ',' ", @DOUBLE(@SUM(PRODUCT(I):SCRAPS(I) * PRODUCE(I)),'%9.0f'),
@NEWLINE(2));
@WRITEFOR(PRODUCT(I) | PRODUCE(I) #GT# 0: ' Cutting Scheme:',
@FORMAT(PRODUCT(I),'-3s'),', was used:',
@FORMAT(PRODUCE(I),'%3.0f'), ' rollers x Cost: $',
@FORMAT(COST(I),'%7.2f'), ' = Total: $',
@FORMAT(COST(I) * PRODUCE(I),'%9.2f'),
@NEWLINE(1));
@WRITE(" TOTAL COST: ', 56*' '$', @DOUBLE(@SUM(PRODUCT(I):COST(I) * PRODUCE(I)),'%9.2f'),
@NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

CUTTING SCHEME:
CS1 .. CS3 (Rolls: 100 m x 14 m)
CS4 .. CS6 (Rolls: 100 m x 18 m)

<table>
<thead>
<tr>
<th></th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
<th>CS4</th>
<th>CS5</th>
<th>CS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM1_4000M_X_4M</td>
<td>3.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>2.000000</td>
</tr>
<tr>
<td>ITEM2_20000M_X_9M</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>2.000000</td>
<td>0.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>ITEM3_9000M_X_12M</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

COST per rolls:
CS1 1000.000
CS2 1000.000
CS3 1000.000
CS4 1400.000
CS5 1400.000
CS6 1400.000

SCRAPS (m):
CS1 2.000000
CS2 1.000000
CS3 2.000000
CS4 1.000000
CS5 0.000000
CS6 2.000000

ORDER (Rolls):
ITEM1_4000M_X_4M 40.00000
ITEM2_20000M_X_9M 200.0000
ITEM3_9000M_X_12M 90.00000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION:
Global optimal solution found.
Objective value: 200.0000
Objective bound: 200.0000
Infeasibilities: 0.000000

IDEAL CUTTING PROGRAM:
Cutting Scheme:CS3, was used: 50 rollers x scraps p/roll: 2 m = Total 100 m
Cutting Scheme:CS4, was used: 100 rollers x scraps p/roll: 1 m = Total 100 m
Cutting Scheme:CS5, was used: 40 rollers x scraps p/roll: 0 m = Total 0 m
TOTAL SCRAPS: 200 m

Cutting Scheme:CS3, was used: 50 rollers x Cost: $1000.00 = Total: $50000.00
Cutting Scheme:CS4, was used: 100 rollers x Cost: $1400.00 = Total: $140000.00
Cutting Scheme:CS5, was used: 40 rollers x Cost: $1400.00 = Total: $56000.00
TOTAL COST: $246000.00
GOAL

COOLDOT Appliance Company produces a wide range of large household appliances such as refrigerators and stoves. A significant portion of the raw material cost is due to the purchase of sheet steel.

Currently, sheet steel is purchased in coils in three different widths: 72 inches, 48 inches, and 36 inches.

In the manufacturing process, eight different widths of sheet steel are required: 60, 56, 42, 38, 34, 24, 15, and 10 inches.

All uses require the same quality and thickness of steel. A continuing problem is trim waste. For example, one way of cutting a 72-inch width coil is to slit it into one 38-inch width coil and two 15-inch width coils.

There will then be a 4-inch coil of trim waste that must be scrapped.

The cost per linear foot of the three different raw material widths are 15 cents for the 36-inch width, 19 cents for the 48-inch width, and 28 cents for the 72-inch width.

Simple arithmetic reveals the costs per inch x foot of the three widths are $\frac{0.416667}{36}$ cents/(inch x foot), $\frac{0.395833}{48}$ cents/(inch x foot), and $\frac{0.388889}{72}$ cents/(inch x foot) for the 36, 48, and 72-inch widths, respectively.

The coils may be slit in any feasible solution. The possible cutting patterns for efficiently slitting the three raw material widths are tabulated below.

For example, pattern C4 corresponds to cutting a 72-inch width coil into one 24-inch width and four 10-inch widths with 8-inch left over as trim waste.

The lengths of the various widths required in this planning period are:

The raw material availabilities this planning period are 1600 Ft. of the 72-inch coils and 10000 Ft. each of the 48-inch and 36-inch widths.

How many feet of each pattern should be cut to minimize cost while satisfying the requirements of the various widths?

Can you predict beforehand the amount of 36-inch material used?
MODEL:
SETS:
! Each raw material has a: RWDTH=Raw material width, T=Total used, W=Waste total, C=Cost per unit,
WCAST=Waste cost, S= Supply available;
RM: RWDTH, T, W, C, WCAST, S;
! Each Finished good has a: FWDTH Width, REQ = units Required, X=Xtra produced;
FG: FWDTH, REQ, X;
PATTERN: USERM, WASTE, AMT;
PXF(PATTERN, FG): NUM;
ENDSETS
DATA:
! Finished good attributes;
FG, FWDTH, REQ =
F60 60 500
F56 56 400
F42 42 300
F38 38 450
F34 34 350
F24 24 100
F15 15 800
F10 10 1000;
! Raw material attributes;
RM, RWDTH, C, WCAST, S =
R72 72 0.28 0.00398889 16000 0
R48 48 0.19 0.00395833 10000
R36 36 0.15 0.00416667 10000;
! Index of R.M. that each pattern uses;
USERM = 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3;
! How many of each F.G. are in each R.M. pattern;
! Number to Cut of the Required Width.......................... Pattern;
NUM= 60° 56° 42° 38° 34° 30° 29° 24° 15° 10°;
1 0 0 0 0 0 0 0 0 1 IA1-72°;
0 1 0 0 0 0 0 1 0 IA2-72°;
0 1 0 0 0 0 0 0 1 IA3-72°;
0 0 1 0 0 0 1 0 0 IA4-72°;
0 0 1 0 0 0 0 2 0 IA5-72°;
0 0 1 0 0 0 0 0 1 IA6-72°;
0 0 1 0 0 0 0 0 3 IA7-72°;
0 0 0 1 1 0 0 0 0 IA8-72°;
0 0 0 1 0 1 0 0 1 IA9-72°;
0 0 0 0 0 0 0 0 0 IB0-72°;
0 0 0 0 0 0 0 1 0 IB1-72°;
0 0 0 0 0 0 0 0 3 IB2-72°;
0 0 0 0 0 0 0 0 1 IB3-72°;
0 0 0 0 0 0 1 1 0 IB4-72°;
0 0 0 0 0 0 0 2 0 IB5-72°;
0 0 0 0 0 0 0 1 2 IB6-72°;
0 0 0 0 0 0 0 0 3 IB7-72°;
0 0 0 0 0 0 0 0 1 IB8-72°;
0 0 0 0 0 0 2 1 0 IB9-72°;
0 0 0 0 0 0 0 2 0 IC0-72°;
0 0 0 0 0 0 0 1 3 IC1-72°;
0 0 0 0 0 0 0 0 0 IC2-72°;
0 0 0 0 0 0 1 1 0 IC3-72°;
0 0 0 0 0 0 0 2 0 IC4-72°;
0 0 0 0 0 0 0 0 4 IC5-72°;
0 0 0 0 0 0 0 0 3 IC6-72°;
0 0 0 0 0 0 0 0 2 IC7-72°;
0 0 0 0 0 0 0 0 1 IC8-72°;
0 0 0 0 0 0 0 0 0 IC9-72°;
0 0 0 0 0 0 0 0 0 IC0-80°;
0 0 0 0 0 0 0 0 0 IC1-80°;
0 0 0 0 0 0 0 0 0 IC2-80°;
0 0 0 0 0 0 0 0 0 IC3-80°;
0 0 0 0 0 0 0 0 0 IC4-80°;
0 0 0 0 0 0 0 0 0 IC5-80°;
0 0 0 0 0 0 0 0 0 IC6-80°;
0 0 0 0 0 0 0 0 0 IC7-80°;
0 0 0 0 0 0 0 0 0 IC8-80°;
0 0 0 0 0 0 0 0 0 IC9-80°;
0 0 0 0 0 0 0 0 0 ID0-80°;
0 0 0 0 0 0 0 0 0 ID1-80°;
0 0 0 0 0 0 0 0 0 ID2-80°;
0 0 0 0 0 0 0 0 0 ID3-80°;
0 0 0 0 0 0 0 0 0 ID4-80°;
0 0 0 0 0 0 0 0 0 ID5-80°;
0 0 0 0 0 0 0 0 0 ID6-80°;
0 0 0 0 0 0 0 0 0 ID7-80°;
0 0 0 0 0 0 0 0 0 ID8-80°;
0 0 0 0 0 0 0 0 0 ID9-80°;
0 0 0 0 0 0 0 0 0 IE0-80°;
0 0 0 0 0 0 0 0 0 IE1-80°;
0 0 0 0 0 0 0 0 0 IE2-80°;
0 0 0 0 0 0 0 0 0 IE3-80°;
0 0 0 0 0 0 0 0 3 IE4-80°;

ENDDATA
SUBMODEL MIN6:
[OBJ] MIN = TPROFIT;
TPROFIT = @SUM(RM(I); C(I)*T(I));
! Compute total cost of waste;
TOTWASTE = @SUM(RM(I); WCOST(I)*W(I));
@FOR(RM(I)):
T(I) = @SUM(PATTERN(K) USERM(K) #EQ# I: AMT(K));
! Raw material supply constraints;
T(I) <= S(I));
! Must produce at least amount required of each F.G.;
@FOR(FG(J)):
@SUM(PATTERN(K): NUM(K,J)*AMT(K)) = REQ(J) + X(J));
! Turn this on to get integer solutions;
@FOR(PATTERN(K)):
@GIN(AMT(K));
! Waste related computations;
! Compute waste associated with each pattern;
@FOR(PATTERN(K)):
WASTE(K) = RWDTH(USERM(K)) - @SUM(FG(J): FWDTH(J)*NUM(K,J));
! Waste for each R.M. in this solution;
@FOR(RM(I)):
W(I) = @SUM(PATTERN(K) USERM(K) #EQ# I: WASTE(K)*AMT(K));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Fixed line length
@SET('LINLEN',120);
! Precision in digits for standard solution reports;
@SET('PRECIS',6);
! Data block;
@WRITE(" DATA:", @NEWLINE(1));
@WRITE(" CUTTING SCHEME:", @NEWLINE(1));
@TABLE(NUM);
@WRITE("", @NEWLINE(1), " WHIDTH (inches):", @NEWLINE(1));
@TABLE(FWDTH);
@WRITE("", @NEWLINE(1), " PROFIT (Waste):", @NEWLINE(1));
@TABLE(C);
@WRITE("", @NEWLINE(1), " AVAILABLE PROVIDER(Waste):", @NEWLINE(1));
@TABLE(S);
@WRITE("", @NEWLINE(1), " REQUIRED (feet):", @NEWLINE(1));
@TABLE(REQ);
@WRITE("", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN6);
! Solution report;
@WRITE("", @NEWLINE(1), " IDEAL CUTTING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RM(J)):
@FORMAT(RWDTH(J),'%3.0f',' inches, used: ',
@FORMAT(T(J),'%4.0f',' waste x unity cost: $',
@FORMAT(C(J),'%4.2f'), ' = Total: $',
@FORMAT(T(J) * C(J),'%7.3f'),
@NEWLINE(1));
@WRITE(" TOTAL: ", 1",", @FORMAT(@SUM(RM(J); RWDTH(J),'%6.0f'), ' inches', 8",
@FORMAT(@SUM(RM(J); T(J),'%4.0f'), ' waste',30", "$',
@FORMAT(@SUM(RM(J); T(J) * C(J),'%7.3f'),
@NEWLINE(2));
!To see the corresponding model scalar, remove () From the line below;
!@GEN(MIN6);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
 CUTTING SCHEME:

<table>
<thead>
<tr>
<th></th>
<th>F60</th>
<th>F56</th>
<th>F42</th>
<th>F38</th>
<th>F34</th>
<th>F24</th>
<th>F15</th>
<th>F10</th>
<th>WIDTH (inches):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>F60 60.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>F42 42.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>F38 38.0000</td>
</tr>
<tr>
<td>4</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>F34 34.0000</td>
</tr>
<tr>
<td>5</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>F24 24.0000</td>
</tr>
<tr>
<td>6</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>F15 15.0000</td>
</tr>
<tr>
<td>7</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>F10 10.0000</td>
</tr>
<tr>
<td>8</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>9</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>10</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>11</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

SOLUTION:

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
 Global optimal solution found.
 Objective value: 466.340
 Objective bound: 466.340
 Infeasibilities: 0.0000

Model Class: MILP

IDEAL CUTTING PROGRAM:

Raw Width: 48 inches, used: 1599 waste x unity cost: $0.28 = Total: $447.720
Raw Width: 36 inches, used: 900 waste x unity cost: $0.19 = Total: $18.620
Raw Width: 36 inches, used: 0 waste x unity cost: $0.15 = Total: $0.000
TOTAL: 156 inches 1697 waste $466.340
How to fulfill an order for an aluminum alloy, for example, considering the availability of different types of ore in stock and the technical needs of the composition respecting limits, in order to maximize profits?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- **Metallurgy**
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

A mining company wants to fulfill a contract of supply of 4 million tons per year of the Sinter Feed ore and, for that, it has the following minerals:

- Mineral A: Profit of $0.03 per kg - Stock of 600 kg;
- Mineral B: Profit of $0.05 per kg - Stock of 800 kg;
- Alloy Y: Alloy obtained by the selling profit of $0.08 per kg

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Alloy</th>
<th>Mineral A</th>
<th>Mineral B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>%</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Iron</td>
<td>%</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Aluminum</td>
<td>%</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>Iron Ore Stock</td>
<td>kg</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>Profit (p/kg)</td>
<td>$</td>
<td>0.08</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Regarding the aluminum alloy to be produced, it must meet the technical specifications that limit the amount of explicit chemical elements in the alloy column (Minimum of the Silicon and Iron, and Maximum of the Aluminum).
MODEL:
SETS:
RESOURCE::
PRODUCT: PROFIT, STOCK, PRODUCE;
RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS
DATA:
! Resources attributes;
 RESOURCE =
 SILICON
 IRON
 ALUMINUM;
! Product attributes;
 PRODUCT, PROFIT, STOCK =
 ALLOY 0.08 0
 MIN_A 0.03 600
 MIN_B 0.05 800;
! Required
 USAGE = 13 15 10 ! SILICON;
 10 13 5 ! IRON;
 80 72 85 ! ALUMINUM;
ENDDATA
SUBMODEL MAX1:
[OBJ] MAX = PROFIT(1) * PRODUCE(1) - PROFIT(2) * PRODUCE(2) - PROFIT(3) * PRODUCE(3);
! Equation of profit;
PRODUCE(1) - PRODUCE(2) - PRODUCE(3) = 0;
! Restriction of Silicon use;
USAGE(1,1)/100 * PRODUCE(1) - USAGE(1,2)/100 * PRODUCE(2) - USAGE(1,3)/100 * PRODUCE (3) >=0;
! Restriction of Iron use;
USAGE(2,1)/100 * PRODUCE(1) - USAGE(2,2)/100 * PRODUCE(2) - USAGE(2,3)/100 * PRODUCE (3) >=0;
! Restriction of Aluminum use;
USAGE(3,1)/100 * PRODUCE(1) - USAGE(3,2)/100 * PRODUCE(2) - USAGE(3,3)/100 * PRODUCE (3) <= 0;
! Iron ore stock A;
PRODUCE(2) <= STOCK(2);
! Iron ore stock B;
PRODUCE(3) <= STOCK(3);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:"," @NEWLINE(1), " FORMULA (%):"," @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " PROFIT:" , @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MAX1);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
 @FORMAT(PRODUCT(J),'-3s'), ' Profit p/kg: $',
 @FORMAT(PROFIT(J),'%4.2f'), ' x ', @IF(J #EQ# 1, '+Alloy obtained:', '-Used stock '), ' ',
 @FORMAT(PRODUCE(J), '%4.0f'), 'kg Total: $',
 @FORMAT(PROFIT(J) * PRODUCE(J), '%3.0f'), @IF(J #EQ# 1, '+', '-'),
 @NEWLINE(1));
@WRITE(" Total: ', @FORMAT(-1*(PRODUCE(1)-PRODUCE(2)-PRODUCE(3)), '%4.0f'), 'kg', 9*' ', '$',
 @FORMAT(OBJ, '%3.0f'),
 @NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (%):

<table>
<thead>
<tr>
<th>ALLOY</th>
<th>MIN_A</th>
<th>MIN_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILICON</td>
<td>13.00000</td>
<td>15.00000</td>
</tr>
<tr>
<td>IRON</td>
<td>10.00000</td>
<td>13.00000</td>
</tr>
<tr>
<td>ALUMINUM</td>
<td>80.00000</td>
<td>72.00000</td>
</tr>
</tbody>
</table>

PROFIT:

<table>
<thead>
<tr>
<th>ALLOY</th>
<th>MIN_A</th>
<th>MIN_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOY</td>
<td>0.080000</td>
<td></td>
</tr>
<tr>
<td>MIN_A</td>
<td>0.030000</td>
<td></td>
</tr>
<tr>
<td>MIN_B</td>
<td>0.050000</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

Global optimal solution found.
Objective value: 49.00000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:

<table>
<thead>
<tr>
<th>ALLOY</th>
<th>Profit p/kg: $0.08 x +Alloy obtained: 1300kg Total: $104+</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN_A</td>
<td>Profit p/kg: $0.03 x -Used stock : 500kg Total: $ 15-</td>
</tr>
<tr>
<td>MIN_B</td>
<td>Profit p/kg: $0.05 x -Used stock : 800kg Total: $ 40-</td>
</tr>
<tr>
<td>Total:</td>
<td>0kg $ 49</td>
</tr>
</tbody>
</table>
A metallurgist wants to produce 2000 kg of aluminum alloy at minimal cost by mixing various ores. The alloy must meet engineering requirements that specify the maximum and minimum of various chemical elements that make it up.

The minimum and maximum requirements for each material are as follows:

- Minimum limit: MAT3 = 400 kg and MAT4=100 kg ;
- Maximum limit: MAT1 = 200 kg , MAT2=750 kg, MAT3=800 kg, MAT4=700 kg, MAT5=1500 kg;

RHS
- Minimum composition: AL=1500 kg and IS=250;
- Maximum composition: FE= 60 kg, CU=100 kg, MN=40 kg, MG=30 kg, SI=300 kg;

The MIN Limit line refers to the quantity that is desired to be forced into this process (for some reason, such as release of space, it is desired to force MAT3 and MAT4 raw materials in).

The ore cost and the composition of each of the chemical elements of the alloy are shown

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Mat 1</th>
<th>Mat 2</th>
<th>Mat 3</th>
<th>Mat 4</th>
<th>Mat 5</th>
<th>Al-Pure</th>
<th>Si-Pure</th>
<th>Min (kg)</th>
<th>Max (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE</td>
<td>%</td>
<td>0.15</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>60</td>
</tr>
<tr>
<td>CU</td>
<td>%</td>
<td>0.03</td>
<td>0.05</td>
<td>0.08</td>
<td>0.02</td>
<td>0.06</td>
<td>0.01</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>MN</td>
<td>%</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>MG</td>
<td>%</td>
<td>0.02</td>
<td>0.03</td>
<td>-</td>
<td>-</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>AL</td>
<td>%</td>
<td>0.70</td>
<td>0.75</td>
<td>0.80</td>
<td>0.75</td>
<td>0.80</td>
<td>0.97</td>
<td>-</td>
<td>1500</td>
</tr>
<tr>
<td>SI</td>
<td>%</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
<td>0.12</td>
<td>0.02</td>
<td>0.01</td>
<td>0.97</td>
<td>250</td>
</tr>
<tr>
<td>Limit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min kg</td>
<td>-</td>
<td>-</td>
<td>400</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Max kg</td>
<td>200</td>
<td>750</td>
<td>800</td>
<td>700</td>
<td>1500</td>
<td>Infinite</td>
<td>Infinite</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cost</td>
<td>$</td>
<td>0.03</td>
<td>0.08</td>
<td>0.17</td>
<td>0.12</td>
<td>0.15</td>
<td>0.21</td>
<td>0.38</td>
<td>-</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
 RESOURCE, RHS_MIN, RHS_MAX;
 PRODUCT, COST, LIMIT_MIN, LIMIT_MAX, PRODUCE;
RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS
DATA:
 RESOURCES, RHS_MIN, RHS_MAX =
 FE 1 60;
 CU 1 100;
 MN 1 40;
 MG 1 30;
 AL 1500 0;
 SI 250 300;
 PRODUCTS, COST, LIMIT_MIN, LIMIT_MAX =
 MAT1 0.03 0 200;
 MAT2 0.08 0 750;
 MAT3 0.17 400 800;
 MAT4 0.12 100 700;
 MAT5 0.15 0 1500;
 AL_PURE 0.21 0 0;
 SI_PURE 0.38 0 0;
 USAGE =
 MAT1 0.15 0.04 0.02 0.04 0.02 0.01 0.03;
 MAT2 0.03 0.05 0.08 0.02 0.06 0.01 0.00;
 MAT3 0.02 0.04 0.01 0.02 0.02 0.00 0.00;
 MAT4 0.02 0.03 0.00 0.00 0.01 0.00 0.00;
 MAT5 0.02 0.06 0.06 0.02 0.00 0.00 0.00;
 AL_PURE 0.70 0.75 0.80 0.75 0.97 0.97 0.00;
 SI_PURE 0.70 0.75 0.80 0.75 0.97 0.97 0.00;
ENDDATA
SUBMODEL MIN2:
 @FOR(PRODUCT(I))
 [OBJ] MIN = @SUM(PRODUCT(I): COST(I) * PRODUCE(I));
 [LIM] @SUM(PRODUCT(I): PRODUCE(I)) = 2000;
 [MAX_FE] @SUM(PRODUCT(I): USAGE(1,I) * PRODUCE(I)) <= 60 ;
 [MAX_CU] @SUM(PRODUCT(I): USAGE(2,I) * PRODUCE(I)) <= 100 ;
 [MAX_MN] @SUM(PRODUCT(I): USAGE(3,I) * PRODUCE(I)) <= 40 ;
 [MAX_MG] @SUM(PRODUCT(I): USAGE(4,I) * PRODUCE(I)) <= 30 ;
 [MIN_AL] @SUM(PRODUCT(I): USAGE(5,I) * PRODUCE(I)) >= 1500 ;
 [MAX_SI] @SUM(PRODUCT(I): USAGE(6,I) * PRODUCE(I)) <= 300 ;
 [MIN_SI] @SUM(PRODUCT(I): USAGE(6,I) * PRODUCE(I)) >= 250 ;
ENDSUBMODEL
ENDDATA
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (%):
 FE 0.1500000 0.0400000 0.0200000 0.0400000 0.0200000 0.0100000 0.0300000
 CU 0.0300000 0.0500000 0.0800000 0.0200000 0.0600000 0.0100000
 MN 0.0200000 0.0400000 0.0100000 0.0200000 0.0200000 0.0000000 0.0000000
 MG 0.0200000 0.0300000 0.0800000 0.0000000 0.0100000 0.0000000 0.0000000
 AL 0.7000000 0.7500000 0.8000000 0.7500000 0.8000000 0.9700000 0.9700000

COST:
MAT1 0.0300000
MAT2 0.0000000
MAT3 0.1700000
MAT4 0.1200000
MAT5 0.1500000
AL_PURE 0.2100000
SI_PURE 0.3800000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 296.2166
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
MAT2 Produce: 665kg x Unit cost: $0.08 = Total: $ 53.23
MAT3 Produce: 490kg x Unit cost: $0.17 = Total: $ 83.34
MAT4 Produce: 424kg x Unit cost: $0.12 = Total: $ 50.90
AL_PURE Produce: 300kg x Unit cost: $0.21 = Total: $ 62.92
SI_PURE Produce: 121kg x Unit cost: $0.38 = Total: $ 45.82
Total: 2000kg $296.22
GOAL

A special alloy consisting of iron, coal, silicon and nickel can be obtained by mixing these pure minerals in addition to 2 types of recovered materials:

Recovered Material 1 (RM1)
Composition: iron - 60%; coal - 20%; silicon - 20%. Cost per kg: R $ 0.20.

Recovered Material 2 (RM2)
Composition: iron - 70%; coal: 20%; silicon - 5%; nickel - 5%. Cost per kg: $ 0.25.

The alloy should have the following final composition:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>RM1</th>
<th>RM2</th>
<th>Iron</th>
<th>Coal</th>
<th>Silicon</th>
<th>Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM1 %</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>RM2 %</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>20</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Min %</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>15</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Max %</td>
<td>-</td>
<td>-</td>
<td>65</td>
<td>20</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Cost p/kg</td>
<td>$</td>
<td></td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
<td>0.20</td>
</tr>
</tbody>
</table>

What should be the composition of the mixture in terms of available materials, with lower cost per kg?
MODEL:
SETS:
RESOURCE;
PRODUCT: COST, PRODUCE;
RXP(RESOURCE,PRODUCT): USAGE;
ENDSETS
DATA:
! Resources attributes;
RESOURCE =
MIN_IRON
MAX_IRON
MIN_COAL
MAX_COAL
MIN_SILICON
MAX_SILICON
MIN_NICKEL
MAX_NICKEL
RHS_MIN
RHS_MAX;
! Product attributes;
PRODUCT,
COST =
RM1 0.20
RM2 0.25
IRON 0.30
COAL 0.20
SILICON 0.28
NICKEL 0.50;
! Required
RM1 RM2 IRON COAL SILICON NICKEL;
USAGE =
60 70 1 0 0 0
60 70 1 0 0 0
20 20 1 0 0 0
20 20 1 0 0 0
20 20 0 1 0 0
20 20 0 1 0 0
20 0 0 0 1 0
5 5 0 0 0 1
5 5 0 0 0 1
0 0 60 15 15 5
0 0 65 20 20 8;
ENDDATA
SUBMODEL MIN3:
[OBJ] MIN = @SUM(PRODUCT(I): COST(I) * PRODUCE(I));
[RM1A] @SUM(PRODUCT(I)| I #LE# 3: USAGE(1,I)/100 * PRODUCE(I)) >= 0.60 ;
RM1(60%)+RM2(70%)+ Iron min 60%;
[RM1B] @SUM(PRODUCT(I)| I #LE# 3: USAGE(2,I)/100 * PRODUCE(I)) <= 0.65 ;
RM1(60%)+RM2(70%)+ Iron max 65%;
[RM1C] @SUM(PRODUCT(I)| I #LE# 2 #OR# I #EQ# 4: USAGE(3,I)/100 * PRODUCE(I)) >= 0.15;
RM1(20%) + RM2(20%) + MIN COAL (15%);
[RM1D] @SUM(PRODUCT(I)| I #LE# 2 #OR# I #EQ# 4: USAGE(4,I)/100 * PRODUCE(I)) <= 0.20 ;
RM1(20%) + RM2(20%) + MAX COAL (20%);
[RM1E] @SUM(PRODUCT(I)| I #LE# 2 #OR# I #EQ# 5: USAGE(5,I)/100 * PRODUCE(I)) >= 0.15;
RM1(20%) + RM2(20%) + MIN Silicon (15%);
[RM1F] @SUM(PRODUCT(I)| I #LE# 2 #OR# I #EQ# 5: USAGE(6,I)/100 * PRODUCE(I)) <= 0.20 ;
RM1(20%) + RM2(20%) + MAX Silicon (20%);
[RM2A] @SUM(PRODUCT(I)| I #LE# 2 #OR# I #EQ# 6: USAGE(7,I)/100 * PRODUCE(I)) >= 0.05 ;
RM2(5%) + MIN Nickel (5%);
[RM2B] @SUM(PRODUCT(I)| I #LE# 2 #OR# I #EQ# 6: USAGE(8,I)/100 * PRODUCE(I)) <= 0.08 ;
RM2(5%) + MAX Nickel (8%);
[LIMIT] @SUM(PRODUCT(I): PRODUCE(I)) = 1;
ENDSUBMODEL
CALC:
@SET('TERSEO',1);
@SET('STAWIN',0);
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (%):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE("", @NEWLINE(1), " COST:", @NEWLINE(1));
@TABLE(COST);
@WRITE("", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(MIN3);
@WRITE("", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' Use:', @FORMAT(PRODUCT(J),'%2.0f',' kg of ','),
@FORMAT(PRODUCT(J),'~4s'), 'meets the lowest cost chemical composition: $',
@FORMAT(COST(J),'%4.2f'),
@NEWLINE(1));
@WRITE("", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MIN3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

FORMULA (%):

<table>
<thead>
<tr>
<th></th>
<th>RM1</th>
<th>RM2</th>
<th>IRON</th>
<th>COAL</th>
<th>SILICON</th>
<th>NICKEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN_IRON</td>
<td>60.00000</td>
<td>70.00000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>MAX_IRON</td>
<td>60.00000</td>
<td>70.00000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>MIN_COAL</td>
<td>20.00000</td>
<td>20.00000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>MAX_COAL</td>
<td>20.00000</td>
<td>20.00000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>MIN_SILICON</td>
<td>20.00000</td>
<td>20.00000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>MAX_SILICON</td>
<td>20.00000</td>
<td>20.00000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>MIN_NICKEL</td>
<td>5.000000</td>
<td>5.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>MAX_NICKEL</td>
<td>5.000000</td>
<td>5.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>RHS_MIN</td>
<td>0.000000</td>
<td>0.000000</td>
<td>60.00000</td>
<td>15.00000</td>
<td>15.00000</td>
<td>5.000000</td>
</tr>
<tr>
<td>RHS_MAX</td>
<td>0.000000</td>
<td>0.000000</td>
<td>60.00000</td>
<td>20.00000</td>
<td>20.00000</td>
<td>8.000000</td>
</tr>
</tbody>
</table>

COST:

<table>
<thead>
<tr>
<th></th>
<th>RM1</th>
<th>RM2</th>
<th>IRON</th>
<th>COAL</th>
<th>SILICON</th>
<th>NICKEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM1</td>
<td>0.2000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM2</td>
<td>0.2500000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRON</td>
<td>0.3000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COAL</td>
<td>0.2000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILICON</td>
<td>0.2800000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICKEL</td>
<td>0.5000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION:

Global optimal solution found.

Objective value: 0.2000000

Infeasibilities: 0.0000000

IDEAL PLANNING PROGRAM:

Use: 1kg of RM1 meets the lowest cost chemical composition: $0.20
GOAL

One company plans to produce an alloy composed of two minerals A, B and sold for $0.08 per kilo.

<table>
<thead>
<tr>
<th>Resources / Periods</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min kg</td>
<td>800</td>
<td>900</td>
<td>900</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Max kg</td>
<td>1000</td>
<td>1100</td>
<td>1200</td>
<td>1100</td>
<td>1000</td>
<td>900</td>
</tr>
<tr>
<td>Purchase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ore A $</td>
<td>0.3</td>
<td>0.31</td>
<td>0.33</td>
<td>0.32</td>
<td>0.31</td>
<td>0.3</td>
</tr>
<tr>
<td>Ore B $</td>
<td>0.4</td>
<td>0.51</td>
<td>0.55</td>
<td>0.54</td>
<td>0.52</td>
<td>0.5</td>
</tr>
<tr>
<td>Maximum Stocking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ore A kg</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>600</td>
</tr>
<tr>
<td>Ore B kg</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>800</td>
</tr>
<tr>
<td>Cost $</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Price (p/kg)</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

The storage capacity of each miner (A, B) is 1000 kilos per month. The ore purchased will only be available the following month.

No purchase was made prior to January. The cost of stocking the raw material is $0.001 per kilo per month.

The final product can’t be stored; The final stock in June should be: A = 600 and B = 800.

You do not want to make a mining purchase in the month of June. Initial inventories are sufficient for January production and were purchased at: A $0.030 and B $0.040 per kilo.

The goal is to define purchasing and manufacturing planning to maximize profit.
MODEL:
SETS:
! Specification attributes;
SPEC: XL, XUA, XUB;
! Products attributes;
PRODUCT:
COST, ! Stock sots;
PRICE, ! Sale price;
P_ORE_A, ! Purchase ore A;
P_ORE_B, ! Purchase ore B;
S_ORE_A, ! Stock ore A;
S_ORE_B, ! Stock ore B;
D_MIN, ! Demand Minimum;
D_MAX, ! Demand Maximum;
L, ! Profit;
UA, ! ORE A used in the month ;
UB, ! ORE B used in the month ;
EA, ! ORE A stock at the end of the month;
EB, ! ORE B stock at the end of the month;
CA, ! ORE A purchased in the month;
CB; ! ORE B purchased in the month;
ENDSETS
DATA:
! Specification attributes (%);
SPEC, XL, XUA, XUB =
FE 0.13 0.15 0.10
SI 0.10 0.13 0.05
AL 0.80 0.72 0.85;
! Products attributes;
PRODUCT, COST, PRICE, P_ORE_A, P_ORE_B, S_ORE_A, S_ORE_B, D_MIN, D_MAX =
JAN 0.001 0.08 0.030 0.050 1000 1000 800 1000
FEB 0.001 0.08 0.031 0.051 1000 1000 900 1100
MAR 0.001 0.08 0.033 0.055 1000 1000 900 1200
APR 0.001 0.08 0.032 0.054 1000 1000 800 1100
MAY 0.001 0.08 0.031 0.052 1000 1000 800 1100
JUN 0.001 0.08 0.030 0.050 600 800 800 900;
ENDDATA
SUBMODEL MAX4:

[OBJ] MAX = PRI - CPA - CPB - CSA - CSB;

! Price;
PRI = @SUM(PRODUCT(J): PRICE(J) * L(J));

! Cost purchase ORE A;
CPA = @SUM(PRODUCT(J): P_ORE_A(J) * CA(J));

! Cost purchase ORE B;
CPB = @SUM(PRODUCT(J): P_ORE_B(J) * CB(J));

! Cost stocking ORE A;
CSA = @SUM(PRODUCT(J): COST(J) * EA(J));

! Cost stocking ORE B;
CSB = @SUM(PRODUCT(J): COST(J) * EB(J));

! LEAGUE OF MASS BALANCE WITH ORE:
@FOR(PRODUCT(J): L(J) + LX + UA(J) - UB(J) = 0);

! MAXIMUM CAPACITY OF STORAGE ORE A;
@FOR(PRODUCT(J): [EA] EA(J) <= S_ORE_A(J));

! MAXIMUM CAPACITY OF STORAGE ORE B;
@FOR(PRODUCT(J): [EB] EB(J) <= S_ORE_B(J));

! ORE MASS BALANCE A (USE, STOCK AND PURCHASE);
[UA1] UA(1) + UA1 + EA(1) = 600;
@FOR(PRODUCT(J) | J #GT# 1:[UA] UA(J) + UA2 + EA(J-1) - EA(J) - CA(J-1) = 0);

! ORE MASS BALANCE B (USE, STOCK AND PURCHASE);
[UB1] UB(1) + UB1 + EB(1) = 800;
@FOR(PRODUCT(J) | J #GT# 1:[UB] UB(J) + UB2 + EB(J-1) - EB(J) - CB(J-1) = 0);

! FINAL PRODUCT SALES DEMAND;
@FOR(PRODUCT(J): [DEMMAX] L(J) <= D_MAX(J));
@FOR(PRODUCT(J): [DEMMIN] L(J) >= D_MIN(J));

! LEAGUE SPECIFICATION RESTRICTIONS;
! SPECIFICATION TO FE;
@FOR(PRODUCT(J): [SPC_FE] XL(1)*L(J) - XUA(1)*UA(J) - XUB(1)*UB(J) >= 0);

! SPECIFICATION TO SI;
@FOR(PRODUCT(J): [SPC_SI] XL(2)*L(J) - XUA(2)*UA(J) - XUB(2)*UB(J) >= 0);

! SPECIFICATION TO AL;
@FOR(PRODUCT(J): [SPC_AL] XL(3)*L(J) - XUA(3)*UA(J) - XUB(3)*UB(J) <= 0);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Terminal page width (0: none);
@SET('LINLEN',120);

! Data block:
@WRITE(" DATA: ", @NEWLINE(1), " STOCK ORE A (kg):", @NEWLINE(1));
@TABLE(S_ORE_A);
@WRITE(" ", @NEWLINE(1), " STOCK ORE B (kg):", @NEWLINE(1));
@TABLE(S_ORE_B);
@WRITE(" ", @NEWLINE(1), " MINIMUM DEMAND (kg):", @NEWLINE(1));
@TABLE(D_MIN);
@WRITE(" ", @NEWLINE(1), " MAXIMUM DEMAND (kg):", @NEWLINE(1));
@TABLE(D_MAX);
@WRITE(" ", @NEWLINE(1), " PURCHASE COST ORE A (kg):", @NEWLINE(1));
@TABLE(P_ORE_A);
@WRITE(" ", @NEWLINE(1), " PURCHASE COST ORE B (kg):", @NEWLINE(1));
@TABLE(P_ORE_B);
@WRITE(" ", @NEWLINE(1), " STOCK COST (P/kg): ", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SALE PRICE (P/kg): ", @NEWLINE(1));
@TABLE(PRICE);

! Execute sub-model;
@SOLVE(MAX4);

! Solution report;
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITE(' Month: ', 43*' ', ' ALL', @NEWLINE(1));
@WRITE(' Produce: ', 39*' ', @FORMAT(@SUM(PRODUCT(J): D_MAX(J)), '%5.0f'), ' kg',
 @NEWLINE(1));

@WRITE(' + Revenue: ', 37*' ', '$ ', @FORMAT(PRI, '%6.2f'),
 @NEWLINE(1));
@WRITE(' - Purchase cost: ', 31*' ', '$ ', @FORMAT(CPA + CPB, '%6.2f'),
 @NEWLINE(1));
@WRITE(' - Stocking cost: ', 30*' ', '$ ', @FORMAT(CSA + CSB, '%6.2f'),
 @NEWLINE(1));
@WRITE(' = Profit: ', 37*' ', '$ ',
 @FORMAT(PRI - CPA - CPB - CSA - CSB, '%7.2f'),
 @NEWLINE(2));

! To see the corresponding model scalar, remove (!) From the line below;
! @GEN(MAX4);
ENDCALC
END
DATA:

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

STOCK ORE A (kg):
- JAN: 1000.000
- FEB: 1000.000
- MAR: 1000.000
- APR: 1000.000
- MAY: 1000.000
- JUN: 600.000

STOCK ORE B (kg):
- JAN: 1000.000
- FEB: 1000.000
- MAR: 1000.000
- APR: 1000.000
- MAY: 1000.000
- JUN: 800.000

MINIMUM DEMAND (kg):
- JAN: 800.000
- FEB: 900.000
- MAR: 900.000
- APR: 800.000
- MAY: 800.000
- JUN: 800.000

MAXIMUM DEMAND (kg):
- JAN: 1000.000
- FEB: 1100.000
- MAR: 1200.000
- APR: 1100.000
- MAY: 1100.000
- JUN: 900.000

PURCHASE COST ORE A (kg):
- JAN: 0.030000
- FEB: 0.031000
- MAR: 0.033000
- APR: 0.032000
- MAY: 0.031000
- JUN: 0.030000

PURCHASE COST ORE B (kg):
- JAN: 0.050000
- FEB: 0.051000
- MAR: 0.055000
- APR: 0.054000
- MAY: 0.052000
- JUN: 0.050000

STOCK COST (P/kg $):
- JAN: 0.001000
- FEB: 0.001000
- MAR: 0.001000
- APR: 0.001000
- MAY: 0.001000
- JUN: 0.001000

SALE PRICE (P/kg $):
- JAN: 0.080000
- FEB: 0.080000
- MAR: 0.080000
- APR: 0.080000
- MAY: 0.080000
- JUN: 0.080000

SOLUTION:

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

Global optimal solution found.
Objective value: 254.9000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
Month: ALL
Produce: 6400 kg
+ Revenue: $496.00
- Purchase cost: $239.30
- Stocking cost: $1.80
= Profit: $254.90
GOAL

One company wants to produce 3 aluminum alloys through two types of ore A, B, in which one wants to use the existing maximum stock to maximize profit from sales.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Alloy 1</th>
<th>Alloy 2</th>
<th>Alloy 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILICON %</td>
<td>13</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>IRON %</td>
<td>10</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>ALUMINUM %</td>
<td>80</td>
<td>72</td>
<td>85</td>
</tr>
<tr>
<td>Stock kg</td>
<td>-</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>Price (p/kg) $</td>
<td>8.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Keywords:
- Alloy
- Mineral
- Chemical
- Blend

Source:
- Book 1
- Page 74
MODEL:

SETS:
 RESOURCE:;
 PRODUCT: PROFIT, STOCK, PRODUCE;
 RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS

DATA:
 ! Resources attributes;
 RESOURCE = SILICON I RON ALUMINUM;
 ! Products attributes;
 PRODUCT, PROFIT, STOCK = ALLOY1_Y 8 0 ALLOY1_A 3 600 ALLOY1_B 5 800 ALLOY2_Y 7 0 ALLOY2_A 3 600 ALLOY2_B 5 800 ALLOY3_3 10 0 ALLOY3_A 3 600 ALLOY3_B 5 800;
 ! Required
 USAGE = 13 15 10 14 15 10 13 15 10 80 72 85 83 72 85 ! SILICON;
 10 13 5 11 13 5 8 13 5 ! IRON;
 80 72 85 78 72 85 83 72 85 ! ALUMINUM;
ENDDATA

SUBMODEL MAX5:

[OBJ] MAX = PROFIT(1)/100 * PRODUCE(1) + PROFIT(4)/100 * PRODUCE(4) + PROFIT(7)/100 * PRODUCE(7) - PROFIT(2)/100 * PRODUCE(2) - PROFIT(3)/100 * PRODUCE(3) - PROFIT(5)/100 * PRODUCE(5) - PROFIT(6)/100 * PRODUCE(6) - PROFIT(8)/100 * PRODUCE(8) - PROFIT(9)/100 * PRODUCE(9);

!Equalization of profit Allow 1 (Sales PROFIT - PROFIT PROFIT);
 @SUM(PRODUCT(I)|I #LE# 3: @IF(I #EQ# 1, PRODUCE(I),-1*PRODUCE(I))) = 0;
!Silicon (Total weight of the A + B alloy divided by the total weight of Y must be less than or equal to 13%);
 USAGE(1,1)/100 * PRODUCE(1) - USAGE(1,2)/100 * PRODUCE(2) - USAGE(1,3)/100 * PRODUCE(3) > 0;
!Iron (Total weight of the A + B alloy divided by the total weight of Y must be less than or equal to 10%);
 USAGE(2,1)/100 * PRODUCE(1) - USAGE(2,2)/100 * PRODUCE(2) - USAGE(2,3)/100 * PRODUCE(3) > 0;
!Aluminum (Total weight of the A + B alloy divided by the total weight of Y must be greater than or equal to 80%);
 USAGE(3,1)/100 * PRODUCE(1) - USAGE(3,2)/100 * PRODUCE(2) - USAGE(3,3)/100 * PRODUCE(3) < 0;

!Equalization of profit Allow 2 (Sales PROFIT - PROFIT PROFIT);
 @SUM(PRODUCT(I)|I #EQ# 4 #OR# I #EQ# 5 #OR# I #EQ# 6: @IF(I #EQ# 4, PRODUCE(I),-1*PRODUCE(I))) = 0;
!Silicon (Total weight of the A + B alloy divided by the total weight of Y must be less than or equal to 14%);
 USAGE(1,4)/100 * PRODUCE(4) - USAGE(1,5)/100 * PRODUCE(5) - USAGE(1,6)/100 * PRODUCE(6) > 0;
!Iron (Total weight of the A + B alloy divided by the total weight of Y must be less than or equal to 11%);
 USAGE(2,4)/100 * PRODUCE(4) - USAGE(2,5)/100 * PRODUCE(5) - USAGE(2,6)/100 * PRODUCE(6) > 0;
!Aluminum (Total weight of the A + B alloy divided by the total weight of Y must be greater than or equal to 78%);
 USAGE(3,4)/100 * PRODUCE(4) - USAGE(3,5)/100 * PRODUCE(5) - USAGE(3,6)/100 * PRODUCE(6) < 0;

!Equalization of profit Allow 3 (Sales PROFIT - PROFIT PROFIT);
 @SUM(PRODUCT(I)|I #EQ# 7 #OR# I #EQ# 8 #OR# I #EQ# 9: @IF(I #EQ# 7, PRODUCE(I),-1*PRODUCE(I))) = 0;
!Silicon (Total weight of the A + B alloy divided by the total weight of Y must be less than or equal to 13%);
 USAGE(1,7)/100 * PRODUCE(7) - USAGE(1,8)/100 * PRODUCE(8) - USAGE(1,9)/100 * PRODUCE(9) > 0;
!Iron (Total weight of the A + B alloy divided by the total weight of Y must be less than or equal to 8%);
 USAGE(2,7)/100 * PRODUCE(7) - USAGE(2,8)/100 * PRODUCE(8) - USAGE(2,9)/100 * PRODUCE(9) > 0;
!Aluminum (Total weight of the A + B alloy divided by the total weight of Y must be greater than or equal to 72%);
 USAGE(3,7)/100 * PRODUCE(7) - USAGE(3,8)/100 * PRODUCE(8) - USAGE(3,9)/100 * PRODUCE(9) < 0;

! Stock limit restriction;
 @SUM(PRODUCT(I)| I #EQ# 2 #OR# I #EQ# 5 #OR# I #EQ# 8: PRODUCE(I)) <= 600;
 @SUM(PRODUCT(I)| I #EQ# 3 #OR# I #EQ# 6 #OR# I #EQ# 9: PRODUCE(I)) <= 800;
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Terminal page width (0:none);
@SET('LINLEN',120);
! Data block:
@WRITE(" DATA: ", @NEWLINE(1), " FORMULA (%): ", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " PROFIT: ", @NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" ", @NEWLINE(1), " STOCK (kg): ", @NEWLINE(1));
@TABLE(STOCK);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX5);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',PRODUCT(J),' ',
 @FORMAT(PRODUCE(J),'%4.0f'),
 @IF(J #EQ# 5 #OR# J #EQ# 6 #OR# J #EQ# 8 #OR# J #EQ# 9, '-',' '),' kg x Selling price p/kg: $',
 @FORMAT(PROFIT(J)/100,'%4.3f'),' = Total: $',
 @FORMAT(PROFIT(J)/100 * PRODUCE(J),'%3.0f'),
 @IF(J #EQ# 5 #OR# J #EQ# 6 #OR# J #EQ# 8 #OR# J #EQ# 9, '-',' '),
 @NEWLINE(1));
@WRITE(' Total: ',
 @FORMAT(PRODUCE(5) + PRODUCE(6) + PRODUCE(8) + PRODUCE(9),'%4.0f'),' kg (Stock used)',
 @NEWLINE(2));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

FORMULA (%):

<table>
<thead>
<tr>
<th></th>
<th>ALLOY1_Y</th>
<th>ALLOY1_A</th>
<th>ALLOY1_B</th>
<th>ALLOY2_Y</th>
<th>ALLOY2_A</th>
<th>ALLOY2_B</th>
<th>ALLOY3_3</th>
<th>ALLOY3_A</th>
<th>ALLOY3_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMINUM</td>
<td>80.00000</td>
<td>72.00000</td>
<td>85.00000</td>
<td>78.00000</td>
<td>72.00000</td>
<td>85.00000</td>
<td>83.00000</td>
<td>72.00000</td>
<td>85.00000</td>
</tr>
</tbody>
</table>

PROFIT:

<table>
<thead>
<tr>
<th></th>
<th>ALLOY1_Y</th>
<th>ALLOY1_A</th>
<th>ALLOY1_B</th>
<th>ALLOY2_Y</th>
<th>ALLOY2_A</th>
<th>ALLOY2_B</th>
<th>ALLOY3_3</th>
<th>ALLOY3_A</th>
<th>ALLOY3_B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.00000</td>
<td>3.00000</td>
<td>5.00000</td>
<td>7.00000</td>
<td>3.00000</td>
<td>5.00000</td>
<td>10.00000</td>
<td>3.00000</td>
<td>5.00000</td>
</tr>
</tbody>
</table>

STOCK (kg):

<table>
<thead>
<tr>
<th></th>
<th>ALLOY1_Y</th>
<th>ALLOY1_A</th>
<th>ALLOY1_B</th>
<th>ALLOY2_Y</th>
<th>ALLOY2_A</th>
<th>ALLOY2_B</th>
<th>ALLOY3_3</th>
<th>ALLOY3_A</th>
<th>ALLOY3_B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00000</td>
<td>600.0000</td>
<td>800.0000</td>
<td>0.00000</td>
<td>600.0000</td>
<td>800.0000</td>
<td>0.00000</td>
<td>600.0000</td>
<td>800.0000</td>
</tr>
</tbody>
</table>

SOLUTION:

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

Global optimal solution found.
Objective value: 52.00000
Infeasibilities: 0.00000

IDEAL PLANNING PROGRAM:

<table>
<thead>
<tr>
<th></th>
<th>ALLOY2_Y</th>
<th>ALLOY2_A</th>
<th>ALLOY2_B</th>
<th>ALLOY3_3</th>
<th>ALLOY3_A</th>
<th>ALLOY3_B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 kg</td>
<td>538 kg</td>
<td>462 kg</td>
<td>400 kg</td>
<td>62 kg</td>
<td>338 kg</td>
</tr>
<tr>
<td>Selling price p/kg: $0.070</td>
<td>$0.030</td>
<td>$0.050</td>
<td>$0.100</td>
<td>$0.030</td>
<td>$0.050</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>$ 70</td>
<td>$ 16-</td>
<td>$ 23-</td>
<td>$ 40</td>
<td>$ 2-</td>
<td>$ 17-</td>
</tr>
</tbody>
</table>
| Total: | 1400 kg (Stock used)
GOAL

The Pittsburgh Steel (PS) Co. has been contracted to produce a new type of very high carbon steel which has the following tight quality requirements: Carbon Content, Chrome Content, Manganese Content and Silicon Content, PS has the following materials available for mixing up a batch:

At Least (%):
- CARBON 0.030000
- CHROME 0.003000
- MANGANESE 0.013500
- SILICON 0.027000

Not More Than (%):
- CARBON 0.035000
- CHROME 0.004500
- MANGANESE 0.016500
- SILICON 0.030000

A one-ton (2000-Lb.) batch must be blended, which satisfies the quality requirements stated earlier. The problem now is what amounts of each of the eleven materials should be blended together to minimize the cost, but satisfy the quality requirements.

An experienced steel man claims the least cost mix will not use any more than nine of the eleven available raw materials. What is a good blend?

Most of the eleven prices and four quality control requirements are negotiable. Which prices and requirements are worth negotiating?

Note the chemical content of a blend is simply the weighted average of the chemical content of its components. Thus, for example, if we make a blend of 40% Alloy 1 and 60% Alloy 2, the manganese content is $(0.40) \times 60 + (0.60) \times 9 = 29.4$.

Formulation and Solution of the Pittsburgh Steel Blending Problem. The PS blending problem can be formulated as an LP with 11 variables and 13 constraints. The 11 variables correspond to the 11 raw materials from which we can choose.

Four constraints are from the upper usage limits on silicon carbide and steels. Four of the constraints are from the lower quality limits. Another four constraints are from the upper quality limits.

The thirteenth constraint is the requirement that the weight of all materials used must sum to 2000 pounds. Notice only 7 of the 11 raw materials were used. In actual practice, this type of LP was solved on a twice-monthly basis by Pittsburgh Steel.

The purchasing agent used the first solution, including the reduced cost and dual prices, as a guide in buying materials. The second solution later in the month was mainly for the metallurgist’s benefit in making up a blend from the raw materials actually on hand.

Suppose we can pump oxygen into the furnace. This oxygen combines completely with carbon to produce the gas \(\text{CO}_2 \), which escapes. The oxygen will burn off carbon at the rate of 12 pounds of carbon burned off for each 32 pounds of oxygen. Oxygen costs two cents a pound. If you reformulated the problem to include this additional option, would it change the decisions?

The oxygen injection option to burn off carbon is clearly uninteresting because, in the current solution, it is the lower bound constraint rather than the upper bound on carbon that is binding. Thus, burning off-carbon by itself, even if it could be done at no expense, would increase the total cost of the solution.
MODEL:

SETS:
LCOL /
LIM_RM_CB, ! Raw Material available - Carbon;
LIM_RM_SI1, ! Raw Material available - Silicon 1;
LIM_RM_SI2, ! Raw Material available - Silicon 2;
LIM_RM_SI3, ! Raw Material available - Silicon 3;
LIM_CB_MIN, ! Quality requirements, Minimum Carbon;
LIM_CB_MAX, ! Quality requirements, Maximum Carbon;
LIM_CH_MIN, ! Quality requirements, Minimum Chrome;
LIM_CH_MAX, ! Quality requirements, Maximum Chrome;
LIM_MG_MIN, ! Quality requirements, Minimum Manganese;
LIM_MG_MAX, ! Quality requirements, Maximum Manganese;
LIM_SI_MIN, ! Quality requirements, Minimum Silicon;
LIM_SI_MAX, ! Quality requirements, Maximum Silicon;
LIM_FINISH, ! Finish good requirements;
/:LIMIT;

RESOURCE:
COST, ! Cost per pound;
CARBON, ! Percent Carbon;
CHROME, ! Percent Chrome;
MANGANESE, ! Percent Manganese;
SILICON, ! Percent Silicon;
STOCK, ! Amount Available;
PRODUCE; ! Volume produced;

CONTENT:
AT_LEAST, ! Quality requirements;
NOT_MORE_THAN; ! Quality requirements;

ENDSETS

DATA:
! Resources attributes;
RESOURCE, COST, CARBON, CHROME, MANGANESE, SILICON, STOCK =
Pig_Iron1 0.0300 4.0 0.0 0.9 2.25 1.E30
Pig_Iron2 0.0645 0.0 10.0 4.5 15.00 1.E30
Ferro_SI1 0.0650 0.0 0.0 0.0 45.00 1.E30
Ferro_SI2 0.0610 0.0 0.0 0.0 42.00 1.E30
Alloy1 0.1000 0.0 0.0 60.0 18.00 1.E30
Alloy2 0.1300 0.0 20.0 9.0 30.00 1.E30
Alloy3 0.1190 0.0 8.0 33.0 25.00 1.E30
Carbide 0.0800 15.0 0.0 0.0 30.00 20
Steel1 0.0210 0.4 0.0 0.9 0.00 200
Steel2 0.0200 0.1 0.0 0.3 0.00 200
Steel3 0.0195 0.1 0.0 0.3 0.00 200;

! Requirements;
CONTENT, AT_LEAST, NOT_MORE_THAN =
Carbon 0.0300 0.0350
Chrome 0.0030 0.0045
Manganese 0.0135 0.0165
Silicon 0.0270 0.0300;
ENDDATA
SUBMODEL BLD:

[OBJ.] MIN = @SUM(RESOURCE(I): COST(I) * PRODUCE(I));

! Raw material:
LIMIT(1) = STOCK(8);
LIMIT(2) = STOCK(9);
LIMIT(3) = STOCK(10);
LIMIT(4) = STOCK(11);

! Content:
LIMIT(5) = AT_LEAST(1) * 2000;
LIMIT(6) = NOT_MORE_THAN(1) * 2000;
LIMIT(7) = AT_LEAST(2) * 2000;
LIMIT(8) = NOT_MORE_THAN(2) * 2000;
LIMIT(9) = AT_LEAST(3) * 2000;
LIMIT(10) = NOT_MORE_THAN(3) * 2000;
LIMIT(11) = AT_LEAST(4) * 2000;
LIMIT(12) = NOT_MORE_THAN(4) * 2000;

! Finish good requirements:
LIMIT(13) = 2000;

! Raw material availabilities:
[RMCB] PRODUCE(8) <= STOCK(8);
[RMSI1] PRODUCE(9) <= STOCK(9);
[RMSI2] PRODUCE(10) <= STOCK(10);
[RMSI3] PRODUCE(11) <= STOCK(11);

! Carbon content (Quality requirements on):
[CCBA] @SUM(RESOURCE(I): CARBON/100*PRODUCE(I)) >= LIMIT(5);
[CCBN] @SUM(RESOURCE(I): CARBON/100*PRODUCE(I)) <= LIMIT(6);

! Chrome content (Quality requirements on):
[CCHA] @SUM(RESOURCE(I): CHROME/100*PRODUCE(I)) >= LIMIT(7);
[CCHN] @SUM(RESOURCE(I): CHROME/100*PRODUCE(I)) <= LIMIT(8);

! Manganese content (Quality requirements on):
[CMGA] @SUM(RESOURCE(I): MANGANESE/100*PRODUCE(I)) >= LIMIT(9);
[CMGN] @SUM(RESOURCE(I): MANGANESE/100*PRODUCE(I)) <= LIMIT(10);

! Silicon content (Quality requirements on):
[CSIA] @SUM(RESOURCE(I): SILICON/100*PRODUCE(I)) >= LIMIT(11);
[CSIN] @SUM(RESOURCE(I): SILICON/100*PRODUCE(I)) <= LIMIT(12);

! Finish good requirements (Quality requirements on):
[FGR] @SUM(RESOURCE(I): PRODUCE(I)) = LIMIT(13);

ENDSUBMODEL

CALC:

@SET('TERSEO',1); ! Output level: 0=Verbose, 1-Terse;
@SET('STAWIN',0); ! Post status windows, 1 Yes, 0 No;
@SET('LINLEN',120); ! Terminal page width (0:none);
@WRITE(" DATA: ", @NEWLINE(1), " Cost per Pound:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " Percent Carbon:", @NEWLINE(1));
@TABLE(CARBON);
@WRITE(" ", @NEWLINE(1), " Percent Chrome:", @NEWLINE(1));
@TABLE(CHROME);
@WRITE(" ", @NEWLINE(1), " Percent Manganese:", @NEWLINE(1));
@TABLE(MANGANESE);
@WRITE(" ", @NEWLINE(1), " Percent Silicon:", @NEWLINE(1));
@TABLE(SILICON);
@WRITE(" ", @NEWLINE(1), " Amount Available (lb):", @NEWLINE(1));
@TABLE(STOCK);
@WRITE(" ", @NEWLINE(1), " At Least (%):", @NEWLINE(1));
@TABLE(AT_LEAST);
@WRITE(" ", @NEWLINE(1), " Not More Than (%):", @NEWLINE(1));
@TABLE(NOT_MORE_THAN);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE(BLD);
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RESOURCE(I) | PRODUCE(I) > 0: ' ',
 @FORMAT(RESOURCE(I),'-9s'), ' Used: ',
 @FORMAT(PRODUCE(I), '%6.1f'), ' Pounds x Cost per Pound: $',
 @FORMAT(COST(I), '%7.5f'), ' = Total: $',
 @FORMAT(COST(I) * PRODUCE(I), '%8.5f'),
 @NEWLINE(1));

! To see the corresponding model scalar, remove (!) From the line below;
! @GEN(BLD);
ENDCALC

END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

<table>
<thead>
<tr>
<th>DATA:</th>
<th>Percent Manganese:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per Pound:</td>
<td>PIGIRON1 0.000000</td>
</tr>
<tr>
<td>PIGIRON2 0.064500</td>
<td>PIGIRON2 4.500000</td>
</tr>
<tr>
<td>FERRO_SI1 0.065000</td>
<td>FERRO_SI1 0.000000</td>
</tr>
<tr>
<td>FERRO_SI2 0.061000</td>
<td>FERRO_SI2 0.000000</td>
</tr>
<tr>
<td>ALLOY1 0.100000</td>
<td>ALLOY1 60.000000</td>
</tr>
<tr>
<td>ALLOY2 0.130000</td>
<td>ALLOY2 9.000000</td>
</tr>
<tr>
<td>ALLOY3 0.115000</td>
<td>ALLOY3 33.000000</td>
</tr>
<tr>
<td>CARBIDE 0.080000</td>
<td>CARBIDE 0.000000</td>
</tr>
<tr>
<td>STEEL1 0.023000</td>
<td>STEEL1 0.000000</td>
</tr>
<tr>
<td>STEEL2 0.020000</td>
<td>STEEL2 0.300000</td>
</tr>
<tr>
<td>STEEL3 0.019500</td>
<td></td>
</tr>
</tbody>
</table>

Percent Carbon: | Percent Silicon: |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PIGIRON1 4.000000</td>
<td>PIGIRON1 2.250000</td>
</tr>
<tr>
<td>PIGIRON2 0.000000</td>
<td>PIGIRON2 15.000000</td>
</tr>
<tr>
<td>FERRO_SI1 0.000000</td>
<td>FERRO_SI1 45.000000</td>
</tr>
<tr>
<td>FERRO_SI2 0.000000</td>
<td>FERRO_SI2 42.000000</td>
</tr>
<tr>
<td>ALLOY1 0.000000</td>
<td>ALLOY1 10.000000</td>
</tr>
<tr>
<td>ALLOY2 0.000000</td>
<td>ALLOY2 30.000000</td>
</tr>
<tr>
<td>ALLOY3 0.000000</td>
<td>ALLOY3 25.000000</td>
</tr>
<tr>
<td>CARBIDE 15.000000</td>
<td>CARBIDE 30.000000</td>
</tr>
<tr>
<td>STEEL1 0.400000</td>
<td>STEEL1 0.000000</td>
</tr>
<tr>
<td>STEEL2 0.100000</td>
<td>STEEL1 200.0000</td>
</tr>
<tr>
<td>STEEL3 0.100000</td>
<td>STEEL3 0.000000</td>
</tr>
</tbody>
</table>

Percent Chrome: | Amount Available (lb): |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PIGIRON1 0.000000</td>
<td>PIGIRON1 0.10E+31</td>
</tr>
<tr>
<td>PIGIRON2 10.000000</td>
<td>PIGIRON2 0.10E+31</td>
</tr>
<tr>
<td>FERRO_SI1 0.000000</td>
<td>FERRO_SI1 0.10E+31</td>
</tr>
<tr>
<td>FERRO_SI2 0.000000</td>
<td>FERRO_SI2 0.10E+31</td>
</tr>
<tr>
<td>ALLOY1 0.000000</td>
<td>ALLOY1 0.10E+31</td>
</tr>
<tr>
<td>ALLOY2 20.000000</td>
<td>ALLOY2 0.10E+31</td>
</tr>
<tr>
<td>ALLOY3 0.000000</td>
<td>ALLOY3 0.10E+31</td>
</tr>
<tr>
<td>CARBIDE 0.000000</td>
<td>CARBIDE 20.000000</td>
</tr>
<tr>
<td>STEEL1 0.000000</td>
<td>STEEL1 200.0000</td>
</tr>
<tr>
<td>STEEL2 0.000000</td>
<td>STEEL2 200.0000</td>
</tr>
<tr>
<td>STEEL3 0.000000</td>
<td>STEEL3 200.0000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 59.55629
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
| PIGIRON1 Used: 1474.3 Pounds x Cost per Pound: $0.03000 = Total: $44.22792 |
| PIGIRON2 Used: 60.0 Pounds x Cost per Pound: $0.06450 = Total: $3.87000 |
| FERRO_SI2 Used: 22.1 Pounds x Cost per Pound: $0.06100 = Total: $1.34579 |
| ALLOY1 Used: 14.2 Pounds x Cost per Pound: $0.10000 = Total: $1.42389 |
| STEEL1 Used: 200.0 Pounds x Cost per Pound: $0.02100 = Total: $4.20000 |
| STEEL2 Used: 29.4 Pounds x Cost per Pound: $0.02000 = Total: $0.58870 |
| STEEL3 Used: 200.0 Pounds x Cost per Pound: $0.01950 = Total: $3.90000 |
GOAL

In this example, the Pittsburgh Steel Co. has been contracted to produce a new type of steel that has given tight quality requirements.

You have a given amount of materials available for mixing up a batch. A one-ton (2000 lb.) batch must be blended that satisfies the quality requirements stated earlier.

The problem now is what amounts of each of the eleven materials should be blended together so as to minimize the cost but satisfy the quality requirements.

A steel expert claims that the least cost mix will not use any more than nine of the eleven available raw materials. What is a good blend?

Most of the eleven cost and four quality control requirements are negotiable. Which cost and requirements are worth negotiating?

Note that the chemical content of a blend is simply the weighted average of the chemical content of its components.

Thus, for example: If we make a blend of 40 percent Alloy 1 and 60 percent Alloy 2, the manganese content is (0.40)*60+(0.60)*9=29.4.

The information used in the model is described below:

<table>
<thead>
<tr>
<th>Formula</th>
<th>P1</th>
<th>P2</th>
<th>F1</th>
<th>F2</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>CB</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>lb.</td>
<td>0.0400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1500</td>
<td>0.0040</td>
<td>0.0010</td>
<td>0.0010</td>
</tr>
<tr>
<td>Chrome</td>
<td>lb.</td>
<td></td>
<td>0.1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2000</td>
<td>0.0800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>lb.</td>
<td>0.0900</td>
<td>0.0450</td>
<td></td>
<td></td>
<td>0.8000</td>
<td>0.0900</td>
<td>0.3300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>lb.</td>
<td>0.0225</td>
<td>0.1500</td>
<td>0.4500</td>
<td>0.4200</td>
<td>0.1800</td>
<td>0.3000</td>
<td>0.2500</td>
<td>0.3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost p/lb.</td>
<td>$</td>
<td>0.0300</td>
<td>0.0645</td>
<td>0.0650</td>
<td>0.6100</td>
<td>0.1000</td>
<td>0.1300</td>
<td>0.1190</td>
<td>0.0800</td>
<td>0.0210</td>
<td>0.0200</td>
</tr>
</tbody>
</table>

Available | Min | Max |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>Chrome</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Manganese</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>Silicon</td>
<td>60</td>
<td>54</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
PRODUCT : COST, PRODUCE;
RESOURCE: AVAILABLE_MIN, AVAILABLE_MAX;
RXP(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
! Products attributes;
PRODUCT, COST =
P1 0.03
P2 0.0645
F1 0.065
F2 0.061
A1 0.1
A2 0.13
A3 0.119
CB 0.08
S1 0.021
S2 0.02
S3 0.0195;
! Resources attributes;
RESOURCE, AVAILABLE_MIN, AVAILABLE_MAX =
CARBON 60 70
CHROME 8 9
MANGANESE 27 33
SILICON 54 60;
! Required (%)
P1 P2 F1 F2 A1 A2 A3 CB S1 S2 S3;
USAGE = 0.04 0 0 0 0 0 0.15 0.004 0.001 0.001
 0 0.1 0 0 0 0.2 0.08 0 0 0
 0.009 0.045 0 0 0.8 0.09 0.33 0 0.009 0.003 0.003
 0.0225 0.15 0.45 0.42 0.18 0.3 0.25 0.3 0 0 0
 ! CARBON;
 0 0 0 0 0 0 0 0 0 0 0
 ! CHROME;
 0 0 0 0 0 0 0 0 0 0 0
 ! MANGANESE;
 0 0 0 0 0 0 0 0 0 0 0
 ! SILICON;
ENDDATA
SUBMODEL MAX10:
[OBJ] MIN = @SUM(PRODUCT(p): COST(p) * PRODUCE(p));
! Finish good requirements;
@SUM(PRODUCT(p): PRODUCE(p)) = 2000;
! Raw material available;
PRODUCE(8) <= 20;
PRODUCE(9) <= 200;
PRODUCE(10) <= 200;
PRODUCE(11) <= 200;
! The minimum available constraints;
@FOR(RESOURCE(r):
 [AVA_MIN] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) >= AVAILABLE_MIN(r));
! The maximum available constraints;
@FOR(RESOURCE(r):
 [AVA_MAX] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= AVAILABLE_MAX(r));
ENDSUBMODEL

C2-B12 Solving Problems with LINGO

New Type of Steel | Case 7 | Metallurgy
 CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO', 1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN', 0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (lbs):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE_MIN (lbs):", @NEWLINE(1));
@TABLE(AVAILABLE_MIN);
@WRITE(" ", @NEWLINE(1), " AVAILABLE_MAX (lbs):", @NEWLINE(1));
@TABLE(AVAILABLE_MAX);
@WRITE(" ", @NEWLINE(1), " COST p/lbs:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX10);
! Solution Report:
@WRITE(" ", @NEWLINE(1), " IDEAL MIXING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J)| PRODUCE(J) #GT# 0: ' Raw: ',
 @FORMAT(PRODUCT(J),'-2s'),', Finish good:',
 @FORMAT(PRODUCE(J),'%8.3f'),' lbs x Unit cost: $',
 @FORMAT(COST(J),'%7.5f'),' = Total: $',
 @FORMAT(COST(J) * PRODUCE(J),'%5.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
! @GEN(MIN3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

FORMULA (lbs):

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON</td>
<td>0.0400000</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>CHROME</td>
<td>0.0000000</td>
<td>0.1000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>MANGANESE</td>
<td>0.0000000</td>
<td>0.0450000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>SILICON</td>
<td>0.0225000</td>
<td>0.1500000</td>
<td>0.4500000</td>
<td>0.4200000</td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVAILABLE_MIN (lbs):

CARBON	60.0000000		
CHROME	8.0000000		
MANGANESE	27.0000000	0.0000000	
SILICON	54.0000000		

AVAILABLE_MAX (lbs):

CARBON	70.0000000		
CHROME	9.0000000		
MANGANESE	33.0000000	0.0000000	
SILICON	60.0000000		

COST p/lbs:

P1	0.0300000	
P2	0.0645000	
F1	0.0650000	
F2	0.6100000	
A1	0.1000000	
A2	0.1300000	
A3	0.1190000	
CB	0.0800000	
S1	0.0210000	
S2	0.0280000	
S3	0.0195000	

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 59.86528
Infeasibilities: 0.000000

IDEAL MIXING PROGRAM:
Raw: P1, Finish good: 1474.525 lbs x Unit cost: $0.03000 = Total: $44.24
Raw: P2, Finish good: 80.000 lbs x Unit cost: $0.06450 = Total: $5.16
Raw: F2, Finish good: 16.897 lbs x Unit cost: $0.06100 = Total: $1.03
Raw: A1, Finish good: 9.590 lbs x Unit cost: $0.10000 = Total: $0.96
Raw: S1, Finish good: 200.000 lbs x Unit cost: $0.02100 = Total: $4.20
Raw: S2, Finish good: 18.987 lbs x Unit cost: $0.02000 = Total: $0.38
Raw: S3, Finish good: 200.000 lbs x Unit cost: $0.01950 = Total: $3.90
How to optimize the production of a certain type of fertilizer considering the availability of raw material, composition and incompatibilities, in order to obtain the lowest cost?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

A company wants to produce a certain type of fertilizer. For this, the rules to be considered in the mathematical model follow.

- The minimum operating capacity of each Garner is 30 kg;
- The raw materials are arranged in 8 Garner;
- Each mixer operates only with 3 Garner;
- Chemical incompatibility has been identified between certain raw materials, such as: G2 with G3, G3 with G7 and G7 with G8;
- The production should be 1000 kg of fertilizer.

The composition requires that the fertilizer have at least:

- 75 kg of Nitrogen;
- 30 kg of Phosphorus
- 15 kg of Potassium

Auxiliary variables BUILD(1) to BUILD(8) will be used to indicate whether or not the raw material enters the fertilizer composition;

To operate with 3 garner it is necessary: BUILD(1) + BUILD(2) + …. + BUILD(8) ≤ 3;

The minimum capacity of the silo should be expressed as: Garner 1: PRODUCE(1) - 30 * BUILD(1) > 0, and thus respectively for the other garner

The incompatibility between G(2) and BUILD(3) can be expressed thus: BUILD(2)+ BUILD(3) ≤ 1 and thus respectively for the other cases;

To indicate whether the raw material enters or not in the composition should be expressed as: PRODUCE(1)-1000 * BUILD(1) ≤ 0 and thus respectively for the other cases;

<table>
<thead>
<tr>
<th>Process</th>
<th>Garner</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
<th>G8</th>
<th>Limit (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Formula</td>
<td>Nitrogen</td>
<td>%</td>
<td>2</td>
<td>3</td>
<td>17</td>
<td>3</td>
<td>40</td>
<td>5</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phosphor</td>
<td>%</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potassium</td>
<td>%</td>
<td></td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Incompatibility</td>
<td>G2 and G3</td>
<td>G3 and G7</td>
<td>G7 and G8</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>$</td>
<td>12.00</td>
<td>16.00</td>
<td>8.00</td>
<td>26.00</td>
<td>16.00</td>
<td>8.00</td>
<td>11.00</td>
<td>19.00</td>
<td>-</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
RESOURCE: LIMIT;
PRODUCT: COST, PRODUCE, BUILD;
RXP(RESOURCE,PRODUCT): USAGE;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, LIMIT =
NITROGEN 75
PHOSPHOR 30
POTASSIUM 15;
! Products attributes;
PRODUCT, COST =
G1 12
G2 16
G3 8
G4 26
G5 16
G6 8
G7 11
G8 19;
! Formula (%)
USAGE = 2 3 0 17 0 3 40 5
! NITROGEN;
0 0 2 5 0 1 1 3
! PHOSPHOR;
0 0 0 0 6 1 4 3;
ENDDATA
SUBMODEL MIN1:
[OBJ] MIN = @SUM(PRODUCT(I): COST(I) * PRODUCE(I));
! Maximum production Limit;
[PRO] @SUM(PRODUCT(I): PRODUCE(I)) = 1000;
! Limits;
[LIM1] @SUM(PRODUCT(J): USAGE(1,J)/100 * PRODUCE(J)) >= LIMIT(1);
[LIM2] @SUM(PRODUCT(J): USAGE(2,J)/100 * PRODUCE(J)) >= LIMIT(2);
[LIM3] @SUM(PRODUCT(J): USAGE(3,J)/100 * PRODUCE(J)) >= LIMIT(3);
! Restriction on indicating whether or not raw material is in composition;
@FOR(PRODUCT(I): [MIX] PRODUCE(I) - 1000 * BUILD(I) <= 0);
! Operating restriction because the mixers are limited to 3 garner;
[GAR3] @SUM(PRODUCT(I): BUILD(I)) <= 3;
! Minimum garner capacity (30kg);
@FOR(PRODUCT(I): [GCAP] PRODUCE(I) - 30 * BUILD(I) >= 0);
! Incompatibility between G2 and G3;
[INC1] BUILD(2) + BUILD(3) <= 1;
! Incompatibility between G3 and G7;
[INC2] BUILD(3) + BUILD(7) <= 1;
! Incompatibility between G7 and G8;
[INC3] BUILD(7) + BUILD(8) <= 1;
@FOR(PRODUCT(I):@BIN(BUILD));
ENDSUBMODEL;
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
@SET('LINLEN',120);
! Data block;
@WRITE("DATA:", @NEWLINE(1), " FORMULA (%):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE("", @NEWLINE(1), " COST P/KG:", @NEWLINE(1));
@TABLE(COST);
@WRITE("", @NEWLINE(1), " LIMIT (Kg):", @NEWLINE(1));
@TABLE(LIMIT);
@WRITE("", @NEWLINE(1), " SOLUTION:", @NEWLINE(1));
@SOLVE(MIN1);
! Solution report;
@WRITE("", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' Garner: ', @FORMAT(PRODUCT(J),'-3s'), 'Produces:',
@FORMAT(PRODUCE(J),'-3s'), 'kg x Unit cost: $',
@FORMAT(COST(J),'-5s'), ' = Total: $',
@FORMAT(COST(J) * PRODUCE(J),'-7s'),
@NEWLINE(1));
!To see the corresponding model scalar, remove () From the line below;
@GEN(MIN1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

FORMULA (%):

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
<th>G8</th>
</tr>
</thead>
<tbody>
<tr>
<td>NITROGEN</td>
<td>2.000000</td>
<td>3.000000</td>
<td>0.000000</td>
<td>17.0000</td>
<td>0.000000</td>
<td>3.000000</td>
<td>40.0000</td>
<td>5.000000</td>
</tr>
<tr>
<td>PHOSPHOR</td>
<td>0.000000</td>
<td>0.000000</td>
<td>2.000000</td>
<td>5.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>3.000000</td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>6.000000</td>
<td>1.000000</td>
<td>4.000000</td>
<td>3.000000</td>
</tr>
</tbody>
</table>

COST P/KG:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>12.000000</td>
</tr>
<tr>
<td>G2</td>
<td>16.000000</td>
</tr>
<tr>
<td>G3</td>
<td>8.000000</td>
</tr>
<tr>
<td>G4</td>
<td>26.000000</td>
</tr>
<tr>
<td>G5</td>
<td>16.000000</td>
</tr>
<tr>
<td>G6</td>
<td>8.000000</td>
</tr>
<tr>
<td>G7</td>
<td>11.000000</td>
</tr>
<tr>
<td>G8</td>
<td>19.000000</td>
</tr>
</tbody>
</table>

LIMIT (Kg):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NITROGEN</td>
<td>75.00000</td>
</tr>
<tr>
<td>PHOSPHOR</td>
<td>30.00000</td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>15.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

Global optimal solution found.

Objective value:	17800.00
Objective bound:	17800.00
Infeasibilities:	0.000000

IDEAL PLANNING PROGRAM:

Garner: G4 Produces: 300kg x Unit cost: $26.00 = Total: $7800.00
Garner: G6 Produces: 300kg x Unit cost: $ 8.00 = Total: $2400.00
Garner: G8 Produces: 400kg x Unit cost: $19.00 = Total: $7600.00
A company produces three types of fertilizers, from the mixture of nitrate, phosphate and potassium based ingredients and an inert component and the selling price of these type of fertilizers, as detailed below:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Fertilizer Type</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FT1</td>
<td>FT2</td>
</tr>
<tr>
<td>Proportional Component For Packing</td>
<td>Nitrate</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Phosphate</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Potassium</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Inertial</td>
<td>%</td>
</tr>
<tr>
<td>COST P/PACKAGE</td>
<td>$</td>
<td>34.40</td>
</tr>
<tr>
<td>DEMAND</td>
<td>pac</td>
<td>650</td>
</tr>
<tr>
<td>FIXED COST PER PACK (PROD+SALE)</td>
<td>$</td>
<td>300.00</td>
</tr>
<tr>
<td>PRICE</td>
<td>4</td>
<td>800.00</td>
</tr>
</tbody>
</table>

The cost of blending, packaging and sales promotion is estimated at $300 for any products. Determine the monthly output in order to maximize profit.
MODEL:
SETS:
RESOURCE: AVAILABLE, PRODUCE;
PRODUCT: PRICE, CPACK, CFIXE, DEMAND;
RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS
DATA:
! Resources attributes:
RESOURCE , AVAILABLE =
NITRAT 1200
PHOSPHATE 2000
POTASSIUM 1400
INERTIAL 1500;
! Products attributes:
PRODUCT, PRICE, CPACK, CFIXE, DEMAND =
FT1 800 34 300 650
FT2 960 40 300 470
FT3 1100 52 300 355;
! Formula (%)
USAGE =
10 10 10
10 10 10
10 10 10
ENDDATA
SUBMODEL MAX2:
[OBJ] MAX = @SUM (PRODUCT(I): PRICE(I) * PRODUCE(I)) -
@SUM (PRODUCT(I): CFIXE(I) * PRODUCE(I)) -
@SUM (PRODUCT(I): CPACK(I) * PRODUCE(I));
! The Demand Constraint;
@FOR (PRODUCT(I): [DEM] PRODUCE(I) = DEMAND(I));
! The Available Constraint;
@FOR (RESOURCE(I): [AVA] PRODUCE(I) <= AVAILABLE(I));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET ('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET ('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA (%):", @NEWLINE(1));
@TABLE (USAGE);
@WRITE(" ", @NEWLINE(1), " SALES PRICE P/PAC:", @NEWLINE(1));
@TABLE (PRICE);
@WRITE(" ", @NEWLINE(1), " COST P/PAC:", @NEWLINE(1));
@TABLE (CPACK);
@WRITE(" ", @NEWLINE(1), " FIXED COST P/PAC:", @NEWLINE(1));
@TABLE (CFIXE);
@WRITE(" ", @NEWLINE(1), " AVAILABLE P/PAC:", @NEWLINE(1));
@TABLE (AVAILABLE);
@WRITE(" ", @NEWLINE(1), " DEMAND (PAC):", @NEWLINE(1));
@TABLE (DEMAND);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE (MAX2);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR (PRODUCT(J) | PRODUCE(J) #GT# 0: ', @FORMAT (PRODUCT(J), '-3s'), ' Price:$',
@FORMAT (PRICE(J), '%4.0f'), ' x ',
@FORMAT (PRODUCE(J), '%3.0f'), 'Pack = Revenue:$',
@FORMAT (PRICE(J) * PRODUCE(J), '%6.0f'), ' - Raw cost:$',
@FORMAT (CPACK(J) * PRODUCE(J), '%5.0f'), ' - Fixed cost:$',
@FORMAT (CFIXE(J) * PRODUCE(J), '%5.0f'), ' = Profit:$',
@FORMAT (PRICE(J) * PRODUCE(J) - CPACK(J) * PRODUCE(J) - CFIXE(J) * PRODUCE(J), '%6.0f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN (MAX2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

FORMULA (%):

<table>
<thead>
<tr>
<th></th>
<th>FT1</th>
<th>FT2</th>
<th>FT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NITRAT</td>
<td>5.000000</td>
<td>5.000000</td>
<td>10.00000</td>
</tr>
<tr>
<td>PHOSPHATE</td>
<td>10.00000</td>
<td>10.00000</td>
<td>10.00000</td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>5.000000</td>
<td>10.00000</td>
<td>10.00000</td>
</tr>
<tr>
<td>INERTIAL</td>
<td>80.00000</td>
<td>75.00000</td>
<td>70.00000</td>
</tr>
</tbody>
</table>

SALES PRICE P/PAC:

<table>
<thead>
<tr>
<th></th>
<th>FT1</th>
<th>FT2</th>
<th>FT3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>800.0000</td>
<td>960.0000</td>
<td>1100.000</td>
</tr>
</tbody>
</table>

COST P/PAC:

<table>
<thead>
<tr>
<th></th>
<th>FT1</th>
<th>FT2</th>
<th>FT3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34.00000</td>
<td>40.00000</td>
<td>52.00000</td>
</tr>
</tbody>
</table>

FIXED COST P/PAC:

<table>
<thead>
<tr>
<th></th>
<th>FT1</th>
<th>FT2</th>
<th>FT3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300.0000</td>
<td>300.0000</td>
<td>300.0000</td>
</tr>
</tbody>
</table>

AVAILABLE P/PAC:

<table>
<thead>
<tr>
<th></th>
<th>FT1</th>
<th>FT2</th>
<th>FT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NITRAT</td>
<td>1200.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOSPHATE</td>
<td>2000.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>1400.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INERTIAL</td>
<td>1500.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEMAND (PAC):

<table>
<thead>
<tr>
<th></th>
<th>FT1</th>
<th>FT2</th>
<th>FT3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>650.0000</td>
<td>470.0000</td>
<td>355.0000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

Global optimal solution found.

Objective value: 859840.0

Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:

FT1 Price:$ 800 x 650Pack = Revenue:$520000 - Raw cost:$22100 - Fixed cost:$195000 = Profit:$302900
GOAL

A fertilizer manufacturer wants to produce 1000 kg of product at minimal cost. For this purpose, it uses the raw materials of M1 ... M8, as well as the respective costs.

In the product obtained, the amounts of Nitrogen, Phosphorus, and Potassium should be above the minimum requirements, quoted in MinReq.

The composition can be seen in Formula.

<table>
<thead>
<tr>
<th>Formula</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
<th>Min_Req (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>%</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Phosphor</td>
<td>%</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Potassium</td>
<td>%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Cost (p/kg)</td>
<td>$</td>
<td>12.00</td>
<td>16.00</td>
<td>8.00</td>
<td>26.00</td>
<td>16.00</td>
<td>8.00</td>
<td>11.00</td>
<td>19.00</td>
</tr>
</tbody>
</table>

Develop the model that minimizes product costs.
MODEL:
SETS:
 RESOURCE: MINREQ;
 PRODUCT: COST, DEMAND, PRODUCE;
RXP(RESOURCE, PRODUCT): FORMULA;
ENDSETS
DATA:
! Minimum resources required attributes (kg);
 RESOURCE , MINREQ =
 NITROGEN 75
 PHOSPHOR 30
 POTASSIUM 15;
! Products attributes (Raw Material);
 PRODUCT, COST =
 M1 12
 M2 16
 M3 8
 M4 26
 M5 16
 M6 8
 M7 11
 M8 19;
! Formula (%)
 FORMULA =
 2 3 0 17 0 2 4 5 ! NITROGEN;
 0 0 2 5 0 1 1 3 ! PHOSPHOR;
 0 0 0 0 6 1 4 3 ! POTASSIUM;
ENDDATA
SUBMODEL MIN3:
[OBJ] MIN = @SUM(PRODUCT(I): COST(I) * PRODUCE(I));
! The demand constraint;
@FOR(RESOURCE(I)):
 @SUM(PRODUCT(J): PRODUCE(J)) = 1000;
! Minimum required (kg);
@FOR(RESOURCE(I)):
 @SUM(PRODUCT(J): FORMULA(I,J)/100 * PRODUCE(J)) >= MINREQ(I);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Resets line length;
@SET('LINLEN',120);
! Data block;
@WRITE(" DATA:" ,@NEWLINE(1), " FORMULA (%):", @NEWLINE(1));
@TABLE(FORMULA);
@WRITE(" ",@NEWLINE(1), " COST P/KG:" ,@NEWLINE(1));
@TABLE(COST);
@WRITE(" ",@NEWLINE(1), " MINIMUM REQUIRED (kg):", @NEWLINE(1));
@TABLE(MINREQ);
@WRITE(" ",@NEWLINE(1), " SOLUTION: ",@NEWLINE(1));
@SOLVE(MIN3);
@WRITE(" ",@NEWLINE(1), " IDEAL PLANNING PROGRAM: ",@NEWLINE(1), " Produce: ",@NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' . ',
 @FORMAT(PRODUCT(J),'-2s') , ' ',
 @FORMAT(PRODUCE(J), '%5.2f'), 'kg x Unit cost: $',
 @FORMAT(COST(J), '%6.2f'), ' = Total: $',
 @FORMAT(COST(J) * PRODUCE(J), '%7.2f'),
@NEWLINE(1));
@WRITE(" ",@NEWLINE(1));
!To see the corresponding model scalar, remove () From the line below;
!@GEN(MIN3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
FORMULA (%):

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
</tr>
</thead>
<tbody>
<tr>
<td>NITROGEN</td>
<td>2.000000</td>
<td>3.000000</td>
<td>0.000000</td>
<td>17.000000</td>
<td>0.000000</td>
<td>2.000000</td>
<td>4.000000</td>
<td>5.000000</td>
</tr>
<tr>
<td>PHOSPHOR</td>
<td>0.000000</td>
<td>0.000000</td>
<td>2.000000</td>
<td>5.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>3.000000</td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>6.000000</td>
<td>1.000000</td>
<td>4.000000</td>
<td>3.000000</td>
</tr>
</tbody>
</table>

COST P/KG:

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>12.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>16.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>8.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>26.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>16.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>8.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>11.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>19.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MINIMUM REQUIRED (kg):

<table>
<thead>
<tr>
<th></th>
<th>NITROGEN</th>
<th>PHOSPHOR</th>
<th>POTASSIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75.000000</td>
<td>30.000000</td>
<td>15.000000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 16978.95
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:

Produce:

<table>
<thead>
<tr>
<th>Producing</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3</td>
<td>242 kg</td>
<td>$8.00</td>
<td>$1936.84</td>
</tr>
<tr>
<td>M4</td>
<td>326 kg</td>
<td>$26.00</td>
<td>$8484.21</td>
</tr>
<tr>
<td>M7</td>
<td>205 kg</td>
<td>$11.00</td>
<td>$2257.89</td>
</tr>
<tr>
<td>M8</td>
<td>226 kg</td>
<td>$19.00</td>
<td>$4300.00</td>
</tr>
</tbody>
</table>
GOAL

An industry produces three types of fertilizers, FTA, FTB and FTC, from the blend of ingredients based on Nitrate, Phosphate, Potassium and an inert component. The data for elaboration of the model follow the following:

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>FTA</th>
<th>FTB</th>
<th>FTC</th>
<th>Available (ton)</th>
<th>Cost (p/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>%</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>2,200</td>
</tr>
<tr>
<td>Phosphor</td>
<td>%</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>3,000</td>
</tr>
<tr>
<td>Potassium</td>
<td>%</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>1,800</td>
</tr>
<tr>
<td>Inertial</td>
<td>%</td>
<td>72</td>
<td>62</td>
<td>52</td>
<td>infinite</td>
</tr>
<tr>
<td>Price</td>
<td>$</td>
<td>1,350.00</td>
<td>1,600.00</td>
<td>2,000.00</td>
<td>-</td>
</tr>
</tbody>
</table>

The company has a long-term contract for the monthly supply of 5000 tons of FTC fertilizer. Elaborate a linear programming model for production, maximizing profits.
MODEL:
SETS:
RESOURCE: AVAILABLE, COST;
PRODUCT: PRICE, DEMAND, SCOST, PRODUCE;
RXP(PRODUCT, RESOURCE): FORMULA;
ENDSETS
DATA:
! Minimum resources required attributes (kg);
RESOURCE , AVAILABLE, COST =
NITRATE 2200 4000
PHOSPHOR 3000 2000
POTASSIUM 1800 3000
INERTIAL 1.E13 300;
! Products attributes ($/Tons);
PRODUCT, PRICE, DEMAND =
FTA 1350 0
FTB 1600 0
FTC 2000 5000;
! Formula (%)
FORMULA =
NITRATE PHOSPHOR POTASSIUM INERTIAL;
10 8 10 72 ! FTA;
10 8 20 62 ! FTB;
20 8 20 52 ! FTC;
ENDDATA
SUBMODEL MAX4:
[OBJ] MAX = @SUM(PRODUCT(I): PRICE(I) * PRODUCE(I)) - SCOST(1) - SCOST(2) - SCOST(3);
! Cost calculation;
@FOR(PRODUCT(I):
@SUM(RESOURCE(K) : FORMULA(I,K)/100 * COST(K)) * PRODUCE(I) = 0);
! The Demand constraints;
@FOR(PRODUCT(I): PRODUCE(I) >= DEMAND(I));
! The Available Constraints (Tons);
@FOR(RESOURCE(I)| I #LE# 3:
@SUM(PRODUCT(K) : FORMULA(K,I)/100 * PRODUCE(K)) <= AVAILABLE);
ENDSUBMODEL
CALC:
@SET('TERSEO',1); ! Output level: 0=Verbose, 1-Terse;
@SET('STAWIN',0); ! Post status windows, 1 Yes, 0 No;
@WRITE(" DATA:", @NEWLINE(1), " FORMULA = Product vs Raw material (%):", @NEWLINE(1));
@TABLE(FORMULA);
@WRITE(" COST p/tons:", @NEWLINE(1));
@TABLE(COST);
@WRITE(" AVAILABLE (tons):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" SOLUTION: ", @NEWLINE(1));
@SOLVE(MAX4);
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J): ' . ',
@FORMAT(PRODUCT(J),’-2s’), ',' ,
@FORMAT(PRODUCT(J),’%4.0f’), ' tons Price: $',
@FORMAT(PRODUCT(J),’%11.2f’), ' - Cost: $',
@FORMAT(@IF(J #EQ# 1, SCOST(1), @IF(J #EQ# 3, SCOST(3), SCOST(2))),’%11.2f’) , ' = Profit: $',
@FORMAT(@IF(J #EQ# 1, SCOST(1), @IF(J #EQ# 3, SCOST(3), SCOST(2))),’%10.2f’),
@NEWLINE(1));
@WRITE(" Totals' , 10*' ', 'Price: $',
@FORMAT(@SUM(PRODUCT(I): PRICE(I) * PRODUCE(I)),’%11.2f’), ' - Cost: $',
@FORMAT(SCOST(1)+SCOST(2)+SCOST(3),’%11.2f’), 3* ' , 'Profit: $',
@FORMAT(OBJ, ’%10.2f’),
@NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX4);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

FORMULA = Product vs Raw material (%):

<table>
<thead>
<tr>
<th></th>
<th>NITRATE</th>
<th>PHOSPHOR</th>
<th>POTASSIUM</th>
<th>INERTIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTA</td>
<td>10.0000</td>
<td>8.00000</td>
<td>10.0000</td>
<td>72.0000</td>
</tr>
<tr>
<td>FTB</td>
<td>10.0000</td>
<td>8.00000</td>
<td>20.0000</td>
<td>62.0000</td>
</tr>
<tr>
<td>FTC</td>
<td>20.0000</td>
<td>8.00000</td>
<td>20.0000</td>
<td>52.0000</td>
</tr>
</tbody>
</table>

COST p/tons:

- NITRATE: 4000.00
- PHOSPHOR: 2000.00
- POTASSIUM: 3000.00
- INERTIAL: 300.00

AVAILABLE (tons):

- NITRATE: 2200.00
- PHOSPHOR: 3000.00
- POTASSIUM: 1800.00
- INERTIAL: 1.0E+14

PRICE (P/tons):

- FTA: 1350.00
- FTB: 1600.00
- FTC: 2000.00

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

Global optimal solution found.
Objective value: 3612000.
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:

Produce:

- FTA 8000 tons
 Price: $10800000.00
 Cost: $8608000.00
 Profit: $2192000.00
- FTB 0 tons
 Price: $0.00
 Cost: $0.00
 Profit: $0.00
- FTC 5000 tons
 Price: $10000000.00
 Cost: $8580000.00
 Profit: $1420000.00

Totals
 Price: $20800000.00
 Cost: $17188000.00
 Profit: $3612000.00
How to plan an investment in stocks for example, considering all alternatives involving risks, yields, limits, government rules, in order to get the highest return?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

Consider, for example, the case of an investment fund that has the following stock options considering the rules below:

- Investments are classified by categories: A, B and C
- Government restrictions on investment funds state that:
 - No single investment may exceed 15% of the total fund capital;
 - The total investment by category can’t exceed 40%.
- The expectation should be equalized at 100%

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>E6</th>
<th>E7</th>
<th>E8</th>
<th>E9</th>
<th>E10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investments Category</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Profit</td>
<td>$</td>
<td>10.00</td>
<td>15.00</td>
<td>5.00</td>
<td>20.00</td>
<td>12.00</td>
<td>15.00</td>
<td>10.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Create the template to calculate the best investment solution as well as the fund’s profitability.
MODEL:
SETS:
 PRODUCT: PROFIT, INDEX, PRODUCE;
ENDSETS
DATA:
 ! Products attributes;
 PRODUCT, INDEX, PROFIT =
 E1 1 10
 E2 1 15
 E3 2 5
 E4 3 20
 E5 1 12
 E6 2 15
 E7 1 10
 E8 3 5
 E9 2 5
 E10 3 10;
ENDDATA
SUBMODEL MAX1:
 ! Maximize profitability;
 [OBJ] MAX = @SUM(PRODUCT(I): PROFIT(I)/100 * PRODUCE(I));
 [PER] @SUM(PRODUCT(I): PRODUCE(I)) = 100;
 ! Investment cap by category;
 ! Category A;
 [CAT_A] @SUM(PRODUCT(I) | INDEX(I) #EQ# 1 : PRODUCE(I)) <= 40;
 ! Category B;
 [CAT_B] @SUM(PRODUCT(I) | INDEX(I) #EQ# 2 : PRODUCE(I)) <= 40;
 ! Category C;
 [CAT_C] @SUM(PRODUCT(I) | INDEX(I) #EQ# 3 : PRODUCE(I)) <= 40;
 ! Invest in up to 15%;
 @FOR(PRODUCT(I): [INV] PRODUCE(I) <= 15);
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 @WRITE(" DATA:", @NEWLINE(1));
 @WRITE(" COMPANIES,INVESTMENT CATEGORY (A=1, B=2, C=3):", @NEWLINE(1));
 @TABLE(INDEX);
 @WRITE(" ", @NEWLINE(1), " COMPANIES,EXPECTED PROFITABILITY (%):", @NEWLINE(1));
 @TABLE(PROFIT);
 @WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MAX1);
 ! Solution report;
 @WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(PRODUCT(I): ' CIA:',
 @FORMAT(PRODUCT(I),'-3s'), ' Category:', @IF(INDEX(I) #EQ# 1,'A','IF(INDEX(I) #EQ# 2,'B','C')),' Expected Profitability:',
 @FORMAT(PROFIT(I),'%5.2f'), '% x Maximum Investment:',
 @FORMAT(PRODUCE(I),'%5.2f'), ' % = Profitability:',
 @FORMAT(PRODUCE(I) * PROFIT(I)/100,'%5.2f'), '%');
 @NEWLINE(1));
 @WRITE(" ", @NEWLINE(1));
 ! To see the corresponding model scalar, remove () From the line below;
 @GEN(MAX1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

COMPANIES, INVESTMENT CATEGORY (A=1, B=2, C=3):

<table>
<thead>
<tr>
<th>Company</th>
<th>Investment Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>1.000000</td>
</tr>
<tr>
<td>E2</td>
<td>1.000000</td>
</tr>
<tr>
<td>E3</td>
<td>2.000000</td>
</tr>
<tr>
<td>E4</td>
<td>3.000000</td>
</tr>
<tr>
<td>E5</td>
<td>1.000000</td>
</tr>
<tr>
<td>E6</td>
<td>2.000000</td>
</tr>
<tr>
<td>E7</td>
<td>1.000000</td>
</tr>
<tr>
<td>E8</td>
<td>3.000000</td>
</tr>
<tr>
<td>E9</td>
<td>2.000000</td>
</tr>
<tr>
<td>E10</td>
<td>3.000000</td>
</tr>
</tbody>
</table>

COMPANIES, EXPECTED PROFITABILITY (%):

<table>
<thead>
<tr>
<th>Company</th>
<th>Expected Profitability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>10.00000</td>
</tr>
<tr>
<td>E2</td>
<td>15.00000</td>
</tr>
<tr>
<td>E3</td>
<td>5.000000</td>
</tr>
<tr>
<td>E4</td>
<td>20.00000</td>
</tr>
<tr>
<td>E5</td>
<td>12.00000</td>
</tr>
<tr>
<td>E6</td>
<td>15.00000</td>
</tr>
<tr>
<td>E7</td>
<td>10.00000</td>
</tr>
<tr>
<td>E8</td>
<td>5.000000</td>
</tr>
<tr>
<td>E9</td>
<td>5.000000</td>
</tr>
<tr>
<td>E10</td>
<td>10.00000</td>
</tr>
</tbody>
</table>

SOLUTION:

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION:

Global optimal solution found.

Objective value: 12.55000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:

CIA:E1 Category:A, Expected Profitability:10.00% x Maximum Investment: 0.00% = Profitability: 0.00%
CIA:E2 Category:A, Expected Profitability:15.00% x Maximum Investment:15.00% = Profitability: 2.25%
CIA:E3 Category:B, Expected Profitability: 5.00% x Maximum Investment: 0.00% = Profitability: 0.00%
CIA:E4 Category:C, Expected Profitability:20.00% x Maximum Investment:15.00% = Profitability: 3.00%
CIA:E5 Category:A, Expected Profitability:12.00% x Maximum Investment:15.00% = Profitability: 1.80%
CIA:E6 Category:B, Expected Profitability:15.00% x Maximum Investment:15.00% = Profitability: 2.25%
CIA:E7 Category:B, Expected Profitability:15.00% x Maximum Investment:10.00% = Profitability: 1.00%
CIA:E8 Category:C, Expected Profitability: 5.00% x Maximum Investment:10.00% = Profitability: 0.50%
CIA:E9 Category:B, Expected Profitability: 5.00% x Maximum Investment: 5.00% = Profitability: 0.25%
CIA:E10 Category:C, Expected Profitability:10.00% x Maximum Investment:15.00% = Profitability: 1.50%
GOAL

A person has $8000 to invest in up to 3 investment options (A,B,C), which will provide the return after 5 years.

Each of the investments can be done in multiples of $1000, and he wants to invest a maximum of $4000 in a given option. The expected returns are shown below in data.

<table>
<thead>
<tr>
<th>Investments / Products</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$2,000.00</td>
<td>5,000.00</td>
<td>7,500.00</td>
<td>10,000.00</td>
</tr>
<tr>
<td>B</td>
<td>$1,500.00</td>
<td>3,500.00</td>
<td>8,000.00</td>
<td>11,000.00</td>
</tr>
<tr>
<td>C</td>
<td>$1,100.00</td>
<td>2,500.00</td>
<td>8,500.00</td>
<td>10,500.00</td>
</tr>
<tr>
<td>Value</td>
<td>$1,000.00</td>
<td>2,000.00</td>
<td>3,000.00</td>
<td>4,000.00</td>
</tr>
</tbody>
</table>

Knowing that the investor can invest in any options, what should be the investment policy in order to have the highest overall return?
MODEL:
SETS:
PRODUCT : APPLICATION;
RESOURCE ;
RXP(RESOURCE, PRODUCT): RETURN, PRODUCE;
ENDSETS
DATA:
! Resources attributes;
RESOURCE = OPTION_A
OPTION_B
OPTION_C;
! Product attributes;
PRODUCT, APPLICATION =
APP_1 1000
APP_2 2000
APP_3 3000
APP_4 4000;
! Return attributes
APP_1
APP_2
APP_3
APP_4;
RETURN =
1500
3500
8000
11000
1100
2500
8500
10500;
ENDDATA
SUBMODEL MAX2:
! Maximize profitability;
[OBJ] MAX = @SUM(RXP(I,J): RETURN(I,J) * PRODUCE(I,J));
! Investment limit;
[LIM] @SUM(RXP(I,J): APPLICATION(J) * PRODUCE(I,J)) <= 8000;
@FOR(RXP(I,J): @GIN(PRODUCE(I,J)));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO', 1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN', 0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " RETURN OF INVESTMENTS: ", @NEWLINE(1));
@TABLE(RETURN);
@WRITE(" ", @NEWLINE(1), " INVESTMENT VALUE: ", @NEWLINE(1));
@TABLE(APPLICATION);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX2);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RXP(I,J) | PRODUCE(I,J) #GT# 0: ' ',
@FORMAT(RESOURCE(I),'-6s'), ' vs ',
@FORMAT(PRODUCT(J),'-5s'), ': $',
@FORMAT(RETURN(I,J),'%6.2f'), ' x',
@FORMAT(PRODUCE(I,J),'%2.0f'), ' = $',
@FORMAT(PRODUCE(I,J) * RETURN(I,J),'%8.2f'), ' Return - Applied: $',
@FORMAT(APPLICATION(J) * PRODUCE(I,J),'%6.2f'), ' = Profit: $',
@FORMAT(PRODUCE(I,J) * RETURN(I,J) - APPLICATION(J) * PRODUCE(I,J),'%8.2f'),
@NEWLINE(1));
@WRITE(" Maximum return: ", 19*' ', '$', @FORMAT(OBJ,'%8.2f'), @NEWLINE(2));
! To see the corresponding model scalar, remove (!) From the line below;
! @GEN(MAX2);
ENDCALC
END
.DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RETURN OF INVESTMENTS:

<table>
<thead>
<tr>
<th></th>
<th>APP_1</th>
<th>APP_2</th>
<th>APP_3</th>
<th>APP_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION_A</td>
<td>2000.00</td>
<td>5000.00</td>
<td>7500.00</td>
<td>10000.00</td>
</tr>
<tr>
<td>OPTION_B</td>
<td>1500.00</td>
<td>3500.00</td>
<td>8000.00</td>
<td>11000.00</td>
</tr>
<tr>
<td>OPTION_C</td>
<td>1100.00</td>
<td>2500.00</td>
<td>8500.00</td>
<td>10500.00</td>
</tr>
</tbody>
</table>

INVESTMENT VALUE:

<table>
<thead>
<tr>
<th></th>
<th>APP_1</th>
<th>APP_2</th>
<th>APP_3</th>
<th>APP_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP_1</td>
<td>1000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP_2</td>
<td></td>
<td>2000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP_3</td>
<td></td>
<td></td>
<td>3000.00</td>
<td></td>
</tr>
<tr>
<td>APP_4</td>
<td></td>
<td></td>
<td></td>
<td>4000.00</td>
</tr>
</tbody>
</table>

.SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 22000.00
Objective bound: 22000.00
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:

OPTION_A vs APP_2: $5000.00 x 1 = $ 5000.00 Return - Applied: $2000.00 = Profit: $ 3000.00
OPTION_C vs APP_3: $8500.00 x 2 = $17000.00 Return - Applied: $6000.00 = Profit: $11000.00
Maximum return: $22000.00
GOAL

A particular financial institution wants to know how to invest $100,000 in five stock funds in order to maximize return on investment, where the Share Funds are: A, B, C, D and E.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Share</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock Funds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Term</td>
<td>Y/N</td>
<td>N</td>
</tr>
<tr>
<td>Long Term</td>
<td>Y/N</td>
<td>Y</td>
</tr>
<tr>
<td>Option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Risk</td>
<td>Y/N</td>
<td>Y</td>
</tr>
<tr>
<td>Free Charge (1)</td>
<td>Y/N</td>
<td>Y</td>
</tr>
<tr>
<td>Free Charge (2)</td>
<td>Y/N</td>
<td>Y</td>
</tr>
<tr>
<td>Profit</td>
<td>%</td>
<td>95</td>
</tr>
</tbody>
</table>

RULES

- Invest, 50% of the money in short-term stocks
- Invest up to 50% in high risk stocks.
- Invest at least 30% of the shares free of charge. (1)
- Income from shares that are free of fees must be at least 40% of total interest (2)
- The volume of applications must be equalized in 100%
MODEL:
SETS:
PRODUCT : PROFIT, PRODUCE;
RESOURCE: LIMIT;
RXP(RESOURCE, PRODUCT): INDEX;
ENDSETS
DATA:
! Resource attributes;
RESOURCE, LIMIT =
SHORT_TERM 50
LONG_TERM 50
HARD_RISK 50
FREE_CHARGE_APP 30
FREE_CHARGE_INT 40;
! Products attributes;
PRODUCT, PROFIT =
SHARE_A 95
SHARE_B 80
SHARE_C 90
SHARE_D 90
SHARE_E 90;
! Index attributes
SHARE_A SHARE_B SHARE_C SHARE_D SHARE_E;
INDEX =
0 1 0 0 1 ! SHORT_TERM;
1 0 1 1 0 ! LONG_TERM;
1 0 0 1 1 ! HARD_RISK;
1 1 0 1 0 ! FREE_CHARGE_APP;
1 1 1 0 1 ! FREE_CHARGE_INT;
ENDDATA
SUBMODEL MAX3:
[OBJ] MAX = @SUM(PRODUCT(I): PROFIT(I) * PRODUCE(I));
! Equalization of investment;
[EQU] @SUM(PRODUCT(I): PRODUCE(I)) = 100;
! Invest 50% short term stocks;
[SHO] @SUM(PRODUCT(I) | INDEX(1,I) #EQ# 1: PRODUCE(I)) <= LIMIT(1);
! Invest 50% long term stocks;
[LON] @SUM(PRODUCT(I) | INDEX(2,I) #EQ# 1: PRODUCE(I)) <= LIMIT(2);
! Limit high-risk applications above 50%;
[HRK] @SUM(PRODUCT(I) | INDEX(3,I) #EQ# 1: PRODUCE(I)) <= LIMIT(3);
! Invest 30% or more in shares free of charges;
[FTX] @SUM(PRODUCT(I) | INDEX(4,I) #EQ# 1: PRODUCE(I)) >= LIMIT(4);
! Free charge + INTEREST SHOULD BE UP TO 40%;
[F40] @SUM(PRODUCT(I) | INDEX(5,I) #EQ# 1: PRODUCE(I)) >= LIMIT(5);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" " DATA:\", \@NEWLINE(1), " STOCK FUNDS (1=Yes, 0=No):\", \@NEWLINE(1));
@TABLE(INDEX);
@WRITE(" " \@NEWLINE(1), " PROFIT (%):\", \@NEWLINE(1));
@TABLE(PROFIT);
@WRITE(" " \@NEWLINE(1), " LIMIT (%):\", \@NEWLINE(1));
@TABLE(LIMIT);
@WRITE(" " \@NEWLINE(1), " SOLUTION: \", \@NEWLINE(1));
@SOLVE(MAX3);
! Solution report;
@WRITE(" " \@NEWLINE(1), " IDEAL PLANNING PROGRAM: \", \@NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ', \@FORMAT(PRODUCT(J),'%-7s'), ' Return:',
@FORMAT(PRODUCT(J),'%-3.0f'), '% x Investment:\$100000.00 = Applied:\$',
@FORMAT(PRODUCT(J)*100000, '%%.2f'), ' x Rate:',
@FORMAT(PRODUCT(J)/1000, '%%.3f'), '%', ' = Profit:\$,
@FORMAT(PRODUCT(J)/100 * 100000, '%%.2f'), ' x Profit:\$);
@NEWLINE(1));
@WRITE(" " \@NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
@GEN(MAX3);
ENDCALC
END
DATA:

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
STOCK FUNDS (1=Yes, 0=No):

<table>
<thead>
<tr>
<th>SHARE_A</th>
<th>SHARE_B</th>
<th>SHARE_C</th>
<th>SHARE_D</th>
<th>SHARE_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT_TERM</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>LONG_TERM</td>
<td>1.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>HARD_RISK</td>
<td>1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>FREE_CHARGE_APP</td>
<td>1.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>FREE_CHARGE_INT</td>
<td>1.000000</td>
<td>1.000000</td>
<td>0.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

PROFIT (%):

<table>
<thead>
<tr>
<th>SHARE_A</th>
<th>SHARE_B</th>
<th>SHARE_C</th>
<th>SHARE_D</th>
<th>SHARE_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.00000</td>
<td>80.00000</td>
<td>90.00000</td>
<td>90.00000</td>
<td>90.00000</td>
</tr>
</tbody>
</table>

LIMIT (%):

SHORT_TERM	50.00000
LONG_TERM	50.00000
HARD_RISK	50.00000
FREE_CHARGE_APP	30.00000
FREE_CHARGE_INT	40.00000

SOLUTION:

Global optimal solution found.
Objective value: 8900.000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:

SHARE_A, Return: 20% x Investment:$100000.00 = Applied:$20000.00 x Rate:0.095% = Profit:$1900.00
SHARE_B, Return: 20% x Investment:$100000.00 = Applied:$20000.00 x Rate:0.080% = Profit:$1600.00
SHARE_C, Return: 30% x Investment:$100000.00 = Applied:$30000.00 x Rate:0.090% = Profit:$2700.00
SHARE_E, Return: 30% x Investment:$100000.00 = Applied:$30000.00 x Rate:0.090% = Profit:$2700.00
GOAL

A company has to plan its spending on Research & Development. The information for developing the model is as follows:

<table>
<thead>
<tr>
<th>Year / Projects</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$70,000</td>
<td>$80,000</td>
<td>$90,000</td>
<td>$50,000</td>
<td>$200,000</td>
</tr>
<tr>
<td>2</td>
<td>$15,000</td>
<td>$20,000</td>
<td>$20,000</td>
<td>$30,000</td>
<td>$70,000</td>
</tr>
<tr>
<td>3</td>
<td>$</td>
<td>$25,000</td>
<td></td>
<td>$40,000</td>
<td>$70,000</td>
</tr>
<tr>
<td>4</td>
<td>$20,000</td>
<td>$15,000</td>
<td>$30,000</td>
<td></td>
<td>$70,000</td>
</tr>
<tr>
<td>5</td>
<td>$20,000</td>
<td>$10,000</td>
<td>$20,000</td>
<td>$20,000</td>
<td>$70,000</td>
</tr>
<tr>
<td>Profit</td>
<td>$105,990</td>
<td>$128,900</td>
<td>$136,140</td>
<td>$117,380</td>
<td>-</td>
</tr>
</tbody>
</table>

She pre-selected 4 projects and should choose among which she should prioritize due to budget constraints.
MODEL:
SETS:
PRODUCT : PROFIT, PRODUCE;
RESOURCE: LIMIT;
RXP(RESOURCE,PRODUCT): CAPITAL;
ENDSETS
DATA:
! Resources attributes;
RESOURCE, LIMIT =
 YEAR1 200000
 YEAR2 70000
 YEAR3 70000
 YEAR4 70000
 YEAR5 70000;
! Products attributes;
PRODUCT, PROFIT =
 PROJ1 105990
 PROJ2 128900
 PROJ3 136140
 PROJ4 117380;
! Capital Attributes
PROJ1 PROJ2 PROJ3 PROJ4;
CAPITAL =
 YEAR1 70000 80000 90000 50000
 15000 20000 20000 30000
 0 25000 0 40000
 20000 15000 30000 0
 20000 10000 20000 20000;
ENDDATA
SUBMODEL MAX4:
[OBJ] MAX = @SUM (PRODUCT(I): PROFIT(I) * PRODUCE(I));
@FOR (RESOURCE(L):
 [LIM] @SUM (PRODUCT(C): CAPITAL(L,C) * PRODUCE(C)) <= LIMIT(L);)
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET ('TERSEO', 1);
! Post status windows, 1 Yes, 0 No;
@SET ('STAWIN', 0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " CAPITAL REQUIRED:", @NEWLINE(1));
@TABLE (CAPITAL);
@WRITE(" ", @NEWLINE(1), " PROFIT:", @NEWLINE(1));
@TABLE (PROFIT);
@WRITE(" ", @NEWLINE(1), " LIMIT:", @NEWLINE(1));
@TABLE (LIMIT);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
@SOLVE (MAX4);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR (PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
 @FORMAT (PRODUCT(J), '-5s'), ' Yield rate: ',
 @FORMAT (PRODUCE(J), '%7.5f'), ' % x Project value: $',
 @FORMAT (PROFIT(J), '%7.2f'), ' = Profit: $',
 @FORMAT (PROFIT(J)*PRODUCE(J), '%9.2f'),
 @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
!@GEN (MAX4);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:	CAPITAL REQUIRED:			
	PROJ1	PROJ2	PROJ3	PROJ4
YEAR1	70000.00	80000.00	90000.00	50000.00
YEAR2	15000.00	20000.00	20000.00	30000.00
YEAR3	0.000000	25000.00	0.000000	40000.00
YEAR4	20000.00	15000.00	30000.00	0.000000
YEAR5	20000.00	10000.00	20000.00	20000.00

PROFIT:	PROJ1	105990.0
	PROJ2	128900.0
	PROJ3	136140.0
	PROJ4	117380.0

LIMIT:	YEAR1	200000.0
	YEAR2	70000.00
	YEAR3	70000.00
	YEAR4	70000.00
	YEAR5	70000.00

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:	Global optimal solution found.	362625.0
	Objective value:	
	Infeasibilities:	0.000000

IDEAL PLANNING PROGRAM:	PROJ1 Yield rate: 1.10680% x Project value: $105990.00 = Profit: $117309.32
	PROJ2 Yield rate: 0.71845% x Project value: $128900.00 = Profit: $ 92607.77
	PROJ4 Yield rate: 1.30097% x Project value: $117380.00 = Profit: $152707.96

❖

DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:	CAPITAL REQUIRED:			
	PROJ1	PROJ2	PROJ3	PROJ4
YEAR1	70000.00	80000.00	90000.00	50000.00
YEAR2	15000.00	20000.00	20000.00	30000.00
YEAR3	0.000000	25000.00	0.000000	40000.00
YEAR4	20000.00	15000.00	30000.00	0.000000
YEAR5	20000.00	10000.00	20000.00	20000.00

PROFIT:	PROJ1	105990.0
	PROJ2	128900.0
	PROJ3	136140.0
	PROJ4	117380.0

LIMIT:	YEAR1	200000.0
	YEAR2	70000.00
	YEAR3	70000.00
	YEAR4	70000.00
	YEAR5	70000.00

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:	Global optimal solution found.	362625.0
	Objective value:	
	Infeasibilities:	0.000000

IDEAL PLANNING PROGRAM:	PROJ1 Yield rate: 1.10680% x Project value: $105990.00 = Profit: $117309.32
	PROJ2 Yield rate: 0.71845% x Project value: $128900.00 = Profit: $ 92607.77
	PROJ4 Yield rate: 1.30097% x Project value: $117380.00 = Profit: $152707.96
GOAL

A retired pension resource planning expert has just consulted with a client who estimated to have 750000 available to apply next month when he retires. They agreed to consider feasible the application of the resources in the actions of the following companies:

<table>
<thead>
<tr>
<th>Products / Resources</th>
<th>Maximum Limit For Investing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25%</td>
</tr>
<tr>
<td>Ranking</td>
<td>Company</td>
</tr>
<tr>
<td>Excellent</td>
<td>ABC Chemical</td>
</tr>
<tr>
<td>Good</td>
<td>Alfa Industrial</td>
</tr>
<tr>
<td>Reasonable</td>
<td>Aurora Foundry</td>
</tr>
<tr>
<td>Great</td>
<td>Optical Vision</td>
</tr>
<tr>
<td>Good</td>
<td>Delta System</td>
</tr>
<tr>
<td>Very Good</td>
<td>Union Bank</td>
</tr>
</tbody>
</table>

At where:

- **Return**: represents the annual interest estimate for each of the shares
- **Maturity**: indicates the deadline when the shares are to be redeemed
- **Ranking**: indicates the quality or risk of each action

Rules:

- Do not apply more than 25% in the same company
- At least 50% of the capital in long-term shares with a maturity of 10 years or more
- Although Alpha, Aurora and Delta have the highest return, no more than 35% of the capital can be invested in them
MODEL:
SETS:
 RESOURCE: PROFIT, LIMIT, PRODUCE;
ENDSETS
DATA:
 ! Resources attributes;
 RESOURCE, PROFIT, LIMIT =
 ABC_CHEMICAL 8.65 187500
 ALFA_INDUSTRIAL 9.50 187500
 AURORA_FOUNDARY 10.00 187500
 OPTICAL_VISION 8.75 187500
 DELTA_SYSTEM 9.25 187500
 UNION_BANK 9.00 187500;
ENDDATA
SUBMODEL MAX5:
 ! Maximize profitability;
 [OBJ] MAX = @SUM(RESOURCE(I): PROFIT(I)/100 * PRODUCE(I));
 ! Amount to be invested;
 [AMO] @SUM(RESOURCE(I): PRODUCE(I)) = 750000;
 ! Guarantee that no more than 25% will be invested in the same stock;
 @FOR(RESOURCE(I): [G25] PRODUCE(I) <= LIMIT(I));
 ! 50% of the receivables must be applied in shares with more than 10 years of deadlines;
 PRODUCE(1) + PRODUCE(2) + PRODUCE(4) + PRODUCE(6) >= 375000;
 ! 35% of the resource available classified as good;
 PRODUCE(2) + PRODUCE(3) + PRODUCE(5) <= 262500;
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " 25% LIMIT OF $750000 PER CIA:", @NEWLINE(1));
 @TABLE(LIMIT);
 @WRITE(" ", @NEWLINE(1), " RETURN RATE BY CIA (%):", @NEWLINE(1));
 @TABLE(PROFIT);
 @WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MAX5);
 ! Solution report;
 @WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(RESOURCE(J) | PRODUCE(J) #GT# 0: ' ',
 @FORMAT(RESOURCE(J),'-17s'), 'Purchase: $',
 @FORMAT(PRODUCE(J),'%9.2f'), ' x Return rate:',
 @FORMAT(PROFIT(J),'%5.2f'), '% = Profit: $',
 @FORMAT(PROFIT(J)/100 * PRODUCE(J),'%8.2f'),
 @NEWLINE(1));
 @WRITE(" ", @NEWLINE(1));
 ! To see the corresponding model scalar, remove (!) From the line below;
 @GEN(MAX5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
25% LIMIT OF $750000 PER CIA:
ABC_CHEMICAL 187500.0
ALFA_INDUSTRIAL 187500.0
AURORA_FOUNDRY 187500.0
OPTICAL_VISION 187500.0
DELTA_SYSTEM 187500.0
UNION_BANK 187500.0

RETURN RATE BY CIA (%):
ABC_CHEMICAL 8.650000
ALFA_INDUSTRIAL 9.500000
AURORA_FOUNDRY 10.00000
OPTICAL_VISION 8.750000
DELTA_SYSTEM 9.250000
UNION_BANK 9.000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 68887.50
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
ABC_CHEMICAL Purchase: $112500.00 x Return rate: 8.65% = Profit: $9731.25
ALFA_INDUSTRIAL Purchase: $75000.00 x Return rate: 9.50% = Profit: $7125.00
AURORA_FOUNDRY Purchase: $187500.00 x Return rate: 10.00% = Profit: $18750.00
OPTICAL_VISION Purchase: $187500.00 x Return rate: 8.75% = Profit: $16406.25
UNION_BANK Purchase: $187500.00 x Return rate: 9.00% = Profit: $16875.00
GOAL

An entrepreneur plans to build apartments for students in a location near a large Federal University.

Four types of apartments are defined in the project: 1, 2 or 3 bedroom apartments. The apartments measure respectively: 65, 75 and 95 m².

The entrepreneur believes that the building can’t have more than 15 units of 1 dormitory, of 22 of 2 and 10 of 3.

The law of zoning in the place does not allow the construction of buildings with more than 40 apartments, and the maximum area of construction is 3,720 m².

The entrepreneur has made an agreement with a local broker for which he will rent 5 one bedroom units, 8 of two.

A Marketing study indicates 1 bedroom units for $450, 2 for $550 and 3 for $750 per month.

How many units of each type does the entrepreneur need to build so that the potential rent input is maximized?
MODEL:
SETS:
 RESOURCE: LIMIT;
 PRODUCT: RENTAL, EXPECTATION, PRODUCE;
RXP(RESOURCE, PRODUCT): USAGE;
ENDSETS
DATA:
! Resources attributes;
RESOURCE, LIMIT =
 GROUND_AREA 3720
 QUANT_APT 40
 USEFUL_AREA 3575;
! Product attributes;
PRODUCT , RENTAL EXPECTATION =
 APT1BED 450 15
 APT2BED 550 22
 APT3BED 750 10;
! Attributes
APT1BED APT2BED APT3BED;
USAGE = 65 75 95
 GROUND_AREA;
QUANT_APT = 15 22 10
 USEFUL_AREA;
ENDDATA
SUBMODEL MAX6:
[OBJ] MAX = @SUM(PRODUCT(I): RENTAL(I) * PRODUCE(I));
! The building can not have more apartments than:;
@FOR(PRODUCT(I): [EXPEC] PRODUCE(I) <= EXPECTATION(I));
!Restriction of useful area to be built;
[USU] @SUM(PRODUCT(I): USAGE(1,I) * PRODUCE(I)) <= USEFUL_AREA;
! Maximum number of apartments to be built (Law);
[LIM] @SUM(PRODUCT(I): PRODUCE(I)) <= LIMIT(2);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " ATTRIBUTES (m2, Un, m2):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE(" ", @NEWLINE(1), " RENTAL VALUE:", @NEWLINE(1));
@TABLE(RENTAL);
@WRITE(" ", @NEWLINE(1), " EXPECTATION (apt):", @NEWLINE(1));
@TABLE(EXPECTATION);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX6);
! Solution Report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) | PRODUCE(J) #GT# 0: ' ',
@FORMAT(PRODUCT(J), '%-9s'), 'Rental value: $',
@FORMAT(RENTAL(J), '%5.2f'),' x ',
@FORMAT(PRODUCE(J), '%2.0f'),' Apartments = Revenue: $',
@FORMAT(RENTAL(J)* PRODUCE(J), '%8.2f'),
@NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove () From the line below;
!@GEN(MAX6);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

ATTRIBUTES (m2, Un, m2):

<table>
<thead>
<tr>
<th></th>
<th>APT1BED</th>
<th>APT2BED</th>
<th>APT3BED</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUND_AREA</td>
<td>65.00000</td>
<td>75.00000</td>
<td>95.00000</td>
</tr>
<tr>
<td>QUANT_APT</td>
<td>15.00000</td>
<td>22.00000</td>
<td>10.00000</td>
</tr>
<tr>
<td>USEFUL_AREA</td>
<td>975.0000</td>
<td>1650.000</td>
<td>950.0000</td>
</tr>
</tbody>
</table>

RENTAL VALUE:

<table>
<thead>
<tr>
<th>Apt</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT1BED</td>
<td>450.0000</td>
</tr>
<tr>
<td>APT2BED</td>
<td>550.0000</td>
</tr>
<tr>
<td>APT3BED</td>
<td>750.0000</td>
</tr>
</tbody>
</table>

EXPECTATION (apt):

<table>
<thead>
<tr>
<th>Apt</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT1BED</td>
<td>15.00000</td>
</tr>
<tr>
<td>APT2BED</td>
<td>22.00000</td>
</tr>
<tr>
<td>APT3BED</td>
<td>10.00000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION:

Global optimal solution found.

Objective value: 23200.00

Infeasibilities: 0.00000

IDEAL PLANNING PROGRAM:

<table>
<thead>
<tr>
<th>Apt</th>
<th>Rental Value</th>
<th>Apartments</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT1BED</td>
<td>$450.00 x 8 Apartments</td>
<td>$3600.00</td>
<td></td>
</tr>
<tr>
<td>APT2BED</td>
<td>$550.00 x 22 Apartments</td>
<td>$12100.00</td>
<td></td>
</tr>
<tr>
<td>APT3BED</td>
<td>$750.00 x 10 Apartments</td>
<td>$7500.00</td>
<td></td>
</tr>
</tbody>
</table>
How to optimize the demand of a Clinic that does blood tests and has available some equipment with different production capacity, and different costs?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

A particular hospital faces a problem in their fluid analysis laboratory. The laboratory has 3 machines to analyze any type of fluid.

Recently, the demand for blood testing has grown so much that the lab director is having difficulty finalizing the analyses of the samples received before the arrival of new samples.

The laboratory works with 5 types of blood, and any machine can be used to analyze any type of fluid, however, the time required by the machine depends on the type of blood to be analyzed.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>min</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>min</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>min</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>80</td>
<td>75</td>
<td>80</td>
<td>120</td>
<td>60</td>
</tr>
</tbody>
</table>

Each machine can be used for 8 hours (440 min) daily.

Blood collected in one day is stored and analyzed the next day.

Thus, at the beginning of each day the director must determine how to allocate each type of blood in each of the machines.

On a given morning, the laboratory has performed 80 blood tests of type 1, 75 of type 2, 80 of type 3, 120 of type 4 and 60 of type 5.

The director of the laboratory wants to know how much analysis of each type of blood that should be made in each machine in minimized way to use them.
MODEL:
SETS:
 HEADER1 / PROD, LIMIT, VALUE / ;;
 PRODUCT : DEMAND;
 RESOURCE: LIMIT;
RXP(RESOURCE, PRODUCT) : MTIME, PRODUCE;
HXP(RESOURCE, HEADER1) : SLASUR;
ENDSETS
DATA:
 ! Resources attributes;
 RESOURCE, LIMIT = EQUIP_1 440
 EQUIP_2 440
 EQUIP_3 440;
 ! Products attributes;
 PRODUCT , DEMAND = T1 80
 T2 75
 T3 80
 T4 120
 T5 60;
 ! Machine time
 T1 T2 T3 T4 T5;
 MTIME = 3 4 4 5 3
 5 3 5 4 5
 2 5 3 3 4;
ENDDATA
PROCEDURE PROC_HXP(X):
 @FOR (HXP(I,J): SLASUR(I,J) = 0);
 @FOR (HXP(I,J)| PRODUCE(I,X) #GT# 0:
 SLASUR(I,2) = DEMAND(X);
 SLASUR(I,1) = PRODUCE(I,X);
 SLASUR(I,3) = SLASUR(I,1) - SLASUR(I,2));
 @TABLE (SLASUR);
ENDPROCEDURE
SUBMODEL
 MIN1:
 [OBJ] MIN = @SUM(RXP(I,J): MTIME(I,J) * PRODUCE(I,J));
 [L1] @SUM(PRODUCT(J): PRODUCE(1,J) * MTIME(1,J)) = LIMIT(1);
 [L2] @SUM(PRODUCT(J): PRODUCE(2,J) * MTIME(2,J)) = LIMIT(2);
 [L3] @SUM(PRODUCT(J): PRODUCE(3,J) * MTIME(3,J)) = LIMIT(3);
 [T1] @SUM(RESOURCE(L): PRODUCE(L,1)) <= DEMAND(1);
 [T2] @SUM(RESOURCE(L): PRODUCE(L,2)) <= DEMAND(2);
 [T3] @SUM(RESOURCE(L): PRODUCE(L,3)) <= DEMAND(3);
 [T4] @SUM(RESOURCE(L): PRODUCE(L,4)) <= DEMAND(4);
 [T5] @SUM(RESOURCE(L): PRODUCE(L,5)) <= DEMAND(5);
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET("TERSEO",1);
 ! Post status windows, 1 Yes, 0 No;
 @SET("STAWIN",0);
 @WRITE(" DATA:", @NEWLINE(1), " MACHINE TIME (min):", @NEWLINE(1));
 @TABLE(MTIME);
 @WRITE("", @NEWLINE(1), " LIMIT: (min)", @NEWLINE(1));
 @TABLE(LIMIT);
 @WRITE("", @NEWLINE(1), " Demand (un):", @NEWLINE(1));
 @TABLE(DEMAND);
 @WRITE("", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
 @SOLVE(MIN1);
 @WRITE("", @NEWLINE(1), " SLACK/SURPLUS LIMIT = DEMAND, PROD = T1 (un): ", @NEWLINE(1));
 PROC_HXP(1);
 @WRITE("", @NEWLINE(1), " SLACK/SURPLUS LIMIT = DEMAND, PROD = T2 (un): ", @NEWLINE(1));
 PROC_HXP(2);
 @WRITE("", @NEWLINE(1), " SLACK/SURPLUS LIMIT = DEMAND, PROD = T3 (un): ", @NEWLINE(1));
 PROC_HXP(3);
 @WRITE("", @NEWLINE(1), " SLACK/SURPLUS LIMIT = DEMAND, PROD = T4 (un): ", @NEWLINE(1));
 PROC_HXP(4);
 @WRITE("", @NEWLINE(1), " SLACK/SURPLUS LIMIT = DEMAND, PROD = T5 (un): ", @NEWLINE(1));
 PROC_HXP(5);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
MACHINE TIME (min):
<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIP_1</td>
<td>3.00000</td>
<td>4.00000</td>
<td>4.00000</td>
<td>5.00000</td>
<td>3.00000</td>
</tr>
<tr>
<td>EQUIP_2</td>
<td>5.00000</td>
<td>3.00000</td>
<td>5.00000</td>
<td>4.00000</td>
<td>5.00000</td>
</tr>
<tr>
<td>EQUIP_3</td>
<td>2.00000</td>
<td>5.00000</td>
<td>3.00000</td>
<td>3.00000</td>
<td>4.00000</td>
</tr>
</tbody>
</table>

LIMIT: (min)
<table>
<thead>
<tr>
<th></th>
<th>EQUIP_1</th>
<th>EQUIP_2</th>
<th>EQUIP_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIP_1</td>
<td>440.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQUIP_2</td>
<td>440.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQUIP_3</td>
<td>440.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Demand (un):
<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>80.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>75.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>80.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>120.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>60.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION:

Global optimal solution found.
Objective value: 1320.000
Infeasibilities: 0.000000
Total solver iterations: 5

IDEAL PLANNING PROGRAM:
EQUIP_1 produce: 88 Test T4 x 5 min = 440 min
EQUIP_2 produce: 80 Test T1 x 5 min = 400 min
EQUIP_2 produce: 8 Test T3 x 5 min = 40 min
EQUIP_3 produce: 75 Test T2 x 5 min = 375 min
EQUIP_3 produce: 16 Test T5 x 4 min = 65 min

SLACK/SURPLUS LIMIT = DEMAND, PROD = T1 (un):
<table>
<thead>
<tr>
<th></th>
<th>PROD</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIP_1</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>EQUIP_2</td>
<td>80.00000</td>
<td>80.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>EQUIP_3</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

SLACK/SURPLUS LIMIT = DEMAND, PROD = T2 (un):
<table>
<thead>
<tr>
<th></th>
<th>PROD</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIP_1</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>EQUIP_2</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>EQUIP_3</td>
<td>75.00000</td>
<td>75.00000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

SLACK/SURPLUS LIMIT = DEMAND, PROD = T3 (un):
<table>
<thead>
<tr>
<th></th>
<th>PROD</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIP_1</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>EQUIP_2</td>
<td>8.000000</td>
<td>80.00000</td>
<td>-72.00000</td>
</tr>
<tr>
<td>EQUIP_3</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

SLACK/SURPLUS LIMIT = DEMAND, PROD = T4 (un):
<table>
<thead>
<tr>
<th></th>
<th>PROD</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIP_1</td>
<td>88.00000</td>
<td>120.00000</td>
<td>-32.00000</td>
</tr>
<tr>
<td>EQUIP_2</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>EQUIP_3</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

SLACK/SURPLUS LIMIT = DEMAND, PROD = T5 (un):
<table>
<thead>
<tr>
<th></th>
<th>PROD</th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIP_1</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>EQUIP_2</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>EQUIP_3</td>
<td>16.25000</td>
<td>60.00000</td>
<td>-43.75000</td>
</tr>
</tbody>
</table>
GOAL

A small clinic specializes in orthopedic and aesthetic surgeries. Orthopedic surgeries average $10, while aesthetics are the most sought after and earn $30.

Each surgery patient requires four 30-minute appointments, totaling 2 hours of office care. The clinic has consultation rooms that allow 36 hours a week.

The aesthetic surgeries last in average 2 hours, while the orthopedic ones last 1 hour. The clinic's surgical center can be used 24 hours a week.

To have permanent mobilization of the teams of surgeons it is necessary to perform at least 2 aesthetic and 4 orthopedic surgeries per week.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Aesthetics</th>
<th>Orthopedic</th>
<th>Limit (hr/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor’s Appointments</td>
<td>hr</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Surgery</td>
<td>un</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Minimum Surgery (p/week)</td>
<td>un</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Price</td>
<td>$</td>
<td>30.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Elaborate the model that maximizes the prescription of the clinic.
MODEL:
SETS:
 PRODUCT : PRICE, MIN_WEEK, PRODUCE;
 RESOURCE: LIMIT;
 RXR(RESOURCE, PRODUCT) : USAGE;
ENDSETS
DATA:
 ! Resource attributes;
 RESOURCE, LIMIT =
DOC_APP_HR 36
SURGERY_UN 24;
 ! Products attributes;
 PRODUCT, PRICE, MIN_WEEK =
AESTHETICS 30 2
ORTHOPEDIC 10 4;
 ! Required AESTHETICS ORTHOPEDIC;
USAGE = 2 2 ! DOC_APP_HR;
 2 1 ! SURGERY_UN;
ENDDATA
SUBMODEL MAX2:
[OBJ] MAX = @SUM(PRODUCT(p): PRICE(p) * PRODUCE(p));
 ! Minimum week;
[MWE1] PRODUCE(1) >= MIN_WEEK(1);
[MWE2] PRODUCE(2) >= MIN_WEEK(2);
 ! Limit constraints;
@FOR(RESOURCE(r):
 [LIM] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) <= LIMIT(r));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:",
 @NEWLINE(1), " RESOURCE:",
 @NEWLINE(1));
@TABLE(USAGE);
@WRITE("",
 @NEWLINE(1), " LIMIT:",
 @NEWLINE(1));
@TABLE(LIMIT);
@WRITE("",
 @NEWLINE(1), " MINIMUM SURGERY P/WEEK:",
 @NEWLINE(1));
@TABLE(MIN_WEEK);
@WRITE("",
 @NEWLINE(1), " SURGERY PRICE:",
 @NEWLINE(1));
@TABLE(PRICE);
@WRITE("",
 @NEWLINE(1), " SOLUTION:",
 @NEWLINE(1));
! Execute sub-model;
@SOLVE(MAX2);
! Solution report;
@WRITE("",
 @NEWLINE(1), " IDEAL PLANNING PROGRAM:",
 @NEWLINE(1));
@WRITEFOR(PRODUCT(I)| PRODUCE(I) #GT# 0: ' ', PRODUCT(I), ': ',
 @FORMAT(PRODUCE(I),'%2.0f'), ' Surgery x Price:','$',
 @FORMAT(PRICE(I),'%5.2f'), ' = Total:','$',
 @FORMAT(PRODUCE(I) * PRICE(I), '%5.2f'),
 @NEWLINE(1));
@WRITE("",
 @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MAX2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
REQUIRED (HR) :
 AESTHETICS ORTHOPEDIC
DOC_APP_HR 2.000000 2.000000
SURGERY_HR 2.000000 1.000000

LIMIT (hr/week):
DOC_APP_HR 36.00000
SURGERY_HR 24.00000

MINIMUM SURGERY P/WEEK:
AESTHETICS 2.000000
ORTHOPEDIC 4.000000

SURGERY PRICE:
AESTHETICS 30.00000
ORTHOPEDIC 10.00000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 340.0000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
AESTHETICS: 10 Surgery x Price:$30.00 = Total: $300.00
ORTHOPEDIC: 4 Surgery x Price:$10.00 = Total: $40.00
GOAL

The Ministry of Health has five possible locations for the installation of Health Centers to serve four Population Centers.

An index has been constructed which expresses the inconvenience of serving each Population Center by the Health Center of each location, taking into account the number of inhabitants served and the means of transportation available.

The results are shown in the table of contents.

<table>
<thead>
<tr>
<th>Population Center</th>
<th>Health Centers. (Inconvenience Rate)</th>
<th>Inhabitants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC1 HC2 HC3 HC4 HC5</td>
<td></td>
</tr>
<tr>
<td>PC1</td>
<td>40 43 42 38 45</td>
<td>2,500</td>
</tr>
<tr>
<td>PC2</td>
<td>37 40 41 44 36</td>
<td>2,000</td>
</tr>
<tr>
<td>PC3</td>
<td>40 42 39 37 38</td>
<td>3,000</td>
</tr>
<tr>
<td>PC4</td>
<td>45 40 39 42 41</td>
<td>3,000</td>
</tr>
</tbody>
</table>

Suppose now that each Health Center can serve more than one Population Center, provided that the total number of inhabitants of Population Centers assigned to the same Health Center does not exceed 5,000. The number of inhabitants of Population Centers are listed in the table above.

Knowing that all population of the same Population Center has to be served by the same Health Center and that each Health Center serves only a Population Center, formulate a solution in LP.
MODEL:
SETS:
HEALT_CENTER:
POPULATION_CENTER: INHABITANTS;
RXP(POPULATION_CENTER, HEALT_CENTER): INDEX, PRODUCE;
ENDSETS
DATA:
HEALT_CENTER =
HC1 HC2 HC3 HC4 HC5;
POPULATION_CENTER, INHABITANTS =
PC1 2500
PC2 2000
PC3 3000
PC4 3000;

! Inconvenience rate
INDEX =
HC1 HC2 HC3 HC4 HC5;
40 43 42 38 45 IPC1;
37 40 41 44 36 IPC2;
40 42 39 37 38 IPC3;
45 40 39 42 41 IPC4;

ENDDATA
SUBMODEL MIN3:
! Minimum Inconvenience Index;
[MII] MIN = @SUM(RXP(I, J): INDEX(I, J) * PRODUCE(I, J));
! A population center can only be served by a health center;
@FOR(POPULATION_CENTER(I):
 [PC] @SUM(HEALT_CENTER(J): PRODUCE(I, J)) = 1;);
! Each health center can only serve a population center;
@FOR(HEALT_CENTER(J):
 [HC] @SUM(POPULATION_CENTER(I): PRODUCE(I, J)) <= 1;);
! Each health center can serve more than one population center, provided that it does not have more than 5000 inhabitants.;
@FOR(HEALT_CENTER(J):
 [IN] @SUM(POPULATION_CENTER(I): INHABITANTS(I) * PRODUCE(I, J)) <= 5000;);
@FOR(RXP(I, J): @BIN(PRODUCE(I, J)));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO', 1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN', 0);
! Data block;
@WRITE(" DATA:" , @NEWLINE(1), " Inconvenience rate: ", @NEWLINE(1));
@TABLE(INDEX);
@WRITE(" " , @NEWLINE(1), " INHABITANTS:" , @NEWLINE(1));
@TABLE(INHABITANTS);
@WRITE(" " , @NEWLINE(1), " SOLUTION: " , @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN3);
! Solution report;
@WRITE(" " , @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RXP(I, J) | PRODUCE(I, J) #GT# 0: ' Population Center: ',
 @FORMAT(POPULATION_CENTER(I), '-5s'), ' Health Center: ',
 @FORMAT(HEALT_CENTER(J), '-5s'), ' Index: ' ,
 @FORMAT(PRODUCE(I, J) * INDEX(I, J), '%2.0f'), ' ',
 @NEWLINE(1));
@WRITE(" Minimum Inconvenience Index: ", @NEWLINE(1), MII, @NEWLINE(1));
! To see the corresponding model scalar, remove () From the line below;
! @GEN(MIN3);
ENDCALC
END
DATA
All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
Inconvenience rate:

<table>
<thead>
<tr>
<th></th>
<th>HC1</th>
<th>HC2</th>
<th>HC3</th>
<th>HC4</th>
<th>HC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>40.00000</td>
<td>43.00000</td>
<td>42.00000</td>
<td>38.00000</td>
<td>45.00000</td>
</tr>
<tr>
<td>PC2</td>
<td>37.00000</td>
<td>40.00000</td>
<td>41.00000</td>
<td>44.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>PC3</td>
<td>40.00000</td>
<td>42.00000</td>
<td>39.00000</td>
<td>37.00000</td>
<td>38.00000</td>
</tr>
<tr>
<td>PC4</td>
<td>45.00000</td>
<td>40.00000</td>
<td>39.00000</td>
<td>42.00000</td>
<td>41.00000</td>
</tr>
</tbody>
</table>

INHABITANTS:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>2500.000</td>
</tr>
<tr>
<td>PC2</td>
<td>2000.000</td>
</tr>
<tr>
<td>PC3</td>
<td>3000.000</td>
</tr>
<tr>
<td>PC4</td>
<td>3000.000</td>
</tr>
</tbody>
</table>

SOLUTION
Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 152.0000
Objective bound: 152.0000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
Population Center: PC1 Healt Center: HC1 Index: 40
Population Center: PC2 Healt Center: HC5 Index: 36
Population Center: PC3 Healt Center: HC4 Index: 37
Population Center: PC4 Healt Center: HC3 Index: 39
Minimum Inconvenience Index: 152
How to solve classic problems like the backpack, the traveling salesman, etc. using mathematical optimization as a tool?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

The knapsack model is a classic problem that uses binary variables. In this problem, you have a group of items you want to pack into your knapsack.

Unfortunately, the capacity of the knapsack is limited such that it is impossible to include all items. Each item has a certain value, or utility, associated with including it in the knapsack.

The problem is to find the subset of items to include in the knapsack that maximizes the total value of the load without exceeding the capacity of the knapsack.

Of course, the knapsack euphemism shouldn't lead one to underestimate the importance of this class of problem.

The "knapsack" problem can be applied to many situations. Some examples are vehicle loading, capital budgeting and strategic planning.

<table>
<thead>
<tr>
<th>Items</th>
<th>Rank</th>
<th>Weight</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repellent</td>
<td>2</td>
<td>kg 1</td>
<td></td>
</tr>
<tr>
<td>Sunblock</td>
<td>9</td>
<td>kg 1</td>
<td></td>
</tr>
<tr>
<td>Isotonic</td>
<td>3</td>
<td>kg 2</td>
<td></td>
</tr>
<tr>
<td>Condensate Milk</td>
<td>8</td>
<td>kg 1</td>
<td></td>
</tr>
<tr>
<td>Chocolate</td>
<td>1</td>
<td>kg 1</td>
<td></td>
</tr>
<tr>
<td>Dry Fruits</td>
<td>6</td>
<td>kg 1</td>
<td></td>
</tr>
<tr>
<td>Sandwich</td>
<td>4</td>
<td>kg 1</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>10</td>
<td>kg 3</td>
<td>≤ 10</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
 ITEMS:
 INCLUDE,
 WEIGHT,
 RATING;
 MUST_EAT_ONE(ITEMS);
ENDSETS
DATA:
 ITEMS WEIGHT RATING =
 REPELLENT 1 2
 SUNBLOCK 1 9
 ISOTONIC 2 3
 CONDENSED_MILK 1 8
 CHOCOLATE 1 1
 DRY_FRUITS 1 6
 SANDWICH 1 4
 AWATER 3 10;
 KNAPSACK_CAPACITY = 10;
ENDDATA
SUBMODEL MAX1:
 MAX = @SUM(ITEMS: RATING * INCLUDE);
 [CAP] @SUM(ITEMS: WEIGHT * INCLUDE) <= KNAPSACK_CAPACITY;
 @FOR(ITEMS: @BIN(INCLUDE));
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Precision in digits for standard solution reports;
 @SET('PRECIS',3);
 ! Terminal page width (0: none);
 @SET('LINLEN',120);
 ! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " WEIGHT (KNAPSACK_CAPACITY = 10):", @NEWLINE(1));
 @TABLE(WEIGHT);
 @WRITE(" ", @NEWLINE(1), " RATING:", @NEWLINE(1));
 @TABLE(RATING);
 @WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MAX1);
 ! Solution report;
 @WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
 @WRITEFOR(ITEMS(J): ' Item: ', @FORMAT(ITEMS(J),'-14s'), ' Rating:',
 @FORMAT(RATING(J),'%2.0f'), ' selected:',
 @FORMAT(INCLUDE(J),'%2.0f'), ' include:',
 @FORMAT(RATING(J) * INCLUDE(J),'%2.0f'),
 @NEWLINE(1));
 @WRITE(" ", @NEWLINE(1));
 ! To see the corresponding model scalar, remove (!) From the line below;
 @GEN(MAX1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
WEIGHT (KNAPSACK_CAPACITY = 10):
REPELLENT 1.00
SUNBLOCK 1.00
ISOTONIC 2.00
CONDENSED_MILK 1.00
CHOCOLATE 1.00
DRY_FRUITS 1.00
SANDWICH 1.00
AWATER 3.00

RATING:
REPELLENT 2.00
SUNBLOCK 9.00
ISOTONIC 3.00
CONDENSED_MILK 8.00
CHOCOLATE 1.00
DRY_FRUITS 6.00
SANDWICH 4.00
AWATER 10.0

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 42.0
Objective bound: 42.0
Infeasibilities: 0.00

IDEAL PLANNING PROGRAM:
Item: REPELLENT Rating: 2 x selected: 1 include: 2
Item: SUNBLOCK Rating: 9 x selected: 1 include: 9
Item: ISOTONIC Rating: 3 x selected: 1 include: 3
Item: CONDENSED_MILK Rating: 8 x selected: 1 include: 8
Item: CHOCOLATE Rating: 1 x selected: 0 include: 0
Item: DRY_FRUITS Rating: 6 x selected: 1 include: 6
Item: SANDWICH Rating: 4 x selected: 1 include: 4
Item: AWATER Rating: 10 x selected: 1 include: 10
GOAL

The problem of the hawker or traveling salesman is a classic example in Linear Programming. It consists of minimizing the total distance to be traveled along 15 cities.

The logic is complex but the model works very well and can be reused only by changing the contents of the matrix of distances between cities contained in it.

For more information you will need to do a thorough analysis of the template code, available

<table>
<thead>
<tr>
<th>Distance Between Cities (Start=0, Finish=n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>C5</td>
</tr>
<tr>
<td>C6</td>
</tr>
<tr>
<td>C7</td>
</tr>
<tr>
<td>C8</td>
</tr>
<tr>
<td>C9</td>
</tr>
<tr>
<td>C10</td>
</tr>
<tr>
<td>C11</td>
</tr>
<tr>
<td>C12</td>
</tr>
<tr>
<td>C13</td>
</tr>
<tr>
<td>C14</td>
</tr>
<tr>
<td>C15</td>
</tr>
</tbody>
</table>

Lower Distance Between 15 Cities
MODEL:
SETS:
CITY; ! U(I) = sequence no. of city;
LINK(CITY,CITY):
DIST, ! The distance matrix;
X; ! X(I, J) = 1 if link I, J is in tour;
ENDSETS
DATA:
DATA:
! Distance matrix, it need not be symmetric;
CITY=
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15;
DIST=
0 69 39 49 5 59 19 40 33 81 9 21 8 37 33 ! C1;
69 0 47 39 54 9 49 59 49 93 48 94 52 19 41 ! C2;
49 54 0 90 67 63 4 49 93 48 19 41 52 19 41 ! C3;
59 9 63 60 32 0 58 46 95 47 98 87 69 36 67 ! C4;
19 49 4 56 22 58 0 82 97 15 78 82 64 33 26 ! C5;
37 59 69 49 80 61 46 82 33 99 2 94 52 19 41 ! C6;
33 95 93 12 85 43 97 8 0 63 42 63 0 42 41 ! C7;
82 47 48 69 47 3 15 86 63 0 88 69 33 47 90 ! C8;
9 98 7 54 56 33 78 1 34 88 0 77 63 87 57 ! C9;
21 87 94 52 75 65 82 90 81 69 77 0 46 30 63 ! C10;
8 69 52 33 59 69 64 37 21 33 63 46 0 59 95 ! C11;
38 36 21 99 42 80 33 0 56 47 87 30 59 0 40 ! C12;
33 67 41 2 63 40 26 42 0 90 57 63 95 40 0 ; ! C13;
ENDDATA
SUBMODEL MIN2:
N = @SIZE(CITY);
! Minimize total distance traveled;
[OBJ] MIN = @SUM(LINK(i,j) : DIST(i,j) * X(i,j));
! Stop k must be entered exactly once For k = 1, we return to 1 only from an odd numbered (drop off) stop;
@SUM(CITY(i) | @mod(i,2) #NE# 0 #and# i #NE# 1 : x(i,1)) = 1;
@SUM(CITY(i) | @mod(i,2) #EQ# 0 : x(i,1)) = 0;
@FOR(CITY(k) | k #GT# 1: @SUM(CITY(i) | i #NE# k: X(i, k)) = 1;);
! Stop k must be departed exactly once For k = 1, we go first to an even numbered (pick up) stop;
@SUM(CITY(j) | @mod(j,2) #EQ# 0 : x(1,j)) = 1;
@SUM(CITY(j) | @mod(j,2) #NE# 0 : x(1,j)) = 0;
@FOR(CITY(k) | k #GT# 1:
 @SUM(CITY(j) | j #NE# k: X(k, j)) = 1);
X(k, k) = 0;);
U(1) = 0;
! The case either i or j = 1;
@FOR(CITY(i) | i #GT# 1: U(i) >= 2 - X(1,i) + (N-3)*X(i,1);
 U(i) <= (N-2) + X(i,1) - (N-3)*X(1,i);)
! The case i,j > 1,
! This constraint, plus its "mirror", when i and j are switched,
forces U(j) - U(i) = 1 if X(i,j) = 1;
@FOR(LINK(i,j) | i #GT# 1 AND# j #GT# 1 #AND# i #NE# j: U(j) >= U(i) + X(i,j) - X(j,i) - (N-2)*(1 - X(i,j) - X(j,i));)
! Make the X's 0/1;
@FOR(LINK(i,j) : @BIN(X(i,j));)
! The dial-a-ride feature. Every pickup occurs before its drop-off;
@FOR(CITY(i) | @mod(i,2)#EQ#0 : U(i) <= U(+1));
! Some cuts. We know the sum of the stop numbers;
@SUM(CITY(i) : U(i)) = (N-1)*N/2;
ENDSUBMODEL

406
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Precision in digits for standard solution reports;
@SET('PRECIS',3);
! Terminal page width (0:none);
@SET('LINLEN',120);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " THE DISTANCE MATRIX (mile):", @NEWLINE(1));
@TABLE(DIST);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN2);
! Solution report
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(LINK(I,J) | X(I,J) #GT# 0: ' From: ',
 @FORMAT(CITY(I),'-4s'),' To: ',
 @FORMAT(CITY(J),'-4s'),' Distance:','
 @FORMAT(DIST(i,j) * X(i,j),'%4.0f'),' mile',
 @NEWLINE(1));
@WRITE(" Total distance:','30* ','@FORMAT(OBJ, '%4.0f'),' mile', @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN2);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

THE DISTANCE MATRIX (mile):

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
<th>C10</th>
<th>C11</th>
<th>C12</th>
<th>C13</th>
<th>C14</th>
<th>C15</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.00</td>
<td>69.0</td>
<td>39.0</td>
<td>49.0</td>
<td>5.00</td>
<td>59.0</td>
<td>19.0</td>
<td>40.0</td>
<td>33.0</td>
<td>81.0</td>
<td>9.00</td>
<td>21.0</td>
<td>8.00</td>
<td>37.0</td>
<td>33.0</td>
</tr>
<tr>
<td>C2</td>
<td>69.0</td>
<td>0.00</td>
<td>47.0</td>
<td>39.0</td>
<td>54.0</td>
<td>9.00</td>
<td>49.0</td>
<td>59.0</td>
<td>95.0</td>
<td>47.0</td>
<td>98.0</td>
<td>87.0</td>
<td>69.0</td>
<td>36.0</td>
<td>67.0</td>
</tr>
<tr>
<td>C3</td>
<td>41.0</td>
<td>47.0</td>
<td>0.00</td>
<td>90.0</td>
<td>67.0</td>
<td>63.0</td>
<td>4.00</td>
<td>49.0</td>
<td>93.0</td>
<td>48.0</td>
<td>7.00</td>
<td>94.0</td>
<td>52.0</td>
<td>19.0</td>
<td>41.0</td>
</tr>
<tr>
<td>C4</td>
<td>49.0</td>
<td>39.0</td>
<td>90.0</td>
<td>0.00</td>
<td>21.0</td>
<td>60.0</td>
<td>56.0</td>
<td>80.0</td>
<td>12.0</td>
<td>69.0</td>
<td>54.0</td>
<td>52.0</td>
<td>33.0</td>
<td>99.0</td>
<td>2.00</td>
</tr>
<tr>
<td>C5</td>
<td>5.00</td>
<td>54.0</td>
<td>67.0</td>
<td>21.0</td>
<td>0.00</td>
<td>32.0</td>
<td>22.0</td>
<td>61.0</td>
<td>85.0</td>
<td>47.0</td>
<td>56.0</td>
<td>75.0</td>
<td>59.0</td>
<td>42.0</td>
<td>63.0</td>
</tr>
<tr>
<td>C6</td>
<td>59.0</td>
<td>9.00</td>
<td>63.0</td>
<td>60.0</td>
<td>32.0</td>
<td>0.00</td>
<td>58.0</td>
<td>46.0</td>
<td>43.0</td>
<td>3.00</td>
<td>33.0</td>
<td>65.0</td>
<td>69.0</td>
<td>80.0</td>
<td>37.0</td>
</tr>
<tr>
<td>C7</td>
<td>19.0</td>
<td>49.0</td>
<td>4.00</td>
<td>56.0</td>
<td>22.0</td>
<td>58.0</td>
<td>0.00</td>
<td>82.0</td>
<td>97.0</td>
<td>15.0</td>
<td>78.0</td>
<td>82.0</td>
<td>64.0</td>
<td>33.0</td>
<td>26.0</td>
</tr>
<tr>
<td>C8</td>
<td>37.0</td>
<td>59.0</td>
<td>49.0</td>
<td>80.0</td>
<td>61.0</td>
<td>46.0</td>
<td>82.0</td>
<td>0.00</td>
<td>8.00</td>
<td>86.0</td>
<td>1.00</td>
<td>90.0</td>
<td>37.0</td>
<td>0.00</td>
<td>42.0</td>
</tr>
<tr>
<td>C9</td>
<td>33.0</td>
<td>95.0</td>
<td>93.0</td>
<td>12.0</td>
<td>85.0</td>
<td>43.0</td>
<td>97.0</td>
<td>8.00</td>
<td>0.00</td>
<td>63.0</td>
<td>34.0</td>
<td>81.0</td>
<td>21.0</td>
<td>56.0</td>
<td>0.00</td>
</tr>
<tr>
<td>C10</td>
<td>82.0</td>
<td>47.0</td>
<td>48.0</td>
<td>69.0</td>
<td>47.0</td>
<td>3.00</td>
<td>15.0</td>
<td>86.0</td>
<td>63.0</td>
<td>0.00</td>
<td>88.0</td>
<td>69.0</td>
<td>33.0</td>
<td>47.0</td>
<td>90.0</td>
</tr>
<tr>
<td>C11</td>
<td>9.00</td>
<td>98.0</td>
<td>7.00</td>
<td>54.0</td>
<td>56.0</td>
<td>33.0</td>
<td>78.0</td>
<td>1.00</td>
<td>34.0</td>
<td>88.0</td>
<td>0.00</td>
<td>77.0</td>
<td>63.0</td>
<td>87.0</td>
<td>57.0</td>
</tr>
<tr>
<td>C12</td>
<td>21.0</td>
<td>87.0</td>
<td>94.0</td>
<td>52.0</td>
<td>75.0</td>
<td>65.0</td>
<td>82.0</td>
<td>90.0</td>
<td>81.0</td>
<td>69.0</td>
<td>77.0</td>
<td>0.00</td>
<td>46.0</td>
<td>30.0</td>
<td>63.0</td>
</tr>
<tr>
<td>C13</td>
<td>8.00</td>
<td>69.0</td>
<td>52.0</td>
<td>33.0</td>
<td>59.0</td>
<td>69.0</td>
<td>64.0</td>
<td>37.0</td>
<td>21.0</td>
<td>33.0</td>
<td>63.0</td>
<td>46.0</td>
<td>0.00</td>
<td>59.0</td>
<td>95.0</td>
</tr>
<tr>
<td>C14</td>
<td>38.0</td>
<td>36.0</td>
<td>21.0</td>
<td>99.0</td>
<td>42.0</td>
<td>80.0</td>
<td>33.0</td>
<td>0.00</td>
<td>56.0</td>
<td>47.0</td>
<td>87.0</td>
<td>30.0</td>
<td>59.0</td>
<td>0.00</td>
<td>40.0</td>
</tr>
<tr>
<td>C15</td>
<td>33.0</td>
<td>67.0</td>
<td>41.0</td>
<td>2.00</td>
<td>63.0</td>
<td>40.0</td>
<td>26.0</td>
<td>42.0</td>
<td>0.00</td>
<td>90.0</td>
<td>57.0</td>
<td>63.0</td>
<td>95.0</td>
<td>40.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION:

Global optimal solution found.

Objective value: 212.

Objective bound: 212.

Infeasibilities: 0.00

IDEAL PLANNING PROGRAM:

From: C1 To: C12 Distance: 21 mile
From: C2 To: C6 Distance: 9 mile
From: C3 To: C11 Distance: 7 mile
From: C4 To: C5 Distance: 21 mile
From: C5 To: C1 Distance: 5 mile
From: C6 To: C10 Distance: 3 mile
From: C7 To: C3 Distance: 4 mile
From: C8 To: C13 Distance: 37 mile
From: C9 To: C15 Distance: 0 mile
From: C10 To: C7 Distance: 15 mile
From: C11 To: C8 Distance: 1 mile
From: C12 To: C14 Distance: 30 mile
From: C13 To: C9 Distance: 21 mile
From: C14 To: C2 Distance: 36 mile
From: C15 To: C4 Distance: 2 mile

Total distance: 212 mile
TRAVELING SALESPERSON PROBLEM
Lower distance between 15 cities / Sequence / Total distance: 212

C12 → C14 → C2 → C6 → C10

C13 → C8 → C11 → C3 → C7

C9 → C15 → C4 → C5 → C1

Distances:
- C12 to C14: 30
- C14 to C2: 36
- C2 to C6: 9
- C6 to C10: 3
- C13 to C8: 37
- C8 to C11: 1
- C11 to C3: 7
- C3 to C7: 4
- C9 to C15: 0
- C15 to C4: 2
- C4 to C5: 21
- C5 to C1: 5

Total distance: 212
GOAL

The problem of traveling salesman is a classic example in Linear Programming. In this case simple version.\((\text{TSPCUTx})\).

Sub-tour elimination method. We add a row/cut/constraint to cut off a sub-tour until a full tour is found. Find the shortest route that visits each city exactly once.

<table>
<thead>
<tr>
<th>FROM</th>
<th>NYK</th>
<th>ATL</th>
<th>CHI</th>
<th>CIN</th>
<th>HOU</th>
<th>LAX</th>
<th>MON</th>
<th>PHL</th>
<th>PIT</th>
<th>STL</th>
<th>SND</th>
<th>SNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYK</td>
<td>0</td>
<td>864</td>
<td>845</td>
<td>664</td>
<td>1706</td>
<td>2844</td>
<td>396</td>
<td>92</td>
<td>386</td>
<td>1002</td>
<td>2892</td>
<td>3032</td>
</tr>
<tr>
<td>ATL</td>
<td>864</td>
<td>0</td>
<td>702</td>
<td>454</td>
<td>842</td>
<td>2396</td>
<td>1196</td>
<td>772</td>
<td>714</td>
<td>554</td>
<td>2363</td>
<td>2679</td>
</tr>
<tr>
<td>CHI</td>
<td>845</td>
<td>702</td>
<td>0</td>
<td>324</td>
<td>1093</td>
<td>2136</td>
<td>764</td>
<td>764</td>
<td>459</td>
<td>294</td>
<td>2184</td>
<td>2187</td>
</tr>
<tr>
<td>CIN</td>
<td>664</td>
<td>454</td>
<td>324</td>
<td>0</td>
<td>1137</td>
<td>2180</td>
<td>798</td>
<td>572</td>
<td>284</td>
<td>338</td>
<td>2228</td>
<td>2463</td>
</tr>
<tr>
<td>HOU</td>
<td>1706</td>
<td>842</td>
<td>1093</td>
<td>1137</td>
<td>0</td>
<td>1616</td>
<td>1857</td>
<td>1614</td>
<td>1421</td>
<td>799</td>
<td>1521</td>
<td>2021</td>
</tr>
<tr>
<td>LAX</td>
<td>2844</td>
<td>2396</td>
<td>2136</td>
<td>2180</td>
<td>1616</td>
<td>0</td>
<td>2900</td>
<td>2752</td>
<td>2464</td>
<td>1842</td>
<td>95</td>
<td>405</td>
</tr>
<tr>
<td>MON</td>
<td>396</td>
<td>1196</td>
<td>764</td>
<td>798</td>
<td>1857</td>
<td>2900</td>
<td>0</td>
<td>424</td>
<td>514</td>
<td>1058</td>
<td>2948</td>
<td>2951</td>
</tr>
<tr>
<td>PHL</td>
<td>92</td>
<td>772</td>
<td>764</td>
<td>572</td>
<td>1614</td>
<td>5752</td>
<td>424</td>
<td>0</td>
<td>305</td>
<td>910</td>
<td>2800</td>
<td>2951</td>
</tr>
<tr>
<td>PIT</td>
<td>386</td>
<td>714</td>
<td>459</td>
<td>284</td>
<td>1421</td>
<td>2464</td>
<td>514</td>
<td>305</td>
<td>0</td>
<td>622</td>
<td>2512</td>
<td>2646</td>
</tr>
<tr>
<td>STL</td>
<td>1002</td>
<td>554</td>
<td>294</td>
<td>338</td>
<td>799</td>
<td>1842</td>
<td>1058</td>
<td>910</td>
<td>622</td>
<td>0</td>
<td>1890</td>
<td>2125</td>
</tr>
<tr>
<td>SND</td>
<td>2892</td>
<td>2363</td>
<td>2184</td>
<td>2228</td>
<td>1521</td>
<td>95</td>
<td>2948</td>
<td>2800</td>
<td>2800</td>
<td>2512</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>SNF</td>
<td>3032</td>
<td>2679</td>
<td>2187</td>
<td>2463</td>
<td>2021</td>
<td>405</td>
<td>2951</td>
<td>2951</td>
<td>2646</td>
<td>2125</td>
<td>500</td>
<td>0</td>
</tr>
</tbody>
</table>
MODEL:
SETS:
CITY;
LINK(CITY, CITY):
 DIST, ! The distance matrix;
 Y; ! Y(I, J) = 1 if link I, J is in tour;
SUBTOUR: TOURSIZE;
SXC(SUBTOUR,CITY): FLAG;
ENDSETS
DATA:
! Max sub-tour cuts allowed;
SUBTOUR = 1..30;
CITY = NYK ATL CHI CIN HOU LAX MON PHL PIT STL SND SNF;
! Distance matrix, it need not be symmetric;
DIST =
 0 864 845 664 1706 2844 396 92 386 1002 2892 3032
864 0 702 454 1093 2396 1196 772 554 2363 2679
845 702 0 1034 1137 2136 764 572 294 1058 2184
664 1093 1034 0 1137 2180 798 572 284 1058 2184
1706 2396 2136 1137 0 1421 799 1521 1521 1206 2021
2844 1196 764 294 798 0 772 772 772 1842 2187
396 92 845 386 386 772 0 305 1058 305 305
92 772 764 572 386 92 845 0 305 1058 305
2892 2396 2136 1137 2180 798 772 0 305 1058 305
3032 2679 2187 2463 2021 772 772 772 0 305 305
ENDDATA
SUBMODEL TSP_CUT:
! Minimize total distance traveled;
[OBJ] MIN = TOURLEN;
 TOURLEN = @SUM(LINK: DIST * Y);
! The Assignment constraints;
 @FOR(CITY(K):
 ! It must be entered;
 @SUM(CITY(I) | I #NE# K: Y(I, K)) = 1;
 ! It must be departed;
 @SUM(CITY(J) | J #NE# K: Y(K, J)) = 1;
 ! Cannot visit self;
 Y(K, K) = 0);
! Sub-tour cuts added so far;
 @FOR(SUBTOUR(t) | t #LE# ICUT:
 @SUM(CITY(i) | FLAG(t,i) #EQ# 1:
 @SUM(CITY(j) | FLAG(t,j) #EQ# 1: Y(i,j)) <= TOURSIZE(t) - 1);
 ! The Y(i,j) must be 0 or 1;
 @FOR(LINK(i,j): @BIN(Y(i,j)));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET("TERSEO",1);
! Post status windows, 1 Yes, 0 No;
@SET("STAWIN",0);
! Precision in digits for standard solution reports;
@SET("PRECIS",5);
! Terminal page width (0:none);
@SET("LINLEN",120);
! Data block;
@WRITE(" DATA:",@NEWLINE(1)," THE DISTANCE MATRIX:",@NEWLINE(1));
@TABLE(DIST);
@WRITE(" ",@NEWLINE(1)," SOLUTION: ",@NEWLINE(1));
@WRITE(" ",@NEWLINE(1)," IDEAL PLANNING PROGRAM: ",@NEWLINE(2));
N = @SIZE(CITY);
! Max cuts we have space for;
MXCUTS = @SIZE(SUBTOUR);
ICUT = 0;
MORECUTS = 1; ! =0 if no more cuts;
@WHILE(MORECUTS:
! Loop over subtour cuts, ICUT;
! Solve current version;
@SOLVE(TSP_CUT);
ICUT = ICUT + 1;
@WRITE("#",ICUT," Obj value = ",TOURLEN,@NEWLINE(1));
! Turn this on to see intermediate solutions;
@FOR(LINK(i,j) | Y(i,j) #GT# .01:
@WRITE(i,j,Y(i,j),@NEWLINE(1)))
! Find subtour if any;
StartCity = 1; ! Start at city 1;
KURSTOP = StartCity;
@FOR(CITY(k):FLAG(ICUT,k) = 0); ! Start with no cities in cut;
@WRITE(" Begin tour at ",CITY(KURSTOP),@NEWLINE(1));
TOURSIZE(ICUT) = 1;
! Loop over cities KURSTOP to find subtour including 1;
FLAG(ICUT,KURSTOP) = 1; ! KURSTOP is in the cut;
NotHome = 1;
@WHILE(NotHome:
@FOR(CITY(j) | Y(KURSTOP,j) #GT# .5:
@WRITE(" Next stop on tour= ",CITY(j),@NEWLINE(1));
@IFC(j #EQ# startCity:
NotHome = 0; ! Back home to startCity;
@ELSE
TOURSIZE(ICUT) = TOURSIZE(ICUT) + 1;
KURSTOP = j;
FLAG(ICUT,KURSTOP) = 1; ! KURSTOP is in the cut;
)
@ENDIF)
@ENDIF)
@ENDIF)
@IFC(TOURSIZE(ICUT) #EQ# N:
@WRITE(" Above is complete tour, so min length tour found.");
MORECUTS = 0;
@ELSE
@WRITE(" Add constraint to cut off above subtour.",@NEWLINE(1));
@IFC(ICUT #EQ# @SIZE(SUBTOUR):
@WRITE(" Exhausted memory.");
MORECUTS = 0;
)
@ENDIF)
@ENDIF)
! End loop over add cuts;
! (There are various refinements/complications of this basic idea to make order of magnitude performance improvements);
@WRITE(" ",@NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(TSP_CUT);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
THE DISTANCE MATRIX:

<table>
<thead>
<tr>
<th></th>
<th>NYK</th>
<th>ATL</th>
<th>CHI</th>
<th>CIN</th>
<th>HOU</th>
<th>LAX</th>
<th>MON</th>
<th>PHL</th>
<th>PIT</th>
<th>STL</th>
<th>SND</th>
<th>SNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYK</td>
<td>0.000</td>
<td>864.0</td>
<td>845.0</td>
<td>664.0</td>
<td>1706.0</td>
<td>2844.0</td>
<td>396.0</td>
<td>92.000</td>
<td>386.0</td>
<td>1002.0</td>
<td>2892.0</td>
<td>3032.0</td>
</tr>
<tr>
<td>ATL</td>
<td>864.0</td>
<td>0.000</td>
<td>702.0</td>
<td>454.0</td>
<td>842.0</td>
<td>2396.0</td>
<td>1196.0</td>
<td>772.000</td>
<td>714.0</td>
<td>554.0</td>
<td>2363.0</td>
<td>2679.0</td>
</tr>
<tr>
<td>CHI</td>
<td>845.0</td>
<td>702.0</td>
<td>0.000</td>
<td>324.0</td>
<td>1093.0</td>
<td>2136.0</td>
<td>764.0</td>
<td>764.0</td>
<td>459.0</td>
<td>294.0</td>
<td>2184.0</td>
<td>2187.0</td>
</tr>
<tr>
<td>CIN</td>
<td>664.0</td>
<td>454.0</td>
<td>324.0</td>
<td>0.000</td>
<td>1137.0</td>
<td>2180.0</td>
<td>798.0</td>
<td>572.0</td>
<td>284.0</td>
<td>336.0</td>
<td>2228.0</td>
<td>2463.0</td>
</tr>
<tr>
<td>HOU</td>
<td>1706.0</td>
<td>842.0</td>
<td>1093.0</td>
<td>1137.0</td>
<td>0.000</td>
<td>1616.0</td>
<td>1857.0</td>
<td>799.0</td>
<td>1521.0</td>
<td>521.0</td>
<td>2021.0</td>
<td>2821.0</td>
</tr>
<tr>
<td>LAX</td>
<td>2844.0</td>
<td>2396.0</td>
<td>2136.0</td>
<td>2180.0</td>
<td>1616.0</td>
<td>0.000</td>
<td>424.0</td>
<td>514.0</td>
<td>1058.0</td>
<td>2948.0</td>
<td>2951.0</td>
<td>2951.0</td>
</tr>
<tr>
<td>MON</td>
<td>396.0</td>
<td>1196.0</td>
<td>764.0</td>
<td>764.0</td>
<td>1857.0</td>
<td>2900.0</td>
<td>0.000</td>
<td>622.0</td>
<td>0.000</td>
<td>1890.0</td>
<td>2125.0</td>
<td>2125.0</td>
</tr>
<tr>
<td>PHL</td>
<td>92.000</td>
<td>772.0</td>
<td>764.0</td>
<td>764.0</td>
<td>1857.0</td>
<td>2900.0</td>
<td>0.000</td>
<td>305.0</td>
<td>910.0</td>
<td>2800.0</td>
<td>2951.0</td>
<td>2951.0</td>
</tr>
<tr>
<td>PIT</td>
<td>386.0</td>
<td>714.0</td>
<td>459.0</td>
<td>284.0</td>
<td>1421.0</td>
<td>2464.0</td>
<td>514.0</td>
<td>305.0</td>
<td>0.000</td>
<td>622.0</td>
<td>2512.0</td>
<td>2646.0</td>
</tr>
<tr>
<td>STL</td>
<td>1002.0</td>
<td>554.0</td>
<td>294.0</td>
<td>338.0</td>
<td>799.0</td>
<td>1842.0</td>
<td>1058.0</td>
<td>2948.0</td>
<td>0.000</td>
<td>1890.0</td>
<td>2125.0</td>
<td>2125.0</td>
</tr>
<tr>
<td>SND</td>
<td>2892.0</td>
<td>2363.0</td>
<td>2184.0</td>
<td>2228.0</td>
<td>1521.0</td>
<td>95.000</td>
<td>2948.0</td>
<td>2800.0</td>
<td>2512.0</td>
<td>1890.0</td>
<td>508.000</td>
<td>508.000</td>
</tr>
<tr>
<td>SNF</td>
<td>3032.0</td>
<td>2679.0</td>
<td>2187.0</td>
<td>2463.0</td>
<td>2021.0</td>
<td>405.00</td>
<td>2951.0</td>
<td>2951.0</td>
<td>2646.0</td>
<td>2125.0</td>
<td>500.000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

MODEL

Model Class: MILP

IDEAL PLANNING PROGRAM:

Global optimal solution found.

Objective value: 4752.0
Objective bound: 4752.0
Infeasibilities: 0.0000

#1 Obj value = 4752

Begin tour at NYK
Next stop on tour= MON
Next stop on tour= PHL
Next stop on tour= NYK
Add constraint to cut off above subtour.
Global optimal solution found.

Objective value: 4852.0
Objective bound: 4852.0
Infeasibilities: 0.0000

#2 Obj value = 4852

Begin tour at NYK
Next stop on tour= PHL
Next stop on tour= NYK
Add constraint to cut off above subtour.
Global optimal solution found.

Objective value: 4947.0
Objective bound: 4947.0
Infeasibilities: 0.0000

#3 Obj value = 4947

Begin tour at NYK
Next stop on tour= PIT
Next stop on tour= PHL
Next stop on tour= NYK
Add constraint to cut off above subtour.
Global optimal solution found.

Objective value: 5130.0
Objective bound: 5130.0
Infeasibilities: 0.0000
#5 Obj value = 5157
Begin tour at NYK
Next stop on tour= MON
Next stop on tour= CHI
Next stop on tour= STL
Next stop on tour= CIN
Next stop on tour= PIT
Next stop on tour= PHL
Next stop on tour= NYK
Add constraint to cut off above subtour.
Global optimal solution found.
Objective value: 5230.0
Objective bound: 5230.0
Infeasibilities: 0.0000

#6 Obj value = 5230
Begin tour at NYK
Next stop on tour= MON
Next stop on tour= CHI
Next stop on tour= STL
Next stop on tour= HOU
Next stop on tour= ATL
Next stop on tour= CIN
Next stop on tour= PIT
Next stop on tour= PHL
Next stop on tour= NYK
Add constraint to cut off above subtour.
Global optimal solution found.
Objective value: 6952.0
Objective bound: 6952.0
Infeasibilities: 0.0000

#7 Obj value = 6952
Begin tour at NYK
Next stop on tour= MON
Next stop on tour= PIT
Next stop on tour= CIN
Next stop on tour= ATL
Next stop on tour= PHL
Next stop on tour= NYK
Add constraint to cut off above subtour.
Global optimal solution found.
Objective value: 6995.0
Objective bound: 6995.0
Infeasibilities: 0.0000

#8 Obj value = 6995
Begin tour at NYK
Next stop on tour= MON
Next stop on tour= CHI
Next stop on tour= STL
Next stop on tour= ATL
Next stop on tour= CIN
Next stop on tour= PIT
Next stop on tour= PHL
Next stop on tour= NYK
Add constraint to cut off above subtour.
Global optimal solution found.
Objective value: 7577.0
Objective bound: 7577.0
Infeasibilities: 0.0000

#9 Obj value = 7577
Begin tour at NYK
Next stop on tour= MON
Next stop on tour= CHI
Next stop on tour= STL
Next stop on tour= SNF
Next stop on tour= LAX
Next stop on tour= SND
Next stop on tour= HOU
Next stop on tour= ATL
Next stop on tour= CIN
Next stop on tour= PIT
Next stop on tour= PHL
Next stop on tour= NYK
Above is complete tour, so min length tour found.
TRAVELING SALESPERSON PROBLEM

Lower distance between 12 cities / Sequence / Total distance: 7577

NYK 396 MON 764 CHI 294 STL 2125 SNF

CIN 454 ATL 842 HOU 1521 SND 95 LAX

PIT 284

PHL 305
How to solve big and difficult problems, using dynamic programming concept, in order to obtain an ideal solution?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
Dynamic programming (DP) is a creative approach to problem solving that involves breaking down a large and difficult problem into a series of smaller, easy-to-solve problems. By solving this series of minor problems, we are able to assemble the ideal solution to the big initial problem.

A detailed discussion of this model can be found in the development of more advanced models. To find the shortest path distance through the network, we will use the following DP recursion: $F(i) = \min [D(i, j) + F(j)]$ where $F(i)$ is the minimum travel distance from point i to the final destination point and $D(i, j)$ is the distance from point i to point j. In words, the minimum distance from node i to terminal node is the minimum at all reachable points over a single arc of i of the sum of the distance from i to the adjacent node plus the minimum distance from the adjacent node to the terminal node.

GOAL

Dynamic programming illustration (to see Anderson, Sweeney & Williams, an introduction to Mgr Science, 6th Ed). We have a network of 10 cities. We want to find the length of the shortest route from city 1 to city 10.

STEP1:
Here is our primitive set of ten cities, where $F(i)$ represents the shortest distance from the route from city i to the last city: $\text{CITIES /1..10/: } F$

STEP2:
The derived set ROADS lists the roads that exist between cities (note: not all city.) The pairs are directly linked by a road and roads are assumed in a way.

STEP3:
The following is classic dynamic recursion programming. In words, the shortest distance from City i to City 10 is the minimum in all cities j reachable from the sum of the distance from i to j plus the minimum distance from j to city 10;
MODEL:
SETS:
 CITIES /1..10/: F;
 The derived set ROADS lists the roads that exist between the cities (note: not all city pairs are directly linked by a road, and roads are assumed to be one way);
ROADS(CITIES, CITIES)/
 1,2 1,3 1,4
 2,5 2,6 2,7
 3,5 3,6 3,7
 4,5 4,6
 5,8 5,9
 6,8 6,9
 7,8 7,9
 8,10 9,10 /: D;
 D(i, j) is the distance from city i to j;
ENDSETS
DATA:
 ! Here are the distances that correspond to the above links;
D =
 1 5 2
 13 12 11
 6 10 4
 12 14
 3 9
 6 5
 8 10
 5
 2;
ENDDATA
SUBMODEL MIN1:
 ! If you are already in City 10, then the cost to travel to City 10 is 0;
 F(@SIZE(CITIES)) = 0;
 ! The following is the classic dynamic programming recursion. In words, the shortest distance from
 City i to City 10 is the minimum over all cities j reachable from i of the sum of the
 distance from i to j plus the minimal distance from j to City 10;
 @FOR(CITIES(i)| i #LT# @SIZE(CITIES): F(i) = @MIN(ROADS(i, j): D(i, j) + F(j)));
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET('TERSEO',1);
 ! Post status windows, 1 Yes, 0 No;
 @SET('STAWIN',0);
 ! Precision in digits for standard solution reports;
 @SET('PRECIS',3);
 ! Terminal page width (0:none);
 @SET('LINLEN',120);
 ! Data block;
 @WRITE(" DATA:\n DISTANCE (km) ROUTE VS CITY):",
 @TABLE(D);
 @WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MIN1);
 ! Solution report;
 @WRITEFOR(cities(i) | i #LT# 10: ' The smallest distance between City: ', CITIES(i), ' and City 10:',
 @FORMAT(F(i),'%.3.0f'), 'km');
 @NEWLINE(1));
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
DISTANCE (Route vs City in km):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>5.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13.0</td>
<td>12.0</td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6.00</td>
<td>10.0</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>12.0</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>3.00</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>6.00</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>8.00</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

The smallest distance between City: 1 and City 10: 19km
The smallest distance between City: 2 and City 10: 19km
The smallest distance between City: 3 and City 10: 14km
The smallest distance between City: 4 and City 10: 20km
The smallest distance between City: 5 and City 10: 8km
The smallest distance between City: 6 and City 10: 7km
The smallest distance between City: 7 and City 10: 12km
The smallest distance between City: 8 and City 10: 5km
The smallest distance between City: 9 and City 10: 2km
Dynamic programming (DP) is a creative approach to problem solving that involves breaking down a large and difficult problem into a series of smaller, easy-to-solve problems. By solving this series of minor problems, we are able to assemble the ideal solution to the big initial problem.

A detailed discussion of this model can be found in the development of more advanced models. To find the shortest path distance through the network, we will use the following DP recursion: F(i) = min[D(i, j) + F(j)] where F(i) is the minimum travel distance from point i to the final destination point and D(i, j) is the distance from point i to point j. In words, the minimum distance from node i to terminal node is the minimum at all reachable points over a single arc of i of the sum of the distance from i to the adjacent node plus the minimum distance from the adjacent node to the terminal node.

GOAL
Dynamic programming illustration (to see Anderson, Sweeney & Williams, an introduction to Mgt Science, 6th Ed.). We have a network of 10 cities. We want to find the length of the shortest route from city 1 to city 10.

STEP1:
Here is our primitive set of ten cities, where F(i) represents the shortest distance from the route from city i to the last city: CITIES /1..10/: F

STEP2:
The derived set ROADS lists the roads that exist between cities (note: not all city.) The pairs are directly linked by a road and roads are assumed in a way.

STEP3:
The following is classic dynamic recursion programming. In words, the shortest distance from City i to City 10 is the minimum in all cities j reachable from the sum of the distance from i to j plus the minimum distance from j to city 10;
MODEL:
SETS:
 ! Dynamic programming illustration (see Anderson, Sweeney & Williams, An Intro to Mgr Science, 6th Ed.).
 We have a network of 10 cities. We want to find the length of the shortest route from city 1 to city 10.;
 ! Here is our primitive set of ten cities, where F(i) represents the shortest path distance from city i to the last city;
 CITIES /1..10/: F, CONPATH;
 ! The derived set ROADS lists the roads that exist between the cities (note: not all city pairs are directly linked by a road, and roads are
 assumed to be one way);
 ROADS(CITIES, CITIES)/
 1,2 1,3 1,4
 2,5 2,6 2,7
 3,5 3,6 3,7
 4,5 4,6
 5,8 5,9
 6,8 6,9
 7,8 7,9
 8,10 9,10/: D, RONPATH;
 ! D(i, j) is the distance from city i to j;
ENDSETS
DATA:
 ! Here are the distances that correspond to the above links;
 D =
 1 5 2
 13 12 11
 6 10 4
 12 14
 3 9
 6 5
 8 10
 5 2;
ENDDATA
SUBMODEL MIN2:
 ! If ow are already in last city, then the cost to travel to it is 0;
 F(@SIZE(CITIES)) = 0;
 ! The following is the classic dynamic programming recursion. In words, the shortest distance from City i to last city is the minimum
 over all cities j reachable from i of the sum of the distance from i to j plus the minimal distance from j to last city;
 @FOR(CITIES(i)| i #LT# @SIZE(CITIES): F(i) = @MIN(ROADS(i, j): D(i, j) + F(j)););
 ! Set CONPATH(j) > 0 if city j is on any critical path, i.e., if going to j from some i on the critical path, still allows us to get to last city in
 optimal time;
 CONPATH(1) = 1;
 @FOR(CITIES(j)| j #GT# 1: CONPATH(j) = @MAX(ROADS(i,j): CONPATH(i))*(F(I)-F(j) #EQ# D(i,j)));)
 ! Set RONPATH(i,j) = 1 if arc i,j is on any critical path, i.e., both i and j are on path and (i,j) is shortest path from i to j. Note, we do not
 assume distances satisfy triangle inequality;
 @FOR(ROADS(i,j): RONPATH(I,J) = @SMIN(CONPATH(i), CONPATH(j))*(F(i)-F(j)) #EQ# D(i,j));
ENDSUBMODEL
CALC:
 ! Output level: 0=Verbose, 1-Terse;
 @SET("TERSEO",1);
 ! Post status windows, 1 Yes, 0 No;
 @SET("STAWIN",0);
 ! Precision in digits for standard solution reports;
 @SET("PRECI",3);
 ! Terminal page width (0:none);
 @SET("LINLEN",120);
 ! Data block;
 @WRITE(" DATA:", @NEWLINE(1), " DISTANCE (km) ROUTE VS CITY):", @NEWLINE(1));
 @TABLE(D);
 @WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
 ! Execute sub-model;
 @SOLVE(MIN2);
 ! Solution report;
 @WRITEFOR(cities(i) | i #LT# 10: ' The smallest distance between City: ', CITIES(i), ' and City 10: ',
 @FORMAT(F(I),'%3.0f','km',
 @NEWLINE(1));
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
DISTANCE (km) ROUTE VS CITY):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>5.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13.0</td>
<td>12.0</td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6.00</td>
<td>10.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>12.0</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.00</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.00</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

The smallest distance between City: 1 and City 10: 19km
The smallest distance between City: 2 and City 10: 19km
The smallest distance between City: 3 and City 10: 14km
The smallest distance between City: 4 and City 10: 20km
The smallest distance between City: 5 and City 10: 8km
The smallest distance between City: 6 and City 10: 7km
The smallest distance between City: 7 and City 10: 12km
The smallest distance between City: 8 and City 10: 5km
The smallest distance between City: 9 and City 10: 2km
How to optimize transport resources of parts, assemblies, etc., in an industrial facility in the shortest possible time, according to available resources and thus obtain cost reduction?

OTHER AVAILABLE BLOCKS

• Product Mix
• Blend
• Finance
• Investments
• Diet
• Aviation
• Transport
• Agriculture
• Construction
• Refinery
• Schedule
• Cutting
• Metallurgy
• Fertilizer
• Clinic
• Classic
• Dynamic
• Logistics
• Energy
• Assembly Line Balance
GOAL

For the construction of a tower, three external elevators were installed to carry cargo. The lifts carry one unit of load on each trip. They go up loaded and come down empty.

- Elevator A caters to floors 1 and 3.
- Elevator B is on floors 2 and 4.
- Elevator C caters to all floors.

Each lift can perform daily, and regardless of the floor, the number of trips provided below:

<table>
<thead>
<tr>
<th></th>
<th>Elevator A</th>
<th>Elevator B</th>
<th>Elevator C</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor 1</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Floor 2</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>70</td>
</tr>
<tr>
<td>Floor 3</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>Floor 4</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>85</td>
</tr>
<tr>
<td>Available</td>
<td>120</td>
<td>95</td>
<td>80</td>
<td>-</td>
</tr>
</tbody>
</table>

Every day, 285 cargo units must be transported.

Since lifts operate to lubricate such equipment, elevators that serve only even or odd-numbered floors must carry out at least 10 daily trips for each floor served. The daily time available for elevator operation is 420 minutes.

Each elevator has, on each pavement served, a specific equipment of security of door, access and removal of load.
MODEL:
SETS:
HEADER1 / PROD, LIMIT, VALUE /;
PRODUCT : AVAILABLE;
RESOURCE: DEMAND;
RXP(RESOURCE, PRODUCT) : TIME, PRODUCE;
YXP(RESOURCE, HEADER1) : SLASUR1;
PXR(PRODUCT, HEADER1) : SLASUR;
ENDSETS
DATA:
! Products attributes;
PRODUCT , AVAILABLE =
ELEVATOR_A 120
ELEVATOR_B 95
ELEVATOR_C 80;

! Resources attributes;
RESOURCE, DEMAND =
FLOOR_1 50
FLOOR_2 70
FLOOR_3 80
FLOOR_4 85;

! Required
ELEVATOR_A ELEVATOR_B ELEVATOR_C;
TIME = 3 0 4 ! FLOOR_1;
0 3 4 ! FLOOR_2;
4 0 6 ! FLOOR_3;
0 5 6; ! FLOOR_4;
ENDDATA
SUBMODEL MIN1:
[OBJ] MIN = @SUM(RXP(I,J): PRODUCE(I,J));
! The available constraints;
@FOR(PRODUCT(COL):
 [AVA] @SUM(RESOURCE(LIN): PRODUCE(LIN,COL)) <= AVAILABLE(COL));
! Lifts operating time;
@FOR(PRODUCT(COL):
 [TIM] @SUM(RESOURCE(LIN): TIME(LIN,COL) *PRODUCE(LIN,COL)) <= 420);
! Travel assistance per floor;
@FOR(RESOURCE(LIN):
 [DEM] @SUM(PRODUCT(COL): PRODUCE(LIN, COL)) = DEMAND(LIN));
! Restrictions on the minimum numbers of trip (Elevator A AND B);
@FOR(RESOURCE(LIN):
 [MNT] @SUM(PRODUCT(COL) | COL #LT# 3: PRODUCE(LIN,1)) >= 10);
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1=Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Precision in digits for standard solution reports;
@SET('PRECIS',8);
! Terminal page width (0:none);
@SET('LINLEN',120);

! Data block;
@WRITE(" DATA:", @NEWLINE(1), " TIME (Min) :", @NEWLINE(1));
@TABLE(TIME);
@WRITE(" ", @NEWLINE(1), " AVAILABLE (Min):", @NEWLINE(1));
@TABLE(AVAILABLE);
@WRITE(" ", @NEWLINE(1), " TRIP NEED:", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN1);
!
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RXP(I, J) PRODUCE(I,J) #GT# 0: ' ',
@FORMAT(PRODUCT(J),'-10S'), ' made:',
@FORMAT(PRODUCE(I,J),'%5.0f'),' Trip To ',
@FORMAT(RESOURCE(I),'-10s'),' ',
@NEWLINE(1));

! Slack/Surplus Resources report;
@WRITE(" ", @NEWLINE(1), " SLACK/SURPLUS LIMIT = DEMAND: ", @NEWLINE(1));
@FOR(RXP(I,J):
 SLASUR1(I,2) = DEMAND(I);
 SLASUR1(I,1) = PRODUCE(I,1) + PRODUCE(I,2) + PRODUCE(I,3);
 SLASUR1(I,3) = SLASUR1(I,1) - SLASUR1(I,2));
@TABLE(SLASUR1);

! Slack/Surplus Resources report;
@WRITE(" ", @NEWLINE(1), " SLACK/SURPLUS LIMIT = MINIMUM NUMBERS OF TRIP: ", @NEWLINE(1));
@FOR(RXP(I,J):
 SLASUR1(I,2) = PRODUCE(I,1) + PRODUCE(I,2) + PRODUCE(I,3);
 SLASUR1(I,1) = SLASUR1(I,2) - MNT(I);
 SLASUR1(I,3) = SLASUR1(I,1) - SLASUR1(I,2));
@TABLE(SLASUR1);

! Slack/Surplus Resources report;
@WRITE(" ", @NEWLINE(1), " SLACK/SURPLUS LIMIT = AVAILABLE: ", @NEWLINE(1));
@FOR(PXR(I,J):
 SLASUR(I,2) = AVAILABLE(I);
 SLASUR(I,1) = SLASUR(I,2) - AVA(I) ;
 SLASUR(I,3) = SLASUR(I,1) - SLASUR(I,2));
@TABLE(SLASUR);

! Slack/Surplus Resources report;
@WRITE(" ", @NEWLINE(1), " SLACK/SURPLUS LIMIT = LIFTS OPERATING TIME: ", @NEWLINE(1));
@FOR(PXR(I,J):
 SLASUR(I,2) = AVAILABLE(I);
 SLASUR(I,1) = SLASUR(I,2) - TIM(I) ;
 SLASUR(I,3) = SLASUR(I,1) - SLASUR(I,2));
@TABLE(SLASUR);
@WRITE(" ", @NEWLINE(1));
! To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
TIME (Min):
 FLOOR_1 3.000000 0.000000 4.000000
 FLOOR_2 0.000000 3.000000 4.000000
 FLOOR_3 4.000000 0.000000 6.000000
 FLOOR_4 0.000000 5.000000 6.000000

AVAILABLE (Min):
 ELEVATOR_A 120.00000
 ELEVATOR_B 95.000000
 ELEVATOR_C 80.000000

TRIP NEED:
 FLOOR_1 50.000000
 FLOOR_2 70.000000
 FLOOR_3 80.000000
 FLOOR_4 85.000000

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 285.000000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
 ELEVATOR_A made: 5 Trip To FLOOR_1
 ELEVATOR_C made: 45 Trip To FLOOR_1
 ELEVATOR_A made: 5 Trip To FLOOR_2
 ELEVATOR_B made: 40 Trip To FLOOR_2
 ELEVATOR_C made: 25 Trip To FLOOR_2
 ELEVATOR_A made: 25 Trip To FLOOR_3
 ELEVATOR_B made: 55 Trip To FLOOR_3
 ELEVATOR_A made: 85 Trip To FLOOR_4

SLACK/SURPLUS LIMIT = DEMAND:
 PROD LIMIT VALUE
 FLOOR_1 50.000000 50.000000 0.000000
 FLOOR_2 70.000000 70.000000 0.000000
 FLOOR_3 80.000000 80.000000 0.000000
 FLOOR_4 85.000000 85.000000 0.000000

SLACK/SURPLUS LIMIT = MINIMUM NUMBERS OF TRIP:
 PROD LIMIT VALUE
 FLOOR_1 50.000000 50.000000 0.000000
 FLOOR_2 70.000000 70.000000 0.000000
 FLOOR_3 48.000000 80.000000 -40.000000
 FLOOR_4 -75.000000 85.000000 -160.000000

SLACK/SURPLUS LIMIT = AVAILABLE:
 PROD LIMIT VALUE
 ELEVATOR_A 120.00000 120.00000 0.000000
 ELEVATOR_B 95.000000 95.000000 0.000000
 ELEVATOR_C 70.000000 80.000000 -10.000000

SLACK/SURPLUS LIMIT = LIFTS OPERATING TIME:
 PROD LIMIT VALUE
 ELEVATOR_A -185.00000 120.00000 -305.000000
 ELEVATOR_B -205.00000 95.000000 -300.000000
 ELEVATOR_C -60.000000 80.000000 -140.000000
GOAL

Your firm has a choice of three locations to operate a manufacturing facility in. Four customers exist with a known demand for your product.

<table>
<thead>
<tr>
<th>Plant / Customers</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>Fixed Cost</th>
<th>Capacity (un)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>$6.00</td>
<td>2.00</td>
<td>6.00</td>
<td>7.00</td>
<td>91.00</td>
<td>39</td>
</tr>
<tr>
<td>P2</td>
<td>$4.00</td>
<td>9.00</td>
<td>5.00</td>
<td>3.00</td>
<td>70.00</td>
<td>35</td>
</tr>
<tr>
<td>P3</td>
<td>$8.00</td>
<td>8.00</td>
<td>1.00</td>
<td>5.00</td>
<td>24.00</td>
<td>31</td>
</tr>
<tr>
<td>Demand</td>
<td>un</td>
<td>15</td>
<td>17</td>
<td>22</td>
<td>12</td>
<td>-</td>
</tr>
</tbody>
</table>

Each potential plant location has an associated monthly operating cost, and shipping routes to the demand cities have varying cost.

In addition, each potential plant will have a shipping capacity that must not be exceeded.

You need to determine what plant(s) to open and how much of a product to send from each open plant to each customer to minimize total shipping cost and fixed plant operating cost.
MODEL:
SETS:
 PLANTS: FCOST, CAPACITY, OPEN;
 CUSTOMERS: DEMAND;
 PXCI(PLANTS, CUSTOMERS) : COST, VOL;
ENDSETS
DATA:
! The plant, their fixed cost and capacity:
 PLANTS, FCOST, CAPACITY =
 P1 91 39
 P2 70 35
 P3 24 31;
! Customers and their demands:
 CUSTOMERS, DEMAND =
 C1 15
 C2 17
 C3 22
 C4 12;
! The plant to cost/unit shipment matrix:
! REQUIRED
 C1 C2 C3 C4;
 COST =
 6 2 6 7 ! P1;
 4 9 5 3 ! P2;
 8 8 1 5 ! P3;
ENDDATA
SUBMODEL MIN2:
[OBJ] MIN = @SUM(PXC: COST * VOL) + @SUM(PLANTS: FCOST * OPEN);
! The demand constraints;
@FOR(CUSTOMERS(J): [DEM] @SUM(PLANTS(I): VOL(I, J)) >= DEMAND(J));
! The supply constraints;
@FOR(PLANTS(I): [CAP] @SUM(CUSTOMERS(J): VOL(I, J)) <= CAPACITY(I) * OPEN(I));
! Make OPEN binary(0/1);
@FOR(PLANTS: @BIN(OPEN));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Precision in digits for standard solution reports;
@SET('PRECIS',3);
! Terminal page width (0:none);
@SET('LINLEN',120);
! Data block;
@WRITE(" DATA:", @NEWLINE(1), " COST (Plant vs Customers):", @NEWLINE(1));
@TABLE(COST);
@WRITE(" FIXED COST:", @NEWLINE(1));
@TABLE(FCOST);
@WRITE(" DEMAND (un):", @NEWLINE(1));
@TABLE(DEMAND);
@WRITE(" CAPACITY (un):", @NEWLINE(1));
@TABLE(CAPACITY);
@WRITE(" SOLUTION: ", @NEWLINE(1));
@SOLVE(MIN2);
@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@TEXT()=@WRITEFOR(PXCI(I,J) | VOL(I,J) #GT# 0: ' From:',
 @FORMAT(PLANTS(I),'-2s'), 'To:',
 @FORMAT(CUSTOMERS(J),'-2s'), 'Unit cost: $',
 @FORMAT(VOL(I,J),'%2.0f'), 'Shipping cost:$',
 @FORMAT(COST(I,J),'%4.2f'), 'Total:$',
 @IF(PLANTS(I) #EQ# 'P1', FCOST(I)/3, FCOST(I)/2), '%4.1f'),
 " FIXED PROFIT HAD TO BE RATED TO ADJUST THE CALCULATION OF THE TOTAL PROFIT IN THE REPORT;"
 @FORMAT(FCOST(I)/3,'%4.2f'), ' + ', " Fixed cost:$");
@NEWLINE(1));
@WRITE(" To see the corresponding model scalar, remove () From the line below;",
@GEN(MIN2));
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
COST (Plant vs Customers):
<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>6.00</td>
<td>2.00</td>
<td>6.00</td>
<td>7.00</td>
</tr>
<tr>
<td>P2</td>
<td>4.00</td>
<td>9.00</td>
<td>5.00</td>
<td>3.00</td>
</tr>
<tr>
<td>P3</td>
<td>8.00</td>
<td>8.00</td>
<td>1.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

FIXED COST:
<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91.0</td>
<td>70.0</td>
<td>24.0</td>
</tr>
</tbody>
</table>

DEMAND (un):
<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15.0</td>
<td>17.0</td>
<td>22.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

CAPACITY (un):
<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39.0</td>
<td>35.0</td>
<td>31.0</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 327.00
Objective bound: 327.00
Infeasibilities: 0.00

IDEAL PLANNING PROGRAM:
From: P1 To: C1 15Un x Unit cost: $6.00 = Shipping cost:$90.00 + Fixed cost:$30.3 = Total:$120.33
From: P1 To: C2 17Un x Unit cost: $2.00 = Shipping cost:$34.00 + Fixed cost:$30.3 = Total:$ 64.33
From: P1 To: C4 3Un x Unit cost: $7.00 = Shipping cost:$21.00 + Fixed cost:$30.3 = Total:$ 51.33
From: P3 To: C3 22Un x Unit cost: $1.00 = Shipping cost:$22.00 + Fixed cost:$12.0 = Total:$ 34.00
From: P3 To: C4 9Un x Unit cost: $5.00 = Shipping cost:$45.00 + Fixed cost:$12.0 = Total:$ 57.00
GOAL

Three ships will be loaded at the port of Santos with iron ore. The Ore Terminal has four pier, each of them with a different capacity ship-loader.

Due to differences in the capacities of ships and ship-loaders, there are different loading times, depending on the combinations between ships and pier as per table below.

<table>
<thead>
<tr>
<th>Pier</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>7</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>P2</td>
<td>6</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>P3</td>
<td>12</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>P4</td>
<td>14</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Formulate the modeling so that the total time of ship loading is minimal.
MODEL:
SETS:
PIER: ;
SHIP: ;
RXP(PIER, SHIP): LOADTIME, PRODTIME;
ENDSETS
DATA:
! Pier attributes;
PIER =
P1
P2
P3
P4;
! Ship attributes;
SHIP =
A
B
C;
! Ship vs Pier
A
B
C;
LOADTIME =
7 11 9 ! P1;
6 10 15 ! P2;
12 16 14 ! P3;
14 8 5 ! P4;
ENDDATA
SUBMODEL MIN3:
! Minimal loadtime;
[OBJ] MIN = @SUM(RXP(I, J): LOADTIME(I, J) * PRODTIME(I, J));
! Pier;
@FOR(PIER(I):
 @SUM(SHIP(J): PRODTIME(I, J)) = 1);
! Ship;
@FOR(SHIP(J):
 @SUM(PIER(I): PRODTIME(I, J)) >= 1);
@FOR(RXP(I,J): @BIN(PRODTIME(I,J)));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE (1));
@WRITE(" LOADTIME:", @NEWLINE (1));
@TABLE(LOADTIME);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN3);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL LOGISTICS PROGRAM: ", @NEWLINE(1));
@WRITEFOR(RXP(I, J) | PRODTIME(I, J) #GT# 0: ' Pier: ', PIER(I), ' Ship: ', SHIP(J),' Loadtime: ' , 17*'.', ' hr',
 @FORMAT(LOADTIME(I,J),'%2.0f'),' hr',
 @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
@GEN(MIN3);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
LOADTIME:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>7.000000</td>
<td>11.00000</td>
<td>9.000000</td>
</tr>
<tr>
<td>P2</td>
<td>6.000000</td>
<td>10.00000</td>
<td>15.00000</td>
</tr>
<tr>
<td>P3</td>
<td>12.00000</td>
<td>16.00000</td>
<td>14.00000</td>
</tr>
<tr>
<td>P4</td>
<td>14.00000</td>
<td>8.000000</td>
<td>5.000000</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution:

SOLUTION:
Global optimal solution found.
Objective value: 34.00000
Objective bound: 34.00000
Infeasibilities: 0.000000

IDEAL LOGISTICS PROGRAM:
Pier: P1 Ship: B Loadtime: 11 hr
Pier: P2 Ship: A Loadtime: 6 hr
Pier: P3 Ship: A Loadtime: 12 hr
Pier: P4 Ship: C Loadtime: 5 hr
How to produce thermal energy for example, using Coal Mineral, Oil Diesel, etc. and respect the limits of environmental pollution allowed?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
GOAL

The City of Criciuma operates its own electric power generation plant from coal. This plant burns three types of mineral to generate steam and thus to drive the turbines that produce electric energy.

The Department of Environmental Protection (DPA) determines that the smoke generated by burning coal can’t contain more than 2500 ppm of sulfur and no more than 2.8 kg of coal dust.

The specifications of the three types of coal to be blended are shown below. The three types of coal can be mixed in any way.

<table>
<thead>
<tr>
<th>Resources / Products</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
</tr>
<tr>
<td>Sulfur ppm</td>
<td>1.7</td>
</tr>
<tr>
<td>Goal Powder kg</td>
<td>1,000</td>
</tr>
<tr>
<td>Steam ton</td>
<td>24,000</td>
</tr>
</tbody>
</table>

The plant manager wants to determine the ideal mix of generating the largest amount of steam without violating DPA determinations.
MODEL:
SETS:
 HEADER1 / PROD, LIMIT, VALUE /;
 PRODUCT : STEAM, PRODUCE;
 RESOURCE: LIMIT;
 RXP(RESOURCE, PRODUCT) : USAGE;
 YXP(RESOURCE, HEADER1) : SLASUR1;
ENDSETS
DATA:
! Resources attributes;
 RESOURCE, LIMIT =
 SULFUR 2.8
 GOAL_POWDER 2500;
! Products attributes;
 PRODUCT, STEAM =
 COAL_T1 24000
 COAL_T2 36000
 COAL_T3 28000;
! Required
 USAGE =
 COAL_T1 1.7
 COAL_T2 3.2
 COAL_T3 2.4
 SULFOR 1000
 GOAL_POWDER 3500
 2700;
ENDDATA
SUBMODEL MIN1:
[OBJ] MIN = @SUM(PRODUCT(p): STEAM(p) * PRODUCE(p));
! Limit;
@FOR(RESOURCE(r):
 [LIM] @SUM(PRODUCT(p): USAGE(r, p) * PRODUCE(p)) >= LIMIT(r));
ENDSUBMODEL
CALC:
! Output level: 0=Verbose, 1-Terse;
@SET(’TERSEO’,1);
! Post status windows, 1 Yes, 0 No;
@SET(’STAWIN’,0);
! Data block;
@WRITE("DATA:"
 "RESOURCE (ppm,kg)):", @NEWLINE(1));
@TABLE(USAGE);
@WRITE("",
 "LIMIT (ppm,kg)):", @NEWLINE(1));
@TABLE(LIMIT);
@WRITE("",
 "STEAM (ton):", @NEWLINE(1));
@TABLE(STEAM);
@WRITE("",
 "SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN1);
! Solution report;
@WRITE("",
 "IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(PRODUCT(J) PRODUCE(J) #GT# 0: 'Used: ', PRODUCT(J),!
 ' x Steam:',
 "Total:",
 "STEAM(J) %5.0f",'ton', ' = Total:',
 PRODUCE(J) * STEAM(J), '%5.0f', 'ton',
 @NEWLINE(1));
! Slack/Surplus Resources report;
@WRITE("",
 "SLACK/SURPLUS LIMIT: ", @NEWLINE(1));
@FOR(YXP(I,J):
 SLASUR1(I,2) = LIMIT(I);
 SLASUR1(I,1) = SLASUR1(I,2) - LIM(I);
 SLASUR1(I,3) = SLASUR1(I,1) - SLASUR1(I,2));
@TABLE(SLASUR1);
@WRITE("",
 @NEWLINE(1));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN1);
ENDCALC
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:
RESOURCE (ppm,kg):

<table>
<thead>
<tr>
<th></th>
<th>COAL_T1</th>
<th>COAL_T2</th>
<th>COAL_T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SULFOR</td>
<td>1.700000</td>
<td>3.200000</td>
<td>2.400000</td>
</tr>
<tr>
<td>GOAL_POWDER</td>
<td>1000.000</td>
<td>3500.000</td>
<td>2700.000</td>
</tr>
</tbody>
</table>

LIMIT (ppm,kg):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SULFOR</td>
<td>2.800000</td>
</tr>
<tr>
<td>GOAL_POWDER</td>
<td>2500.000</td>
</tr>
</tbody>
</table>

STEAM (ton):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COAL_T1</td>
<td>24000.00</td>
</tr>
<tr>
<td>COAL_T2</td>
<td>36000.00</td>
</tr>
<tr>
<td>COAL_T3</td>
<td>28000.00</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:
Global optimal solution found.
Objective value: 31500.00
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:
Used: COAL_T2 87.5% x Steam:36000ton = Total:31500ton

SLACK/SURPLUS LIMIT:

<table>
<thead>
<tr>
<th></th>
<th>LIMIT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SULFOR</td>
<td>2.800000</td>
<td>0.000000</td>
</tr>
<tr>
<td>GOAL_POWDER</td>
<td>1937.500</td>
<td>-562.5000</td>
</tr>
</tbody>
</table>
In an assembler company the big challenge is how to reduce the time in activities in the stations of works, and with that it can produce more?

OTHER AVAILABLE BLOCKS

- Product Mix
- Blend
- Finance
- Investments
- Diet
- Aviation
- Transport
- Agriculture
- Construction
- Refinery
- Schedule
- Cutting
- Metallurgy
- Fertilizer
- Clinic
- Classic
- Dynamic
- Logistics
- Energy
- Assembly Line Balance
INTRODUCTION

Assembly line balancing is a production strategy that sets an intended rate of production to produce a particular product within a particular time frame.

Also, the assembly line needs to be designed effectively and tasks needs to be distributed among workers, machines and work stations ensuring that every line segments in the production process can be met within the time frame and available production capacity.

Assembly line balancing can also be defined as assigning proper number of workers or machines for each operations of an assembly line so as to meet required production rate with minimum or zero ideal time.

The very purpose of line balancing is to assign workloads to each assigned work station in a manner that the every works stations has approximately same amount of work to be done.

Benefits of Assembly Line Balancing in organization.
1. Improved process efficiency
2. Increased production rate
3. Reduced total processing time
4. Minimum or Zero Ideal Time
5. Potential increase in profits and decrease in PROFITS

ASSEMBLY LINE PROBLEM

Problem:
The below product in a factory is assembled in an assembly line. This process needs to be re-arranged to find a balance that minimizes the workstation cycle time.

EXISTING ASSEMBLY LINE

Below is an assembly line showing list of 13 activities that needs to be completed to produce a product. The actual time required to produce each of this activity are as follows.

The assembly line has 5 workers (work stations) stationed on the line as follows where back tracking is not allowed.

The activities assigned to each workstation by production team are as follows.

Activity, Time: A, 30 B,50 C,40 D,50 E,10 F,10 G,10 H,20 I,10 J,30 K,20 L,50 M,10

The assembly line has 5 workers (workstations - W1, W2, W3, W4, W5) stationed on the line as follows where back tracking is not allowed.

The activities assigned to each workstation by production team are as follows.
NUMBER OF WORK STATION:
Number of Workstations \((n) = 5 \)

TOTAL PROCESSING TIME
\(T_p = \) ? Processing Time of all activities
\(T_p = 30+50+40+50+20+20+10+10+10+20+30+50+10 \)
\(T_p = 350 \) Seconds

CYCLE TIME OF EACH WORK STATION
<table>
<thead>
<tr>
<th>Worker</th>
<th>Activities</th>
<th>Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>A,B</td>
<td>80 (CW1)</td>
</tr>
<tr>
<td>W2</td>
<td>C,E</td>
<td>60 (CW2)</td>
</tr>
<tr>
<td>W3</td>
<td>C,E</td>
<td>70 (CW3)</td>
</tr>
<tr>
<td>W4</td>
<td>F,I,L</td>
<td>70 (CW4)</td>
</tr>
<tr>
<td>W5</td>
<td>G,J,K,M</td>
<td>70 (CW5)</td>
</tr>
</tbody>
</table>

CYCLE TIME OF ASSEMBLY LINE
Cycle time of Assembly Line is the maximum time of individual work stations.
\(CL = \) Maximum \((CW1, CW2, CW3, CW4, CW5) \)
\(CL = \) Maximum \((80, 60, 70, 70, 70) \)
\(CL = 80 \) Seconds

BALANCE DELAY
\(DL = \frac{[5\times 80] - 350}{[5\times 80]} \times 100 \)
\(DL = 12.5\% \)

PRODUCTION RATE
Assuming Production happens 24 Hrs in 3 shifts each of 8 hrs.
Production rate \((PL) = \) Available Time / Cycle Time
\(PL = \frac{24\times 60\times 60}{80} \)
\(PL = 1,080 \) Units
Hence with existing assembly line, 1080 units can be produced per day.

REARRANGEMENT FOR BETTER BALANCE
Total Number of Workstations \((n) = 5 \)
Total Processing Time \((T_p) = 350 \) Seconds
Average Time per work stations \(= \frac{T_p}{n} = \frac{350}{5} = 70 \) Seconds
GOAL

This model illustrates how to balance an assembly line in order to minimize its total cycle time. An assembly line consists of a series of workstations in which each station performs one or more specialized tasks in the manufacture of a final product. The cycle time is the maximum time it takes any workstation to complete its assigned tasks.

The goal in balancing an assembly line is to assign tasks to stations, so equal amounts of work are performed at each station. Improperly balanced assembly lines will experience bottlenecks—workstations with less work are forced to wait on preceding stations which have more work assigned.

The problem is complicated further by precedence relations amongst the tasks, where some tasks must be completed before others may begin (e.g., when building a computer, installing the disk drives must precede putting on the outer casing).

The assignment of tasks to workstations must obey the precedence relations. For our example, we have eleven tasks (A through K) to assign to four stations (1 through 4). We need to find an assignment of tasks to workstations that minimize the assembly line’s cycle time.

Given:

- A set of tasks, each with a task time,
- Precedence constraints among some of the tasks,
- A limited number of stations;

Problem:

Minimize the maximum amount of work assigned to any station, subject to:

- Each task is assigned to exactly one station,
- No task is assigned to a station prior to any of its predecessors;
MODEL:

This model involves assigning tasks to stations in an assembly line so bottlenecks are avoided.
Ideally, each station would be assigned an equal amount of work.

SETS:

The set of tasks to be assigned are A through K, and each task has a time to complete, T;

TASK/ A B C D E F G H I J K/:

Some predecessor, successor pairings must be observed(e.g. A must be done before B, B before C, etc.);

There are 4 workstations;

STATION/1..4/;

TXS(TASK, STATION): X;

X is the attribute from the derived set TXS that represents the assignment. X(I,K) = 1 if task I is assigned to station K;

ENDSETS

DATA:

Data taken from Chase and Aquilano, POM. There is an estimated time required for each task:

A B C D E F G H I J K;

T = 45 11 9 50 15 12 12 12 8 9;

ENDDATA

SUBMODEL

MIN1:

Warning may be slow for more than 15 tasks. For each task, there must be one assigned station;

@FOR(TASK(I);

@SUM(STATION(K): X(I, K) = 1);

For each precedence pair, the predecessor task I cannot be assigned to a later station than its successor task J;

@FOR(PRED(I, J);

@SUM(STATION(K): K * X(J, K) - K * X(I, K) >= 0);

For each station, the total time for the assigned tasks must be less than the maximum cycle time, CYCTIME;

@FOR(STATION(K);

@SUM(TXS(I, K): T(I) * X(I, K)) <= CYCTIME);

Minimize the maximum cycle time;

[OBJ] MIN = CYCTIME;

The X(I,J) assignment variables are binary integers;

@FOR(TXS: @BIN(X));

ENDSUBMODEL

CALC:

@SET('TERSEO',1); ! Output level: 0=Verbose, 1-Terse;

@SET('STAWIN',0); ! Post status windows, 1 Yes, 0 No;

! Data block;

@WRITE(" DATA:", @NEWLINE(1), "", @NEWLINE(1), ' TASK: ');

@WRITEFOR(TASK: @FORMAT(TASK, '-4s'),);

@WRITE(" STATION: ');

@WRITEFOR(STATION: @FORMAT(STATION, '-4s'),);

@WRITE(" TIME: ');

@WRITEFOR(TASK: @FORMAT(T, '%4.0f'),);

@WRITE (" SOLUTION: ", @NEWLINE(1));

! Execute sub-model;

@SOLVE(MIN1);

! Solution report;

@WRITE(" IDEAL PLANNING PROGRAM: ", @NEWLINE(1));

@WRITEFOR(TXS(I, K) | T(I) * X(I, K) #GT# 0: ' For task:',TASK(I),', ", @NEWLINE(1));

@WRITE(" Maximum time required (sec):', 24*' ',

@FORMAT(T, '%2.0f'),', "

@NEWLINE(1));

@WRITE(" To see the corresponding model scalar, remove (!) From the line below;

@GEN(MIN1);

ENDCALC
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

<table>
<thead>
<tr>
<th>TASK:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME:</td>
<td>45</td>
<td>11</td>
<td>9</td>
<td>50</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

SOLUTION

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal

SOLUTION:

Global optimal solution found.

Objective value: 50.00000
Objective bound: 50.00000
Infeasibilities: 0.00000

IDEAL PLANNING PROGRAM:

For task:A, 45 sec of work is required in station: 1
For task:B, 11 sec of work is required in station: 3
For task:C, 9 sec of work is required in station: 4
For task:D, 50 sec of work is required in station: 2
For task:E, 15 sec of work is required in station: 3
For task:F, 12 sec of work is required in station: 4
For task:G, 12 sec of work is required in station: 4
For task:H, 12 sec of work is required in station: 3
For task:I, 12 sec of work is required in station: 3
For task:J, 8 sec of work is required in station: 4
For task:K, 9 sec of work is required in station: 4

Maximum time required (sec): 50
GOAL

This model illustrates how to balance an assembly line in order to minimize its total cycle time. An assembly line consists of a series of workstations in which each station performs one or more specialized tasks in the manufacture of a final product.

The cycle time is the maximum time it takes any workstation to complete its assigned tasks. The goal in balancing an assembly line is to assign tasks to stations, so equal amounts of work are performed at each station. Improperly balanced assembly lines will experience bottlenecks—workstations with less work are forced to wait on preceding station which have more work assigned.

The problem is complicated further by precedence relations amongst the tasks, where some tasks must be completed before others may begin (e.g., when building a computer, installing the disk drives must precede putting on the outer casing). The assignment of tasks to workstations must obey the precedence relations. For our example, we have eleven tasks (A through K) to assign to four stations (1 through 4). We need to find an assignment of tasks to workstations that minimize the assembly line's cycle time.

Given:

- A set of tasks, each with a task time,
- Precedence constraints among some of the tasks,
- A limited number of stations;

Problem:

Minimize the maximum amount of work assigned to any station, subject to:

- Each task is assigned to exactly one station,
- No task is assigned to an earlier station than any of its predecessors;
MODEL:
! Assembly line balancing model: Assign tasks to stations in an assembly line so
! 1) precedence constraints among tasks are satisfied, and
! 2) each station is assigned no more than a specified amount of work,
! 3) Objective is to minimize the number stations required;
! Keywords: Line balancing, Assembly line balancing;

SETS:
! There is a set of tasks, each with a duration T;
TASK: T;
! Predecessor/successor pairings must be observed(e.g. A must be done before B, B before C, etc.);
PRED(TASK, TASK);
! There are a specified number of workstations;
STATION: USE;
TXS(TASK, STATION): X;
! X(i,k) = 1 if task i is assigned to station k, else 0;
ENDSETS

DATA:
! Data taken from Chase and Aquilano, POM. There is an estimated time required for each task.;
TASK = A B C D E F G H I J K;
T = 45 11 9 50 15 12 12 12 12 8 9;
! There are 5 possible stations;
STATION = 1..5;
! Cycle time or upper limit on work in each station;
CYCTIME = 50;
ENDDATA

SUBMODEL MIN2:
! Variables: USE(k) = 1 if station k is used, else 0, X(i,k) = 1 if task i assigned to station k, else 0;
! The model, *Warning* may be slow for more than 15 tasks;
! Minimize the number of stations;
[OBJ] MIN = @SUM(STATION(k): USE(k));
! For each task, there must be one assigned station;
@FOR(TASK(i):
 [DOTASK] @SUM(STATION(k): X(i, k)) = 1);
! Precedence constraints;
! For each precedence pair, the predecessor task i cannot be assigned to a later station than its successor task j;
@FOR(PRED(i, j):
 [PRD] @SUM(STATION(k): k * X(j, k) - k * X(i, k)) >= 0);
! For each station, the total time for the assigned tasks must be less than the maximum cycle time, CYCTIME;
@FOR(STATION(k):
 [KNAP] @SUM(TXS(i, k): T(i) * X(i, k)) <= CYCTIME*USE(k); @BIN(USE(k)); ! USE(k) is a binary variable;);
! If station k is used, then station k-1 must also be;
@FOR(STATION(k) | k #GT# 1: [NOGAP] USE(k) <= USE(k-1););
! The X(i,j) assignment variables are binary integers;
@FOR(TXS: @BIN(X));
! Some cuts;
! If task i assigned to station k, then k is used;
@FOR(TXS(i,k): [CUT] X(i,k) <= USE(k));
ENDSUBMODEL
C2-B20 Solving Problems with LINGO

CALC:
! Output level: 0=Verbose, 1-Terse;
@SET('TERSEO',1);
! Post status windows, 1 Yes, 0 No;
@SET('STAWIN',0);
! Data block;
@WRITE(" DATA:", @NEWLINE(1));
@WRITE(" ", @NEWLINE(1), ' TASK: ');
@WRITEFOR(TASK: @FORMAT(TASK, '-4s'),);
@WRITE(" ", @NEWLINE(2), ' STATION: ');
@WRITEFOR(STATION: @FORMAT(STATION, '-4s'),);
@WRITE(" ", @NEWLINE(2), ' TIME: ');
@WRITEFOR(TASK: @FORMAT(T, '%4.0f'),);
@WRITE(" ", @NEWLINE(1), " SOLUTION: ", @NEWLINE(1));
! Execute sub-model;
@SOLVE(MIN2);
! Solution report;
@WRITE(" ", @NEWLINE(1), " IDEAL PLANNING PROGRAM: ", @NEWLINE(1));
@WRITEFOR(TXS(I, K) | T(I) * X(I, K) #GT# 0: ' For task:', TASK(I), ', ',
 @FORMAT(T(I) * X(I, K), '%3.0f'), ' sec of work is required in station: ',
 @FORMAT(STATION(K), ' 2s'), ' ',
 @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
@WRITE(" ", @NEWLINE(1));
@WRITE(' Total stations required::', 27*' ',
 @FORMAT(OBJ,'%2.0f'),
 @NEWLINE(2));
!To see the corresponding model scalar, remove (!) From the line below;
!@GEN(MIN1);
ENDCALC
END
DATA

All problem data is organized in the data block as a set of members and value attributes, which can be viewed below.

DATA:

TASK: A B C D E F G H I J K
STATION: 1 2 3 4 5
TIME: 45 11 9 50 15 12 12 12 8 9

SOLUTION:

Below is the solution achieved by LINGO with infeasibilities 0, and the detailed report that makes up the optimal solution.

SOLUTION:

Global optimal solution found.
Objective value: 4.000000
Objective bound: 4.000000
Infeasibilities: 0.000000

IDEAL PLANNING PROGRAM:

For task:A, 45 sec of work is required in station: 1
For task:B, 11 sec of work is required in station: 3
For task:C, 9 sec of work is required in station: 4
For task:D, 50 sec of work is required in station: 2
For task:E, 15 sec of work is required in station: 3
For task:F, 12 sec of work is required in station: 4
For task:G, 12 sec of work is required in station: 4
For task:H, 12 sec of work is required in station: 3
For task:I, 12 sec of work is required in station: 3
For task:J, 8 sec of work is required in station: 4
For task:K, 9 sec of work is required in station: 4

Total stations required: 4
C2-B20 Solving Problems with LINGO

Number of Stations | Case 2 | Assembly Line Balance

TASK
Predecessor, Successor

A to B → B to C → C to F → F to J
D to E → E to H → H to J → J to K

C to G → G to J

W1
Task A
45

W2
Task D
50

W3
Task B,E,H,I
11,15,12,12 = 50

W4
Task C,F,G,J,K
9,12,12,8,9 = 50

ASSEMBLY LINE BALANCING

Product In → Product Out
CHAPTER

3
BIBLIOGRAPHY

• Suggested Bibliography
• Source
• About the Author

Darci Prado, Programação Linear, Serie Pesquisa Operacional Vol. 1, INDG Instituto de Desenvolvimento Gerencial S/A, 2012

Marco Cesar Goldbarg, Henrique Pacca Loureiro Luna, Elizabeth Ferreira Gouvêa Goldbarg, Programação Linear e Fluxos em Redes, Editora Campus, 2015.

Cláudio Boghi e Ricardo Shitsuka, Aplicações Práticas com o MS Office 2003 e Solver, Ferramentas Computacionais para tomada de Decisão, Editora Érica Ltda, 2005

Optimization Modeling with LINGO by Linus Schrage, www.lindo.com, Chicago
<table>
<thead>
<tr>
<th>Book</th>
<th>Name</th>
<th>Author</th>
<th>Publishing company</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Programação Linear</td>
<td>Darci Prado</td>
<td>INDG</td>
<td>2012</td>
</tr>
<tr>
<td>2</td>
<td>Solver</td>
<td>Claudio Borghi & Ricardo Shitsuka</td>
<td>Editora Erica Ltda</td>
<td>2005</td>
</tr>
<tr>
<td>3</td>
<td>Programação Linear e Fluxos em Redes</td>
<td>Marco Cesar Goldbarg, Loureiro Lima, Elizabeth Ferreira Gouvêa Goldbarg.</td>
<td>Campus</td>
<td>2015</td>
</tr>
<tr>
<td>4</td>
<td>Application Model Library</td>
<td>Lindo Systems Inc</td>
<td>Lindo Systems Inc</td>
<td>2018</td>
</tr>
<tr>
<td>5</td>
<td>Optimization Modeling with LINGO</td>
<td>Linus Schrage</td>
<td>Lindo Systems Inc</td>
<td>2018</td>
</tr>
<tr>
<td>6</td>
<td>LINGO the modeling Language and Optimizar</td>
<td>Lindo Systems Inc</td>
<td>Lindo Systems Inc</td>
<td>2018</td>
</tr>
<tr>
<td>7</td>
<td>Internet Document</td>
<td>Msc. Fernando M. A. Nigeria</td>
<td>EDP/FE/UFJF</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Programação Linear</td>
<td>Mauricio Pereira dos Santos</td>
<td>DMA-IME/UFRJ</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Pesquisa Operacional</td>
<td>Prof. Flavio Fogliato, Ph.D.</td>
<td>DEPROT / UFRGS</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Alocação</td>
<td>academia.edu</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Investigação Operacional</td>
<td>Manuela Magalhães Hill and Mariana Marques dos Santos</td>
<td>Edições Silabo Ltda</td>
<td>2018</td>
</tr>
</tbody>
</table>
Companies / Projects worked

VOLKSWAGEN

- Development, Support and IBM-APL Language Training
- Just-In-Time System (IBM-DAE)
- Broadcasting System (Siemens)
- Powertrain Warehouse Systems
- Development of tools for implementation of Regelkreis methodology in Plant Floor
- Body Paint Mix Sequencing System
- Development of Linear Programming Models using IBM-APL

GEDAS

- Just-In-Time System
- e-Procurement System

T-SYSTEMS

- e-Procurement System
- Economic Feasibility of Projects System

PROTOTYPES:

- Acquisition of Times of the activities performed during the stay of the Aircraft in soil
- Acquisition of medical data from patients with cancer, for the Genome project.
- Development of Data Analysis (BI) for various activities